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Abstract

This project built a system to explore the use of a UR10 collaborative robot arm
in the context of improvisational dance. A LaunchPad Pro midi interface was used
with it to enable multiple positions, and sequences of positions to be quickly and
simply recorded from physical manipulation of the robot arm. An end effector was
built to make the physical manipulation easier, and enable the system to be used
without needing the robot pendant or computer screen. The system was tested
with a range of users and improvements made based on feedback and observations.
Recommendations for further development of the system are also made.
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Chapter 1

Introduction

1.1 Problem Definition

Traditional industrial robot arms use programming environments optimised for
the tasks that they perform. These involve operating the robot primarily from
a distance, using indirect methods like pendants and code. This is often aimed
at one specific task that will then be repeated continuously until the robot is
reprogrammed. Collaborative robot arms are emerging as a new style of industrial
robot that enables faster programming than traditional arms, as well as sharing
the same physical space as a person, but the tools still assume similar use cases
and the programming tools still require multiple confirmations to initiate simple
actions.

Dance is often devised in an improvisational context, trying out lots of different
things quickly in a fluid and exploratory way that does not fit well with the current
tools for programming robots. It is difficult to use these programming methods,
even with a collaborative robots to work in the fast, spontaneous way that a dance
rehearsal would ideally proceed.

1.2 Research Question

How can the new possibilities that collaborative industrial robot arms offer be used
to enable dancers to work in an improvisational, exploratory way with a robotic
arm? This questions will be explored by proposing a system that would support
this, building it and testing it with people.
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1.3 Structure of the report

Chapter 2 looks at the background to this question, considers how robot arms are
programmed, some digital systems that have been used in improvisation, Chapter
3 considers the technologies that can be used to implement a system. Chapters
4 and 5 describe the proposed system, how it was implemented and tested, and
Chapter 6 considers looks at future work may come from this investigation.
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Chapter 2

Background

2.1 Cobots

Collaborative robots (cobots) have been developed over the last twenty years, with
the first commercial cobot being sold in 2008 [47]. A good overview of what a col-
laboration between robots and people involves is provided by Billard in [16]. The
key feature of a collaborative robot arm is that it can be used around people, unlike
traditional industrial robot arms which need to operate in industrial environments
that ensure people are not present while its operating, either by excluding them
through safety cages, or detecting their presence if they get too close and stop-
ping. To enable people to be able to work around cobots their maximum speed is
slower, and they will only lift fairly low weights to ensure that any collision has low
momentum. In addition the robot will detect collisions at a fairly low threshold
(either through sensors on its exterior, or through monitoring joint torques) so it
can stop before causing serious injury. The joints often have physical compliance
built into them as well, so that they have flexibility or give. In 2016 the Inter-
national Organisation of Standards published a standard for collaborative robots
[37], which provide guidance to ensure that installation of the arm does not remove
compliance because of the way the arm is used. In addition to the physical char-
acteristics the mechanism for programming them will usually involve the ability
to use elements of programming by demonstration (PbD) where a human operator
physically manipulates the arm to move it to waypoints, or record movements.
The aim is for the robot to be able to be programmed by the people who work
with it, rather than robotocists. These abilities offer new opportunities for robots
to be used in a dance context.
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2.2 Some Examples of Robot Arms in Dance

Traditional industrial robots have been used in many dance performances, but
because of their non-complaint nature this usually involves the entire performance
being pre-programmed and the dancers needing to fit around the robot with their
movements. With large robots the robot may not share space with the dancers
very often, if at all, as described by Hyuang Yi [73]. The programming can take
significant time, and is often done away from the robots and dancers. Hyuang Yi
can spend ten hours programming one minute of movement [62]. Madeline Gannon
has been exploring sharing space with a large industrial robot and tracking people
to avoid collision [29], but when it came to an actual installation this still involves
excluding people from the robots environment [30]. Cobots were used for the
Slave/Master performance and installation at the Victoria and Albert museum
for London Design Week [63]. The performers were able to interact with these
robots more easily [75], but the programming interface they used was Powermill
CAD/CAM software [12].

2.3 Programming Arms to Perform Tasks

How a task is performed, without traditional programming has been an active area
of research for many years [24]. A good overview of work in this field in relation to
robotics is provided in [15, 1]. The approaches can be divided into Programming by
Demonstration (PbD), and Learning by Demonstration (LbD). In PbD the robot
is physically manipulated to perform the task and in LbD the robot ”observes” a
task in some way and works out how it would perform the action. As cobots tend
to work in less constrained environments a key issue they face is generalisation
of a task - how to perform it in slightly different conditions. A key element in
this is trying to tease out what the purpose of the task is, and how can you judge
what parts of what you have learnt need to be preserved, and which can be altered
while still successfully performing the task. In addition to this in LbD there is an
additional mapping exercise between the physical capabilities of the demonstrator,
and the robot that is trying to learn the task. As you move to more autonomous
systems it is additionally complicated by the need to work out when and what to
observe.

In many ways this is mirrored in the interpretation of dance. While the chore-
ographer may have certain ideas in their head when they are devising a dance,
that needs to be transformed into physical movements by dancer/s, and the au-
diences perception of these may be very different. The intentions and ideas may
be difficult to describe in words, and the process of choreography tend to be very
personal [17]. Dance is an expressive medium, and the emotional content of what
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is intended and produced is of great importance. The devising, recording and
transmission of dances has been an evolving practice too. Some choreographers
use notation systems like Laban (although none are universal) to physically tran-
scribe pose, movement and emotional intent, and these have been used with robots
to interpret and generate robotic dance moves [56]. As technology has developed
some dance practitioners have embraced it as a way of documenting performances
for preservation and analysis. Using motion capture suits and rigs huge amounts
of data can be generated, but the difficulty is like in LbD how we do move from
data to information, and then to higher level knowledge. While much research is
still being carried out in many fields to address this question Gelder [25] is clear
that we are a long way from being able to read the emotional intent in dance from
observation with computers. Something that may be of use is the work that the
WhoLoDance project has done. They have been looking ways of digitally docu-
menting and classify dance across a wide range of genres. This has been a difficult
process because of the great diversity of dance styles and methods, but they have
produced a series of key metrics that [74] could be amenable to some automatic
generation if you have skeleton tracking data for dancers.

Improvisation in contemporary dance is a key part in the devising of work. Often
the dancers are trying to work out the inverse kinematics of their bodies - how do I
connect this movement to that movement without dislocating my shoulder when I
try to go faster, through experience and trial and error. It is a process of discovery
and experimentation. The aim of this project would be to devise methods that
would enable you to work quickly, kinesthetically and experimentally with the
robot as part of this process in rehearsal, and potentially performance too.

Programming a robotic arm in an industrial context usually involves specifying a
number of positions for the arm to move to. These are referred to as waypoints and
you are usually primarily concerned about the pose of the end of the robot arm
(its position and orientation in space), and is referred to as position control. At
each of these waypoints the robot performs some action, using a tool (end effector)
attached to the end of the arm, for example a gripper can pick some thing up, or
put it down. The robots end effectors position can be specified by the angle of
all it joints. From this you could calculate where the end effector is in relation to
the base. This calculation is called forward kinematics. In order for the robot to
move from one position to another it needs to calculate how to move its joints to
get to the new position. The simplest way for it to do this is to simply move its
joints to the new positions (assuming it will not hit itself as it does that - it may
need to move joints at different speeds to ensure it is not in self collision). This is
fine if you don’t care about the route that it takes, and is referred to as moving in
joint space. It is the most ’natural’ movement for the robot to perform, and the
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simplest for the controller to calculate. The controller will plan the movement of
the joints to minimise sudden changes in velocity or acceleration, and at speeds to
enable all joints to reach their final position at the same time a simple approach
to performing this kind of control is described by Aleksander Zivanovic in [45].
If you need the end effector to move in a straight line, or otherwise defined path
then you would move in Cartesian space - now the robot needs to work out how
to move its joints to get the end effector to move between the waypoints while
maintaining a linear path, or possibly a series of curves. All industrial robots ship
with a controller unit that is able to perform these calculations and generate data
to control the robot. It will be optimised for the robot that it is supplied with, and
each companies product will work slightly differently. They will also be able to
perform inverse kinematics - given a pose in space, what angle should the joints be
set to to put the end effector in that position. These are much more complicated
calculations than moving in joint space, and may have zero or more answers (the
robot may not be able to physically move to the position you have requested, or
follow the path specified). To have fine grained control of the robot you break the
movement down into smaller and smaller parts by inserting more waypoints. This
is why it takes Hyuang Yi so long to programme his performances.

In terms of dance you may be interested in poses that people adopt, but you also
interested in the quality of the movement that they make, artists have been aware
of these issues for a long time [9]. Instead of using positional control and and
relying on the controller to work out how to move the joints, you can instead
determine the velocities that you want joints to move with, and vary these over
time. This opens up the ability to control the quality of the robot arms movement,
not just where it is moving to, but is a more complicated process than either of
the previous methods .

2.4 Other Digital Systems that Support Impro-

visation

There are some interesting examples of technical and programming systems that
aim to support or encourage live performance in different artistic fields that may
be useful. The music software Live [2] changed the way that people thought about
performing and creating electronic music in a live context. It took the idea of
loops of sound and produced a grid interface slots You can quickly and easily
record audio into a slot, or drop some pre-recorded material on to it, and then
play it back by selecting that slot. You could very easily make the sound loop and
manipulate it to synchronise with other loops. It enabled experimentation and
improvisation by providing tools for manipulating the sound in each slot while
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everything else continued - previously most music software had a much clearer
differentiation between editing and play modes. Isadora [20] is a graphical pro-
gramming environment for producing and controlling multimedia content in a live
context. It was originally developed to support the live manipulation of digital
content for dance performance and like the Live program, editing and playing are
not separate, distinct processes. There is not a program/run cycle, it is constantly
running and as soon as you change any connections between the nodes the system
reflects that change with what is produced. The aim was to enable the software
to be used in the rehearsal process with the dancers, producing content that could
be controlled and driven by them onstage, rather than being pre-recorded and set
in time. Mark Coniglio, the programmer who develops Isadora, felt that this led
to stilted performance by the dancers as they tried to keep in sync with the pro-
jections, rather than the projections responding to them. These pieces of software
will not be used to control the robot, but will guide some of the choices for how
to structure the system.

Wekinator [27] is a piece of software that is aimed at musicians. This tool enables
you to use data streams, usually from sensors of some description, and builds
machine learning models from them as you perform. You can then use these models
to produce open sound control messages that can interface with other software to
drive a wide range of multimedia systems. It is good for quickly trying out different
ways of interpolating between multi-dimensional data sets, like skeleton tracking
data, or other sensor data, and could have a role in building tools to recognise
some of the characteristics that the WhoLODance project have described in a live
context. It can also be used for live interactive learning of gesture recognition.
Other tools for exploring this could be gesture recognition toolkit [32], or the
recently released Runway system[55].

2.5 Responding to Dancers Movement

To enable the system to respond to the movement of the dancers around the robot
there are a number of other sensor technologies that may be appropriate. Full
body tracking systems can be used, but they involve the setup and calibration of
many cameras, along with the infrastructure to position them around the space.
RGBD cameras will give depth data, but tend to be fairly short range (<10 meters)
and have a narrow field of view. LIDAR units provide longer range, but only give
you slices through the world around you, and multiple channel units are very
expensive. More traditional RGB cameras can provide a much longer range, and
may cover a whole room, but need a lot of processing to produce information
about people in the image. OpenPose [18, 57, 64] is currently the best open source
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implementation that has been widely used in many fields. Advantages of this route
are that it supports an arbitrary number of skeletons (so don’t point the camera
at the audience), can also detect facial features and hand/fingers if required, and
with multiple cameras can generate 3D skeletons. It can also cover larger areas,
the limit being the field of view of the camera, and the people being large enough
in the image to be recognised The disadvantages are it needs a computer with
multiple powerful graphic cards to accelerate the process for it to work in realtime
(30 frames per second or faster).

An advanced concept that could be explored with the this kind of data would
be altering the quality of movement of the arm. One technique that could be
considered for this would be style transfer machine learning processes. These have
had a very high profile recently in terms of producing images in the style of famous
painters, by taking style data from one image, and applying it to the content of
another image. They have also been used with time based medium - to video
[54], character animation [34], and motion data [33, 14]. The aim would be to
use performers motion data to influence the style of movement of the robot arm.
There are a number of issues to resolve for this. One is the correspondence problem
- how do you map the data about the movement of people to the movement
of the robot. There is not a one to one correspondence between the physical
characteristics of the dancers (even if you just consider one of their arms). While
this is due in part to robots being designed to do mechanical tasks that may not
need to replicate human form, there is also a fundamental engineering issue with
replicating human like movement. Human joints have more than one degree of
freedom (the shoulder and wrist especially), while all current joints for robots
work in one degree of freedom, and put multiple joints close together to try and
emulate more sophisticated joints that are available in animals. The difficulty
in producing mechanical joints that have multiple degrees of freedom in robots
is primarily how to drive them with actuators. The other issue in terms of this
project, is that the models take significant time to train, and so would not lend
themselves immediately to the short time scale interaction that we are looking to
create. An interesting project that is looking at correspondence from the other
direction (robots to humans) is described by Gemeinbock and Saunders [31].
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Chapter 3

Technologies

3.1 Robot Operating System

Robot arms have specialist controllers that consist of sophisticated realtime con-
trol systems for monitoring and controlling the motors in the joints. Traditional
industrial arms will usually have a self-contained system for controlling them from
a pendant, that may also interface to more sophisticated propriatary control soft-
ware that can be used offline to plan more sophisticated tasks, and then pass the
planned operation back to the controller. There is often an API of some descrip-
tion that can be used to programme the arm using any programming language, but
the mechanism is different for different companies, or may not exist at all.

Robot Operating System (ROS)[46] is an open source project that has had a pro-
found effect in the world of robotics research and industry over the last ten years.
Despite its name it is not an operating system, but provides the kind of function-
ality that an operating system provides for computers, but for robots. It provides
robot agnostic ways of passing messages between processes, hardware abstrac-
tion, methods for describing robots that then leverage reference implementations
of common functionality and tools to help monitor, and troubleshoot robotic de-
velopment. It is often referred to as ”plumbing” for robots. It was originally
developed in a startup called Willow Garage in 2007 with the aim of producing
commercial robots that could perform useful tasks. The core elements are devel-
oped in the spirit, and using many of the processes of the Linux operating system
- it is a common resource that is of benefit to many groups and partners, both aca-
demic and commercial, so everyone benefits from its joint development. Following
the closure of Willow Garage in 2013 the open source robotics foundation (OSRF)
was formed by some of the former employees of willow Garage to maintain and
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develop the core functionality of ROS. They renamed themselves Open Robotics
in 2017, and continue to support and develop the core components of the ROS
infrastructure.

A ROS system consists of a computational graph made up of nodes. These are pro-
grammes which perform tasks - they can be written in any programming language
that has ROS bindings (or you can write your own bindings if you need to use a
language that is not currently supported). Most nodes are written in Python or
C++. Each node performs a particular task and communicates with other nodes
through publishing and/or subscribing to topics. Topics are unidirectional, typed
data connections designed for streaming data. Nodes can be launched and stopped
without stopping the rest of the system, enabling incremental development and
troubleshooting to take place.

Before nodes are launched roscore needs to be running - as nodes launch they
advertise their existence to roscore, and it provides details of other nodes that
are subscribing or publishing to topics that the node uses, and they then directly
communicate with each other. Roscore maintains a parameter server that holds
global data for the system - this usually includes a machine readable description
of the robot, and other parameters associated with it so that many calculations
can be automatically generated from them, including transform frames between
defined frames as the robot moves.

On top of the basic functionality that topics provide ROS has services to provide
call and response functionality. It does this by combining two topics in a defined
way. Services are designed for requests that complete quickly (asking for the result
of a simple calculation, or sensor reading for example). For longer tasks that may
require pre-empting there is a more complicated construct called an action that
is built on top of topics. These are used to instigate more complex actions, like
navigating a robot to a defined location.

From these basic building blocks complex robotic systems can be built. This
distributed system makes it relatively easy to share processing tasks across mul-
tiple computers if needed, to increase the computational power available, or to
move processes away from mobile battery powered robots, to tethered mains pow-
ered computers. The open source nature of ROS has encouraged people to share
their code, and when publishing academic research make code available so that
people can validate and build on the results. Because of this it has become the
dominant system in academic research and is being widely used commercially in
robotic startups and industrial research. Examples of commercial organisations
involved in ROS development include NASA, Bosch, Google, Amazon, Ubuntu,
Microsoft.
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ROS industrial [36] is a consortium that has been working to implement bridges
between the APIs that industrial robot arms have with the ROS ecosystem, to
enable them to be used with the sophisticated algorithms and planning libraries
that ROS makes available.

While ROS is widely used it is not suitable for all situations. It is not a real
time, deterministic system, which can be important in robotic systems. There is
overhead involved in publishing and subscribing between nodes. It was originally
design with a single robot in mind, with high speed networking available between
components in the system. Roscore is a single point of failure in the system, and
there are few guidelines around good practice for building more complex systems,
including working with multiple robots.

To address these issues ROS2 has been being developed in parallel to ROS since
2015 [44] ROS2 deliberately starts from scratch again with a new architecture.
Roscore is removed and nodes are true peer to peer processes. Deterministic be-
haviour is possible, and many of the infrastructure components use tools developed
by other groups to enable the core developers to concentrate more on the robot
specific elements rather than the infrastructure.

3.2 Robot Arms

During the project there was access to two different collaborative robot arms to
work with, Rethink Robotics Sawyer and Universal Robots UR10.

3.2.1 Sawyer

The Sawyer robot is a robot arm with 7 degrees of freedom[50]. It is a conformal
robot and was manufactured by Rethink Robotics between 2015 and 2018. It is the
successor to their Baxter robot with changes specifically aimed at deploying it in a
light manufacturing context[51]. Rethink produced their own visual programming
environment for Sawyer, called Intera [48] that enables you to program the robot
to perform a range of activities from the robot arm using just the small screen
built into it and the buttons on the arm. This interface was built on top of the
Robot Operating System that runs underneath, using nodejs, with the generic
nodejs code being contributed back to the community in the rosnodejs package
[58] . It is possible to connect to Intera over a network connection, and open a
web browser with a visualisation of the robot and a programming interface that is
shared with the on board programming system. Some of the more sophisticated
options with Intera can only be used from the web interface, but the primary mode
of initial operation is clear the physical programming interface (you have to touch,
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and physically interact directly with the robot arm to use it). While Baxter was
only available as a manufacturing robot (booting only to Intera software), or a
research robot (booting only to ROS), Sawyer introduced the option of booting
to either. Using ROS it is possible to develop your own interfaces and run your
own kinematic solvers to control the robot if you want to. Intera enables people
who know little about robotics to programme the robot, and is aimed at people
occasionally programming the robot, with many prompts and confirmations needed
before a new movement is added, and is good for producing a script to primarily
carry out a single task. Giving it a range of different movements it may use, and
selecting between them would need to be explicitly programmed by the operator
using conditional statements in the visual programming environment, with a good
understanding of the structure of the programming task. Use of external interfaces
is limited to using the IO pins of the included PLC, or over network sockets or a
MODBUS connection in very restricted operations.

3.2.2 UR10

The UR10 [52] is similar to the Sawyer, but different in some key ways. It is
conformal like the Sawyer, but is stiffer when being manipulated in the mode
where it can be back driven (referred to as freedrive for the UR10). It is a similar
size to the Sawyer, but has six degrees of freedom rather than the seven that
Sawyer has. It is a bare robot arm, with no buttons or display on the arm itself.
The UR line of robots is consider by many to be the main competitor with Sawyer
in the light manufacturing robotics market, and their success was closely related
to Rethinks demise.

The UR10 uses a more traditional hand held pendant with a touch screen for
operation and programming, which they call the polyscope. This is connected to
the controller box by a long heavy cable. In order to put it in freedrive mode there
is a physical button on the back of the polyscope that must be held down, or an
on-screen button that can be held down. It is difficult to move the arm accurately
with one hand (the other needing to hold down the button on the polyscope) if
one person is operating the robot. It is more practical to have one person hold
the button down and another person to manipulate the robot, especially for the
joints close to the end of the arm where the shorter sections mean you have less
leverage and you need to use two hands to apply appropriate force to get them
to move. The polyscope also has a view dedicated to moving the arm around,
with controls for individual joints, as well as traditional industrial arm jogging
controls, providing the ability to move in relation to the base, world or tool and
to linearly in all directions and to change the orientation while maintaining the
position (all subject to the physical limitations of the robot kinematics). It is clear
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from this that in the absence of any other physical affordance that the preferred
way of moving the robot is likely to be jogging it from the screen, rather than
physically manipulating it. There are issues with jogging using the polyscope too.
It is hard to watch the robot, and move it using the on screen controls. Some of
the icons on screen to activate movement are quite small, and it is hard to prevent
your finger moving on the screen especially if the pendant moves at all while you
are using it. The screen also provide no haptic feedback to indicate if you are on
target, or how you should move to get to the target. Many other pendants provide
a sophisticated joystick for performing jogging actions for these reasons.

The arm can be programmed for many traditional automation tasks using a graphic
environment on the polyscope. This uses functional blocks like Intera on Sawyer,
but is is a more traditional linear programming structure rather than using a tree
structure. There is also a text programming interface called URScript. This can
be added to graphical programmes on the pendant in limited ways, or written on
a computer and moved over to the polyscope to run. To help with writing scripts
there are simulators available that run on a computer and emulate the polyscope.
Settings can be changed on the simulator, and graphical programming can be
carried out (although freedrive is clearly not a meaningful option). Written scripts
can be loaded into it and run , with one of the tabs on the polyscope providing
a graphical rendering of the arms movement. This tab can also be used on the
actual robot to preview what movement a program will produce before getting the
robot to move. Another useful feature in the simulator is that you get access to
the underlying system. When a graphical program is run it is first compiled into
URScript. These scripts can be located in the system to see how Universal Robots
create certain behaviour using URScript.

URScript commands or full programs can also be sent as ASCII text to a network
socket on the controller itself to enable control systems to be built using any pro-
gramming language that can talk to a network socket. There are a wide range
of libraries available on the internet, with varying degrees of sophistication and
support. Things are further complicated by the fact that some URScript com-
mands only work if executed on the polyscope, but are blocked from being called
remotely. Historically Universal Robots have offered little support and patchy
documentation of these features, and have released new versions that change or
break behaviour, making any community produced code very sensitive to which
versions of the robot software they work with.

To use the UR10 with ROS the ROS Industrial consortium [36] has maintained
ROS packages [26] [61] that provide access to the robot through a node in ROS.
The current released version is ur modern driver. This provides a ROS interface for
interacting with the robot. It publishes and subscribes to a range of topics to enable
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control of the robot, and to get feedback from the on its joint positions as well as the
state of the IO ports. Integration with MoveIt [22], a path planning with collision
avoidance system that is widely used in ROS to generate trajectories that avoid
obstacles in the environment using realtime sensor data has also been implemented.
It still suffers from the same issues with backward compatibility, and new releases
breaking functionality as it is not maintained or supported by Universal Robots. A
technical reports on the current limitations of these approaches have been produced
[8] which helped define a roadmap for further work improving this situation.

Following universal robots joining the ROS Industrial consortium [35] they an-
nounced in December 2018 that they were starting a ROSIN funded project [21]
that would work to provide an open source ROS driver that will provide full access
to UR robots features [53] and will provide a reference, open source implementa-
tion with full implementation of programmatic access to the UR robot range. It
will even enable these robots to be used without the polyscope needing to be at-
tached at all. This work is expected to be completed by Winter 2019, and will
potentially benefit this project.

3.3 Controller Interfaces

For the initial control interface I looked at musical interfaces, as there is a long
tradition there of developing novel hardware to enable the triggering and manipu-
lation of sounds, and interfacing these with computers [39], from keyboards being
used to play individual notes, to drum pads and control surfaces to manipulate
other parameters while composing or performing. The existence of MIDI [11],
which originally enabled inter-device communication, but was soon interfaced to
computers to also enable computational control and response has led to a large eco-
system of devices and software that can interoperate and build complex musical
performance systems.

In addition there are a wide range of ways to interface sensors with microcontrollers
to computers to prototype hardware controllers, with the Arduino driven ecosytem
targeting artists and designers specifically over the last fourteen years.

A grid of buttons seems an appropriate starting point, these were originally avail-
able commercially as drum pads, like Linn 9000 drum machine in the 1980s [40].
These were then adopted by companies like Akai, who developed an instrument
with Roger Linn. The advantage of these are that they are cheap, have no moving
parts so are more robust, and can produce velocity data about how hard they are
hit or pressed, as well as when. They are good for triggering sounds, but provide
no visual feedback about their ’state’. In 2006 monome [43] started producing a
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device that had a grid of buttons that were illuminated by LEDs. This meant
you could get visual feedback as well as tactile feedback. The design was delib-
erately minimalist, with just a plain grid of buttons, lit by single colour LEDS.
The behaviour of the lights was not directly driven by the pressing of the but-
tons. Messages were sent to the computer that the device was plugged into when
buttons were pressed, and messages sent back to the device controlled the lights
on it. It came with example code for using it (primarily with Max/MSP a visual
coding environment originally developed for music synthesis [23], but was primar-
ily aimed at people who could write code and were interested in developing novel
instrument systems. As a boutique electronics company the device was produced
in small numbers, which sold out quickly as each batch was made, and was ex-
pensive. Despite the small numbers sold this was a highly influential device and
with the release of tenori-on the following year, from the mainstream technology
company Yamaha [72] interest in these kind of interfaces grew.

With the continued success of the Ableton Live, with its grid based approach to
clip triggering, it was inevitable that this kind of controller would be produced
that could be used with Live. The ability to map midi notes to triggering clips in
Live made it easy to get any of these devices to control it if they produced midi
data. More companies have now produced controllers specifically to work with
Live, making it possible to use this software with only occasional recourse to the
mouse or keyboard. The original minimal monome had (and continues to have)
single colour leds, but they ones that are aimed more specifically at using with
Live have red/green, or full RGB leds, enabling them to be used in many different
configurations with the colours changing to indicate what will happen if you press
them, or what is currently happening in the software and include midi mappings
that already align with elements in Live, or have example documents to load that
are already mapped to work well.

The Novation Launchpad range of controllers [28] are a family of controllers that
range in sophistication and price. The basic models provide midi messages based
on the keys being pressed, and controlling the lights by sending appropriate MIDI
messages. The top of the range Launchpad Pro has full RGB LEDs and a compre-
hensive API documented in the programmers reference that is available from their
website.[71]. It has a number of ready made configurations that can be switched
between from the controller or programmatically. These are called modes and set
the lights to reflect the current state of different parts of the Live interface, and to
control elements in Live to carry out common tasks, like triggering clips or setting
channel volume levels for example.

When using the Launchpad Pro with Live the 8 by 8 grid of square buttons can
be mapped to the grid of clips that can be played - with each column representing
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an audio channel. The software only allows one clip to be playing in a channel at
a time, so triggering another clip in a vertical column where one is already playing
causes that one to be stopped, and the new one to be started (there are options to
set whether the new clip plays immediately, or the changeover waits until the next
beat or bar to fall). The buttons flash to indicate that a particular clip is playing,
and flash in a different colour if they have been triggered but are waiting for the
fall of the beat or bar to start. Individual clips can be set in Live to play once when
they are triggered, or to loop until told to stop, or another clip is triggered in that
channel. Clips can be playing in all the columns, and the circular buttons around
the edges can be used to trigger a row of clips to start simultaneously, or to change
behaviour at a program level (speed up, slow down, switch view etc..). Some of
these behaviours are things we want to emulate in the system, but others (like
having multiple channels) don’t map to the context of a single robot arm.
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Chapter 4

The System

4.1 Proposal

In the first instance the project considered producing a system that would enable
the robot arm to be used in a rehearsal context to explore what the capabilities of
the robot arm, in terms of position and movement. The aim is to enable someone
to interact with the robot arm in a playful way - trying things out rather than
knowing what will happen, with minimal rules about what should and shouldn’t
be done. Systems that track people and produce things in response to this were felt
to to be too complex for this initial interaction and exploration, as it is primarily
aimed at the person finding out what the robot can do. As there is no clear goal (in
terms of the task for the robot to perform) it is difficult to know what to observe
and use, and this would not play to the unique capabilities of collaborative robots
-the possibility of moving in close proximity to the robot (which would making
tracking more difficult), and the opportunity to physically manipulate the robot
by pushing and pulling it into positions.

For these reasons the primary mechanism for interacting with the robot will be by
moving it around physically - it will not be possible to ”jog” the robot to a new
position with a controller - to do that you must get hold of it and move with it.
We want people to be able to find positions for the robot to move to through this
process and provide a very quick and simple way to store those, and to be able get
it to move back to these positions. An appropriate initial interface for this is the
grid of buttons. We want them to be able to try positions, and decide whether they
should be used as an active engaged process - making decisions about what gets
recorded and what doesn’t, building up a series of positions to form a movement
sequence, and then get that sequence to play back.
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So we we will use the metaphor that Live does in its clip view - of buttons having
data in them that we want to trigger - but for this there can only be one that
is active at a time (unlike Live that works with sound, where multiple and layer
them on top of each other to produce multitrack music). There will be no global
edit/play switch, you can edit while playing.

The initial functionality that must be implemented:

• assign the current robot position to a button

• move the robot to the position stored in the button, or if more than one
move sequentially through the positions loop through the assigned positions
continuously

• delete the positions assigned to a button

• appropriate visual feedback on the Launchpad to reflect the actions that
have been, or are being carried out

Desirable functionality:

• saving the positions recorded in a session, and reloading positions from a
previous session

As the positions we are assigning will all be valid positions for the robot to move to
(they must be, as the robot is currently in that position) there is no need to check
that what is being proposed is correct, or ask for confirmation that the action is
correct and should be carried out as many of the other interfaces aimed at more
task driven activities do - we want simple quick actions to perform all these tasks.
In improvisation ”mistakes” are simply a change in the path being followed, the
important thing is not to break the flow of the process by popping up lots of helpful
checks before taking action.

Robot Operating System will be used to provide an infrastructure to work within,
enabling modular elements to be built, tested and integrated into the system, and
the Launchpad Pro will be used device for operating the system. A computer will
be used to run ROS, but once it is set up and ready to be used the people working
with the robot should not need to use the computer interface at all - all operations
will be carried out through the robot arm, and Launchpad Pro
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4.2 Implementation

4.2.1 First Prototype

Launchpad PRO

To produce behaviour that follows the Live paradigm we will associate the 8 by 8
grid of buttons with data about robot positions that the robot can move to. The
button needs to show whether that button has content that can be used - so it
should light up once at least one robot position has been assigned to it. The content
alters what processes are appropriate, and what will happen. If there is just one
position associated with the button then moving to that position makes sense,
but getting it to loop would not make any difference - it only has one position, so
it would not do anything once it got there. So there should be different colours
to represent how many positions are associated with that button. As we need
modal behaviour for the button (you need to select whether to change or use data
when you press the button), we need a way to indicate what action should be
performed when a button is selected. We will use the circular buttons around
the edge for that purpose. Holding those down will be like using the modifier
keys on a computer keyboard (shift, control etc..) and will alter the behaviour of
the program when the selected button is pressed. To keep the system simple to
start with the rows and columns will be used as four buttons - the left and right
columns, and the top and bottom rows each producing a different behaviour. This
is primarily for two reasons. The first is to keep the system simple and easier for
people to remember what buttons do what, the second is that this system may
be used by a single performer/operator, so they are moving between moving with
the robot and pressing keys on the controller. The modifier key is a secondary
consideration over which button to trigger, and it was felt that finding a single
correct one in a row of other buttons would make it fiddly and error prone for
people to operate.
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Figure 4.1: Launchpad button mappings in programming mode [71]. Circular
buttons use midi control messages, square buttons use note messages

All of the Live specific modes were too prescriptive for our use, but there is a generic
programmers mode we could use that just enables midi access to the buttons and
lights. This sets all the lights in the buttons to off, and assigns the MIDI mapping
in Figure 4.1 to the buttons. This means that when the buttons are pressed
this note on/off or control change message is produced, and sent out over USB.
In addition MIDI messages can be sent to the device using those note values to
control the light in the button. To set the Launchpad to this programmer mode
a series of button presses can be used on the device itself, or sending it the MIDI
message 0xF0 0x00 0x20 0x29 0x02 0x10 0x2C 0x03 0xF7.

A ROS node, ros launchpad, was written to interface with the Launchpad. Python
was used, with the MIDO library providing midi functionality to communicate with
the launchpad [69]. A Button class [66] was created that encapsulates the different
colour states for the buttons, and sending the midi messages to set the button to
that colour. The Launchpad class [67] uses that to build a list of buttons on
the launchpad, and contains the functionality for initiating various generic actions
aimed at a robot arm by publishing to various ROS topics, subscribing to topics
to get feedback about them completing, and setting the button state based on
this. The node creates a launchpad object, advertises itself on the ROS system,
connects the the launch pad and sets it to it programming mode. It processes midi
data that is sent from the launchpad as buttons are activated and has the logic
code for working out what should be done based on that and the data held in the
launchpad object.
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Sawyer Arm

The initial implementation used the Sawyer robot, using the ROS interface to
build the system we needed. The Sawyer git repository [49] had examples of code
to control the robot in various ways. Building on these a node was created [65] to
build the basic functionality that could assign joint positions to lists and play them
back. ROS topics linked this to the Launchpad node that had been created, and we
had a basic demo of the baseline functionality. This provided the ability to store
positions in buttons, adding to positions multiple times to build up sequences, and
play them back, and delete sequence that were no longer needed.

Unfortunately just after this was completed the robot was physically damaged
while being transported to an event, and the week after that Rethink Robotics
closed, and so getting the robot externally repaired was not an option. We dis-
assembled and replaced the damaged connector on the robot, but at this point
it was clear that other internal damage had been sustained and we did not have
the information to troubleshoot that further. Development using Sawyer was no
longer practical. While we could run a simulation of Sawyer to test the function-
ing of code, that negates the whole purpose of the project, and there seemed little
chance of replacing or repairing Sawyer.

4.2.2 Second Protoype

UR10 Arm

Following the purchase of two UR10 arms the work now was to adapt the code
to work with the UR10 arm instead. As we had used ROS and put the code for
the launchpad in its own node there was no need to work on this code in the
first instance to use a new robot, the work would need to be done on the node
that interfaced with the robot. From the description above it is clear there were
a number of routes to achieve this, as the UR10 robot is not inherently ROS
based.

As the UR10 is a bare arm with no controls on it, and operating freedrive with
the pendant is not easy, a more user friendly end effector needed to be added to
make it possible to initiate freedrive from the arm, and make it easier to physically
move the robot once it was in freedrive mode. Initial research was done into how
best to control the robot and interface it into ROS to use the existing launchpad
node.

The basic options were:

1. Writing a ros node that interfaces directly to the robot using a python socket
to send URScripts to the robot. This was rejected as while it enables us to control
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the robot, we would need to attend to a lower level of detail then we would like
to, and would be re-implementing things that had already been done by the ros
industrial package to integrate this into ROS. While it is not required that we use
ROS we would end up needing to replicate at least some of its functionality (for
example inter application communication) in order to build a larger system, so it
was decided to continue along the ROS route.

2. Using the Ros Industrial ur modern driver to control the robot, using ros control
and either implementing our own trajectories or tools like MoveIt to produce them
This offers the most flexibility, in terms of creating trajectories for the robot, but
overcomplicates things too early in the project. MoveIt works with the robot, and
introduces potentially useful features like collision avoidance, but it is too narrow
in its use cases to be directly useable. It currently only works planning for a single
target - a series of moves would need to be implemented as a series of calls to
MoveIt - waiting for each one to complete before sending the next . This produces
a short pause between each move that cannot be removed, and means we cannot
have a blend between each point on the trajectory (having a smooth movement
that slightly cuts the corner for intermediate positions). Also because the MoveIt
package is using more sophisticated path planning techniques that are not simply
interpolating between the joint positions it means that at times the generation of a
trajectory fails even when there is a valid route. There always will be a valid route,
as all the points that we are moving too are valid poses, and we want to move
in joint space, not cartesian space - we currently want the robots more ’natural’
movement between waypoints, rather than a specific tool path.

3. Using ROS Industrial ur modern driver to control the driver, sending URScript
programmes to that node to forward on to the robot This is the most productive
route for a first prototype. Sending all the waypoints in a movement as a defined
function in URScript that is immediately executed enables smooth movement be-
tween positions as it executes the path. In addition to that the ur modern driver
provides data on ROS topics including the current robot and joint states. While
the new ROS driver became available in very early beta form, it is not yet ready
to use for this project, but should provide enhanced functionality by switching to
it once it is more developed.

So the option that was chosen was number three, generating URScript text, and
sending it to the ur modern driver node.

A Waypoints class was created. This contains a list to store waypoints in, and cur-
rently has four functions add waypoint, generate trajectory script, generate palindrome script,
clear waypoints.

add waypoint appends whatever is passed to the function to the end of the way-
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points list. When it is called in the main program a list of the six joints state are
passed to it.

generate trajectory script iterates through the elements that are stored in the way-
points list (if any), and generates ASCII text that is valid URScript based on the
waypoints stored in list. The movej command from URScript is used to move the
robot. This takes a list of six values to move the joints to, and four possible values
to control maximum rotational acceleration, maximum rotational speed, target
time for the movement, and blend to be used at intermediate waypoints. If a time
is set then the acceleration and velocity parameters are ignored.

passing a list that consists of these values:

[[-0.833, -2.240, -1.316, -2.484, -1.088, 0.000],
[-0.833, -1.951, -1.173, -2.229, -1.088, 0.000],
[-1.205, -1.966, -1.818, -2.411, -1.529, 0.000]]

will produce this output:

def myProg():
movej([-0.833, -2.240, -1.316, -2.4842, -1.088, 0.000],a=1.4,v=1.05,t=0,r=0)
movej([-0.833, -1.951, -1.173, -2.229, -1.088, 0.000],a=1.4,v=1.05,t=0,r=0)
movej([-1.205, -1.966, -1.818, -2.411, -1.529, 0.000],a=1.4,v=1.05,t=0,r=0) end

(note these values have been shortened for readability, the actual values are be-
tween 14-20 decimal places)

Launch files were created to simplify running the nodes necessary, configured cor-
rectly, for the system to work. ROS has a visualisation tool called rqt graph, which
produces a graphical representation of the running system. The system is shown
in Figure 4.2. The ovals are the nodes that are running, and the rectangles show
topics that nodes are either publishing or subscribing to. Publishing is indicated
by an arrow pointing to the topic from the node, subscribing by an arrow pointing
to the node from the topic. Where a topic is being both published and subscribed
to then there is communication happening between the nodes on that topic, in
the direction of the arrows. Where topics are only being published or subscribed
to then these topics are not currently actively involved in the functionality of the
system, but indicate what topics are available for adding functionality.
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Figure 4.2: rqt graph visualisation of the running system

The end effector

To make it easier to move the robot when in freedrive the robot needs an end
effector that is easy to get hold of and enables you to apply enough force to pull or
push the robot around more easily. A commercially available hand wheel looked
like a good option and a model was found that was a good size for getting hold
of and was small enough to not collide with robot itself as the wrist joints moved
around. To mount it on the end of the arm it was attached to a bolt, and an
aluminium plate was designed to fit the fixing points on the end of the arm and
take the bolt. This was cut on a water jet cutter in the workshop and attached
to the end of the arm. A water jet cutter is similar to a laser cutter, with an
x-y moving head, but instead of using a laser it produces a narrow, high speed
jet of water that has had fine grit added. This will cut cleanly through materials
that cannot be cut using a laser cutter, including metal and stone. This provided
good physical affordance enabling pulling and pushing to be done much more
effectively.

The desired behaviour is that when someone gets hold of the handwheel, freedrive
is enabled automatically. Rather than using a specific switch that somebody needs
to press as they hold the handle, it would be better to detect whether someone is
touching the handwheel and respond to that. In order to do that we need some

27



mechanism to detect touch.

There are a number of ways that this can be done electronically:

1. Two generic input/output pins on a microcontroller can be used. One of
the pins is configured as an output, the other as an input. Connecting a high
resistance between the pins (in the range of 100K and 50M ohm) and attaching
the touch element (a conductive surface like tin foil) to the input pin creates an
RC circuit that will effect the time it takes for the voltage on the input pin to rise
once the output pin is set to HIGH. The time is dependent on the resistance used
(the R element), and the capacitance of the area between the end of the resistor
and the input pin (including the foil). This capacitance will change as different
things are brought near and touch the foil, including human body parts. The
system is calibrated by taking readings when nothing is near the foil, and readings
when someone approaches and touches the foil. A suitable threshold is chosen to
avoid false positive readings (the values fluctuate quite a lot), while being sensitive
enough to respond to close proximity and/or touch. You can improve the reliability
by adding a small capacitor in parallel

While this system can work, and there is a dedicated Arduino library that imple-
ments it [13], I have used this in previous work and found it to be very sensitive
to changes in conditions and had difficulty getting it to work reliably.

2. Dedicated chips that are designed to implement this functionality. There are
a number of small breakout boards that use dedicated touch sensing chips that
produce a digital signal that indicates whether something is touched, usually using
the Microchip AT42QT1010 chip [42]. A range of breakout boards were tried, but
they were all configured to detect a tap rather than the prolonged holding down,
and recalibrated themselves automatically after around a second. This meant
they turned off even though they were still being touched. They would not be
suitable as moving the robot around could take a significant time - almost always
more then a second, and often into 10-20 seconds. One board was sourced that
described itself as continuous touch [59], but even that one timed out between six
and ten seconds in the configuration being used with the handwheel, so was not
useable either.

3. Using a microcontroller that includes dedicated touch functionality on some of
its pins. There are a number of microcontrollers that include this - a commonly
used one being the Microchip ATSAMD21G18 [41], which is an Arm Cortex M0
chip which has a Peripheral Touch Controller that implements sophisticated touch
algorithms. This is available on many branded boards sold by various companies
including the Adafruit feather, Arduino Nano. Proof of concept was tested with
an Adafruit feather M0 [4] and testing confirmed that the touch functionality
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would function correctly, with a sustained touch registering correctly for as long
as was felt to be necessary (at least 120 seconds of unbroken holding without any
problems).

Once the handwheel had been selected and the mounting system for it had devised
it was decided that the electronics should be integrated into the back of the two
support arms of the hand wheel in order to keep the hand wheel close to end of
the robot and the electronics clear of people touching them. This meant the area
available either side was 18mm by by 31mm (although you could allow something
to protrude beyond 31mm a bit, as long as it was fairly flat). The Adafruit feather
board is 23mm wide, which was too big to fit flat in this area and mounting it
perpendicularly would make it prone to be hit as people put their hand through to
hold the wheel. A much smaller board that appeared to be suitable was tried next
- the Adafruit Trinket M0 [7], at 27mm by 15mm fit easily in the space. It uses
the very similar ATSAMD21E18, which also has the Peripheral Touch Controller
(PTC). Unfortunately the Adafruit library [5] that works with the PTC only ran
for just under a minute and then stopped reporting values, something had caused
the code to freeze. It was unclear why this was happening, and as the library is
working at a very low level to configure things it was difficult to see what might be
changed to fix this. The very small size of the board also means there are only five
IO pins, and this may prove to be too limiting as we developed more functionality
in the handle, so another board was tried. The Teensy 3.2 [60] uses a Cortex
M4 chip, the NXP MK20DX256VLH7. This includes touch enabled pins, and the
software libraries available with the teensy add-on for Arduino includes support for
using them. The detection of touch was reliable, and there is optimised code for
controlling Neopixels that use direct memory access, which enables the movement
of data to take place without blocking other operations. At 17.78mm by 35.56mm
the board is the right width, and is only protruding by a few millimetres from the
support arm on the handwheel, so this board was used.

To detect touch all around the handle conductive tape was used. Nylon conductive
tape [3] works well, as it does not have the sharp edges that foil tapes do, but it does
fray a bit over time with handling, so would need to be replaced occasionally, or a
suitable covering found (as capacitive touch will work through a non conducting
barrier).

In order to indicate when freedrive was activated a strip of Adafruit Neopixels
were added. These are RGB leds that each have a microcontroller embedded in
the LED, enabling a single digital pin to control a large number of LEDs using a
single pin - the constraint being the memory limit on the microcontroller used for
generating the data to control that many LEDs, and the power they would require
to operate. The early prototype used traditional neopixel strips around the inside
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edge of the handwheel. The original neopixels were replaced with side mounted
LEDs as the original ones were not very visible as they faced in to the centre of
the handwheel, rather than out towards the person. The 90 led/metre strips were
used as this gave a good density of lights, with 27 fitting neatly around the inside
edge of the handle. These are currently held in place with double sided tape. This
is not a long term solution, but it has not been possible yet to find something that
will stick to the silicon sleeve that the neopixels are enclosed in, and the material
the hand wheel is made of. The default state of the LEDs was set to red, turning
to green when the wheel was touched.

Another iteration of the design would be needed to address the long term issues
with the nylon conductive tape and attaching the neopixels more securely.

The UR10 has a port by the end effector for interfacing with the controller. It
has power, that can be set to operate at 12 or 24 volts, two configurable digital
inputs that can be configured to trigger actions, and read from URScript code,
and two configurable outputs that be driven from URScript code. In addition the
input/output can be configured to drive the controller or responded to the state
of the controller without further intervention from code.

This port could be used to power the Teensy, and enable it to signal to the con-
troller when the handle is touched.

A small step down power supply was identified that would fit on the other hand-
wheel arm, that works with an input voltage 7.5 - 36 volts. This means it would
work whichever voltage was selected without the device breaking, or failing to op-
erate if the ’wrong’ voltage was selected. The output voltage is 5 volts, in order
to power the neopixels. The teensy is a 3.3 volt board, but will accept a 5 volt
power supply on its Vin pin to power the board, and has a trace that you can cut
to isolate the teensy from the 5V in from the usb socket, to prevent back feeding
the usb connection on the computer.

To interface the teensy pins to the UR10s inputs and outputs optocouplers were
used. An additional diode was added to reduce the voltage supplied to the neopix-
els to ensure that the 3.3 volt signal from the Teensy would drive them reliably.
The circuit was built on breadboard to test functionality. Once it was confirmed
that the circuit worked a version was built on veroboard for testing and developing
the system.
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Figure 4.3: Interface circuit schematic and PCB design

From the circuit that had been tested a printed circuit board was designed by
my collegue Michael Margolis, to produce a neater, more compact and reliable
solution. This was sent off to an external printed circuit board fabrication service,
and replaced the veroboard version when it arrived.

Figure 4.4: Interface PCB and Teensy in position

The code on the teensy [70] has a startup routine that takes one hundred readings
of the touch pin when starting up, and calculates the average of them. It then
adds an offset to enable it to detect the change when someone touches the wheel.
The offset was reduced to make the detection more sensitive, until it detects just
before the touch happens. This is so that the UR10 is definitely in freedrive mode
before any force is applied, as the it generates an error and stops the robot if force
is already being applied as it enters freedrive mode.
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One of the UR10 inputs is configured to enable freedrive mode, so writing HIGH
to the pin on the Teensy that is connected to the appropriate optocoupler puts the
UR10 into freedrive. In addition a UR10 output can be set to follow whether a
URScript is running. Reading the appropriate digital input on the Teensy enables
us to set the lights to a different colour to indicate that the robot is carrying out a
task. Blue was chosen to give strong differentiation between the three states.

4.3 Final Functionality

Once all the coding and physical fabrication was completed the following function-
ality was available:

4.3.1 End effector

Handwheel end effector for interacting with the robot, with ring of leds to indicate
state - red for ready but inactive, green for touched and in freedrive mode, blue
for code running moving the robot.

Touching the handwheel at any point when the arm is moving will cause it to stop.
Touching the handwheel when the arm is stationary will engage freedrive, until
the handle is released.

4.3.2 Launchpad

Hold down right modifier button on Launchpad and press any square button -
current position is added to that button and colour of button altered to reflect
that Press any square button that is lit - initiate moving to that position, or
through that series of positions, once. Flash button while arm is moving, stopping
once final position is reached. If the arm is currently moving stop that movement
first, and update lights to reflect that. If the position is the one it is moving too just
stop action Hold down bottom modifier buttons and press a square button - if only
one position stored just move to the position, if multiple positions stored loop over
them continuously until another action is selected, or that one is pressed again.
Hold down right modifier buttons and press a square button - similar behaviour
to loop, but iterate through multiple positions palindromically (backwards and
forwards through the list). Hold down the top row of modifier buttons and press
a square button - delete any waypoints stored in this button. Note that this
currently doesn’t stop any movement that is going on - if that button is currently
looping it will continue to do that as the positions have already been read from
the list. Once that movement is stopped though the positions will no longer be
available.
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4.3.3 Additional functionality that was not tested

Saving the stored waypoints as a text file

Saving and reloading settings from a text file was implemented in the node ur trajectory generator,
so that once interesting moves had been found they could be saved and reused.
The node subscribes to the topics save data and load data. Publishing a String
of a name to the save data topic saves all the current data stored in buttons to a
JSON document with that name in the current home folder. Publishing a name
on the load data topic attempts to open a document of that name in the home
folder and restore the values in it to the correct positions, and set the lights on the
launchpad appropriately. As this was only implemented at the ROS topic interface
level it was not tested with end users.

Changing the global speed of the arm during execution of a sequence

The polyscope on the UR10 has a GUI slider element that controls the speed of
the arm in realtime , between 0-100%. There is a URScript command that can set
the position of this slider. By sending that command as a single line of URScript
code (rather than as a defined function) the speed of the arm can be changed
without stopping a function that has been sent to the arm. This is implemented
in the UR trajectory generator node, and has been controlled by a slider on an
additional midi interface. In addition the max acceleration and velocity of joints
can set for each URScript movej command. This was also connected up to two
additional sliders on the midi interface, but this was not used in the tests as the
midi device has many additional sliders and rotary encoders, and most of them
were not being used, so a more appropriate device would be found before using
this functionality with end users.

Multiple Arms

As we have two UR10s I created a launch file to run two robots, using one with
the handle to programme positions, both of them to respond to the generated
UrScript commands and move in sync. In order to do this two ur modern driver
nodes are launched in separate namespaces (Left and Right), see Figure 4.5,
each configured with the IP address of a different robot. The ros launchpad and
ur trajectory generator nodes were run outside of these namespaces and the relay
node from the topic tools package was use to subscribe to the URScript topic and
republish it inside each namespace so that each instance of the driver receives the
same instructions. This configuration was not used as part of the test, but was
demonstrated to the participants after they had completed the test.
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Figure 4.5: System running two arms
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Chapter 5

Testing

5.1 Testing

Using the written instructions included in the Appendix I ran some user tests to
see if the system was understandable and easy to use. People were given the sheet
and asked to work through it. The sheet starts by giving a brief description of the
behaviour of the handle/robot combination and then introduces the Launchpad
and provides instructions to add a position to a button, and then another position
to a different button. It then asks what happens when you do various actions, to
encourage people to explore and try things out rather than performing a series of
prescribed actions.

The tests were carried out with four different people. An MSc Robotics student,
two children, and a member of staff.

While carrying out these tests the the Launchpad had been placed outside of the
working area of the robot arm, so that as people tried out what the buttons did
we did not need to consider where the movements would take the robot arm (they
would not be hit).

The first test was the student. They were able to complete the steps. While
they were using it I made a number of observations. They were able to add a
second waypoint to a button, and commented on the change of colour reflecting
this, but on adding the third the colour of the button did not change. This was
the correct current functionality - the button colour changed between one and two
waypoints, but did not continue to change as the number increased. They stopped
at this point and were unsure whether the action had succeeded or not. They were
unsure whether to add it again, but after considering for a moment they pressed
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the button to move the robot to the waypoints, and were able to deduce that the
third point had been successfully added, but their flow had been interrupted.

They understood the delete functionality, and asked about the possibility of delet-
ing elements in a list, rather than the whole list.

While they were using the system I observed a bug that I had not picked up before.
When running a palindromic loop, pressing the same button to do a straight loop
did not produce the correct changes on the lights, although the robot behaved as
expected. The button stopped flashing, but the robot now looped as the button
press had initiated, and would not stop until you pressed the button again, or
pressed another button. It was not clear what had happened at this point and
caused confusion. By now they were more confident about quickly pressing buttons
to get things done, and so moved on from the situation by pressing a different
button that held a single waypoint, which moved the system back into a correct
state, the lights reflecting the current action..

The first child was able to follow the instructions and draw the correct conclusions
about the systems behaviour, particularly in terms of the difference between the
two looping behaviours. They read the text descriptions on the buttons to try
and work out what action they would produce. While they made sensible choices
based on them, those descriptions relate to using the device with Live, and do not
map to this system at all - I had learnt to ignore what was written on them. They
observed at the end that it would be good if the written instruction had explained
that the text on the buttons should be ignored.

Following this their younger sibling, who had watched from a distance while this
had been happening, asked to try it. They were able to operate the system based
on observing it having been used and skimming the document for some prompts
at first.

The final test was a member of staff. They were able to follow the instructions
and successfully identify what was happening. They experimented with how you
assign positions to buttons - trying things like pressing buttons to assign positions
while the arm was moving between previously assigned positions, and were pleased
that all the permutations they tried behaved as they expected.

Following this final test the children asked if they could have another go, and spent
time playing around with the arm.
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5.2 Improvements Implemented From Testing

Following the first test I immediately implemented continuing to change the colour
of a button as the number of of waypoints stored in it increased, as a sinlge colour
change to indicate the difference between a button having one position or multiple
did not provide enough feedback. A list of colours was created, and the number of
waypoints stored was used as the index to retrieve the colour to use (with a test
for the end of the list to avoid errors). This makes it easy to extend the number
of colours to be as long as feels sensible as the system is used, and to change the
colours easily. In addition to making the user more confident that their actions
are having the desired effect, it will also introduce more visual difference between
the buttons, making it easier to recognise where things are stored. In addition the
logic was updated to fix the bug that had been identified.

Following this when the system was tested with the two children it was clear that
the colour changing each time you added a waypoint helped make the system more
readable when first starting.

Another observation I made, was that as the robot arm was programmed to move
in a wider range of movements the operators were approaching the Launchpad
form different directions, rather than sitting in front of it and staying in the same
orientation in relation to it. Because it is square the orientation was not obvious
and working out which of the edge buttons to use to make things happened took
a bit of working out. Another change was made to improve the interface based on
these observations. The four edge banks of buttons were set to different colours,
and to be pale versions of those colours when not pressed. This helps to suggest
which buttons to press to get things to happen when first using the device, but
also to identify what each one will do when pressed, and makes it easier to clearly
see the orientation of the launchpad as you approach it. In addition the surface of
the buttons was painted black to obscure the misleading labels (the text was on a
black background so that it lit up when the button was illuminated, so painting
over it was the neatest way to remove it.
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Chapter 6

Conclusions

6.1 Discussion

The system that was developed has met the original goals. The robot can be
programmed quickly and easily to move to multiple positions, by directly manip-
ulating the robot and using the launchpad interface to save, play loop and delete
elements, without needing to use the computer screen or polyscope after the initial
set up. When the final version of the new ROS driver is completed it should be
possible to make the polyscope unnecessary, which would probably be desirable in
a performance situation.

The system met all the initial proposals in terms of functionality, and developed
additional functionality as well (saving/loading, changing global speed of move-
ment, working with multiple robots). I did not introduce this to the users who
tested the system as I could not see a simple way to implement user access to them
through the launchpad and I did not want to add screen based interaction to the
system. This is one of the areas for future work. The people who used it were able
to perform the tasks that were specified in the tests, and make predictions about
how the system would behave and test those predictions out - this is important
for people to feel empowered to attempt to use the system in ways that they want
to, rather than in ways they have been told. Various playful ways of using the
controller have emerged - for example triggering moves in time to music without
waiting for the previous move to complete enables jittery dance like moves in time
to music without laborious coding.

The system has not been tested with any dancers yet, due to the delay caused by
the damage to the Sawyer arm.
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6.2 Further Work

Following this initial development and testing cycle there are a number of areas
that it is clear would already benefit form further development, and opportunities
for additional exploration.

Refactor existing code

The current implementation works, but refactoring the code would make it more
robust and easier to maintain and extend. Currently the logic about what happens
when a button is pressed is split between the two nodes that have been written.
This has led to maintaining state data in each node that is related, and needs
additional topics to ensure it stays in sync. This makes the code harder to un-
derstand and less modular - changing the controller would mean we would need
to duplicate some of the logic about what happens into any node we create for
interfacing with alternative controllers. It feels like it would be better to have the
launchpad node just publishing the data about button presses from the launchpad
into ROS, and subscribing to a message that controls the leds. The logic about
what to do should all be in one place. The ur trajectory node is a better place
for that as it is the one that should be dealing with all the specific things that
relate to the particular task that has been developed. In addition the colours of
the buttons are specified using the Launchpads inbuilt system with 127 colours
that use fairly arbitrary values, rather than RGB. This is implemented in the API
to reduce the amount of data that needs to be sent over the relatively slow midi
connection when changing the colours of lots of buttons. The use of those values
in the code that was written is inconsistent, and sometimes just appears as magic
numbers in code. When clearing up where the logical decisions are made, a more
uniform system for specifying the colours should be implemented.

Handle

The current method of attaching the LEDs to the hand wheel is a temporary
method, and the conductive tape for detecting touch is prone to wear. The silicon
sleeve that the neopixels are in is resistant to most glues, and the few that do
work do not adhere to the handle well. Removing the LEDs from the silicon sleeve
is an option, but then an alternative protective cover would be needed. Large
clear heat shrink has been used in previous work with neopixels to encapsulate
them in more robust material, and worked well, but the closed circle of the handle
prevents this method being used. A metal handwheel was considered to enable
touch detection (due to it conducting), but its other physical properties were not
good - heavy, cold and hard. I think the best solution would be to 3D print a
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handle, embedding conductive elements inside it during the printing process, and
including a rebate for accommodating the LEDs to make them less exposed so
they could be attached without needing the silicon, or the strength of the glues
available would be adequate as they would be less exposed. The MarkForge carbon
fibre 3D printer that we have at the university would be able to print something
that would be strong enough to replace the handwheel currently in use as it use a
nylon / carbon fibre mix.

Currently two of the available UR10 IO pins are used for communication, the other
two are still available for additional functionality. Once they are used then there
are no more available, and none of them support more complex communication like
serial data. It would be better aesthetically, and practically to not add cables down
the arm, so radio would be a good option. This was originally considered for the
handle, but implementing the core functionality that includes stopping the arm if
someone touches it is better done through the more robust and deterministic route
of a wired connection. Adding a radio unit would enable more sophisticated use of
the LEDs on the handle, which in a performance situation may be desirable. The
recently released Arduino Nano 33 IOT [10] will fit in the space available on the
current wheel. It uses the ATSAMD21G18 which has the touch functionality, and
includes an additional wifi radio module. Another option that would physically
fit is the pycom board, that uses the esp32, a sophisticated module that includes
processors and wifi module. A simple protocol for transmitting data to set the
values of each led independently has been devised and tested for the nano33 [68],
but deployment to the arm has not yet been carried out. When 3d printing a
new handwheel additional protection for the embedded electronics can also be
incorporated

Editing Sequences

The current editing system is very quick and easy, but has limited functionality.
It would be good to be able to edit a sequence in a more granular way than just
deleting a sequence in its entirety. The ability to delete the last element in a
list would be useful - especially if you realise you have just added a waypoint to
the wrong location. It would also be useful to be able to step through the series
of waypoints moving from one point to the next, waiting at each position until
a ’next’ button is pressed, with the option of deleting the current position the
arm is in from the sequence. It would also be useful to be able to move the arm
manually at that point and insert the new position at that position in the list,
rather than the end. At this point if we continue to just use the Launchpad as the
interface we would need to move away from using the edge buttons in banks of eight
all performing the same action, and/or use some of the square buttons for other
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functionality. Another way to implement some of those behaviours would be to
enable playing individual buttons in sequence between two buttons that you press
(from button 4-7 for example). Alternatively we could use a separate interface
that enable this functionality displaying how many waypoints in a sequence, with
forward, back delete and and add buttons. This is a classic dilemma for simple
systems, and there is a danger of implementing lots of additional functionality
quickly making the system too complicated to use and losing sight of the original
purpose.

Playing back waypoints

While the current interface is quick to use it is difficult to remember what has been
stored in which buttons, and there is no way to find out other than getting the
arm to move. Changing the buttons colours to reflect how many waypoints in has
helped by making the interface more varied, but it is still fairly limited. It would
be good to investigate options for visualising what is in buttons more fully. MoveIt
has a mechanism for displaying the calculated trajectory in Rviz as a ghost-like
paler animation over the visualisation of the current static position of the arm - it
may help to have this kind of visualisation available for the buttons, or an image
of all the arm positions in a sequence superimposed in a single image.

Varying speed of movement

Basic programmatic access to global speed control has been implemented, but it
is not clear what would be good interface for controlling this - it is important that
the speed is not changed too quickly as this causes the robot to judder as it may
involve fast accelerations or braking to conform to the change, and this can cause
the conformal safety limiter to step in and stop the robot from operating until you
dismiss a dialog box on the polyscope.

Generating trajectories

As all these additional features become possible the question of using them as-
signed individually to waypoints or series of waypoints crops up. Acceleration and
maximum speed can already be passed to the movej commands, and this function-
ality has been exposed as a variable that can be set in the function that generates
the scripts, but it is unclear what would be a good interface to sue to do this.
At this point you would probably consider using other mechanisms to generate a
trajectory or movements on the robot. A new UR node for ROS is now available
that has been produced in collaboration with Universal Robots. This provides
new mechanisms to control the robot using ros control [19]. The new driver also
includes code to run on the polyscope that the node can communicate with to

41



enable features that can currently only be instigated from the polyscope. Future
work would be to refactor the code to use this node and explore the additional
options it provides.

Triggering sequences in performance

The current project has looked at how you can enable improvisational activity
with a robot arm in rehearsal, the next stage would be to consider how this could
translate into performance, and what changes or enhancements should be added.
Having the controller as a fixed physical device in one location will probably be
less appropriate, and we are likely to start looking at sensing where the performer
is in relation to the robot, and how their body can trigger events. This would be
a large piece of work and would be a suitable task for further student project or
programs of study.

Launchpad PRO

While the Launchpad PRO has been useful as a prototyping tool, and its robust
construction makes it very appropriate, it is not ideal. As other parameters are be-
ing considered for manipulation we will either need to add an additional controller
(which we did for testing the speed control functionality internally), or replace it
with something else.

Adafruit now produce a modular grid button kit with RGB leds that can be as-
sembled in four by four units [6] to whatever size and layout you need. Although
the buttons are considerably smaller the ability to use these and laser cut a case to
include additional interface components (encoders, potentiometers) would proba-
bly be a good next step. It would be fairly simple to add a microcontroller with a
radio link that was compatible with whatever was used in the handle to build an
integrated radio system across the components, enabling this to be used without
a cable.

Appropriate Stands for the arms

Currently the robot arms are mounted on lab tables that are 1.2 meters square,
80cm high. This means they are physically fairly inaccessible. While this is de-
liberate and appropriate for traditional operation and teaching using the pendant
and programming interfaces, it is less appropriate for this projects use case. It is
difficult to get close to the robot to physically manipulate it, and many orienta-
tions cannot be achieved without using the jogging functionality on the polyscope
as the robot is too high and far away from the operator. A pedestal base would
enable people to get much closer to the robot - this would be desirable from a
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practical considerations, enabling easier manipulation, and from a choreographic
view as well, enabling closer robot-person interaction. Having the base of the robot
50cm from the ground would make it just higher than a person when full extended
vertically, making all the possible positions available. There are commercial units
available designed for the UR10, but it would also be easy to design a custom
unit using aluminium profile systems, for example the item range [38]. Some of
the commercially available units are just designs with a bill of materials for these
profile systems.

Multiple robot arms

The basic proof of concept of multiple arms was powerful, creating a very different
feeling to a single robot operating. The speed slider on each robot could be changed
to make one robot move more slowly then the other to change the relationship
between the robots, with one then seeming to follow after the other. Many ideas
arise from this proof of concept. Making one robot reflect the angle of some joints to
make it move in more like a mirror image than an exact clone would be interesting.
Adding a handle to the other arm and devising a more distributed system that
enables each robot to be used to program, and the various permutations that that
could support.
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Appendix

This sheet of instructions was given to people who tested the system.

Improvising with a robot

Moving the Robot

The robot can be moved around by holding the
handle on the end of the arm. It should detect
when you hold it, the light turns green. While
the light is green you can push the robot into a
new position. When you let go it will stay in the
new position you have moved it to. Once you
have got it into a position that you want it to
remember go to the Launchpad.

Programming

The Launchpad controller enables you to store
the position the robot is currently in. Each of
the 64 square buttons can hold positions that the
robot should move to.

To add a position to a square button hold down
one of the circular buttons on the right side of the
controller (the column of buttons will light up),
and while holding that down press the button
that you want to store the position in (like using
the shift key on a computer keyboard).

Move the robot to a different positions and store them in different buttons. Play
around and see what happens.
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Consider

What happens when you press a button that you have stored a position in ?

What happens if you now press the second button you stored a position in ?

What happens if you press the second button again ?

What if you try to add a position to a button that already has one ?

Do any other buttons effect what happens when you press the square buttons
?

What other things would you like to be able to do ?
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