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Abstract 

There is an ongoing surge of sports science professionals within sports organizations. 

However, when seeking to determine training-related adaptations, sports scientists have 

demonstrated continued reliance on group-style statistical analyses that are held to critical 

assumptions not achievable in smaller-sample team settings. There is justification that these 

team settings are better suited for replicated single-subject analyses, but there is a dearth of 

literature to guide sports science professionals seeking methods appropriate for their teams. 

In this report, we summarize four methods’ ability to detect performance adaptations at the 

replicated single-subject level and provide our assessment for the ideal methods. These 

methods included the model statistic, smallest worthwhile change (SWC), coefficient of 

variation (CV), and standard error of measurement (SEM), which were discussed alongside 

step-by-step guides for how to conduct each test. To contextualize the methods’ use in 

practice, real countermovement vertical jump (CMJ) test data was used from four athletes 

(two females and two males) who complete five bi-weekly CMJ test sessions. Each athlete 

was competing in basketball at the NCAA Division 1 level. We concluded the combined 

application of the model statistic and CV methods should be preferred when seeking to 

objectively detect meaningful training adaptations in individual athletes. This combined 

approach ensures that the differences between tests are A) not random and B) reflect a 

worthwhile change. Ultimately, the use of simple and effective methods that are not restricted 

by group-based statistical assumptions can aid practitioners when conducting performance 

tests to determine athlete adaptations. 
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Introduction 

Within sports organizations, there has been a concerted effort to form collaborative teams 

capable of evaluating the effectiveness of sports performance interventions using objective, 

scientific analysis methods. Typically, the main objective of this effort is to provide empirical 

assessments of a sports program’s effectiveness by combining objective data with coaches’ 

expertise to help guide actionable decisions. This has led to the development of the field 

known as “sports science” (16). Despite the benefits realized through this effort and the 

development of the larger field of sports science, there has been little advancement with 

respect to practices centering on individual athlete evaluations in place of team (i.e., group) 

average evaluations. Ultimately, practitioners and team-based sport scientists will continue to 

face challenges when seeking to determine whether athletes are adapting to training or related 

interventions. At face value, these challenges are due to the available literature to which 

practitioners can compare their athletes’ physical performances, as studies are largely limited 

to short-term, repeated-measures and cross-sectional protocols that provide only mechanistic 

explanations of physical human performance, rely on samples of non-athlete populations, or 

both (1, 28, 32, 44, 59). In reality, multiple factors are to blame for the lack of ability to make 

actionable decisions from collected data during performance tests.  

 

Our experiences indicate the limited potential to make actionable decisions is predominantly 

due to three realities within the strength and conditioning community. First, in the United 

States there have been very few vacancies within sports organizations that are appealing to 

qualified sports scientists, which forces untrained or inexperienced practitioners and scientists 

into such roles. Second, strength and conditioning coaches are often assigned to, or volunteer 

for, sports scientist roles despite a lack of training in areas concerned with research 

methodology, data management and analysis, and statistics. Third, formally-trained scientists 



who assume roles in sport are predominantly exposed to statistical tests aimed at generalizing 

a sample’s average result to the sample’s larger population (26). Obviously, we cannot 

control the current state of the literature, personnel decisions, nor the availability of appealing 

vacancies for adequately trained candidates in sports organizations. However, we can provide 

evidence- and experience-based methodologies we have used or continue to use in real-world 

settings to help scientists and practitioners conduct appropriate analyses and obtain actionable 

test results. 

 

 Conventional statistical analyses limit practitioners to the assessment of a group’s “average” 

response or adaptation, and this practice is echoed in the sports science literature (4, 17, 18, 

34, 50). However, replicated single-subject approaches have been used by some to detect 

changes and this approach may provide the most value to sports scientists and practitioners 

(11, 29, 31, 55), particularly high value for those working with smaller squads of athletes 

(e.g., basketball, soccer, volleyball, etc.). An appropriate foundation of single-subject 

analyses in athletes  is forming (11, 29, 31), helping to create the impetus needed to move 

away from group-average assessments, when necessary, without reliance on subjective visual 

inspection or trend analyses. Unfortunately, anecdotal evidence indicates many practitioners 

currently employing replicated single-subject assessments rely on arbitrary thresholds for 

change (i.e., 5% or 10% improvement) as an indicator for real change. The next logical step 

to strengthen the foundation is to demonstrate methods that can be used to conduct high-

quality objective assessments and provide empirical evidence for individual athletes’ 

performance adaptations. The ultimate objective from the current article was intended to 

align with the NSCA’s Essentials of Sport Science textbook, which highlights the importance 

of guiding necessary stakeholders in ways to quantitatively determine the effectiveness of 

their training or related interventions and subsequently make data-driven changes (14).  



 

The purpose of this report was to summarize methods for practitioners to explore for their 

own purposes related to individual athlete assessments. We provide explanations for specific 

methods’ selection compared to other options in addition to step-by-step guides to conduct 

each test for further exploration. In addition, we compare each method and provide our 

opinion for which method or combination of methods is most appropriate or ecologically 

relevant for practitioners working with athlete populations. To contextualize how each 

method can work in practice, we applied them to a small subset (n = 4) of real, longitudinal 

data obtained from athletes competing in men’s or women’s basketball at the NCAA Division 

1 level. Finally, we provide an editable Microsoft Excel worksheet which includes the 

calculations to assist practitioners in applying our recommended approach in practice. 

 

Motivation for Quantitatively Assessing Individual Athletes 

It is beyond the scope of this report to discuss in-depth the limitations of group-level 

statistical testing (e.g., t-test, ANOVA, etc.) in team-based settings, as this has been done 

elsewhere (6, 8, 9, 22, 33). The key point for practitioners is that group-level testing requires 

a normal distribution where the data from the sample (i.e., the athletes) are generalized prior 

to analysis. As athlete samples are typically quite small, it is unlikely that a normal 

distribution will occur, leading to issues related to the sample standard deviation and standard 

error (13). Moreover, group-level approaches with smaller-samples are limited to the 

interpretations based on the sample’s “average” response or adaptation, which is a well-

known misrepresentation of the individuals from which the group average is obtained (8). 

Replicated single-subject approaches (11, 29, 31, 55) are ideal for smaller-sample settings 

where the individuals are not represented by the group average. However, further examples 

are needed to help practitioners move away from isolated use of group-average assessments, 



when necessary, without reliance on subjective visual inspection or trend analyses for 

individual assessments. Consequently, the next logical step is to demonstrate methods that 

can be used to conduct high-quality assessments and provide empirical evidence for 

individual athletes’ performance adaptations. 

 

Importantly, there are multiple methods at one’s disposal to select from that can be used to 

quantitatively explore individual athlete responses. However, some of those methods might 

not be ideal even though they can be used at the individual level. Some of these methods, 

albeit less common in contemporary literature, include non-parametric assessments such as 

the Mann-Whitney U Test (9), bootstrapping (25), and multiple regression (24). Other 

methods more commonly observed in contemporary literature include assessing the 

percentage of non-overlapping data points (38), counting the number of data points above a 

specific threshold (41), confidence intervals or effect sizes (52, 53), and statistical process 

control (56). An advantage to these latter approaches is they provide adequate scientific rigor 

because means and standard deviations of increasing or decreasing sequential data are treated 

in consideration for their slope. This is important when comparisons are made between very 

different means values (e.g., 10 vs. 100) with similar amounts of normalized variation (i.e., 

10%). The methods have additional value when seeking to determine whether an athletes’ 

current test result is different from a previous series of tests, or whether the results of one 

training period are different from those of a subsequent training period. However, there are 

consequences of these methods. First, they can involve between-subjects metrics, notably the 

between-subject standard deviation, which minimizes the fluctuations or variability among 

individuals within the team or group (8). Second, calculating rolling averages across several 

test sessions minimized the movement variations (i.e., strategies) that dictate an athlete’s 

performance outcomes during a test session when the test sessions are pooled together. As 



described by Bates (6), all measurement outcomes are dependent upon the state of the 

organism interacting with the environment at a specified moment in time. It is our opinion 

that individual athlete assessments must seek to account for the uniqueness of individual 

athlete strategy, as the available number of strategies changes over time due ongoing changes 

in biomechanical or mechanical, morphological, and environmental constraints (6, 35). We 

feel this is best accomplished by evaluating athletes’ performance changes between 

consecutive test sessions. Those who may be interested in procedures that involve between-

subject metrics or rolling averages are referred to previous literature (36, 57, 64). 

 

The quantitative approaches we feel have the most potential to reveal test-to-test performance 

changes include single-subject ‘significance’ testing [i.e., the model statistic], and comparing 

the magnitude of change against the smallest worthwhile change [SWC], the standard error of 

measurement [SEM], or the coefficient of variation [CV] (10, 29, 31, 61, 65, 66). The 

usefulness of each of these methods is that all were designed for, or can be relatively simple 

to apply in, single-subject analyses. In addition, all are reasonably simple to understand, 

perform, and interpret by practitioners, regardless of prior statistical training. Most 

importantly, each method requires multiple testing efforts (i.e., trials) to be included for each 

comparison, which discourages the common practice of including only the “best” effort or 

only very few trials (42) from the test sessions. Including multiple trials is a critical 

component of the single-subject methodology (6, 33) to reduce the variation in an athlete’s 

data, thereby increasing statistical power (7) and provide stable performance data which 

better reflects an athlete’s true performance capabilities (40). The resulting outcome for the 

presence of a change is therefore obtained with consideration for both the absolute change of 

performance and the potential variations among trials within the test (i.e., consistency of each 

individual’s result), which can mask changes when not accounted for (8). Importantly,  



accounting for variation means the performance result for each athlete’s test session(s) 

considers their biomechanical constraints and unique response patterns to environmental 

feedback, which ultimately, determine bodily movement and the amount of performance 

variability (5, 35).  

 

Overview of Session vs. Session Analysis Methods 

Model Statistic  

The model statistic technique is a critical difference method that can be loosely considered a 

single-subject dependent t-test, whereby the observed difference between sessions is 

compared to a probabilistic critical difference (7, 9). It was designed in the early 1990s by 

Bates et al. (7) and has been used to demonstrate the value of single-subject comparisons 

between two conditions relative to the group-level equivalent (31). Critical values were 

generated (7) for selected trial sizes (i.e., the number of trials used to calculate the test session 

average) and statistical probabilities (i.e., alpha levels; α), which are provided in Table 1. The 

final decision from the test therefore indicates the probability for whether the difference 

between test sessions was due to random chance, using the user’s a priori choice among 

10%, 5%, or 1% probability levels. A unique feature of the model statistic is that it does not 

calculate interval limits as one standard deviation away from the mean, and instead 

incorporates the weighted mean standard deviation (7), which can also be described as the 

variation in the collective number of trials or observations used in the comparison (7, 21). 

Ultimately, the critical values and ultimately the critical difference score are analogous to a 

1.96*standard deviation interval where the critical difference is a cutoff from which 95 

percent of scores are between ± the critical difference. When test sessions with different trials 

sizes are compared, we recommended using the critical value associated with the smallest 

trial size because the test is more conservative when smaller trial sizes are used (i.e., more 



difficult to return a difference that is not due to chance). The main limitation to the model 

statistic is that the critical value table was created using vertical ground reaction force data 

obtained during the support phase of running. It may be that other types of data or other tasks 

might yield different critical values.  

 

Traditional paired-samples t-test and effect sizes could be used in a similar way, but we favor 

the model statistic for a few reasons. First, t-tests are inappropriate for repeated test 

assessments (e.g., more than two comparative tests) without corrections for familywise error, 

require a minimum number of samples (i.e., trials in this case) for adequate statistical power 

(7), and the observations that make up the comparative means are subject assumptions related 

to frequency distributions and homogeneity of variance (63). Satisfying these assumptions 

and related criteria is not typically achievable in athlete testing environments. For effect 

sizes, clinical data suggests a similar rate of “differences” will occur in comparison to the 

model statistic (23). There are lingering problems, however, related to effect sizes. First, there 

is no similar evidence suggesting a similar rate of difference among athlete populations 

compared to the model statistic. Second, effect sizes are limited by the need to select a 

magnitude threshold for interpretation based on subjective scales (19, 37, 54), created mostly 

from recreationally active samples, or based on athlete training level and not primary sport or 

training stimulus (54). As reducing subjectivity and guesswork is critical for the applied 

sports scientist, we feel effect sizes would not be appropriate in this type of scenario. 

Comparisons between tests for an individual athlete can be performed with the model statistic 

technique using the following procedural steps: 

1. Calculate the absolute mean difference between pre-test (X1) and post-test (X2) 

sessions, ensuring a minimum of three trials for each test 

Mean Difference = |X1 – X2| 



2. Calculate the mean standard deviation (SD) from the pre-test and post-test values 

(SD1 and SD2) 

SDMean = [(SD1
2 + SD2

2) / 2]1/2 

3. Multiply desired critical value (i.e., test statistic) from Table 1 by the mean SD 

calculated in step 2, which produces a critical difference 

Critical Difference = Table 1 value * SDMean 

4. Compare the mean difference between tests to the critical difference  

- Significant Difference: Mean Difference > Critical Difference 

- Non-Significant Difference: Mean Difference ≤ Critical Difference 

 

< Insert Table 1 About Here > 

 

Smallest Worthwhile Change (SWC) 

The SWC approach is a form of magnitude-based inference (64) that was pioneered as an 

attempt to provide a more realistic assessment of performance adaptations when compared to 

traditional statistical tests (37). The SWC has greater specificity to sports science data sets 

compared to conventional Fisher-based probability tests, which, as mentioned, tend to include 

small sample (or trial) sizes, have relatively higher variations among measurements, and 

sports scientists may be less concerned with whether a change is or is not due to 

unexplainable chance (15, 47). A constant of 0.2 is used to establish the SWC threshold (see 

below) for trained populations or athletes (60). This is because it aligns with the commonly 

accepted, albeit subjective, definition for a “small” magnitude difference, or effect size (19). 

A constant of 0.6 can be used in the SWC calculation for untrained populations or youth 

athletes because large adaptations can be realized in those populations following initial or 

short-term periods of training (47). While the selection of the SWC constant could be 



objectively calculated (46) for a specific sample or athlete, we elected to use what we 

determined from the sports science literature to be the most common SWC approach. 

Although the SWC approach is typically utilized at the group level, it can be easily applied at 

the replicated single-subject level. Comparisons between tests for an individual athlete can 

performed with the SWC approach using the following procedural steps, which are slightly 

modified for the single-subject assessment: 

1. Calculate the athlete’s mean performance display for the pre-test (X1) and post-test 

(X2) sessions 

2. Calculate the change from X1 to X2 

3. Calculate the SD across all test sessions (pre- and post-test sessions; referred to here 

as SDGlobal) 

4. Calculate the SWC 

SWC = 0.2 * SDGlobal 

5. Compare the athlete mean difference to the SWC 

- True Difference: X2 > X1 + SWC 

- Trivial Difference: X2 ≤ X1 + SWC 

 

Coefficient of Variation (CV) 

When comparing the percent change between test sessions to the CV, the objective is to 

determine whether performance changes or differences between conditions are greater than 

the variation in the test (10). Therefore, this technique is not a probabilistic test, and instead 

reveals whether the observed difference exceeds the ‘noise’ (as represented by the CV) 

inherent in the results. Rather than using the mean difference between the pre- and post-tests, 

the percent difference is typically used and compared to the CV. This may be particularly 

beneficial because the CV is a standardized metric that is a measure of reliability, which 



enables the formation of a target or, if desired, a boundary used to detect positive and 

negative change (60, 62). A benefit of this is that it may be more feasible to explain to 

athletes, coaches, or other stakeholders “how” differences are determined for each 

comparison. In addition, the CV approach can be obtained such that the unit of measure for 

the test is retained and still tell the same story as when converted to a percentage value, which 

can simplify interpretation for some practitioners, stakeholders, or both. While the procedure 

outlined here uses one standard deviation to calculate the CV, 1.5 or 2 standard deviations 

could also be used to expand the “range of scores”, which could be useful when seeking to 

modify the sensitivity of the test and account for what is quantified by each metric’s interval. 

This should not be confused with similar processes to compare data from different numeric 

scales (64). Rather, it is a way to control the outcome sensitivity for performance tests known 

to have greater or lesser movement variability. Comparisons between tests for an individual 

athlete can be performed with the CV technique using the following procedural steps: 

1. Calculate the athlete’s mean performance display for the pre-test (X1) and post-test 

(X2) sessions 

2. Calculate the athlete’s SD for the pre-test (SD1) session 

3. Calculate the percent change from X1 to X2 

% Change = 100 * (X2 – X1) / X1 

4. Calculate the CV for the pre-test (CV1) session 

CV1 = 100% * SD1 / X1 

5. Compare the percent change between pre-test and post-test sessions to CV1 

- True Difference: % Change > CV1 

- Trivial Difference: % Change ≤ CV1 

 

 



Standard Error of the Measurement (SEM) 

For the SEM method, the objective is to compare the change in performance to the ‘noise’, 

like the CV method, with data inherently retained in the original unit of measurement. This 

means that the absolute mean difference (i.e., change of performance) is used in conjunction 

with the precision of the test data. The SEM has been described as the intra-individual 

version of the SD (13), but there appears to be lesser practical application of SEM because 

assessments of individual performance changes have historically incorporated the SD (31). 

Although there are two common formulae used to calculate the SEM (2), the inability to 

obtain an intra-class correlation coefficient (ICC) at the single-subject level requires that the 

SEM is calculated as the square root of the mean square error (MSE), with some 

modifications to align with the single-subject dataset. This process may be more complicated 

to some than using the ICC. However, it could be beneficial because it avoids the 

uncertainties connected to the ICC and allows for more consistency (65) from test to test. 

Procedural steps for using the SEM method are as follows:  

1. Calculate the athlete’s mean performance display for the current test (X1) and the 

mean of the two test sessions being compared (XTotal) 

2. Calculate the sum of squares (SS) 

SS = (X1 –XTotal)
2 

3. Calculate the MSE using the SS and degrees of freedom (df; number of trials -1), 

where number of trials equals the sum of the number of trials recorded across sessions 

used for step 1 

MSE = SS/df 

4. Calculate the SEM  

SEM = √MSE 

5. Compare the athlete mean difference to the SEM 



- True Difference: X2 > X1 + SEM 

- Trivial Difference: X2 ≤ X1 + SEM 

 

Summary of the Exemplar Athletes, Performance Task, and Metrics Used 

To demonstrate the similarities and/or differences among methods with respect to detecting 

performance changes in athletes, we used data obtained across five bi-weekly test sessions 

from two female and two male NCAA Division 1 Basketball players. All were healthy, 

uninjured, and active members of an NCAA Division 1 Basketball program throughout the 

data collection period. Participants provided written informed consent, and data were 

collected in accordance with the Declaration of Helsinki as approved by the local Institutional 

Review Board. Although this report does not involve formal research methodology nor is it 

an “original research” paper, it is a series of case examples using real data. Because of this, 

we felt compelled to acknowledge the ethical considerations for using real data in this report.  

 

The countermovement vertical jump (CMJ) was selected as the test activity, with ground 

reaction force data obtained during testing. The CMJ was used for this report because it is 

commonly used in research when seeking to understand physical ability among athlete 

populations (3, 20, 28, 44, 49, 58). The CMJ was also selected because it (and related jumps) 

is performed frequently during competitive play in basketball (27, 48) and strongly associated 

with sport-specific qualities such as speed, strength, and agility (4, 45, 49, 51). In addition, 

CMJ tests are routinely performed in laboratory and practitioner settings where multiple trials 

are collected for each athlete, thereby satisfying the requirements of each method (see 

below). The modified reactive strength index (RSIMOD) and vertical jump height were 

included as primary and secondary CMJ performance metrics, calculated as center of mass 

flight height and the ratio of vertical jump height and time to takeoff, respectively (30). These 



metrics were selected according to a recent framework produced to guide practitioners in the 

selection of useful metrics to examine CMJ abilities (12). This is because RSIMOD is a valid 

and reliable surrogate for athletic explosiveness (43), and RSIMOD appears influenced 

primarily by jump height and not time to takeoff (32).  

 

 

Comparison among Methods at Detecting “Change” 

Performance changes from session to session were determined using the model statistic, 

SWC, CV, and SEM methods described previously. Table 2 provides a summary of the 

cumulative increases of performance detected by each method (i.e., 4 possible changes per 

method of analysis, per athlete, resulting in 16 possible changes). When detecting increases in 

RSIMOD, the most sensitive methods were the SWC and CV methods, with both detecting an 

increase of performance between test sessions for 38% (6 out of 16) of the total possible 

comparisons (Table 2). The model statistic and SEM methods were more conservative, 

detecting increases in performance between test sessions for 25% (4 out of 16) and 19% (3 

out of 16) of the total possible comparisons, respectively (Table 2). For jump height, the most 

sensitive method was SWC, with increases detected during 50% (8 out of 16) of the total 

number of comparisons (Table 2). The next most sensitive method was the CV method, 

detecting increases in jump height for 44% (7 out of 16) of the total number of comparisons 

(Table 2). The model statistic method detected increases in jump height for 31% (5 out of 16) 

of the number of comparisons, while the SEM method detected increases for only 6% (1 out 

of 16) of the total number of comparisons (Table 2).  

 

Importantly, the four methods were largely inconsistent with respect to detecting performance 

increases for the same comparisons, as the methods were consistent during only ~13% (4 out 



of 32) of the total possible comparisons across the four athletes (see Figures 1-4). The reason 

the SWC detected a much greater number of performance gains versus all other methods is 

that the equation uses only a portion of the athlete’s variation (20% for the 0.2 constant; 60% 

for the 0.6 constant). This creates a scenario in which the SWC will inherently detect a 

greater number of performance changes than the other methods, and ultimately, the risk of 

false “gains” is greatest. As such, the methods should not be used interchangeably, nor should 

reports of change be compared between or among assessments with different methods for 

detecting change. 

< Insert Table 2 About Here > 

 

Critical Considerations for Detecting Actionable Change 

The risk of false-positive outcomes should come into play from the perspective of 

determining an actionable change. It is therefore our opinion that a test for change in team 

settings includes three key components. First, the test should be objective to eliminate 

subjective estimations or guesses. Second, it should it err on the side of conservativeness 

when determining whether the difference between two tests is random or likely to be 

legitimate to avoid erroneous interpretations. Third, the test should provide a simple way to 

determine whether a difference between two tests is meaningful to the athlete, practitioner, or 

related stakeholder. According to these requisite components and the benefits, limitations, or 

both discussed for each method, we recommend the model statistic and CV approaches be 

used in parallel. This combined use of approaches will provide practitioners with the ability 

to identify actionable changes in their athletes. Further, it eliminates the likelihood for 

decisions to be made based on the presence of potentially random differences that seem 

valuable or non-random differences of little value. This “two-pronged” comparative approach 



should be familiar to sports science practitioners and its value to practitioners and key 

stakeholders can be reviewed elsewhere (37).  

 

Table 3 shows the cumulative increases of performance based on the model statistic, CV, and 

combined approach (the table is also available as an editable Microsoft Excel file, provided 

with the article as supplemental digital content). The fact that the model statistic and CV 

approaches did not identify athlete-specific differences with the same pattern supports the 

potential use of the two methods in parallel. The reason for the different patterns of 

differences between the approaches relates to the objectives for which the tests were 

designed. From the sports scientist’s perspective, the model statistic indicates whether the test 

results are legitimately different due to its conservativeness, while the CV indicates the 

meaningfulness of the difference between the test results. As such, they are complementary 

methods as opposed to ones that should be compared against one another.  

< Insert Table 3 > 

 

The recommendation for using the model statistic may be obvious, as it is the only method 

providing whether the difference between tests is statistically significant like convention 

group analyses (e.g., t-test, ANOVA). However, the recommendation for parallel use of the 

CV method may be less clear because the CV, SEM, and SWC methods all incorporate the 

session variation, or the athlete’s consistency across trials performed with the session(s). Our 

position for omitting the SWC relates to its reliance on subjectivity when determining the 

threshold for importance of a change. Moreover, the SWC’s use of 20% or 60% of the 

athlete’s variation makes it excessively sensitive, as mentioned previously, which is not ideal 

for athlete populations with a wide range of responses to training stimuli.  

 



The main limitation to the SEM method is that it involves modified equations to permit its 

use at the individual athlete level. In addition, the SEM method returned the same number of 

differences as the SWC method, albeit with a similar yet not identical pattern of differences 

(not shown in tables or figures). Thus, there may be increased risk for erroneous conclusions 

using the SWC or SEM methods, in which a certain number of significant performance 

changes from the model statistic would coincide with an inflated number of “meaningful” 

changes versus the CV method. In turn, practitioners using SWC or SEM might be motivated 

to conclude that an athlete has demonstrated a positive adaptation when there was no 

adaptation, or the adaptation was trivial.  

 

Practical Applications: When to Make Data-Driven Changes 

One final point to note relates to the level of influence a practitioner or sports scientist places 

on the results of a single or repeated performance tests, as the importance of any test can vary 

among practitioners, athletes, or both depending on training objectives. For context, Figures 

1-4 demonstrate our individual athletes’ CMJ performance changes across five sessions (i.e., 

10 weeks) from the start of full-time training until approximate start of the competition 

season. The nature of the training interventions for each athlete, which was somewhat unique 

to each individual, centered on progressive changes in training volume and intensity for 

exercises to continue improving “explosive strength” (67). As mentioned, we operationally 

defined “increased explosive strength” as an increase of RSIMOD, with jump height used as a 

secondary performance metric to help explain changes in RSIMOD. We use this approach 

because of previous work demonstrating RSIMOD is a valid and reliable surrogate for athletic 

explosiveness (43) in addition to our work suggesting increased RSIMOD is influenced 

primarily by jump height and not its other component part, time to takeoff (32). As such, if 

jump height was not an adequate explanatory metric for RSIMOD changes, it would mean the 



change was due primarily to altered times to takeoff and that would be considered in any 

recommendations provided. Thus, all athletes were expected to realize CMJ performance 

gains at each test session. If a change was not observed on a given test day, we would reflect 

on the results and other contributing factors to overall workload, such as physical training, 

on-court work, test-day fatigue/athlete readiness. Those data will not be discussed here but 

can be explored in part elsewhere (39). According to those reflections, recommendations 

were given to the strength and conditioning staff to decide whether training or related 

changes were needed.  

< Insert Figures 1-4 About Here > 

 

For female athlete 1 (Figure 1), the session-to-session changes in RSIMOD were similar to 

their changes in jump height. For the purposes of this report, we will focus on the way in 

which we use CMJ results to make data-driven training changes. In particular, the large 

decreases in RSIMOD and jump height from test session 2 to 3 were concerning. A member of 

the sports science team provided the strength and conditioning staff with recommendations, 

and they decided whether training and/or related workload modifications were appropriate. 

The changes they implemented were shown to be successful according to the athlete’s CMJ 

results at test session 4, which were both statistically significant (model statistic) and 

meaningful (CV). For female athlete 2, the CMJ test results were not concerning enough to 

recommend specific changes or considerations between test sessions 1 and 5, though there 

was a statistically significant (model statistic) and meaningful (CV) increase of RSIMOD at 

test session 5.  

 

It is important to note that our training, recommendation-based changes, or both, do not 

always return positive changes, as shown between test sessions 4 and 5 for male athlete 1 



(Figure 3). For instance, this athlete demonstrated somewhat positive results from test session 

1 to 2, as RSIMOD was shown to meaningfully increase (CV) while jump height was shown to 

increase significantly (model statistic) and meaningfully (CV). This performance further 

improved from test session 2 to 3, as RSIMOD and jump height increased significantly (model 

statistic) and meaningfully (CV) increased. However, there was an alarming drop in 

performance, as evidenced by decreases in both RSIMOD and jump height. Although data-

driven recommendations were presented and training and/or related modifications were 

prescribed, the athlete did not display statistically significant (model statistic) nor meaningful 

(CV) improvements in RSIMOD at test session 5 due to substantial variation across the session 

5 trials. Further to this, male athlete 2 displayed concerning results from test session 1 to 2, 

where a ~30% decrease in RSIMOD occurred. As the RSIMOD decrease appeared to be 

primarily driven by time to takeoff due to the < 5% decrease in jump height, specific 

recommendations and training and/or related modifications were prescribed specific to the 

athlete’s display. Interestingly, the athlete’s subsequent results at test session 3 did not 

stimulate targeted change in RSIMOD nor jump height. This trend continued through test 

session 5, suggesting the athlete was, for some reason, more resistant to the changes we were 

recommending, or the strength and conditioning staff were prescribing. While detailed 

exploration into those reasons is beyond the scope of this report, it did provide insight into 

ways test results could be used to consider or better adjust training. 

 

A final point for this section relates to our objectives during the 10-week test period 

presented, as this approach was specific to the groups of athletes and the goals established for 

those athletes. While the overarching objective for this subset of athletes and most athletes in 

the basketball programs is to increase “explosive strength”, the way in which that is 

stimulated varies across seasons, training blocks, and athletes. This is why the specific 



training programs, recommendations, and complimentary data are not discussed, as it would 

be of little relevance to the reader. The objective for this practical application section was to 

show when test data reveals performance changes that are objective in nature and should 

stimulate some consideration as to whether a modification is needed for training or some 

related aspect of the overall program.  

 

Conclusion 

We summarized four methods, specifically the model statistic, smallest worthwhile change 

(SWC), coefficient of variation (CV), and standard error of the measurement (SEM), with 

respect to detecting individual athletes’ change during performance tests, using the CMJ as 

the example test. We provide support for our recommendation that the combined use of the 

model statistic and CV should be preferred when seeking to objectively detect real and 

important training adaptations in individual athletes. We applied our recommended approach 

to a small subset of real data obtained in four different athletes, competing in men’s or 

women’s basketball at the NCAA Division 1 level, to contextualize how these methods and 

can work in practice, highlighting when we would or would not recommend or prescribe a 

training-related modification.   
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Tables 

Table 1. Critical values to determine the critical difference for the model statistic technique. 

Trial Size α = 0.10 α = 0.05 α = 0.01 

3 1.3733 1.6533 2.2133 

4 1.2643 1.5058 1.9867 

5 1.1597 1.3662 1.7788 

6 1.0629 1.2408 1.6044 

7 0.9751 1.1306 1.4623 

8 0.8960 1.0351 1.3473 

9 0.8270 0.9536 1.2542 

10 0.7673 0.8857 1.1776 

11 0.7172 0.8307 1.1129 

12 0.6757 0.7867 1.0581 

13 0.6415 0.7516 1.0117 

14 0.6132 0.7234 0.9720 

15 0.5896 0.7001 0.9375 

16 0.5695 0.6798 0.9070 

17 0.5522 0.6618 0.8796 

18 0.5371 0.6458 0.8548 

19 0.5237 0.6311 0.8318 

20 0.5114 0.6175 0.8102 

25 0.4592 0.5572 0.7145 

30 0.4194 0.5097 0.6437 

35 0.3896 0.4729 0.5949 

40 0.3673 0.4442 0.5626 

45 0.3500 0.4207 0.5414 

50 0.3352 0.4000 0.5256 

 

Notes – Trial size: the number of trials used to calculate the performance means for the test 

sessions; α: the alpha level (i.e., statistical probability criterion), or the probability that a 

difference between sessions is random.



Table 2. Performance increases detected by each method across athletes. 

Metric 

Model Statistic SWC CV% SEM 

Increases % Total Increases % Total Increases % Total Increases % Total 

RSIMOD 4 25 8 50 6 38 8 50 

Jump 

Height 
5 31 10 63 6 38 10 63 

 

Notes – SWC: smallest worthwhile change method; CV% coefficient of variation method, SEM: standard error of measurement method; 

Increases: number of increases detected across all four athletes (decreases excluded); % Total: percent of increases detected relative to the total 

number of comparisons.  

  



Table 3. Performance improvement assessments across five test sessions and four athletes. 

RSIMOD 

Athlete 

Test 1 Improvement Test 2 Improvement Test 3 Improvement Test 4 Improvement Test 5 Improvement 

Mean SD MS CV Both Mean SD MS CV Both Mean SD MS CV Both Mean SD MS CV Both Mean SD MS CV Both 

F1 0.393 0.016 N/A N/A N/A 0.547 0.043 TRUE TRUE TRUE 0.389 0.010 FALSE FALSE FALSE 0.560 0.030 TRUE TRUE TRUE 0.504 0.113 FALSE FALSE FALSE 

F2 0.337 0.007 N/A N/A N/A 0.367 0.051 FALSE TRUE FALSE 0.346 0.031 FALSE FALSE FALSE 0.327 0.010 FALSE FALSE FALSE 0.342 0.005 TRUE TRUE TRUE 

M1 0.504 0.028 N/A N/A N/A 0.553 0.043 FALSE TRUE FALSE 0.688 0.058 TRUE TRUE TRUE 0.595 0.021 FALSE FALSE FALSE 0.532 0.160 FALSE FALSE FALSE 

M2 0.777 0.126 N/A N/A N/A 0.536 0.012 FALSE FALSE FALSE 0.524 0.093 FALSE FALSE FALSE 0.526 0.076 FALSE FALSE FALSE 0.576 0.058 FALSE FALSE FALSE 

Group 0.503 0.065 N/A N/A N/A 0.501 0.040 FALSE FALSE FALSE 0.487 0.057 FALSE FALSE FALSE 0.502 0.042 FALSE FALSE FALSE 0.489 0.102 FALSE FALSE FALSE 

                           

Jump 

Height 

Athlete 

Test 1 Improvement Test 2 Improvement Test 3 Improvement Test 4 Improvement Test 5 Improvement 

Mean SD MS CV Both Mean SD MS CV Both Mean SD MS CV Both Mean SD MS CV Both Mean SD MS CV Both 

F1 0.248 0.001 N/A N/A N/A 0.306 0.012 TRUE TRUE TRUE 0.260 0.012 FALSE FALSE FALSE 0.301 0.012 TRUE TRUE TRUE 0.301 0.008 FALSE FALSE FALSE 

F2 0.254 0.010 N/A N/A N/A 0.275 0.007 TRUE TRUE TRUE 0.263 0.013 FALSE FALSE FALSE 0.277 0.003 FALSE FALSE FALSE 0.265 0.012 FALSE FALSE FALSE 

M1 0.319 0.010 N/A N/A N/A 0.339 0.009 TRUE TRUE TRUE 0.374 0.019 TRUE TRUE TRUE 0.355 0.003 FALSE FALSE FALSE 0.378 0.030 FALSE TRUE FALSE 

M2 0.452 0.012 N/A N/A N/A 0.424 0.027 FALSE FALSE FALSE 0.405 0.029 FALSE FALSE FALSE 0.412 0.047 FALSE FALSE FALSE 0.438 0.008 FALSE FALSE FALSE 

Group 0.318 0.009 N/A N/A N/A 0.336 0.016 FALSE TRUE FALSE 0.326 0.020 FALSE FALSE FALSE 0.336 0.024 FALSE FALSE FALSE 0.346 0.017 FALSE FALSE FALSE 

 

Notes – F1: female athlete 1, F2: female athlete 2; M1: male athlete 1; M2: male athlete 2; MS: model statistic method; CV: coefficient of 

variation method; Both: combined approach using model statistic and coefficient of variation methods; TRUE: change detected by associated 

method; FALSE: change not detected by associated method; When TRUE is contained in green, both methods detected change. 



Figure Captions 

 

Figure 1. RSIMOD (left) and jump height (right) performance results and differences detected by the model statistic and CV methods for female 

athlete 1. 

 

Notes – Data are presented as mean ± 1 standard deviation across 3 trials for each test session; Model Statistic Change from Previous: non-

random (p < 0.05) change between adjacent test sessions; CV% Minimum Increase: threshold that must be exceeded to indicate change between 

adjacent test sessions. 

 

 



 
Figure 2. RSIMOD (left) and jump height (right) performance results and differences detected by the model statistic and CV methods for female 

athlete 2. 

 

Notes – Data are presented as mean ± 1 standard deviation across 3 trials for each test session; Model Statistic Change from Previous: non-

random (p < 0.05) change between adjacent test sessions; CV% Minimum Increase: threshold that must be exceeded to indicate change between 

adjacent test sessions. 

 

 

 



 
Figure 3. RSIMOD (left) and jump height (right) performance results and differences detected by the model statistic and CV methods for male 

athlete 1. 

 

Notes – Data are presented as mean ± 1 standard deviation across 3 trials for each test session; Model Statistic Change from Previous: non-

random (p < 0.05) change between adjacent test sessions; CV% Minimum Increase: threshold that must be exceeded to indicate change between 

adjacent test sessions. 

 

 



 
Figure 4. RSIMOD (left) and jump height (right) performance results and differences detected by the model statistic and CV methods for male 

athlete 2. 

 

Notes – Data are presented as mean ± 1 standard deviation across 3 trials for each test session; Model Statistic Change from Previous: non-

random (p < 0.05) change between adjacent test sessions; CV% Minimum Increase: threshold that must be exceeded to indicate change between 

adjacent test sessions. 

 


