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ABSTRACT 

Environmental uncertainties and hyperconnectivity force techno-

socio-economic systems to introspect and adapt to succeed and 

survive. Current practice is chiefly intuition-driven which is 

inconsistent with the need for precision and rigor. We propose that 

this can be addressed through the use of digital twins by combining 

results from Modelling & Simulation, Artificial Intelligence, and 

Control Theory to create a risk free ‘in silico’ experimentation aid 

to help: (i) understand why system is the way it is, (ii) be prepared 

for possible outlier conditions, and (iii) identify plausible solutions 

for mitigating the outlier conditions in an evidence-backed manner. 

We use reinforcement learning to systematically explore the digital 

twin solution space. Our proposal is significant because it advances 

the effective use of digital twins to new problem domains that have 

greater impact potential. Our novel approach contributes a meta 

model for simulatable digital twin of industry scale techno-socio-

economic systems, agent-based implementation of the digital twin, 

and an architecture that serves as a risk-free experimentation aid to 

support simulation-based evidence-backed decision-making. We 

also discuss validation of this approach, associated technology 

infrastructure, and architecture through a representative sample of 

industry-scale real-world use cases. 
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1 Introduction 

Today’s techno-socio-economic systems, such as enterprises, 

ecosystems and society, need to achieve the desired goals while 

operating in a dynamic, uncertain and hyperconnected environment 

[23]. They continuously need to adapt in a manner to effectively 

respond to a variety of environmental disruptions possibly leading 

to unanticipated outlier conditions. However, deciding an effective 

response to a change is a difficult task. It requires precise 

understanding of system structure & behavior, goals, and the 

operating environment. Unique techno-socio-economic 

characteristics such as nonlinearity, uncertainty and emergentism 

further exacerbate the task [11]. Moreover, introduction of an 

intervention in a system that operates in an uncertain and dynamic 

environment comes with certain degree of risk and non-reversable 

consequences in addition to the cost of change. Therefore, decision-

makers often face ambidexterity dilemma [7] while balancing 

required adaptations and risk mitigation to achieve resilience.  

For decision-making, a system can be viewed as a transfer function 

from Input value space to Output value space with some 

assumptions about the operating Environment with an intention to 

meet the desired Goals as shown in Figure 1. The system Goal is 

an objective function over Measures that are derived from Traces, 

i.e., a history of Output and State of the system. Decision-Making 

becomes necessary when the system is not able to meet the desired 

Goal. It is an act of identifying appropriate intervention or Lever, 

i.e., introducing a change in Input space and/or in transfer function, 

to produce the desired Output thus achieving the stated Goals. 

Thus, robust decision-making calls for a detailed understanding of 

system transfer function, input & output value spaces, and 

dynamics of the environment.   

Digital twins have a history of use as a decision-making aid a key 

example of which is the digital twin of a flying vehicle created by 

NASA including a probabilistic model that used fleet history to 

ascertain fidelity. The twin was used to explore better design 

alternatives and to identify interventions necessary so as to respond 

suitably when faced with environmental changes. These 

simulations led to several benefits such as better understanding of 

aircraft structure leading to better design, better fleet management, 

and evidence-backed help to make the vehicle future ready [16]. 

Since then, digital twins have been widely used in physical systems 

space [14].  
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Similar rigor is needed for decision-making in organizational and 

societal contexts [21]; however, a digital twin based approach is yet 

to emerge. This is principally because techno-socio-economic 

systems are not governed by well-defined scientific laws like 

physical systems, chemistry and thermodynamics. Rather, transfer 

function and environment of techno-socio-economic systems 

exhibit high degree of contextual uncertainty, system of systems 

nature with multiple conflicting goals, and emergent behavior 

arising from the complex nonlinear interactions involving 

constituent elements [31]. Existing modelling techniques fall short 

of capturing these distinguishing characteristics effectively. 

Moreover, the lack of high-quality data pertaining to structure and 

behavior of techno-socio-economic system presents an additional 

barrier for using the digital twin based approach.       

With an aim to introduce digital twin as risk-free experimentation 

aid for techno-socio-economic systems, we critically evaluate the 

lacunae of the existing modelling & analysis techniques and 

address these lacunae by building further upon proven concepts 

from Modeling & Simulation (M&S), Artificial Intelligence and 

Control Theory. At the heart of the approach is a purposive hi-

fidelity simulatable model of techno-socio-economic system – a 

Digital Twin (SDT) [17]. The proposed approach uses agent/actor 

[18] as the core modelling abstraction at the right level of 

granularity augmented effectively by probabilistic modelling, the 

perceptron concept [28], and multi-criteria decision-making [3]. 

Our agent abstraction supports composition as a first-class concept 

to cater to the system of systems nature of enterprises and supports 

a wide variety of agents to address uncertainty and ambiguity, i.e., 

known known, known unknown, unknown known situations [27]. 

More precisely, we support: (i) deterministic agent leveraging 

Event-Condition-Action (ECA) [1] paradigm to capture the static 

known known behavior, (ii) stochastic agent that augments 

nondeterminism to model known unknown behavior, and (iii) 

machine-learnt agent that represents behavior learnt from past data 

to model unknown-known situations.  

A SDT serves as an “in silico” experimentation aid to: (i) 

understand system behavior, (ii) evaluate behavioral modifications, 

and (iii) explore possible better states for the system reducing the 

gap between expectation and reality. An ability to understand the 

efficacy of an intervention coupled with iterative simulation 

capability helps assess the risk of an intervention. From a 

methodological perspective, we adopt and combine two established 

validation techniques from simulation research namely: conceptual 

validity and operational validity [26, 29] in an agent-based 

modelling paradigm. Several tough business-critical and social 

problems across are addressed to evaluate the utility and efficacy 

of our approach. 

The rest of the paper is organized as follows: section 2 presents 

inherent complexities of techno-socio-economic system and 

evaluate existing modelling and analysis techniques. Section 3 

discusses our approach and section 4 presents four industrial case 

studies. The paper concludes with future work in Section 5.        

2 Background 

The state-of-the-practice of organizational decision-making [11] is 

predominantly qualitative where decision-makers intuitively 

analyze various performance indicators, i.e., Measures, compare 

them with the desired Goals, and reflect on expertise and past 

experience to arrive at the required change/interventions. Risk 

associated with intuition-driven decisions is typically mitigated 

through controlled experimentation in a sandboxed environment 

e.g., A/B testing [22]. However, experimentation involving real 

system is a time-, effort- and cost-intensive endeavor that typically 

requires iteration over multiple unsuccessful attempts before 

reaching a “good enough solution”.  Enhanced dynamics, shrinking 

window of opportunity, and increasing uncertainty are making this 

intuition-based ideate-build-experiment approach risky and 

ineffective. In this section, we critically analyze contextual 

complexities of techno-socio-economic systems, and evaluate 

adequacy of state-of-the-art modelling & analysis techniques to 

support decision-making for techno-socio-economic space. 

2.1 Contextual Complexities 

A large business system or social system can be decomposed ad 

infinitum into a set of interacting subsystems, i.e., Units. On the 

contrary, one may take a constructionist view wherein the atomic 

Units are composed ad infinitum to realize the complex system as 

shown in Figure 2. These units may interact with each other in order 

to achieve individual as well as system level Goals. The system 

level goals typically follow a top-down hierarchical decomposition 

structure, where the leaf level goals are mapped to Measures that 

are owned by specific units. Scale, complex interactions, and partial 

information make it quite difficult to adhere solely to either 

reductionist or constructionist view. Instead, pragmatism suggests 

use of both.  
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We describe the complexity of techno-socio-economic systems 

along three broad dimensions shown in Figure 3: a) inherent 

uncertainty of the domain of interest, b) the objective function or 

goals, and c) availability of relevant data. Techno-socio-economic 

systems are often inherently uncertain or fuzzy in terms of the unit 

behaviors and unit interactions thus leading to uncertainty in 

emergent behaviour. More the constituent elements, greater is the 

uncertainty. Therefore, specification of business systems tends to 

be more complex than physical systems, and specification of 

societal systems is even more complex – refer the green, blue and 

red colored triangles of Figure 3.          

The lack of precise mapping from top-down goal decomposition 

structure to unit [de]composition structure results in a complex and 

fuzzy objective function. Multi-criteria decision making with 

conflicting goals requires special attention to tradeoffs.     

Historical data of techno-socio-economic systems is a cause of 

concern. Typically, this data exists in a distributed and fragmented 

form which calls for significant integration effort to come up with 

a single holistic view. Currency of data is another concern as 

system operates in a dynamic environment. Majority of techno-

socio-economic systems are at point Expectation (E) in three-

dimensional hyperspace of Figure 3.     

2.2 Modelling and Analysis Techniques 

The modeling and analysis techniques for decision-making are 

broadly classified as: data centric and domain-model centric. The 

former relies on analysis of past data using statistical and/or 

machine learning techniques to identify the appropriate 

interventions. Availability of relevant high-quality data is a 

prerequisite for this approach - the yellow colored surface, i.e., AI 

Zone in Figure 3. Distance between the AI Zone and Point E 

indicates the degree of inefficacy of pure data centric approach to 

decision-making for techno-socio-economic systems.  High flux 

socio-technical characteristics and dynamism of the operating 

environment displace the Point E away from AI Zone. 

Domain-model centric approaches represent the transfer function 

and environment of the system using a variety of analyzable 

models. These models are further categorized into two types: 

mathematical models and enterprise models (EM). Mathematical 

models, such as linear programming, can specify the complex 

system of systems in terms of lumped-up mathematical formulae 

thus enabling formulation of decision-making problem as a multi-

variate optimization problem. However, this approach is vulnerable 

to data inadequacy i.e., survival bias [24]. Over the years, Simulink 

and MATLAB are extensively used for modelling and analyzing 

systems where relevant data is inadequate, domain understanding 

is less ambiguous, and the objective function is well formed, i.e., 

devoid of conflicting goals (highlighted as OR Plane in Figure 3). 

These techniques can be used to derive an optimal solution in a 

local context. However, they are found inadequate in predicting 

system-wide ramifications of introducing intervention in a locality 

and hence incapable of guaranteeing global robustness.  

Whilst less rigorous than mathematical models,  

Enterprise Models (EMs) fall into two broad categories: top-down 

coarse-grained and bottom-up fine-grained where the majority 

adopt top-down view and support coarse-grained modelling 

abstraction to specify large complex business enterprises. EMs are 

spread across a wide spectrum where some provide sophisticated 

graphical representation of enterprise that’s also somewhat 

amenable to automated analysis e.g., ArchiMate [20], and some 

support machine interpretable and/or simulatable specifications 

that help analyze a range of system aspects, for instance, BPMN 

[34] for modelling the process aspect, i* [19] for modelling 

enterprise goals, and System Dynamic (SD) [25] model for 

modelling enterprise behavior in an aggregated form. The multi-

modelling and co-simulation environments, such as DEVS [8] and 

MEMO [15], demonstrate further advancement in EM that support 

analysis of multiple aspects. 

A bottom-up approach, in contrast, starts from the parts or micro-

behaviors and derives macro behavior of a system through 

composition of micro-behaviours specified commonly using 

Erlang [2] and agent/actor [18].  

To sum up, coarse-grained models fail to capture the notion of 

system of systems characterized by conflicting goals, 

individualistic behavior of fine-grained units, and emergent 

behavior. While fine-grained models are useful in supporting a 

constructionist view of modelling complex system of systems, they 

often fail to scale in order to analyze large business and social 

systems. The state-of-the-art EM techniques work best when 

uncertainty is limited and few goals conflict (highlighted as EM 

Plane in Figure 3) [33]. Thus, it can be said that current state of 

modelling practice is inadequate in supporting decision-making for 

techno-socio-economic systems. 

3 Proposed Approach 

We propose an approach that innovatively integrates and builds 

further upon proven ideas from modelling & simulation, artificial 

intelligence, and control theory. At the heart of this approach is the 

concept of System Digital Twin (SDT) – a purposive virtual faithful 

simulatable model.  Here, we present a meta model for SDT, agent-

based realization of SDT, and an architecture that enables risk-free 

“in-silico” experimentation to support evidence-backed decision-

making in the face of dynamism and uncertainty. The concept of 

iterative exploration-centric decision-making is introduced by 

reflecting on the management perspective of decision-making in 

the face of deep uncertainty [11, 23].  We use reinforcement 

learning to reduce analysis & synthesis burden on human experts 

in the iterative decision-making process. We take inspiration from 

model reference adaptive control paradigm [30] to bring together 

the techno-socio-economic system, SDT, and the reinforcement 

learning agent in an architecture capable of dynamic adaptation.  

Management perspective of decision-making considers complex 

decision-making as three steps process: decision framing, strategy 

evaluation, and tradeoffs. Decision framing step focuses on precise 

definition of Goals, goal decomposition structure, Measures that 

help determine to what extend a goal is achieved, and potential 

options/interventions (i.e., Levers) that can be introduced to 

achieve the desired goals. We use GML structure as described in 

Figure 4 to frame the decision-making problem in a structured way. 

Strategy evaluation step aims to understand the influence of 

candidate Levers on Measures. We use SDT as a faithful 

representation of the system to explore a candidate set of Levers for 
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their potential impact on Measures. SDT simulation using what-if 

scenarios supports the exploration “in-silico” and in a risk-free 

manner.  We adopt a bottom-up fine-grained modelling paradigm 

where extended agent abstraction [18] is used to specify techno-

socio-economic systems. Chiefly, we extend the deterministic 

Event-Condition-Action (ECA) centric behavioral specification 

paradigm with: probability model to address uncertainty, AI model 

to effectively utilize fragmented micro-level data, and multi-criteria 

decision-making approach (MCDM) to mimic micro-level 

decision-making. For evidence-driven tradeoff, we simulate 

multiple Levers and compare the simulated traces of Measures to 

identify a Lever capable of achieving the desired Goals in best 

possible way.  

3.1 Extended Agent Model  

A techno-socio-economic system comprises of composable 

interacting Units as shown in Figure 2. We use an extended Agent 

abstraction to model Units. As shown in Figure 5 (a), our agent 

encapsulates two kinds of typed attributes, namely StateVariable 

(SV) and CharacteristicVariables (CV). The SVs represent state 

information using SValues, whereas CVs represent characteristics 

such as various affinities and biases of the unit using CValues. We 

consider Agent as a DataType, in addition to primitive types and 

list, to support desired composition and decomposition structure.   

A CValue can either be singleton or a range where the latter 

represents nondeterministic characteristics (i.e., a known unknown 

situation). A domain expert can specify CValues based on 

experience, or it can be learnt from history if relevant data exists.  

An agent can interact with other agents by raising Events and 

sending relevant data as Message. The simulation is driven through 

Time events. The behavior of an Agent is defined using different 

types of BehavioralUnit (BU) and Activities.  An activity may 

update state variables (SVs), send events to other agents and/or 

create a new agent as shown in Figure 5 (a). The BU of an agent 

can be conceptually visualized as a singleton perceptron like 

structure as shown in Figure 5 (b). A BU of an agent comprises a 

triggering event, subset of SVs, subset of CVs, and a subset of 

activities of the agent. A canonical agent uses Deterministic BUs 

that define behavioral specification as ECA rules. That can include 

probabilities to capture Stochastic BU. A Stochastic BU defines 

nondeterminism as below (also shown in Figure 5 (b)): 

  on event { 

   if conditions on SVs and CVs are true  

   then do { 

    activity1 @ probability1 (from CVx) or 

    activity2 @ probability2 (from CVy) … 

   } 

  }        

For Criteria Driven BU, we introduce multi-criteria decision 

making (MCDM) technique [32] to choose an activity from a set of 

options by considering triggering Event and SVs as inputs, CVs as 

weights to the inputs and Activities as outputs. A simple utility 

function [32] or a complex MCDM technique, e.g., TOPSIS [6], 

can be used to compute utility values of all involved activities of a 

BU. Here, an activity with highest utility value in given moment is 

a response to the triggering event, alternatively an activity can be 

randomly chosen from a set of Activities with high utility values – 

a fuzzy MCDM [13]. Important to note here that response can 

change over time as the state variables of agent change over time. 

Learnable BU is conceptually a layered neural network, where the 

triggering event and SVs of BU are input, and activities of the BU 

are outputs. Learnable BUs need to be trained with relevant dataset 

to learn behavior from the history.        

These BU types help to capture several pragmatic scenarios, thus 

our agent abstraction is suitable for capturing elements of techno-
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socio-economic elements: a) an incoming event as triggering event 

makes an agent reactive, b) a state variable as input to BU promotes 

autonomy, and c) an ability to specify characteristic variables 

(affinities and biases) by domain experts or learn from historical 

data helps to combine data-centric approach and domain model 

centric approach in a seamless manner. The existence of multiple 

interconnected BUs as triggers & response augmented with 

temporal delay in between and nondeterminism in an agent 

topology help to mimic micro-level fuzziness and non-linearities in 

a pragmatic manner. Here, we differ from the traditional 

application of MCDM and AI based techniques by applying the 

core concepts from both the techniques at micro-level to decide the 

best activity that an agent can perform at given moment as opposed 

to use AI and MCDM to predict macro behavior of a system.  

We further extend agent abstraction to introduce GML structure at 

varying level of granularity as shown in Figure 5 (a). The Measures 

are computed from SVs and Goals are expression over Measures. 

The Levers are combination of a) replacement of CValues, 

replacement of BUs honoring activity compliance (i.e., a BU can 

be replaced with other when both consider same set of activities), 

and replacement of Agent honoring event interaction pattern.  

Since we consider Environment as a singleton or a set of units (see 

Figure 2) and thus realize as Agents, the Messages from agents that 

represent environment constitute the system Inputs and the Values 

in terms of Measures that system agents produce while performing 

activities form the system Output.                     

3.2 Enabling Technology and Methodology 

An SDT of a system represents the elements and environment of 

the system as agents as shown in Figure 5 (a). We use the agent-

based Enterprise Simulation Language (ESL) [10] as a realization 

mechanism and follow well-defined methodologies to validate its 

faithfulness.  

Construction and contextualization: In this phase, domain 

experts identify relevant units and their composition, 

decomposition and interaction patterns (see Figure 2). All 

identified units are specified using ESL agents, interactions are 

represented as Events, and behavioral aspects are captured using 

BUs and activities.  The CVs of all agents and their mapping with 

BUs are established. In situations where both domain knowledge 

and relevant data are inadequate, they are represented using 

probabilistic behaviors and fuzzy MCDM. After construction, the 

SDT needs to be periodically synchronized by initializing SVs of 

all agents from real system to sync up SDT state with system state.      

Ensuring faithfulness: We adopt the established technique of 

operational validity [29] to ensure faithfulness of the digital twin - 

historical situations are simulated using the digital twin and 

simulation results are compared with real observations to ensure 

faithfulness. We have developed a pattern language to specify and 

match the desired patterns in the simulation trace [9] to ensure 

operational validity. The use of agent-based modelling abstraction 

with finer level of granularity helps to capture the relevant aspects 

of interest as close as the reality – this helps to ensure the 

conceptual validity [29].  

Managing uncertainty: Stochastic characteristics and behaviors 

of the constituent elements help support validity. However, it poses 

a unique concern – each situation of same configuration may 

emerge differently. As opposed to predicting future Measure trends 

based on a single simulation run, we simulate a scenario multiple 

times so as to cover as broad a spectrum of the nondeterminism as 

possible thus limiting extreme emergent behaviors to a tolerable 

range while also leading to convergent normalized behavior to 

emerge. This helps to improve the confidence level as discussed in 

[26]. We follow below steps to allow Measure trends to converge. 

Simulate N times & compute average of all Measures (MAvg)

  // we consider N = 5 

While all Measures haven’t converged 

Simulate & compute new average (MNew) from simulation runs 

For all Measures                                     

If  ((|MAvg - MNew| ) < δ )    

// (deviation δ is within a tolerable range) 

Converged = True 

Else 

MAvg = MNew 

Managing Heterogeneity: Techno-socio-economic systems 

contains large number of elements, such as millions of customers 

and people, each having individual characteristics and behavior. 

Specifying each of them is not a pragmatic consideration. We use 

the concept of “architype” with characteristic variables (CVs) 

having range of values to capture the heterogeneity of the problem 

domain – number of architypes for an element is a tradeoff between 

specification complexity and richness. We establish a balance 

based on domain complexity and expected prediction precision.        

3.3 Simulation led learning aided experimentation 

Simulation of purposive SDT is supported by introducing a 

periodic Time event that mimics a primitive time unit of a problem 

statement. A simulation produces traces/trends of Measures as a 

projection of state variables. Repetition of SDT simulation 

incorporating various environmental situations helps understand 

real-world behavior. Simulation also helps understand the impact 

of Levers on Measures. The two together can evaluate efficacy of 

Levers. An iterative process helps arrive at the most appropriate 

Lever or a sequence of Levers required to achieve the desired goals 

with possible tradeoffs.  Therefore, SDT simulation enables 

stakeholders across the board to ideate candidate adaptation/design 

options, roll out experimentations using simulation, generate data 

(i.e., Measure trends) from the experiments and use it in 

combination with real data for evidence-based decision making as 

shown in Figure 6 (a).   

A digital twin does not reduce the intellectual burden on human 

experts who still need to identify candidate what-if scenarios, 

interpret the simulation results, compute how far the current state 
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is from the desired state, and identify candidate set of levers to 

bridge the gap. To this end, we use an AI technique called as 

Reinforcement Learning (RL). Basically, we use digital twin as an 

“experience generator” from which the reinforcement learning 

agent (RL agent) learns what action to perform when to achieve the 

overall goals as shown in Figure 6 (b).  

4 Real World Case Studies 

The proposed approach and associated technology support are 

validated for utility and efficacy on a set of real-world problems 

spanning a wide spectrum of business and social scenarios. A 

representative sample from cyber-physical, business and social 

systems are presented below. 

4.1 Case Study on Cyber-physical system 

Delivering increasingly large volume of parcels of different size 

and characteristics across the globe in a dynamic and uncertain 

world is a significant challenge for Courier, Express and Parcel 

(CEP) companies. To meet this demand, CEP companies rely on a 

largely static network comprising collection centers, sorting 

terminals, transportation means, and last-mile connectivity.  The 

global e-commerce market is expected to reach USD 55.6 Trillion 

by 2027 from USD 13 Trillion in 20211. To meet the consequent 

surge in parcel delivery demand in a fast-shrinking time window, 

CEP companies are trying to improve along three dimensions: 

optimum vehicle management, efficient last-mile delivery, and 

greater throughput of the sorting terminals. Here, we present an 

application of SDT to improve the throughput of sorting terminals 

of a Nordic postal company.  

Context: Sorting Terminal is a human-in-loop automated cyber-

physical system that aims to effectively route a wide range of 

heterogeneous parcels to their appropriate destinations. Error-free 

and efficient sorting is a pre-requisite for faster delivery of parcels. 

Figure 7 (a) depicts schematic of a typical sorting terminal 

comprising:  Carriers that bring parcels for sorting, Infeeds that put 

parcels onto sorting belt, Sorting belt (along with Tilt tray) that 

carries the parcels to be sorted, Scanner for identifying the 

destination address written on the parcels, Chutes to collect the 

parcels, and Roller cage to send the sorted parcels to outbound 

carriers. Chutes are of different types and a chute has a dedicated 

 
1 https://www.imarcgroup.com/e-commerce-market 

team that collects the parcels, puts them into roller cages, and takes 

them to the designated loading stations. For maximal throughput 

(i.e., a Goal) of sorting terminal, the following conditions must hold 

(i.e., Measures to be satisfied):  parcels should spend as less time 

on the Sorting belt as possible, Chutes should get emptied as 

quickly as possible, Chute blockage should be minimum, no parcel 

should remain unsorted beyond the prescribed rotations (i.e., 

circulation count) on the sorting belt thus leading to manual 

handling of the package (inside rejection chute) which is time and 

cost expensive. Three broad levers exist to achieve this objective 

namely, Sorting logic, Resource allocation and Sorting terminal 

configuration as shown in Figure 7 (a). Sorting logic is about 

defining parcels destined for which region should get collected in 

which chute. Resource allocation is about defining team size (and 

composition) to be assigned to a chute. Sorting terminal 

configuration is about making fit-for-purpose choices on the 

various components of this cyber-physical system.  

Problem statement: Current practice takes a call on these levers 

using data-centric AI-based approach, optimization techniques in a 

localized context (e.g., sorting logic, resource allocation, etc.), 

and/or relying solely on intuition of domain experts. Given the high 

uncertainty, there is a high probability of these decisions turning 

out to be sub-optimal if not outright incorrect. For example, it is 

very difficult to know a-priori about inbound parcel flow in terms 

of number of parcels, destination, average parcel size, and the 

sequence they come up for sorting. This leads to ad-hoc addressing 

of the ensuing outlier conditions which perpetuates further outlier 

conditions. Moreover, other uncertainties pertaining to machine 

breakdown, staff availability, and staff productivity collectively 

lead to a situation that’s far away from the desired situation.  

SDT led exploration: To overcome this problem, we constructed 

a digital twin of the sorting terminal by capturing necessary 

concepts defined in Figure 7 (a) using ESL agents. In particular, the 

digital twin of sorting terminal contains a sorting belt with 522 tilt 

trays, 6 infeeds, 2 scanners, 18 chutes (4 direct chutes, 8 spiral 

chutes, 5 boom conveyor chutes and 1 rejection chute), 100 roller 

cases and 30 staffs. The agents that represent machines, such as 

sorting belt, infeed and scanner, are implemented as determinist 

BUs with failure propensity captured as stochastic BUs. The agent 

to represent staffs is implemented as stochastic BUs. The container 

types, such as chutes and roller cages, do not have their own 
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behavior, however, they are involved in phenomena, such as parcel 

blockage and parcel overflow that influence the throughput. These 

agents having unknown known behavior are implemented as 

learnable BU.  

We validated the SDT by simulating historical payloads and 

comparing simulated results with past results. The validated SDT 

serves as an “in silico” experimentation aid where a wide range of 

what-if simulations can be performed. Apart from helping arrive at 

the right sorting terminal configuration, these experiments also help 

identify possible outlier conditions where the desired 

Measures/KPI are not met. The Measures we focused on were: 

number of parcels processed, time taken to clear chutes, number of 

chute blockages, average time to get collected in a chute, number 

of parcels that stayed unsorted, and queue buildup on infeeds. We 

also simulated for different parcel payloads to check for bottlenecks 

if any. Simulation results of two configurations involving different 

sorting logic and circulation count are shown in Figure 7 (b). 

Sorting terminal SDT enabled decision space exploration through 

what-if scenario playing using representative workload. This not 

only helped arrive at appropriate configuration of the sorting 

terminal for the given workload, but also helped in identifying the 

right resource allocation strategies for delivering ‘good enough’ 

throughput when working with fewer chutes and reduced staff.               

4.2 Case Study on Business System 

The core telecom space can be viewed along two broad dimensions 

– a) telecom network infrastructure, which is primarily a collection 

of physical systems, and b) business system that offers products to 

their customers by utilizing network infrastructure. This case study 

focuses on the latter dimension for a North American 

Communication Services Providers (CSP).  

Context: Onset of Covid-19 resulted in steep surge in demand for 

internet connectivity as practically the whole world switched to 

work-from-home mode. Among CSP, the general belief was that 

Unlimited Plans (i.e., fixed charge regardless of usage) will do far 

better than Metered Plans (i.e., pay as you go). Moreover, 

Unlimited Plans have very low post-sale cost to CSPs compared to 

Metered Plans. As a result, CSPs were keen on diverting much of 

the network infrastructure to service Unlimited Plans. Here, we 

used SDT to explore the following questions for Unlimited Plans: 

What features should it have? At what price point? Will it grow at 

the cost of our other products?  

Problem Statement: We considered two Unlimited Plan products 

namely Product A and Product B – both stable revenue earners at 

low cost to CEP. We want both products to do well after onset of 

Covid-19. Therefore, the problem is: What new features to add at 

what price point such that both products continue to do well. 

Current practice is to define new products by anticipating customer 

needs and evaluating the product in a sandbox environment using 

A/B testing. This is a time-, cost-, and effort-intensive endeavor as 

the new product needs to be built and rolled out to a sample set of 

customers. Moreover, this requires multiple iterations especially 

when the customer base is very large and highly heterogeneous in 

terms of its communication needs.           

SDT led Exploration: To enable “in silico” experimentation, we 

constructed an SDT for CSP with its 374K Customers, 14 Products 

that include Unlimited and Metered plans, the trial rollout Process, 

the required Channels to take plans to customers, and Resources 

involved in supporting the campaign as shown in Figure 8 (a). We 

classified the existing customers into 109 architypes where the 

probability ranges are determined by applying ML models on 

historical customer data and further refined by domain experts in 

the light of evolving and uncertain situations. The buying decision 

of each individual is determined by TOPSIS method [6] (i.e., a 

criteria-driven BU) where offers constitute the triggering event, 

product features and state variables of the individuals constitute the 

inputs, and affinities constitute the weights to select who can buy 

which product. Uncertain environmental factors such as lockdowns 

/ phased relaxations constitute time-bound stochastic behaviors. 

Product uptake and product retention constitute the measures for 

evaluating the candidate set of interventions. 

We set up CSP SDT appropriately to simulate business as usual 

scenario and subjected it to onset of pandemic in February 2020 as 

an event of interest. As seen from Figure 8(b), all products continue 

almost unaffected till April 2020 after which they show 

significantly high turbulent behaviour.  

Consider Figure 8(c) configuration 1 that depicts performance of 

Product A (dark blue line) and Product B (orange line). Both 

products are seen performing stably till April 2020 after which 

Product B does noticeably better (as expected of an Unlimited Plan 

product) whereas Product A is seen doing pretty bad. We have two 

levers to salvage its performance: new features and price point. We 

consider two options for the former: (a) increasing free 

international calls to Canada & Mexico and video streaming 

capacity, and (b) providing subscription for Disney+ and Apple 
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Music; and for the latter: (i) price range USD 100 - 120, and (ii) 

price USD 140. We simulate CSP SDT for configuration 1  

(providing increased free international calls to Canada & Mexico 

and video streaming capacity at USD 100 – 120) to predict 

performance of Products A and B. As shown in Figure 8(c) 

Configuration 1, performance of Product A improves considerably 

(light blue line) without affecting performance of Product B 

(orange line). We simulate CSP SDT for configuration 2 (providing 

subscription for Disney+ and Apple music at USD 140). As shown 

in Figure 8(c) Configuration 2, performance of Product A improves 

considerably (light blue line) but at the cost of Product B (orange 

line). Therefore, configuration 1 turns out to be the right 

intervention to achieve the desired goal. 

Experimentation helped CSP design the product and arrive at a 

price point that led to 2X improvement in overall take rate and 

approximately 1% reduction in churn rate. Following this success, 

we have worked with a major Telco in Malaysia and an Information 

Service Provider in North America. A product, TwinX2, based on 

SDT for enterprise is developed and launched to address a wide 

range of Telco needs.   

4.3 Case Study on Social System  

The Covid19 pandemic has impacted public health safety, economy 

and social well-being for more than two years. This prolonged yet 

evolving situation has put forth a perpetual challenge for the policy 

makers and administrators to understand the evolution of the 

pandemic in the face of emerging variants and decide effective 

interventions to control situations if necessary.   

Context: The Covid19 pandemic has affected more than 500 

million of population globally over past two years and the number 

is still going up in many parts of the world as we write this paper. 

Multiple waves of varying amplitude due to several virus strains 

have adversely affected the world in many ways e.g., death count 

has crossed 6 million, economy is crippled, and social wellbeing is 

 
2 https://www.tcs.com/tcs-twinx-digital-twin-technology 

heavily compromised. Some of the variants, such as Alpha and 

Delta, have stayed on for a prolonged period resulting in large 

number of severe infections and deaths. Variants like Omicron and 

its descendent lineage have been quite infectious but significantly 

milder in comparison to earlier variants. It is expected that the 

mutation of Covid19 virus will continue and may turn into more or 

less infectious and severe with other characteristics, such as higher 

reinfection propensity, in the future. Going forward, extended 

lockdown cannot be a preferred option from socio-economic 

standpoint. Therefore, we need better understanding of the 

pandemic evolution for (existing/new) variants to explore effective 

interventions for return to new normalcy without compromising 

public health safety.  

Problem Statement: We believe that exploring effective 

Nonpharmaceutical interventions (NPIs) for entire country is not a 

pragmatic proposition. Instead, localized NPIs considering the 

unique characteristics of the locality can be more effective. 

However, deciding effective NPIs for a city or locality is not easy 

due to: a) increasing uncertainty about various influencing factors 

such as emergence of new variants, vaccines & their efficacies, and 

waning of immunity, b) wide heterogeneity in demographic 

characteristics of people and noncompliance possibilities by 

people, and c) poor quality and corpus of relevant data due to low 

testing uptake and underreporting. In absence of pragmatic means 

to overcome these issues, most of the pandemic control decisions 

tend to be intuition-driven, and therefore, less effective.             

Modelling considerations: We construct a purposive SDT to 

manage Covid19 pandemic in a city. The city SDT helps predict 

evolution of Covid19 pandemic and explore efficacy of candidate 

set of NPIs for controlling the pandemic in a quantitative manner. 

We visualize a city as a collection of administrative wards with in- 

and outflow of people from outside. A ward is a bottom-up 

composition of different types of places (e.g., school, college, 

market, offices, and restaurant), household structures (e.g., small 

congested house with many household members, large house with 

less members), and citizens with unique set of socio-economic 

strata (e.g., office goer, shop keepers, students, worker, etc.). The 

behaviour of containers such as wards, places and households 

evolve over time based on visitor/member footfall thus exhibiting 

emergentism (e.g., contact propensity emerges based on gathering 

of people leading to super-spreader event). Citizens have their own 

state variables (e.g., age, gender, comorbidity), characteristics 

variables (e.g., affinity to comply with Covid-appropriate behaviors 

and tendency to violate non-pharmaceutical interventions, and 

vaccine hesitancy) and a set of spatiotemporal nondeterministic 

behaviors. Behaviors are bounded by who they are (i.e., a student 

or an office goer), where they are (i.e., at home, in 

office/school/clinic or in a restaurant) and the time of the day. 

Behavioral nondeterminism is primarily due to movements within 

and around the places. The infection transmission and infection 

progression for an individual emerge based on virus variant (when 

they get exposed), vaccines (if administered) and mask (if used). 

The virus transmission from one individual to another represents a 

nonlinear probabilistic phenomenon (i.e., similar type of contact 

may result in different outcomes depending on the micro-situation), 

and the progression of infected case (i.e., exposed to infectious, 
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infectious to asymptomatic, mildly symptomatic or severe, etc.) of 

an individual is dependent on infection history, vaccination details 

and the infecting variant.   

We modelled necessary entities using a configurable agent 

topology and their interactions as highlighted in Figure 9 (a). A fine 

grained model captures the heterogeneity in terms of: a) 13 

household architypes that range from two-member family to 

twelve-member family, b) 20 place architypes representing relevant 

places of a city where people frequently visit, spend time and make 

contacts, such as office, school, restaurants & pub, clinics, mall, 

market-place, worship place and representative commuting means, 

c) 5 ward architypes to represent different mix of well-to-do 

localities, slums and market area, d) 25 profile architypes, including 

child, college student, senior citizen, and office goer, to represent 

professions with different behavioral patterns, e) 3 intervention 

architypes (administrative, healthcare-related, and social).  The 

vaccines and variants are introduced as configurable agents where 

their characteristics are specified based on research published in 

reputed journals like Lancet.   

SDT led Exploration: We constructed city specific SDT for Indian 

city of Pune3 having 4 million population. The utility and efficacy 

of city SDT to manage the first of wave of Covid19 pandemic by 

choosing NPIs in a locality-specific manner is presented in [5]. Our 

prediction about the second wave, several months before its 

appearance, was very close with respect to the reality (see grey 

curve of Figure 9(b) – taken from Figure 21 of [5]). 

We used this city SDT to predict evolution of pandemic at the 

backdrop of several parameters that were not fully known e.g., 

infection characteristics of Delta variant, loss of immunity post-

vaccination, reinfection probability, adherence to Covid19 

appropriate behavior etc. This was an iterative process that 

involved playing around with plausible values of these parameters 

to project best case and worst-case situations measured along the 

key indices such as death count, number of patients requiring 

hospitalization, and number of patients requiring isolation. Figure 

9(b) shows these projections – orange for worst case and grey for 

best case. Characteristics of Delta and Omicron variants, available 

 
3 https://en.wikipedia.org/wiki/Pune 

vaccines, 5% reinfection possibility and moderate noncompliance 

of NPIs, shown using orange line, closely matches with the reported 

cases (shown using blue line) till end of third wave in Pune. Our 

conceptualization that considers vaccine and variants as 

configurable agents help to explore different hypothetical scenarios 

such as new variants with different epidemiological characteristics 

and exploring vaccine strategies, e.g., booster doses for the future.  

4.4 Discussion 

Three industrial case studies with varying complexities 

demonstrate the efficacy of the proposed SDT for representing and 

analyzing techno-socio-economic systems.  

Sorting terminal case study illustrates how hierarchically 

decomposed structures (or a system of systems) of a cyber-physical 

system can be modelled and analyzed. The key challenge here is to 

effectively operate, engage and orchestrate machines and human 

operators to achieve optimal throughput of the sorting terminal for 

a given configuration and team size. Here, the uncertainties pertain 

to parcel inflow, machine failure, staff productivity and staff 

availability at right place at right time. Some of these uncertainties 

can be gauged by analyzing historical data such as machine failure 

records, productivity charts for a specific activity and so on. Our 

agent abstraction that’s amenable to: (i) augmentation of 

nondeterminism (i.e., stochastic BU), (ii) wrapping a model learnt 

from data as an agent, and (iii) hierarchical [de] composition helps 

to specify such systems with precision.  

The telco case study illustrates how a business system (see Figure 

3) that comprises large number of fuzzy and evolving entities (i.e., 

customers) having widely varying and uncertain 

affinities/preferences can be modelled. It demonstrates simulation-

based approach to arrive at appropriate business interventions in 

response to a disruption like Covid19 pandemic. The key 

characteristics are: a wide range of heterogeneity (i.e., 109 

customer architypes with several conflicting preferences), 

nondeterminism, and dynamism (e.g., change in preference and 

behavior due to lockdown). Our agent abstraction capable of 

supporting non-deterministic behavior (i.e., stochastic Bus), 

behavior learnable from data (i.e., learnable Bus) and Criteria-

Driven BUs (i.e., use of MCDM and fuzzy MCDM at micro-level). 

Iterative SDT based simulations help arrive at suitable tradeoff in 

case of conflicting goals such as revenue growth, product portfolio 

rationalization, customer satisfaction, customer care optimization. 

and other conflicting criteria.  Here, we used SDT as experience 

generator to support an evidence-based decision-making in human-

in-loop manner. A Reinforcement Learning (RL) agent can used 

with SDT to explore product features and price that can attract 

maximum number of customers while achieving higher revenue 

target. Elsewhere [4], we demonstrated the utility of SDT as an 

environment to train RL for a business system – in particular, for 

optimum stock replenishment of a large retail supply-chain. 

Business study for competition, collaboration and establishing 

pareto optimality are the possibility using SDT led exploration.   

City SDT is a case where bottom-up modelling, behaviors with 

degree of uncertainty and spatiotemporal characteristics, 

nonlinearity and emergent behavior of a system of system are 
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demonstrated. It also shows how simulation-based synthetic 

environment can produce useful evidence for hypothesis evaluation 

where existing data is inconsistent and hard to believe.  

Table 1 summarizes inherent characteristics of three case studies 

and maturity of SDT along those characteristics. As shown in the 

table, we need further improvement in SDT to support the inherent 

characteristics of social systems. Validations often require multiple 

repetitions to establish operational validity and more importantly it 

demands significant involvement of domain experts for conceptual 

validity. This is an area for improvement of our work. 

5 Conclusion 

Existing modelling techniques provide limited support for techno-

socio-economic system decision-making. We propose that this can 

be improved using digital twin based simulations supported by a 

meta model for the digital twin and an agent-based realization of 

the meta model in the form of an executable specification capable 

of modelling uncertainty through non-determinism. We showed 

how the ability to specify agent behavior using multiple paradigms, 

i.e., ECA, MCDM, and machine learnt model can effectively 

overcome the limitation of partial information in a pragmatic 

manner. We presented how the provision to capture micro 

uncertainties in the form of stochastic models and fuzzy MCDM 

helps model uncertainty and fuzziness. Our pragmatic model 

validation methodology that includes conceptual validation from 

domain experts in combination with operational validity helps to 

establish high fidelity of the digital twin with respect to the real 

system. We discussed associated technology infrastructure to 

support decision-making in a dynamic and uncertain environment. 

Methodological support to simulate a configuration (i.e., 

adaptation/design alternative) till all Measures converge helps to 

improve the confidence level of the analysis. Human guided 

iterative simulation helps to identify which amongst the candidate 

set of interventions is most suitable. 

Reinforcement learning can be used to reduce the analysis & 

synthesis burden on human experts where the SDT acts as an 

“experience generator” to support data-driven evidence-backed 

decision-making in a human-in-control manner. An SDT can also 

be used to train RL agent thus reducing the intellect burden on 

human expert while also leading to efficient exploration of decision 

space. Here we also discussed utility and efficacy of the approach 

on real world industry scale use cases spanning across cyber-

physical (sorting terminal case study) business (telecom case 

study), and societal (Covid19 case study) domains. Almost 

everywhere the proposed approach has fared better than current 

practice. Adoption of our approach as a product, TwinX2, is a 

testimony of business impact of our research. We believe proposed 

system digital twin with sufficient support for all characteristics as 

highlighted in Table 1 can be effectively utilized to address 

emerging socio-techno-economic challenges such as sustainable 

enterprise, smart city, and wellness & healthcare.  
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