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ABSTRACT
This paper examines truth diagrams for some non-classical, modal
and dynamic logics. Truth diagrams are diagrammatic and visual
ways to represent logical truth akin to truth tables, developed by
Peter C.-H. Cheng. Currently, it is only given for classical propositional
logic. In this paper, we establish truth diagrams for Priest’s Logic
of Paradox, Belnap–Dunn’s Four-Valued Logic, MacColl’s Connex-
ive Logic, Bochvar–Halldén’s Logic of Non-Sense, Carnielli–Coniglio’s
logic of formal inconsistency as well as classical modal logic and its
dynamic extension to shed light on the semantic behaviour of some
non-classical and modal logics.
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1. Introduction

Diagrams have always been used in mathematics since historical times, Euclid being
a notable example. Any student of mathematics is familiar with the use of dia-
grams in geometric reasoning and aiding proofs by visualisation (Nelsen, 1993).
Arguably, such diagrammatic reasoning offers a ‘real extension to our knowledge’
(Macbeth, 2014). There seems to be no reason why logic would be an exception to this
tradition.

Truth diagrams (TDs, for short) were first proposed by Cheng (2020), and offer an
alternative graphical and visual representation for the semantics of classical propo-
sitional logic. What motivated TDs include Frege’s and Wittgenstein’s systems, and
particularly, TDs are largely based on Wittgenstein’s Tractatus Diagrams. Cheng’s TDs,
however, include variables and positions to indicate the truth value of a logical for-
mula. As such, TDs are alternatives to truth tables, not to syntax, offering a new system
of semantics. The work on TDs so far has remained focused on classical propositional
logic. An immediate benefit of this is to have an intuitive and simple diagrammatic
representation for classical logic. However, there are also disadvantages. First, the the-
oretical and graphical depth and breadth of truth diagrams remain understudied.
Exploring this potential requires us to test TDs in different domains, such as non-
classical and modal logics. Second, applying TDs to other logical systems allow us to
compare and contrast semantical systems for a broader systems of logics, and explain
their ‘non-classicity’ using different tools. Consequently, developing TDs for a variety
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of logical systems will contribute to the debate on the role of visual reasoning in math-
ematics and logic (Giaquinto, 2007, 2008) as well as offer an alternative semantics for
various non-classical logics. This is our goal in this paper.

Non-classical logics diverge from classical logic in a variety of different ways. Largely
confined to philosophical debates, semantic structures, visual representations and dia-
grams for non-classical logic long suffered from being limited to truth tables and alge-
braic structures. This is yet another symptom of a bigger problem: non-classical logics
have not yet benefited from having a wide variety of semantics. The current study com-
plements an earlier work where game theoretical semantics for them were presented,
expanding the semantic structures of non-classical logics (Başkent, 2016, 2020; Başkent
& Henrique Carrasqueira, 2020). Unlike semantics, proof theory has long enjoyed
diagrammatic reasoning. Within the broad category of proof semantics, there is a large
body of research on diagrammatic reasoning, including the work in game semantics for
programming languages, category theory and proof nets (Abramsky & McCusker, 1999;
Awodey, 2006; Girard, 1987). This paper, however, focuses on semantics for truth.

In this work, particularly, we extend TDs to propositional multi-valued, non-classical,
modal and dynamic (epistemic) logics. First, we briefly discuss the philosophical back-
ground of diagrammatic reasoning in logic and mathematics to establish a context for
our work. Then, we introduce TDs for classical logic, following Cheng’s original work.
Next, we introduce various well-known non-classical logics, including Priest’s Logic
of Paradox, Belnap and Dunn’s 4-valued First-Degree Entailment, MacColl’s Connex-
ive Logic, Bochvar and Halldén’s Logic of Non-sense, Carnielli and Coniglio’s Logic of
Formal Inconsistency, modal logic of S5 and public announcement logic. The main
contribution of the paper follows where we develop TDs for the aforementioned log-
ics and present some examples alongside their diagrams. Finally, we conclude with a
discussion and future work ideas.

2. Background

As Giaquinto argued, visualising in mathematics has ‘epistemically significant uses’
(Giaquinto, 2008). One may argue this should include logic, yet, Giaquinto does not
discuss the role of visual thinking in logic (Giaquinto, 2007). He discusses the role of
diagrams in proofs without explaining how diagrams may help in logic and semantics.
Macbeth, on the other hand, fills in this gap by discussing diagrammatic reasoning in
logic by means of Frege (Macbeth, 2014). Carter’s analysis of diagrams in mathemat-
ics underlines how fruitful they can be, questioning the role of Hilbertian formalism in
mathematics (Carter, 2019).

Diagrammatic reasoning is not limited to computational and mathematical sci-
ences. Category theory, one of the most popular and successful areas of diagrammatic
reasoning in mathematics, has wide applications in natural sciences. Baez and Lauda’s
survey of categories in physics briefly discusses their roles in Feynman diagrams, string
theory, quantum gravity, and topological quantum field theory (Baez & Lauda, 2011).
Similarly, ‘string diagrams’ in theoretical physics is an interesting example of diagram-
matic reasoning in physics (Bonchi et al., 2022a, 2022b).

Use of diagrammatic reasoning in proof theory and the semantics of programming
languages is very prominent. Together with a wide use of category theory, there can be
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Figure 1. Escher’s Cube (left) and Schuster’s Fork, taken fromMortensen (2010).

found many uses of diagrams in the semantics of programming languages. Abramsky
and McCusker discuss various applications of game semantics to programming lan-
guages (Abramsky & McCusker, 1999). A plethora of works followed up discussing
the semantics of proofs, including (Hughes, 2006), and created a broad field of game
semantics of programming languages and the semantics of proof theory. This line of
research, however, falls outside the scope of this paper.

Oddly, such debates only consider classical logic. Even if non-classical logics often
suggest a different understanding of truth, diagrammatic reasoning has not widely
been used to explain such differences. However, there is some programmatic bene-
fits for the use of diagrammatic reasoning in non-classical logics. As Giaquinto argued,
visualisation helps in mathematical discovery, proofs as well as ‘augmenting [our]
understanding’, latter of which is especially important for ‘. . . not only grasping the
correctness of a claim, method or proof, but also appreciating why it is correct’ in
non-classical logic (Giaquinto, 2008) .1

Even if there has not been a notable trend in non-classical logic for the use of dia-
grams, there have been some exceptions. Notably, Mortensen’s work on inconsistent
geometry presents some insights (Mortensen, 2010). Mortensen’s aforementioned
work studies ‘impossible’ pictures, such as Escher’s Cube and Schuster’s fork (see
Figure 1). As such, Mortensen uses diagrams to feed into inconsistency-friendly logics,
where the impossible pictures also serve as ontological arguments for non-classical
logics and dialatheic truth.

Non-classical logics introduce alternative understandings of truth – some allow
truth gaps, some truth gluts. Some have more truth values, some have fixed-points
under negations. It is therefore a curious task to examine how TDs approach such
‘oddities’. As we mentioned earlier, such a task would advance the research in both
diagrammatic reasoning and non-classical logics. In sequel, that is what we achieve.

3. Truth diagrams for classical logic

Let us first start with reviewing TDs for classical logic, following Cheng’s original work
(Cheng, 2020).

First, the elements of TDs. A TD is composed of three elements: letters for propo-
sitional variables (p, q . . . ), nodes to identify the positions around the letters, and
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Figure 2. Truth diagrams for negation, conjunction and disjunction, respectively.

Figure 3. Truth diagram for p → q ∧ r in propositional logic.

connectors to link nodes. There are two nodes for each letter in propositional logic:
high and low. High node is reserved to identify truth, whereas the low node is for fal-
sity. Connectors are colour-coded. When they represent truth they are black; when
they represent falsify, they are grey. Since we have only two truth values in classical
propositional logic, there is no more colour-coding other than black and grey. We also
do not allow vertical connectors for the same letter. This would represent a contradic-
tion, which is not allowed in classical propositional logic. In classical logic, connectors
intersect just one node for each letter.

For example, let us consider the TD for conjunction in Figure 2. The formula p ∧ q
is only satisfiable when both p and q are true. Thus, the black connector between the
high nodes of the letters p and q. All the other connectors between all the other pos-
sible nodes remain grey, signifying falsity. For example, the connector between the
low nodes of both letters must be grey for falsity. The truth diagrams for negation,
conjunction and disjunction are given in Figure 2.

As another example, let us consider the formula p → q ∧ r, given in Figure 3. For
this formula, we have five truth conditions under which it is true – hence five black
connectors. The formula p → q ∧ r is true when (i) all p, q, r are true, (ii) p is false, q and
r are true, (iii) p is false, q is true and r is false, (iv) p and q are false, r is true, (iv) all p, q, r
are false. The rest of the combinations of truth values for p, q and r render the formula
false – hence three grey connectors.

The above examples will help us define TDs, following Cheng (2020). First, the
elements of TDs.

Definition 3.1: Elements of truth diagrams for classical logic are given as follows.

• A TD is composed of letters, nodes and connectors.
• Letters are arranged horizontally (with regular spacing for readability).
• Nodes are small areas, one above and one below the letters.



JOURNAL OF APPLIED NON-CLASSICAL LOGICS 531

• Connectors are lines linking nodes. Each connector intersects just one node at
each letter and has straight segments that span pairs of immediately adjacent
letters.

• One connector for each possible combination of high or low nodes of each (type
of ) letter is permitted: the shape of each connector in a TD is unique.

• The style of the connectors is solid and either black or grey.
• A TD can contain more than one instance of a letter.
• The horizontal order of the letters is arbitrary.
• Letters in separate TDs are not linked by connectors.
• A connector intersects the nodes at the same level for each instance of the same

letter.

Now, the semantics of TDs is defined as follows.

Definition 3.2: Semantics of truth diagrams for classical logic is defined as follows.

• Letters are propositional variables.
• Each node represents a truth-value for the variable: high-node T, low-node F.
• The number of the distinct types of variables is the arity of the TD.
• A connector is a case: it constitutes a unique set of truth-value assignments to the

variables.
• Connector style represents the overall truth-value assigned to its case. A black

connector assigns T, grey connector assigns F.

It is important to note the limitations of classical logic here in classical TDs. First,
logical connectives are functional, for that reason the connectors cannot skip a letter
as each letter must have a truth value. Second, the classical case does not allow us to
represent multi-valued logics.

4. Non-classical and modal logics

In this section, we briefly present some well-known and well-studied non-classical
logics as well as modal logic S5, a relatively straight forward example of modal log-
ics. Consequently, in the following section, we examine how TDs can be defined
for them.

For our purposes, we examine the following well-studied and well-known non-
classical logics: (i) Priest’s Logic of Paradox, (ii) Belnap and Dunn’s four-valued first-
degree entailment, (iii) MacColl’s connexive logic, (iv) Bochvar and Halldén’s logic of
non-sense, and (v) Carnielli and Coniglio’s logic of formal inconsistency. A more com-
prehensive approach to non-classical logic can be found in Priest (2008) and Carnielli
and Coniglio (2016). Broadly speaking, these logics belong to different classes of logics.
The logic of paradox and the logic of formal inconsistency are paraconsistent. MacColl’s
system is one of the earliest systems of connexive logics. Belnap and Dunn’s system
is one of the most well-known systems of four-valued logics. They all have different
logical and philosophical motivations.
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Figure 4. The truth tables for LP and K3.

Figure 5. The truth table for BL.

4.1. Priest’s logic of paradox

The logic of paradox (LP, for short) introduces an additional truth value P, called
paradoxical, which intuitively stands for both true and false (Priest, 1979).

The logics LP and Kleene’s three valued logic K3 have the same truth tables. How-
ever, they differ on the truth values that they preserve in valid inferences, and how
they read P. The truth values that are preserved in validities are called designated truth
values and they can be thought of as the extensions of the classical notion of truth
(Priest, 2008). In LP, it is the set {T , P}; in K3 (and classical logic), it is the set {T}. Even if
the truth tables of two logics are the same, different sets of designated truth values pro-
duce different sets of validities, thus different logics. For instance, p ∨ ¬p is a theorem
in LP, but not in K3. In K3, the third truth value has an intuitionistic reading and can be
viewed as an undervaluation in contrast to its reading as an overvaluation in LP. It is
also important to note that the set of validities of LP contains the set of validities of the
classical logic.

The conditional arrow → can be taken as an abbreviation in the usual sense: p →
q ≡ ¬p ∨ q. We give the truth table of LP in Figure 4.

4.2. Belnap–Dunn’s four-valued system

Belnap’s four valued logic (BL, for short) introduces two additional truth values besides
the classical ones. The truth value P, as before, represents over-valuation, and N rep-
resents under-valuation. Traditionally, P stands for both truth values and N stands for
neither of the truth values. As the truth table in Figure 5 indicates, P and N are the
fixed-points under negation.

With a slight abuse of notation, the ‘problematic’ formulas in BL are P ∨ N ≡ T and
P ∧ N ≡ F. A Hasse-style truth value lattice for BL is given in Figure 6.

The above Hasse diagram illustrates the standard method to compute disjunction
and conjunction of two truth values as the least upper bound and the greatest lower
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Figure 6. Hasse diagram for BL.

Figure 7. The truth table for CC.

bound of the two values respectively. Then, with a slight abuse of notation, it is possi-
ble to read off P ∨ N ≡ T and P ∧ N ≡ F from the diagram. For simplicity, we take the
designated values for BL as {P, T}.

4.3. MacColl’s connexive logic

As Wansing argued, connexive logic remains a ‘comparatively little-known and to some
extent neglected branch of non-classical logic’ (Wansing, 2015). In this work, we focus
one of the earliest examples of connexive logics CC, which is due to McCall (1966).

Connexive logic is defined as a system which satisfies the following two schemes of
conditionals:

• Aristotle’s Theses: ¬(¬ϕ → ϕ)

• Boethius’ Theses: (ϕ → ¬ψ) → ¬(ϕ → ψ)

The logic CC is axiomatised by adding the scheme (ϕ → ϕ) → ¬(ϕ → ¬ϕ) to the
axiomatisation of classical propositional logic. The rules of inference for CC is modus
ponens and adjunction, which is given as � ϕ, � ψ ∴ � ϕ ∧ ψ . We consider CC with
the standard propositional syntax.

The semantics for CC is given with 4 truth values: T, t, f and F which can be viewed as
‘logical necessity’, ‘contingent truth’, ‘contingent falsehood’, and ‘logical impossibility’
respectively (Routley & Montgomery, 1968). In CC, the designated truth values are T
and t. The truth table for CC is given in Figure 7.
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Figure 8. The truth table for BH3.

4.4. Bochvar–Halldén’s logic of non-sense

Bochvar–Halldén Logic introduces an additional truth value N, called nonsense,
which intuitively stands for sentences which are nonsensical or meaningless.
Bochvar–Halldén logics are actually two distinct logics with the same truth table. In
Bochvar’s system, the designated truth value is T whereas in Halldén’s it is {T , N}.
For our semantic considerations, we treat them together and call this formalism the
Bochvar–Halldén Logic (BH3, for short) with the following truth table, given in Figure 8.

4.5. Carnielli-Coniglio’s logic of formal inconsistency

Logics of formal inconsistency (LFI, for short) extend da Costa systems and generate
a broad class of paraconsistent logics (Carnielli et al., 2007; da Costa et al., 2007). In
this work, we focus on a particular LFI, called mbC. The system mbC exhibits some
of the most important aspects of LFIs, as it is ‘strong enough to contain the germ of
classical negation, possessing a kind of hidden classical negation’ and contains a con-
sistency operator (Carnielli & Coniglio, 2016). Compared to the other systems we have
presented, LFIs are more complex systems.

Let us start with defining the language L of mbC. Given a set of propositional
variables P, we define the syntax of mbC in the Backus–Naur form as follows, where
p ∈ P.

ϕ ::= p | ¬ϕ | ◦ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ → ϕ

One of the features which distinguishes mbC and other LFIs from other paraconsistent
logics is their use of the consistency operator ◦. The consistency operator simply checks
whether a formula ϕ explodes – that is if ϕ, ¬ϕ � ψ for all formula ψ in the language.
This allow us to distinguish and control the formulas that can explode the model.

A model M for mbC is a tuple M = (S, V) where S is a non-empty set and V :
L 	→ {T , F} is a valuation function. The function V for mbC assigns a unique truth
value to propositional variables, and satisfies the following conditions (Carnielli
& Coniglio, 2016):

•V(¬ϕ) = F then V(ϕ) = T ,
•V(◦ϕ) = T then V(ϕ) = F or V(¬ϕ) = F,
•V(ϕ → ψ) = T if and only if V(ϕ) = F or V(ψ) = T ,
•V(ϕ ∧ ψ) = T if and only if V(ϕ) = T and V(ψ) = T ,
•V(ϕ ∨ ψ) = T if and only if V(ϕ) = T or V(ψ) = T .

In this semantics, the truth values of ¬ϕ and ◦ϕ are not necessarily determined
by the truth value of ϕ. That is, for instance, if V(ϕ) = T , then V(¬ϕ) is not deter-
mined based on V(ϕ). It can be either T or F, but not both nor neither. Therefore, the
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Figure 9. The truth table for some formulas in mbC.

valuation function V is functional, but not truth-functional: mbC valuations are, just
as classical valuations, simple functions, but mbC logical operations themselves are
not functions from tuples of truth values to truth values, but multifunctions instead
(Carnielli et al., 2007). They assign to the given tuple of truth values a set of possible
truth values, from which an mbC valuation is then to pick one for the value of the cor-
responding complex formula. This valuation is sometimes called bivaluation. We give
the non-deterministic truth table for some formulas in mbC in Figure 9.

Non-determinacy is one of the complications of mbC and LFIs in general. Further-
more, compared to classical propositional logic, mbC has an extended language with
the consistency operator – if a formula and its negation are both true, then the con-
sistency of the formula must be false. Second, perhaps semantically more importantly,
mbC assumes that a formula and its negation are subcontraries, but not necessarily con-
traries. That is they cannot both be false under the same valuation, but they can both
be true under the same valuation.

4.6. Modal logic

Classical modal logic is a well-studied branch of logic, extending classical proposi-
tional logic. For the completeness of our treatment, we briefly discuss its syntax and
semantics (Blackburn et al., 2001).

Given a set of propositional variables P, we define the syntax of modal logic K in the
Backus-Naur form as follows, where p ∈ P.

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ → ϕ | �ϕ | ♦ϕ
Intuitively, �ϕ means that ϕ is necessarily the case, and ♦ϕ means that ϕ is possibly
the case. Classically, � and ♦ are their duals: �ϕ ≡ ¬♦¬ϕ.

Modal formulas are interpreted on modal models M = (W , R, V)where (i) W is a non-
empty set of states, (ii) R ⊆ W × W is a binary relation (called the ‘accessibility relation’),
and (iii) V is a valuation function assigning to each propositional variable p as set V(p)
of states.

The truth of (classical) modal formulas is intensional as it depends not only on
the truth of the formulas but also the accessibility of the state that they are evalu-
ated in. We give the semantics of the modal formulas as follows, skipping the obvious
propositional cases.
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M,w |= �ϕ if and only if M, v |= ϕ, for all v ∈ W withwRv.
M,w |= ♦ϕ if and only if M, v |= ϕ, for some v ∈ W withwRv.

Classical modal logic is a rich research area as the modal operators can be inter-
preted in a wide variety of different ways. Epistemically, �ϕ means ‘I know that ϕ’,
doxastically it means ‘I believe that ϕ’, and deontically it means ‘It is obligatory that ϕ’.
A similar reading for various computer scientific concepts can be given for modal oper-
ators and their duals. As emphasised earlier, classical logic allows us to define modal
dualities, along with their epistemic, doxastic etc. interpretations.

Modal logic is axiomatised with the axioms of propositional logic, the modal nor-
mality axiom (otherwise known as the Kripke Axiom) �(ϕ → ψ) → (�ϕ → �ψ) and
the necessitation rule (from � φ follows � �φ where � stands for syntactic deriv-
ability). The basic classical modal logic axiomatised by the normality axiom and the
necessitation rule is called logic K.

Introducing additional axioms produces different modal logics. Let us first see some
axioms.

T �ϕ → ϕ

4 �ϕ → ��ϕ
5 ♦ϕ → �♦ϕ

A modal logic is called S4 if it is axiomatised by those of logic K and axioms T and 4.
Modal logic S5 is obtained by adding axioms T, 4 and 5 to K. For S5 for n-many agents
is denoted as S5n where each agent i has its corresponding accessibility relation Ri in
the model.

In this work we focus on modal logic S5 due to its simplicity: in S5 the accessibility
relation is an equivalence relation. Under these conditions, it is possible to simplify the
equivalence relation, too.

It is important to note that the classical S5 can be characterised by the models of
universal frames where every state is accessible from every state. In S5, �ϕ is satisfied
if and only ifϕ is satisfied at each state. Similarly, ♦ϕ is satisfied if and only ifϕ is satisfied
at some state. This simplicity makes it easier to use TDs for S5.

4.7. A dynamic modal logic: public announcement logic

An interesting extension of modal logic, given originally for the epistemic reading of
the modal operator, allows model updates. Dynamic logics in general express changes
in the model using syntactic operators. In this section, we focus on a well-studied
example of it: Public Announcement Logic for S5 (PAL5), where the underlying epis-
temic logic is S5 (van Ditmarsch et al., 2007). For simplicity, we only discuss a single
agent version.

PAL5 is an extension of S5 where changes in agents’ knowledge is expressed using
a new modal operator [ϕ!]. The way the model is updated is governed by an exter-
nal information that is introduced – often called an announcement. The announce-
ment is considered truthful. Consequently, the states that do not agree with the
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announcement are eliminated. As a result, the accessibility relation is also redefined
after the removed states.

The syntax of PAL5 is that of the modal logic extended with a dynamic modal
operator [ϕ!]ϕ:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ → ϕ | �ϕ | ♦ϕ | [ϕ!]ϕ

Consequently, the semantics of the dynamic operator is given as follows.

M,w |= [ϕ!]ψ if and only if ifM,w |= ϕ thenM|ϕ,w |= ψ

where the updated model M | ϕ = (W | ϕ, R | ϕ, V | ϕ) is defined as W | ϕ = {w ∈ W :
M, w |= ϕ}, R | ϕ = R ∩ (W | ϕ × W | ϕ), V | ϕ = V ∩ W | ϕ.

5. Truth diagrams for non-classical logics

Now, we introduce TDs for the logical systems we have seen earlier. Our goal is to offer
a catalogue of TDs for various non-classical logics emphasising the visual elements
of non-classicity. Our methodological approach will allow researchers to build TDs for
other logical systems that share common elements with the ones that we cover here.
We supplement our introduction with some diagrammatic examples, too. This is the
main contribution of the current work.

5.1. Truth diagrams for priest’s logic of paradox

For Logic of Paradox, we employ three positions around a propositional letter: one
for true, one for false, and a middle one for the third (paradoxical) truth value P. For
the paradoxical truth value, we will use a differently coloured line – a shade of red.
Using the truth table for LP given in Figure 4, we produce the following figure for the
connectives in LP in Figure 10.

Let us briefly explain how the TD for LP is constructed for the connectives given in
Figure 10. Since the truth value P is a fixed-point under negation, we put a connective
on the middle-nod around p. For conjunction, we have the truth value P for the cases
when (i) both p and q have the truth values P, (ii) p is T and q is P, and (iii) p is P and
q is T. Such cases are represented by a red connector. The cases are very similar for
disjunction.

Figure 10. Truth diagrams for negation, conjunction and disjunction in LP, respectively, where the red
colour represents the paradoxical truth value P.
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Figure 11. Truth diagram for the formula p → q ∧ r in logic of paradox.

Now, as an example, let us consider the TD of the very same formula p → q ∧ r
which we have discussed earlier in LP. The TD, given in Figure 11, shows that the for-
mula is true for 11 truth conditions, false for 5 truth conditions, and paradoxical for the
remaining 11 truth conditions out of 27 possibilities in LP.

The difference in complexity between Figures 3 and 11 underlines how compli-
cated the TDs can get for multi-valued logics. For clarification, we also decompose the
truth diagram in Figure 11 into three sub-diagrams, each with just a single colour, see
Figure 12 .2

Notice that designated truth values can be represented in TDs by simply noting the
colour of the truth values that are considered designated. Diagrammatically, this makes
it easier to keep track of the designated truth values and their interaction with the
other truth values and logical connectives. Particularly, the black and red connectors
represent the designated truth values of LP in TDs.

Now, we can define TDs for LP more formally, only emphasising the differences in
the definitions for the logic of paradox. Let us start with the elements of TDs for LP.

Definition 5.1: Elements of truth diagrams for the logic of paradox are given as
follows.

• A TD is composed of letters, nodes and connectors.
• Letters are arranged horizontally (with regular spacing for readability).
• Nodes are three small areas, one above, one in the middle of and one below the

letters.
• One connector for each possible combination of high, middle or low nodes of

each letter is permitted.
• The style of the connectors is solid and either black, grey or red.

The semantics of TDs for LP is defined as follows.

Definition 5.2: Semantics of truth diagrams for the logic of paradox is defined as
follows.
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Figure 12. Truth diagrams for each truth value for the formula p → q ∧ r in logic of paradox. (a) Truth
diagram for the truth value T for the formula p → q ∧ r in logic of paradox. (b) Truth diagram for the
truth value F for the formula p → q ∧ r in logic of paradox. (c) Truth diagram for the truth value P for the
formula p → q ∧ r in logic of paradox.
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Figure 13. Nodes for the truth diagrams in BL and the truth values they represent.

• Letters are propositional variables.
• Each node represents a truth-value for the variable: high-node for truth T, low-

node for false F and middle-node for paradoxical P.
• Connector style represents the overall truth-value assigned to its case. A black

connector assigns T, grey connector assigns F and red connector assigns P.

The definition above can easily be extended to various other multi-valued logics
which we leave to reader.

The correctness of TDs for LP is driven from the truth table of LP, given in Figure 4. LP
is a three-valued and a functional logic (Priest, 2008). And these are reflected directly
in Definitions 5.1 and 5.2.

It is important to note how TDs have got complex due to the exponential nature
of the truth value combinations. Using a relatively simple truth table of LP, express-
ing ternary formulas have produced complex diagrams, given in Figures 11 and 12.
TDs for classical propositional logic are simplified cases, therefore much easier to rep-
resent and much easier to understand visually. Once the number of possible truth
values increase, the said advantages of TDs begin to weaken. LP is a good example
for it and we will observe next how TDs behave in the case of four truth values. This
shows a disadvantage of TDs – for multi-valued logics, we need many colours and many
connectors, which eventually complicates the graphical elements of TDs.

5.2. Truth diagrams for Belnap–Dunn’s four valued system

Truth diagrams for BL require four colours to represent four truth values. Similar to
high and low nodes in classical propositional logic, in B4 we will use four nodes. High
node will be for truth T, low node will be for falsity F, under-middle node will be for
under-valuation N, and the lower-middle node will be for over-valuation P (Figures 13
and 14).

The reason why the truth values are ‘stacked’ on top of each other is to generate a
TD that is easy to read and compose .3 This is not necessarily the only way to represent
multiple truth values. Alternatively, placing the truth value nodes around the proposi-
tional letters with different angular positions can also be considered. For example, one
may argue that the top position goes to T, bottom to F, left to N and right to P. However,
this would make TDs very difficult to read and compose visually, and TDs constructed
in this way may fail to capture the graphical essence of classical TDs .4
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Figure 14. Truth diagrams for negation, conjunction and disjunction in BL, respectively, where the
red connectors represent the over-valuation truth value P and the blue connectors represent the
under-valuation truth value N.

Connectors of relevant colours will be introduced based on the truth table for BL
in Figure 5. In addition to black and grey, we will use red and blue to represent the
over-valuation truth value P and the under-valuation truth value N, respectively.

Now, we can define TDs for BL formally, only emphasising the differences in the
definitions for BL. Let us start with the elements of TDs for BL.

Definition 5.3: Elements of truth diagrams for Belnap-Dunn’s four valued logic are
given as follows.

• A TD is composed of letters, nodes and connectors.
• Letters are arranged horizontally (with regular spacing for readability).
• Nodes are four small areas, one above, one in the upper-middle of, one in the

lower-middle of and one below the letters.
• One connector for each possible combination of high, upper-middle, lower-

middle or low nodes of each letter is permitted.
• The style of the connectors is solid and either black, grey, blue or red.

The semantics of TDs for BL is defined as follows.

Definition 5.4: Semantics of truth diagrams for Belnap-Dunn’s four valued logic is
defined as follows.

• Letters are propositional variables.
• Each node represents a truth-value for the variable: high-node for truth T,

low-node for false F, upper-middle for over-valuation P and lower-middle for
undervaluation N.

• Connector style represents the overall truth-value assigned to its case. A black
connector assigns T, grey connector assigns F, red connector assigns P and blue
connector assigns N.

In BL, many different logical conditionals can be defined with different truth tables
and with different philosophical motivations. This may complicate the truth diagrams
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unnecessarily, and in order to keep the logic side simpler, let us focus on a TD for the
formula p ∧ (q ∨ r). This formula has three variables which requires 64 connectors. The
TD for the aforementioned formula is presented in Figure 15 by using subdiagrams for
each truth value for ease in reading. We leave it to the reader to determine how easy
TDs make the full and complete diagram to read and understand in BL, compared to a
64-row truth table for the very same formula.

The correctness of TD for BL follows the same argument we presented for TDs for LP,
hence skipped.

5.3. Truth diagrams for MacColl’s connexive logic

Truth diagrams for CC require four colours to represent four truth values, similar to BL.
High node will be for T, low node will be for F, upper-middle node will be for t and the
lower-middle node will be for f (Figure 16).

Connectors of relevant colours will be introduced based on the truth table for CC in
Figure 7. In addition to black and grey, we will use red and blue to represent the truth
values t and f, respectively.

Similarly, our example p → q ∧ r and p ∧ (q ∨ r) have three variables which require
64 connectors. This makes it difficult to read the TD in one diagram, hence it is left to
the reader in order to economise the length of the paper. The diagrammatic behaviour
of the connectives in CC is given in Figure 17.

Let us now define TDs for CC formally, only emphasising the differences in the
definitions for CC. We start with the elements of TDs for CC.

Definition 5.5: Elements of truth diagrams for MacColl’s connexive logic are given as
follows.

• A TD is composed of letters, nodes and connectors.
• Letters are arranged horizontally (with regular spacing for readability).
• Nodes are four small areas, one above, one in the upper-middle of, one in the

lower-middle of and one below the letters.
• One connector for each possible combination of high, upper-middle, lower-

middle or low nodes of each letter is permitted.
• The style of the connectors is solid and either black, grey, blue or red.

The semantics of TDs for CC is defined as follows.

Definition 5.6: Semantics of truth diagrams for MacColl’s connexive logic is defined
as follows.

• Letters are propositional variables.
• Each node represents a truth-value for the variable: high-node for logical neces-

sity T, low-node for logical impossibility F, upper-middle for contingent truth t
and lower-middle for contingent falsehood f.
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Figure 15. Truth diagram for the formula p ∧ (q ∨ r) in BL. (a) Truth diagram for the truth value T for
the formula p ∧ (q ∨ r) in BL. (b) Truth diagram for the truth value P for the formula p ∧ (q ∨ r) in BL.
(c) Truth diagram for the truth value N for the formula p ∧ (q ∨ r) in BL. (d) Truth diagram for the truth
value F for the formula p ∧ (q ∨ r) in BL.
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Figure 15. Continued.

• Connector style represents the overall truth-value assigned to its case. A black
connector assigns T, grey connector assigns F, red connector assigns t and blue
connector assigns f.
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Figure 16. Nodes for the truth diagrams in CC and the truth values they represent.

Figure 17. Truth diagrams for negation, conjunction and disjunction in CC, respectively, where the red
connectors represent t and the blue connectors represent f.

Figure 18. Truth diagrams for negation, conjunction and disjunction in BH3, respectively, where the red
colour represents the nonsensical truth value N.

5.4. Truth diagrams for Bochvar–Halldén’s logic of non-sense

Truth diagrams for BH3 will use the same methodology as LP as both are three-valued
systems. Similar to TD for LP, we will use red connectors to represent the nonsensical
truth value N. The TDs for the main Boolean connectives are given in Figure 18.

In what follows, we define TDs for BH3 more formally, only emphasising the differ-
ences in the definitions for the logic of paradox. Let us start with the elements of TDs
for BH3.

Definition 5.7: Elements of truth diagrams for Bochvar–Halldén’s logic of non-sense
are given as follows.

• A TD is composed of letters, nodes and connectors.
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• Letters are arranged horizontally (with regular spacing for readability).
• Nodes are three small areas, one above, one in the middle of and one below the

letters.
• One connector for each possible combination of high, middle or low nodes of

each letter is permitted.
• The style of the connectors is solid and either black, grey or red.

The semantics of TDs for BH3 is defined as follows.

Definition 5.8: Semantics of truth diagrams for Bochvar–Halldén’s logic of non-sense
is defined as follows.

• Letters are propositional variables.
• Each node represents a truth-value for the variable: high-node for truth T, low-

node for false F and middle-node for non-sense N.
• Connector style represents the overall truth-value assigned to its case. A black

connector assigns T, grey connector assigns F and red connector assigns N.

For BH3, let us consider the formula p ∧ (q ∨ r) in BH3, given in Figure 19. For
simplicity in reading, we give the TD in three sub-diagrams.

The dominance of certain truth values are important to note here (Başkent, 2020).
In none of the diagrams for black and grey, that is for true and false, connectors pass
through the node for N the non-sense truth value. It is because N is a dominant truth
value: if any of the subformulas of a given formula in BH3 has N truth value, it will
propagate and render the whole formula N. So, a connector cannot maintain its grey
or black colour if they go through an N node. That is the reason why the TD for N (red
one) is very crowded compared to the other ones. In fact, it is easy to compute. We
have 33 − 23 = 19 red connectors.

Such observations can be advanced to similar logics of non-sense that are con-
structed in the same fashion, following the dominance of non-sense truth values
(Başkent, 2020; Szmuc, 2016).

5.5. Truth diagrams for Carnielli–Coniglio’s logic of formal inconsistency

Truth diagrams for LFI require a method to represent bivaluation. Unlike all the other
multi-valued non-classical logics which we hitherto have discussed, LFI is a binary
system. However, the semantics of the negation and consistency operators create a
problem. Negation of a true formula can be both true and false, and similarly, consis-
tency of a true formula can be both true and false in three different ways, based on
the negations of the true formula. The TD for LFI should reflect this. The immediate
solution to this problem is to allow more than one connectors at nodes.

Let us start with considering the TD for negation. TD for negation in LFI shows that
the negation of falsity is truth, whereas the negation of truth is both truth and fal-
sity. Therefore, for the high nod, we need two connectors: black and grey, representing
truth and falsity, respectively. Similarly, for the consistency operator ◦, we have three
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Figure 19. Truth diagrams for each truth value for the formula p ∧ (q ∨ r) in Bochvar–Halldén’s logic.
(a) Truth diagram for the truth value T for the formula p ∧ (q ∨ r) in Bochvar–Halldén’s logic. (b) Truth
diagram for the truth value F for the formula p ∧ (q ∨ r) in Bochvar–Halldén’s logic. (c) Truth diagram
for the truth value N for the formula p ∧ (q ∨ r) in Bochvar–Halldén’s logic.
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Figure 20. Truth diagrams for negation and the consistency operator in LFI, respectively.

Figure 21. Truth Diagram for p ∧ ¬p → q in LFI.

cases for ◦p when p is true, and two cases when p is false. TDs for both diagrams are
given in Figure 20. TD for the other Booleans connectives in LFI are classical.

Let us see some examples. We start by considering the formula p ∧ ¬p → q. Based
on the truth table for LFI given in Figure 9, we have six different combinations of truth
values for p, ¬p and q: (i) all three are true, (ii) p and ¬p are true but q is false, (iii) p is
true ¬p is false, q is true, (iv) p is true ¬p is false, q is false, (v) p is false ¬p is true, q is true,
and (vi) p is false ¬p is true, q is false. The cases (i) and (ii) are the non-classical ones.
Hence, the TD for LFI requires six connectors. And the non-classical cases will require
parallel connectors to the classical ones. The connector for case (i) will run in parallel
to that of case (iii), and the connector for case (ii) will run in parallel to that of case (iv).
The TD for the formula p ∧ ¬p → q is given in Figure 21.

Examples can be multiplied in a similar fashion.
Now, we define TDs for LFI more formally, only emphasising the differences in the

definitions for the logic of paradox. Let us start with the elements of TDs for LFI.

Definition 5.9: Elements of truth diagrams for Carnielli–Coniglio’s logic of formal
inconsistency are given as follows.

• A TD is composed of letters, nodes and connectors.
• Letters are arranged horizontally (with regular spacing for readability).
• Nodes are two small areas, one above and one below the letters.
• More than one connector for each possible combinations of high or low nodes of

each letter is permitted.
• The style of the connectors is solid and either black or grey.

It is important to note that in LFI we allow more than one connector for each
possible combination of high or low nodes.

The semantics of TDs for LFI is defined as follows.

Definition 5.10: Semantics of truth diagrams for Carnielli–Coniglio’s logic of formal
inconsistency is defined as follows.
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Figure 22. Nodes for the truth diagrams in modal logic and the truth values they represent at statew.

• Letters are propositional variables.
• Each node represents a truth-value for the variable: high-node for truth T and

low-node for false F.
• Connector style represents the overall truth-value assigned to its case. A black

connector assigns T and grey connector assigns F.

As argued before, the above definition allows more than one connector to connect
nodes, reflecting the truth table of LFI given in Figure 9.

6. Truth diagrams for modal logics

In this section we start with presenting TDs for S5 and later on extend them to basic
modal logic and public announcement logic. One of the goals of this section is to
underline the theoretical richness of the connections between TDs and various modal
logics. Whilst doing so, we will not necessarily limit ourselves to classical modal logi-
cal way of reasoning. Not every modal logic is necessarily classic nor normal, not every
modal logic has duality between � and ♦ operators. Therefore, we define TDs to cover
the broadest possible class of modal logics even if our focus in this section is S5 modal
logic, which is a relatively straight-forward classical modal logic. We will take advantage
of its simplicity when we construct TDs.

Modal logics give an ‘internal, local perspective on relational structures’ (Blackburn
et al., 2001). ‘Localities’ change the way we evaluate truth in modal logic. Consequently,
there are few possibilities of truth for a formula in modal logic. It is either (i) true, (ii)
false, (iii) true everywhere, (iv) true somewhere, (v) not true everywhere, and (vi) not
true somewhere. Moreover, the truth of each formula depends on a state w. All these
need to be incorporated into TDs. Therefore, we need four additional nodes around
letters: top (that is 12 o’clock) for ‘true’, bottom (that is 6 o’clock) for ‘false’, left-upper-
middle (that is 10 o’clock) for ‘necessarily true’ or ‘true everywhere’, right-upper-middle
(that is 2 o’clock) for ‘possibly true’ or ‘true somewhere’, left-lower-middle for (that is
8 o’clock) ‘necessarily false’ or ‘not true somewhere’ and right-lower-middle (that is 4
o’clock) for ‘possibly false’ or ‘not true everywhere’. Similarly, we associate the truth of
a propositional letter p with a state w and write it as p@w in the TD. We summarise our
ideas in Figure 22 .5

The truth in S5 is the truth in a model of equivalence classes. Now, let us, for example,
consider the formula �p ∧ q at state w in S5, as given in Figure 23. In S5, the formula
is true when �p and q are true. Furthermore, due the characteristics of S5 – that is
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Figure 23. Truth diagrams for�p ∧ q at statew in S5. Grey connectors are omitted for ease in reading.

reflexivity–, when �p ∧ q is satisfied, so are p and q. In both cases, we omit the grey
connectors representing falsity for ease in reading.

The classical modal logic S5 may appear to be a simple case for TDs. Developing
a TD for modal logics in general proves to be a difficult task for a variety of reasons.
First, without actually drawing the picture of the modal model, it is difficult to express
the recursiveness of modal formulas in TDs. The depth of modal formulas is another
difficulty, where depth is defined as the highest number of modal operators appearing
in any subformula of a given formula. The formula �p ∧ q of depth 1 can perhaps be
expressed in a TD for K, but the formula �♦�♦p ∧ q of depth 4 poses some challenges
due to the recursiveness of the truth semantics of modal logic.

Let us now start with the easy case and define TDs for modal logic S5 formulas of
depth 1 formally – first the elements then the semantics.

Definition 6.1: Elements of truth diagrams for modal logic S5 for formulas of depth 1
are given as follows.

• A TD is composed of letters, nodes, connectors and states attached to letters.
• Letters (with attached states) are arranged horizontally (with regular spacing for

readability).
• Nodes are six small areas, one above, one in the upper-left-middle of, one in the

lower-left-middle of, one in the upper-right-middle of, one in lower-right middle
of and and one below the letters.

• More than one connector for any possible combination of nodes of each letter is
permitted.

• Letters are arranged with states.
• The style of the connectors is solid and either black or grey.

The semantics of TDs for modal logic is defined as follows.

Definition 6.2: Semantics of truth diagrams for modal logic S5 for formulas of depth
1 is defined as follows.

• Letters are propositional variables with states attached to them in the form of
p@w, where p is a letter and w is a state.
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Figure 24. The frame F.

• Each node represents a truth-value for the variable: high-node for truth T, low-
node for false F, lower-left-middle node for necessarily false �⊥, upper-left-
middle node for necessarily true �, upper-right-middle node for possibly true
♦ and lower-right middle node for possibly false ♦⊥.

• Connector style represents the overall truth-value assigned to its case. A black
connector assigns T and grey connector assigns F.

The TDs presented in this section take advantage of the structural properties of S5
and leave room for potential non-classical elements in modal logics, such as lack of
duality between � and ♦ formulas.

6.1. Towards TDs for basic modal logics

In this section, we explore how we can generalise the ideas presented in the previous
section to capture the TDs for basic modal logic K.

For modal formulas with higher depth in modal logic K, we can proceed step by step.
Let us start with an example. Consider the formula �¬♦p ∧ q with the given modal
frame F = (W , R) where W = {w, w′, w′′} and R = {(w, w′), (w′, w′′)}. Modal operators
bind stronger, so there is no need for parentheses. The frame F is given as above
(Figure 24).

Let us consider the formula �♦p at state w. The truth of this formula relies on the
truth of ¬♦p at w′ whose truth relies on truth of p at w′′. Therefore, a TD for �¬♦p ∧ q
at w should reflect that.

It is possible to reflect the recursiveness of Kripkean semantics of modal formulas by
using a tower of TDs for modal formulas.

Here is how to construct a tower of TDs for modal logics. First, using red, we draw
the frame. At each state w, w′, w′′ of the frame, we construct a truth diagram, directly
reflecting the model theory of modal logic. For different variables p, q, . . . at each state
we will write them in parallel with sufficient space. Vertically, we will construct the the
frame as an upside tree with a root. This will allow us to recursively trace and compute
the truth of the modal formulas at any state of the frame using TDs.

For example, let us construct a tower of TDs for the formula �¬♦p ∧ q at frame F as
given above. At state w, the formula �¬♦p and q must be satisfied in order to make the
formula true. However, �¬♦p being satisfied at w means that, using the information
from frame F, the formula ¬♦p must be true at w′. Similarly, p must fail at w′′. All these
conditions, for frame F, need to be satisfied for the given formula �¬♦p ∧ q at state w.
Now, we connect the satisfiable nodes and leave the grey connectors out for ease in
reading. The modal TD for the formula �¬♦p ∧ q in frame F is given in Figure 25.

The purpose of having six nodes around letters and formulas can clearly be seen
here as they provide more information in the diagram, and makes it easier for the read-
ers to follow the recursive truth conditions of modal logic. For example, we can read off
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Figure 25. Truth Diagrams for�¬♦p ∧ q at statew. Grey connectors are omitted for ease in reading.

the given formula �¬♦p at w from the TD in Figure 25. For the coloumn in TD for p,
we can read off from the bottom. The bottom diagram for p suggest that the formula
is a �-formula, followed by a �¬ formula, followed by a false p. Putting them together
we obtain ��¬p which is equivalent to �¬♦p. Surely, taking advantage of classical
duality of � and � formulas, the TD for modal logic can further be simplified .6

As the example given in Figure 25 illustrates, TDs for modal logics need to com-
bine propositional letters, modal formulas with no binary connectives, the relational
structure and the truth. TD towers achieve this.

Now, we can define modal TDs.

Definition 6.3: Elements of truth diagrams for modal logic are given as follows.

• A TD is composed of letters, letters with modal operators in front (i.e modal letters),
nodes, connectors, and states attached to letters and modal letters.

• Letters (with attached states) are arranged horizontally (with regular spacing for
readability).

• Modal letters (with attached states) are arranged vertically (with regular spac-
ing for readability), forming towers. Vertical arrangement starts with the given
formula and goes vertically up by removing one modal operator at each stage.
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• Nodes are six small areas, one above, one in the upper-left-middle of, one in the
lower-left-middle of, one in the upper-right-middle of, one in lower-right middle
of and one below the letters.

• More than one connector for any possible combination of nodes of each letter is
permitted.

• Letters, modal or otherwise, are arranged with states.
• The style of the connectors is solid and either black or grey.
• The frame is included in the diagram using the colour red. The frame is repre-

sented as an upside-down rooted tree.
• TDs for modal formulas with their associated states are placed on the modal

frame in appropriate nodes.

The semantics of TDs for modal logic is defined as follows.

Definition 6.4: Semantics of truth diagrams for modal logic is defined as follows.

• Letters are propositional variables with states attached to them in the form of
p@w, where p is a letter and w is a state.

• Modal letters are propositional modal formulas with states attached to them in
the form of �n♦mp@w, where p is a letter and w is a state.

• Each node represents a truth-value for the variable: high-node for truth T, low-
node for false F, lower-left-middle node for necessarily false �⊥, upper-left-
middle node for necessarily true �, upper-right-middle node for possibly true
♦ and lower-right middle node for possibly false ♦⊥.

• Connector style represents the overall truth-value assigned to its case. A black
connector assigns T and grey connector assigns F.

For clarity, this is how we define �n recursively, for n, m ∈ N .

�0p = p

�n+1p = ��np

The same goes for the ♦m operator.
The above definition is a first for modal logic. What is left is to generalise to a broader

class of modal logics and explain how various modal axioms relate to TDs and how
different frames may generate different TDs and towers. Along the same lines, it can
be perceived to simplify our modal TDs by just using binary nodes for truth and falsity.
Such extensions and simplifications are left for future work.

Modal logics can be complex, so are the TDs for them. The current work raises a
number of important questions regarding TDs for modal logic. Particularly,

(1) What is the diagrammatic representation for modal logical equivalence?
(2) What is the systematic way to diagrammatically represent or simplify differ-

ent modal logics such as T, S4 etc.?
(3) What is the most efficient way to represent the modal logical frames, that is

the red lined diagram?
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Figure 26. Nodes for the truth diagrams in dynamic epistemic logic for two agents, and the truth values
they represent.

(4) How can we make use of TDs for modal logic for the proof theory of modal
logic?

(5) How can we give TDs for first-order classical modal logics?

Each of these questions deserve an individual treatment, thus left for future work.

6.2. Truth diagrams for public announcement logic

In this section, as a case study, we discuss TDs for public announcement logic PAL5.
Let us first consider a model for two agents. In this case, we need nodes and con-

nectors for each agent. The nodes in the classical case will double as the nodes for
both agents to identify the modal truth conditions as given in Figure 26. The con-
nectors, however, need to be distinguished between the agents. For Agent 1, we will
use continuous-line, whereas for Agent 2 we will use dash-line connectors. Positions of
truth around a propositional letter remain as before.

Here is a toy example for agents 1 and 2. Assume at w, q holds and 1 knows p.
Similarly, at w, p holds and 2 knows p. Therefore, we have

w |= p ∧ �1q w |= q ∧ �2p

Now, assume that a truthful announcement of ¬�1q is made, suggesting agent 1 does
not indeed know q. Consequently, the model is eliminated by removing the states
where the announcement does not hold.

Let us now see how the update is reflected in the TD. First, for simplicity, let us
denote agent 2’s knowledge situation with dashed connectors and omit the grey con-
nectors which represent falsity. After the announcement, agents get to learn that ¬�1q
is indeed true. This introduces the node for it to the diagram with a black connector.
The way the model is updated is represented in Figure 27 which clearly shows the
change in black connectors.

It is also important to note that after an update some states can be removed from
the model thus from the TD. Following up from the model above, if, for example, the
formula ¬p is announced, the state w would be removed from the model as a result
of the update. This reminds us that the modal semantics is local and TDs cannot pro-
vide a global picture of the modal models. All they can do is to give the semantics of
propositional variables at a particular state.

Let us now define TDs for public announcement logic S5 for two agents formally –
first the elements then the semantics.
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Figure 27. Truth Diagrams forw |= p ∧ �1q andw |= q ∧ �2p atw in a two-agent dynamic epistemic
model, before and after the announcement of ¬�1q, in S5n. Grey connectors are omitted for ease in
reading. (a) The original epistemic model. (b) After an update by¬�1q.

Definition 6.5: Elements of truth diagrams for public announcement logic S5 for two
agents are given as follows.

• A TD is composed of letters, nodes, connectors and states attached to letters.
• Letters (with attached states) are arranged horizontally (with regular spacing for

readability).
• Nodes are six small areas, one above, one in the upper-left-middle of, one in the

lower-left-middle of, one in the upper-right-middle of, one in lower-right middle
of and and one below the letters.

• More than one connector for any possible combination of nodes of each letter is
permitted.

• Letters are arranged with states.
• The style of the connectors is solid black or solid grey for agent 1, dashed black

or dashed grey for agent 2.

The semantics of TDs for modal logic is defined as follows.

Definition 6.6: Semantics of truth diagrams for public announcement logic S5 for two
agents is defined as follows.

• Letters are propositional variables with states attached to them in the form of
p@w, where p is a letter and w is a state.

• Each node represents a truth-value for the variable: high-node for truth T, low-
node for false F, lower-left-middle node for necessarily false �i⊥, upper-left-
middle node for necessarily true �i, upper-right-middle node for possibly true
♦i and lower-right middle node for possibly false ♦i⊥ where i ∈ {1, 2}.
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• Connector style represents the overall truth-value assigned to its case. A black
connector (dashed or solid) assigns T and grey connector (dashed or solid)
assigns F.

The above definition describes a TD for a dynamic logic for two agents. The structure
we describe makes it possible to extended to systems with more than two agents.

A plethora of opportunities exist to extend our introductory TD to various many-
agent dynamic modal systems and methodologies. Such extensions and offering a
complete catalogue of TDs for dynamic modal logics fall outside the scope of current
work.

7. Discussion and conclusion

Broadly, there are two ways to understand the relation between logic and TDs. ‘Logic to
diagrams’ direction attempts at developing diagrammatic and visual tools to express
the semantics of a given logic. As such, it asks the following question: ‘What is the TD for
this logic?’ Conversely, ‘diagrams to logic’ direction investigates the diagrammatic ele-
ments found in TDs and seek their logical interpretation. As such, it asks the following
question: ‘Given an imaginary TD, what is the logic whose semantics can diagrammati-
cally be explained by it?’ The current paper follows the ‘logic to diagrams’ direction and
generates a variety of TDs for a broad class of logics. As such, it offers a new diagram-
matic semantics for various non-classical logics. Moreover, TDs hint out some logical
properties as well. For instance, considering the TDs discussed in Figures 2 and 3, we
can see that only two colours are allowed – because the classical logic has two truth
values. The connectors lines are always horizontal – because vertical lines can be used
to express contradictions which are not allowed in classical logics. In BH3, for example,
we can see how the ‘hierarchy’ of truth values can visually be expressed in TDs.

7.1. What we learn from TDs for non-classical logics

Arguably, TDs make it easier to trace what makes a formula to have a certain truth
value. For example, consider the TD given in Figure 15. For example, if one needs to
ensure how to render the given formula p ∧ (q ∨ r) false, it is then relatively easier and
quicker to observe what makes it false. For example, once p is false the formula always
ends up false. Similarly, it is impossible to make the formula P when p is N or F. TDs can
be (cognitively) quicker to work with in such circumstances.

Modal logic is an interesting and central case. Depending on the axiomatisation,
different modal logics can require different TDs. For example, in classical cases, due to
modal duality (�ϕ ≡ ¬♦¬ϕ), nodes can be simplified. In some modal logics, where
negations are defined non-classically as ¬�, for example, further simplifications can
be made. This is the reason why we introduce a broader framework for TDs that is
sufficiently expressive for modal logics. Modal logics are manifold and rich in their
mathematical structures, TDs should be able to cater for them. Our study of modal TDs
shows how fragile truth is in modal logic and how complicated it can be to represent
it diagrammatically.
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7.2. Correctness

Our work introduces an alternative semantics for various propositional non-classical
logic. Apart from modal logic, TDs are alternatives to truth tables.

The correctness of TDs carry over from the truth tables and model theories of the
aforementioned logics. Our definitions of TDs for each logic allow us to represent each
and every truth table given for such logics in Section 4. Therefore, TDs are correct
and adequate for the non-classical logics we have discussed as they cover all logical
operators and represent each and every row in the truth tables of aforementioned
logics.

Modal semantics, on the other hand, follow the methodology of Kripkean semantics
and unfold complex modal formulas step-by-step. This offers an interesting way to deal
with modal depth of formulas.

7.3. What this work is about

This work is complementary to research on the semantics of non-classical logics as
well as modal and dynamic logics. An earlier body of work discussed game semantics
for non-classical logics (Başkent, 2016, 2020; Başkent & Henrique Carrasqueira, 2020) in
a systematic fashion, and the current work achieves the same using truth diagrams.
A similar trajectory for dynamic logic was carried out using topological semantics
(Başkent, 2012). Together with the current work, this line of research is focusing on
‘non-classical’ truth semantics for non-classical logics.

Moreover, the current work provides a case study for those interested in diagram-
matic reasoning in logic. The way the diagrams themselves work and interact, and the
way in which such systems can be generated serve logic directly – now we can simply
work on diagrams, perhaps create some diagrammatic systems, and then study their
logic.

The current work can also be seen as a proof that TDs are genuine mathematical dia-
grams, according to de Toffoli’s criteria (de Toffoli, 2022): (i) both human and artificial
agents can easily and effectively produce a TD, (ii) TDs’ features are easily indentifiable
and they carry logical content reliably, and (iii) they correspond to well-defined math-
ematical operations – that is truth functions in non-classical logics. Briefly, we have
tested de Toffoli’s criteria for mathematical diagrams using non-classical logics in the
context of TDs successfully.

Unsurprisingly, it is also important to visually identify the difficulties that multi-
valued logics introduce to the study of TDs. In many cases (see Figures 12 and 15), we
had to separate the TDs into several sub-diagrams to improve readability. This is more
fundamental than it seems as it may practically make it impossible to make a diagram
for, for instance, a 4-valued logic using 5 variables as it requires 1024 connectors. As
such, arguably, it is no easier or transparent than constructing a truth table. And, the
clarity and ease that TDs present with the classical logic completely vanish.

7.4. What this work is not about

This work attempts at introducing new truth semantics for various logics. It does
not attempt at discussing their proof theory or how TDs may help us improving it.
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Furthermore, this paper is not on the philosophy of TDs except for being a showcase
of how non-classical logics may have an impact first on TDs and then on diagrammatic
reasoning.

This paper is not about the semantics of proofs or syntax. Use of TDs in proof theory
of non-classical logics remains an open question. Our work does not discuss syntax
neither, and therefore does not distinguish the TDs of, say, p ∧ q and q ∧ p.

One interesting issue that we learned whilst working on this paper is the challenge
of actually producing TDs. Since all the logics considered are finite, the process of
constructing TDs is computationally effective. Making the diagrams easy to read and
follow, on the other hand, is not as easy for us mere humans. That is an issue we have
not touched upon in this paper – how to actually produce the TDs in an ‘easy to read
and follow’ fashion, and how to automate this process. We believe this is an interesting
direction to pursue, especially for multi-valued logics.

7.5. Future work ideas

An immediate future work area is the proof theory of the non-classical logics which we
have discussed, using TDs.

Dynamic modal logic and its cousins constitute a lively and popular research area. A
broad spectrum of logical systems in this area, including AGM belief revision to gossip
models, may directly benefit from TDs. Similarly, bisimulations and process equiva-
lences in modal logic can benefit from TDs. The way they work can be given a visual
representation using TDs.

Along the same lines, another line of inquiry is to relate TDs to alternative semantics
for modal logics. Topological semantics for modal and dynamic logics is an interesting
research direction (Başkent, 2012), and the way that TDs can be translated to topolo-
gies remains an open question. Similarly, TDs and non-normal modal logics remain an
unexplored direction.

Introducing avant-garde semantic structures for non-classical logics is not a new
endeavour. Hintikkan game semantics can be viewed as a similar approach. It is thus
important to identify what game semantics and truth diagrams can learn from each
other. First, it is worth exploring how TDs can possibly help developing strategies for
players in a semantic games. Similarly, for a given TD for a logic, one can ask if it is
possible to develop a semantic game for the logic in question. Such issues relate TDs
to games and suggest an interesting research direction.

Definitions 3.1 and 3.2 describe how diagrams are constructed. Ignoring the logical
aspects of it, one can easily work on alternating the given definitions. For example, one
can allow connectors to intersect with propositional letters in more than one place.
This can also help to develop ideas for the first-order extension of TDs and reinforce
the ‘diagrams to logic’ direction.

Notes

1. It is often thought that why a ‘claim, method or proof’ is correct can be given a mathe-
matical, geometric or philosophical arguments. Without proof, I tend to think that one
can add ‘game theoretical’ arguments to the aforementioned bunch.
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2. Thanks to the anonymous referee for suggesting this.
3. Thanks to the anonymous referee for suggesting it.
4. Perhaps with some exceptions, as we shall see in due course.
5. Thanks to Peter C.-H. Cheng for suggesting to use the clock terminology.
6. Since our starting point is non-classical logics, it is important to leave sufficient room

in TDs to be able to express non-classical modal logics, too. Cheng’s approach in
Cheng (2020), on the other hand, starts from classical logic and requires extensions as
discussed in this work.
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