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Abstract 
 

tudying how analysts use interactions in visualization systems is an important part of 
evaluating how well these interactions support analysis needs, making sense of data or 
generating insights. As sensemaking is inherently a fluid activity involving transitions 

between mental and interaction states, lack of accuracy or precision into adopted visualization 
techniques can create a gap between cognitive constructs and manipulations or interactions 
humans apply to think or reason about the data. To tackle the problem, this thesis proposes 
‘Behavioural Markers (BMs)’ which are representatives of the action choices that analysts make 
during their analytical processes as the bridge  between that gap. Appropriate tools, techniques 
are required to log individual processing activities and utilize those to complement the 
information entailed with transparent processing operations.  
 
As a first step to achieve the goal of bridging between human cognition and analytic computation 
through interactions at micro-analytic level, this thesis contributes to an extensive research with 
groups of real police intelligence analysts for designing and developing  a visual judgemental 
system named as ‘PROV’ according to W3C standard. Secondly to explain how human cognition 
leads to interactions and vice versa, it contributes to development of an exhaustive list of 
behavioural constructs and detection of those ingrained cognitive constituents through 
interaction network graph analysis and translate those by theories of psychology for 
externalizing human thought processes. Recovering cognitive reflection on analytic reasoning 
processes from extended log data or only by observing is a difficult task. Due to cognitive and 
perceptual variances, conventional clustering or pattern mining techniques for user behaviour 
modelling, task identification, clickstream modelling don’t fit very well with this purpose. To 
overcome these limitations as third step, this research proposes ‘BreakPoints (BPs)’ as the way 
to pinpoint internal transitions in perception and cognition which are nipped into analytic 
interactions. This research has contributed to development of machine learning models to 
contextualize those streams of actions, infer cognitive transition points into both known and 
unknown task scenarios. Proposed approaches have significantly improved results compared to 
existing techniques. Finally for transparent validation of all computational outcomes in terms of 
reliability, accuracy, relevance and to build human trust on those results, this research has 
presented visual explanations of machine produced results by unfolding blackbox calculations.   
 
The major research results reported into this thesis have contributed to the project VALCRI 
(Visual Analytics for Sensemaking in Criminal Intelligence), Analysis which has received funding 
from the European Union Seventh Framework Programme FP7/2007-2013 through Project 
VALCRI, European Commission Grant Agreement No- FP7-IP-608142, awarded to Middlesex 
University and partners.  
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he VALCRI project was funded by the European Commission to undertake R&D with a view 
to developing an integrated software support system for police forces across partner 
countries. This software system, known as VALCRI, will be used by police analysts to 

investigate crimes and crime-related behaviour, complementing and enhancing current police 
capabilities. The consortium includes partners and activities aimed at designing the technology 
from cognitive, legal, ethical and privacy perspectives so that the rights of the individual to 
security and liberty will be respected while ensuring the good of society. It will also enable law 
enforcement agencies to make their processes more transparent, so that the processes by which 
their conclusions are reached are made easier to inspect. 
 
The purpose of Project VALCRI was to create a Visual Analytics-based sense-making capability 
for criminal intelligence analysis by developing and integrating a number of technologies into a 
coherent working environment for the analyst named as the Reasoning Workspace. Conceptually, 
the Reasoning Workspace comprises three areas: (i) a Data Space which will enable an analyst to 
see what data and themes exist, (ii) an Analysis Space to which data can be brought into to carry 
out various computational analyses including statistical and text analysis, and (iii) a Hypothesis 
Space that will enable the analysts to assemble their evidence into coherent arguments that lead 
to meaningful and valid conclusions. 

At the cutting edge of intelligence-led policing, VALCRI is a semi-automated analysis system that 
helps find connections humans often miss. When pre-empting crime or investigating a case, it can 
be deployed by analysts to reconstruct situations, generate insights and discover leads. 

Through autonomous work or collaboration with a human team, VALCRI creatively analyses data 
from a wide range of mixed-format sources. It displays its findings with easy-to-digest 
visualisations, comes up with possible explanations of crimes, and paves the way for rigorous 
arguments. Protecting against human error and bias, VALCRI works with objective intelligence, 
speed and precision. 
 
Project Links -   

* Website: https://www.euprojectvalcri.org/  
∮ EC: https://cordis.europa.eu/project/id/608142  
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VALCRI Context and Objectives 

The purpose of VALCRI was to develop the next generation criminal intelligence analysis system 
for European LEAs. Working closely with three European police forces, the project researched 
and developed at TRL-5, an integrated system of over 75 software components of advanced data 
processing, analytic and sense-making tools. It includes multiple applications spanning strategic 
intelligence analysis to tactical intelligence and individual case management.  
 
The VALCRI system was routinely evaluated with project end-users. In the final nine months, it 
has been evaluated with 214 LEA officers in 50 agencies in 16 countries and 2 international LEAs 
(Europol and NATO Intelligence Fusion Centre). VALCRI used a cognitive engineering approach 
to create a human-technology team that combined advanced concepts of human reasoning and 
analytic discourse with machine learning and database technologies. The result has been a semi-
automated human-mediated semantic knowledge extraction capability that can facilitate and 
improve investigative sense making and problem solving in crime analysis and criminal 
investigation in a high ambiguity and constantly evolving environment. 
 
Key Distinguishing Features 
 
1. Support How Analysts Think, Rather Than What Analysts Do  

If VALCRI were designed to mainly support what analysts do, then the system would primarily 
automate current tasks and workflows. Instead, by designing for how analysts think, the VALCRI 
system is better able to respond to the variety of sense making, reasoning and inference making 
and problem solving strategies presented by human analysts.  
 
2. Facilitate Expert Intuition To Scientific Method  

In many investigations, analysts are often only presented with fragments of data from which to 
create an understanding of the situation and to anticipate what might happen. Expert intuition is 
very useful in generating “hunches”, or early, plausible and tentative hypotheses. However, 
hunches can be error prone and subject to cognitive biases. VALCRI has designed quick ways for 
analysts to use the scientific method to test their hunches so that they may easily discard it if 
proven wrong. 
 
3. Humans Decide, Machines Do The Heavy Lifting  

VALCRI has been designed so that humans and machines do what each is good at: Humans make 
decisions under ambiguity; machines are fast at tedious and repetitive task. So, when an analyst 
instructs VALCRI to “find me more reports like this …”, the machine learning-based automation 
will trawl through large volumes of structured and un-structured data (e.g. free text) to retrieve, 
triage, collate, thematically analyse the data, and then combines and presents the reports in 
context of the crime problem being investigated, e.g. Comparative Case Analysis.  
 
4. Ethics, Legal and Privacy By Design  

In many LEA data analytics systems, once a person’s data is enmeshed in the system-data 
networks, that person will continue to be linked to those criminal profiles. Such profiles will be 
used by the system to predict membership characteristics and to set up alerts for “persons of 
interest”. This can lead to further stops and searches of the person, even though he may be 
innocent. This interferes with his private life. VALCRI advocates the need for ‘computational 
transparency’ as a mitigating approach: make visible the inner workings of ‘black box’ automated 
algorithms. A lower TRL prototype has been implemented in VALCRI to investigate how fine grain 
data access controls may be combined with computational transparency so that analysts and 
investigators are aware of the provenance of algorithm’s computed results and protect the rights 
of individuals.  
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5. Up-skilling of Analytic Abilities  

VALCRI has also identified and addressed varying deficiencies in the abilities of the intelligence 
analysis community. Some of this have been formalised in a new Master degree level analytics 
training course at Aston University in Birmingham, in partnership with the West Midlands Police; 
and some have been formalised into commercial intelligence analysis training packages focusing 
on analytic reasoning.  
 
6. Research Data  

Partner AES worked with West Midlands Police to make anonymous three years of actual police 
data: over 1 million crime reports including structured and un-structured data, and over 6 million 
ANPR records. This data includes spelling errors, duplicates, similar but different data, and so 
forth. This dataset has been a crucial enabler. 
 
Project Objectives 
 
OBJECTIVE 1: Human Issues Framework  

(a) Ethics, Privacy, Law. Comparative analysis of law in Germany, Belgium and UK, led to 
specification of legal requirements in VALCRI; Evaluated impact of removing ethically sensitive 
data from data analysis; Developed understanding of Ethics by Design in VALCRI; Set up Ethics 
Working Group in West Midlands Police to assess ethical issues in criminal intelligence analysis; 
(b) Cognitive bias and sense making. Operationalized insight, imagination, fluidity and rigour, 
transparency for experimental evaluation; Evaluated visualisation designs for insight, sense-
making, cognitive bias, structuring of arguments.  
 
OBJECTIVE 2: Analyst User Interface 
A suite of AUI tools based around the reasoning workspace developed to orchestrate ML and 
database capabilities with interaction and visualisation functions to facilitate analytic reasoning 
and investigative sensemaking. The AUI tools include maps and timelines, network evolution, 
dispersion diagrams, and statistical process charts, with touch-enabled, multiple-coordinated 
views. It is designed to encourage analysts to ask questions – an important part of sense making 
and coping with ambiguity.  
 
OBJECTIVE 3: Semantic search and retrieval 
Semantic search capabilities include an interactive dimension-reduction tool for data exploration 
and sense making with the Knowledge Generation Model. ML algorithms applied to read and 
select appropriate texts from crime reports, show feature set and create a first draft Comparative 
Case Analysis table. Associative Search identifies new associations or links between criminal 
entities by exploiting information, criminal behaviour, modus operandi, geographical and 
temporal proximity, and associations between unsolved crimes and offenders to generate 
suspects lists.  
 
OBJECTIVE 4: Crime situation re-construction  
Developed a method for visual storytelling using argumentation theory to assist with the re-
construction of crime situations. Explanations comprising fragments of data can then be 
formulated into defensible assessments. It enables analysts to record their evolving reasoning 
during investigations based on inferences from data, visualisations, and can be linked to 
conclusions through inferential networks.  
 
OBJECTIVE 5: Secure, scalable and distributed architecture 
The security architecture is implemented through OpenPMF with a Domain Specific Language 
DLS to configure Attribute and Proximity Based Access Controls (ABAC, PBAC) that translates 
human readable security policies into machine enforceable code; PET (Privacy Enhancing 
Technologies) to rapidly anonymise or pseudonymise data so it can be used without 
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compromising privacy; HALA security test-bed set up for High Assurance Logging and Audit 
method based on a ‘Vault’ to provide hardware separation.  
 
OBJECTIVE 6: Anonymised dataset 
Partner WMP supplied three years of actual fine-grain police data comprising over 6 million crime 
reports and others, and over 58 million ANPR records. Led by AES, the data was anonymised at a 
deep level. This dataset was used in the development of the VALCRI system. However, internal 
tests showed that it was possible to de-anonymise the data. For confidentiality reasons, the data 
will not be released to the research community.  
 
Other Results  
Harvester - A stand-alone application where police users can search and mark up interesting text 
in PDF documents, harvest and store in a knowledge base.  
 
Analysts Training Courses - The VALCRI Analytic Reasoning Training Curriculum (TN 13.4) has 
been developed into commercial courses: i-Intel’s 3-day CPD courses in intelligence analysis have 
been evaluated with 123 LEA officers in 40 agencies in 13 countries; A Master-level Advanced 
Analyst qualification had been developed by AES, WMP, and Aston University, Birmingham.  
 
Provenance - Recording, playback and state saving features integrated at TRL-5, with advanced 
analytic provenance being researched (TRL 2-3). 
 
Project Results and Impacts 
 

1. The main outcome is an integrated multi-application criminal intelligence analysis system at 
TRL-5. Using a cognitive engineering approach, we implemented the concept of a joint 
cognitive system, demonstrating how mixed-initiative systems can be developed to enable 
proactive and reactive system behaviours to create a human-machine team. This creates a 
test-bed for further research: (i) study the impact on operational use of criminal intelligence 
analysis systems of how the laws and privacy regulations are implemented, (ii) advancement 
of the semantic search algorithms, (iii) inclusion of formal concept analysis techniques to 
associative search, (iv) application of hybrid AI techniques to semantic knowledge extraction, 
(v) investigate alternative methods for storytelling and argumentation to support work with 
uncertainty, ambiguity and deception, (vi) It will also create opportunities to re-factor the 
integration platform code to enable plug and play capability, (vii) provide an environment for 
police to experiment with new methods based on the new VALCRI capabilities, (viii) use 
behavioural markers for automatic classification of analytic reasoning activities from user 
interactions with the system.  

2. The VALCRI system is not one single application, but a complex multi-application industrial 
scale system using the following technology stack: Java, Javascript, GWT and ERRAI, Docker 
containers, RESTful interfaces, Jena/Fuseki RDF triple store, MongoDB, SQL Postgres DB with 
Elasticsearch, OpenPMF and a Central Authority Service, Graylog, NLP pipeline for concept 
extraction, ML-based semantic search functions. 

3. Training courses have been developed around the analytic reasoning research in VALCRI. 
These courses are in high demand. New insights about analytic reasoning and new VALRI 
technologies have created opportunities for new techniques to be developed. By embedding 
the knowledge into CPD and Master-level courses, opportunities are being created for 
propagating the knowledge beyond the police intelligence communities.  

4. Research into legal, ethical and privacy requirements in Europe has identified key issues and 
translated them into system design specifications and implementation trade-offs e.g. how to 
show data or node in a network visualisation graph that may be confidential for security, 
privacy or ethical reasons?  
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5. Cognitive engineering research has helped to understand how analysts think. This has 
enabled us to design how software might facilitate the reasoning in uncertain, ambiguous and 
deceptive environments through designs that encourage the asking of questions.  

6. Partners have implemented different methods for semantic knowledge extraction and 
associative search. This opens opportunities for new research e.g. computational 
transparency – how we make the results of black box automated analyses understandable 
and verifiable by users; computational steering of algorithms such as the use of sub-space 
clustering methods to discover low frequency but operationally significant events; use 
VALCRI as a test-bed for investigating hybrid intelligent technologies in a joint cognitive 
system approach; navigating uncertainty when using the products of such methods given 
ambiguous and deceptive situations.  

7. WMP provided real data that was large and complex enough for developing real systems. The 
data was anonymized and used to develop the VALCRI prototype system. However, internal 
evaluations determined that the data could be de-anonymized due to the richness of the data 
contained in the un-structured text. Therefore the anonymized data cannot be released to the 
research community as originally planned.  

8. Exploitation. A variety of IP has been produced with plans for commercial exploitation and 
further research. Instead of tying partners down to the usual single exploitation plan, an 
exploitation agreement was reached for VALCRI that freed partners to exploit the IP they 
owned as they wish. The 9-point agreement is based on three ideas (a) freedom to 
commercially exploit IP that is individually owned, (b) freedom to join another partner to 
create products or services that create commercial value, and (c) profits to be shared only by 
those who generated the profit.  

9. Impact. Most significant is the independent decisions by the Metropolitan Police Service 
London and the Pasco County Sheriff’s Department in Florida to adopt the VALCRI system for 
trials with actual data. The VALCRI system was installed at both sites. They are in the process 
of ingesting actual data to solve actual cases. They are not members of the project consortium 
and are not obliged to adopt nor trial the VALCRI system.  

 

Summary of VALCRI Achievements 

i. The VALCRI System Prototype - VALCRI has been designed around a knowledge extraction 
engine which uses machine learning techniques for semantic similarity analysis undertaken 
in both reactive and proactive modes with the analyst. Crime-related data are stored in two 
databases: an unstructured database (UDB) for free text fields and video data, and a 
structured database (SDB) for structured text and data extracted by parsing free-text. A 
combination of Open Source technologies is being adapted and integrated to undertake varied 
forms of data analysis across different crime categories and multiple data sets. All 
components have already been built for semantic data mining, associative search, and 
Comparative Case Analysis (CCA).  

ii. VALCRI Technology Readiness Level (TRL) - The majority of the VALCRI prototype will be 
functionally integrated into a single TRL-5 platform by the extended project end date. The 
problems addressed by software components developers have proved to be more difficult 
than anticipated and so the entire system is now being developed primarily at TRL-5, with 
those components at lower TRLs being made available on separate branches. 

iii. VALCRI User Interface - The VALCRI user interface (UI) design is based on the concept of 
tactile interaction, driven by a visual analytic perception-action cycle, guided by the fluidity 
and rigour model. The design has been further informed by principles and requirements from 
user practice, human factors and psychology principles, and our own studies of analytic 
reasoning and sensemaking. The design has been implemented in the GWT (Google Web 
Toolkit) environment, within which we have developed the Analyst User Interface (AUI). This 

xix 



 

21 

       
   

 

The Project 
VALCRI 

manages the windowless AUI environment where data records fluidly transition into abstract 
visual representations on dual screens which can be manipulated to carry out numerous 
analytical operations. The AUI is further integrated with dynamic visual querying techniques 
for fast response times across multiple-coordinated and faceted views involving maps and 
timelines, statistical process charts, crime hotspot analyses, and dispersion diagrams. These 
tools help the analyst to generate and test the logic of explanations that connect assemblies 
of propositions, data and assumptions, structured and presented in ways to facilitate 
inference making, storytelling, the creation of explanations, and the formulation and testing 
of hypotheses. 

iv. Ethical, privacy and legal issues -  Studies have been undertaken to compare applicable 
laws in Germany, Belgium and the UK to determine how legal principles may be implemented 
within the prototype. These include: purpose limitation, data minimization, the treatment of 
data subjects, handling of ethically sensitive data, and data storage and deletion.  

v. Security Test-bed for High Assurance Logging and Audit - A security test-bed has been set 
up in a Berlin location by partner Object Security to develop and test secure logging method, 
referred to as the High Assurance and Logging Auditing to create secure crime analysis logs 
that cannot be tampered with. Object Security has designed the ‘Vault’ which provides 
hardware separation through trusted key storage, high performance, trusted crypto 
operations, trusted mass storage, trusted user I/O, and trusted processing. This permits all 
system log data to be sent in real time to the Vault from application/middleware, and 
optionally from kernel modules. 

vi. Patent – The project partner Object Security has registered a patent with the US Patent and 
Trademark Office based on research undertaken as part of the VALCRI project. It described a 
system and method for managing the implementation of policies in an IT system by 
automatically or semi-automatically generating machine-enforceable rules and/or 
configurations. This is being adapted to translate European laws and regulations into rules 
that can guide access to crime-related data in VALCRI. 

vii. Anonymised Datasets -  Three years of police data, comprising over 6 million crime reports, 
stop and search, stolen property reports, intelligence reports, nominal, and custody reports, 
and over 58 million ANPR records, have been anonymised at a deep level by VALCRI partner 
AES from raw data supplied by West Midlands Police. Unlike most publicly available crime 
data, these are fine-grained, and are being used by VALCRI partners to undertake research, 
and develop and test the prototype in readiness for operational use by LEAs. Tests are 
currently under way to determine whether the procedures used to anonymise these data can 
resist de-anonymisation. At the end of the project, the VALCRI data set will be made available 
to the broader research community. 

viii. Development Environment and User Access - The VALCRI software development 
environment is hosted at three partner locations: London, Linkoping, and Brussels. The 
primary project source code is stored at Middlesex University, and managed through GitLab. 
Developers with sufficient machine resources can pull the code from Middlesex and images 
from Space and run the full stack locally. Resource-limited partners can get some of the 
images to run locally, and connect to running versions of the other images hosted at 
Linkoping. All users, whether analysts or non-technical partners, can accessing VALCRI in two 
ways: use a web browser to access a release version (TRL-5) on a server hosted at SPACE (via 
VPN access) who is a project partner; or download and run it locally on their own machines. 

ix. VALCRI Deployed at Police locations and Consortium Partners’ locations - The VALCRI 
system prototype, comprising the Analyst Workstation has been deployed in all three police 
end-user environments so they can learn to use the software in their own time. They will 
initially use the VALCRI-developed crime dataset, and will migrate to using larger samples of 
old but real data when appropriate security procedures have been established. This will help 
them determine what ways VALCRI assists or hinders the criminal intelligence analysis 
process. For security reasons, the VALCRI prototype will not be connected to any live police 
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systems. The VALCRI system prototype has also been deployed to all other VALCRI partners 
to enable local familiarisation, and to enable partners to use it for carrying out experiments 
and studies. 

x. Analyst Training Courses -  Partners involved in commercial training for intelligence 
analysis have developed multiple courses. Eight workshops have been run for police analysts. 
Additionally, a Masters-level (Level-7) Advanced Analyst training qualification has been 
developed in conjunction with VALCRI police partner, West Midlands Police, and Aston 
University, Birmingham. The course will include subjects in criminal behaviour, criminal 
networks, crime linking, crime and criminal profiling, from a critical thinking perspective in 
the context of data science. 
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1.1 Background 
 

isual Analytics is playing a major role in providing insights into the 

relationships of complex data sets across a number of domains. It helps 

making sense of complex systems interactions and interrelations, by 

utilizing systems thinking [67] during analytic processes. A central concept of visual 

analytics is that the development of human insight aided by interactions with visual 

interface, and the steps that a user takes to discover insights, are often as important 

as the final product itself [68]. The analytic processes not only provide relevant 

information on individual insights but also how the users arrive at these insights. The 

area of research that focuses on understanding of user’s reasoning process through 

the study of their interactions with a visualization is called ‘Analytic Provenance’ and 

has demonstrated great potential in becoming a foundation of the science of visual 

analytics. It is a broad topic and has many meanings in different contexts. On the 

otherhand, visual analytics is the science of analytical reasoning facilitated by 

interactive visual interfaces [14] which are powerful means of making sense of data. 

But it is an obvious challenge to track and utilize those analytical data due to 

complexity of the event-driven systems around us. Because those systems are 

computationally extensive where data flows from one process to another as it is 

transformed, filtered, fused and used in complex models in which computations are 

triggered in response to events. Without appropriate support and technique for 

capturing the deluge of event-driven data, it becomes difficult to render an opaque 

reasoning process transparent such that analysts can view, trace and probe how 

conclusions came about [69]. Alongside the problem of maintaining transparency, it 

also becomes crucial to detect and mitigate pitfalls such as human biases, that can lead 

to errors in data assessment and making judgements [70].  This can occur during an 

analytical scenario where solutions are found through serendipity instead of a rules. 

These incorporate uncertainty into visual representation of data that may lead to 

erroneous insights. So, accuracy and precision of adopted visualization techniques 

have got a greater role in trustworthiness of the outcome [71]. Visual analytics in such 
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cases can be improved via better understanding of behaviour during the analytic 

process in support of sensemaking. Provenance can be used for self-reflection, 

exploration guidance which can also support collaboration and help to understand 

what can be trusted from possibly uncertain data. 

This research has considered above problems and leveraged analytic provenance as 

the means for providing insight into data processing operation in question with the 

aim to contribute it’s results to the project *VACLRI.   

In criminal intelligence analysis provenance is one of the best means to provide 

necessary support to explain in a clear way how decisions or choices were made, what 

they were based on, how steps in a selection process were made, provide information 

grounds to justify and answer claims of bias or discrimination, and show compliance. 

All these are enablers of fairness and lawfulness of the data processing activities from 

the legal framework. Transparency in criminal intelligence analysis is an important 

requirement for maintaining respective LEP (Legal, Ethical, and Privacy) guidelines. 

This is the property that all operations on data including legal, technical, 

organizational setting and the correlating decisions based on the results can be 

understood and reconstructed at any time. So, ‘Transparency’ can be regarded as the 

underlying foundation of the analytical provenance. Analytical activities performed 

by analysts should be recorded for supporting ‘Accountability’ for particular action of 

analysis process. Analytical provenance data has got greater influence in this regard 

[72]. 

Capturing analytical provenance has also got a significant role in criminal intelligence 

analysis, because the legal directive foresees an obligation to provide competent legal 

authorities with information about the processing operation upon request. 

Competent authorities are any public authority or any other entrusted body by 

national law to exercise public authority and public powers for the purposes of the 

prevention, investigation, detection or prosecution of criminal offences or the 

execution of criminal penalties, including the safeguarding against and the prevention 

of threats to public security. Analytical provenance data can help to validate the 

processing operation in such case [72].



1 Introduction 
Research Problems 

   
    

   

19 
 Middlesex University London 

 

 

Figure 1.1: Bridging the gap between computation and cognition for human in the loop visual 
analytics.  
 

1.2 Research Problems  

The central research question (RQ) of this thesis is – 

How can analytic provenance be leveraged for detecting 

sensemaking behavioural markers in visual analytic systems? 

 

This research addresses the challenges of working on uncertain data visualizations 

within ‘Legal, Ethical & Privacy (LEP)’ framework and maintaining process 

‘transparency’ of outcomes to be plausible by using visual analytic systems. To find 

out solutions of these challenges this research aims to investigate – how to capture 

and utilize large flow of analytic provenance data? how can different cognitive 

constructs be translated in terms of computational interactions? how to pinpoint 

transitions among those cognitive constructs? and how can those concepts be utilized 

to model user profile and understand their analytic behaviour? The aim is to bridge 

the gap between human cognition and analytic computation as shown in figure 1.1. 

We have aimed to leverage analytic provenance data for this purpose as it can bridge 

between higher-level logical constructs and the lowest-level user 
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interaction events as claimed by Gotz & Zhou et. Al [10]. The approach is to detect 

sensemaking ‘Behavioural Markers (BMs)’ which are ingrained with different 

cognitive reflections through interactions. We have formulated couple of hypotheses 

(H) to test our approach and several research questions (RQs) to carry out this 

research. Brief descriptions of those outlining all research problems are as followed: 

H1: Capturing user's interactions with a visual interface can retrieve 

some aspects of the transparency of user's reasoning processes in 

intelligence analysis. 

 

H1 demands logs of the individual processing activities within an automated 

processing system to complement the information entailed and to provide enhanced 

transparency of the operations. 

• RQ1: How to develop a system that tackles large flow of heterogeneous 

analytical data and supports W3C PROV-AQ Ŧ ? 
RQ1 outlines the requirements and development challenges of front-end 

techniques, back-end modelling for generically capturing different complex 

visual analytical states, automatically processing, storing as well as recalling 

those as per query to maintain traceability. 

• RQ2: How to utilize captured analytic provenance data for sensemaking? 
RQ2  seeks to find out techniques of utilizing captured analytic data to 

support transparent sensemaking, mitigation of uncertainties in 

visualizations and build trust on visual analytic systems. 

H2: Behavioural Markers (BMs)’ can act as attributes for bridging 

between human cognition and analytic computation through 

interactions during fluid transitions between mental and analytic 

processes at the micro-analytic level. 

 

H2 addresses the gap between cognitive constructs and manipulations or interactions 

humans employ to think and reason about data as identified by many researchers and 

proposes that constructs of  ‘Behavioural Markers (BMs)’ can bridge such gap 

alongside performance measurement. 

Ŧ https://www.w3.org/TR/prov-aq/ 
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• RQ3: What are the constructs of Behavioural Makers (BMs)? 

RQ3 aims to identify and form and an exhaustive list of behavioural 

constructs for criminal intelligence by considering human factors and 

cognitive engineering principles. 

• RQ4: How to translate reasoning processes to Behavioural Markers (BMs)? 

RQ4 seeks to find out the way of sequencing captured analytic actions for 

meaningful representation of BMs. 

• RQ5: How to externalize thinking processes from the constructs of 
Behavioural Markers (BMs)? 
RQ5 focuses on representation of interaction network to visualize analytic 

steps as well as extract BMs by using translation theories of RQ4.   

H3: Inferring chains of low-level analytic actions can be of assistance 

for understanding multi-tasking behaviour. 

 

H3 leads us to understand what the user is trying to do by classifying system 

interactions at different granular levels. It will pinpoint user’s cognitive transitions as 

a way of chunking action streams at lower level and then classifying those. 

• RQ6: How can meaningful units of task execution be produced from captured 
interaction logs? 
RQ6 addresses the fundamental problem of finding out the way of breaking 

down a search session into meaningful chunks to detect user’s task switch 

points. 

• RQ7: How precisely multi-task switches be inferred during execution of 
interactive tasks? 
RQ7 targets to prove/disprove the above hypothesis (H3) and evaluate the 

results by developing machine learning models for both known and unknown 

task scenarios. 

• RQ8: How to validate inference making results for building trust on machine 
learning models and maintain transparency? 
RQ8 seeks to find out techniques of explaining machine learning model’s 

decision making processes, unfolding blackbox calculations of probabilities 

towards predictions, computing feature importance, understanding their 

local and global implications to show algorithmic transparency of machine 

learning outcomes for inferring task switch points from uncertain log dataset. 
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Thus it also helps to explain evaluation results found from RQ6 & RQ7 and 

prove their validities through human judgemental process. 

 

1.3 Research Approach 

This research endeavours to come up with visual analytic and machine learning 

solutions of above problems described into research questions by adopting hybrid 

(qualitative and quantitative) research approach and leveraging analytic provenance 

for understanding higher level complementary analytical behaviours unleashed from 

lower level [10] sensemaking interactions. Qualitative research approach includes 

conducting requirement analysis, creating an issue specific knowledgebase by 

carrying out focus group discussions and receiving feedback through structured 

interviews. Quantitative research approach aims to develop mathematical and 

machine learning models on theories found from the qualitative approach and 

compute those. We aim to evaluate all experimental findings both qualitatively and 

quantitatively where those apply and validate for the purpose of explanation and 

human judgement.  

1.3.1  Data Used 
 
Besides recording data during qualitative research sessions and analyzing 

afterwards, we also have used or captured following other sets of data from different 

sources that fits with the experimental settings of quantitative research approaches.    

1.3.1.1 Geospatial-Temporal Crime Datasets 

To understand various kinds of uncertainties that exist into dataset from geospatial 

and temporal dimensions, their effects on intelligence analysts while carrying out 

sensemaking activities, finding out tools and techniques to visualize data and leverage 

analytical activities on those for improved intelligence we have used datasets from 

following sources: 

• Vast Challenge‡  dataset on a fictitious crime incident to answer the questions 

of who, where, when, what and how etc. 
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• Anonymized police dataset found from the project VALCRI* to develop systems 

for real intelligence analysis. 

1.3.1.2 User’s Log Dataset 

To understand visualization challenges of log dataset (known as analytical 

provenance) for supporting sensemaking, we have used/captured user’s analytical 

activities from several systems under different scenarios  as follows: 

• VALCRI’s* Analyst’s User Interface (AUI) to capture and visualize complex form 

of log dataset from heterogeneous modules under large platform that supports 

real sensemaking tasks of police intelligence analysts. 

• Deskdrop2 log dataset3 which provides contextual data of multi-users to use for 

understanding how machine can perceive user’s intention. 

• Google Chrome bulk dataset captured by History View4 software to utilize 

user’s internet browser based cumbersome sensemaking data and apply 

machine learning techniques for understanding user’s cognitive transitions.  

1.3.2  Summary of Contributions 

This thesis contributes by proposing following tools, techniques, ideas and theories 

to address the central research question (RQ) on detecting ‘Behavioural Markers 

(BMs)’.    

1.3.2.1  PROV for Analyst’s User Interface (AUI) 
 
PROV is a prototype analytic visual judgmental system for ‘Analyst’s User Interface 

(AUI)‘ of the project VALCRI*. This module includes tools for capturing a large dataset 

of heterogeneous flows of analytical data. It is built on a proposed complex dataflow 

model, a temporal visualization of all captured reasoning states that supports W3C 

PROV-AQ Ŧ, 

‡ http://vacommunity.org/VAST+Challenge+2015  

2 https://deskdrop.co/  
3 https://github.com/yunshuipiao/sw-kaggle/tree/master/recommend-system/datasets 
4 https://www.nirsoft.net/utils/browsing_history_view.html  

http://vacommunity.org/VAST%2BChallenge%2B2015
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a tool for replaying work-flows known as RRP (Repetitive Replicating Playback) built 

on proposed task model, a visualization of analytic path that can be schematized in a 

visuo-spatial manner to enable tactile reasoning. PROV has been developed through 

a step-by-step research approach and evaluated with the real police intelligence 

analysts to support aspects of transparency i.e, source, process, accountability, series 

of events in criminal intelligence analysis.  This part of research addresses RQ1, RQ2. 

More details on development, contribution can be found in chapter 3 and section 7.1.1 

. 

1.3.2.2  Behavioural Markers (BMs) for Bridging Cognition and 
Analytic Computation 
 
To capture tacit information that resides in a human analyst as they perform their 

analysis role, this research proposes ‘Behavioural Markers (BMs)’ as attributes for 

bridging the gap between human cognition and analytic computation through 

interactions. BMs are commonly known as observable Non-Technical Skills that 

contribute to performance within an work environment. As part of the detection 

approach of BMs this research has contributed to the development of an exhaustive 

list of behavioural constructs by arranging a workshop, proposed a network graph 

based computational approach to detect cognitive constituents and translated those 

by using theories of psychology. As the computational approach is automated, but 

lacks expert judgement, so a CTA (Cognitive Task Analysis) based experiment has also 

been used (as part of VALCRI’s* AUI system evaluation) to detect those observable 

behaviours manually. This part of research addresses RQ3, RQ4, RQ5. Furthers details 

on experimental results are available in  chapter 4 and section 7.1.2. 

1.3.2.3  BreakPoints (BPs) of Multi-tasking Behaviour 
 
To gain a deeper understanding of human multi-tasking behavior, this research 

proposes to use the concept of BreakPoints (BPs) as semantic boundaries among 

chains of actions. BPs pinpoint internal transitions in perception and cognition which 

are hidden into captured analytic dataset as found from previous CTA. Machine 

Learning (ML) models have been developed to infer where those pinpoints are, 
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completely in data-driven ways. Both known and unknown task scenarios have been 

evaluated for these experiments. This part of research addresses RQ6, RQ7. More 

descriptions on BPs, ML experimental settings and detailed evaluation results are 

available in chapter 5 and section 7.1.3.    

1.3.2.4 Computational Transparency and Human Trust 

Building 

The more explainable a model, the deeper the understanding that humans achieve in 

terms of the internal algorithmic procedures that take place while the model is 

making decisions. This is important for transparent validation of  outcomes in terms 

of reliability, accuracy and relevance. To unfold all black-box calculations, ‘eXplainable 

AI (XAI)’ techniques have been used at the final stage of this thesis to explain model’s 

decision making process, computing importance of different features or their 

influences on model predictions both locally and globally. Thus black-box calculations 

have opened up opportunities for making human judgements on evaluation results 

and building trust on machine produced results. This part of research addresses RQ8. 

More details can be found in chapter 6. 

 

1.4  Publications 

JOURNAL 

• Islam, Junayed, Xu, Kai  and Wong, B. L. William  (2018) Analytic provenance for criminal 

intelligence analysis. Chinese Journal of Network and Information Security, 4 (2) . pp. 18-33. 

ISSN 2096-109X [Article] (doi:10.11959/j.issn.2096-109x.2018016). 

BOOK SECTION 

• Islam, Junayed, Wong, B. L. William  and Xu, Kai  (2018) Analytic provenance as constructs 

of behavioural markers for externalizing thinking processes in criminal intelligence analysis. In: 

Community-Oriented Policing and Technological Innovations. Leventakis, 

Georgios and Haberfeld, M. R., eds. SpringerBriefs in Criminology . Springer, pp. 95-105. ISBN 

9783319892931. [Book Section] (doi:10.1007/978-3-319-89294-8_10). 

 

 

https://eprints.mdx.ac.uk/view/creators/Islam=3AJunayed=3A=3A.html
https://eprints.mdx.ac.uk/view/creators/Xu=3AKai=3A=3A.html
https://eprints.mdx.ac.uk/view/creators/Wong=3AB=2E_L=2E_William=3A=3A.html
https://eprints.mdx.ac.uk/24155/
https://eprints.mdx.ac.uk/24155/
https://eprints.mdx.ac.uk/view/publications/Chinese_Journal_of_Network_and_Information_Security.html
https://doi.org/10.11959/j.issn.2096-109x.2018016
https://eprints.mdx.ac.uk/view/creators/Islam=3AJunayed=3A=3A.html
https://eprints.mdx.ac.uk/view/creators/Wong=3AB=2E_L=2E_William=3A=3A.html
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https://eprints.mdx.ac.uk/view/creators/Leventakis=3AGeorgios=3A=3A.html
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https://doi.org/10.1007/978-3-319-89294-8_10
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CONFERENCE OR WORKSHOP ITEMS 

• Islam, Junayed, Xu, Kai  and Wong, B. L. William  (2018) Uncertainty of visualizations for 

SenseMaking in criminal intelligence analysis. EuroVis Workshop on Reproducibility, 

Verification, and Validation in Visualization (EuroRV3). In: EuroRV3: EuroVis Workshop on 

Reproducibility, Verification, and Validation in Visualization (2018), 04-08 June 2018, Brno, 

Czech Republic. ISBN 9783038680666. [Conference or Workshop Item] 

(doi:10.2312/eurorv3.20181145). 

 

• Islam, Junayed and Wong, B. L. William  (2017) Behavioural markers: bridging the gap 

between art of analysis and science of analytics in criminal intelligence. European Intelligence 

and Security Informatics Conference (EISIC). In: 2017 European Intelligence and Security 

Informatics Conference, 11-13 Sept 2017, Dekelia Air Base, Attica, Greece. ISBN 

9781538623855. [Conference or Workshop Item] (doi:10.1109/EISIC.2017.30). 

 

• Islam, Junayed, Anslow, Craig, Xu, Kai , Wong, B. L. William  and Zhang, 

Leishi  (2016) Towards analytical provenance visualization for criminal intelligence 

analysis. Computer Graphics and Visual Computing (CGVC). In: Computer Graphics & Visual 

Computing (CGVC) 2016, 15-16 Sept 2016, Bournemouth University, United Kingdom. ISBN 

9783038680222. [Conference or Workshop Item] (doi:10.2312/cgvc.20161290). 

 

• Groenewald, Celeste, Anslow, Craig, Islam, Junayed, Rooney, Chris, Passmore, Peter 

J.  and Wong, B. L. William  (2016) Understanding 3D mid-air hand gestures with interactive 

surfaces and displays: a systematic literature review. HCI 2016 - Fusion! Proceedings of the 

30th International BCS Human Computer Interaction Conference (HCI 2016). In: HCI 2016 - 

Fusion! 30th International BCS Human Computer Interaction Conference (HCI 2016), 11-15 

July 2016, Bournemouth University, Poole, United Kingdom. . ISSN 1477-9358 [Conference or 

Workshop Item] (doi:10.14236/ewic/HCI2016.43). 
 

 

1.5  Thesis Outline 

This thesis is divided into following seven chapters: 

Chapter 1 Describes research background, problems, summary of 
intended contributions and publications. 
 

Chapter 2 Presents literature reviews on some of existing relevant 
research on analytic provenance visualizations, 
sensemaking, behavioural markers, machine learning 
models, inference making and eXplainable AI techniques. 
 

 

https://eprints.mdx.ac.uk/view/creators/Islam=3AJunayed=3A=3A.html
https://eprints.mdx.ac.uk/view/creators/Xu=3AKai=3A=3A.html
https://eprints.mdx.ac.uk/view/creators/Wong=3AB=2E_L=2E_William=3A=3A.html
https://eprints.mdx.ac.uk/24336/
https://eprints.mdx.ac.uk/24336/
https://doi.org/10.2312/eurorv3.20181145
https://eprints.mdx.ac.uk/view/creators/Islam=3AJunayed=3A=3A.html
https://eprints.mdx.ac.uk/view/creators/Wong=3AB=2E_L=2E_William=3A=3A.html
https://eprints.mdx.ac.uk/23266/
https://eprints.mdx.ac.uk/23266/
https://doi.org/10.1109/EISIC.2017.30
https://eprints.mdx.ac.uk/view/creators/Islam=3AJunayed=3A=3A.html
https://eprints.mdx.ac.uk/view/creators/Anslow=3ACraig=3A=3A.html
https://eprints.mdx.ac.uk/view/creators/Xu=3AKai=3A=3A.html
https://eprints.mdx.ac.uk/view/creators/Wong=3AB=2E_L=2E_William=3A=3A.html
https://eprints.mdx.ac.uk/view/creators/Zhang=3ALeishi=3A=3A.html
https://eprints.mdx.ac.uk/view/creators/Zhang=3ALeishi=3A=3A.html
https://eprints.mdx.ac.uk/20697/
https://eprints.mdx.ac.uk/20697/
https://doi.org/10.2312/cgvc.20161290
https://eprints.mdx.ac.uk/view/creators/Groenewald=3ACeleste=3A=3A.html
https://eprints.mdx.ac.uk/view/creators/Anslow=3ACraig=3A=3A.html
https://eprints.mdx.ac.uk/view/creators/Islam=3AJunayed=3A=3A.html
https://eprints.mdx.ac.uk/view/creators/Rooney=3AChris=3A=3A.html
https://eprints.mdx.ac.uk/view/creators/Passmore=3APeter_J=2E=3A=3A.html
https://eprints.mdx.ac.uk/view/creators/Passmore=3APeter_J=2E=3A=3A.html
https://eprints.mdx.ac.uk/view/creators/Wong=3AB=2E_L=2E_William=3A=3A.html
https://eprints.mdx.ac.uk/22155/
https://eprints.mdx.ac.uk/22155/
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Chapter 3 

 
 
Includes research and development approaches of 
analytic provenance visualizations for sensemaking in 
criminal intelligence analysis, proposed underlying data-
flow architecture, front-end analytic task model and 
system evaluation results.      
 

Chapter 4 Contributes  to development approaches of sensemaking 
behavioural marker system including exhaustive list of 
behavioural constructs, their detection approaches both 
computationally and through qualitative experimental 
observations to externalize human thinking processes. 
  

Chapter 5 Describes experiments to understand human multi-
tasking behavior by using machine learning techniques. 
  

Chapter 6 This chapter is an extension of previous chapter, which 
presents some machine learning model explanation 
methods to build trust on machine produced results. 
 

Chapter 7 Summarizes research contributions of all chapters, 
possible future works and concludes this thesis. 
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2.1 Analytic Provenance  
In this section we define analytic provenance. We categorize it into two main types: 

(i) process provenance and (ii) reasoning provenance. We also review what types of 

analytic provenance are important to capture for intelligence analysis through 

literature survey. 

2.1.1  Definition of Analytic Provenance 
 

Analytic provenance captures the interactive data exploration process and human 

reasoning process involved in sensemaking [1]. As explained by Chang et. al. [2], 

analytic provenance describes methods for extracting user intent and reasoning from 

user behaviours and interaction logs. In the following sections we will differentiate 

between ‘process provenances’, referring to the tracking of the data exploration 

process and the methodologies used by analysts, and ‘reasoning provenance’ relating 

to the capturing of the human reasoning process. 

2.1.2 Process Provenance  
 

Görg et al. [3] explain that in order to better understand intelligence analysis, it is 

important to explore the methodologies of analysts as well as the fundamental 

processes they conduct. Process provenance refers to the procedural steps followed 

by analysts to achieve a given end. 

2.1.2.1  Process Models 

Several process models depict the intelligence analysis process in an abstract way. As 

Görg et al. [3] explain, most process models involve some form of iterative cycle of 

exploration, including steps such as planning and direction, data collection, 

processing, analysis and production, and dissemination. Pirolli et. al.’s [4] 

‘Sensemaking Loop Model’ for intelligence analysis as shown in Figure 2.1 has been 

widely cited and adopted by researchers within the visual analytics community. It 

consists of a linear set of states characterizing both data and process flow in an 

investigation. Analysts iterate through this process over the course of an 

investigation. 
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Figure 2.1: Sensemaking loop for intelligence analysis [4]. 

 

At a high level, the model contains two primary loops: a foraging loop in which 

analysts collect data and evidence, and a sensemaking loop in which analysts reflect 

on the data in order to generate schema and hypotheses about the situation and 

ultimately construct a presentation of the findings. Each loop contains three stages 

that further refine the process and both loops are connected through an overarching 

reality/policy loop. 

The Sensemaking Loop Model is however subject to criticism and limitations. While 

useful and frequently cited, it describes the data transaction and information 

transformation processes in an abstract way, instead of describing how analysts work 

and how they transition from one step to another [6]. 
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Görg et al. [8] mention alternative process models that could contribute to the 

analysis of process provenance. They mention the model of parallel tasks envisaged 

by Dr. Kristan Wheaton, Professor at the Department of Intelligence Studies at 

Mercyhurst College. Wheaton proposed an intelligence process model in which 

several tasks such as collection, analysis, and production stages take place in parallel, 

with different emphases over the course of an investigation.  

Another alternative process model described by Görg et al. [8] is the one developed 

by Kang et. al. [7] from empirical observations. To better understand the analytical 

process and its requirements in the intelligence domain Kang and Stasko conducted 

their own qualitative user study.  

They found that four processes dominated the overall workflow of the analyst:  

1) Construction of a conceptual model 

2) Collection 

3) Analysis, and  

4) Production 

 

The main findings of Kang et. al. [7] regarding the process followed by intelligence 

analysts, referenced by Görg et. al. [8], were the following: 

− The process is organic and parallel. Analysis is typically not about finding an 

answer to a specific problem and it does not evolve in a sequential manner. 

Instead, analysis is often about determining how to answer a question, what to 

research, what to collect, and what criteria to use to achieve a goal.  

− The process is collaborative. Intelligence analysts do not operate as lone 

investigators, researching some problem in an isolated space. Kang et. al. [6] 

found that during the intelligence process collaboration is ‘commonplace and 

crucial, frequently being asynchronous’ [8]. 

− The process requires the use of diverse and flexible applications. The student 

analysts observed by Kang et. al. [7] did not seek “grand, monolithic 

computational analysis tools” (Görg et. al. [8]). Instead, they used a variety of 
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small applications for specific purposes. Kang et. al. [7] observed that student 

analysts sought ways to integrate “existing tools and easy-to-use new tools that 

leveraged existing analysis methods” (Görg et al. [8]). 

2.1.2.2  Process Scenarios and Strategies 

Intelligence analysis requires investigators to gather as much available data as 

possible in order to better understand a situation and then make judgments about the 

appropriate next steps to take. Research has shown that during this process the 

analysts encounter two basic investigative scenarios and employ different 

investigative strategies. 

2.1.2.3  Investigative Scenarios 

Görg et al. [8] describe two fundamental types of investigative scenarios within the 

intelligence domain: 

1) targeted analysis scenarios, in which analysts are tasked with examining 

specific ‘people, organizations, or incidents, as well as locations and dates, in 

order to either investigate past events or uncover an imminent threat’ (Görg 

et. al. [8]), and  

2) open ended, strategic analysis scenarios, in which analysts are tasked with 

“learning as much as possible about a person, organization, country, or 

situation in order to gain a deeper understanding, conduct an accurate 

assessment, and possibly make a prediction on the likely chain of events that 

will occur at a later point in time” (Görg et. al. [8]). test 

2.1.2.4  Investigative Strategies 

Kang et al. [5] conducted an empirical study to find out what strategies investigators 

use throughout their analysis process. They identify four common investigative 

strategies, whose effectiveness they judge depending on the analysis results.  The four 

identified strategies are: 

− Overview-Filter-Detail (OFD), 

− Build-from-Detail (BFD),  
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− Hit-the-Keyword (HTK) and  

− Find-a-Clue-Follow-the-Trail (FCFT) 

Overview, Filter, Detail (OFD) 

Kang et. al. [5] found that the most commonly used investigative strategy was the one 

they called “Overview, Filter and Detail” (OFD). This strategy employed by analysts 

consists of three steps: 

− Overview. Analysts first gain an overview of the available information by 

scanning documents, building rough ideas and jotting down important 

keywords with corresponding document numbers. They then draw circles and 

lines to indicate connections between keywords and documents to later use 

these notes as an index for finding relevant documents.  

− Filter and Select. After scanning all documents analysts revisit relevant 

documents selectively, either by direct looking up the documents or by 

searching for a keyword that stands out.  

− Elaborate on details. After filtering and selecting relevant documents, analysts 

read each document carefully and extract key information. 

Kang et. al. [5] concluded that OFD is an appropriate strategy for small data sets only, 

since analysts need to make decisions about the importance of each document or 

keyword based on subjective judgements. The strategy presents the danger of missing 

important details. 

Build from Detail (BFD) 

The strategy “Build from Detail” (BFD) contrasts the previous one. The experiments 

conducted by Kang et. al. [5] have shown that, when employing this strategy, 

investigators start the analysis from specific details from each document. They use 

the search function when important phrases or words arise and write down 

important keywords for every document. This strategy turned out to be the most 

time-consuming because of the analysts paying attention to every detail. The strategy 

impeded analyst to see the “big picture” of the plot and turned out to be least effective 

of the different strategies employed. 
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Hit the Keyword (HTK) 

This strategy consists in an intensive keyword-based exploration. When employing 

HTK analysts do not begin the analysis by reading a specific document, but directly 

look for a few specific keywords such as, for example, “terrorist”. They read only the 

related documents and then search for other terms that emerge during that time. The 

danger of employing this strategy is that it does not cover all of the documents and 

that it leads to a situation in which participants ignore the rest of the documents. The 

effectiveness of this strategy depends highly on the appropriateness of the terms 

chosen in the initial stage. 

Find a Clue, Follow the Trail (FCFT) 

The ‘Find a clue, follow a trail’ (FCFT) strategy is a hybrid approach of the previous 

strategies. It starts by reading some first few documents to understand context and 

find a clue. The second step consists in following the trail rigorously using search or 

other functionalities. Kang et. al. [5] argue that this strategy was the most effective of 

all four employed. It allows the analyst to focus her/his attention on relevant 

documents only. Also, it is considerably less time consuming than BFD. The initial time 

investment of reading a few documents pays off because it increases the possibility of 

finding the right clue. Kang et. al. [5] conclude that this strategy leads to satisfactory 

results and that it may be a fruitful strategy when there are large numbers of 

documents. There still exists a possibility; however, of a dead-end if the analyst 

follows a wrong trail. In that case, the ability to quickly turn to another trail is crucial. 

2.1.2.5  Visual Analytics System for Process Provenance  

The empirical study conducted by Kang et al. [5] and their findings about the common 

strategies investigators use throughout their analysis process leads us to conclusions 

about how visual analytics systems can support process provenance representation. 

Kang et al.’s study refers to strategies employed during document analysis. However, 

they point out to the fact that their findings can be applied to source analysis in 

general. 
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2.1.2.6  Flexible Mechanisms for Source Management 

The use of strategies such as OFD or BFD has shown that intelligence analysts require 

more flexible mechanisms for source management activities such as import, storing, 

filtering, and maintaining in order to be able to save time. Visual Analytics Systems 

need to enable the analyst to manage both pushed and pulled information and 

organize sources meaningfully. As explained by Cybenko et. al. [9], pulled information 

refers to an analyst’s specific information requests. Information sent in anticipation 

of the analyst’s need and information not directly solicited is characterized as pushed 

information. Also, flexible mechanisms for source management need to support 

analysis with constantly changing information as well as in integrating collection and 

analysis into a single system. This supports the analyst in using structured methods 

during information collection.  

2.1.2.7  Responsive User Interface 

The study of Kang et. al. [5] has shown that during the initial overview process 

analysts need to be able to identify important keywords and in this process they then 

draw circles and lines to indicate connections between keywords and documents. In 

terms of the user interface this means that investigators want to be able to annotate 

the system views, highlight particular items, and add notes and comments on top of 

the visual representations. 

2.1.2.8  Direct attention to critical information 

Since Kang et. al. [5] concluded that FCFT was the most effective strategy, we learn 

that investigative analysis tools need to support analysts in finding appropriate 

starting points or clues and then following the trail of these clues efficiently. If analysts 

are able to focus from the beginning on relevant documents, they are likely to perform 

very well. Therefore, investigative analysis tools need to direct the analyst’s attention 

to the most critical information Görg et al. [8]. 
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Figure 2.2:  Hierarchical analytic provenance model. This model is an example of analyzing the 
stock market. The semantic richness increases from bottom to top. The bottom layer includes 
events such as key presses and mouse clicks, which have little semantics. The next level up are 
actions such as database querying and visualization zooming. Further up are the subtasks, which 
usually are the analyses performed during sensemaking. The top-level tasks are the overall 
sensemaking undertaking [10]. 

 

2.1.3  Reasoning Provenance 

We explained in the previous section that analytic provenance captures, on the one 

hand, the concrete steps of the data exploration process and, on the other hand, the 

human reasoning process that supports sensemaking (Kai Xu et al. [1]). We can thus 

differentiate between ‘process provenances’, referring to the workflow during the data 

exploration process and the methodologies used by analysts, and ‘reasoning 

provenance’ relating to the capturing of the human reasoning process. Accordingly, 

process provenance answers the question about what steps the analyst engages in 

during the data analysis. Reasoning provenance refers to a meta-cognitive dimension: 

to the how and why the analyst’s ideas evolve over time.  Analytical provenance refers 

to all three questions regarding the what, why and how of the data exploration 

process: the mechanical and more tangible steps together with the more intangible, 

meta-cognitive phenomena the analyst in involved in. 

2.1.3.1  Reasoning Provenance and Process Provenance: Two 

Interrelated Concepts 

At this point we would like to point out that the differentiation between the process 

followed by the analyst and the reasoning s/he involves in is an artificial one. As 

explained by Chang et. al. [2], analytic provenance records the analyst’s reasoning, 
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her/his behaviours as well as the interaction logs and steps taken during the process, 

and these topic are strongly interrelated and interdependent.  If we take a closer look 

at the levels of visual analytic activity we understand how process provenance and 

reasoning provenance are two sides of the same coin. Mechanically, the process can 

be divided into tasks, sub-tasks, actions and events. But each of these mechanical 

steps has its own semantic meaning and belongs to the realm of meta-cognition 

reasoning. Tasks and sub-tasks represent logical structures of a user’s reasoning 

process, such as the user’s cognitive goals and sub-goals (Gotz et. al. [10]) as shown 

in figure 2.2. Tasks capture a user’s highest-level cognitive goals and sub-Tasks 

correspond to more objective, concrete cognitive goals. These cognitive goals, which 

are often open ended or ambiguous, are what drive a user’s overall analysis process 

[10]. Actions represent the individual executable semantic steps, such as making a 

data inquiry, taken by a user while working toward their analytic goal.  ‘The action tier 

uniquely bridges the gap between higher-level logical constructs and the lowest-level 

user interaction events’ [10]. Events correspond to the lowest-level of user interaction 

events such as a mouse click or a menu item selection, which carry very little semantic 

meaning, as explained by Gotz et. al. [10]. 

2.1.3.2  Reasoning Scenarios and Strategies 

As explained in previous section, reasoning provenance refers to the meta-cognitive 

questions of how we think and reach insights and of why we reach particular insights. 

Reasoning provenance is therefore often referred to as ‘insight provenance’. 

2.1.3.3  Reasoning Scenarios and Challenges 

Heuer [11] examined the psychology of intelligence analysis and identified scenarios 

and challenges analysts must confront in the analytical reasoning process. According 

to Heuer intelligence analysis faces three main cognitive scenarios and challenges 

(1999, p. xx): 

i. Uncertainty: The analyst’s faces both inherent uncertainty (surrounding 

complex intelligence issues) and induced uncertainty (the “man-made” 

internal uncertainty) [11]. 
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ii. Cognitive Biases: The analyst is not prepared to deal effectively with 

uncertainty because of the danger to fall prey to cognitive biases, ‘such as the 

tendency to see information confirming an already-held judgment more vividly 

than one sees ‘disconfirming information’ [11]. 

iii. Lack of Appropriate Tools and Techniques: In order to be able to confront 

the scenario of uncertainty and cognitive biases, the analyst needs tools and 

techniques for applying higher levels of critical thinking. If in lack of specific 

techniques for structuring information, challenging assumptions, and 

exploring alternative interpretations, the analyst is unable to improve analysis 

on complex issues on which information is incomplete [11].  

Taking into consideration the scenarios presented to analysts, we define that 

reasoning provenance is about tracking strategies of problem-solving and decision-

making under the conditions of uncertainty, cognitive biases and lack of appropriate 

tools and techniques. 

 

2.1.3.4 Reasoning Strategies   

 

Conventional Intuitive Analysis and Cognitive Heuristics 

When analysts encounter a situation of uncertainty, they are trained to develop 

multiple hypotheses and have them compete against each other. However, if analysts 

are not trained to use a structured methodology such as the Analysis of Competing 

Hypotheses (ACH), they employ the conventional intuitive analysis, characterized by 

the following circumstances (Heuer [11], p. 108): 

− Analysis starts with a most likely alternative for which the analyst seeks 

confirmation, rather than with a full set of alternative possibilities. This does 

not ensure that alternative hypotheses receive equal treatment. 

− The fact that key evidence may also be consistent with alternative hypotheses 

is rarely considered explicitly and often ignored. 

− Conventional analysis generally entails looking for evidence to confirm a 

favoured hypothesis. 
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Tversky et. al. [12] also discuss how the analyst can enter a process of rapid diagnosis 

employing the intuitive system. They explain that in this intuitive system s/he 

involves past experience as well as current knowledge. This process is however 

inaccessible to conscious control. In order to reach conclusions analysts often employ 

rapid mental comparisons of current cases with abstract prototypical pictures. These 

mental comparisons and shortcuts based on intuitive judgment are called “heuristics”. 

The heuristics used in judgments under uncertainty identified by Tversky et. al. [12] 

belong to the most commonly encountered cognitive biases during the analysis and 

production phase: 

i. The representative heuristic: the probability of a problem is judged by how 

closely a case presentation matches a prototypical case. 

ii. The availability heuristic: the probability of a problem is judged on the basis 

of how easily that problem is recalled, which is often skewed by recent and 

memorable cases. 

iii. The anchoring heuristic: involves clinging to initial diagnostic hypotheses 

even as contradictory evidence accumulates. 

iv. Premature closure: settling on a diagnosis without sufficient evidence or 

without seeking or carefully considering contradictory information. 

v. Confirmation bias: is the tendency to look for evidence to support a working 

hypothesis, ignore contradictory evidence, and misinterpret ambiguous 

evidence.  

 

Less-than-Optimal Strategies for Making Decisions 

Alexander George [138] identified a number of less-than-optimal strategies for 

making decisions in the face of uncertainty and incomplete information. These 

strategies are: satisficing, incrementalism, consensus, reasoning by analogy and 

relying on a set of principles that distinguish ‘good’ from ‘bad’ alternatives (Heuer 

[11], p. 43).  

i. Satisficing - consists in selecting the first identified alternative that appears 

"good enough" rather than examining all alternatives to determine which is 

"best".  
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ii. Incrementalism - refers to the strategy of focusing on a narrow range of 

alternatives representing marginal change, without considering the need for 

dramatic change from an existing position. 

iii. Consensus - consists in opting for the alternative that will elicit the greatest 

agreement and support. Simply reporting to a superior what s/he wants to 

hear is one example of this. 

iv. Reasoning by Analogy - refers to choosing the alternative that appears most 

likely to avoid some previous error or to duplicate a previous success. 

v. Relying on a Set of Principles or maxims that distinguish a ‘good’ from a 

‘bad’ alternative - is the last less-than-optimal strategy mentioned by George 

(1980) for making decisions in the face of uncertainty and incomplete 

information. 

 

The 1980 work of Alexander George [138] applied to strategies used by decision 

makers in order to choose among alternative policies. Heuer argues however that the 

same strategies apply to decision making in the realm of intelligence analysis. He 

identifies three specific weaknesses of the satisficing strategy when selecting a 

hypothesis (Heuer [11], p. 45): 

i. Selective Perception: Analysts, Heuer argues, like people in general, tend to 

see what they are looking for and to overlook that which is not specifically 

included in their search strategy. They tend to limit the processed information 

to that which is relevant to the current hypothesis. 

ii. Failure to Generate Appropriate Hypotheses: If tentative hypotheses 

determine the criteria for searching for information and judging its relevance, 

it follows that the analyst may “overlook the proper answer if it is not 

encompassed within the several hypotheses being considered” (Heuer [11], p. 

45). 

iii. Failure to Consider Diagnosticity of Evidence: In the absence of a complete 

set of alternative hypotheses, the analyst is not able to evaluate the 

‘diagnosticity’ of evidence. 
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Analysis of Competing Hypotheses (ACH) 

When analysts encounter a situation of uncertainty, they are usually trained to 

develop multiple hypotheses and seek out information that can discredit many of the 

hypotheses. The analysis of competing hypotheses (ACH) is a tool to aid judgment on 

important issues requiring careful weighing of alternative explanations or 

conclusions. “It helps an analyst to overcome, or at least minimize, some of the 

cognitive limitations that make prescient intelligence analysis so difficult to achieve” 

(Heuer [11], p. 95). ACH requires an analyst to have alternatives compete against each 

other, rather than evaluating their plausibility one at a time. Therefore, ACH is used 

when there are multiple competing hypotheses to analyze. 

ACH comprises the following steps, as described by Heuer ([11], p. 97): 

− Identification of possible hypotheses to be considered.  

− Compilation of a list of significant evidence and arguments for and against each 

hypothesis. 

− Preparation of a matrix with hypotheses across the top and evidence down the 

side. 

− Analysis of the ‘diagnosticity’ of the evidence and arguments. 

− Identification of the items those are most helpful in judging the relative 

likelihood of the hypotheses. 

− Redefinition of the matrix by reconsidering the hypotheses and deleting 

evidence and arguments that have no diagnostic value. 

− Formulation of tentative conclusions about the relative likelihood of each 

hypothesis by disproving the hypotheses rather than proving them. 

− Verification of how sensitive a conclusion is to a few critical items of evidence.  

− Reporting of conclusions by discussing the relative likelihood of all the 

hypotheses, not just the most likely one. 

− Identification of milestones for future observation that may indicate events are 

taking a different course than expected. 

Heuer’s concept of Analysis of Competing Hypotheses (ACH) is among the most 

important contributions to the development of an intelligence analysis methodology. 
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It represents a very thorough and effective strategy. At its core lies the notion of 

competition among a series of plausible hypotheses. The surviving hypotheses are 

subjected to further testing. ACH, Heuer concedes, will not always yield the right 

answer. But it can help analysts overcome the cognitive limitations (Heuer [11], p. 

xxxiii). 

2.1.3.5  Visual Analytics for Reasoning Provenance  

Visual analytics systems are often evaluated based on how effectively they allow the 

generation of insights but also on how easily reasoning and insight creation can be 

tracked (Görg et al. [8]).  Lessons learned from reasoning scenarios and strategies 

dictate that visual analytics systems need to help the analyst externalize the thinking 

process and create convincing production by supporting insight provenance and 

sanity checks of analytical products. Inspired by Sørmo [13], we argue that the 

effectiveness of visual analytics systems in terms of capturing reasoning provenance 

can be judged according to the following criteria and by answering the following 

questions: 

i. Transparency: Is it clear how the analyst reached insights and answers with 

the help of the system? The transparency principle focuses on the main 

condition necessary for examining insight provenance, the historical record of 

the process and rationale by which an analyst derives insights. Transparent 

systems allow the analyst to visualize and understand the entire reasoning 

path. 

ii. Justification: Is it clear why the insights represent “good” insights? The 

justification principle is about judging the quality of insights and about 

verifiability. Systems that permit justification will allow the analyst to record 

the justification of each step during the process and also formulate a posteriori 

explanations. 

iii. Relevance: Is it clear why questions asked were relevant? This principle refers 

to the mental models used by the analyst and her/his reasoning strategy. The 

analyst needs to be able to record why a question asked was relevant to the 
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task at hand. An explanation of this type justifies the strategy pursued. A 

system complying with the relevance principle comprehensibly display the 

analyst’s reasoning strategy by recording the relevance behind each question 

asked. 

iv. Conceptualization:  Is it clear that terms and definitions mean? Analysts do 

not always understand, or have a common understanding, about all the terms 

encountered in a query. This may be because the analyst is a novice in a 

particular field, but also because different analysts can use terms differently or 

organize the knowledge in different ways. 

v. Learning: Is it clear what lessons can be learned during and/or after solving a 

case? The use of a visual analytics system for solving a particular case should 

increase the analyst’s understanding about the different domains encountered. 

A system complying with the learning principle is able to train the analyst in 

solving problems by, for example, pointing out to similar cases from the past 

or helping her/him reapply insights to a new data or domain. 

2.1.4   Examining Analytic Provenance in Visual Analytic 
Systems 
In this section we survey how to track and visualize analytic provenance. We also 

review design alternatives to keep track of analytic provenance.  

2.1.4.1  Challenges to Examining Analytic Provenance 

The key to the research on analytic provenance is the belief that by capturing a user’s 

interactions with a visual interface, some aspects of the user’s reasoning processes 

can be retrieved [14]. North et al. [14] argue that the research of analytic provenance 

can be examined in five interrelated stages: perceive, capture, encode, recover and 

reuse. Each of these stages presents its own challenges. 

“Perceive”: How does the analyst perceive the visualization of data? 

To correlate a user’s interactions with visualization to her reasoning process, the 

research must begin with understanding how the data is presented to the user. Since 

the user’s interaction can only begin after perceiving the visualization of data, the  
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analytic provenance research also needs to start with the understanding of how 

information is perceived by the user [14]. 

“Capture”: How can analytic provenance be captured? 

As the user interacts with visualization, the series of interactions can be considered 

as a linear sequence of actions. Researchers have shown that additional semantic 

information is necessary to adequately represent a user’s analysis process. Semantic 

information can be directly annotated by the user, modeled based on task analysis, or 

correlated with the visualization elements, but identifying the most appropriate 

representation remains an open challenge [14]. 

“Encode”: How can captured analytic provenance be described? 

Encoding refers to the process of describing the captured provenance in predefined 

formats. While many systems implicitly have their own encoding schema for 

capturing analytic provenance for specific tasks and domains, few generalizable 

schemas exist. North et al. [14] explain that researchers have attempted using XML, 

declarative pattern language, logic-programming, and dynamic scripts, but in most 

cases these schemas only record the “how”, but not always the “why”. By using these 

schemas, the user can reapply interaction, but the semantic meanings behind these 

steps are often unclear. 

“Recover”: How can we make sense of provenance? 

Once the user’s provenance has been captured and encoded, the challenge becomes 

making sense of the provenance. As noted by Jankun-Kelly et. al. [15], history alone is 

not sufficient for analyzing the analytical process with visualization tools. Often, there 

are relationships between the results and other elements of the analysis process 

which are vital to understanding analytic provenance. North et. al. [14] argue that 

while some of the relationships have been shown to be recoverable through manual 

inspection, whether the same can be done using automated techniques is still an open 

question. 
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“Reuse”: How can a user’s insight be reapplied to a new data or domain? 

The research goal in analytic provenance is to be able to automatically reapply a user’s 

insights to a new data or domain. Most systems that are successful at encoding a user’s 

interactions have mechanisms that allow for the reapplication of the interactions 

within the same system. However, North et. al. [14] argue that in most analytical 

environments, analysts often utilize multiple tools simultaneously which renders the 

use of existing methods inadequate. They conclude that a more comprehensive and 

cohesive encoding, recovering, and reusing process is therefore necessary to support 

the analysts in their natural working environments. 

2.1.4.2  Capture, Visualization and Utilization for Analytic Provenance 

Analytic provenance consists of three stages: capturing the provenance of the analysis 

process, visualizing the captured information, and utilizing the visualized provenance. 

Significant amount of research have been carried out for developing a usable and 

manageable provenance tracker along with the user interface for representation, 

access to provenance information. 

2.1.4.3  Capture Methods (Manual vs Automatic) 

2.1.4.4  Manual Capture 

Manual approaches of analytic provenance include ‘user-created notes, manually 

authored diagrams illustrating a user’s analytic steps and user-built structured 

argumentation graphs’ (Gotz et. al. [10], p. 124).  

 As Gotz et. al. [10] argue, the manual capture approach can be very effective for 

capturing the high-level rationale by which analysts “connect individual insights into 

an overall conclusion”. During a visual analytic task, users typically perform a very 

large number of activities at a very fast pace. Each of these activities (queries, filtering 

and sorting processes) is motivated by a logical rationale. As Gotz et. al. [10] argue, it 

is however often too laborious and impractical for an analyst to manually record each 

individual activity and it’s rationale due to the overwhelming amount of  
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Figure 2.3: The Jigsaw list view showing connections between concepts, names and dates. 

Retrieved from http://www.cc.gatech.edu/gvu/ii/jigsaw/views.html . 

 

information involved. For this reason, analysts often record just the final state of 

visualization and tag it with a high-level description. Analysts ‘typically omit from their 

documentation the intermediate steps that led to the insight’. Moreover, they often omit 

seemingly unimportant visualizations from their notes even if they directly motivated 

additional lines of inquiry. As a result, ‘critical information may be lost and the manual 

approach fails to capture a user’s insight provenance comprehensively’ [10]. 

A Case Study 

We present a case study of manual capture of analytic provenance of analysts using 

the Jigsaw system. In this case we will refer to ‘manual’ as opposed to the term 

‘automatic’ or ‘computational’ capture. Automatic or computational capture which 

refers to systems that integrate analytic provenance capture. In the case presented 

below we refer to manual capture as a ‘by-hand’ documentation process, including the 

self-documentation process of analyst as well as the a posteriori process of examining 
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provenance. We first illustrate the Jigsaw system and its features to then describe 

what the provenance capturing process was about. 

Jigsaw is a visual analytics tool for exploring and understanding document collections. 

It was developed by researchers Stasko, Görg, Liu, Sainath and Stolper at Georgia 

Tech.  Jigsaw combines automated text analysis with interactive visualizations for 

exploring and analyzing collections of unstructured and semi-structured text 

documents. It automatically identifies entities of interest in the documents, such as 

concepts, people, places, dates and organizations, and then shows connections 

between those entities across the entire collection, as well as connections between 

documents and entities. Figure 2.3 above, shows how Jigsaw’s list view establishes 

connections between particular concepts, authors and years. 

Connections are defined by co-occurrence: if two entities co-occur in the same 

document, they are connected to each other as well as to that document. If entities co-

occur in many documents they have a stronger connection. Görg et al. [8] argue that 

even though this untyped connection model based on co-occurrence is very simple, it 

has turned out to be a powerful tool for investigative analyses. It works best if the 

documents are not too large, as it is often the case for news articles or case reports 

that usually span a few paragraphs. The list view presented in figure 2.3 is just one of 

the possible views offered by Jigsaw. Jigsaw was not specifically designed to 

automatically capture analytic provenance. In order to examine analytic provenance 

when using Jigsaw’s, Kang et al. [7] conducted an evaluation of the visual analytic 

system Jigsaw and compared its use to three other more traditional methods of 

analysis. The study of Kang et al [7] consisted in recruiting sixteen students, dividing 

them into four groups, and asking them to conduct a document and identify a hidden 

threat.  

− Participants in the first group only worked with pencil and paper. They 

received a printout of all the reports and some blank sheets for note taking.  

− Participants in the second group received an electronic copy of the reports and 

could use basic text editing software for reading and searching the documents.  

 



2 Literature Review 
Analytic Provenance 

   
    

   
 

48 
 Middlesex University London 

− Participants in the third group used only the Document View of the Jigsaw 

system to read and analyze the document collection. This setup was similar to 

the previous one, providing functionality for reading and searching; however, 

the Document View also highlighted identified entities within the documents.  

− Participants in the fourth group used the entire suite of visualizations in Jigsaw 

to conduct the analysis. 

In order to ‘manually’ capture analytic provenance for all four groups Kang et al. [7] 

used a posteriori semi-structured interviews, where analysts made use of their own 

notes. Kang et al. also video-taped and analyzed a posteriori all sessions. They mainly 

based their capture of analytic provenance on observations, interviews, videos, and 

log analyses. They not only identified several investigative strategies employed by 

analysts but also the benefits and limitations of Jigsaw. 

Kang et al. [7] found that overall the participants using the full Jigsaw system 

outperformed all other groups on average. The benefits of Jigsaw were that the system 

supported different investigative strategies, that it showed connections between 

entities, that it helped users find a right clue and that it also helped them focus on 

essential information. The limitations of Jigsaw resulted from the analysts’ wishlist, 

who asked for better ways to work with only subsets of their document collections 

and to be able to dynamically filter out documents in an investigation, but also 

maintain the ability to reintroduce filtered documents as desired. 

2.1.4.5  Automatic Capture 

Automatic approaches for capturing analytic provenance attempt to systematically 

capture the full history of a user’s analytic process. There are visual analytic systems 

that record histories of user visual operations and the parameters of these operations. 

But although these tools ‘comprehensively and faithfully record user analytic activity, 

they cannot abstract the high-level semantic constructs obtained in the manual 

approach’ [10]. As explained by Gotz et. al. [10], most existing  
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Figure 2.4: The Aruvi Information Visualization Framework: The data view, knowledge view 

and navigation view. Retrieved from http://www.win.tue.nl/vis1/home/yedendra/imgs/aruvi.png. 

 

visual analytic systems are event-based systems that are designed to recognize and 

process specific, often low-level user interaction events like mouse clicks and drags, 

but can rarely understand and capture the semantics of such events (e.g., the analytic 

purpose of a user’s mouse drag). In addition, during visual analysis the high rate of 

user activity often creates a large number of low-level user interaction events that 

grows enormously as the analysis unfolds. Gotz et. al. [10] conclude that it is 

extremely difficult for systems to organize the large linear list of user interaction 

events into semantically meaningful segments of activity. ‘It is even more challenging 

for such  system to infer the high level semantic constructs that can capture the complex, 

non-linear nature of a user’s visual analysis process’ [10]. 

2.1.4.6  Automatic Capture with Visual Analytic Systems 

Visual analytics is a relatively new research field that integrates the interactive 

visualization and exploration of data with computational data analyses [16]. It 

represents ‘the science of analytical reasoning facilitated by interactive visual 

interfaces’ (Thomas et. al. [17], p. 28). Intelligence analysis challenges investigators to 
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examine large collections of data and documents and come to a deeper understanding 

of the information and events contained within them. Visual analytics technologies 

thus hold great promise as potential aids for intelligence analysis professionals [8]. 

Aruvi 

Aruvi is an information visualization framework that supports the analytical 

reasoning process presented by Shrinivasan et. al. [18]. It contains three main views: 

the data view, the navigation view and the knowledge view, as represented in the 

figure 2.4 below. The data view is the visual analytical tool itself, the navigation view 

is a panel for visually tracking the user’s history, and lastly the knowledge view allows 

the user to interactively record his reasoning process through the creation of a node-

link diagram.  

Shrinivasan et. al. [18] explain that when using Aruvi analysts can also organize the 

analysis artifacts in the knowledge view to build a case to support or contradict an 

argument. They can establish a link between an analysis artifact in the knowledge 

view and a visualization state in the navigation view. Hence, they can revisit a 

visualization state from both navigation and knowledge views to review the analysis 

and to validate the findings. After revisiting the visualization state, the user can reuse 

it to look for alternate views. Aruvi supports two ways of preserving a user’s insight 

provenance: 

− First, it automatically records a user’s navigational steps.  

− Second, it provides an interface component that allows users to manually add 

notes. 

Gotz et. al. [10] argue however that the granularities of a user’s navigational steps are 

determined by ‘application-specific heuristics’, like for example when the mouse 

pointer exits from a particular UI (User Interface) panel. 

Scalable Reasoning System (SRS) 

The Scalable Reasoning System(SRS) is a web service-based analytic toolkit (figure 

2.5) that allows data clustering, temporal trend identification and geographic analysis  
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Figure 2.5: SRS web client showing, from top left, cluster, faceted, list, and map views of vehicle 

theft incidents [19]. 

 

[19]. It was initially developed by the U.S. Department of Homeland Security to 

support rapid application deployment to users that needed access from a variety of 

locations to a rapidly broadening and changing set of analytical capabilities. In SRS, 

analysts can graphically describe their knowledge construction workflows, linking 

hypothesis creation and testing to the visualizations that were used to derive these 

hypotheses. The SRS hypothesis construction workspace allows any feature of a view, 

or an entire view itself, to be saved as a ‘reasoning artifact’. Pike et al. [19] explain that 

reasoning artifacts are ‘essentially pieces of information that the analyst has tagged 

with a role; these roles are defined through a customizable taxonomy of knowledge 

structures’. At any point during an analysis, a user can open a reasoning whiteboard 

on the SRS web site and begin to create artifacts that link features in SRS views to 

reasoning roles. Features such as incident clusters can be dragged out of the view and 

onto the whiteboard to capture them as a reasoning artifact, where they are converted 

to a small sticky note. Annotation artifacts can also be created to record information 

such as assumptions. SRS also provides explicit support for the analytic reasoning 

process. Too often the insight generated through visual discovery is left tacit in the 
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analyst’s mind or recorded in forms disconnected from exploratory tools. SRS clients 

can embed a graphical ‘reasoning whiteboard’ on which users can link features 

discovered through exploratory visualization with reasoning structures such as 

emerging hypotheses. 

2.1.4.7  Automatic Capture with Specific Provenance Software  

Jankun-Kelly et. al. [15] argues that the lower the barrier to capture process and 

reasoning information and annotate it, the more data will be generated. Jankun-Kelly 

offers two examples of software that can be integrated into visual analytics toolkits: 

VisTrails – an open source software based on tree representations and the PSet – a 

software which is available on request and based on graphical representations. 

VisTrails 

VisTrails is an open-source scientific workflow and provenance management system, 

developed at the University of Utah, which provides support for simulations, data 

exploration and visualization. VisTrails enables interactive multiple-view 

visualizations by simplifying the creation and maintenance of visualization pipelines, 

and by optimizing their execution. VisTrails design goals included: 

− creating an infrastructure that maintains the provenance of a large number of 

visualization data products. 

− providing a general framework for efficiently executing a large number of 

potentially complex visualization pipelines. 

− providing a user interface that simplifies multiple-view comparative 

visualization. 

VisTrails uses an action-based provenance model that uniformly captures changes to 

both parameter values and pipeline definitions by unobtrusively tracking all changes 

that users make to pipelines in an exploration task. Silva et al. [20] refer to this 

detailed provenance of the pipeline evolution as a visualization trail, or vistrail. 
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PSet Software 

Jankun-Kelly et. al. [15] argues that there is a need for formal representations of visual 

explorations. The PSet software provides metrics to evaluate visualizations. The PSet 

software uses different graph measures to describe the visualization. It encapsulates 

‘the interactions a user can have with a visualization system and how these interactions 

are part of the greater exploration session’ [15]. The P-Set Model of visualization 

exploration formalizes the iterative visualization cycle by describing a user’s 

interaction with a visualization system. During such interaction, a user manipulates 

parameter values to form a parameter set (a p-set). A p-set is a collection of parameter 

values of different types. Created p-sets are used to generate new results. For each 

result generated during visualization exploration, four items are stored: a timestamp, 

parameter derivation information, p-set derivation information, and result derivation 

information.  

 

 

 (i) GeoTime 

 

(ii) HTVA 

 
 
 

Figure 2.6: (i) The story window to the right of the GeoTime scene with Snapshot Preview 
Panel (Eccles et. al. [21]). (ii) A narrative has been formed by dragging bookmarks into an 
ordered group and attaching narrative text. Each bookmark can be linked back to the live data 
(Walker et al. [22]). 
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Figure 2.7: Temporal relationships and links across different sections of the record are made 
apparent (e.g., the temporal coincidence between the constipation and the closely preceding 
administration of meperidine is suspicious (Plaisant et. al. [23]). 

 

− The timestamp indicates when the derivation was performed; it is possible for 

multiple results to be generated during the same timestamp as a consequence 

of a single user interaction.  

− The parameter and p-set derivations describe which previous parameters and 

p-sets were used to create the new parameters and p-sets.  

− Finally, the created results are identified by the p-sets. Each explored result is 

encoded by the model. 



2 Literature Review 
Analytic Provenance 

 
 

55 
 Middlesex University London 

  

(i) SensePath 
 

(ii) Vistories 

 

Figure 2.8: (i) Four linked views of SensePath. A: The timeline view shows all captured sensemaking 
actions in temporal order. B: The browser view displays the web page where an action was performed. 
C: The replay view shows the screen capture video and can automatically jump to the starting time of an 
action when it is selected in another view. D: The transcription view displays detailed information of 
selected actions (Nguyen et. al. [24]).   
(ii) Screenshot of CLUE applied to the StratomeX technique (a) in authoring mode. An annotation (b) 
highlights relevant aspects. The provenance graph view (c) and story view (d) show the history of the 
analysis and a Vistory being created (Gratzl et. al. [25]).   

 
 

2.1.5   Visualization 
 

GeoTime 
 

GeoTime (Eccles et. al. [21]) is a commercial geo-temporal event visualization tool as 

shown in figure 2.6(i) that can capture a screen shot of the tool and perform text or 

graphical annotation. It also allows users to construct a report of the analysis. Tableau 

Public offers a story telling feature, which consists of several pages or story points, 

each is a captured visualization with annotation.  

HTVA 

To reuse captured states, the human terrain visual analytics system (HTVA) proposed 

by Walker et al. [22] as shown in figure 2.6(ii) , allows the analyst to drag and drop  
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captured visualizations automatically onto an empty space and add narrative to each 

visualization to build the story.  

LifeLines 

To visualize captured information, LifeLines (Plaisant et. al. [23]) as shown in figure 

2.7, is a visualization for personal histories, which uses icons to indicate discrete 

events and thick horizontal lines for continuous ones. Typically, the system begins 

with an initial state (node). When the user performs an action, a new node is created 

for the current state, and a new edge is added to connect the previous node with the 

current node.  

2.1.6   Utilization 

SensePath 

SensePath (Nguyen et. al. [24]) as shown in Figure 2.8(i), is a tool for understanding 

sensemaking process through analytic provenance. SensePath provides four linked 

views of i.e, a timeline view that shows all captured sensemaking actions in temporal 

order, a browser view that displays the web page where an action was performed, a 

replay view that shows the captured screen video and can automatically jump to the 

starting time of an action when it is selected in another view, a transcription view that 

displays detailed information of selected actions.  

Vistories 

“Vistories” as shown in Figure 2.8(ii), is a visual story based history exploration 

system by following the CLUE (Capture, Label, Understand, Explain) model proposed 

by Gratzl et. al. [25]. This tool has an authoring mode, a provenance graph view, a 

story view for showing the history of the analysis and a Vistory being created.     



 Middlesex University London 

2.1.7   Summary 

As mentioned by Heuer [11] due to lack of appropriate tools and techniques, analysts 

may be unable to apply higher levels of critical thinking on critical issues in 

intelligence analysis. So, tools with fine-tuned computation led cognition technique 

and vice-versa having support to bridge the gap [10] between those is required for 

successful analytical activities. The above section 2.1 has provided a concrete 

definition of analytic provenance as proposed by Xu et al. [1] and described it’s 

different potential stages of research (North et al. [14]). It has also mentioned how can 

analytic provenance be examined in existing visual analytic systems and utilized for 

sensemaking. This section has also described cognitive (reasoning provenance) and 

investigative strategies (process provenance) for their respective scenarios. 

Currently, no analytic task model is available for intelligence analysis which will 

amalgamate both computation and cognition for large visual analytic system 

compatible with it’s complex system architecture. More research is required to 

understand the requirement, development challenges of both back-end data 

modelling and front-end visual interface design supporting transparency in decision 

making.       
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2.2 Behavioural Markers (BMs) 

2.2.1  Overview 

Behavioural Marker (BM) systems are now being developed for performance 

measurement in a range of organizational settings, especially in high reliability 

industries such as air aviation, nuclear power, maritime transport, and medicine. 

They are usually structured into a set of categories (e.g. co-operation, decision 

making, and situational awareness). Normally, these categories are then sub-divided 

into more specific nontechnical skills or elements. The seminal research on behavioral 

markers comes from studies of civilian pilots carried out by Helmreich and colleagues 

at the University of Texas. In the late 1980s they developed a data collection form 

called the LINE/LOS Checklist (LLC) to gather information on flight crews’ crew 

resource management performance [26]. This checklist has been used as the basis of 

many airlines’ behavioral marker systems [27]. Behavioral marker systems have also 

been developed for using by anesthesiologists [28], surgeons [29], scrub nurses [30], 

and nuclear power control room teams [31]. Flin et al. [31] identified significant 

limitations of such behavioral marker systems such as – not being capable of 

capturing every possible aspects of performance, absence of conflict management, 

bringing own biases and perceptions by the raters. Recently, the Behavioural Markers 

(BMs) concept is not only used to measure team performance in aviation or medical 

sectors but also their use for evaluating visualization are noticeable. C. North et. al. 

[32] claims that the purpose of visualization is insight and to determine to what 

degree visualizations achieve this purpose. He listed some of the characteristics of 

insight such as – complex, deep, qualitative, unexpected and relevant. P. Saraiya et. al. 

[33] defined insight as an individual observation about the data, a unit of discovery. 

They presented several characteristics of insight while running a pilot study on 

biological and microarray data such as – observation, time, domain value, hypotheses, 

directed versus unexpected, breadth and depth, category. 
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Table 2.1: Evaluation hypotheses, data sources and analysis techniques [35]. 

 
Evaluation 

Criterion 

Hypothesis Data Source and Analysis 

 

Validation   

Completeness The ANTS (Anaesthetists Non-

Technical Skills) system provides a 

suitably comprehensive set of 

categories and elements to describe 

anaesthetists' non-technical skills. 

 

Questionnaire data: basic frequency analysis and content 

review to identify any superfluous or missing elements 

Observability Anaesthetists' non-technical skills 

can be identified by observation of 

behaviour using the ANTS system. 

Ratings data: basic descriptive statistics and 𝜒2 tests to 

establish the extent to which non-technical skills were 

observed vs not observed. 

Questionnaire data: frequency analysis, content review and 

t tests where appropriate.  

Reliability   

Inter-rater 

agreement 

Using the ANTS system to rate non-

technical skills, participants will 

achieve inter-rater agreement at 

(a) category level and (b) element 

level consistent with recognised 

criteria for acceptance. 

Ratings data: within-group inter-rater agreement statistic 

[55, 56] to show the level of rater consensus (i.e. whether 

they rate performances the same): 

𝑟𝑤𝑔 = 1 − (𝑆𝜒2/𝜎𝐸
2), where 𝑆𝜒2= variance of observed 

ratings and 𝜎𝐸
2 = population variance for a discrete 

rectangular distribution of ratings (i.e. it represents a 

random response where each scale point would have an 

equal number ratings). This is calculated as 𝜎𝐸
2 = (𝐴2 −

1)/12, where A is the number of points on the scale. 

Accuracy/ 

sensitivity 

Category and element ratings given 

by participants will be consistent 

with reference ratings agreed by a 

panel of experts. 

Ratings data: mean absolute deviation (MAD) from the 

reference ratings [57, 58] and basic difference from 

reference ratings to establish the level of accuracy or error 

for ratings. 

Internal 

consistency 

The ANTS system has an 

acceptable level of internal 

consistency between the categories 

and their elements. 

Ratings data: Cronbach 𝛼 coefficient for correlation 

between elements within a category and Pearson reliability 

coefficient for mapping of elements to categories. 

Usability   

Acceptability The ANTS system is an acceptable 

tool for (a) training 

and (b) assessing non-technical 

skills in anaesthesia. 

Questionnaire data: basic descriptive statistics and content 

review to establish the level of acceptance for different 

uses of the system. 

Usability The ANTS system is straight 

forward for anaesthetists to use to 

rate non-technical skills. 

Questionnaire data: basic descriptive statistics and content 

review. 

Ratings data: overall indication of effective use of the 

system 
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In a case study with the popular visual analytics application Jigsaw, Kang et al. [5] 

found that analysts’ interaction histories showed evidence of the high-level 

sensemaking processes. Reda et al. [35] approached interaction and sensemaking by 

combining interaction logs and user-reported mental processes into an extended log 

and modeling the log using transition diagrams to better understand the transition 

between mental and interaction states.  

2.2.2 BM System Development and Evaluation 

The BM tool is designed in the form of a structured list of behaviours. The observers 

then use this form during a selected work situation to rate performance within a work 

environment. Lacher et. al. [36] proposed a BM system development for measurement 

of the non-technical skills of software professionals. They performed a systematic 

literature review as the first step by addressing the high-level question – ‘What are the 

Non-Technical Skills (NTS) required of software professionals performing well in their 

field?’ The cognitive or other personal skills that complement human technical skills 

and contribute to overall task performance are termed as Non-Technical Skills (NTS). 

Technical Skills (TS) refer to techniques applied as part of ongoing computation by 

human interactions with the system. The output of this step was an initial list of 35 

NT skills that were clustered into four major categories: communication, 

interpersonal, problem solving, and work ethic. During the second step, the initial list 

of NT skills had their quality assessed and were validated by focus group of experts in 

industry and academia. They evaluated the percentage of positive ratings, and 

developed a binary data set for statistical analyses. By inspecting the distributions of 

the raters when examining the skills, a critical value (specific to each NT skill) was 

chosen to separate the 0 or 1. Next, a McNemar’s test was used to evaluate whether or 

not there are significant differences between the raters. A value of p <0.05 would tell 

us that there is a significant difference between the raters and p value greater than 

0.05 would signify inter-rater reliability [54]. 

Fletcher et. al. [34] have presented an experimental evaluation for ‘Anaesthetists Non-

Technical Skills (ANTS)’  by using human factors  research techniques to establish it’s 

basic psychometric properties and usability. The design of the study required trained  
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Figure 2.9: TS and NTS scores [59]. 

 

participants to watch videos of scripted anaesthetic situations and to rate the non-

technical skills of the main anaesthetist in each scenario using the ANTS system. A 

number of specific experimental hypotheses were developed and used to drive the 

data collection and analysis process as shown in table 2.1.  

 

2.2.3 Do technical skills (TS) correlate with non-technical skills (NTS)? 

Riem et. al. [37] hypothesized that both TS and NTS are not independent of each other 

for ensuring patient safety in acute care practice and effective crisis management. 

They aimed to evaluate the relationship between TS and NTS during a simulated 

intraoperative crisis scenario. They conducted a study with 50 anaesthesiology 

residents who managed a simulated crisis scenario of an intraoperative cardiac arrest 

secondary to a malignant arrhythmia. They used a modified Delphi approach to design 

a TS checklist, specific for the management of a malignant arrhythmia requiring 

defibrillation. All scenarios were recorded. Each performance was analysed by four 

independent experts. For each performance, two experts independently rated the 

technical performance using the TS checklist, and two other experts independently 

rated NTS using the Anaesthetists’ Non-Technical Skills score. 

Their study showed that TS and NTS are associated and are not independent from 

each other during intraoperative crisis management. Technical performance, as  
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Figure 2.10: A generalizable model for coupling cognition and computation. Plans generate 
intents that are externalized by users via interactions and physical actions. Data and user models 
can be inferred from these actions, and used to update a visualization to continue the analytic 
process [60]. 
 
 

measured by their TS checklist score, and NTS, as measured by the total ANTS score, 

reached a correlation of 0.45 (P<0.05). The relationship between ANTS categories and 

the TS checklist score had statistically significant correlations, with r ranging from 

0.31 to 0.45 as shown in Figure 2. 

 

2.2.4 Coupling TS and NTS 

As we can see that TS and NTS have significant correlations, Endert et. al. [38] 

introduced the idea of coupling those for interactive analytics. The idea was – coupling 

those would support a true human-machine symbiotic relationship where users and 

machines work together collaboratively and adapt to each other to advance an 

interactive analytic process. They suggested ‘semantic interaction’ a solution concept 

to couple the cognitive (NTS) and computational components (TS) by binding the user 

interactions used for visual sensemaking.  Their proposed generalized model (Figure 

2.10) for coupling cognition (NTS) and computation (TS) takes an approach of directly 

binding model steering techniques to the interactive affordances created by the  
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visualization. The user interaction is directly applied in the visual metaphor, creating 

a bi-directional medium between the user and the analytic models. The bi-

directionality afforded by semantic interaction comes via binding the parameter 

controls traditionally afforded by the GUI directly within the visual metaphor.  Data 

and user models can be inferred from these actions to continue the coupled 

interaction process [38]. 

 

2.2.5 Summary 

Whereas the previous section 2.1 addresses the gap between cognition and 

computation, the idea of ‘Behavioural Marker (BM)’ can bridge this as Riem et. al. [37] 

found a correlation of 0.45 (P<0.05) between TS and NTS through their study (section 

2.2). We have aimed to test the hypothesis through this thesis work by using the 

concept ‘semantic interaction’ as introduced by Endert et. al. [38]. Although the 

research on BMs came from the studies of civilian pilot and their non-technical skills 

(NTS), however BM systems are now being widely used for performance 

measurement in a range of organizational settings including evaluation of different 

visual analytic tools. Endert et. al. [38] also proposed a generalized model for coupling 

cognition and computation to infer data and user models, however more work is 

needed to test their model. How different cognitive constructs contribute to pinpoint 

their transitions, how such constructs can be translated in terms of computational 

interactions and how all of these concepts can be utilized to model user profile and 

understand their analytical behaviour. Section 2.2 has presented relevant literature 

where authors provided the idea of developing BM system and couple TS-NTS 

concepts in terms of performance analysis. We have aimed to utilize these ideas for 

our seminal research of finding out techniques to detect those BMs from sensemaking 

activities and automatically infer those for enhanced decision support systems.    
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2.3 Inferring Sensemaking Tasks 

2.3.1 Clickstream Modelling 

Wang et. Al. [39] proposed clickstream models to characterize user behaviour in large 

online services. By analyzing clickstream traces (i.e., sequences of click events from 

users), they sought to achieve two goals: (1) detection: to capture distinct user groups 

for the detection of malicious accounts, and (2) understanding: to extract semantic 

information from user groups to understand the captured behaviour. To run 

experiments they used ‘Renren’ (one of the largest online social networks in Chinese) 

dataset having goal to prevent attackers from creating large numbers of fake 

identities (Sybils) to disseminate unwanted contents. The ‘Renren’ dataset contained 

5,998 normal users and their clickstream traces over 2 months in 2011 including 

9,994 Sybil accounts randomly sampled from all previously banned accounts by 

Renren.  Alongside they also used another 135 million click events from 100K users 

on ‘Whisper’, a popular anonymous social network app. To provide semantic 

interpretations on captured behaviour, authors proposed an iterative feature pruning 

algorithm to partition the clickstream similarity graph. The result is a hierarchy of 

clusters, where higher-level clusters represent more general user behaviour patterns 

and lower-level clusters further identify smaller groups that differ in key behavioural 

patterns.  

As part of clickstream behaviour detection and interpretation,  authors [39] built 

models of user activity patterns that can effectively distinguish Sybils from normal 

users. Their goal was to cluster similar clickstreams together to form general user 

“profiles” that capture specific activity patterns. To begin with this, they defined 

following three models to represent a user’s clickstream and for each model they 

described similarity metrics that allow to cluster similar clickstreams together. 

2.3.1.1  Click Sequence Model: Sybils and normal users exhibit different click 

transition patterns and focus their energy on different activities. The Click Sequence  
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Figure 2.11: Discretizing two clickstreams into event sequences [39]. 

(CS) model treats each user’s clickstream as a sequence of click events, sorted by 

order of arrival. 

2.3.1.2  Time-Based Model:  The Time-based model focuses on the distribution of 

gaps between events: each user’s clickstream is represented by a list of interarrival 

times [t1, t2, t3, . . . , tn] as shown in Figure 2.11, where n is the number of clicks in a 

user’s clickstream. 

2.3.1.3  Hybrid Model:  The Hybrid model combines click types and click interarrival 

times. Each user’s clickstream is represented as an in-order sequence of clicks along 

with interevent gaps between clicks. An example is shown in Figure 2.11. [A, t1, B, 

t2,C, t3, A, t4, B], where A, B,C are click types, and ti is the time interval between the ith 

and (i + 1)th event.  

2.3.2 Computing Sequence Similarity 

Having defined three models of clickstream sequences, Wang et. al. [39] then 

investigated methods to quantify the similarity between clickstreams. In other words 

computing the distance between pairs of clickstreams. Authors defined three distance 

functions as follows: 

2.3.2.1  Common Sub-sequences: It involves locating the common subsequences of 

varying lengths between two clickstreams. Authors [39] formalized a clickstream as 

a sequence S = (s1s2 . . . si . . . sn), where si is the ith element in the sequence. They then 

defined TN as the set of all possible k-grams (k consecutive elements) in sequence S 

where k ≤ N: TN(S) = {k-gram|k-gram= (sisi+1 . . . si+k−1), i ∈ [1, n+ 1 − k], k ∈ [1, N]}. 

Simply put, each k-gram in TN(S) is a subsequence of S with a length of k. Finally, the 

distance between two sequences can then be computed based on the number of 
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common subsequences shared by the two sequences. Inspired by the Jaccard 

Coefficient [13], they defined the distance between sequences S1 and S2 as – 

𝐷𝑁(𝑆1, 𝑆2) = 1 − 
|𝑇𝑁(𝑆1) ∩ 𝑇𝑁(𝑆2)|

|𝑇𝑁(𝑆1) ∪ 𝑇𝑁(𝑆2)|
 

2.3.2.2  Common Sub-sequences with Counts: The common subsequence metric 

defined above only measures distinct common subsequences; that is, it does not 

consider the frequency of common subsequences.  Wang et. Al. [39] proposed a 

second distance metric that rectifies this by taking the count of common 

subsequences into consideration. For sequences S1, S2 and a chosen N, we first 

compute the set of all possible subsequences from both sequences as T = TN(S1) ∪ 

TN(S2). Next, authors counted the frequency of each subsequence within each 

sequence i (i = 1, 2) as array [ci1, ci2, . . . , cin], where n = |T|. Finally, Euclidean Distance 

distance between S1 and S2 is - 

𝐷(𝑆1, 𝑆2) =  
1

√2
√∑ (𝑐1𝑗  − 𝑐2𝑗)

2𝑛
𝑗=1        

2.3.2.3  Distribution-Based Method: The prior metrics cannot be applied to 

sequences of continuous values (i.e., the Time-based model). Instead, for continuous 

value sequences S1 and S2, authors [39] computed the distance by comparing their 

value distribution using a two-sample Kolmogorov-Smirnov test (K-S test). A two-

sample K-S test is a general nonparametric method for comparing two empirical 

samples. It is sensitive to differences in location and shape of the empirical Cumulative 

Distribution Functions (CDFs) of the two samples. They defined the distance function 

using K-S statistics: 

𝐷(𝑆1, 𝑆2) = 𝑠𝑢𝑝𝑡|𝐹𝑛,1(𝑡) − 𝐹𝑛′,2(𝑡)|,  

Where 𝐹𝑛,𝑖(𝑡) is the CDF of values in sequence Si . 

2.3.3 Task Identification 

Hua et. al. [40] built a conceptualization mechanism based on an external 

knowledgebase known as Probase [41] to infer the underlying conceptual meanings  
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(a) Sequential Cut in query chain. 

 

(b) Graph Cut in query graph. 

 

(c) Sequential Cut and Merge. 

Figure 2.12: Illustration of SC (a), GC (b) and SCM (c) [40]. 

 

of queries and reduce query ambiguity. They employed lexical, conceptual, template 

and temporal features to measure query similarities, which are then used to estimate 

whether two queries should be clustered into one task and found that it can increase 

the task identification accuracy by 13.8% on average. 

Most previous works assume that tasks are never interleaved with each other, so they 

simply try to detect task boundaries between consecutive queries. More specifically, 

they model each session as a query chain G1 = (V, E1), in which V = {qi} is the set of 

queries, and E1 = {edge(qi ,qi+1)} is the set of undirected edges between consecutive 

queries. They then examine each edge in the query chain and remove it when the 

similarity between the two consecutive queries connected by that edge is smaller than 

the similarity threshold θ. As shown in Figure 2.12 (a), edge edge(q3, q4) is removed 

from the query chain, or in other words, a task boundary between queries q3 and q4 is 

detected after edge examination. Finally, for each pair of consecutive queries, if they 

are still connected in the query chain after edge examination, they will be clustered 

together into one task. Authors denoted this process of task identification as 

Sequential Cut (SC). To detect interleaved tasks, Jones et. al. [42] employed a Graph 

Cut (GC) algorithm. Particularly, they modelled each session as a query graph G2 = (V, 

E2), in which V = {qi} is the set of queries, and E2 = {edge(qi , qj)|i ≠ j} is the set of 

undirected edges between each pair of queries. They then examined each edge in the  
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Figure 2.13: Task forming time [40]. 

 

query graph and removed it when the similarity between the two queries connected 

by that edge was insignificant. As shown in Figure 2.12 (b), edges edge(q1 , q2), edge(q1 

, q4), edge(q2 , q3) and edge(q3 , q4) are removed from the query graph after edge 

examination. 

In order to detect interleaved tasks more quickly and avoid over-merging at the same 

time, Hua et. al. [40] proposed a new algorithm for task identification, which they call 

Sequential Cut and Merge (SCM), which can be considered as a combination of SC and 

GC. Or more specifically, authors first applied SC on the target session and referred to 

the tasks derived from SC as subtasks. They merged together the Bag-of-Words (BoW) 

interpretations of queries contained in a subtask to form a new query, which is used 

to represent that subtask. They then applied GC to the set of subtasks. In other words, 

authors [40] built a subtask graph G3 = (V′, E3) on the derived subtasks similar to the 

query graph. Here, V′ = {Q1 , Q2 , ………. , Qm} is the set of subtasks, and E3 is the set of 

edges connecting each pair of subtasks. They examined each edge in the subtask graph 

and removed it when the similarity between the two subtasks (represented by the 

new queries) connected by that edge was smaller than the similarity threshold θ. 

Finally, they merged together queries contained in subtasks that were still connected 

in the subtask graph after edge examination. As shown into Figure 2.12(c), in the SC 

process, edges edge(q1 , q2), edge(q2 , q3) and edge(q3 , q4) are removed from the query 

chain after edge examination, resulting in four subtasks with each subtask consisting  
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Figure 2.14: Progger log showing user scenario [18], (i) System call list, (ii) Same user with 

varying orders, (iii) Same user with varying lengths, (iv) Interleaving Scenario dataset, (v) Mono-

scenario dataset [43]. 

 

of a single query. Then in the GC process, subtasks q1 and q3 , q2 and q4 are merged 

together respectively, to form two tasks: task1 = (q1 , q3) and task2 = (q2 , q4). Authors 

[40] compared their proposed SCM algorithm with Sequential Cut (SC) and Graph Cut 

(GC). Both SCM and GC can address the problem of interleaving tasks that SC cannot 

handle. Additionally, as SCM merges similar subtasks derived by SC rather than 

similar queries as in GC, it does not have the “over-merging” problem that GC has. 

Overall it also greatly reduces the computational cost as shown into Figure 2.13 

(different colours represent number of sessions contained into dataset). 

2.3.4 User Behaviour Modelling  

The above clickstream analysis for Sybil detection is useful for binary classification 

(i.e, either malicious or benign) for users but it does provide explicit knowledge and 

interpretation about how users (or attackers) behaviour changes over time. For 

example – there are likely different attacking strategies used by different attackers.  
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Figure 2.15: Hierarchy of the behavioural clusters [39]. 

To extend their work on clickstream analysis, authors [39] aimed to identify prevalent 

user behaviours as their next stage of research in a given service without any prior 

knowledge of labels (unsupervised). At the high level, they assumed that human 

behaviour naturally forms clusters. 

Despite users’ differences in personalities and habits, their behavioural patterns 

within a given service cannot be entirely disparate. The goal was to identify such 

natural clusters as behavioural models. In addition, user’s behaviour is likely 

multidimensional. User clusters are likely to fall into a tree hierarchy instead of a one-

dimensional structure as shown in Figure 2.15. In this hierarchy, most prominent 

features are used to place users into high-level categories, while less significant 

features characterize detailed substructures. Wang et. Al. [39] built a system based on 

their proposed algorithm to capture hierarchical clickstream clusters called iterative 

feature pruning which means of identifying fine grained behavioural clusters within 

existing clusters and recursively partitioning the similarity graph. As shown in Figure 

2.15, by partitioning the similarity graph C1 and C2 are considered as the top-level 

clusters. Suppose C1 is the current parent cluster. Then authors performed feature 

selection to determine the key features (i.e., k-grams) that classify users into C1. Then, 

to partition C1, they removed those top k-grams from the feature set and used the 

remaining k-grams to compute a new similarity graph for C1. In this way, secondary 

features can step out to partition C1 into C3 and C4.  They ran the same process 

recursively to produce more fine-grained sub-clusters until the partition could not be 

split any further.  
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Figure 2.16: Whisper behavioural clusters. Cluster labels are manually input based on results 

of each cluster. The pop-up window shows users in Cluster #1 tend to sequentially read 

whispers [39]. 

 

As shown in Figure 2.16, authors [39] displayed the cluster hierarchy by using Packed 

Circle, where child clusters are nested within their parent cluster. This gives a clear 

view of the hierarchical relationships of different clusters. Circle sizes reflect the 

number of users in the cluster, which allows service providers to quickly identify the 

most prevalent user behaviours. They showed the basic cluster information (Figure 

2.16) on top, including clusterID and the number of users. Below that a list of  ‘Action 

Patterns’ (k-grams) selected by their ‘Feature Pruning’ algorithm to describe how 

users behave. The ‘Frequency (PDF)’ column shows how frequently each action 

pattern appears among users of this cluster. The red bar indicates the pattern 

frequency (probability density function) inside the cluster, and the green bar denotes 

frequency outside of this cluster. Intuitively, the more divergent the two distributions 

are, the more distinguishing power the pattern has. The aim of this pattern analysis 

was to model online user behaviour and detect malicious user accounts. 
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2.3.5  Summary 

For automatically inferring user's intention while sensemaking, the first goal should 

be detecting clickstream behaviour detection and it's modelling. By analyzing 

clickstream traces Wang et. al [12] sought to achieve two goals - (i) detecting distinct 

user groups and (ii) understanding semantic information from user groups. As part 

of clickstream behaviour detection and interpretation, they built models of user user 

activity patterns and to provide semantic interpretations on captured behaviour they 

proposed an iterative feature pruning algorithm to partition the clickstream 

similarity graph. But it is not always possible to disparate those entirely due to 

differences in personalities and habits; their behavioural patterns within a given 

service. Authors built a system based on their proposed algorithm to capture 

hierarchical clickstream clusters and visualized those by using packed circle as shown 

in Figure 2.16. Their system shows the basic cluster information, list of action patterns 

selected by their algorithm to describe how users behave. The frequency PDF into 

their system shows how frequently each action patterns appear among users of a 

cluster. The main aim of this pattern analysis was to model online user behaviour. 

However, due to cognitive variances and followed approaches pattern analysis can 

not be the only measurement of understanding user's tasks. We have addressed this 

issue in our research and aim to come up with a solution that will consider it while 

understanding user's task behaviour. 

2.4 Machine Learning for Inference Making  

It is generally difficult to infer meaningful actions quickly from the deluge of log data. 

Hence, inferring user actions from analytical log data is still a challenge. Li et. al. [43] 

addressed this issue and set out to infer user actions from a kernel-based cloud data 

provenance logger known as Progger. The key aspects of their approach were 

identifying the data pre-processing steps and attribute selection. They then used four 

standard classification models and identified the most accurate inference on user 

actions. 
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(i) 

 

 

(ii) 

 

Figure 2.17: Accuracy of classifiers on (i) Sixfold cross-validation, (ii) Supplied testing 

datasets [18].  

 

2.4.1 Data Simulation 

Li et. al. [43] used a training data set which is a log file generated by implementing 

each of the user scenario (Figure 2.14) several times. This includes the logs generated 

for different users as well as the logs generated for the same user at different 

instances. They also used two testing data sets: (a) mono-scenario testing data set 

[Figure 2.14(v)], (b) interleaving scenario testing data set [Figure 2.14(iv)]. The mono-

scenario refers to a situation where several scenarios are implemented in a sequential 

fashion, i.e. one after the other. On the other hand, the interleaving scenario refers to 

a more realistic situation where several scenarios are run concurrently (i.e., log 

entries from different scenarios may interleave each other). For inferring user actions, 

authors also considered “Window Length” [Figure 2.14(ii), (iii)] as another important 

attribute which represents the number of log entries that are related to users 

scenarios.  
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2.4.2 Classification Algorithms 

2.4.2.1  Single-Class Classification 

Li et. al. [43] employed four commonly used classification methods, namely, Naive 

Bayes Classifier, Multinomial Naive Bayes Classifier, Nearest-Neighbour Classifier (IB1) 

and Decision Tree (J48) to find the best performing algorithm for classifying Progger 

logs. They found that the classification accuracy achieved in most cases was in the 

range of about 80% to 90% as shown in Figure 2.17(i), for all possible combinations 

of the two attributes “Length” and “Window Length”. The Nearest-neighbour (IB1), the 

Naive Bayes and the Decision Tree (J48) seem to perform well but the accuracy 

achieved using the Multinomial Naive Bayes algorithm is significantly less. It is clear 

that including the length information does not necessarily improve the accuracy 

significantly. In general, the length feature seems to be only helpful when the window 

length is small (less than four) or equal to the length. For Multinomial Naïve Bayes, the 

length lowers the classification accuracy except when the window length equals to 

one [43]. 

The four classification algorithms were then implemented using the optimal 

combinations of attributes on the two testing data sets, namely, the mono-scenario 

testing data set and interleaving scenario testing data set. The results are summarized 

in Figure 2.17(ii).  Nearest-neighbour (IB1) with length attribute, window length = 6 

and without length attribute, window length = 5 seems to outperform the others on 

the classification accuracy achieved on both the mono-scenario data set as well as the 

interleaving scenario data set. But in some cases, for e.g., IB1 with window length = 7, 

the accuracy on the test data sets is significantly lower than the cross validation 

accuracy. This is possibly because the test datasets were small in size and did not 

incorporate a wide range of user scenarios [43]. 
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(i) (ii)  

Figure2.18: Reasoning task classification (i) Study A, weighted average F1 Measure model 

comparison, (ii) Study B, weighted average F1 measure model comparison [45]. 

 

2.4.2.2  Multi-Class Classification 

Zhang et. al. [44] attempted to infer user’s online activities through traffic analysis in 

real time by using no more information than packet size, timing and direction. It was 

a challenging task to do this accurately with such limited information, especially 

among a wide range of network applications, such as web browsing, online chatting, 

online gaming, downloading, uploading, online video and BitTorrent. Specially, 

submerging applications and changeable features make the accurate identification of 

user’s online activities even more difficult. To overcome these challenges authors [44] 

explored an online hierarchical classification system based on machine learning (ML) 

techniques to map traffic features to the online activities and showed that their 

system can distinguish different online applications on the accuracy of about 80% in 

5 seconds and over 90% accuracy if the eavesdropping lasts for 1 minute. Their 

classification system performed multiclass classification by taking advantage of both 

the efficient computation of decision-tree structure and the high classification 

accuracies of Support Vector Machine (SVM) and Neural Network (NN) algorithms. 

2.4.2.3  Reasoning Task Classification 

Kodagoda et al. [45] presented a novel method for reconstructing reasoning 

provenance from analysis provenance records to map actions to reasoning by using 

modified ‘Data-Frame Model’ version of Klein et al. [46]. The approach that they took 

for such reconstruction was to automatically infer reasoning from low-level user 

interaction logs. Novel machine learning methods were used for inference making and 
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two user studies were conducted to collect data. In Study A [Figure 2.18(i)], 

participants used web browser and for Study B [Figure 2.18(ii)], a visual search/query 

system called INVISQUE [7] was used for performing same intelligence analysis task.  

All interaction logs were manually encoded captured from think-aloud protocol and 

post-task interviews to map cognitive actions. They used SVM (Support Vector 

Machine), RF (Random Forest)  , HMM (Hidden Markov Model) classifiers to test the 

hypothesis that computer-based interactions can provide information to aid in 

recovering reasoning. Performances were evaluated by looking at the overall 

classification accuracy of the three models for both studies, mainly by considering 

weighted average F1 measure.  

Through their studies, SVM was found as the best model in Study A whereas none of 

the models significantly outperformed the no information rate classifier (p<0.05). The 

RF model performed particularly badly because of the high bias present in the data.  

 HMM also did not perform well in this study. Into Study B, SVM was also found as the 

best model and it did significantly outperformed the no information rate classifier 

(p<2.2e-16). The RF model performed significantly better than the no-information 

rate (p=2.272e-12) as there is less bias in the main feature set. The HMM model did 

not perform better than other models in this study. 

2.4.2.4  Non-Contextual Classification 

Gramazio et. al. [47] conducted studies to understand the degree to which 

anonymized interaction logs could be used to understand analytic intent given the 

complete omission of context. They used twelve automated visual analysis task 

classification models including k–nearest neighbours, linear support vector machines 

(SVMs), random forests (RFs) to hand-coded task inferences. Aims of their studies 

were to test how consistently tasks [10] can be inferred using only low level 

interaction logging data. For model’s classification evaluation they considered three 

feature sets: ‘dwell’, ‘region-of-interest (ROI) transition’, a novel ‘mouse tracking’ 

approach and ‘all’ which combined features from aforementioned sets. Their final 

experimental design consisted of twelve classification models (3 classifiers × 4 feature 

sets). They evaluated those 12 classifiers to test whether automated classification  
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Figure 2.19: The interface from Brown et. al.’s [48] study in which participants found Waldo 

while authors recorded their mouse interactions. Inset (a) shows Waldo himself, hidden among 

the trees near the top of the image. Distractors such as the ones shown in inset (b) and (c) help 

make the task difficult. 

 

could predict visual analysis tasks with comparable accuracy to domain experts. 

match-any accuracy ties. The twelve models’ match-any accuracies ranged from 38% 

(linear SVM, dwell) to 73% (random forest, mouse tracking) and the modal accuracies 

ranged from 18% (k-nearest neighbours, dwell) to 56% (random forest, mouse 

tracking). But their evaluation results only considered supervised learning 

approaches, which left the potential effect of unsupervised approaches an open 

problem. This open problem can be tested in the future by evaluating whether 

clustering based on geometric-temporal distances of interaction segments can 

accurately predict visual analysis tasks. However, one barrier to this approach, which 

must also be examined, is how to best segment interaction logs into discrete 

components that accurately represent stages of visual analysis.  

2.4.2.5  Machine Learning for Visual Analytic Systems 

Shen et. al. [49] proposed a TaskTracer system that helps multi-tasking users manage 

the resources that they create and access while carrying out their work activities. 

TaskTracer assumes that “activities” provide a useful abstraction for organizing and 

accessing resources. They developed TaskTracer system based on two main premises: 

(a) the behaviour of the user at the desktop is a mixture of different activities and (b) 

each activity is associated with a set of resources relevant to that activity. The first 

system is TaskPredictor.WDS, and it predicts the current task  based on properties of 
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the window currently in focus. The second system is TaskPredictor.email, and it 

predicts the current task based on properties of incoming email messages (sender, 

recipients, subject, etc). The authors also proposed a TaskPredictor that attempts to 

predict the current task of users in case they forget to notify the system every time 

they change activities. The authors adapted machine learning techniques for 

predicting the current task of the user. They demonstrated that three machine 

learning techniques gave improved performance with these systems: 1) feature 

selection via mutual information, 2) a threshold for making classification decisions, 

and 3) a hybrid approach in which a generative model (Naive Bayes) is first applied 

to decide whether to make a prediction and then a discriminative model (linear 

support vector machines) is applied to make the prediction itself. The experiments 

show that the hybrid method gives slightly better performance than either Naive 

Bayes or SVMs alone. The overall results show that TaskPredictor.WDS can achieve 

more than 80% precision with 10–20% coverage (i.e., proportion of the time that a 

prediction is made). TaskPredictor.email can achieve more than 90% precision with 

65% coverage.  

Brown et. al. [48]  demonstrated a small visual analytics subtask to show that it is 

indeed possible to automatically extract high-level semantic information about users 

and their analysis processes from mouse and keyboard interactions. They utilized 

those interaction data and applied machine learning techniques to predict user’s (1) 

task performance and (2) infer personality traits. For the visual analytics task authors 

chose Waldo as shown in Figure 2.19, which is a famous children’s game consisting of 

illustration spreads in which children are asked to locate the character Waldo. 

Participants were asked to navigate the image by clicking the interface’s control bar. 

For the analysis, mouse click events on interface buttons were logged with a record of 

the specific button pressed and a time stamp. To establish labels for the machine 

learning analysis of performance outcomes and personality traits, authors recorded 

both completion time and personality survey scores for each participant. By using 

low-level interaction data they created three encodings: (1) state-based, which 

captures the total state of the software based on what data (portion of the image) is 

showing, (2) event-based, which captures the user’s actions through statistics of the  
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Figure 2.20: Attention model proposed by Bahdanau et. al. [50]. 

raw mouse activity, and (3) sequence-based, which encodes sequences of clicks on the 

interface’s buttons. The encoded information was then analyzed using well-known 

machine learning techniques such as support vector machines (SVM) and decision 

trees to classify groups of users with performance outcomes and individual 

differences. Authors attained 62% and 83% accuracy at differentiating participants 

who completed the task quickly versus slowly, with state-based yielding up to 83%, 

event-based up to 79% accuracy, and sequence-based 79%.  

The ability to classify users is interesting on its own, but an adaptive system could test 

the feasibility of applying this type of results in real time. Different cognitive traits 

may prove more fruitful for adaptation. Also in sequence-based analysis, authors used 

pair n-grams with decision trees for readability, but there are plenty of existing 

treatments of sequence data that remain to be tried for this type of data classification 

on visual analytic tasks, including sequence alignment algorithms, and random 

process models, e.g., Markov models. 

2.4.3 Contextual Classification – Attention Model 

Conventional ‘Topic modelling’ technique can chunk semantically similar text from a 

large corpus and tag those with a topic name. These topic names are useful for 

clustering or organizing large blocks of textual data, information retrieval from 

unstructured text and feature selection. However, ‘tags’ as representatives of 

semantic texts may not express user’s actual intention and requires computation of  
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Figure 2.21: Global attention model as proposed by Luong et. al. [51] - at each time step t, the 
model infers a variable-length alignment weight vector ∝𝑡 based on the current target state ℎ𝑡 
and all source states ℎ𝑠

̅̅ ̅. A global context vector 𝑐𝑡 then computed as the weighted average, 
according to ∝𝑡, over all the source states. 

 

intention from association of different contexts. Bahdanau et. al. [50] proposed the 

first ‘Attention Model’ as shown in Figure 2.20.  

The ‘Bidirectional Long Short Term Memory (LSTM)’ [52] used here generates a 

sequence of annotations (h1, h2,….., hTx) for each input sentence. All the vectors h1,h2.., 

etc., used in their work are basically the concatenation of forward and backward 

hidden states in the encoder [50]. 

ℎ𝑗 = ⎾ℎ⃗ 𝑗
𝑇; ℎ⃖⃗𝑗

𝑇⏋𝑇 

To put it in simple terms, all the vectors h1,h2,h3…., hTx are representations of Tx 

number of words in the input sentence. In the simple encoder and decoder model, 

only the last state of the encoder LSTM [52] was used (hTx in this case) as the context 

vector 𝑐𝑖  for the output word 𝑦𝑖 which is generated using the weighted sum of the 

annotations: 

c𝑖 = ∑α𝑖𝑗ℎ𝑗

𝑇𝑥

𝑗=1
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Figure 2.22: Local attention model as proposed by Luong et. al. [52] - the model first predicts a 
single aligned position pt  for the current target word. A window centered around the source 
position pt is then used to compute a context vector 𝑐𝑡, a weighted average of the source hidden 
states in the window. The weights ∝𝑡 are inferred from the current target state  ℎ𝑡 and those 
source states ℎ𝑠 in the window. 

 

The weights α𝑖𝑗 are computed by a softmax function given by the following equation: 

α𝑖𝑗 =
exp (e𝑖𝑗)

∑ exp (e𝑖𝑘)
𝑇𝑥
𝑘=1

 

e𝑖𝑗 = 𝑎(𝑠𝑖−1, ℎ𝑗) 

e𝑖𝑗 is the output score of a feedforward neural network described by the function a 

that attempts to capture the alignment between input at j and output at i [50]. 

2.4.3.1  Global Attention 

The idea of a ‘global attentional’ model (Figure 2.21) is to consider all the hidden 

states of the encoder when deriving the context vector 𝑐𝑡 . In this model type, a 

variable-length alignment vector ∝𝑡 , whose size equals the number of time steps on 

the source side, is derived by comparing the current target hidden state ℎ𝑡 with each 

source hidden state ℎ𝑠
̅̅ ̅  [51]:                             ∝𝑡 (𝑠) = 𝑎𝑙𝑖𝑔𝑛(ℎ𝑡, ℎ𝑠

̅̅ ̅) 

             =
exp (𝑠𝑐𝑜𝑟𝑒(ℎ𝑡,ℎ𝑠̅̅ ̅))

∑ exp (𝑠𝑐𝑜𝑟𝑒(ℎ𝑡,ℎ𝑠̅̅ ̅))𝑠′
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(i) (ii) 

Figure 2.23: Attention models proposed by Vaswani et. al [53] – (i) Scaled Dot-Protect 
Attention, (ii) Multi-Head Attention consists of several attention layers running in parallel. 

 

2.4.3.2  Local Attention 

The ‘global attention’ has a drawback that it has to attend to all words on the source 

side for each target word, which is expensive and can potentially render it impractical 

to translate longer sequences, e.g., paragraphs or documents. To address this 

deficiency, Luong et. al. [51] proposed a ‘local attentional’ mechanism (Figure 2.22) 

that chose to focus only on a small subset of the source positions per target word. 

2.4.3.3  Self-Attention 

Self-attention, sometimes called ‘intra-attention’ [52] is an attention mechanism 

relating different positions of a single sequence in order to compute a representation 

of the sequence [53]. Self-attention allows the model to look at the other words in the 

input sequence to get a better understanding of a certain word in the sequence. 

Vaswani et. al [53] computed the attention function on a set of queries  

simultaneously, packed together into a matrix Q. And keys and values are packed into 

matrices K and V, where Q,K,V and output are all vectors . These vectors are trained 

and updated during the training process. They computed the matrix of outputs as: 
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Figure 2.24: The Transformer – model architecture [53]. 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑑𝑘

)𝑉 

Self-attention is computed not once but multiple times in the ‘Transformer’ 

architecture [53, 54], in parallel and independently. 

Multi-head attention allows the model to jointly attend to information from different 

representation subspaces at different positions. It is therefore referred to as ‘Multi-

head Attention’  [53]. The outputs are concatenated and linearly transformed as 

shown in Figure 2.23(ii).  

2.4.3.4  Encoder-Decoder 

Most competitive neural sequence transduction models have an encoder-decoder 

structure. Here, the encoder maps an input sequence of symbol representations 

(𝑥1 ,….  , 𝑥𝑛) to a sequence of continuous representations 𝑧 = (𝑧1, …… , 𝑧𝑛). Given z, the  
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Figure 2.25: Differences among BERT [55], OpenAI GPT [56] and ELMo [57] in pre-training 
model architecture. 

 

decoder then generates an output sequence (𝑦1,…… , 𝑦𝑚) of symbols one element at a 

time. At each step the model is auto-regressive, consuming the previously generated 

symbols as additional input when generating the next [53].  

2.4.3.5  The Transformer 

The Transformer in NLP is a novel architecture that aims to solve ‘sequence-to-

sequence tasks’ while handling long-range dependencies with ease. Vaswani et. al [53] 

described Transformer an overall architecture using stacked ‘self-attention’ and point-

wise, fully connected layers for both the ‘encoder’ and ‘decoder’. As shown in Figure 

2.24, the encoder block has 1 layer of a ‘Multi-Head Attention’ followed by another 

layer of ‘Feed Forward’ neural network. The decoder, on the other hand, has an extra 

‘Masked Multi-Head Attention’. The encoder and decoder blocks are actually multiple 

identical encoders and decoders stacked on top of each other. Both the encoder stack 

and the decoder stack have the same number of units [54]. 

2.4.3.6  Bi-directional Encoder Representation from Transformers (BERT) 

The BERT framework is a new language representation model developed by Google 

AI team. It uses pre-training and fine-tuning to create state-of-the-art models for a 

wide range of tasks [54]. As pre-training process, the model is trained on unlabelled 

data (un-supervised or semi-supervised). Then for fine-tuning, the BERT model is first 

initialized with the pre-trained parameters, and all of the parameters are fine-tuned 

using labelled data from the downstream tasks (supervised). BERT uses a multi-layer 

bidirectional Transformer encoder. Its self-attention layer performs self-attention in 

both directions. Google has released two variants of the model: 
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Figure 2.26: Overall pre-training and fine-tuning procedures for BERT. Apart from output 
layers, the same architectures are used in both pre-training and fine-tuning. The same pre-trained 
model parameters are used to initialize models for different down-stream tasks. During fine-
tuning, all parameters are fine-tuned. [CLS] is a special symbol added in front of every input 
example, and [SEP] is a special separator token (e.g., separating questions/answers) [55]. 

 

BERT Base: Number of Transformers layers = 12, Total Parameters = 110M 

BERT Large: Number of Transformers layers = 24, Total Parameters = 340M 

 

2.4.3.7  BERT Pre-Training 

BERT is pre-trained using the following two unsupervised prediction tasks. 

i. Masked Language Modelling (MLM) 

The masked language model randomly masks some of the tokens from the 

input, and the objective is to predict the original vocabulary id of the masked 

word based only on its context. Unlike the left-to-right language model pre-

training, the MLM objective allows the representation to fuse the left and the 

right context, which allows to pre-train a deep bidirectional Transformer [55]. 

Authors used the below technique for pre-training: 

▪ 80% of the time the words were replaced with the masked token 

[MASK]. 

▪ 10% of the time the words were replaced with random words. 

▪ 10% of the time the words were left unchanged. 
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Differences (as shown in Figure 2.25) between BERT and other models (i.e, OpenAI 

GPT, ELMo) in pre-training are - BERT uses a bidirectional Transformer. OpenAI GPT 

uses a left-to-right Transformer. ELMo uses the concatenation of independently 

trained left-to-right and right-to-left LSTMs to generate features for downstream 

tasks. Among the three, only BERT representations are jointly conditioned on both 

left and right context in all layers. In addition to the architecture differences, BERT 

and OpenAI GPT are fine-tuning approaches, while ELMo is a feature-based approach 

[55]. 

ii. Next Sentence prediction (NSP)  

In order to train a model that understands sentence relationships, authors [55] 

pre-trained for a binarized next sentence prediction task that can be trivially 

generated from any monolingual corpus. Specifically, when choosing the 

sentences A and B for each pre-training example, 50% of the time B is the actual 

next sentence that follows A (labelled as IsNext), and 50% of the time it is a 

random sentence from the corpus (labelled as NotNext). As shown in figure 

2.26, C is used for Next Sentence Prediction (NSP). The vector C is not a 

meaningful sentence representation without fine-tuning, since it was trained 

with NSP. 

2.4.3.8  BERT Fine-tuning 

The pre-trained BERT which is trained on huge dataset as a starting point, can then 

be used further for training the smaller dataset. This process is known as model fine 

tuning [54]. Fine-tuning is straightforward since the self-attention mechanism in the 

Transformer allows BERT to model many downstream tasks—whether they involve 

single text or text pairs—by swapping out the appropriate inputs and outputs.  

2.4.4  Summary 

From section 2.3 we have found that authors have raised concerns of using data 

pattern or cluster analysis for user's behaviour modelling due to differences in 

personalities and habits. In section 2.4, we have presented some existing machine 

learning approaches to infer meaningful actions due to this problem. Li et. al. 
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[18] described two data simulation approaches for preparing training datasets. One 

of those is 'mono scenario' referring to situation where scenarios are implemented in 

a sequential fashion and the other one is 'interleaving scenario' referring to more 

realistic situation where several scenarios are run concurrently. They used ‘Naive 

Bayes Classifier’, ’Multinomial Naive Bayes Classifier’, ‘Nearest-Neighbour Classifier 

(IB1)’ and ‘Decision Tree (J48)’ as classifiers to find out the best performing algorithm 

for both scenarios. Brown et. al. [48] created three encodings of low level interaction 

data and achieved accuracies up to (i) 83% for state-based, (ii) 79% for event-based, 

(iii) 79% for sequence-based by applying SVMs.  Zhang et. al. [44] performed 

multiclass classification by taking advantage of both the efficient computation of 

decision-tree structure and the high classification accuracies of ‘Support Vector 

Machine (SVM)’ and ‘Neural Network (NN)’ algorithms and achieved accuracy of about 

80%. We have presented some other aspects of task classification from deluge of log 

dataset. Kodagoda et. al. [45] used Klein et' al's [46]  data frame model for inferring 

reasoning tasks from low-level user interaction logs and found ‘SVM (Support Vector 

Machine)’ model outperforms other classifiers for this purpose. 

So far we have discussed about all known scenarios and applying supervised 

algorithms for developing models. Gramazio et. al. [47] conducted studies to 

understand the degree to which anonymized interaction logs could be used to 

understand analytic intent. After applying combination of 12 classification models 

they found accuracies ranged from 18% - 73%. We have addressed this issue in our 

research and attempted to contextualize such data by using a bi-directional encoder-

representation [55] originally proposed by Google to improve search results. To 

contextualize it uses some attention models [50] i.e, local [51], global [51] and self- 

attentions [52]. This approach is known as BERT [29] in NLP built upon the 

'Transformer' model which solves 'sequence-to-sequence’ tasks while handling long-

range dependencies. We have described in section 2.4.3.6 how to implement this 

model by pre-training (trained on unlabelled data) and fine-tuning (by using labelled 

data).   
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2.5 eXplainable AI (XAI) 

Although machine learning models can produce good results, it is often unclear how 

those AI techniques make decisions. Decision making needs to be transparent for 

building trust in machine learning models. Explainable AI (XAI) answers those 

questions to build trusts of users on AI systems. Such as - 

• Why does the model predict that result? 

• What are the reasons for a prediction? 

• What is the prediction interval? 

• How does the model work? 

Basically, most of the machine learning models are referred to as black-boxes in terms 

of interpretability. So, model explainability in terms of human understanding has high 

priority challenge in today's machine learning community. 

2.5.1  Explainability and Interpretability 

The terms ‘interpretability’ and ‘explainability’ are usually used by researchers 

interchangeably [58]. There is not a concrete mathematical definition for 

interpretability or explainability, nor have they been measured by some metric. 

2.5.1.1  Interpretability - One of the most popular definitions of interpretability is 

the one of Doshi-Velez and Kim, who, in their work [59], define it as “the ability to 

explain or to present in understandable terms to a human”. Another popular 

definition came from Miller in his work [61], where he defines interpretability as “the 

degree to which a human can understand the cause of a decision”. Although intuitive, 

these definitions lack mathematical formality and rigorousness [60]. Interpretability 

is mostly connected with the intuition behind the outputs of a model;  with the idea 

being that the more interpretable a machine learning system is, the easier it is to 

identify cause-and-effect relationships within the system’s inputs and outputs [58]. 
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Figure 2.27: Taxonomy mind-map of Machine Learning Interpretability Techniques [58]. 

 

2.5.1.2  Explainability -  Explainability, on the other hand, is associated with the 

internal logic and mechanics that are inside a machine learning system. The more 

explainable a model, the deeper the understanding that humans achieve in terms of 

the internal procedures that take place while the model is training or making 

decisions [58]. 

An interpretable model does not necessarily translate to one that humans are able to 

understand the internal logic of or its underlying processes. Therefore, regarding 

machine learning systems, interpretability does not axiomatically entail 

explainability, or vice versa. As a result, Gilpin et al. [62] supported that 

interpretability alone is insufficient and that the presence of explainability is also of 

fundamental importance. Mostly aligned with the work of Doshi-Velez and Kim [59], 

our research considers interpretability to be a broader term than explainability. 
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Figure 2.28: Explaining individual predictions. A model predicts that a patient has the flu, and 
LIME highlights which symptoms in the patient’s history led to the prediction. Sneeze and 
headache are portrayed as contributing to the “flu” prediction, while “no fatigue” is evidence 
against it. With these, a doctor can make an informed decision about the model’s prediction. [63]. 
 
 

2.5.2   Taxonomy of XAI Methods 

Different view-points exist when it comes to looking at the emerging landscape of 

interpretability methods, such as the type of data these methods deal with or whether 

they refer to ‘global’ or ‘local’ properties etc. As shown in Figure 2.27, Linardatos et. 

al. [58] presents a summarized mindmap, which visualizes the different aspects by 

which an interpretability method could be classified. These aspects should always be 

taken into consideration by practitioners, in order for the ideal method with respect 

to their needs to be identified. Definitions of few of the criteria as shown in Figure 

2.27 are as follows:  

2.5.2.1  Intrinsic or Post Hoc? 

Intrinsic explainability refers to machine learning models that are considered 

interpretable due to their simple structure, such as short decision trees or sparse 

linear models. Post hoc explainability refers to the application of interpretation 

methods after model training. Permutation feature importance is, for example, a post 

hoc explanation method. 

2.5.2.2  Model-Specific or Model-Agnostic? 

Model-specific methods are limited to specific model classes. The explanation of 

regression weights in a linear model is a model-specific explanation. Model-Agnostic 

methods can be used on any machine learning model and are applied after the model  
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has been trained (post hoc). These agnostic methods usually work by analyzing 

feature input and output pairs. 

2.5.2.3  Local or Global? 

Does the method explain an individual prediction or the entire model behaviour? Or 

is the scope somewhere in between? 

The above taxonomy (Figure 2.27), focuses on the purpose that these methods were 

created to serve and the ways through which they accomplish this purpose. As a 

result, according to the presented taxonomy, four major categories for 

interpretability methods are identified: methods for explaining complex black-box 

models, methods for creating white-box models, methods that promote fairness and 

restrict the existence of discrimination, and, lastly, methods for analysing the 

sensitivity of model predictions. 

 

2.5.3   Popular XAI Techniques 

2.5.3.1  Local Interpretable Model-Agnostic Explanations (LIME) 

In 2016, Ribeiro et al. [63] introduced ‘Local Interpretable Model-Agnostic 

Explanations (LIME)’ to derive a representation that is understandable by humans. 

LIME algorithm can explain the predictions of any classifier or regressor in a faithful 

way, by approximating it locally with an interpretable model. As shown in figure 2.28, 

LIME highlights the most and least contributing symptoms for the prediction ‘flu’. 

LIME uses a local surrogate model trained on perturbations of the data point we are 

investigating for explanations. Figure 2.29(i) provides better understanding of how 

LIME represents perturbed instances around the explained instance. The original 

model's decision function is represented by the ‘blue/pink’  background, and is clearly 

nonlinear. The ‘bright red cross’  is the instance being explained (denoted as X). 

Instances are perturbed around X, and weighted according to their proximity to X 

(weight here is represented by size). 
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(i) 

 

(ii) 

Figure 2.29: (i) Representation of proximity calculation of  LIME instances, (ii) The LIME equation [63]. 

 

 

Original model's prediction is obtained on these perturbed instances, and then a 

linear model (dashed line) is learnt that approximates the model well in the vicinity 

of X. The explanation in this case is not faithful globally, but it is faithful locally around 

X [63]. 
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Figure 2.30: SHAP local explanation based on assigning a numeric measure of credit (marginal 

contribution) to each input feature [64]. 

 

2.5.3.2  Shapley Additive exPlanations (SHAP) 

The Shapley value is the average contribution of a feature value to the prediction in 

different coalitions. For each of coalitions prediction is calculated with or without the 

feature value. The feature value is the numerical or categorical value of a feature and 

instance; the Shapley value is the feature contribution to the prediction. The effect of 

each feature is the weight of the feature times the feature value. 

Computing feature contribution - Let's assume a linear model prediction for one 

data instance – 

𝑓 = 𝛽0 + 𝛽1𝑥1 + ⋯+ 𝛽𝑃𝑥𝑝 

where ′𝑋′ is the instance for which we want to compute the contributions. Each 𝑥𝑗 is 

a feature value, with 𝑗 = 1,… ,… ,… , 𝑝. The 𝛽𝑗 is the weight corresponding to feature j. 

So, the contribution 𝜙𝑗 of the 𝑗-th feature on the prediction 𝑓(𝑥) can be denoted as –  

𝜙𝑗(𝑓) = 𝛽𝑗𝑥𝑗 − 𝐸(𝛽𝑗𝑋𝑗) = 𝛽𝑗𝑥𝑗 − 𝛽𝑗𝐸(𝑋𝑗) 

Where 𝐸(𝛽𝑗𝑋𝑗) is the mean effect estimate for feature j . The contribution is the 

difference between the feature effect minus the average effect. If we sum all the 

feature contributions for one instance, the result is the following: 
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∑𝜙𝑗(𝑓)

𝑃

𝑖=1

= ∑(𝛽𝑗𝑥𝑗
− 𝐸(𝛽𝑗𝑋𝑗))

𝑃

𝑗=1

 

                                                                      = (𝛽0 + ∑ 𝛽𝑗𝑥𝑗

𝑝

𝑗=1
) − (𝛽0 + ∑ 𝐸(𝛽𝑗𝑋𝑗)

𝑝

𝑗=1
) 

                                                                     = 𝑓(𝑥) − 𝐸 (𝑓(𝑥)) 

This is the predicted value for the data point ‘X’ minus the average predicted 

value. Feature contributions can be negative. 

Computing Shapley value - The shapley value [65] of a feature value is it's 

contribution, weighted and summed over all possible feature value combinations as 

shown below: 

𝜙𝑗(𝑣𝑎𝑙) = ∑
|𝑆|! (𝑝 − |𝑆| − 1)!

𝑝!
𝑆⊆{𝑥1,…,𝑥𝑝 }{𝑥𝑗}

 (𝑣𝑎𝑙(𝑆 ∪ {𝑥𝑗}) − 𝑣𝑎𝑙(𝑆)) 

where ‘S’ is a subset of the features used in the model, ‘x’ is the vector of feature 

values of the instance to be explained and ‘p’ the number of features. 𝑣𝑎𝑙𝑥(𝑆) is the 

prediction for feature values in set ‘S’ that are marginalized over features that are not 

included in set S: 

𝑣𝑎𝑙𝑥(𝑆) = ∫𝑓(𝑥1, … , 𝑥𝑝)𝑑𝑃𝑥∉𝑆 − 𝐸𝑥(𝑓(𝑋)) 

Prediction Explainer – Lundberg et. al. [64]  showed how these features each 

contributing to push the model output from the base value (the average model output 

passed over the training dataset) to the model output. As shown in figure 2.30, 

features pushing the prediction higher are shown in ‘red’, those pushing the 

prediction lower are in ‘blue’. Another way to visualize the same explanation is to use 

a force plot [66].  
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2.5.3.3  ELI5 and Permutation Importance 

eli5 provides a way to compute feature importances for any black-box estimator by 

measuring how score decreases when a feature is not available; the method is also 

known as ‘permutation importance’ or ‘Mean Decrease Accuracy (MDA)’. 

One of the most basic questions we might ask of a model is: What features have the 

biggest impact on predictions? To calculate this let’s consider the following table:  

 

Height at age 20 (cm) Height at age 10 (cm) …. Socks owned at age 10 

182 155 …. 20 

175 147 …. 10 

…. …. …. …. 

156 142 …. 8 

153 130 …. 24 

 

Let’s assume we want to predict a person's height when they become 20 years old, 

using data that is available at age 10. The above example includes useful features 

(height at age 10), features with little predictive power (socks owned), as well as some 

other features we won't focus on in this explanation. Now if we randomly shuffle a 

single column of the validation data, leaving the target and all other columns in place, 

how would that affect the accuracy of predictions in that now-shuffled data? 

Randomly re-ordering a single column should cause less accurate predictions, since 

the resulting data no longer corresponds to anything observed in the real world. 

Model accuracy especially suffers if we shuffle a column that the model relied on 

heavily for predictions.  In this case, shuffling height at age 10 would cause terrible 

predictions. If we shuffled socks owned instead, the resulting predictions wouldn't 

suffer nearly as much. We can use these predictions and the true target values to 

calculate how much the loss function suffered from shuffling. That performance 

deterioration measures the importance of the variable we just shuffled. Such 

permutation importance is calculated after a model has been fitted. We can then 

visualize those importance measures by using eli5 library. 
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2.5.4 Summary 

Section 2.4 described different approaches of machine learning for classification, used 

by authors to achieve promising results and satisfy their research goals. All those are 

basically blackboxes which did not include any interpretation of how those results 

were produced. To solve this problem, we have explained eXplainable AI (XAI) into 

current section 2.5 as a technique of providing interpretation of those model 

operations and build trust in machine produced results. We have described their 

taxonomy and visualized how do those operate on underlying features and influence 

prediction results. For providing local interpretation, 'LIME (Local Interpretable 

Model-Agostic Explanations)' as introduced by Ribeiro et. al. [63] has been used in 

our research to explain how contributing features weights are calculated by 

perturbing data points and interpret local outcomes. On the otherhand, for providing 

global interpretations we have presented Lundberg et. al.’s [64] description on 

showing how average feature contributions known as ‘shapley’  [65] values are 

calculated to express left/right pushes to the model from the base value prediction 

which are positive/negative impacts of features. We also have described another 

approach of computing feature importance for any blackbox estimator known as ELI5. 

It measures how do prediction scores get changed in absence/presence of features. 

This method is also known as 'permutation importance' or 'Mean Decrease Accuracy 

(MDA)'. 
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3.1 Chapter Overview 
 

n intelligence analysis domain where solution discovery is often serendipitous, 
demands techniques to provide transparent evidences of top-down and bottom-
up analytical processes of analysts while sifting through or transforming sourced 

data to provide plausible explanation of the fact. To complement the information 
entailed and to provide enhanced transparency of the operations, it demands logs of 
the individual processing activities within an automated processing system. We 
hypothesize that -capturing user's interactions with a visual interface can retrieve 
some aspects of the transparency of user's reasoning processes in intelligence 
analysis.  Management and tracing of such security sensitive analytical information 
flow originated from tightly coupled visualizations into large visual analytic systems 
for intelligence analysis that triggers huge amount of analytical information on a 
single click, involves design and development challenges. The research in this chapter, 
contributes to solutions of these issues by considering following research questions:   
 
RQ1: How to develop a system that tackles large flow of heterogeneous analytical data 
and supports W3C PROV-AQ: Provenance Access and Query standard factors i.e., 
Recording - represent, denote; Querying - identify, pingback; Accessibility - locate, 
retrieve into a multi-modular environment? 
 

- RQ1 outlines the requirements, development challenges of front-end 
techniques and back-end modelling for generically capturing different complex 
visual analytical states, automatically processing and storing as well as 
recalling those as per query to maintain traceability. We have proposed a data 
flow model for tackling large, modular, heterogeneous platform’s clickstream 
with internal system call architecture, visualization techniques to represent 
and query back those captured analytic data. We also have proposed an 
analytic task model to operate on this system and supporting real intelligence 
analyst’s strategies of sensemaking.  

   
RQ2: How to utilize captured analytic provenance data for sensemaking? 
 

- RQ2 seeks to find out the techniques of utilizing captured analytic data to 
support transparent sensemaking, mitigation of uncertainties in visualizations 
and build trust on visual analytic systems. We have conducted a case study in 
this chapter to show impacts of such uncertainties on transparency principle 
and developed an analytic visual judgemental system by utilizing captured 
series of event sequences and their interrelationships to support human 
perception, cognition and understand the entire reasoning path which is 
obvious for intelligence analysis.  

I 
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3.2 Introduction 

Now-a-days the large and complex event-driven systems around us are 

computationally intense where data flows from one process to another as it is 

transformed, filtered, fused, and used in complex models in which computations are 

triggered in response to events. Capturing provenance and representing to support 

judgmental process specially in intelligence analysis by using such computation 

systems with hundreds of interconnected services that creates huge volume of data 

at a single run is a matter of obvious challenge. It has greater impact on understanding 

the process by which the decision has been made.  Provenance is a broad topic that 

has many meanings in different contexts. According to W3C (World Wide Web 

Consortium) incubator group report, provenance normally relates to ‘source’, 

‘process’, ‘accountability’, ‘causality’ or ‘identity’ of series of events. It implies 

provenance recording system should include − the collection, alteration, consultation, 

disclosure including transfers, combination or and erasure of personal data, whereby 

the logs of consultation and disclosure will make it possible to establish the reasons 

for, date and time of such operations and, as far as possible, the identification of the 

person who consulted or disclosed data, and the identity of the recipients of such data.  

Xu et al. [1] explain, it can be valuable to maintain such historical records detailing the 

evolution of data, proceeding of process, and changes to reasoning which take place 

during sensemaking. Sensemaking is a process of generating meaning from 

information. It involves activities such as information foraging and hypothesis 

generation.  

Wong et al. [69] propose a three-layer provenance model which describes the 

relationship between the provenance and the intelligence process. During this 

process information is located, collected, analyzed, transformed, and communicated. 

Wong et al. focus on the traceability of this workflow ‘as an essential part of individual 

and collaborative reflective dialogues with both evolving and completed analyses’. In 

order to support this traceability, Wong et al. offer a conceptual framework which 

shows the analyst’s problem space as divided into three complementary work areas. 

Together they form what Wong et al. refer to as the ‘Intelligence Analysis Reasoning 

Workspace’. The three levels are: 
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i. The data level. This level includes raw data which is derived from different 

external intelligence sources such as documents, financial records, signals 

intelligence reports or photographs. 

ii. The analysis products level. This level includes the results of data 

manipulations. At this level the analyst creates abstract representations to 

draw out key facts, without going beyond sorting and structuring the available 

information.  

iii. The reasoning products level. As Wong et al. [69] explain, this level 

integrates the findings and high-level reasoning artifacts such as 

interpretations, assumptions and hypotheses. 

As Wong et al. [69] explain, provenance operates at these three levels. At the data level 

provenance tracks data and information resources. We refer to provenance at this 

level as data provenance. At the analysis products level provenance tracks the 

process of ‘data manipulations and analytic moves’ (Wong et al., [69]). This process 

provenance reveals, for example, how the analyst integrates and summarizes data. 

At the reasoning products level provenance follows the analyst’s lines of reasoning 

and argument. This reasoning provenance thus reveals how knowledge is used to 

interpret, create hypotheses and draw conclusions. The latter two categories - process 

provenance and reasoning provenance are often referred to in the literature as 

analytic provenance. 

The research of analytic provenance can be examined in five interrelated stages as 

proposed by North et al. [14]. They are - perceive, capture, encode, recover and reuse. 

These are mainly non-cognitive aspects of analytic provenance information. But for a 

successful analysis the importance of analyst’s cognitive stages must be addressed as 

they are complement to each other. To make these visible we have presented a typical 

analytic task model (below) by combining cognitive and non-cognitive aspects. 

During an analytic task it usually starts from the low level interactions on data 

heading towards high level reasoning tasks in combination with human cognition. At 
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Figure 3.1: Typical analytic task model. 

 

the later stage (Chapter 4) of this research, we have addressed the importance of 

capturing these cognitive aspects of analytical processes and described a 

computational approach to detect and utilize those. 

However, suitable tools and techniques need to be in place to capture and interpret 

those data. Throughout this research work we have identified the problems of existing 

approaches, attempted to overcome by proposing our techniques and evaluate those. 

The current chapter of this research, only includes the challenges of developing 

appropriate tools and techniques for capturing analytic tasks in structured ways. To 

progress with this, we arranged several focus group studies to gather requirements 

of the analytic provenance system, identify cognitive constructs of intelligence 

analysts during their analytical process.   
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3.3 The Approach 

Our research, design and development described into next few sections are based on 

the architecture of a prototype Analyst’s User Interface (AUI) of a funded integrated 

project through European Commission’s 7TH Framework Programme named as 

below (Visual Analytics for Sensemaking in Criminal Intelligence). The results of this 

research work aims to contribute to the project for sensemaking in criminal 

intelligence analysis. 

The Analyst’s User Interface (AUI) as shown in below is a prototype visual analytics 

system developed for criminal intelligence analysis based on the ‘Thinking Landscape’ 

design concept as proposed by Wong et. al. [73] . The ‘Thinking Landscape’ is a UI 

design concept that embodies the idea of externalizing the thinking and reasoning 

processes of the analyst in a way that gives abstract concepts a tangible expression 

within the computer user interface. The AUI architecture harmonizes interaction 

across different applications, based on conventional interaction techniques that 

fluidly support direction manipulation with information, and complies with Human 

Issues Framework. It’s visualization and interaction methods supports representing 

and working with data, tracing of how decisions and conclusions were arrived, and 

how to make these conclusion pathways visible to the users and co-workers. We 

progressed developing a widget named as ‘PROV’ for provenance visualization as 

shown in below, to capture, visualize and utilize analytical provenance information. In 

the previous section we presented a literature review on how provenance is tracked 

and represented, and implemented in the few systems that operate in the different 

data, analysis and hypothesis spaces. The literature review also describes what is 

important to the analyst about preserving and tracking the provenance of the data, of 

the analytical process, and the ways that the analytical provenance data can be used 

in reviewing, re-playing, or assess the considerations made with what data or 

evidence. 

 

*VALCRI - http://valcri.org/ 
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Figure 3.2: Four linked views for analytical provenance capture and representation system – A. Interactive partial views of AUI for total number of offences during last 24 hours on map and bar chart views, B. 
Captured states, macro playback panels, C. Provenance Trace panel by temporal & colour coded users (analysts) filtering, keyword search and multiple timelines selection for macro states, D. Analytic Path showing 
annotations set by analysts with captured states & their relationships based on interactions with colour coded users (analysts) information. 
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3.3.1   Proposed Analytic Task Model 

By considering the research issues i.e., how will provenance be captured, saved, 

tracked and implement those into AUI system that operates on different data, 

analysis, hypothesis spaces; it is important understand how analysts think and what 

they do to achieve their goals. We organized series of focus group discussion with 

crime analysts to understand their requirements from the perspective of system 

support to carry out a fruitful analysis. We have accumulated those concepts and 

presented those as correlating analytic activities into a proposed ‘Analytic Task Model’ 

as shown in below. The proposed model is consisting of following analytical steps: 

• Perceive: At this stage the analysts try to gain preliminary understanding of 

presented data as visualization or some other format. This is an exploration 

stage when analysts perform low level events [10] and capture those to use for 

the next level of analysis. 

• Process: This is the stage of higher level sub-task [10] when analysts try to 

organize their findings by composing analytical states in more meaningful way 

or encode those and use for next level of analysis. These sub-tasks are also 

known as schematization. 

• RRP: The final reasoning state at higher level allows analysts to apply their 

approaches on a different scenario for comparative analysis. It mainly follows 

compose → replicate → retain steps [below] to help generating a new insight. 

This is the top level  sensemaking undertaking step which can be saved for 

future use and replayed. We have named this technique as RRP (Repetitive 

Replicating Playback) . 

The system design of ‘PROV’ system (above) considers above three vital steps of 

analytical processes usually applied by criminal intelligence analysts. We have only 

considered non-cognitive analytic activities into our proposed task model and also 

includes interrelated stages to be examined during analytic provenance research as 

argued by North et. al. [14]. We conducted an evaluation study as well with the end-

users of the project to gather some feedback for further research and development.
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Figure 3.3: Proposed – (i) Analytic Task Model , (ii) Repetitive Replicating Playback (RRP) system.
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3.3.2  Perceiving Data  

How does the analyst perceive visualization of data? 

 

It is important to understand how the analyst “Perceives” the data to start reasoning 

process and correlate interactions with visualization. It is also important to 

understand how the data is presented to the analyst.  Crime analysis encompasses a 

range of data analysis activities. Many tasks, however, require analysts to study large 

collections of crime reports in order to identify aberrant or exceptional patterns of 

activity, identify new and emerging crime series, or sometimes suggest crime suspects 

that may be linked to a crime phenomenon. There are seldom concrete, single or 

certain approaches or techniques that can be taken at each of these stages and often 

solutions are found through serendipity instead of rules. These incorporate 

uncertainty into visual representation of data that may lead to erroneous insights. Our 

literature review has found that denoted this uncertainty as Uncertainty of 

Visualization [74], which considers how much inaccuracy occurs through the pipeline 

of data processing. Such uncertainty becomes more problematic in the crime solving 

domain as it may have negative consequences for individuals. Current state of the art 

Uncertainty of Visualization  differs with the concept Visualization of Uncertainty - 

which considers how we depict uncertainty specified with the data [74] and on which 

lot of research work have been carried out to find techniques and develop tools. 

Current state of the art demands more work to find out causes and effects of 

uncertainty of visualization in criminal intelligence analysis.   

3.3.2.1  Uncertainty in Visualization 

During analysis numerous techniques are followed for allowing analysts to make 

observations and research claims with varying levels of authority. Failing to 

acknowledge uncertainties around such analysis task, dataset and analysis technique 

may lead to a cavalier and superficial data analysis: making faulty claims with 

confidence that may lead to poor decision making. 

Criminal intelligence analysts commonly work with incomplete, ambiguous and often 

contradictory data. Such incomplete collection of data may cause flaws in logic, vague 
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or misapplied similarities to unrelated events, failures of imaginations to find a viable 

solution. A good analyst highlights such information gaps, the strengths/weaknesses 

of current dataset and pinpoints the way forward. The emergent growth of data 

capture technologies has made it possible to analyze those with the exponential 

growth of human activities now-a-days. The big problems of handling such data are – 

various sources, poorly structured, unreliable etc, which have made the analysis 

process more complex.  

3.3.2.2  Crime Analysis Under Uncertainty 

After being collected, information is processed or arranged in a way that enables the 

analytic effort. Processing can involve any number of activities including data 

collation, data mining, entity extraction, translation etc. Typically, however, 

processing involves the structuring of information so as to enable the search for 

relationships and meaning within one’s data. The techniques followed for these pro-

cessing activities may be new to analysts and introduce concerns such as - 

unawareness of the errors or uncertainties that occur as a result of the data 

transformations required by the algorithms, building trust in outputs and their 

analytical techniques etc. During this phase, an analyst needs to deal with the 

following occurred uncertainties during dataset analysis: 

• Visualization Biases – analysts see patterns into data plots (e.g. on a 

scatterplot) when the data is in fact a random distribution. Two things are 

occurring here, (i) the user is unaware that a random sample does not generate 

an even distribution of points on a simple scatterplot or in coin tossing, a fairly 

balanced sequence of heads and tails; and (ii) humans are predisposed to 

finding patterns, even very insignificant ones such as three points in a row 

amongst hundreds of scattered points. This cognitive bias is one that has 

already been identified, and is in fact a visualization bias [75] rather than 

analytic. 

• Trust Building – obviously, the chance of human error is highest when 

uncertainty is present in the system and the analyst is not aware of it, or 

mistakenly believes that there are no uncertainties. Uncertainty in visual 
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analytics originates and propagates from the system – that is the datasets, data 

model and visualizations and is then passed to the analyst as findings and 

insights are discovered, resulting in knowledge generation. Uncertainties 

affect human trust building processes using the knowledge generation model 

[76] for visual analytics. 

• Personal uncertainty - processing obliges the analyst to test the assumptions 

and hypotheses they have hitherto been operating with. The analyst has to 

ensure that the way in which information is organized enables a sober and 

unbiased evaluation of its contents.  Errors introduced here can seriously affect 

any subsequent analysis.  

• Task uncertainty - the quality of outputs obtained during processing 

influences analysis. Accordingly, the outputs of processing have to be adjusted 

to a particular case, circumstance, or analytic need. This requires a solid 

understanding of the task and processes involved. 

• Outcome uncertainty - the outputs of processing are inputs to analysis. 

Consequently, processing should be oriented to helping the analytic process. 

Similarly, if the steps to be taken during analysis are not clear, processing will 

be muddled. 

• Issue uncertainty - as with other steps in the cycle, understanding the issue 

at hand enables processing by providing the analyst with one or more concept 

models that can be applied to the structuring of information. Such models can 

be tacit or explicit in nature, technology driven or merely pen-and-paper 

representations to help the analyst filter and organize the data collected. 

• Course-of-action uncertainty - processing is greatly enabled by clarifying the 

analytical steps that will follow. Thus, knowing what analytic or data 

visualization tools will be employed can help the analyst orient the processing 

effort accordingly. 

• Decision uncertainty - processing encompasses the broadest range of 

possible activities. Given the resource constraints, analysts are often required 

to weigh the options available and determine which are most likely to generate 

new insights or ideas.
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• Informational uncertainty - processing offers another opportunity to 

critically assess the information collected in terms of its reliability, accuracy 

and relevance, as well as to verify the quality of sources from which the data 

originated. 

Techniques that provide accurate estimates of uncertainties are therefore vital. By 

understanding the uncertainties, analysts better trust their acquired knowledge and 

can report findings with greater rigour and authority. 

3.3.2.3  Case Study on a Criminal Situation 

Not all techniques of visualization offer the required information. Different kinds of 

visualizations offer different features. With the right visualization technique of large 

data, it is possible to effectively support human perception, cognition, reasoning, with 

database operations and computational methods which are crucial in the case of large 

amounts of data. In addition it is important to realize that, even if there is certainty 

about the data, errors can occur in the process of turning the data into a picture. We 

conducted a case study on ‡below dataset to demonstrate how uncertainties may 

occur due to lack of appropriate technique of visualization. We considered problems 

of Mini-Challenge 1 and used it’s available park visitors’ 14.5M movements and 4.1M 

communications datasets for this case study. As part of initial processing we filtered 

out park visitors’ check-ins dataset and visualized to have an understanding of the 

situation. 

 The Mini-Challenge 1 describes an incident of vandalism at Dino World (an 

amusement park) during a weekend (Friday, Saturday, Sunday) of June 2014. Park 

officials and law enforcement figures are interested in understanding just what 

happened during that weekend to better prepare themselves for future events. They 

are also interested in understanding how people move and communicate in the park, 

as well as how patterns changes and evolve over time, and what can be understood 

about motivations for changing patterns. 

‡ http://vacommunity.org/VAST+Challenge+2015 
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(i) (ii) 

 

 

 

(iii) (iv) 

 
 

Figure 3.4: (i) The park map, (ii) Visualization paradigm, (iii) Temporal view, (iv) Spatial 
view. 

 
 
 

Visualization Paradigm 

We developed two kinds of visualizations to show park visitors’ check-ins over time 

– Temporal and Spatial. As shown in Figure 3.4(iii) we used blue color shades for 

temporal visualization to represent check-in frequencies of park visitors over time. 

We also used color codes of park map to visualize check-ins of park visitors at 

different areas over time as shown in Figure 3.4(iv). All user check-ins at different 

areas have been visualized temporally into a user vs time matrix represented as U×T, 

where U=user and T=time as shown in Figure 3.4(ii). 
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Data Visualization and Exploration 

We visualized all visitor’s check-ins data by using above paradigm. These 

visualizations give an idea of the structure of data. Let’s say it uncovers things like – 

whether there is any cluster into the data, whether the variables are correlated with 

each other, similarities among them or if there are any outliers. From the above 

‘Temporal’ and ‘Spatial’ views few groups like G6 have been identified based on their 

criteria of being the same group. The criteria includes same kinds of activities (i.e, 

check-in frequencies, movement patterns, check-outs etc.) through-out the whole day. 

Figure 3.5: Four visualizations of the VAST dataset showing how the park visitors check-in. (i) Purple coloured 

dots represent different check-in points, (ii) Temporal high-chart view of overall check-ins, (iii) Frequencies of 

temporal check-ins visualizations with colour shades [less->more], (iv) Check-ins using spatial colours of different 

park areas as shown on park-map, (v) Filtered view of group check-in ids. 
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These kinds of smaller/bigger group activities can be found quite a lot of time 

through-out the whole visualization. 

3.3.2.4  Findings 

Findings on Uncertainties 

“Uncertainty is the dissimilarity between a given representation of reality and the 

known or unknown reality, where the unknown reality simply means you do not know 

what the reality actually is that you are representing” – the definition proposed by 

Plewe [77] has a similarity of fact into current visualizations. This is a true scenario of 

crime related intelligence analysis. Due to incomplete representation of data there 

might be flaws in logic, vague or misapplied similarities to unrelated events resulting 

failures of imaginations to find a viable solution. We call this as ‘Determinacy Problem’ 

which has two types: 

i. Spatial Determinacy – exact location of the event happening. 

ii. Temporal Determinacy – actual time of the event happening. 

These determinacy problems lead to the uncertainty of space and time which means 

‘Don’t know about when and where’. As described in Mini Challenge 1 –  

A news article was published in the newspaper on June 10, 2014 with the title ‘Mayhem 

at DinoFun World’ - by Mako Harrison, staff reporter by saying that – ‘The crime forced 

partial closure of DinoFun World and local police were on the scene shortly after the 

vandalism was discovered by park visitors. Security guards are being questioned to 

eliminate the possibility of an inside job.  Creighton Pavilion-32 was closed and locked 

up tight before each show as stated by park Chief of Security Barney  Wojciehowicz’. 

This information gives a start of analyzing the crowd for initial understanding of the 

fact. Our spatio-temporal visualizations of above show groups of people who checked-

in together and got split after a while. Our visualizations reveal more patterns of such 

activities by filtering out the data of Coaster Alley where Creighton Pavilion-32 is 

situated as shown in acima to make an initial plot of the situation and make a 

judgement on the published news. Our visualization approach 
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Figure 3.6: Spatial Determinacy Problem. 

 

considered data of every 15 minutes’ interval as a criterion of sampling and 

disambiguating dataset prior to visualization. We found that it is raising the ‘Issue 

Uncertainty’ for structuring, filtering and organizing dataset resulting to ‘Decision 

Uncertainty’. As shown in Figure 3.6, three check-in events have been recorded for 

user id 1102394 within 15 minutes interval into movements table whereas current 

visualization only visualizes the most recent check-in point. We denote this as ‘Spatial 

Determinacy Problem’. Such sampling strategy has raised another issue of missing 

particular temporal data of an event. We denote this as a ‘Temporal Determinacy 

Problem’. As shown in below, no check-in event has been plotted by the high-chart 

whereas a check-in record has been found in the movements table as displayed on 

spatial selection panel. Both of these determinacy problems raise concerns about 

‘Personal Uncertainty’ of the analyst to test the assumptions or hypotheses s/he has 

been operating with.  
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Figure 3.7: Temporal Determinacy Problem. 

 

Findings on Visualization Biases 

The VAST2015 dataset visualization as shown in above shows different patterns of 

movements, although they are not developed by using any statistical distribution 

theories i.e, frequency distribution for temporal view [above] and spatial distribution 

for spatial view [above]. So, these may create clustering illusions to analysts leading 

to cognitive biases while trying to find out patterns from these plotted data by using 

U×T visualization paradigm. Smaller/bigger group activities like group G6 can be 

found quite a lot of time through-out the whole visualization. This is a visualization 

bias where a user is typically unaware of the data values, but is more aware of the 

position of graphic points from the display.  
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Human Trust-Building under Visualization Biases and Uncertainties 

By considering the unawareness issues of analysts on errors and limitations of 

visualizations, we have found that human trust building may get affected due to 

visualization uncertainties such as spatio-temporal determinacy problems and has 

negative impacts on analytic processes due to visualization biases. Muir’s [78] 

description of trust relations between human and machine includes the concept of 

trust calibration that is influenced by such factors. Analysts have to calibrate their 

trust not only towards the system but also towards the system outputs, or the findings 

and insights that have been gained by using the system. The trust in these parts may 

increase or decrease based on the understanding and awareness of errors or 

uncertainties that are hidden behind the final system outputs.  

Provenance for Handling Uncertainties, Biases and Awareness 

By making intelligible to analysts the datasets, data configuration and modelling on 

which their findings are based, provenance techniques can be leveraged to help 

mitigate uncertainty and distrust between human and machine. On the one hand, data 

provenance, that is information on the types of data that were used as well as details 

on quality of collected data, enables analysts to track, record and communicate 

processes in order to raise awareness of uncertainties. On the other hand, analytic 

provenance, that is the analytic context under which insights were made, enables 

analysts to review the analysis process or to infer trust levels based on his/her 

behaviour or interaction with the system. In the following we will describe how these 

methods can enhance analysis processes that include uncertainties. 

• Data Provenance - Uncertainty Quantifications for each of the parts within the 

visual analytics pipeline are the foundation for handling and communicating 

uncertainties. These uncertainty measures can be Propagated and Aggregated 

in order to provide a combined measure that can be related to the system 

outputs. Furthermore, capturing the process of data transformations and 

uncertainty information enables the Visualization of Uncertainties. Finally, 

provenance techniques enable the exploration of uncertainties and an 
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understanding of how specific data items or dimensions are impacted by 

different uncertainties.  

• Analytic Provenance - Analytic provenance methods for capturing, tracking, 

managing or organizing evidence found using a system should be enriched 

with trust cues about the included uncertainties in order to support 

uncertainty aware sensemaking. Further, trailing human interaction and 

behaviour might help to infer an analyst’s trust level (e.g., which items are of 

interest or trusted). This information could be leveraged to provide hints about 

potential problems and biases. Finally, analytic provenance enables the analyst 

to track and review their analysis as a post-analysis activity in order to detect, 

assess and mitigate biases. 

To find out the answers of 5WH (Who, When, Where, What, How) questions in criminal 

intelligence by using dynamically changing, incomplete, inconsistent data and visual 

analytic techniques; rises challenges on trustworthiness of outcome. As analysts are 

unaware of inherent uncertainties, so they may waste their time by following wrong 

and uncertain leads. We found from our case study that unawareness of errors and 

limitations into visualization systems introduce determinacy problems and creates 

issue uncertainty. Such personal uncertainties of analysts may hinder their decision 

making process. To make analysts aware of uncertainties at every stage of data 

analysis – background information on how the data were collected or processed (data 

provenance) and facilities to record, organize, revisit their processes (analytic 

provenance) will aid analysts in this regard. It is argued that, where uncertainties are 

fully understood and accounted for in a data analysis, there is greater trust in the 

acquired knowledge. This notion of trust is perhaps particularly important in crime 

analysis, where analysts must provide evidence with sufficient clarity and confidence 

for officials to use in strategic and operational decision-making. 

Uncertainty in visualization is an inevitable issue for sensemaking in criminal 

intelligence. Analysts perceive the data as they go along with the system while finding 

out insights from crime related datasets. So, accuracy and precision of adopted 

visualization techniques have got a greater role in trustworthiness of the outcome. 

We have presented above a case study to introduce the concept of ‘uncertainty in 
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visualization’ and it’s relevance along the way of data exploration and perceive those 

during crime analysis. Our findings show how uncertainties in visualization pipeline 

influence cognitive biases, human awareness and trust-building during crime analysis 

and how provenance can enhance analysis processes that include uncertainties. 

 

3.3.3   Capturing Data  

How can analytic provenance be captured? 

 

To keep track of the data exploration process and insights, visual analytics systems 

need to offer to the analyst ways to track their historical operations. Such 

visualizations help to externalize knowledge that they may have about the challenge. 

This will reduce the cognitive overload imposed on the analyst by freeing essential 

mental resources and offering a new perspective on the “Captured” information. 

Analytical provenance is the means for providing insight into data processing 

operation in question. So, for criminal intelligence analysis it is one of the best means 

to provide necessary support to explain in a clear way how decisions or choices were 

made, what they were based on, how steps in a selection process were made, provide 

information grounds to justify and answer claims of bias or discrimination, and show 

compliance. All these are enablers of fairness and lawfulness of the data processing 

activities from the legal framework. Transparency in criminal intelligence analysis is 

an important requirement for maintaining respective LEP (Legal, Ethical, and Privacy) 

guidelines. This is the property that all operations on data including legal, technical 

and organizational setting and the correlating decisions based on the results can be 

understood and reconstructed at any time. So, Transparency can be regarded as the 

underlying foundation of the analytical provenance. As well as analytical activities 

performed by analysts should be recorded for supporting ‘Accountability’ for a 

particular action of the analysis process. Analytical provenance data has got greater 

influence in this regard. 

Capturing analytical provenance has also got a significant role in criminal intelligence 

analysis, because the legal directive foresees an obligation to provide competent legal 
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authorities with information about the processing operation upon request. 

Competent authorities are any public authority or any other entrusted body by 

national law to exercise public authority and public powers for the purposes of the 

prevention, investigation, detection or prosecution of criminal offences or the 

execution of criminal penalties, including the safeguarding against and the prevention 

of threats to public security. Analytical provenance data can help to validate and 

support any conclusion gathered from the visual analytics process. 

3.3.3.1  Requirements Analysis 
 
To have a better understanding of the requirements for analytical provenance in 

criminal intelligence analysis, we organized a focus group discussion with police 

analyst end users of the project above. Based on our initial under-standing of 

capturing analytical provenance, we developed an analytical state capturing 

prototype and demonstrated to police analysts during the focus group. We adopted 

Walker et al.’s, [22] proposed technique of saving analytical states as bookmarks for 

implementing our prototype. The purpose of such prototype demonstration in the 

focus group was to gather requirements for a much larger system as well as to 

evaluate the prototype. The focus group involved three groups of police analysts and 

each group had two people. 

We tested two techniques of capturing analytical states by using our developed 

prototype – (1) Capturing a URI, and (2) Capturing event properties to save and 

restore analytical states automatically. We also tested these techniques on two 

separate visualizations, using the †below dataset for Geo-Spatial Temporal (GST) 

crime analysis and ‡above dataset for Call Data Records (CDRs) analysis. This system 

automatically logs information about the user’s interaction with system as well as 

saves corresponding state data into database and shows the preview of the analytical 

state at front-end along with meta information on tooltips by using which a captured 

state can be restored again. The event based approach out of these two techniques 

that we followed to develop our initial prototype, provided us better results for 

capturing analytical states even at a granular level. 

System Requirements 
†   GST Analysis:  Canadian Crimes by Cities during 1998-2012 ( http://open.canada.ca/) 
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Based on the prototype development experience and realization from the focus group 

demonstration, we identified following system requirements for supporting criminal 

intelligence analysis. 

• SysReq1: different techniques should be supported for capturing and 

recording analytical provenance information. 

• SysReq2:  a standard mechanism should be referred to the discovery of an 

analytic provenance state object and a representation model should be 

used. 

• SysReq3:  different levels of granularity should be used in describing 

analytical provenance of complex state objects. 

• SysReq4: analytical provenance data needs to be stored, logged, and 

versioned to allow capturing of states. 

• SysReq5:  the system needs to scale with large amounts of recorded 

analytical provenance data and lots of analyst end-users. 

• SysReq6: analytical provenance information needs to be able to be easily 

queried. 

• SysReq7: different levels of security are needed to provide access to 

analytical provenance data. 

 

Police Analyst Requirements 

The police analysts currently record their thoughts in their diaries or spreadsheet 

manually and found this process cumbersome and ineffective.  The police analysts 

found the demonstrated concept of analytical states capture and restore, and 

automatic state suggestion system could be effective for their work-flow. Based on the 

focus group we identified five potential end-users for an analytical provenance 

capturing system to support criminal intelligence. These include police analysts, 

analyst trainers, re-searchers, managers, and auditors. We now outline the identified 

requirements of the five-end users based on the focus group. 

• AnaReq1: analysts need to see different representation techniques for 

visualizing analytical provenance data. 
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• AnaReq2: analysts need to be able to compare different analytical 

provenance information.  

• AnaReq3: analysts need to validate whether captured analytical 

provenance information is of adequate quality for evidence.  

• AnaReq4: the provenance information needs to show whether laws, rules 

and regulations have been correctly adhered to. 

• AnaReq5: analysts must be able to step-back and step-forward through the 

states they have captured in the past to see what actions they performed in 

the system. 

• AnaReq6: analysts need to be able to record a set of macro states to 

perform a collection of operations on different sets of data. We also call this 

Repetitive Replicating Playback (RRP) as shown in above. 

• AnaReq7: analysts need to be able to annotate provenance information 

about different states. 

• AnaReq8: analysts (based on role) must be able to turn off automatic 

logging of the provenance capture method. 

• AnaReq9: trainers should be able to use the system to train new analysts. 

• AnaReq10: auditors should be able to use the system to examine the kinds 

of activities analysts are performing and to generate reports. 

• AnaReq11: managers need to be able to monitor what their police analyst 

colleagues are working on and see summaries of information. 

• AnaReq12: researchers need to be able to use the system in conjunction 

with analysts to understand how to effectively perform criminal 

intelligence analysis. 
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(i) 

(ii) 

Figure 3.8: PROV – (i) System architecture, (ii) Internal system function calls. 
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3.3.3.2  System Design 

The AUI system has been developed by following modular software design technique, 

consisting of many widgets and heterogeneous platforms as shown in above. In 

modular architecture, functionalities are separated into independent, 

interchangeable modules such that each contains all necessaries for it’s own 

execution for distinct purposes. We progressed developing a widget named as ‘PROV’ 

and proposed a protocol for AUI to capture and visualize analytical provenance 

information. The protocol as shown in below supports such system to generically 

capture/restore analytical provenance states or workflows both automatically and 

manually by tackling heterogeneous data and development environments. The whole 

architecture has been divided into following functional sections: 

• AUI Widgets – The widgets are analyst’s visual interface for their scientific 

computations mostly built using different Javascript libraries on GOOGLE WEB 

TOOLKIT (GWT) framework by following MVP (Model, View, Presenter) design 

pattern. They have been integrated into the shell presenter of the AUI system 

that inherits widget attachment information from an Abstract Presenter, so that 

attachment of widgets can be tracked at any time. Few groups of widgets 

support interactive cross-filtering among themselves for the computation 

purpose as shown in above. 

• Data Channel – The AUI system has been built by using Errai GWT-based 

framework for supporting uniform, asynchronous messaging services across 

the client and server end through a REMOTE PROCEDURE CALL (RPC) service. 

The data channel into above is the presenter of messages generated by the 

interactions during the analysis process. As shown into above and 3.8(ii), these 

messages are consisting of two types of data i.e, METADATA (MDATA) 

generated upon user’s interactions and STATEDATA (SDATA) are accumulated 

states data of different widgets after interacting.   

• Provenance Service – As shown in below, provenance service is the middle-

tier server which co-ordinates with the tier-1 requests from clients and  
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Figure 3.9: PROV - Simplified state event sequence diagram upon interactions on visualizations into Analyst’s user Interface (AUI). 
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Figure 3.10: PROV - Provenance data flow diagram of Analyst’s User Interface (AUI) back-end. 
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tier-3 data storage system. Provenance Service has got two vital roles: 1) 

Provenance Service Implementer and 2) Provenance Manager. 

• Provenance Service Implementer –   SAVE/QUERY SERVICES for provenance 

data i.e, log data and state point information as shown in below, are 

implemented by this role player into our system.  

• Provenance Manager –  While user interactions on AUI widgets occur, the 

interacted widgets initiate provenance service by broadcasting 

STATECHANGE message to Provenance Manager. A STATEREQUEST message 

is broadcasted by the provenance manager to receive state & state change 

information from different widget presenters through a STATERESPONSE 

broadcast message.  This is how the provenance manager becomes aware of 

the state changes of AUI system. Not only state changes but also the provenance 

manager observes attachment requests into provenance system from different 

widgets through a request handler so that it can provide information on 

demand. These are all discrete events not dependent on user interactions as 

shown in above.  

• State Point Capture – The analyst fires an event for capturing his/her intended 

analysis state. The most recent STATE POINT received into Provenance 

Presenter from Provenance Manager gets saved into data storage and creates 

an image as state point preview into provenance view PROV as shown in figure 

3.9. 

• State Point Restore –   The analyst clicks on the state point preview to restore 

his/her previous analysis state. A State Point LOADREQUEST with it’s 

corresponding id is sent to After receiving enquired state from data storage, 

Provenance Manager broadcasts this as a STATEPREVIOUS message (figure 

3.9& 3.10) so that it is received by the widget to restore the analysis state back 

to the analyst. 

• Provenance Data-Storage – All provenance data are stored into and queried 

from a virtuoso universal server in the RDF graph data format by using our 

developed REST (Representational State Transfer) API for the AUI system. 
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Figure 3.11: Manually captured states panel with annotation add/edit and automatically captured log 
panel for Analyst’s User Interface (AUI). 

 

Provenance data gets stored into PROV-DB along with our proposed analytic 

provenance ontology. 

3.3.3.3  Analytic Provenance Visualizations 

We adopted UIMD (Understand, Ideate, Make, Deploy) design process model 

introduced by Mckenna et. al. [79]  to implement AUI’s analytic provenance 

visualization system ‘PROV’ for supporting police intelligence analyst’s (end-users)  
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visual judgmental process on crime data. We performed requirements analysis 

(AnaReqs) to understand the challenge and ideate; designed a system to implement 

and deploy inside AUI. This system has several visual interactive panels for analytical 

captured states representation, multi-ways querying, workflow playing back and 

analytical process mapping. These visualizations have been built on our developed 

provenance data manipulating protocol (above) to query/access database and event 

based analytical states capturing method. The widget visualizations for crime analysis 

inside AUI system have been built on anonymized real crime dataset. We applied the 

same methodology as our earlier study prototypes on AUI system to capture analytic 

states.

Figure 3.12: Analytic Path showing annotations set by analysts with captured states & their relationships based on 
interactions with colour coded users (analysts) information. States can be selected from States Panel & RRP (Repetitive 
Replicating Playback) list of Analyst’s User Interface (AUI) of the project *VALCRI to load analytic path for understanding 
intersections of analytical states captured by different analysts during their analysis process. 
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Captured Analytic States Representation 

To meet police analyst requirement AnaReq1, our developed provenance 

visualization system can capture different analytical states of AUI (Analyst’s User 

Interface) and saves them as snapshots to show their previews (above). As well as to 

meet AnaReq7 and AnaReq8, currently annotations can be added and viewed again on 

tooltips upon interactions with saved analytic states (above). Provenance data can be 

captured either manually by the analysts or automatically by the system as a log. 

 

3.3.4   Recovering Data 

How can we make sense of analytic provenance? 

 

3.3.4.1  Analytic Path  

Historical log alone is not sufficient for analyzing the analytical process with 

visualization tools. Often, there are relationships between the results and other 

elements of the analysis process which are vital to understanding analytic 

provenance. 

To understand the relationships among reasoning steps we implemented ‘Analytic 

Path’ (above) as a tool for visualizing analyst’s activities through interactions with the 

visualizations. Intelligence analysis is not practiced exclusively as a solitary activity. 

So, in a collaborative environment of criminal intelligence analytic provenance can 

add considerable value, where it must be communicated and shared among teams. 

Additionally, by allowing communication and sharing of information, visual 

representations of analytic provenance data will support analyst’s ability to identify 

and work with the desired information. So far the application of analytic provenance 

system supports sensemaking for individuals. In case of more than one analyst 

working together for a specific problem, automatically recorded interactions can help 

to understand their thinking processes.  
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Figure 3.13: Schematization of analytic path in a visuo-spatially manner. 

 

The tool ‘Analytic Path’ supports saving of mapped analytical states into and loading 

back from data storage. It allows combining such multiple maps together to make a 

visual story of the group analysis process. It also supports adding, deleting, editing or 

rearranging different branches with users’ colour codes, consisting of annotations set 

by analysts along with captured states. This is known as ‘Schematization’ of the 

reasoning process as shown in Figure 3.13. 

 

Data Space 

Analysis Space 
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3.3.4.2  Schematization 

Schematization is the process of organizing findings in some way that can trigger new 

insight. Pirolli and Card [4] suggest the need for tools to facilitate the schematization 

such as visualizing findings based on their temporal or spatial information. According 

to their sensemaking model, analysts seek information, search and filter for more 

relevant one, read and extract evidential information, and organize it into some 

schema. However, we find that the sensemaking loop is well elaborated through 

different sensemaking activities in the ‘Data-Frame Model’ proposed by Klein et. al. 

[80]. These sensemaking activities are ‘Connect’ data to a frame, ‘Elaborate’ a frame, 

‘Question’ a frame, ‘Preserve’ a frame, and ‘Reframe’. 

According to data-frame model’s terminology, the analyst tries to match some data to 

create an initial frame. When encountering new data, the analyst can either add it to 

the frame to elaborate the frame (if it fits to the frame) or remove existing data (if it 

cannot fit the frame any more). The analyst starts questioning the frame when they 

detect inconsistencies between data, or poor quality data in the frame. Then, they 

need to decide between preserving the frame by looking for more data, or reframing 

it by comparing it with other frames, or seeking a completely new frame [80]. Our 

developed ‘Analytic Path’ visualization supports schematization in a visuo-spatial 

manner for iterative and dynamic nature. Takken et. al [81] found that when people 

directly manipulate data, for example, by moving individual pieces of information to 

create temporary groups or sequences, or eliminating pieces of information from a 

group; this can enhance their sense-making and analytical reasoning ability by 

helping them discover new explanatory relationships created by the rearranged 

pieces of information. They named the technique ‘Tactile Reasoning’ which is an 

interaction technique that supports analytical reasoning by the direct manipulation 

of information objects in the Graphical User Interface (GUI). We have implemented 

the analytic path (above) in a visuo-spatial manner because it enhances the ability to 

process and interpret visual information about where data objects are in space and 

overcomes the shortcomings of existing tools to visually represent and support 

schematization in a collaborative environment. We visualized all of these analyst’s 
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reasoning provenance information (annotations) as bookmarks on a time glider to 

provide their temporal information (below). The colour coded lines help to 

distinguish each analyst’s reasoning contribution. As shown in above, analysts can 

integrate   and disintegrate  data to create a ‘new frame’. They can drag 

the data and add it to an existing frame (elaborate frame). As well as they can 

disintegrate a piece of annotation data and drop it onto the void space (preserving a 

frame). The dotted rectangles into above shows the parent nodes of data pieces ‘drug 

dealing’, ‘criminal damage’ and ‘burglary’ into ‘analysis space’ and more about their 

spatial information into ‘data space’. As well as dotted curves into analysis space 

shows their new nodes to be added with.  Additionally analysts can release an existing 

frame into the void space to make all it’s attached pieces of data free for 

rearrangement to add/delete new/existing pieces of annotation data. If the analyst 

thinks that a frame is completely wrong, s/he can construct a new frame (reframing). 

The analysis space can be panned, zoomed in/out and adjusted to scale and view the 

whole analysis in detail by using keyboard short keys. And schematization of 

annotation data can be saved into data space. 

   

3.3.5   Reusing Data 

How can a user’s insight be reapplied to a new data or domain? 

 

3.3.5.1  Repetitive Replicating Playback (RRP) 

The research goal in analytic provenance is to be able to automatically reapply a user’s 

insights to a new data or domain. In most analytical environments, analysts often 

utilize multiple tools simultaneously which renders the use of existing methods 

inadequate. A comprehensive and cohesive encoding, recovering, and reusing process 

is therefore necessary to support the analysts in their natural working environments. 

One of the requirements from Police Intelligence Analyst (end users of the project 

above) as described into AnaReqs section was to record process and compare 

different provenance information (AnaReq2 and AnaReq6).  During the focus group 

they said “…we would like to be able to record a number of actions if some tasks are  
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Figure 3.14: Repetitive Replicating Playback (RRP) System shows results with source state id 
information after running batch of saved group of states. 
 

Figure 3.15: Visual representation of saved RRP batches of captured states and tracing those 
back by time gliding or by selecting colour coded users (analysts) or by keyword searching and 
selecting from RRP list.
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more standardized. (start/stop recording). Therefore want to use the same tasks/ask 

the same questions for another case with similar data...”. To develop such 

record/replay system we have proposed a model as shown into above in line with 

analyst’s requirements. We call this Repetitive Replicating Playback (RRP) system.  

The ‘Analyst’s User Interface’ (AUI) for the project is consisting of many widgets 

developed under heterogeneous platforms. There are certain challenges to find out 

methods for reapplying insights to a new dataset by using such environment. North 

et al. [14] identified that analysts often utilize multiple tools simultaneously which 

renders the use of existing methods inadequate. Our proposed RRP system supports 

this problem very well for recording/replaying WorkFlow (WF) in a heterogeneous 

environment. The RRP cycle is consisting of ‘replay’, ‘compose’, ‘reuse’, ‘retain’ and 

‘compare’ steps. We tested this model by implementing into AUI for replicating WFs 

on different set of crime data and compare result set with selected previous states to 

gain new insight. After ‘replaying’ each RRP state (consisting of previously captured 

group of states), we find automatically captured states (as result) to ‘compare’ with 

their corresponding previous states. Composition of such RRP states can be modified 

by adding, deleting or reshuffling all of their contained previously captured analytic 

states. We can ‘compose’ new RRP state by making selections from States and RRP 

panels (above) and save (‘retain’) them for future use. 

One of the challenges to ‘reuse’ captured analytical states is to be able to formulate 

queries that retrieve and employ traces in order to fulfill an analyst’s information 

needs in an user-friendly way. It involves formulating ad-hoc traceability queries, 

allowing interactive filtering of retrieved analytic states and ad-hoc query refinement. 

We visualized all RRP states (consisting of previously captured analytic states) on a 

timeglider as batches of captured analytic states organized in a temporal order 

(above). States can be searched/filtered by types and/or users. As well as states 

sequences can be represented (highlighted in yellow colour) to show the analysis 

steps temporally. Also states can be traced back by using temporal information 

(gliding the timeline or using calendar). Our developed RRP (Repetitive Replicating 
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Playback) system includes W3C PROV-AQ: Provenance Access and Query standard 

factors i.e, Recording – represent, denote; Querying – identify, pingback; Accessibility 

– locate, retrieve.     

 

 3.4 Evaluation 

We conducted an evaluation with our police analyst end-users to elicit subjective 

feedback on our prototype. They were the participants (P) of this evaluation process. 

We wanted to evaluate how the provenance visualizations support analysis and 

reasoning about data for deriving relevant knowledge in criminal intelligence. The 

evaluation involved qualitative focus groups. We had three groups of analysts who 

participated in pairs. Each pair was from a different police organization. The 

procedure of the focus group involved demonstrating the prototype, illustrating the 

visualizations for different tasks, and obtaining feedback. Each group had 30 minutes 

for the demonstration and feedback. We had separate observers during the focus 

groups that recorded notes, ideas, and feedback from the end-users. We now report 

on the feedback as recorded by the observers, based on five questions as follows. 

Question 1: What is the purpose and value of the component? 

P1: The goal of the tool is to track the analyst’s work and save what has been done 

enabling the later retrieval. It will capture the data from the interface and information 

on the users’ interactions. The analyst will be able to “bookmark” a particular stage in 

the process and save it as part of the provenance record. 

P2: Track and capture what has actual been done. Bookmark and save as a 

provenance component The idea is to be able to capture data from the interface and 

user interactions.  

P3: Capture different states in time. Retrace earlier states system and user 

provenance. 
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P4: Capturing analyst’s use of the system. Capturing anything happening from 

analyst’s point of view and data point of view. Provenance refers to a historical record 

of the process taken or employed. Tool offers a capture mechanism. 

Question 2: Is the purpose and value clear to End Users? 

P1: Yes. The end users confirmed it is useful for the analyst to save the current state 

and be able to get back to it. Also, it is helpful if the analyst can automatically save the 

progress and get back to states they didn’t save. Finally, the tool would allow the 

supervisor to trace the reasoning of the analyst. 

P3: Once conceptual architecture, was displayed and explained, the Users really 

understood the component. 

Question 3: What do End Users like or dislike about the component? 

P1: The end users enjoyed the ability to get back to a certain significant point in time. 

They are interested in process playback not typical video playback (i.e. the re-run of 

the process which provides clear understanding of its various stages and components, 

not an overall view of what has happened and when). 

P2: Feel that it could be of use to them as they don’t do something like this already 

Able to go back through the provenance log to a specific point and save is good Would 

like to be able to record a number of actions if some tasks are more standardized.  

(start/stop recording). Therefore want to use the same tasks/ask the same questions 

for another case with similar data (i.e. Macros). Want to be able to see previous action 

recommendation system could be useful. 

P3: Generally very useful. Particularly if you have several pieces of work in progress 

and you may not work on one for 2/3 weeks and have to come back to it. “Adding 

notation would be brilliant”. Good basis for training for inexperienced analysts. Being 

able to pause the training and show what an experienced analyst would do. Ability to 

find new information and go back to and older state and add the information. The 

ability to demonstrate that you have previously saved states that are similar. 
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P4: Analysts have no way of capturing the data except in log-book. This is difficult to 

do given workload so tool is very helpful to this end. Like the ability to annotate 

Guides Tool offers a good basis for training; follow in the footsteps of an analyst using 

the provenance tools Like the tool they can reconstruct the path the analyst took over 

time. 

Question 4: What features or functionalities would End Users like added, changed or 

removed? 

P1: The end users suggested the recoding of the set of actions, not states, and then 

applying it to a new case in the same data set, the feature resembling macros in Excel. 

P2: Would like to be able to record a number of actions if some tasks are more 

standardized. (start/stop recording). Therefore want to use the same tasks/ask the 

same questions for another case with similar data (i.e. Macros). Want to be able to see 

previous action recommendation system could be useful. 

P3: Ability to “play” through the saved states.  

P4: Analysts log in for system of auditing and performance. 

Question 5: Overall, is the End User group’s assessment positive, negative or neutral? 

P1: The assessment is positive. The ability to record the macro would be useful for 

repetitive tasks. The ability to review the history of the analytic process would 

provide useful insight into the evolving judgment. 

P2: If you’re doing the same task everyday then a Macro would be useful, but Guy 

wouldn’t find the history side of things as useful as Mark would. Essentially a 

hypothesis flow Playback definition – process playback – re-run the process. 

P3: Overall, very positive. 

P4: Positive.
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Purpose and value 

All the end-users understood the purpose of the prototype to log and track analytic 

workflow in the above [82] system. They claimed that this task would add value to 

what their current workflow processes are, as it would allow them to track what they 

were doing on a daily basis and analyze what they had done previously. They deemed 

these tasks to add value, as it is necessary to explore different analytic pathways, or 

to even pick up and validate the work of others. 

Strengths and weaknesses 

The biggest strength as reported by all the end-users was that the tool tracked the 

tasks they were performing as well as the ability to bookmark certain parts of the 

interface they were working with. The tracking and book-marking feature was found 

to be useful as they could come back to a previous state where they had been working 

and continue to work from that state. 

Improvements 

Different features were suggested by some of the analysts for addition to the 

prototype. They would like to see a team leader login part, which can monitor the 

activities of all analysts. The purpose for doing so is they can see at what stage an 

analyst is working on within a crime investigation and to get reporting features based 

on the progress of analysts. They would also like to be able to add outcome reports to 

different stages of the analytical path. Being able to summarize information through 

annotations and free text will enable analysts to record some of their thoughts when 

investigating a crime. 

Satisfaction 

The overall assessment of the prototype by all the end-users was very positive and 

they were satisfied with the progress of the prototype. All the analysts felt that the 

different provenance features could add value to what they are currently doing and 

to help make more effective decision making for criminal intelligence analysis.
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3.5 Discussion 

The key to this research on analytic provenance is the belief that by capturing user’s 

interactions with a visual interface, some aspects of the transparency of user’s 

reasoning processes can be retrieved. To correlate analyst’s interactions with the 

visualizations for his/her reasoning process, the analytic provenance research needs 

to start with the understanding of how information is perceived by the user. We 

conducted a focus group discussion meeting with the police analysts to understand 

their needs for analytic provenance visualization. As the user interacts with 

visualization, the series of interactions can be considered as a linear sequence of 

actions. So, how can these analytic provenance information be captured — is still an 

open challenge. We have implemented our proposed protocol for managing huge 

analytic provenance dataflow for a large complex system like Analyst’s User Interface 

(AUI) of the project above [82]. Once the user’s provenance data has been captured, 

the challenge becomes making sense of the provenance. As noted by Jankun-Kelly et 

al. [83] history alone is not sufficient for analyzing the analytical process with 

visualization tools. Often, there are relationships between the results and other 

elements of the analysis process which are vital to understanding analytic 

provenance. Our provenance visualization system can also capture analytical 

relationships automatically. We have developed an analytic process mapping system 

named as ‘Analytic Path’ to visualize those related process sequences for multiple 

analysts working in a group. One of the research goals in analytic provenance is to be 

able to automatically reapply a user’s insights to a new data or domain. It refers to the 

utilization of specific knowledge of previously experienced, concrete problem 

situations or cases. By employing such repetitive process, the analyst can solve a new 

problem by finding a similar past case, and reuse it in the new problem situation. We 

have developed a ‘Repetitive Replicating Playback (RRP)’ system, where analysts can 

use their previously saved group of analytic states, apply to new dataset and see the 

results. We have tested our proposed way of capturing event-driven analytical  
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provenance by developing visualization prototypes based on police intelligence 

analysts’ requirements and found it supports the challenges of five interrelated stages 

of analytic provenance generically, as suggested by North, et al [14] i.e., perceive, 

capture, encode, recover and reuse. 

According to Gotz, et al’s[10] hierarchy of analytic behaviour, the sub-tasks at higher-

level have more concrete states with rich semantics into provenance-aware analytic 

process comprising of interactions for understanding human intention and 

computational elicitation. Semantics of interactions that occur during switching 

among multiple visualizations hasn’t been addressed into this work. Also this work 

hasn’t addressed the coupling between cognition and computation through 

interactions during analytic processes. As well as for sensemaking or computational 

problem solving during crime analysis in criminal intelligence and the analytic 

processes, require insightful alignment with the visualizations for supporting 

analyst’s thought processes. The current developed visualizations have got limited 

support in this regard, which we shall present into next few chapters. Our future 

endeavour for this work is to add few more features with our current system i.e., 

creating case specific new provenance capturing space with pluggable annotation  

system and tag them. Also developing a document trail system by using attached 

crime reports with the annotations will be useful as identified by the police 

intelligence analysts. We also progressed to develop an ontology for analytical 

provenance as presented into future work section. This is currently absent into W3C 

standard for describing and integrating analytical states from different sources. As 

well as visualizing evolution of ontology is a crucial issue to understand the way 

knowledge evolves form one state to another during analyst’s analytical process and 

that is a potential area of research.  
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4.1 Chapter Overview 
ecovering cognitive reflection on analytic reasoning processes from extended 

log data or only by observing is a difficult task. In the previous chapter we 

proposed RRP model as a way of composing and replaying those cognitive step 

sequences in the form of captured group of analytic states. But a gap exists between 

the cognitive constructs and manipulations or interactions humans employ to think 

and reason about data as identified by many researchers. We hypothesize in the 

current chapter that ‘Behavioural Markers (BMs)’ can act as attributes for 

bridging between human cognition and analytic computation through 

interactions during fluid transitions between mental and analytic processes at 

micro-analytic level. To test this hypothesis we have considered following research 

questions: 

RQ3: What are the constructs of Behavioural Makers (BMs)? 

- To form an exhaustive list of behavioural constructs for criminal intelligence, 

we have presented a systematic approach to identify set of mostly relevant 

BMs by considering human factors and cognitive engineering principles. 

 

RQ4: How to translate reasoning processes to Behavioural Markers (BMs)? 

- Sequences of captured analytic actions need to be structured for meaningful 

representation of BMs. We have shown how the use of network graph 

visualization in this context can be a useful exploratory process, rather than 

exhaustive to observe and gain understanding of which empirical action 

combinations may provide meaningful sequence for targeted BM.   

 

RQ5: How to externalize thinking processes from the constructs of Behavioural 

Markers (BMs)? 

- A compositional reduction mechanism based network graph analysis of 

interactions has been proposed in this chapter as a way of recognizing BMs 

within an automated framework. But such automation has limitation too as a 

computer has no ability to make an expert judgement in the same way that a 

human can through experience or intuition, on the thinking process of 

someone solving a task. So, we conducted a ‘Cognitive Task Analysis (CTA)’ too 

to detect transitions between mental states depicted by interacted states of 

visualizations through analytic processes. This study was part of the evaluation 

of the design principles of  *VALCRI’s ‘Analyst’s User Interface (AUI)’. 

R 
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4.2 Introduction 

The analytical reasoning process is viewed as a cognitive process allowing individuals 

to interpret information in context so as to derive knowledge to initiate specific 

actions [84]. The actions of reasoning process lead people to ask different questions 

and to focus on understanding underlying cognitive processes. We consider 

intelligence analysis as a fluid activity allowing humans to transition between mental 

and computer interaction states. It is a coupled human cognition and analytic 

computation activity that is enhanced through computer interactions which can be 

decomposed into human intention and computational elicitation activities. To detect 

and understand the transitions between mental and interaction states we propose 

‘Behavioural Markers (BMs)’ of analytical processes as the bridge between them in 

criminal intelligence. 

Commonly ‘Behaviour Markers (BMs)’ are known as observable ‘Non-Technical skills 

(NTs)’ that contribute to superior or substandard performance within a work 

environment [139]. In criminal intelligence for the successful investigation, an analyst 

requires a variety of skills i.e., cognitive, interpersonal and technical. Some of the 

cognitive skills include thinking critically, reasoning well, evaluating inferences and 

using logic. Necessary interpersonal skills underpinning good analysis include 

communicating clearly and building relationships. Technical skills necessary for good 

analysis are mastering specific techniques and being a strong researcher. The 

cognitive, personal resource and social skills that complement a person’s technical 

skills and contribute to an overall task performance are termed as ‘Non-Technical 

Skills (NTs)’. NT skills cover the cognitive and social sides of a person. 

Visual Analytics tools in recent years have made an impact in the criminal intelligence 

and analysis communities. Capture of user interaction as a user history has been used 

to advance our understanding of tool usage and user goals in a variety of areas. User 

interaction histories contain information about the sequence of choices that analysts 

make when exploring data or performing a task. To understand how the analyses are 

being made, users require support of correlating lower-level events with tasks, and 

tasks with goals [10]. 
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Until recently, most of the research has focused on techniques and methods for 

refining visual analytic tools, with the emphasis on empowering analysts to make 

discoveries faster and more accurately. Although this emphasis is relevant and 

necessary, we like other researchers argue that the process through which an analyst 

arrives at the conclusion is just as important as the discoveries themselves. 

Understanding how an analyst performs a successful criminal investigation will 

finally let us start bridging the gap between the art of analysis and the science of 

analytics. We found out from our proposed detection approach of ‘Behavioural 

Markers (BMs)’ from analytical data that they can bridge such gap alongside of 

performance measurement. This part of research work is aimed to find out 

appropriate methods or techniques to evaluate a visual analytic tool named as 

Analyst’s User Interface (AUI) of the project VALCRI* (Visual Analytics for 

Sensemaking in Criminal Intelligence Analysis). The goal is to determine the extent to 

which imagination, insight, transparency, and fluidity and rigour are enhanced on the 

assumption that improving these, will likely improve analysts’ ability to solve crime 

or be better at performing criminal intelligence analysis. The overarching aims of this 

research are based on research questions RQ3, RQ4 and RQ5 as described into chapter 

overview (Section 4.1). 

4.3 The Problem 

As real-time and retrospective interviews of analysts sometime produce inaccurate 

characterizations of the analytic process, other means of collecting information on the 

methods and steps that comprise the analysis process e.g., logging of user 

interactions, has already been introduced in many systems.  Endert et. al. [38] argue 

that manual user interaction data capture may present significant usability issues 

because the process forces users out of their cognitive flow or zone, which may place 

fundamental limitations on reasoning activities. Reasoning about data is an inherently 

cognitive activity, where the mental artifacts that we leverage to reason can manifest 

themselves at different semantic and symbolic levels of detail. Thus, a gap exists 

between the cognitive constructs and manipulations or interactions humans employ 

to think and reason about data [85]. 
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Table 4.1: Behavioural Attributes. 

 

We propose to use the concept of ‘Behavioural Markers (BMs)’ as attributes for 

bridging between human cognition and analytic computation through interactions 

during fluid transitions between mental and analytic processes at a ‘micro-analytic’ 

level. From a behavioural perspective, analytical reasoning process sequences 

provide information about underlying cognitive information that relate to measuring 

performance [86, 87, 88]. Exploration of the processes employed, in problem solving 

or in engaging with complex tasks, provides information about the cognitive skills 

which underlie successful resolution of the problems or tasks [89, 90, 91]. The 

cognitive skills can be demonstrated through behaviours, which are captured in the 

form of reasoning process, that is completed in an intelligence analysis task 

environment. We aim to detect these behaviours in the sensemaking loop [4]  during 

an activity that involves high-level tasks and sub-tasks [10] performed by analysts 

through low level events in the information foraging loop within a typical task model 

for criminal intelligence analysis. 

4.4 Development Approach 

The typical method for the initial development of  ‘Behavioral Marker (BM)’ systems 

is to carry out a literature review of previous domain specific research concerned with 

‘Non-Technical skills (NTs)’, followed by interviews with Subject Matter Experts 

(SMEs) designed to extract the ‘Non-Technical skills (NTs)’ required to do their job 

effectively [28, 29 30]. We carried out a ‘Systematic Literature Review (SLR)’ to create 

Enquiry  Conjecture Goal  
 
Knowledge[P2,P5], 
Intellectual- Curiosity[P3,P4], 
Foresight[P5,P6],  
Curiosity[P5,P6], 
Intuition[P5,P14],  
Synthesis[P6], Associative 
Questioning[P18],  
Sense of Humour[P7],  
Information Manipulation[P7], 
Pattern Recognition[P8]. 

 
Reasoning Ability[P1], Skepticism P[1], 
Imagination[P1], Generate Conceptual 
Models[P2], High Level Reasoning Ability[P3], 
Inductive Reasoning[P3], Intellectual 
Flexibility[P3], Deliberateness[P3], Make 
Judgements[P4], Logical[P5], Imagination[P5],   
Visual Thinking[P6], Systematic Thinking[P6],  
Thinking Ability[P7], Creative Connections 
Establishment[P7], Critical Reasoning[P7],  
Critical Thinking[P9,P10], Judgmental[P10], 
Anchoring[P17], Laddering[P17]. 
 

 
Comprehension[P2], 
Innovation[P5], 
Exhibit AHA 
Thinking[P7]. 
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an initial list of behavioural concepts that have been shown to be necessary for 

effective performance in wider  intelligence  domain  will  surface  the  following;  

intelligence  analysts,  crime  analysts, strategic analysts and so on.  

We considered following cognitive criteria as included by the †International 

Association of Law Enforcement Intelligence Analysts (IALEIA) in their †Foundations 

of Intelligence Analysis (FIAT; IALEIA, n.d.) training:  

• Enquiry - A unit of knowledge acquired from exploration and interacting with 

the data. 

• Conjecture - A supposition made by the analyst, usually as a result of making 

a series of enquiries.  

• Goal - A phase reflecting the formation of an exploratory objective. 

Several electronic databases (PsychINFO, ScienceDirect, Web of Science, Google 

Scholar, and the Defence Technical Information Center) were used to identify 

research articles by using the search terms: criminal intelligence, behavioral markers, 

human factors, situation awareness, decision making, intelligence analyst, cognitive 

skills etc. We also included a series of research papers on ‘How Analysts Think’ [P13, 

P14, P16, P17, P18] to find out the related behavioural concepts of imagination and 

insight generation in criminal intelligence. Through the studies of analysts’ thinking 

strategies we found - Gerber et. al. [P13, P14] proposed that before insight occurs, 

there is a stage of intuitive reasoning that leads to some form of assessment based on 

little or no data, a confused situation, or just plain ambiguity, which suggests to the 

analysts that he or she has to make a considerable leap - stretching the limits of one’s 

belief (what might be considered realist or plausible) - stepping out and taking the 

risk of failure or ridicule, to propose or suggest a likely outcome that is a novel way of 

problem solving. Wong et. al. [P16] explained that inferences could be inductive, 

deductive or abductive in nature, and carried out in non-sequential manner and is 

very often intertwined and chaotic and cyclic where one starts depends on what data 

is available, what goals they wish to satisfy (i.e., to gain traction vs to prove a point), 

and the claims they desire to make. Wong et. al. [P17] also discussed ‘anchors’ and 

‘anchoring’ when dealing with missing or ambiguous data; ‘ladders’ and ‘laddering’ as 



Sensemaking Behavioural Markers 
BM Development Approach 4 

  
  
 
   

146 
 Middlesex University London 

they leverage off over data; and how many of these processes are linked together is 

through ‘leaps of faith’ - a strategy to cope with missing data - that provides insights 

that can be used as suppositions to gain traction. Qazi et. al. [P18] discovered 

strategies on ‘associative searching’ when one thinks one has exhausted all options - 

he or she needs ways to activate new possibilities through semantic similarity. We 

classified all of these cognitive criteria according to †below; below, n.d. to form SLR 

PHASE-I [31] behavioural concepts as shown into above. We also presented all of 

these behavioural concepts as a ‘Means–Ends Abstraction Hierarchy’ in below to 

interrelate those and illustrate a decomposition approach to identify ‘Behavioural 

Markers (BMs)’. The means-ends chain (MEC) has been used as a hierarchy of ‘goals’ 

that will afford the analysts with the ability to solve crimes effectively.  The goals can 

be grouped into following three levels: 

• Action Goals: These are concerned with acts of analyst themselves which 

include design, approach and strategies of MEC.    

• Outcome Goals: These are immediate effects of actions related to components 

of MEC.   

• Consequences: These are indirect effects from outcomes which help analyst 

to step on sub-concepts/concepts of MEC. 

We arranged a workshop to discuss these concepts, considered for the evaluation task 

of the project VALCRI* and extracted related cognitive behaviours. There were about 

30 researchers of criminal intelligence domain including ex-police, ex-intelligence 

analysts and other developers were present in the workshop. The whole team initially 

was divided into several groups and then each concept was gone through one by one. 

Each person in the group said some words that they associated with the concept. We 

put each concept on post-its and organized them thematically like an affinity diagram 

at the end. 

 

†IALEIA - https://www.ialeia.org/
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Figure 4.1: Means-Ends abstraction hierarchy to illustrate the decomposition approach to identify Behavioural Markers (BMs). 
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During the workshop we also conducted focus group discussions  among present 

researchers to formulate clear aims based on challenges of criminal intelligence 

analysis i.e., concepts of how do analysts think, what are the expert analytic reasoning  

and problem-solving strategies and how do they make sense of situational data etc.  

Thus in Phase- II we formed an exhaustive list of ‘Behavioural Markers (BMs)’ for 

criminal intelligence analysis as shown into below. Our aim is to identify a set of 

mostly relevant ‘Behavioural Markers (BMs)’ by considering human factors and 

cognitive engineering principles that underlie the design of user interface, 

visualization and interaction on criminal intelligence analysis system.  

So far, we have presented a decomposition approach for ‘Insight’ into above and 

showed how it’s constructs at different MEC levels can engage analysts to gain and 

achieve their final goal. On the otherhand, it decomposes their approaches from top 

towards the bottom level of hierarchy. We also have described a quantitative 

technique into next section of this research to detect constructs of ‘Imagination’ and 

explained those by using cognitive engineering theory.    
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Categories 

 
Antecedents  

 
Processes 

 

 
Outcomes  

 
Imagination 
 
 
 
 
  

 
Passion, Inspired, Moral 
 
 
 
 
 
 
 
 
 
 
 
 
Motivation 
Openness, Focused, 
Inspiration, Motivation, 
Playfulness, Curiosity, 
Freedom. 
 
  

 
Divergent Thinking 
Openness, Curiosity, Creative 
Play, Exploring, 
Experimenting, Idea 
Generation, Free Thinking, 
Freedom, Outlier Thinking, 
Thinking Outside the Box, 
Inventing, Going Beyond 
Given Information, 
Traditional Assumptions, 
Unusual Interpretation, 
Fluency, Flexibility.  
 
Mental Modelling 
Analytical Reasoning, 
Metaphorical Thinking, 
Analogical Reasoning, Moral 
Reasoning, Contrarian 
Thinking, Probability 
Reasoning, Questioning, 
Abstraction of Terms, 
Changing Potential Output, 
Comparison, Finding 
Alternate Objects, Generating 
Hypotheses, Scenario 
Building, Inferring 
Possibilities.  
 

 
Idea Generation, Novelty, 
Inventive, Abstraction of Terms, 
Acceptance. 
  

 
Insight 
 
 
  

 
Incubation, Flair, Reason, 
Belief in Truth, Getting out 
of an Impass. 
 
 
 
 
 
 
 
 
Means to support insight 
Visualized information, 
Visualizing information. 
 
 
 
 
 
 
 
 
Managing Complexity 
Untangling complexity, 
Mess finding. 

 
Ideational 
Developing New Ideas, 
Developing New Perspective, 
Evolving Perception, 
Revelation, Intuition, 
Understanding a Situation, 
Perceiving Information, 
Laddering, Creating a New 
Pattern, Associative 
Questioning, Leap of Faith. 
 
Problem Solving 
Recognition and Discovery, 
Problem Reformulation, 
Reframing, Uncovering. 
 
 

 
Consequences 
Relevance Enhanced 
Perception, Being Able to 
Explain, Contribution to 
Plausible Narrative, Evidence 
for Hypothesis Building, 
Verifying Hypothesis, 
Contradiction of Previous 
Beliefs, Questioning 
Assumptions. 
 
Outputs 
Awareness, Understanding, 
Enhanced Perception, 
Unexpected Understanding, 
Sudden Jump in Understanding, 
Understanding Hypothesis, A 
Solution of Unknown 
Provenance, New Knowledge, 
New Pattern, Possibility, 
Discard Options, Breakthrough. 
 
Giving Insight 
Seeing Something in a Different 
Light, Unexpected 
Understanding, Eureka 
Moment, Recognition and 
Discovery, Without Conscious 
Thoughts, Internal and 
Conscious.  

Table 4.2: Observable behavioural markers and their constructs for criminal intelligence analysis. 
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Categories 

 
Antecedents  

 
Processes 

 

 
Outcomes  

 
Transparency 

 
Proper Motivation 
Making Awareness Visible. 
 
 
 
 
 
 
 
 
Techniques 
 
Usability, Visibility and 
Configurability  
of Algorithmic Parameters, 
Immune to Changes by 
Unauthorized Persons, 
Showing Info Outside 
Threshold, Define User 
Access, User Manuals. 

 
Structured Analysis, Critical 
Thinking, Assessment of 
Source Quality, Open Source, 
Ease of Access, See Through, 
Observability, Recording of 
Provenance, Externalization of 
Reasoning, Externalization of 
Assumptions. 
 
 
Precision on 
Communication 
 
Communication of 
Uncertainty, Communication 
of Complexity, 
Communication of 
Probability, Communication 
of Limitations,  
Communication of Analytic 
Confidence.   
 
 
Engagement of Multiple 
Stakeholders 
 
Individual and Collaborative 
Roles,  
Different Stakeholders. 
 

 
Accountability and Legal 
Compliance 
 
Showing Compliance, 
Accountability, Legal Clarity, 
Legal Certainty, Fairness, 
Honesty, Truth. 
 
 
 
Effects 
 
Contradiction of Privacy, 
Structured Analysis, Analytic 
Provenance, Making Awareness 
Visible, Critical Thinking, 
Acknowledging Alternatives, 
Ability to Understand and 
Reconstruct Operations or 
Decisions. 
 
 
 
Auditability 
 
Feedback, Easy to Access, Open 
Source, Disclosure, Traceability, 
Ability Know and Track Back, 
Verifiability, Showing 
Information Outside of 
Threshold, Direct Manipulation. 
 
 
Provenance 
 
Audit, Traceability, Disclosure 
of Algorithmic Reasoning, 
Accountability, Elements & 
Paths between Premises & 
Conclusions in Reasoning. 
 
 
Precision  
 
Counters Misuse, Not 
Ambiguous, Not Beguiling, 
Clarity, Accuracy, Certainty, See 
Through, Applicability, 
Acknowledging Alternatives, 
Quality of Information. 
 
 
 
 
 
 
 
 
 

Table 4.2: Observable behavioural markers and their constructs for criminal intelligence analysis (contd.) 
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Categories 

 
Antecedents 

 

 
Processes 

 
Outcomes 

 
Rigour 

 
Visual Support 
 
Clear Distinction Between 
Facts and Suppositions, 
Narration.  
 
 
 
 
 
 
 
 
 
 
 
 
Analytic Support 
 
Application of Analytic 
Techniques, Helpfulness, 
Decision Point, Seeing the 
Process of Deepening 
Analysis. 

 
In Analysis 
 
Structured Analytic 
Technique, Consideration of 
Multiple Hypothesis, Critical 
Thinking, Accuracy of 
Judgement, Stick to Rules & 
Procedures, Principle, Order, 
Responsibility, Due Diligence, 
Attention to Detail, 
Information Validation, 
Adherence to Standards, 
Rigour of Provenance, 
Certainty, Assessment of 
Sources & Quality, Timeliness, 
Substantiate. 
 
 In the Communication of 
Analytic Findings 
 
Communication of Analytical 
Provenance, Communication 
of Analytic Confidence, 
Communication of 
Assumptions, Communication 
of Probabilities, 
Communication of 
Uncertainty, Rigour of 
Argument, Evidenced, 
Substantiate, Trust 
Calibration, Confirmative 
Hypothesis, Decision Point, 
Information Validation. 
 

 
Compliance 
Due Diligence, Responsibility, 
Legal Compliance, Adherence to 
Standards, Assessment of 
Sources and Quality, 
Comprehensiveness, Thorough, 
Thoughtfulness, Attention to 
Detail, Exhaustive, Certainty, 
Stick to Rules and Procedures, 
Order, Rigour of Process, 
Principles, Rigour of 
Provenance. 
 
 
 
 
 
Fit for Purpose 
Timeliness, Relevance, 
Commitment. 
 
 
 
Transparency 
 
Clear Distinction Between Facts 
& Suppositions, Clarity of 
Reasoning, Transparency, 
Externalization of Reasoning 
Process, Seeing the Process of 
Deepening Analysis, Rigour of 
Provenance, Communication of 
Analytical Provenance. 
 

 
Fluidity 

 
Visual Support 
Adaptable UI, Intuitive 
Interactions, Rapidly 
Reversible Interaction, Low 
Cognitive Load, Dynamic, 
Content Related Adaptation, 
Ease of Use, Multiple Views 
to Blend, Transposition of 
Data, Variability of Logical 
Relationships, Fast Analytic 
Response Time. 
 
Analytic Support 
Transposition of Data, No 
Data Wrangling, Ease of 
Representing Relationships, 
Holistic View of Data. 

  
Intuitive Interactions, 
Variability of Logical 
Relationships. 
 
 
 
 
 
 
 
 
 
Withholding Commitment 
Circumspect, Tentative, 
Malleability, Explorable Data 
Analysis, Ease of Transition, 
Consideration of Multiple 
Hypothesis, Playfulness. 
 

 
Variability of Logical 
Relationships, Context Related 
Adaptation, Ease of Use, 
Divergent Thinking, Explorable 
Data Analysis, Playfulness, 
Malleability.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4.2: Observable behavioural markers and their constructs for criminal intelligence analysis (contd.) 



4 
Sensemaking Behavioural Markers 
BM Detection Approach 

  
  
  
  

152 
 Middlesex University London 

4.5 Behavioural Markers (BMs) Detection 

4.5.1 Quantitative Approach 

From a quantitative behavioural developmental theory perspective [92], behavioural 

constructs are events that have the potential to be directly observed. We have 

identified a set of behavioural constructs shown in above. This was achieved by 

identifying the occurrence in the recorded analytic process data by considering the 

context of the situations that these behaviours were observed (i.e. before and after 

actions and conditions). Within the field of criminal intelligence, process data from 

the task interface allows for the collection of information that may be indicative of 

observable behaviours. So, the underlying research challenge is to convert such 

analytic process related data into behavioural constructs. Such as – ‘fluency’, 

specifically during the data-finding process, can be defined as the ability to generate 

many different pieces of data. Fluency in data finding is the indicative of a behavioural 

construct known as ‘creativity’. To detect the events, we aim to follow a 

compositionally reductive framework. This strategy helps to break down or reduce 

the events into simpler, more quantitatively manageable constructs. Ideally, these 

smaller components have a more directly observable set of markers for a certain 

analytic behaviour. To illustrate this concept of applying compositional reductionism 

to complex tasks, suppose we need to measure ‘imagination’. It can be considered in 

terms of creativity. Creativity in the literature can be approximated as ‘divergent 

thinking’, and researchers have attempted to measure divergent thinking through 

concepts such as 'fluency in data finding’ or ‘flexibility unshifting between approach’ 

[93]. This idea of reducing complex construct into simpler, easier to measure 

constituent cognitive components can be conceivably applied to complex problem 

solving tasks. The reductionist approach gives an overview of ‘Behavioural Markers 

(BMs)’ and their role for the scientists to recognize them when certain behaviours 

have occurred into analytic process data stream. We aim to test presence of such 

behaviours and their constructs 
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Figure 4.2: An analytic path showing annotations set by analysts with captured states and their 
relationships based on interactions with colour coded users (analysts) information. States can be 
selected from States Panel and RRP List of Analyst’s User Interface (AUI) to load analytic path for 
understanding intersections of analytical states captured by different analysts during their 
analysis process. 
 
 

as identified into above through an automatic action sequence computation approach 

on captured analytic reasoning dataset. 

4.5.1.1  Action Sequence Computation 

For recognizing ‘Behavioural Markers (BMs)’ within an automated framework, the 

streams of actions during analytic process can be meaningful markers for complex 

behaviours. Current  approaches such as – finite state systems for fixed manipulable 

elements, a priori establishment of fixed sequences for clearly defined tasks, 
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exhausting all possible sequences for tasks with unpredictable human elements, are 

available for information computation about behavioural and cognitive processes and 

their implications for large scale complex analysis. An a priori approach is suitable for 

large scale data, but not suitable for complex tasks with human elements. In the 

‘exhaustive approach’, number of sequences increase exponentially and very rapidly 

reaches infeasible levels. Bakeman et. al. [95] suggested that exploratory aspects of 

sequential analysis can provide empirical data that can ground later interpretations 

of observed behaviours because ‘as we gain experience with the phenomena we are 

investigating, we learn which variables are important to us’. The use of a network graph 

visualization in this context can be a useful exploratory process, rather than 

exhaustive method, to observe and gain understanding of the data, where empirical 

action combinations may provide meaningful sequence for targeted behavioural 

constructs. But the sequences need to be converted into a structure that is more 

suitable for network analysis and visualization. Some sequences might be observed 

more often while others are only observed in very rare occasions.  

We developed an analytic visual state capturing, restoring and retracing prototype 

during our previous research study [94] on analytic provenance visualization for 

criminal intelligence as shown in Figure 3.2. The prototype shows captured analytic 

states with inserted annotations by the analysts into ‘Analytic States Panel’ which are 

records of their reasoning provenance. 

The RRP (Repetitive Replicating Playback) panel supports to create a composition of 

captured analytic logical states which can be applied back again on different other 

scenarios. All such captured visual analytic states can be replayed back again and 

visualized as a colour coded users’ actions network known as “Analytic Path” to show 

analysts’ higher level subtasks [10] through low level action sequences i.e., Seq.#001 

A→B→D→E→G,  Seq.#002 A→C→I,…., Seq.#N as shown in above. The incidence nodes 

of “Analytic Path” network can be computed by following our proposed 

compositionally reductive framework for the contextual information of complex 

analysis. To illustrate the idea – let’s assume P(S) is a semantic state composition 

function P(S), where S is an analytic state.  So, P(S) = S.   
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Figure 4.3: Indegrees [deg−(V)] of action sequence graph indicative of restoring previous 
analytic states. 

 
 

For the Seq. #001, it can expressed as – 

P(SA) = SA 

P(SB) = SB 

P(SD) = SD 

….. …..  …..  ….. 

P(Sn) = Sn, , where n is the number of nodes. 
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Figure 4.4: Outdegrees [deg+(V)] of action sequence graph indicative of generating more 
alternative approaches. 
 

Thus we computed nth state Sn as P: SA,B,D, ….., n-1→ S n . Composition function of different 

analytic states can be expressed as – 

P(SA) o P(SB) = P o P(SA,SB)={SA,SB} = SA,B         P:SA→SB 

P(SB) o P(SD) = P o P(SB,SD)={SB,SD} = SB,D        P:SB→SD 

… … … … … … …  

P o P(SA,B,D, ….., n-1, Sn) = {SA, SB, ….., S n }        P: SA,B,D, ….., n-1→ S n  =  S ST  ,  

where S ST  is a  Sub-Task State [10] through low level actions or events. All other low
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Figure 4.5: Calculating centrality or approximate importance of an action sequence graph. 

 

level action sequences Seq. #002, Seq. #003,…, …, …, Seq. #N can be computed in the 

same way.  

To determine which sequences are more valid measures of ‘Behavioural Markers 

(BMs)’, we consider our identified behavioural constructs of above and this would 

entail some form of network analysis; so each low level actions (representing an 

analytic state) can be defined as a ‘node’ and the links that make up a sequence across 

the nodes can be defined as ‘edges’. Eigenvector centrality is one method of computing 

the centrality or approximate importance of each node in a graph network. As shown 

in above, adjacency and centrality matrices for the action sequence graph have 
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been computed. The weight of each edge has been considered as ‘1’ for the simplicity 

of this computation. The eigenvector of the adjacency matrix have been computed too 

such that all of its elements are positive and to identify the prevalent nodes for 

pathways of actions. Node F (above) shows higher importance and associated edges 

i.e, indegree 𝑑𝑒𝑔−(𝑉) and outdegree 𝑑𝑒𝑔+(𝑉) as shown in above and above 

respectively. It indicates that it has been taken more often and therefore may imply 

that the analysts are finding more sensible choices for shifting from one approach to 

another (Flexibility) or generating more alternative approaches (Fluency). Creativity 

is manifested through the flexibility, fluency and originality of responses to a task [96] 

which can be approximated as ‘Divergent Thinking’ or alternately ‘Imagination’.  This 

is how we can also calculate the ‘Analytic Path’ of above to find out such cognitive 

constructs computationally.    

The main challenges of recognizing such ‘Behavioural Markers (BMs)’ within an 

automated framework include the limitation that a computer has no ability to make 

an expert judgement in the same way that a human can. For example, a human may 

be able to reflect, either through experience or intuition, on the thinking process of 

someone solving a task and be able to interpret correctly. Another important 

challenge lies in interpretation of interaction and analytic process data to extract 

markers of behaviours from them. For the reductionist approach, data reduction can 

be accomplished through coding and manual interpretation. This is extremely labour 

intensive and best for qualitative analysis. Direct observation through video, physical 

observation, participant interview, audio recording are needed.  

 

4.5.2   Qualitative Approach 

4.5.2.1  Methodology 

We used AUI to study a group of police analysts to identify if the design principles 

used for the system encourages anchoring, laddering and associative questioning in 

fluidly which supports sense-making and insight generation. We assume that 
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improving these, will likely improve analysts’ ability to solve crime or be better at 

performing criminal intelligence analysis.  

The study was aimed to evaluate the performance of participants performing 

representative tasks using AUI components (summative evaluation) of the project 

*VALCRI and to elicit data that might inform further development (formative 

evaluation). The considered independent variables were - system with two levels, 

*VALCRI vs state-of-the-art, leading to two conditions, *VALCRI (experimental) and 

state-of-the-art (control). In the state-of-the-art condition participants were aimed to 

perform a task using the system that was representative of the current state-of-the-

art in police work. The study used a repeated measures design (same subjects). 

Counterbalancing was set to be used to control for effects of condition order and task. 

 The dependent variables included imagination, insight, transparency, fluidity and 

rigour. The analysts were given a task such as ‘…You are an analyst responsible for 

analyzing crime in the town of Tormington. You have been tasked with analyzing 

burglary dwelling offences in the town with a view to preventing future crimes of this 

type…’ to test dependent variables. Where possible, these were considered to measure 

the constructs objectively and subjectively (e.g., using participant self-reports). 

Where objective measurement was not possible, subjective measures were aimed to 

use. 

4.5.2.2  Participants 

For the study we recruited eight (n=8) police analysts who are the end users of the 

project *VALCRI.  All participants were competent using computers for their daily 

work. There were four females and four males.  

4.5.2.3  Procedure 

AUI was loaded with an anonymized real crime dataset which was created for the 

project *VALCRI. We were interested in observing how senior police analysts would 

use the AUI to address realistic tasks similar to the once they are faced within their 

day to day operations.
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Categories 

 
Behavioural Constructs 

 
Description 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Imagination 

Curiosity 
 

• A strong desire to know or learn something. 
 
 

Creative Play/ 
Playfulness 

• Playfulness Cognitive spontaneity, joy, and a sense 
of humour in approach. 
• Play involving make-believe, an ‘as if’ stance, 
fantasy, and symbol substitution.  
 
 

Idea Generation • Ideational flexibility - The number of themes or 
categories within an examinee’s or respondent’s 
ideation. 
• Ideational fluency - The total number of ideas given 
on any one divergent thinking exercise. 
• Ideational Originality - The unusualness or 
uniqueness of an examinee’s or respondent’s ideas.  
 
 

Creative Problem Solving • Fluency in data finding or information retrieving 
(the number of different data or information 
generated);  
• Fluency in problem finding (the number of alternate 
problem statements produced);  
 
• Flexibility in problem finding (the number of 
categories created by the generated alternate 
problem statements);  
and  
• Quality of the problem statement (the complexity of 
each group’s final problem statement judged by two 
experts in terms of the degree to which the needs and 
motives of all those involved in the problematic 
situation including the owner, goal, and constraints 
identified in the  final problem statement were 
satisfied) 
 
 

 
Insight 
 
 
 
 
 
 

Intuition 
 
 
 
 
Leap of Faith 

• ‘Affectively charged judgments that arise through 
rapid non-conscious and holistic associations’ [97].  
• ‘A belief in something without evidence’ [98].    
•  ‘that reflects affective reactions’ [99]. 
 
• ‘An interpretation of intuitive judgments that arise 
from experience consistent with perception of a 
current situation’ [P14] 
• ‘Sudden unexpected thoughts that solve problems’ 
[100].  
• “An unexpected shift in the way we understand 
things” [46]. 
 
 

Table 4.3: Description of behavioural constructs. 
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Categories 

 
Behavioural Constructs 

 
Description 

 
 
 
 
 
 
 
 
Transparency 

Anchor • Anchors are key data elements that serve to create 
understandings that guide subsequent inquiry. 
 

Anchoring • A specific understanding of a situation, given data, 
prior knowledge, general understanding of the world 
and the type of problem or crime, and the goals at the 
time. It provides the cognitive traction to enable 
reasoning to start. If one does not understand what 
the data means nor how the data might be created, 
one is not able to start.  The analysts know that, and 
use assumptions to create plausible explanations to 
“pin” down, or anchor, no-data, ambiguous data or 
data that is unclear about how they fit in.  The 
correctness and accuracy of these frames can be 
corrected or modified later when more is known 
about the situation [P17].  
 
 

Associative Questioning • Asking of questions that attempt to discover what 
other information or knowledge that may or may not 
directly relate to the subject, but may lead to 
interesting insights P[18].  
 
 

 

Participants were offered a training session of about 2-3 hours long before the (two) 

days of main evaluation sessions. At the end of the training session participants were 

given time to familiarize themselves with the shown functionality of the system.  

Each participant performed the task. We had three analysts at each session in both 

days. Each analyst was in a room with a facilitator and an observer for note taking. 

Throughout the study participants were encouraged to think-aloud as a way to 

understand what a participant was thinking, observing, and doing to help trace the 

participants decision-making process. Participants notified the facilitator when they 

commenced and ended the task. At the end of each task, a semi-structured interview 

took place. A participant session lasted about 2 hours.  

Questionnaires were developed to assess each of the constructs of above through 

participant self-reports, elicited post-task. It was intended that these questionnaires 

Table 4.3: Description of behavioural constructs (contd). 
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will incorporate more task/domain specific sub-constructs (e.g. ‘inferring a modus 

operandi’ as a type of insight). 

4.5.2.4  Data collection 

Participants were notified of the study procedure, and gave consent for video and 

audio recording. Multiple Cognitive Task Analysis (CTA) methods were used to extract 

and understand the participants’ decision process during the tasks. Methods such as 

think-aloud elicitation during the task with full resolution video capture of the screen 

(video capture), user observation (video capture and field notes), semi- structured 

interviews (video play-back and review of field notes), and questionnaires were used 

as data collection methods.  

4.5.2.5  Study setup 

Two attached display monitors (vertically and horizontally), keyboard and mouse 

were connected and the AUI software was loaded into it. Participants were provided 

with A4 sheets, pen, pencils and MS Office to use if needed.  

4.5.2.6  Assessment Method 

The objective of the assessment phase was to inform selection of the most effective 

behavioural constructs in criminal intelligence. The set of behavioural constructs as 

shown in above is too large for a usable checklist and so a structured method of 

selecting most relevant and usable markers for inclusion was suggested. Effective 

constructs of behaviour are clear concepts which are described simply and related to 

task performance. The behaviour can be measured as a frequency (the absence or 

presence of the marker) or on a scale.  

Simple three-point scales (for example observed, not observed, not applicable) are 

often used on ‘Behavioural Marker (BM)’ checklists in order to improve the clarity of 

the concept and to ensure reliability between different assessors (Fletcher et al., 

2001). In our study we considered two axiomatic dimensions to inform selection: the 

detectability of the behaviour through AUI analytical tasks and the relevance of the 

behaviour to AUI performance. The most relevant cognitive criteria was  
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Types Observed Analysis Techniques 

Filtration Analysts remove extraneous data to focus on what’s important. This applies to 

individual pieces of data (an analyst may have to filter out dozens of paragraphs 

from an officers’ narrative to find the information important to the analyst) and 

to large data sets (an analyst searching for patterns of nighttime burglary filters 

out daytime incidents and non-burglaries). 

Categorization Analysts categorize, classify, or cluster pieces of data into logical groups—

robbery or burglary, purse snatching or carjacking, Beat 4 or Beat 5, offender or 

victim—to help identify, analyze, and communicate information. Some categories 

are obvious, such as the year (2008 or 2009); others require more intellectual 

effort, such as when an analyst creates situational types (domestic assault, gang 

assault, or road rage assault). 

Aggregation Analysts count, summarize, average, or otherwise aggregate data into categories. 

Examples of aggregation include taking 20,000 police calls for service and 

showing the number during each shift; arranging 365 auto thefts by counting the 

make and model of cars stolen; and showing the average dollar value stolen by 

crime type for 16,500 property crimes. 

Comparison Analysts may compare individual incidents to determine if they are related. They 

may also compare large data sets (e.g., 2008 crimes vs. 2009 crimes, crimes in 

Birmingham vs. crimes in London, Beat 4 calls vs. Beat 3 calls) to determine 

trends and deviations from the norm. Most crime statistics are meaningless 

unless compared to previous time periods or other geographic areas. 

Correlation The term “correlation” is sometimes used informally to denote any observed 

relationship between two variables (e.g., robberies seem to cluster around 

subway stops, burglaries decline during school hours.) 

Causality & 

Explanation 

This process takes correlation a step further by determining whether one factor 

causes another. Did the new shopping mall “cause” auto burglaries to increase in 

the area? Have increases in the price of heroin “caused” an increase in burglary? 

Projection Analysts can use existing data to project or predict the future. If we’ve already 

had 19 robberies this month, how many are we likely to have by the end of the 

month? If the offender’s activities continue as they have in the past, where and 

when is he likely to strike next? 

 

Table 4.4: Observed analysis techniques followed by crime analysts. 
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explained in the ‘development approach’ section 4.4 and classified criteria according 

to †above, n.d. [31] as shown into above. But for this study, we present the detection 

strategies of those relevant cognitive constructs into above. 

4.5.2.7  Results 

We considered intelligence analysis as a fluid activity involving transitions between 

mental and interaction states through analytic processes. The analytic processes that 

analysts employ are the indicatives of ‘Behavioural Markers (BMs)’ through 

techniques of analysis they follow. Few of such analysis techniques that we observed 

are described into above. 

We observed the participant P3 at experiment station ES3 started with gaining an 

overview of the available data. “… what’s going on within data range?....” She filtered 

the data according to provided date range and tried to focus on. This was similar to 

the OFD (Overview-Filter-Detail) strategy identified by Kang et al. [5].  We observed 

her ‘Questioning’ about data while performing ‘Comparisons’ of time chart data. She 

was performing visual comparison of information by using Index Cards, Map etc while 

trying to understand the crime situation. “I don’t know ….”, we found her feeling 

‘Uncertain’ about the scenario while she was adopting ‘Associative Thinking’ and 

trying to find alternate data. At a certain point she was trying find out ‘Similarities’ 

among MO. She was trying to generate hypotheses by ‘Self Questioning’. She was 

trying to ‘Build Scenario’ of the problem by using CCT, S3, Map and Bar Chart views. 

She tried to understand clustering but failed to grasp it. She was struggling find out a 

clue but couldn’t succeed.     

We observed another participant P4 at experiment station ES4. We found him saying 

“….too many information. Only the significant information will be helpful”. However, we 

found ‘Free Thinking’ happening while he was exploring the data.  

AT experiment station ES4, we observed another participant P6 in the afternoon 

session. He was also found ‘Exploring’ and ‘Free Thinking’ while he started his 

analysis. We found that he had curiousity on ‘Alternative Options’. He was trying to 
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‘Build Scenario’ by using plausible suspects list for unsolved crimes. He was 

struggling because of too much information and got lost. 

Participant P7 at experiment station ES1 has been observed in the following day. She 

followed the strategy HTK (Hit the Keyword) as identified by Kang et al. [5]. She went 

through the problem document and circled keywords. She was ‘Thinking of 

Comparing’ solved vs unsolved crimes. We observed ‘Analytical Thinking’ during 

her task as she was looking for where the large range of crimes occurred. She was also 

trying to ‘Find out Correlations’ between holidays’ data. “….It’s good to know for the 

police officers either houses/flats are prevailing…..” – such ‘Idea Generation’ has also 

been observed while she was performing her analysis by using CCT and S3. We found 

her ‘Curious’ to look for where the holidays occurred and she was trying to ‘Anchor’ 

while using those CCT and S3 views.   

We aimed to detect transitions between mental states depicted by interacted states 

of visualizations through analytic processes. To be more precise we gathered analyst’s 

subjective feedbacks i.e, positive(+)/negative(-) and analyzed those to find out 

presence of  ‘Behavioural Markers (BMs)’. Several of the results indicate different BMs 

as followed: 

• P7 at ES1: ‘ (+) It works fast and gives you the impression of giving you the right 

results’ but ‘ (-) you have to go for a new search when you are looking for a special 

period. You cannot pick a special period meaning the period before the offender 

was caught’.  

Participant P1 was ‘Curious’ about knowing crime situation before the 

offender was caught and clustering solved/unsolved crimes to understand 

what has lead the situation. 

 

• P3 at ES3: ‘ (+) Clean and simple design, flow of queries through all views on your 

screen, introduces new ways of thinking about data’ but ‘ (-) need to be able to 

analyze by time of day, want to choose offences as a group from the map’. 

Participant P3 reported that the system generated number of different data or 

information which means the supportive is in ‘Fluency’ of data finding or  



4 
Sensemaking Behavioural Markers 
BM Detection – Qualitative Approach 
 

  
  
 
   

166 
 Middlesex University London 

 

Figure 4.6: VALCRI’s phase-1 system evaluation: User feedback approach based on open-ended 
questionnaire to identify how it’s AUI system encourages or hinders insight, creativity and 
imagination. 
 

information retrieving as part of ‘Creative Problem Solving’ and was looking 

for ‘Ideational Flexibility’ by trying to aggregate those data by time of day etc. 

 

• P5 at ES5: ‘(+) Almost direct result from a question, interactivity between time 

and space’ but ‘ (-) difficult to switch between offender/victim, sometimes got 

confused with selections’. 

Participant P5’s difficulty to find more sensible choices for shifting from one 

approach to another and  generating more alternative results demands the 

‘Flexibility’ during analytical approaches.  

Questionnaires were developed to assess each of the behavioural constructs of 

Tabove through participant’s self-reports (subjectively), elicited post-task and 

interview with the aim that these will assess those constructs in generic terms. Each 

question was scaled between (strongly disagree) 1<->7 (strongly agree). As shown in 

above, we have found during the phase-1 evaluation of VALCRI’s AUI system that most  
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Figure 4.7: VALCRI’s phase-1 system evaluation: NASA-TLX Mental Workload Rating Scale. 

 

of the participants’ agreement ratings, 3.29 ≤ 𝑟 ≤ 5.00 with an overall average value 

of 4.07. The overall average min value for all delivered questionnaires for participants 

was 2.12 and max value 6.25 with the standard deviation, 𝜎 = 1.45 . 

Taking into consideration, we have understood through this experiment that 

constructs of analyst’s cognitive activities which we call ‘Behavioural Markers (BMs)’ 

are ingrained into their analytic activities. As described above, we observed 

reasonable number of constructs of those BMs while participants were working on 

their tasks at different experiment stations (ESs).  

We also measured mental workload at NASA-TLX rating scale in order to assess 

effectiveness and other aspects of performance of VALCRI’s AUI. As shown in above, 

7

1

3

1

3

7

10

6

8

7

9

10

8.142857143

2.857142857

6.142857143

3.142857143

7

8

0.899735411
1.573591585

2.035400978 1.951800146 2.160246899

1.154700538

-2

0

2

4

6

8

10

12

Mental Demand Physical
Demand

Temporal
Demand

Performance Effort Frustration

NASA-TLX



4 
Sensemaking Behavioural Markers 
BM Detection – Qualitative Approach 
 

  
  
 
   

168 
 Middlesex University London 

following subjective subscales as described by Rahman et. al. [101] were considered 

while serving questionnaires to all participants: 

• Mental Demand (MD):  How much mental and perceptual activity was 

required (e.g. thinking deciding, calculating, remembering, looking, searching, 

etc)? Was the mission easy or demanding, simple or complex, exacting or 

forgiving? 

• Physical Demand (PD): How much physical activity was required (e.g., 

pushing, pulling, turning, controlling activating, etc.)? Was the mission easy or 

demanding, slow or brisk, slack or strenuous, restful or laborious? 

• Temporal Demand (TD): How much time pressure did you feel due to the rate 

or place at which the mission occurred? Was the pace slow and leisurely or 

rapid and frantic? 

• Performance (PF): How successful do you think you were in accomplishing 

the goals of the mission? How satisfied were you with your performance in 

accomplishing these goals? 

• Effort (EF): How hard did you have to work (mentally and physically to 

accomplish your level of performance? 

• Frustration (FR): How discouraged, stressed, irritated, and annoyed versus 

gratified, relaxed, content, and complacent did you feel during your mission? 

We have found by using above subscales that participants’ average mental demand 

rating MD=8.14 which is reasonably high. This suggests that fluency in data finding 

equates to ideational fluency. The lowest standard deviation SD=0.9 shows strong 

acceptance of all participants regarding MD ratings. However, the average 

performance rating PF=3.14 makes it clear that gaining an insight or reaching at stage 

of decision making was not as successful as expected despite of higher effort EF=7. So, 

to improve performance we also gathered data for positive(+) and negative(-) aspects 

of AUI alongside our observations and recommendations from all participants for 

further development.
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4.6 Discussion 

This research aims to explain how human cognition leads to interactions and vice 

versa to achieve certain goal. Recovering cognitive reflection on analytic reasoning 

processes from extended log data or only by observing is a difficult task. For example, 

knowing when one reasoning process ends and another begins may be unclear from 

a sequence of interactions alone. We call it ‘Cognitive Steps Sequencing Problem’. 

Endert et al. [38] contend that a new methodology to couple these cognitive and 

computational components of visual analytic system is necessary. During our 

previous stage of research as described into Section 3.3.5.1 and Section 3.3.4.2, we 

proposed analytic state composition and schematization techniques to tackle this 

problem with captured analytic data. At this stage of research we have showed that 

analysts’ cognitive and adopted analysis steps can be bridged by using their captured 

analytic reasoning data.  For this, we have considered markers of analyst’s cognitive 

behaviours (known as Behavioural Markers) as attributes for bridging human 

cognition and analytic computation through interactions. To detect these ‘Behavioural 

Markers (BMs)’ from captured analytic data, we have proposed a computational 

technique known as “Compositional Reductionism”. Such technique provides a simple 

solution to overcome tedious effort of qualitative approach for detecting analyst’s 

cognitive aspects from sequential actions into log data. Although computational 

technique is an automatic approach, it still lacks ability of making an expert 

judgement in the same way that a human can. For this reason, we also adopted a 

qualitative approach to detect analyst’s ‘Observable Behaviours’. For this purpose 

‘Cognitive Task Analysis (CTA)’ method was used to extract and understand the 

participants’ decision process during the tasks. Methods such as think-aloud 

elicitation during the task with full resolution video capture of the screen (video 

capture), user observation (video capture and field notes), semi-structured 

interviews (video play-back and review of field notes), and questionnaires were used  
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as data collection methods. We extracted a good number of observable BMs through 

this CTA study. We have found most of the participants’ agreement ratings, 3.29 ≤

𝑟 ≤ 5.00 with an overall average value of 4.07 where  overall average min value for 

all delivered questionnaires for participants was 2.12 and max value 6.25 with the 

standard deviation, 𝜎 = 1.45 . We also have found that participants’ average mental 

demand rating MD=8.14 which is reasonably high. This is explicitly indication of 

‘fluency in data finding’ resulting to ‘ideational fluency’. The lowest standard deviation 

SD=0.9 shows strong acceptance of all participants regarding MD ratings. However, 

the average performance rating PF=3.14 makes it clear that gaining an ‘insight’ or 

reaching at stage of decision making was not as successful as expected despite of 

higher effort EF=7. 

To measure at what extent a system like AUI can enhance ‘insight’, ‘creativity’ and 

‘imagination’, following methodology can be adopted by using means-ends hierarchy 

as shown in Figure 4.1 but leaving this as future work.  

Measuring Insight:  

SCALE: % of Insights gained by demonstrating instances of [Concepts = {Intuition, 

Leap of Faith}], [Sub-Concepts = {Associative Questioning}] and [Components = 

{Pattern Recognition, Comprehension, Understanding}] 

Measuring Intuition:  

SCALE: % of instances where Intuition was gained by demonstrating instances of 

[Sub-Concept = {Anchoring}] 

Measuring Anchoring:  

SCALE: % of instances where Anchoring was made possible through the use of 

[Components = {Situation Awareness, Narrative} 
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Measuring Situation Awareness:  

SCALE: % of instances where Situation Awareness was demonstrated through the use 

of [Strategies = {Analytical Approach, Profiling }] 

Measuring Analytical Approach:  

SCALE: %  of tasks that where the Analyst incorporated [Approach = {Overview, Detail 

on Demand} ] as a starting point or method 

Measuring Profiling:  

SCALE: % of tasks where the Analyst incorporated [Approach = {Statistical Metrics} ] 

as a starting point or method. 
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5.1 Chapter Overview 
y considering the shortcomings of adopting a qualitative approach to detect 
‘Behavioural Markers (BMs)’, we hypothesize in the current chapter that 
inferring chains of low-level analytic actions can be of assistance for 

understanding multi-tasking behaviour.  This will lead us to understand what the 
user is trying to do. The scope of this chapter include - understanding how 
conventional techniques (currently used in many systems) perform to infer user’s 
tasks, conducting experiments to demonstrate and improving those. We have run 
experiments with different machine learning techniques to improve inference making 
results both into known and unknown scenarios.  The aim of running those 
experiments are to test the above hypothesis by considering following research 
questions: 
 

RQ6: How can meaningful units of task execution be produced from captured 
interaction logs? 
 

- RQ6 addresses the fundamental problem of finding out the way of breaking 
down a search session into meaningful chunks to detect user’s task switch 
points. We have discussed how can those search sessions be chunked 
according to contextual and hierarchical levels. We have also shown how those 
action chunks be utilized for an unknown scenario which is a bit complex 
problem.   

 
RQ7: How precisely multi-task switches be inferred during execution of interactive 
tasks? 
  

- RQ7 targets to prove/disprove the above hypothesis and evaluate the results. 
We have contributed to contextualize user’s search session to better 
understand user’s intention by inferring their task switch points which is not 
mostly considered by conventional search engines. We have developed 
machine learning models to find out how precisely this can be accomplished. 
We also have shown how can those models be tuned on user’s search dataset 
for improving results both in known and unknown scenarios. Few 
visualizations have been developed to show semantic information of those 
action chunks and internal model operations for inference making by using 
trained semantic and contextualized dataset. 

 
Details on machine learning models and produced results of this chapter can be 
retrieved from-
https://github.com/Vis4Sense/ProvenanceLearning/tree/master/

ML%20Algorithms/J  

B 



5 Sensemaking Task Inference 
Introduction 

 
     

174 
 Middlesex University London 

5.2 Introduction 
 
Identifying when users switch tasks involves detailed analysis of human multitasking 

behaviour. The process helps to create insight into individual people. We observed 

during our previous CTA study (which detected analytical behavioural markers (BMs) 

[102] of criminal intelligence analyst participants) that when an interesting insight 

was identified, analysts got engaged in an insight phase during which they either 

documented their discovery, by taking notes or capturing a visualization snapshot, or 

did both. Such cues can be utilized to punctuate the sequence of user performed 

actions, marking important semantic boundaries in the recorded history of user 

activities. But it is much difficult in case of an unstructured and unannotated 

sequential list as that does not contain enough structure to infer the analytical activity. 

Dragunov et al. [103] found through their ‘TaskTracer’ system study that a computer 

assistant can infer information about users’ tasks and goals which they achieved by  

analyzing the context in which the user performs one action or another. One approach 

is to use machine learning to learn user actions and predict the likely future ones as 

proposed by Keim et. al. [104]. 

 

Due to enormous growth of captured interaction events as the analysis unfolds, it is 

extremely difficult to infer chain of actions and organize those into semantically 

meaningful segments of activities. Punctuating the sequence of performed actions, 

marking important semantic boundaries in the recorded history of user activities, is 

a challenge as it may be unclear from the sequence of interactions when one reasoning 

process ends and another begins [105]. To distinguish, it is very important to 

understand what the users are trying to search and why are they searching? If a 

search engine knew it, then that could provide users with a better experience that is 

tailored to their goals [106]. But analytical processes are not a simple sequence of 

logical choices leading inexorably to a goal. Instead, the process involves exploratory 

analysis where analysts try a range of options and assess which is the most successful 

and backtracking when results show that a particular line of inquiry is fruitless [107]. 

So, the ‘why’ of user search behaviour is actually essential to satisfying the user’s 

information need. ‘How do combinations of multiple actions signal to accomplishment 
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of user’s higher-level sub-tasks?’ , ‘How to find out the actions that form meaningful 

chains of user’s individual insights?’ – these are questions that can be considered as a 

first step of research to understand user’s search behaviour and marking important 

semantic boundaries into recorded history of user activities. To delve into this 

research further the following issues can be considered:     

1. ‘How to classify the user activity types?’ - such as online shopping, travel 

planning, deciding which university to attend, and socialising etc. There are 

many existing classification methods can be applied, and the challenge is to: 

i. Collect and label training/learning samples; 

ii. Select and create the features that will be used as input for classifiers. 

2. A more fundamental problem is finding out – ‘how to break a search session into 

meaningful chunks’.  Each session is essentially a sequence of URLs that a user 

visits, and some of the URLs are more relevant to the task than rest of the 

sequence. For example, during an online shopping session, the users may check 

their emails or social networks from time to time. As a result, the parts 

corresponding to emails or social networking activities  are 'chunks' that are 

different from those for the shopping. 

i. Chunking is context dependent - In the same shopping example, if all the 

URLs are about shopping, then the 'chunking' may be the different 

stages of the shopping, such as the product research stage, the product 

comparison stage, and the best-price hunting stage. Each of these stage 

can be a 'chunk' itself. 

ii. Chunking is also hierarchical - still with the shopping example, the first 

level of chunking may be between shopping vs. non-shopping (such as 

checking email) activities. The second level can be different stages of 

shopping (for the shopping part) and the different types of social 

activity (for the non-shopping part). This can keep going, for example, 

the 'product research' stage of the shopping activities can be further 
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broken down into 'reading online review', 'check forum discussion', and 

so on. 

iii. Chunking can be binary - Not considering the hierarchy, chunking can be 

treated as a binary classification problem, i.e., whether there should be 

a break after each step in a search session. This has the same training 

sample and feature engineering issue as those for the activity 

classification problem. 

As in the task tier, sub-tasks [10] are often tightly coupled to the domain or 

application in which the user is working. For example, a task is very appropriate for 

an investment analyst working with financial tools, a travel agent (working with a set 

of travel and transportation tools) would not likely perform the same task. For this, 

domain independent (e.g., independent of the tool-specific sequence of clicks, drags, 

and key-press events required to perform a specific action) user’s behaviour in terms 

of analytic actions needs to be modelled. So, we hypothesize that – ‘Inferring chains of 

low-level analytic actions can be of assistance for understanding user’s multitasking 

behaviour’. 

5.3 Approach and Experiments  

5.3.1   Experiment 1 

To understand how machine can perceive user’s intent by considering their 

interaction preferences and finding out relevance, we have applied conventional data 

filtering techniques on a 2Deskdrop log 3dataset of 12 months developed by 1CI&T 

focused in companies using Google G Suite.     

5.3.1.1  Dataset 

The 3dataset contains about 73k logged users interactions on more than 3k public 

articles shared in the platform.  The dataset includes following features: 

 1.  https://ciandt.com/us/en-us 
2.  https://deskdrop.co/ 
3.  https://github.com/yunshuipiao/sw-kaggle/tree/master/recommend-system/datasets 
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• Item attributes: Articles' original URL, title, and content plain text are 

available in two languages (English and Portuguese). 

• Contextual information: Context of the users visits, like date/time, client 

(mobile native app / browser) and geolocation. 

• Logged users: All users are required to login in the platform, providing a long-

term tracking of users preferences (not depending on cookies in devices). 

• Rich implicit feedback: Different interaction types were logged, making it 

possible to infer the user's level of interest in the articles (eg., comments > likes 

> views). 

• Multi-platform: Users interactions were tracked in different platforms (web 

browsers and mobile native apps). 

 5.3.1.2  Pre-processing 

In above, users are allowed to view an article many times, and interact with them in 

different ways (eg. like or comment). Different weights have been associated for 

different types of interactions to assume the interest of a user on a specific article.  

Thus, to model the user interest on a given article, we aggregate all the interactions 

the user has performed in an item by a weighted sum of interaction type strength (i.e, 

VIEW: 1.0,……., BOOKMARK: 2.5,……, etc) and apply a log transformation to smooth the 

distribution. To avoid user cold-start problem, in which it is hard to model user a 

profile due to none or less available data, we kept only users in the dataset with atleast 

5 interactions. 

5.3.1.3  Evaluation 

We have used the holdout approach for cross-validation, in which 20% random sample 

are kept aside during the training process and used for evaluation. We also have 

chosen to use Top-N accuracy metrics, which evaluates the accuracy of the top filtered 

data provided to a user, comparing to the items the user has actually interacted in test 

set. This evaluation method works as follows: 
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Figure 5.1: Evaluation results of Popularity Model on first 10 out of  1139 users having global metrics - 

recall@10: 0.39128211683497377 and recall@20: 0.5739486130640419. 

➢ For each user 

▪ For each item the user has interacted in test set 

o Sample 100 other items the user has never interacted. 

o Ask the model to produce a ranked list of filtered items, from a 

set of one interacted item and 100 non-interacted items 

o Compute the Top-N accuracy metrics for this user and interacted 

item from the ranked list 

➢ Aggregate the global Top-N accuracy metrics 

The Top-N accuracy metric chosen is Recall@N which evaluates whether the 

interacted item is among the top N items in the ranked list of 101 filtered data for the 

user. We have then tested with following conventional data filtering techniques: 

Popularity-Based Filtering Model  

This model is not a personalized technique often known as ‘wisdom of crowds’. It 

considers the most popular items that the user has not previously consumed. Total 

weighted values of eventTypes corresponding to each content have been calculated  

1 2 3 4 5 6 7 8 9 10

hits@10_count 63 28 27 9 36 21 31 23 24 27

hits@20_count 102 58 54 30 55 31 44 35 37 43

interacted_count 192 134 130 117 88 80 73 69 69 68

recall@10 0.3281250.2089550.2076920.0769230.409091 0.2625 0.4246580.3333330.3478260.397059

recall@20 0.53125 0.4328360.415385 0.25641 0.625 0.3875 0.60274 0.5072460.5362320.632353
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Figure 5.2: Popular Topics. 

 

here. It achieved the Recall@10 of 0.39 which stands for 39% of interacted items in 

test set were ranked by popularity model among the top-10 items. For Recall@20 was 

0.57 higher than the previous (above). 

Content-Based Filtering Model 

Content-based filtering approach leverages description or attributes from items the 

user has interacted to filter similar items. It depends only on the user’s previous 

choices, making this method robust to avoid the cold-start problem. For textual items, 

like articles, news and books, it is simple to use the raw text to build item profiles and 

user profiles. We have used a very popular technique in information retrieval (search 

engines) named Term Frequency – Inverse Document Frequency (TF-IDF). An 

example of calculated term frequencies is shown in above. This technique converts 

unstructured text into a vector structure, where each word is represented by a 

position in the vector, and the value measures how relevant a given word is for an 

article. As all items will be represented in the same Vector Space Model,  
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Figure 5.3: Relevance measure of top 10 tokens for user profile [-1479311724257856983]. 

it is to compute cosine similarity between articles. To model the user profile, we have 

taken all the item profiles the user has interacted and averaged them. The average is 

weighted by the interaction strength, in other words, the articles the user has 

interacted the most (eg., viewed or bookmarked) will have a higher strength in the 

final user profile. For an example – we chose a user profile [-1479311724257856983] 

to compute relevance (above) of each token (unigram or bigram) and know user’s 

interests. 

With this personalized approach of content-based filtering model, we have achieved  

Recall@10 to about 0.26, which means that about 26% of interacted items in the test 

set were ranked by this model among the top-10 items (from lists with 100 random 

items). And Recall@20 is about 0.40 (40%). The lower performance of the Content-

Based model compared to the Popularity model may indicate that users were not too 

fixated of investigating similar contents while exploring different articles. 

Collaborative Filtering Model 

This model makes prediction based on preferences of many other users. Collaborative 

Filtering (CF) has two main implementation strategies: 

Memory-based: This approach uses the memory of previous user's interactions to 

compute users similarities based on items they've interacted (user-based approach)  
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Figure 5.4: Evaluation results of Content-Based Filtering Model on first 10 out of  1139 users having 
global metrics - recall@10: 0.2614420864229097, recall@20: 0.3975965226284838. 
 
 

or compute items similarities based on the users that have interacted with them 

(item-based approach).  A typical example of this approach is - User Neighbourhood-

based CF, in which the top-N similar users (usually computed using Pearson 

correlation) for a user are selected and used to filter items those similar users liked, 

but the current user have not interacted yet. This approach may not scale well for 

many other users.  

Model-based: In this approach, models are developed using different machine 

learning algorithms to filter relevant data for users. There are many model-based CF 

algorithms i.e., Neural Networks (NN), Bayesian Networks (BN), Clustering Models, and 

Latent Factor (LF) models such as Singular Value Decomposition (SVD) and, 

Probabilistic Latent (PL) semantic analysis. 

Latent Factor (LF) model for Collaborative Filtering (CF) 

We have used a LF model named Singular Value Decomposition (SVD) for this section 

to evaluate CF technique for data filtering. LF models compress user-item matrix into  

1 2 3 4 5 6 7 8 9 10

hits@10_count 24 29 33 47 15 23 13 19 9 8

hits@20_count 43 51 56 71 24 37 19 24 15 23

interacted_count 192 134 130 117 88 80 73 69 69 68
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Figure 5.5: Evaluation results of Collaborative Filtering Model on first 10 out of  1139 users 
having global metrics - recall@10: 0.46803886474047557, recall@20: 0.6146765533111737. 
 

a low-dimensional representation in terms of latent factors. Such reduced 

representation can be utilized for either user-based or item-based neighbourhood 

algorithms. We shall take the advantage of using much smaller matrix in lower-

dimensional space instead of having a high dimensional matrix containing abundant 

number of missing values. This is known as Matrix Factorization (MF).  An important 

decision for MF  is the number of factors to factor the user-item matrix. The higher the 

number of factors, the more precise is the factorization in the original matrix 

reconstructions. Therefore, if the model is allowed to memorize too much details of 

the original matrix, it may not generalize well for data it was not trained on. Reducing 

the number of factors increases the model generalization. After the factorization, we 

try to reconstruct the original matrix by multiplying its factors. The resulting matrix 

is not sparse any more. For example, it has generated predictions for items the user 

has not yet interacted with, which we will exploit for data filtering at later stage. 

 

 

 

1 2 3 4 5 6 7 8 9 10

hits@10_count 46 56 34 51 48 34 32 21 28 30
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Figure 5.6: Evaluation results of Hybrid Filtering Model on first 10 out of  1139 users having 
global metrics - recall@10: 0.4796727179749425, recall@20: 0.6259268729225262. 

 

Evaluating the Collaborative Filtering model (SVD matrix factorization) as shown in 

above, we observe that Recall@10 is 0.47 (47%) and Recall@20 is 0.61 (61%), which 

are  much higher than Popularity and Content-Based models. 

 

Hybrid Filtering Model 

Predictive accuracy is substantially improved when blending multiple predictors. 

This is known as Hybrid approach that combines Collaborative, Content-Based and 

other approaches. This approach is an ensemble that takes the weighted average of 

normalized Collaborative Filtering (CF) scores with the Content-Based (CB) scores, and 

ranks them by resulting score. The combined prediction scores (above) by contentId 

obtained from Collaborative and Content-Based approaches and sorted by hybrid 

score returned better results for Recall@10 as 0.48 (48%) and Recall@20 as 0.63 

(63%). 
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Figure 5.7: Comparison of Top-N accuracy values calculated as Recall@N  from 100 random test 
data by using data filtering models.    

 
 

5.3.1.4  Discussion 

To understand how conventional information filtering techniques perform to infer 

user’s tasks, we ran an experiment by associating weights for different types of 

interactions to assume the interest of a user on a specific article and applied those on 

3Google G-Suite data having 3K publicly shared articles and 73K logged user 

interactions. We have found through the above experiment that –  

▪ Hybrid and Collaborative approaches show substantially better accuracies than 

other approaches where Hybrid model is the best to retrieve relevant data. 

Content-Based model shows the least performance according to it’s global 

metrics (above).  

▪ Recall@N increases as Top-N increases. We have found Recall@20 as always 

higher than Recall@10 for all above models. 

▪ In case of Popularity model Recall@N values drop as hit(N) counts decrease 

and rise as hit(N) counts increase (above). This is because popularity model 

often considers the most popular items based on “wisdom of crowds”.  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Recall@10

Recall@20

Recall@10 Recall@20

Hybrid 0.479672718 0.625926873

Collaborative 0.468038865 0.614676553

Content-Based 0.261442086 0.397596523

Popularity-Based 0.391282117 0.573948613

Data Filtering Model Comparisons



5 Sensemaking Tasks Inference 
Contextual Attention 

   
      

     
 

 

185 
 Middlesex University London 

▪ For Content-Based model we also have observed proportional relationships 

among Top-N and Recall-N values (above). This is because for building user and 

item profiles Term Frequency – Inverse Document Frequency (TF-IDF) was used 

for raw text dataset. However, the lowest performance compared to other 

models may indicate that users were not fixed into similar contents while 

exploring different articles.   

▪ Hybrid (above) and Collaborative (above) models are the top most performing 

models. Top-N and Recall@N are also proportionally related for both models. 

This is because, in the case of Collaborative approach the evaluation results are 

dependent on user-item matrix factorization and the reconstructed matrix 

generates predictions for not yet interacted items which are later exploited for 

filtering Top-N.  The Hybrid model also includes Content-Based and other 

approaches.  

We have learned from the above Recall@N values after applying conventional data 

filtering techniques that for better understanding of user’s intention and retrieving 

relevant data it always requires higher hit(N) counts. This is a drawback in the case 

of user cold-start problem where none or a very few number of relevant data items 

can be retrieved due to the lack of information. We could leverage the contextual 

information for such scenario to model user profiles.  

5.3.2  Contextual Attention 

The results of above conventional information filtering were achieved by associating 

weights for different types of interactions to assume the interest of a user on a specific 

article rather than considering his/her contextual  attention of search.    

5.3.2.1  The Context  

To understand the context it is important to discover the underlying sequences of 

actions and the transitions among those. This is difficult in case of 

unstructured/unannotated sequential list, because it does not contain enough 

structure to infer the analytical attentions. We have considered meaningful ‘Action 
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 Chunking’ as a way to provide sequence streams of actions during analytic process 

that will mark the semantic boundaries between user’s sensemaking tasks and other 

actions. We also have explained that chunking can be ‘Contextual’ as well as 

‘Hierarchical’. To know the context an ‘Extractive’ or ‘Abstractive’ technique can be 

leveraged to rank different texts and then distinguish between sensemaking and non-

sensemaking tasks after computing relevance of tokens/words extracted from 

sentences. For an example – TextRank algorithm is an extractive and unsupervised 

technique where word embeddings (i.e., GloVe algorithm) are done to form cosine 

similarity matrix and then converted into a graph with sentences as vertices and 

similarity scores as edges for TextRank calculation. However, to form the hierarchy, 

Word2Vec algorithm has been used to learn word associations from a large corpus of 

text. It is a NLP technique that uses neural network model. To distinguish between 

sensemaking and non-sensmaking tasks, it is important to identify synonymous 

words with top relevant words/tokens. The underlying assumption of Word2Vec is 

that two words sharing similar contexts also share a similar meaning and 

consequently a similar vector representation from the model. From this assumption, 

Word2Vec can be used to find out the relations between words in a dataset and 

compute the similarity/dissimilarity between them. 

5.3.2.2  The Attention  

To identify top relevant words/tokens, we have adopted 'Attention Mechanism' which 

takes two sentences, turns them into a matrix where the words of one sentence form 

the columns, and the words of another sentence form the rows, and then it makes 

matches, identifying relevant context. Not all words contribute equally to the 

representation of the sentence meaning. Hence, attention mechanism can be used to 

extract such words that are important to the meaning of the sentence. We have used 

such ‘Word Attentions’ to label text corpus of articles dataset to mark their categories. 

To experiment how accurately such text categories be predicted by applying popular 

classification models, we implemented those and found accuracies for – Logistic 

Regression: 0.70, Random Forest: 0.60, Linear SVC: 0.71, Multinomial Naive Bayes: 

0.55 and SGD Classifier: 0.67. Classification results that we found by following this 
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approach were not promising. However, such ‘Local Attention’ of words are not 

enough to understand user's intention and accurately chunk user's tasks at different 

levels as a whole. It is also important to consider ‘Global Attention’ which implies we 

attend all the input words rather than local attention which only attends a subset of 

words. Besides local and global attentions we also considered ‘intra-attentions’ 

sometimes known ‘self-attention’ which is a mechanism relating to different word 

positions of a single sequence. Google proposed a sequence transduction model 

entirely relying on self-attention mechanism known as ‘Transformer’. It applies the 

self-attention mechanism which directly models relationships between all words in a 

sentence, regardless of their respective position. For an example – ‘I arrived at the 

bank after crossing the river’, to determine that the word ‘bank’ refers to the shore of 

a river and not a financial institution, the ‘Transformer’ can learn to immediately 

attend to the word ‘river’ and make this decision in a single step.  Self-Attention is 

computed not once but multiple times in the Transformer’s architecture, in parallel 

and independently. It is therefore referred to as ‘Multi-head Attention’ which allows 

the model to jointly attend the information from different representation subspaces 

at different positions. 

5.3.3   BreakPoints for Action Chunking 

We have considered meaningful ‘Chunks of Actions’ as a way to provide sequence 

streams of actions during analytic processes that will mark the semantic boundaries 

between user’s sensemaking tasks and other actions. It involves a detailed analysis of 

when users switch tasks, is critical to a deeper understanding of human multitasking 

behaviour. A particular goal of this research involves how accurately can such multi-

task switches be inferred during execution of interactive tasks. We named those task 

switches as ‘BreakPoints’ of user’s analytical tasks. 

5.3.3.1  Definition 

A ‘BreakPoint’ is the moment between two meaningful units of task execution, and 

reflects internal transitions in perception or cognition [108, 109]. These are the points 

in a task sequence where the user can most conveniently switch tasks [110].
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5.3.3.2  Detecting BreakPoints 

One common method for detecting break-points is to match users’ ongoing 

interactions to specifications of tasks defined a priori. Although this allows break-

points to be easily detected within tasks that are fairly prescribed. But it is much more 

difficult to leverage these types of static specifications to detect break-points within 

tasks that have highly variable interactions, i.e., free-form tasks or multi-user's 

interactions during similar task execution. In case of an unknown task although 

previous user's data can be utilized in suggestive manner for multiple users, however 

it may not be useful due to cognitive and perceptual variances. So, detecting 

breakpoints in such scenario even becomes more strenuous. 

Through this research, we seek to overcome this problem by understanding how to 

detect breakpoints and differentiate their granularity without requiring any task 

specification. Granularity refers to the degree of perceptual difference of the actions 

surrounding a breakpoint. A basic question is – ‘how many granularities of breakpoints 

are detectable and meaningful during task execution?’ Number of granularities will 

depend on – ‘what are the meronyms of breakpoints?’, ‘What is the smallest constituent 

unit of break-points?’, ‘How partly or broadly shall we consider break-points?’ etc. From 

studies of event perception and task interruption [108], there is evidence for at least 

three perceptually meaningful granularities; ‘Coarse’, ‘Medium’, and ‘Fine’ [108, 111]. 

For example, when booking for holidays online, ‘Fine’ may be switching different sites 

to check various options; ‘Medium’ may be searching in different categories i.e, flights, 

hotel, places of attractions, conveyances, food restaurants etc and ‘Coarse’ may be 

switching to activities other than holiday booking i.e., check emails or social 

networking from time to time. Bogunovich et. al. [110] have denoted “Coarse” 

activities as secondary tasks and found those are the good indicators of multitasking 

breakpoints. Those are cognitive breaks and users may occasionally take such short 

breaks when a cognitive subtask is completed and before beginning a new subtask. 

Finding out what are relevant and irrelevant tasks to achieve the goal, are a bit 

challenging. Because even a machine learning model will not be able to know what 

exactly a user's main task is but can predict it with a certain level of accuracy. 

Increasing accuracy will require extracting and mapping more predictive features to 
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breakpoints. Iqbal et. al. [111] determined some candidate features based on analysis 

of observer's explanations and event logs. They then asked users whose interaction 

data was originally annotated by observers and thus tested the accuracy. We 

endeavour to test our assumption that computing semantic similarities (relevant 

tasks) and dissimilarities (irrelevant tasks) in an automatic data-driven manner will 

be helpful to detect breakpoints without any prior task specification through couple 

of experiments described into following sections. 

As we have defined breakpoint as the moment between two meaningful units of task 

execution, and reflected on internal transitions in perception or cognition, so 

understanding semantic similarity/dissimilarity will help us to pin point where a user 

does different things during a targeted task with a specific goal but it does not 

necessary express their cognitive transition. The ‘Contextual Attention’ method into 

NLP as described above can be one method of understanding user’s intention by using 

‘Multi-Headed Self-Attention’ mechanism, where there are no pre-defined tasks. In 

case of a priori defined tasks, the method of detecting breakpoints can be matching 

users’ ongoing interactions to specifications of task. Although this allows break-points 

to be easily detected within tasks that are fairly prescribed. It is much more difficult 

to leverage these types of static specifications to detect breakpoints within tasks that 

have highly variable interactions, i.e., free-form tasks or multi-user's interactions 

during similar task execution.  In case of an unknown task, apart from the contextual 

attention analysis, user's data can also be utilized in suggestive manner for multiple 

users, however it may not be useful due to cognitive and perceptual variances. So, 

detecting breakpoints in such scenario even becomes more strenuous. We already 

have applied conventional information filtering techniques on 3Google G-Suite data 

for multiple users and filter top ranked similar data to understand how accurately 

machine can perceive user’s intents. We have found - Recall@10 of 0.39 (which stands 

for 39% of interacted items in test set were ranked among the top-10 items), 

Recall@20 of 0.57 for ‘Popularity Model’; Recall@10 of 0.26, Recall@20 of 0.40 for 

‘Content Based Model’; Recall@10 of 0.47, Recall@20 of 0.61 for ‘Collaborative Model’; 

Recall@10 of 0.48, Recall@20 of 0.63 for ‘Hybrid Model’; from the experiment 
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of previous section which are not promising results. Finding out which tasks are 

relevant and which are irrelevant, can pinpoint the breakpoint at higher level of 

hierarchy as explained earlier. Knowing relevant or irrelevant tasks are exploiting 

commonalities and differences across tasks which can be achieved by following two 

methods: 

• Task Abstraction – Tasks may be grouped according to some general metric 

which can be used for task abstraction. Iqbal et. al. [111] determined some 

candidate features as metric based on analysis of observer's explanations and 

event logs.  For such abstraction to be automated, one must hypothesize a 

mechanism by which low-level operations or actions can be inferentially 

mapped to higher-level intents. Bors et. al. [112] define task abstraction as the 

idea that low-level operations can be grouped into sets that can themselves be 

usefully considered as unified, purposeful units of action. These units of action 

may then be grouped into still larger units of action and so on. Hence, any given 

coherent sequence of operations can be described in terms of an abstraction 

hierarchy. They have proposed a conceptual ‘Abstraction Mapping Mechanism 

(AMM)’  to enable adhoc parsing of interaction streams into abstract tasks and 

inferring upcoming actions.    

 

• Identifying Unrelated Tasks -  Commonalities and differences can then be 

described in terms of Task Abstraction hierarchy to distinguish between 

relevance and irrelevance of tasks. For an example - 'coarse' level break point 

indicates semantic change between two chunks of action. This is the same as 

our original definition for break point. Common techniques for finding 

semantically similar text corpus can be ‘Topic modelling’. The underlying 

assumption of ‘Word2Vec’  is that two words sharing similar contexts also 

share a similar meaning and consequently a similar vector representation from 

the model. From this assumption, ‘Word2Vec’ can be used to find out the 

relations between words in a dataset and compute the similarity/dissimilarity 

between them.
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5.3.4   Experiment 2 

5.3.4.1  Supervised Learning for BreakPoint Detection 

Inferring user’s intent into a task model is all about understanding multi-tasking 

behaviour, understanding search language and building context of interacted 

contents based on attention. In 2018, Google released their ‘neural network-based’ 

technique for ‘Natural Language Processing (NLP)’ named as ‘Bidirectional Encoder 

Representations from Transformers’ or BERT [55] in short. It allows the language 

model to learn word context based on surrounding words rather than just the word 

that immediately precedes or follows it. It builds a network with attention known as 

a ‘Transformer’ network which includes self and multi-head attention mechanisms 

[53]. This is how BERT is useful for understanding user’s intent.  

5.3.4.2  Dataset 

To capture log dataset we used ‘Chrome Browsing History View’ software developed 

by NirSoft4. It is a utility that reads the history data of different browsers and displays 

it in one table. The browsing history table includes information shown in below. The 

process of data collection lasted for a week and considered following steps: 

• We collected data samples under several categories such as – online shopping, 

search holiday destinations, Net banking, Hobbies or Interests, News etc. 

• Google search engine was used find out topics of interests or directly visited to 

known sites by typing the url on browser.  

• As part of sensemaking activities we implemented contextual, hierarchical and 

binary search criteria as described into Section 5.2, so that those concepts 

remain inherent into dataset. 

• We also performed some other non-sensemaking tasks outside of those 

categories such -  browsing social network sites, checking emails etc. 

• Thus we collected a month’s 53K chrome history log having different search 

criteria hidden into dataset.     

 
4.  https://www.nirsoft.net/utils/browsing_history_view.html 
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Table 5.1: Chrome browsing history information. 

Attribute Description 

URL Address of the webpage user is currently visiting 

Title Title of the visited webpage 

Visited On Refers to the initial/start time any webpage is loaded 

Visit Count The number of times the user has navigated to the webpage 

Typed Count The number of times the user has navigated to the webpage by typing in the 

address 

Referrer It is the webpage that sends visitors to another site using a link 

Visit ID Corresponds to unique id for each website visit 

Profile User’s default device profile 

URL length String length of the url 

Transition Type Types of interactions to navigate to a particular url i.e, link, reload, typed, 

form submit, auto bookmark, manual subframe etc. 

Transition Qualifiers It further defines the transition i.e, chain_start: the beginning of navigation 

chain, chain_end: the last transition in a redirect chain, client_redirect: 

redirects caused by meta refresh on the page, server_redirect: redirects sent 

from the server by HTTP headers etc. 

History File Location of local browser history data. 

 

5.3.4.3  Pre-processing 

The raw data collected for the analysis consisted of many attributes initially. So, 

proper feature selection was done, and attributes which were relevant to the aim and 

interconnected were selected. We deleted ‘History File’ and ‘Profile’ columns from the 

dataset. Additionally, certain derived attributes were also added to the dataset’s 

attributes list. These were ‘Domain’ and ‘ElapsedTime’ .  

We also added one more column at the end named as ‘Breakpoint’. We used ‘0’ as 

indicating non-breakpoint and ‘1’ as indicating breakpoint to label the whole dataset 

according to known search criteria during sensemaking sessions. Thus we gave 

couple of passes to make sure that the breakpoint markings are correct. This is how 

we prepared the training dataset to use for developed machine learning models of this 

experiment as described into next few sections. 
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 5.3.4.4  Implementation 

We used 53K pre-processed log dataset and trained BERT transformer model for 

almost 25 hours to infer ‘where the breakpoints are’. Because of BERT’s complexity, it 

is difficult to interpret the meaning of its learned weights. Deep-learning models in 

general are notoriously opaque, and various visualization tools have been developed 

to help make sense of them. Jesse Vig et. al. [113] modified Tensor2Tensor5 attention 

visualization tool to make it work with BERT. We have used the tool to explore 

different attention patterns of BERT base (12 layers - transformer blocks, 12 attention 

heads). We have experimented on different input values by following breakpoints <-

> non-breakpoints transitions to understand attentions of different words 

contributing towards it’s classifications. As shown in Figure 5.8, the tool visualizes 

attention as lines connecting the position being updated (left) with the position being 

attended to (right). Colours identify the corresponding attention head(s), while line 

thickness reflects the attention score. At the top of the tool, the user can select the 

model layer, as well as one or more attention heads (by clicking on the colour patches 

at the top, representing the 12 heads) [113]. Following two texts have been chosen 

from an actual breakpoint into our original dataset to explain different patterns.  

Text A = "xnet.unisys.com Default Reload Chain Start Chain End" (BreakPoint = 0) 

Text B = “youtube.com My Favourite Dishes-YouTube Default Link Chain Start” (BreakPoint = 1) 

 

Pattern 1 - In this pattern, most of the attention at a particular position is directed to 

the next token in the sequence. From below we see an example of this for layer 2, head 

0. (The selected head is indicated by the highlighted square in the colour bar at the 

top.) The figure on the left shows the attention for all tokens, while the one on the 

right shows the attention for one selected token (‘my’). In this example, virtually all of 

the attention is directed to ‘favourite’ the next token in the sequence. On the left, we 

also can see that the [SEP] token disrupts the next-token attention pattern, as most of 

the attention from [SEP] is directed to [CLS] rather than the next token. Thus this 

pattern appears to operate primarily within each sentence [113]. 

  5.  https://github.com/tensorflow/tensor2tensor/tree/master/tensor2tensor 
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Figure 5.8: Attention to next word at layer 2 head 0, found from Jesse Vig et. al.’s [113] modified 
Tensor2Tensor5 attention visualization tool. Left: attention weights for all tokens. Right: 
attention weights for selected token (‘my’). 

 

Pattern 2 – In this pattern, much of the attention is directed to the previous token in 

the sentence. As shown in below, the attention for ‘dishes’ is directed to the previous 

word ‘favourite’. This pattern is not as distinct as the previous one; some attention is 

also dispersed to other tokens, especially the [SEP] tokens [113]. 

 



5 Sensemaking Tasks Inference 
Experiment 2 – Supervised Learning for Breakpoint Detection 

 

   
      

     
 

 

195 
 Middlesex University London 

 
 

 

Figure 5.9: Attention to previous word at layer 6 head 11, found from Jesse Vig et. al.’s [113] 
modified Tensor2Tensor5 attention visualization tool. Left: attention weights for all tokens. 
Right: attention weights for selected token (‘dishes’). 

 

Pattern 3 – In this pattern, attention is paid to identical or related words, including 

the source word itself. In the example below (below), most of the attention for the 

first occurrence of ‘youtube’ is directed to itself and to the second occurrence of 

‘youtube’. This pattern is not as distinct as some of the others, with attention dispersed 

over many different words [113]. 
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Figure 5.10: Attention to identical/related tokens at layer 2 head 6, found from Jesse Vig et. al.’s 
[113] modified Tensor2Tensor5 attention visualization tool. Left: attention weights for all tokens. 
Right: attention weights for selected token (‘youtube’). 

 

Pattern 4 – In this pattern, attention is paid to identical or related words in the other 

sentence. For example, most of attention for ‘chain’ in the second sentence is directed 

to ‘chain’ in the first sentence (below). One can imagine this being particularly helpful 

for the next sentence prediction task (part of BERT’s pre-training), because it helps 

identify relationships between sentences [113]. 
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Figure 5.11: Attention to identical/related words in other sentence at layer 10 head 10, found 
from Jesse Vig et. al.’s [113] modified Tensor2Tensor5 attention visualization tool. Left: attention 
weights for all tokens. Right: attention weights for selected token (‘chain’). 

 

Pattern 5 – In this pattern, attention seems to be directed to other words that are 

predictive of the source word, excluding the source word itself. The example in below, 

most of the attention from ‘re’ is directed to ‘##load’, and most of the attention from 

‘##load’ is focused on ‘re’ [113]. 
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Figure 5.12: Attention to other words predictive of word at layer 2 head 1, found from Jesse Vig 
et. al.’s [113] modified Tensor2Tensor5 attention visualization tool. Left: attention weights for all 
tokens. Right: attention weights for selected token (‘re’). 

 
 
Pattern 6 – In this pattern, most of the attention is directed to the delimiter tokens, 

either the [CLS] token or the [SEP] tokens. In the example as shown in below, most of 

the attention is directed to the two [SEP] tokens. 
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Figure 5.13: Attention to delimiter tokens at layer 6 head 4, found from Jesse Vig et. al.’s [113] 
modified Tensor2Tensor5 attention visualization tool. Left: attention weights for all tokens. 
Right: attention weights for selected token (‘default’). 
 
 
 

Clark et. al. [114] describes this pattern as a ‘no-op’: an attention head focuses on the 

[SEP] tokens when it can’t find anything meaningful in the input sentence to focus on. 
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Figure 5.13: BERT base model visualizations found from Jesse Vig et. al.’s [113] modified 
Tensor2Tensor5 attention visualization tool, for 12 layers and 12 heads resulting in a total of 
12×12=144 distinct attentions for Text A  and Text B.  
 

Multi-Head Attention Patterns 

Visualizations of patterns 1-6 show one attention mechanism within the model. BERT 

actually learns multiple attention mechanisms, called heads [Figure 2.23(ii)], which 

operate in parallel to one another. Multi-head attention enables the model to capture 

a broader range of relationships between words than a single attention mechanism. 

BERT also stacks multiple layers of attention, each of which operates on the output of 

the layer that came before. Through this repeated composition of word embeddings, 

BERT is able to form very rich representations as it gets to the deepest layers of the 

model. Because the attention heads do not share parameters, each head learns a 

unique attention pattern [113]. As shown in Figure 5.13 — BERT Base has 12 layers 

and 12 heads, resulting in a total of 12 x 12 = 144 distinct attention mechanisms. Thus 

attention in all of the heads can be visualized at once. Each cell in the in the BERT Base 

model visualizations show the attention pattern for a particular head (indexed by 

row) in a particular layer (indicated by column), using a thumbnail form of the 

attention-head view from earlier. The attention patterns are specific to input Text A 

and Text B. From the visualizations, we can see that BERT produces a rich array of 

attention patterns.  
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Figure 5.14: Text A and Text B focused next word attention pattern at layer 2 head 0 of the 
BERT-base pre-trained model, found from Jesse Vig et. al.’s [113] modified Tensor2Tensor5 
attention visualization tool. 
 
 

Explaining BERT Attention Patterns 

BERT uses a compatibility function, which assigns a score to each pair of words 

indicating how strongly they should attend to one another. To measure compatibility, 

the model first assigns to each word a query vector (q) and a key vector (k). The 

compatibility score is just the dot product (𝑞 ∙ 𝑘) of the query vector (q) of one word 

and the key vector (k) of the other. To turn these compatibility scores into valid 

attention weights, we must normalize them to be positive and sum to one (since  
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Figure 5.15: Elementwise and dot products of query (q) and key (k) vectors for next word 
attentions at layer 2, head 0. 
 
 

attention weights are used to compute a weighted average). This is accomplished by 

applying the softmax function over the scores for a given word. The dot-products are 

scaled by dividing by the square root of the vector length (
1

√𝑑𝑘
) [53]. There is a 

precursor to the dot product, which is the elementwise product (𝑞 × 𝑘) between the 

query vector (q) of the selected word and  each of the key vectors (k). It shows how 

individual element in the query and key vectors contribute to the dot product. Based 

on these calculations we have presented a few visualizations in this section to show 

how attention weights are computed from query and key vectors. As shown in above, 

it traces the computation of attention from the selected word on the left to the 

complete sequence of words on the right. ‘Positive’ values are coloured as ‘blue’ and 

‘negative’ values as ‘orange’, with colour intensity representing magnitude. Like the 

BERT attention-pattern views presented earlier, the connecting lines indicate the 

strength of attention between the connected words. 

Next Word Attentions 

We have found from above that most of the attention at a particular position is 

directed to the next token in the sequence at layer 2, head 0. The reason can be - 

adjacent words are often the most relevant for understanding a word’s meaning in 

context. Traditional n-gram language models are based on this same intuition. 

We see from above that the product of the query vector for ‘my’ and the key vector for 

‘favourite’ (the next word) is strongly positive across most neurons. For tokens other 

than the next token, the key-query product contains some combination of positive and 

negative values. The result is a high attention score between ‘my’ and ‘favourite’. 
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Figure 5.16: BERT classification reports. 

 

5.3.4.5  Accuracy Scores 

BERT classification reports as shown into above show better results of inference 

making than conventional approaches as described into Section 5.3.1. Both precision 

and recall for non-breakpoints are quite high which means BERT model predicts this 

class quite well. It’s due to our imbalanced (breakpoint – 1.69% and non-breakpoint 

98.31%) dataset. It becomes difficult for BERT to determine attention scores  by using 

small subset of neurons which has greater impact on classification results. From the 

report obtained, the precision is 0.98 and recall 1.00 which depicts the predicted 

values for non-breakpoints are almost similar to their originals. This is because BERT 

transformer is able to generate large number of neurons of query and key vectors and 

feed forward to generate output probabilities. The overall accuracy obtained  is – 

98%.  

5.3.4.6  Discussion 

From experiment 1 (Section 5.3.1) we have found that it always requires higher hit 

(N) counts and with an exception to content based approach as shown in above, 
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hybrid model outperforms other conventional models. So, we have aimed to utilize 

contextual information into current Section 5.3.2 for experiment 2 to test either it can 

produce better results by overcoming the cold-start problem that is a drawback of 

experiment 1 (Section 5.3.1). We also have aimed to test either it supports domain 

independent user’s behaviour modelling in terms of analytic actions or not. 

We have explained how concepts of ‘context’ and ‘intention’ can be leveraged to detect 

the transition point of two meaning units of tasks. We have denoted this transition 

point as ‘Breakpoint’. Through our study we have found that breakpoints can be 

present at different granular levels known as ‘meronyms’ as well as at different 

‘hierarchy’ or change of ‘context’.  

The first part (Section 5.3.4.1) of  experiment 2, adopts a supervised approach where 

we processed the training dataset by using concepts of context and hierarchy. We 

have trained a ‘neural network’ based model known as BERT which builds a network 

with attention and capable of learning word context on surrounding words rather 

than the word that immediately precedes or follows it. We have visualized the internal 

operations of BERT neural network known as ‘Transformer’ to understand attentions 

of different words contributing towards it’s classification of breakpoint(1)/non-

breakpoint(0). We have found 6 patterns of attentions at it’s different heads and 

layers. We also have visualized another 144 distinct attentions for the two input 

sample text at Mutli-head layers of BERT. We also have explained how attention 

weights are computed from query and key vectors. Their product contains some 

combination of positive and negative values and thus we know strength of attentions 

into visualizations i.e, ‘positive’ values are coloured as ‘blue’ and ‘negative’ values as 

‘orange’.     

 The classification report obtained, the precision 0.98 and recall 1.00 which depicts 

the predicted values for non-breakpoints are almost similar to their originals. This is 

because BERT transformer is able to generate large number of neurons of query and 

key vectors and feed forward to generate output probabilities. Obtained overall 

accuracy score is – 98% . 
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Figure 5.17: Detecting change points.  

 

5.3.4.7  Unsupervised Learning for BreakPoint Detection 

We have run experiment to infer ‘where the break-points are’ by applying supervised 

machine learning model and found promising results. But if we consider free-form 

tasks for multi-users or highly variable interactions for the similar goal, then a data 

driven automatic approach will be more feasible than the manual approach. In case of 

an unknown task, although previous user's data can be utilized in suggestive manner 

for multiple users, however it may not be useful due to cognitive and perceptual 

variances. Existing methods i.e, ‘Bayesian multiple changepoints detection’ can only 

detect statistically boundaries by computing abrupt changes (i.e, mean, variance, 

spectrum etc) in the trends of a data sequence. Lee et.al. [115] showed that it is nearly 

impossible to detect human specified breakpoints by using existing changepoint 

techniques. We have tested their claim by applying ‘ChangeFinder Algorithm’ on our 

captured log dataset and found that it can mostly detect change points (above) from 

trends of data but is not indicative of actual breakpoints in all cases. The 'blue' line 

shows the actual data plotting where the 'red' line plots are indicating change points 

among usual trends based on anomaly scores. 
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Figure 5.18: Topic predictions visualization by using LDA model while relevance metric λ=1. 

 

As a computer does not have the ability to make an expert judgement in the same way 

that a human can, so detecting breakpoints accurately in an automated data-driven 

manner is a strenuous task. To detect human specified boundaries through learning 

the most representative features specific to the input time-series data and exploit 

these features for segmentation, Lee et.al. [115] utilized 'Autoencoder Model' in deep 

learning techniques to automatically and effectively extract unique features specific 

to the input data without making any prior assumption. They calculated distance 

between two features corresponding to consecutive time windows by using 

'Euclidean Distance' and constructed a distance curve. They selected all the peaks 

(local maximum) in the curve as breakpoints. Iqbal et. al. [111] used ‘Correlated 

Feature Selection (CFS)’ to extract predictive features and leveraged ‘Multilayer 

Perceptron (MPL)’ to learn model for mapping predictive features to the breakpoint 

types. Their models were able to detect 69% - 87% of each breakpoint type across  
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Figure 5.19: t-distributed stochastic neighbour embedding (t-SNE) visualization of inferred 

chunks in 2D. 

 

tasks. They suggested more sophisticated analysis of the similarities among 

contents for further improvements. 

 

5.3.4.8  Data Transformation 

We have transformed the dataset to chunk semantically similar text corpus and tag 

those with a name. We transformed the dataset by - 

• Pre-processing text input.  

• Creating Document-Term-Matrix (DTM) based on Bag of Words (BoW) and 

Term Frequency-Inverse Document Frequency (TF-IDF). 

• Fitting the Latent Dirichlet Allocation (LDA) model on DTM_TF and DTM_TFIDF. 

• Applying grid search to select the best model. 
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• Training DTM_TF and get LDA_output based on best model parameters. 

• Determining the dominant chunk (based on the topic probabilities) for each 

row representing site visit. 

• Inferring chunks according to their tokens (above). 

• Visualizing chunks in 2D as shown in above by using t-Distributed Stochastic 

Neighbour Embedding (t-SNE) to cluster all site visits. Into t-SNE similar objects 

are modelled by nearby points with higher probabilities and dissimilar objects 

are modelled by distant points with lower probabilities. 

Although Lee et.al. [115] calculated distances between features corresponding to 

consecutive time windows to form a distance curve and marked all peaks as 

breakpoint, however from the t-SNE visualization (above) we have found that the 

breakpoints are not dependent on such feature distances. 

5.3.4.9  Implementation 

We have used ‘autoencoders’ to evaluate how accurately can breakpoints be inferred 

into unsupervised setting. The idea is to use the reconstruction errors as the limit to 

separate between non-Breakpoints (lower errors) and breakpoints (higher errors) 

while deforming back from latent representation to project the actual data with true 

labels. After applying ‘autoencoders’ on our transformed dataset the latent 

representation looks like below. 

We have used the training dataset obtained from latent representations and applied 

Logistic Regression to test how accurately can all breakpoints be inferred into a Semi-

Supervised setting. The classification reports have been shown in below. Although the 

model performs very well into a semi-supervised setting, however the ultimate goal 

is to evaluate the results of decoded data from it's latent representation as shown 

above. 

From plots of below we have found decreasing validation loss and increasing 

validation accuracy. But the model is a bit overfitting at some epochs while being in 

synch for few cases. We have found F1=0.1916 as the best after optimizing  
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a. Original representation. 

 

b. Latent representation. 

  

c. Training and validation loss. 

 

d. Training and validation accuracy. 

 

 

e. F1 vs reconstruction error. f. Classification report for latent representation. 

 

 

Figure 5.20: Autoencoder evaluation results for inferring breakpoints.  
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Table 5.2: Un-supervised model performances of inferring breakpoints. 

Model Name Time to train Time to predict ROC AUC score F1 score 

 

Isolation 

Forest 

 

 

1.11 s ± 170 ms 

per loop (mean 

± std. dev. of 7 

runs, 1 loop 

each) 

 

439 ms ± 74.7 

ms per loop 

(mean ± std. 

dev. of 7 runs, 1 

loop each) 

 

 

0.520737 

 

0.086956 

 

KMeans 

 

 

105 ms ± 17.3 

ms per loop 

(mean ± std. 

dev. of 7 runs, 1 

loop each) 

 

 

14 ms ± 871 µs 

per loop (mean 

± std. dev. of 7 

runs, 100 loops 

each) 

 

 

0.497240 

 

0.043478 

 

Local Outlier 

Factor (LOF) 

 

113 ms ± 1.13 

ms per loop 

(mean ± std. 

dev. of 7 runs, 

10 loops each) 

 

 

234 µs ± 13.6 µs 

per loop (mean 

± std. dev. of 7 

runs, 1000 loops 

each) 

 

 

0.520737 

 

0.086956 

 

One-Class SVM 

 

 

84.5 ms ± 1.9 ms 

per loop (mean 

± std. dev. of 7 

runs, 10 loops 

each) 

 

 

55 ms ± 3.99 ms 

per loop (mean 

± std. dev. of 7 

runs, 10 loops 

each) 

 

 

0.469442 

 

0.076433 
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the reconstruction error. So, there is clearly scope to improve the performance of the 

model by introducing more complexities into it that can reduce the error as the plot 

below show decreasing F1 as shown in above. Besides ‘autoencoder’, we also have 

tested with few other un-supervised models as shown into above and compared their 

performances on accuracies of inferring breakpoints.  

Although we have used a labelled dataset, but all of those algorithms do not see the 

labels while training. The labels in this study are only used to compare the model 

predictions to the actual values and to create performance metrics. 

 

Hyperparameter Optimization 

Hyperparameter optimization is the process of finding the best combination of model 

parameters (also known as 'tuned' ) in order to achieve maximum performance on the 

data. For an example, in the Random Forest algorithm hyperparameters are the 

number of estimators (n_estimators), maximum depth (max_depth) and criterion. We 

have adopted both ‘manual’ and ‘automatic’ approaches for hyperparameter tuning 

and used those data to infer breakpoints into our transformed dataset. 

Manual Search (n_estimators=50) 

We have used Random Forest Classifier as the model to optimize. In Random Forest 

each decision tree from ensembled uncorrelated decision trees, makes it's own 

prediction and the most frequent prediction is selected as model output. 

Random Search (max_depth=100, n_estimators=10) 

In this approach we have used random combinations of the values of the 

hyperparameters to find the best solution for the built model. 

Grid Search (max_depth=100, n_estimators=10) 

For grid search, we have setup a grid of hyperparameters and train/test our model on 

each of the possible combinations. 
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Bayesian Optimization with HYPEROPT (max_depth=10, n_estimators=0) 

Bayesian optimization is a model based method for finding the minimum of a function 

for achieving lowest possible output value for better results with fewer iterations 

than random search. Bayesian optimization can be performed by using Hyperopt 

library. 

Artificial Neural Networks (ANNs) Tuning  

(neurons= 100, optimizer='Adam', epochs= 50, batch_size=1024) 

 

We have tried to optimize some of ANN parameters i.e., how many neurons to use, 

which activation function to use etc. It is possible to apply grid/random search into 

deep learning models by using KerasClassifier wrapper. 

Tree-based Pipeline Optimization Tool (TPOT)  

(max_depth=2, generations=10, n_estimators=10) 

 

TPOT is a python library having tree-based structure. It uses a version of genetic 

programming to automatically design and optimize a series of data transformations 

and machine learning models to maximize the classification accuracy. For example - 

Generation 1 - Current best internal CV score: 0.9344215311731479 

Generation 2 - Current best internal CV score: 0.9344215311731479 

Generation 3 - Current best internal CV score: 0.9344215311731479 

Generation 4 - Current best internal CV score: 0.9344215311731479 

Generation 5 - Current best internal CV score: 0.9344215311731479 

Generation 6 - Current best internal CV score: 0.9344215311731479 

Generation 7 - Current best internal CV score: 0.9344215311731479 

Generation 8 - Current best internal CV score: 0.9344215311731479 

Generation 9 - Current best internal CV score: 0.9344215311731479 

Generation 10 - Current best internal CV score: 0.9347234635402977      

 

OPTUNA Framework (n_trials = 200) 

We have used Optuna as a framework which is designed for the automation and 

acceleration of the optimization of our study. We have also aimed to find out the 

optimal set of hyperparameter values (i.e., classifier and svm_c) through multiple 

trials (n_trials = 200). Example of few trial runs are as followed: 
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[I 2020-11-05 23:45:25,230] A new study created in memory with name: no-name-4883cee5-ead0-4f32-84a9-

be40f6c84166 

[I 2020-11-05 23:45:25,237] Trial 0 finished with value: 0.9415081042988019 and parameters: {'classifier': 'SVC', 

'svc_c': 4312228.92901136}. 

[I 2020-11-05 23:45:25,243] Trial 1 finished with value: 0.9415081042988019 and parameters: {'classifier': 

'RandomForest', 'rf_max_depth': 3.3536092595948013}. Best is trial 0 with value: 0.9415081042988019. 

[I 2020-11-05 23:45:25,248] Trial 2 finished with value: 0.9415081042988019 and parameters: {'classifier': 'SVC', 

'svc_c': 14348.079711843067}. 

........... 

........... 

........... 

[I 2020-11-05 23:45:27,975] Trial 198 finished with value: 0.9415081042988019 and parameters: {'classifier': 

'RandomForest', 'rf_max_depth': 2.4047586401115297}. 

[I 2020-11-05 23:45:27,992] Trial 199 finished with value: 0.9415081042988019 and parameters: {'classifier': 

'RandomForest', 'rf_max_depth': 5.216269406900703}. 

 

5.3.4.10  Discussion  

Part-1 of experiment-2 as described into Section 5.3.4.1 showed promising 

performance of inferring human specified breakpoints. But in case of unknown tasks 

or highly variable interactions of multi-users into free-form tasks, it will not be 

feasible to adopt previous approach due to cognitive and perceptual variances of 

different users. So, into part-2 of experiment-2 (Section 5.3.4.7), we have proposed a  

data-driven unsupervised approach where all used algorithms do not see the labels 

while training. All labels have only been used to compare the model predictions to the 

actual values and create performance metrics.  

 

At this stage of experiment we transformed the dataset to chunk semantically and tag 

those with the aim to test either breakpoints are changepoints, outliers or far distant 

features among semantic chunks as mentioned into other related literatures [111, 

115]. Then we have chunked dataset according to topic probabilities and modelled 

similar objects by nearby data points with higher probabilities and dissimilar objects 

by distant points with lower probabilities. After applying ‘ChangeFinder Algorithm’ we 

have found (as shown in above) that it can mostly detect changepoints among 
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Table 5.3: Classification reports after hyperparameter optimization. 

        

usual trends based on anomaly scores but those are not always indicatives of 

breakpoints. Those changepoints are statistical boundaries with abrupt changes (i.e., 

mean, variance etc) into trends of data. On the otherhand, we have found from the  

 

 Model Name 
non-

BreakPoint BreakPoint Accuracy 
Macro 
Avg 

Weighted 
Avg  

  Manual Search 0.95 0.50   
  

0.94 

0.72 0.92 Precision 

  n_estimators=50 0.99 0.16 0.57 0.94 Recall 

    0.97 0.24 0.60 0.94 f1-score 

     
 

    

  Random Search 0.94 0.83 
 
 

0.94 

0.89 0.94 Precision 

  
max_depth=100, 
n_estimators=10 1.00 0.06 0.53 0.94 Recall 

    0.97 0.11 0.54 0.92 f1-score 

          

  Grid Search 0.95 0.63 
 
 

0.95 

0.79 0.93 Precision 

  
max_depth=100, 
n_estimators=10 0.99 0.14 0.57 0.95 Recall 

    0.97 0.24 0.60 0.93 f1-score 

Hyperparameter 
Optimization               

  
Bayesian 
HYPEROPT 0.94 0.00  

 
0.94 

0.47 0.89 Precision 

  
max_depth=10, 
n_estimators=0 1.00 0.00 0.50 0.94 Recall 

    0.97 0.00 0.48 0.91 f1-score 

                

  
Artificial Neural 
Networks 0.94 0.00 

 
 

0.94 

0.47 0.89 Precision 

  
neurons= 100, 
optimizer='Adam', 1.00 0.00 0.50 0.94 Recall 

  
 epochs= 50, 
batch_size=1024 0.97 0.00 0.48 0.91 f1-score 

                

  

TPOT  
(Tree Based 
Pipeline 
Optimization Tool) 

  
  

  
  

0.94 
  

  
  

  
  

Overall 
  

  

max_depth=2, 
generations=10, 
n_estimators=10 

                

  
OPTUNA 
Framework   

  
  
  

0.94 
  

  
  

  
  

Overall 
    n_trials = 200 
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latent representation of autoencoder [above] that breakpoints can be present among 

the nearby datapoints with higher probabilities. As well as we have found from above 

that there might be semantic overlaps of different chunk data points. For an example 

– the chunk ‘covid’ is overlapping with other chunks such as ‘office’, ‘credit’ and 

‘prothomalo (a newspaper)’. It may be due to it’s impact on those issues although 

those are not semantically related issues. So, dissimilar objects of distant points with 

lower probabilities are not only the indicatives of breakpoints. In such scenario it is 

hard to infer breakpoints with high accuracy. To further experiment this finding, 

we have applied ‘LOF (Local Outlier Factor)’  algorithm which looks at the local 

neighbourhood of a data point and measures the local deviation of density of a given 

sample with it’s neighbour. We have found F1 accuracy: 0.086956 and ROC AUC score: 

0.520737.  So, the outlier model is in flip of a toss situation according to ROC AUC 

score while inferring those data points as breakpoints.  We also have tested with some 

other unsupervised models i.e, K-means, One-Class SVM as shown in Table 5.2 but 

found worse results than LOF. The autoencoder model as we applied, also returned 

decreasing F1 score which means it could mostly infer non-breakpoints with lower 

errors. Because we have considered higher reconstruction errors as presence of 

breakpoints.   

At the later stage of the experiment, we have tested with few manual and automatic 

model parameter tuning techniques known as ‘Hyperparameter Optimization’ in order 

to find the best combination and improve performance of breakpoints inference on 

the data. We have achieved success by adopting this technique. As shown in above, 

‘Artificial Neural Networks (ANN)’ with it’s best combination of neurons and 

batch_size achived F1 score of 0.91; Tree based Pipeline Optimization Technique with 

it’s best estimator achieved 94% as overall accuracy after 10 generations run. We also 

have tested on ‘OPTUNA Framework’ which is an automated optimization approach 

and also achieved 94% as overall accuracy after 200 trial runs.    
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6.1 Chapter Overview 
 

e have conducted experiments to infer “where the breakpoints are” by 
applying both supervised and unsupervised machine learning models in 
chapter 5 and evaluated those based on their classification reports. 

However, reliability, accuracy, relevance of those results as part of transparent 
validation of outcomes are still in dark to judge. Knowing which features have 
positive/negative impacts on prediction results and how are those influencing the 
models are important for building human trust on machine produced results. To 
uncover all of those from black-boxes, we have endeavoured to use eXplainable AI 
(XAI) techniques at this stage of research. 
 
The more explainable a model, the deeper the understanding that humans achieve in 
terms of the internal procedures that take place while the model is training or making 
decisions [58]. For an example – ‘Random Forest’ is one of the classifiers, used for 
different approaches of hyperparameter optimization in Section 5.3.4.9 for finding the 
best combination of model parameters for improving breakpoint inference making 
results. But it was not possible to understand those model outcomes in terms of 3WH 
questions as mentioned in Section 2.5 and ensure trust on those results. So, following 
research question has been considered to find out techniques of explaining machine 
learning model: 
 
RQ8: How to validate inference making results for building trust on machine learning 
models and maintain transparency?   
 

- To address the research question (RQ8), we have implemented some model 
explanation methods in this chapter to provide further explanations on model 
outcomes of previous chapter and validate those results. As an approach we 
have adopted ‘post hoc model agnostic’ method and attempted to find out best 
fit XAI techniques for it. ’SHAP (SHapley Additive exPlanations)’ as a post hoc 
local and global interpretations, ‘LIME (Local Interpretable Model-Agnostic 
Explanations)’ as a local model agnostic algorithm, ELI5 as post hoc feature 
importance method have been used in this chapter. To better understand and 
interpret model’s decision making steps, we also have built decision trees and 
visualized the decision path.   

 

Details on machine learning models’ explanation techniques and visualizations of this 
chapter can be found from- 
https://github.com/Vis4Sense/ProvenanceLearning/issues/20 

 

 

W 
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6.2 XAI with SHAP  

The Shapley value is the average contribution of a feature value to the prediction in 

different coalitions. For each of coalitions prediction is calculated with or without the 

feature value. The feature value is the numerical or categorical value of a feature and 

instance; the Shapley value is the feature contribution to the prediction. The effect of 

each feature is the weight of the feature times the feature value. SHAP (SHapely 

Additive exPlanations ) provides following salient propositions: 

 

6.2.1  Prediction Explainer 

6.2.1.1  Local Interpretability  

The local interpretability enables to pinpoint and contrast the impacts of individual 

feature. The above explanation shows features each contributing to push the model 

output from the base value (the average model output over the training dataset we 

passed) to the model output. Features pushing the prediction ‘higher’ are shown in 

‘red’, those pushing the prediction ‘lower’ are in ‘blue’. Let's describe the plot in more 

detail: 

• f(x) = -4.02 is the output prediction value of X_train.iloc[0,: ] as shown in below. 

• The base (y_hat) = -3.182, which is the value that would be predicted if no 

features of the current output was known. 

• Red/blue: Features that push the prediction higher (to the right) are shown in 

red, and those pushing the prediction lower are in blue. 

It is predicted -1.28 for X_train.iloc[421,: ], whereas the base_value is -3.182 [below]. 

Magnitude of the pink feature values are larger in this scenario, causing better 

prediction than base value. Although 'Visit_Count' is negatively related to the model 

predictor however it pushes the prediction to the right with higher magnitude. 

'Elapsed_Time' also has negative impact driving the prediction to the left.
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6.2.2   Model Explainer 

6.2.2.1  Global Interpretability  

If we take many explanations (force plots) such as the one shown above, rotate them 

90 degrees, and then stack them horizontally (combined force plots), we can see 

explanations for an entire data X_test as shown below [below]. It has the purpose of 

explaining the model as a whole. It essentially has all the X_train data plotted on the 

x-axis (in this case, ordered by similarity, but it can be changed from the drop-down 

box) and their prediction values plotted on the y-axis. Also, it has the individual 

contributions of each feature for each sample, based on feature value. 

6.2.2.2  Elapsed_Time Effects 

In this example, we selected sample number 3598 (x-axis) to see it's 'Elapsed_Time' 

effects on predictions and found value of -2.833 (y-axis) as shown in below. This is 

how by just hovering over other samples, it is possible to see how feature values and 

their impact change, as well as the predictions.

 

 

(a) 

 

 

 

(b) 

 

Figure 6.1: (a) X_train.iloc[0,: ], (b) X_train.iloc[421,:]. 

https://user-images.githubusercontent.com/7479994/103181499-898f5400-4899-11eb-8e14-8c270b01e847.png
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(i) 

 

 

(ii) 

 

Figure 6.2: Shapley value - (i) Global interpretability, (ii) Elapsed Time Effects. 

 

6.2.2.3  Dependence Plot  

The dependence plot in Figure 6.3 shows how 2 features are related to one another in 

terms of their impact in the model, measured by a SHAP value (a measure of feature 

relevance in the model). When we specify a feature, 'Dependenc_Plot' function will 

automatically pick up another feature which has the strongest dependency in terms 

of relevance with the feature. We can see from the above plot that there is a non-linear 

relationship between 'URL_Length' and the target variable; the 'URL_Length' has 

strong relevance with the 'Visit_Count' although negative relationship exists as shown 

in below. 
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(i) (ii) 

 

Figure 6.3: (i) Dependence plot, (ii) Decision plot. 

 

6.2.2.4  Decision Plot  

SHAP decision plots show how complex models arrive at their predictions (i.e., how 

models make decisions). Moving from the bottom of the decision plot to the top, SHAP 

values for X_train.iloc[0,: ] feature are added to the model's base value. This shows 

how each feature contributes to the overall prediction. At the bottom of the plot, the 

observations converge at explainer.expected_value [1] = -3.2 which is the model's 

base value as shown in above. 

6.2.2.5  Summary Plot  

To get an overview of which features are most important for a model we can plot the 

SHAP values of every feature for every sample. The plot below [below] sorts features 

by the sum of SHAP value magnitudes over all samples, and uses SHAP values to show 

the distribution of the impacts each feature has on the model output. The colour 

represents the feature value (red high, blue low). 

From the plot below [below], we can see that Visit_Count was considered as one of the 

bottom ranked LightGBM features based on importance averaged over folds, however 

it's average impact on overall model output is the top most one based on mean SHAP 

value.
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Figure 6.4: (i) Summary plot, (ii) LightGBM feature importance. 

 

6.3 XAI with LIME 

LIME (Local Interpretable Model-Agnostic Explanations), also known as 'local fidelity' 

can explain the predictions of any classifier in an interpretable and faithful manner by 

learning a model locally around the prediction. LIME uses a local surrogate model 

trained on perturbations of the data point we are investigating for explanations. 

Approaches taken by LIME to achieve this goal are as followed: 

• For each prediction to explain, permute the observation n times. 

• Let the complex model predict the outcome of all permuted observations. 

• Calculate the distance from all permutations to the original observation. 

• Convert the distance to a similarity score.  

• Select m features best describing the complex model outcome from the 

permuted data. 
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(i) 

 

 

(ii) 

Figure 6.5: LIME - (i) Tabular representation and (ii) Text highlights for test.loc[310]. 

 

• Fit a simple model to the permuted data, explaining the complex model 

outcome with the m features from the permuted data weighted by its similarity 

to the original observation.  

• Extract the feature weights from the simple model and use these as 

explanations for the complex models local behaviour. 

We have used RF (Random Forest) model to classify breakpoints and considered 

X_test[310] as a test sample to understand it's features' local contribution weights 

towards the overall predictions. As our dataset is highly imbalanced, we also did over-

/under-sampling for producing more reliable predictions on the text part our dataset. 
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We have used tf-idf to vectorize the text dataset and logistic regression model for 

classifying breakpoints. As shown in above, LIME has been used to visually interpret 

their weights in both tabular and highlighted text formats. 

As shown in above, LIME model prediction_local can be obtained by adding the total 

of the coefficients with model intercept. Right is the original LightGBM prediction. 

LIME for text differs from LIME for tabular data. Variations of the data are generated 

differently: Starting from the original text, new texts are created by randomly 

removing words from the original text. The proximity of the variation to the original 

text can be calculated as 1 minus the proportion of words that were removed, for 

example if 1 out of 7 words is removed then the proximity will be 1 - 1/7 = 0.86. As 

shown above, 'negative (blue)' words indicate 'non-BreakPoint', while 'positive 

(orange)' words indicate 'breakPoint'. The way to interpret the weights is by applying 

them to the prediction probabilities. For example, if we remove 'client', 'accounts' 

words from the text, we expect the classifier to predict 'non-BreakPoint' with 

probability 0.63 - 0.08 - 0.06 = 0.49. On the otherhand, features that have ‘positive 

correlations’ with the target are shown in ‘green’, otherwise ‘red’ i.e, youtube>0 is 

positively and client<0 is negatively correlated with the breakpoint prediction for 

test.loc[310].  

 

6.4 Explaining Model’s Decision Making 

We have used LightGBM for the above classification task. To better understand and 

interpret the model's decision making, we have built decision trees as shown in below. 

Nowadays, the most used and the most performant types of machine learning 

algorithms are ensemble of decision Trees (RandomForest, XGBoost, LightGBM) for 

structured data and Deep Learning. We shall also use dtreeviz to provide explanatory 

visualizations for tree structure, leaf nodes information, prediction path etc.
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The decision tree classifier dtreeviz visualization as shown in below, uses node size to 

give visual cues about the number of samples associated with each node. Histograms 

get proportionally shorter as the number of samples in the node decrease and leaf 

node diameters get smaller. The feature space (horizontal axis) is always the same 

width and the same range for a given feature, which makes it much easier to compare 

the feature-target spaces of different nodes. The bars of all histograms are the same 

width in pixels. Pie-charts for classifier leaves are indicating purities. 

We have used a stacked histogram so that overlap is clear in the feature space 

between samples with different target classes. The height in the Y axis of the stacked 

histogram is the total number of samples from all classes; multiple class counts are 

stacked on top of each other. 

 

6.4.1   Visualizations of Leaves Impurities 

The goal for splitting a node (classification) is to create another two nodes as pure as 

possible. Decision Tree's performance depends on the performance of each individual 

leaf. So, it will be very helpful to understand/visualize what's happening into each 

leaf, because those as a whole lead to final prediction. A leaf contains information 

about the number of samples and its purity. Purity measures the distribution of target 

class values in each node. To measure the node purity, the most popular formulas are 

Gini (between [0, 0.5]) and Entropy (between [0, 1]).  
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Figure 6.6: Scikit-learn visualization of decision trees for max_depth=4, random state = 310 (test.loc[310]). 
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                   Figure 6.7: dtreeviz visualization of decision tree classifier for max_depth=4, random state = 310 (test.loc[310]). 
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Figure 6.8: (a) Gini purity for each leaf, (b) Leaves purities distribution, (c) Number of leaves 

grouped by target class, (d) Leaves sample distribution. 

 

As shown into scikit-learn visualization of decision tree (above), the ideal scenario of 

Gini is, when the value = 0 and that node contains only values from a single target 

class. If the value = 0.5 and the node contains values from all target classes in equal 

proportions, then it is the worst case scenario. Lastly, 0<Gini<0.5 indicates how pure 

or impure are the node samples.  

We have from above that quite a few leaves with purity close or very close to 0. This 

is the ideal scenario, but we need to take into account also the number of samples 

from these leaves. If we have a leaf with purity 0, but only very few samples into it, we 

cannot be very confident for its predictions, because it's based on few samples. It can 

be a clear sign of overfitting. 
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Figure 6.9: Prediction path visualization for random state = 310 (test.loc[310]). 

 

6.4.2 Decision Tree Regressor 

The decision of making strategic splits heavily affects a tree’s accuracy. The decision 

criteria is different for classification and regression trees. Decision trees regression 

normally use Mean Absolute Error (MAE) to decide to split a node in two or more sub-

nodes. Regression is calculated based on target variance values which measures how 

spread are the values out from their average. Leaves with low variance among the 

target values (regression) are much more reliable predictors. 
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Figure 6.10: (a) Feature importance based on prediction path nodes, (b) Leaf target 
distribution for regression decision trees, (c) Number of samples from each leaf, (d) Mean 
Absolute Error (MAE) for each leaf. 

 

As shown in the visualization of below, each splitting node represent a scatter plot 

between features and target value. The vertical dashed line shows the splitting value 

and the other two horizontal dashed lines show the mean target values for each 

subset. Leaf nodes visualize the target values from its samples and the horizontal line 

represents the target mean value, which is the leaf prediction. For our use-case, the 

splitting process tries to find another two subsets where each subset has low variance 

for breakPoint values. The 'blue circles' as shown in above represents leaf target 

distribution and the small 'vertical black lines' are leaf predictions.
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Figure 6.11: Decision tree regressor for max_depth=4, random state = 310 (test.loc[310]). 

 



6 
Validations 
Feature Importance Calculations 

    
    

     
 
 

232 
 

Middlesex University London 

6.5 Feature Importance 

As described in previous sections, the models can only classify every interaction as 

either breakpoint or non-breakpoint. What if, after the interaction is classified as 

breakpoint, the analyst would like to know why the model made this decision, i.e., how 

much each feature contributed to the final outcome? We have used ‘Random Forest’ 

as the classifier in previous section, which consists of a large number of deep trees, 

where each tree is trained on bagged data using random selection of features, so 

gaining a full understanding of the decision process by examining each individual tree 

is infeasible. Furthermore, even if we are to examine just a single tree, it is only 

feasible in the case where it has a small depth and low number of features. A tree of 

depth 10 can already have thousands of nodes, meaning that using it as an explanatory 

model is almost impossible. One way of getting an insight into a random forest is to 

compute feature importances, by permuting the values of each feature one by one and 

checking how it changes the model performance. The idea is that feature importance 

can be measured by looking at how much the score (i.e., accuracy, F1, R2, etc. - any 

score we’re interested in) decreases when a feature is not available. This method is 

also known as ‘Permutation Importance’ or ‘Mean Decrease Accuracy (MDA)’. 

When considering a ‘Decision Tree’, it is intuitively clear that for each decision that a 

tree (or a forest) makes there is a path (or paths) from the root of the tree to the leaf, 

consisting of a series of decisions, guarded by a particular feature, each of which 

contributes to the final predictions. A decision tree with M leaves divides the feature 

space into M regions Rm , 1 ≤ 𝑚 ≤ 𝑀. The prediction function of tree can be defined 

as –𝑓(𝑥) = ∑ 𝑐𝑚𝐼(𝑥, 𝑅𝑚) 𝑀
𝑚=1  where M is the number of leaves in the tree, Rm  is a 

region in the feature space, cm is a constant corresponding to region m and finally I is 

the indicator function [116]. The definition is concise and captures the meaning of 

tree: the decision function returns the value at the correct leaf of the tree. But it 

ignores the operational side of the decision tree, namely the path through the decision 

nodes and the information that is available there. More on operational way, these  
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predictions can be defined through the sequence of regions Rm  which gets divided by 

M leaves of a decision tree. Since each decision is guarded by a feature, and the 

decision either adds or subtracts from the value given in the parent node, the 

prediction can be defined as the sum of the feature contributions + the “BIAS” (i.e. the 

mean given by the topmost region that covers the entire training set). So, at this stage 

the prediction function for a tree can be rewritten as –  

𝑓(𝑥) = 𝑐𝑓𝑢𝑙𝑙 + ∑ 𝑐𝑜𝑛𝑡𝑟𝑖𝑏(𝑥, 𝑘)

𝐾

𝑘=1

 

Where K  is the number of features, cfull is the value at the root of the node and 

𝑐𝑜𝑛𝑡𝑟𝑖𝑏(𝑥, 𝑘) is the contribution from the k-th feature in the feature vector x [116]. 

Since the prediction of a forest is the average of the predictions of its trees -   

𝑓(𝑥) =
1

𝐽
∑ 𝑓𝑗(𝑥)

𝐽

𝑗=1

 

Where J is the number of trees in the forest. From this, it is easy to see that for a forest, 

the prediction is simply the average of the bias terms plus the average contribution of 

each feature [35]:  

𝑓(𝑥) =
1

𝐽
∑ 𝑐𝑗 𝑓𝑢𝑙𝑙 + ∑ (

1

𝐽
∑ 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑗(𝑥, 𝑘)𝐽

𝑗=1 )
𝐾

𝑘=1

𝐽

𝑗=1

  

This has resemblance to linear regression 𝑦 = 𝑐 + 𝑚1𝑥1 + 𝑚2𝑥2 + … + 𝑚𝑛𝑥𝑛 where 

independent variables are ‘features to predict’ and the dependent variables are 

‘features to be predicted’. The coefficients ‘m’ multiplying independent variables ‘x’ 

show the relationships between the dependent and independent variables. For the 

current part of experiment, we have used ‘Ridge Regression’ as a classifier to unleash 

the most/least important features contributing to actual prediction. Ridge Regression 

(RR) is an example of estimating coefficients of multiple-regression models in 

machine learning where independent variables are highly correlated. 
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(i) 

 

 

(ii) 

Figure 6.12: ELI5 (i) Global feature importance, (ii) Local TextExplainer for train.values[1000]  

with Ridge classifier. 

 

We also have used ELI5 (a python package) which allows to explain weights and 

predictions of scikit-learn linear classifiers and regressors, print decision trees as text 

or as SVG, show feature importances and explain predictions of decision trees and 

tree-based ensembles. ELI5 feature importance visualizations (above) on ridge 

classification shows that,  ‘redirecting’ is the most important feature from column 

‘Title’. 



6 Validations 
Feature Importance Calculation 

   
              

     
  
 

235 
 

Middlesex University London 

 

 

 

 

 

(i) (ii) 

 

Figure 6.13: ELI5 (i) Global feature importance (ii) TextExplainer with Random Forest classifier. 

 

The higher the position, the  more critical the features are affecting the scoring. Some 

features in the bottom place is showing minus values, which means that the feature 

‘https’ into column ‘URL’ has the least contribution towards prediction. For an 

example - if input includes ‘redirecting’, then it increases score  +1.046. Another case 

is ‘uk’, it will decrease score -0.709. It is hard to approximate a black-box classifier 

globally (for every possible text), approximating it in a small neighbourhood near a 

given text often works well. ELI5 follows the LIME algorithm for explaining a text 

locally by generating distorted text, predict probabilities of it and then train the 

classifier which tried to predict the output of a black-box classifier on that text.  

We also have implemented Random Forest to test how the scoring (accuracy, 

precision, recall etc) shift with feature existence or no. As shown in above, we can see 

that the displacement has the highest score with 0.0526. It means that when the 

permutation occurs to ‘https’ feature, it will change the accuracy of the model as big 

as 0.0526. The value after the plus-minus sign (i.e, ±0.0997) is the uncertainty  
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(a) 

 

 
 

(b) (c) 

 
Figure 6.14: ELI5 (a) Explanation as decision tree (partial view) (b) Feature importance of 
X_test.iloc[310], (c) X_test.iloc[1] for decision tree classifier.  
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value. The permutation importance method is inherently a random process, so it uses 

uncertainty value. above shows us how does Random Forest classifier predict the 

given data. It also shows how each feature contributes to the probability and the score 

(score calculation is based on the decision path) for non-breakpoint class (y=0). The 

classifier also introduces <BIAS> feature which is expected average score output by 

the model, based on the distribution of the training set. What is important into above 

visualization is that each feature contributed to the prediction result and hence the 

feature contribution affecting the weight result. Weight is  after all the percentage of 

each feature contributed to the final prediction across all trees. 

 

6.6 Discussion 

Knowing which features have positive/negative impacts on the prediction of results 

and their influence on the models are important for building human trust on machine 

produced results. SHAP local explanation shows features each contributing to push 

the model output from the base value (the average model output over the training 

dataset we passed) to the model output. We have found that values of those 

contributing features can be negative themselves. For example – values of feature 

contributions 𝜙𝑗(𝑓) of instance X_train.iloc[421,:] as shown in above are negative 

while pushing the prediction to higher/lower. This is because the mean effect 

estimate 𝐸(𝛽𝑗𝑋𝑗) is greater than the  j-th feature effect 𝛽𝑗𝑥𝑗 , as explained into Section 

2.5.3.2. So,  as shown in above 'Visit_Count' is negatively related to the model predictor 

however it pushes the prediction to the right with higher magnitude. But 

'Elapsed_Time' has negative impact driving the prediction to the left. This is just a local 

interpretation for that specific instance. SHAP provides global interpretation too i.e,  

'Elapsed_Time' also pushes the prediction globally to ‘lower’ (in ‘blue’) from it’s base 

value -3.182. It is also possible to find out some relevant features from SHAP 

dependence plot, having similar impact of predictions. We have found ‘URL_Length’ 
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has strong relevance with the ‘Visit_Count’ as shown in above although negative 

relationship exists.  

While SHAP explains feature influences on model outputs, it is also necessary to know 

most/least contributing features as well as importance of different word segments 

into a text towards breakpoint/non-breakpoint predictions. As shown in Figure 6.5, 

we have used LIME to visually interpret their weights in both tabular and highlighted 

text formats. LIME works by approximating instances locally with the interpretable 

model and performs perturbations on instances around the explained instance to 

weight those based on proximity (Πx) measure as explained into Section 2.5.3.1. For 

text data, usually cosine similarity is used to measure those proximities. To explain 

such measures and related model outputs we have considered test.loc[310] as an 

example and found some negative weights, also known as coefficients. The true class 

for this instance is a non-breakpoint. We have found higher prediction probabilities 

of 0.98 for non-breakpoint after applying RF (Random Forest) as  the classifier. 

𝑉𝑖𝑠𝑖𝑡_𝐶𝑜𝑢𝑛𝑡 > 4.00 is the top most coefficient in this case. 𝑈𝑅𝐿_𝐿𝑒𝑛𝑔𝑡ℎ > 65.00 is the 

next most contributing feature inferring non-breakpoints. We have found strong 

relevance of these two features too according to SHAP dependence plot. We have 

over-/under- sampled to produce more reliable predictions on the text part of our 

dataset as well as it is highly imbalanced. We have found the word ‘youtube’ having 

the highest coefficient value to lead the prediction towards ‘breakpoint’ for 

test.loc[310]. On the otherhand ‘youtube’ is positively and ‘client’ is negatively 

correlated with the breakpoint prediction as shown in Figure 41(ii).     

LIME has provided local interpretation and contribution of features specific to the 

instances. For calculating global importance of different features, we have used 

another method known as ELI5 that follows LIME algorithm. It calculates 

‘Permutation Importance’ also known as ‘Mean Decrease Accuracy (MDA)’ by 

distorting texts and predict probabilities of those. Thus after applying RF (Random 

Forest) as classifier we have found  ‘github’, ‘linkedin’, ‘google’ etc,  as the highest 

contributing features to the probability and the score for non-breakpoint class y=0 as  
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shown in Figure 6.13(i). The value after the ‘±’ sign is the uncertainty value. As the 

permutation importance method is inherently a random process, so it uses 

uncertainty values. Alike other approaches, we also have found ‘URL_Length’ as the 

highest contributing feature after calculating ‘Decision Tree’ feature importance as 

shown in above. The classifier also introduces <BIAS> which is the expected average 

score output by the model. In decision trees, each decision is guarded by a feature and 

it either adds or subtracts from the value given in the parent node and the prediction 

can be defined as the sum of  ‘the feature contributions + the BIAS’. 

When considering ‘Decision Tree’, each decision that a tree (or a forest) makes, there 

is a path (or paths) from the root of the tree to the leaf consisting of series of decisions, 

guarded by a particular feature, each of which contributes to the final predictions. We 

have presented such a  prediction path visualization for test.loc[310] in above, which 

includes ‘Visit_Count’ and ‘URL_Length’ along the way to it’s prediction as a non-

breakpoint. We have found from the dtreeViz in above that ‘Visit_Count’ has also been 

selected as root node by decision tree’s ASM (Attribute Selection Measure) heuristics. 

above shows quite a few leaves with 𝐺𝑖𝑛𝑖 ≥ 0, which are ideal scenarios of minimizing 

MAEs (Mean Absolute Error) to decide to split a node. The decision of making strategic 

splits heavily affects a tree’s accuracy. We also have found that decision criteria for 

classification and regression are different. For an example - ‘Visit_ID’ has been 

selected as the root with ‘Decision Tree Regressor’ as shown in above. We have 

observed low variances with non-breakpoint horizontal lines which actually 

measures how spread are the values out from their average. Leaves with such low 

variance among the target values are much more reliable predictors. Thus the 

whitebox approach of using decision trees has helped to understand and interpret the 

model’s decision making.  

Lastly, explaining model’s decision making process, unfolding blackbox calculations 

of probabilities towards predictions, computing feature importance, understanding 

their local and global implications are important to show algorithmic transparency of 

machine learning outcomes for inferring breakpoints from uncertain log dataset. We  
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have aimed to explain evaluation results as achieved from Chapter 5 to prove their 

validities through human judgemental process by uncovering their execution steps, 

ranking features based on their importance and implications. It is necessary to explain 

those evaluation results as we could not compare those outcomes with the 

measurements of different behavioural constructs due to lack of available data from 

CTA as explained into Chapter 4. Alongside the transparency these explanations will 

also help to build trust on machine produced results. From Chapter 5, we have found 

supervised approaches achieve better results than unsupervised approaches and 

comparatively less difficult to explain those results. To achieve better results we also 

have shown how to tune model parameters into both manual and automatic 

approaches to find out the best combinations. For those approaches, alongside other 

ML algorithms we have used ensemble of decision trees (Random Forest, LightGBM) 

for structuring data and deep learning. We also have used regressions i.e, Ridge 

Regression, Logistic Regression and found difference between their decision criteria 

from ‘Decision Tree Regressors’. Thus we have shown influences and relevance of 

different features and their influences on ML model prediction results upon 

permuting those. But in future we aim to compare these results with the outcome of 

manually detected and calculated results of a CTA approach to distinguish between 

machine and human approaches.   
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7  Research Review 
 

This research aims to bridge the gap between cognitive constructs and manipulations 

or interactions human employ to think and reason by leveraging captured analytical 

provenance data. In this research, detecting ‘Behavioural Markers (BMs)’ has been 

proposed as a way of establishing this bridge to execute a fine-tuned computation led 

cognition and vice-versa during sensemaking activities mainly into visual analytic 

systems. The overall contribution of this research to detect BMs has been presented 

in Figure 7.1 as a summary. As the first step,  we have attempted to develop and 

evaluate a system to capture, visualize and utilize analyst’s sensemaking interactions 

after conducting extensive research with a group of police intelligence analysts for 

finding out the requirements (Section 3.3.3.1) during real criminal intelligence 

analysis. In the next step, we have applied a composition→translation technique on 

captured analytic datasets to form constructs of BMs for externalizing analyst’s 

thinking processes. We also have conducted a cognitive task analysis for detecting 

those BMs. Prior to this qualitative approach we have developed an exhaustive table 

of observable BMs and their constructs as shown in Table 4.2.  BMs are consisting of 

different behavioural constructs which are basically different approaches followed by 

analysts. We have found from the CTA that different cognitive transition information 

are also nipped into captured analytic dataset which are the building blocks of 

behavioural constructs at the lower level. We have named those transitions points as 

‘Breakpoints’ and aimed to infer those by adopting machine learning (ML) techniques 

both in known and unknown task scenarios. As ML models are all black-boxes, we also 

have interpreted those quantitative evaluation results by using relevant ‘eXplainable 

AI (XAI)’ techniques to validate machine produced results and maintain transparency. 
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Chapter 3 - Analytic Provenance for Sensemaking 
H1: RQ1, RQ2 

▪ Uncertainty of Visualization (Case Study) 

▪ Analytic Task Model (RRP) 

▪ Events Sequence and Dataflow Models 

▪ Visualizations for PROV-AQ 

▪ Analytic Path Schematization for Tactile Reasoning 

▪ Evaluation with INTEL Analysts 

Chapter 4– Sensemaking Behavioural Markers 
H2: RQ3, RQ4, RQ5 

▪ Constructs of BMs (SLR, Workshops) 

       Automatic Approach 

▪ Network Graph for Action Sequence 

Computation 

▪ Compositional Reduction for Forming 

Behavioural Constructs 

       Manual Approach 

▪ Cognitive Task Analysis (CTA) 

 

Chapter 5 – Inferring Sensemaking Tasks 
H3: RQ6, RQ7 

▪ Inferring Breakpoints for Action Chunking 

Known Scenario 

▪ Conventional Data Filtering to understand how machine 

perceives human intent (Experiment 1) 

▪ Supervised ML with Contextual Attention (Experiment 2,  

Part - I) 

Unknown Scenario 

▪ Un-Supervised ML tests on changepoints/outliers/ 

feature proximity  (Experiment 2, Part - II) 

 

▪ Hyperparameter Optimizations 

Evaluation Validations 

▪ CTA 
▪ Structured 

Interview 
 

RQ8 (Chapter 6) 
▪ eXplainable AI (XAI) 

- Black-box 
- White-box 
 

 

Translate Infer BMs 
(Behavioural Markers) 

Q
u

al
it

at
iv

e 

Figure 7.1:  Research Contributions.  
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7.1 Summary of Research Contributions 

The whole research has been conducted based on several hypotheses(H) and 

associated research questions (RQs) as shown in above. So, overall thesis 

contributions have been made through finding out appropriate tools & techniques for 

addressing those RQs and test hypotheses(H) which are as followed: 

7.1.1   Hypothesis 1 

Capturing user's interactions with a visual interface can retrieve some aspects of the 

transparency of user's reasoning processes in intelligence analysis. 

 

RQ1: How to develop a system that tackles large flow of heterogeneous analytical data 

and supports W3C PROV-AQ: Provenance Access and Query standard factors i.e, 

Recording - represent, denote; Querying - identify, pingback; Accessibility - locate, 

retrieve into a multi-modular environment? 

RQ2: How to utilize captured analytic provenance data for sensemaking? 

 

To test hypothesis 1 by considering RQ1 and RQ2 we have contributed into following 

stages of research and development: 

 

We have proposed a new ‘Analytic Task Model’ by gathering information from real 

police intelligence analysts about ‘how do they think’ and ‘what do they do’ to achieve 

their goals. The aim is to examine analytic provenance into that model’s stages (Figure 

3.3) and represent those to support judgements of computations made with large 

number of complex interconnected systems. This is important because failing to 

examine followed analytical techniques and lack of tool support may lead to faulty 

cavalier and superficial data analysis, making faulty claims with confidence that may 

cause poor decision making.  

- While understanding how the analyst ‘perceives’ visualization of data through 

a case study on criminal situation as described into Section 3.3.2.3, we have 
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found that inaccuracy may occur through the pipeline of data processing. We 

have denoted this as ‘Uncertainty of Visualization’ which differs with the 

concept ‘Visualization of Uncertainty’ on which lot of research have been 

carried out. We also have found that - 

▪ Uncertainties in visualizations also lead to spatial (Figure 3.6) and 

temporal (Figure 3.7) determinacy problems which means ‘don’t know 

about when and where’. We have found it raising ‘Issue Uncertainty’ for 

structuring, filtering and organizing dataset resulting to ‘Decision 

Uncertainty’ as described into Section 3.3.2.2. 

▪ Visualization bias may occur where a user is typically unware of the 

data. We have found such clustering illusions from Figure 3.5 (iii, iv) 

whereas those were not developed by using any statistical algorithm.  

▪ We contend that analytic provenance methods for capturing, tracking, 

managing or organizing data can support such ‘uncertainty-aware 

sensemaking’.   

- For ‘capturing’ analytic provenance data we have contributed by designing a 

new system architecture (Figure 3.8), event sequence (Figure 3.9) and 

underlying data-flow (Figure 3.10) models for large modular AUI (Analyst’s 

User interface) system used for the project *VALCRI. We have tested those 

models and found it supports capturing/restoring analytical provenance states 

or workflows both automatically and manually by tackling complexities of 

heterogeneous development environments.    

▪ Prior to those model implementations, we conducted an extensive 

requirements analysis by arranging several focus group discussions 

with the end-users (police intelligence analysts) and formulated lists of 

system requirements (SysReqs) and police analysts’ requirements 

(AnaReqs) as described into Section 3.3.3.1. 

- For utilizing and making sense of captured analytic data we also have proposed 

a ‘Repetitive Replicating Analytic Path Schematization’ approach. 

▪ The first part of this approach enables analysts to study reasoning 

relationships from the default workflow visualization. We have 

captured these relationships from a collaborative environment of 
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intelligence analysis and visualized those as an ‘Analytic Path’ (Figure 

3.12). We have visualized ( as shown in Figure 3.15) those set of related 

analytic states in a way so that those support W3C standard PROV-AQ 

as well.    

▪ Secondly, the analytic path visualization supports ‘schematizing  in 

visuo-spatial’ manner (Figure 3.13) according to Klen et. al.’s [80] data-

frame model to enable ‘Tactile Reasoning’ [81] for the analysts.   

▪ Lastly, this approach includes a new method of reusing and reapplying 

insights into different domain and retaining those for gaining a new 

insight. We have named this method as ‘Repetitive Replicating  Playback 

(RRP)’ system as shown in Figure 3.3(ii) and 3.12. 

 

The contributions of this research are quite significant and valid for the area of 

criminal intelligence analysis as we carried out this whole research, development and 

evaluation with the real police intelligence analysts (end-users) intending to 

contribute to the provenance module ‘PROV’ of the project *VALCRI. The whole 

approach was non-trivial as we targeted to develop models and techniques so that 

those work generically for a large complex heterogeneous modular visual analytic 

system. We have found from the evaluation report on the module ‘PROV’ that few of 

the building blocks of ‘Transparency’ i.e., source, process, accountability, series of 

events etc can be retrieved. All these are enabler of fairness and lawfulness of the data 

processing activities from the legal framework. However, for establishing insightful 

alignment with analyst’s cognitive processes we aim to utilize some of these analytical 

data into next stage of our research.   

 

7.1.2  Hypothesis 2 

Behavioural Markers (BMs) can act as attributes for bridging between human 

cognition and analytic computation through interactions during fluid transitions 

between mental and analytic processes at micro-analytic level. 
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RQ3: What are the constructs of Behavioural Makers (BMs)? 

RQ4: How to translate reasoning processes to Behavioural Markers (BMs)? 

RQ5: How to externalize thinking processes from the constructs of Behavioural 

Markers (BMs)? 

 

To test hypothesis 2 by considering RQ3, RQ4 and RQ5, we have contributed into 

following stages of experiments and reported results:    

 

We have found most of the participants’ agreement ratings, 3.29≤𝑟≤5.00 with an 

overall average value of 4.07 (Figure 4.6) and MD=8.14 (Figure 4.7), while assessing 

each of behavioural constructs though ‘Cognitive Task Analysis’. Taking into 

consideration we have understood that constructs of analyst’s cognitive activities are 

ingrained into their analytic activities and higher MD rating is explicitly the indication 

of ‘fluency in data finding’ resulting to ‘ideational fluency’.  It’s lowest standard 

deviation SD=0.9 (Figure 4.7) shows strong acceptance of all participants regarding 

MD ratings.  

- The above  results are important to test the current  hypothesis, because these 

findings prove occurrence of transitions between mental and interaction states 

through analytic processes during fluid activity of intelligence analysis 

although the performance rating PF=3.14 was average despite of higher effort 

EF=7.0. Recovering such cognitive reflection on analytic reasoning processes 

from extended log data is difficult. Endert et. al. [38] contends that a new 

methodology is needed to couple these cognitive and computational 

components.   

- We have proposed that markers of analyst’s cognitive behaviour are the 

attributes for bridging human cognition and analytic computation through 

interactions. We have named those as ‘Behavioural Markers (BMs)’ in this 

research. 
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- Detecting constructs of BMs are a bit non-trivial, because the beginning or end 

of reasoning process may be unknown . We call it as ‘Cognitive Steps Sequencing 

Problem’.  

▪ At the first stage, through an systematic literature review we have selected 

some behavioural attributes as shown in Table 4.1. At the next stage, we 

have we have discussed those initial attributes with subject matter experts 

through arranging a workshop by considering human factors, cognitive 

engineering and interactions on visualizations in *VALCRI’s AUI system. 

Thus we have formed an exhaustive list of constructs of BMs as shown into 

Table 4.2.  

▪ For translating captured reasoning processes to BMs, we have visualized 

those into a network graph named as ‘Analytic Path’ (Figure 4.2) to 

understand which action combinations may provide meaningful sequence 

for targeted BM. 

▪ We have proposed a computational approach known as ‘compositionally 

reduction’ that leads complex constructs breaking down or reducing into 

simpler, more quantitatively manageable constructs. Ideally, these smaller 

components have a more directly observable set of markers for a certain 

analytic behaviour. Thus it externalizes human thinking process as it 

continues reducing down as described into Section 4.5.1. 

 

Endert et. al’s [38, 85, 117] suggested ‘semantic interaction’ concept  of model steered 

interaction affordance to couple cognitive (NTS) and computational (TS) components, 

has limitations in case of erroneous move which may have negative influence on 

user’s confirmation bias. Fisher et. al. [118] has raised a concern of having small 

memory footprint in case of such adaptive computation to provide the user with rich 

information throughout the user’s exploration process. Our current approach of 

translating different cognitive constructs in terms of computational interactions can 

overcome these issues by pinpointing or inferring cognitive transitions with a goal to 

understand user’s sensemaking behaviour. We aim to investigate this claim in the 

next piece of our research work.  
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7.1.3  Hypothesis 3 

Inferring chains of low-level analytic actions can be of assistance for understanding 

multi-tasking behaviour. 

RQ6: How can meaningful units of task execution be produced from captured 

interaction logs?  

RQ7: How precisely multi-task switches be inferred during execution of interactive 

tasks? 

RQ8: How to validate inference making results for building trust on machine learning 

models and maintain transparency? 

To test hypothesis 3 by considering RQ6, RQ7 and RQ8, we have contributed into 

following stages of experiments and reported results:     

i.  

We have found 0.26≤Recall@10≤0.48 and 0.40≤Recall@20≤0.63 (Figure 5.7) from 

experiment 1 (Section 5.3.1), which show that it always requires higher hit(N) for 

understanding user’s intention by using conventional methods.  

- The above finding is important because it identifies the drawback of conventional 

methods in case of lack of information known as ‘cold-start’ problem. 

▪ To evaluate Recall@N results we have used popularity-based, content-

based, collaborative and hybrid filtering methods as discussed into Section 

5.3.1.3. 

▪ Among those the ‘Hybrid’ method returned better ‘Recall@N’  values as 48% 

(N=10) and 63% (N=20) for 100 random test data by using the data filtering 

model.  

▪ Predictive accuracy of ‘Hybrid’ model is comparatively better because it 

uses blending of multiple predictors such as – weighted average of 

normalized CF scores with the CB scores. So, applying this model is 

comparatively non-trivial than other approaches.  



7 
Conclusion 

Summary of Research Contributions 

   
             

   
    

250 
 

Middlesex University London 

- We have proposed to exploit the contextual attention mechanism for improving 

performance of conventional methods and overcoming cold-start issue in case of 

lower hit(N).  

ii.  

We have used contextual attention information as explained into Section 5.3.2 to test 

either it supports domain independent user’s analytic behaviour modelling or not. We 

have proposed ‘breakpoints’ as the way of chunking users’ stream of actions and 

understand their intention at different granular levels (hierarchical/contextual). 

After applying these concepts into part 1 of experiment 2 (Section 5.3.4.1), we have 

obtained, the precision 0.98 and recall 1.00 which depict the predicted values for ‘non-

Breakpoints’ are almost similar to their originals. The overall accuracy score is - 98%. 

- The above finding is important because it solves the cold-start issue by building 

context of interacted contents as opposed to conventional way of associating static 

weights to different types of interactions as explained into Section 5.3.1.2.  

▪ The above result has been obtained by applying a neural network based 

‘Multi-Headed Self-Attention’ mechanism as shown in Figures 5.8 – 5.13.  

▪ This method helps to learn a word’s context on surrounding words rather 

than the word immediately precedes or follows it. 

▪ For preparing training dataset we have adopted our proposed abstraction 

techniques i.e, context dependent, hierarchical and binary chunking for 

activity classification (Section 5.2).  

- The overall process of implementing and explaining the results of above approach 

are challenging. Because the model is built on pre-trained 12-layer, 768-hidden, 

12-heads, 110M parameters and takes longer time to finish the training process. 

Thus it generates 144 distinct attention patterns at it’s multi-head layers only for 

two text inputs as shown in Figure 5.13.    

- The above approach is universal for all settings of large text corpus as it will use 

the same pre-trained model. We have visualized strength (positive/negative) 
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calculations of attentions for feature inputs based on ‘query’ and ‘key vector’ 

products as shown in Figure 5.15. 

- We have found that although computing contextual attention has shown 

promising results in inferring human specified breakpoints but it will not be 

feasible to adopt in case of unknown/free-form task due to cognitive and 

perceptual variances of different users.  

iii.  

To come round the problem of defined task, we have proposed a data-driven approach 

in part 2 of experiment 2 (Section 5.3.4.7) where all used algorithms do not see the 

labels while training but later used for performance metrics. We have aimed to test in 

this part of experiment either ‘Breakpoints’ are – (1) Changepoints or (2) Outliers or 

(3) Distant Features.  

- For testing those assumptions, we have presented a data transformation 

technique to produce semantically similar text corpus and tag those with a 

name. 

▪ After applying ‘ChangeFinder Algorithm’ as shown in Figure 5.17, we 

have found that it mostly can detect ‘Changepoints’ among usual trends 

based on anomaly scores but those are not always indicatives of 

‘Breakpoints’. 

▪ To test breakpoints being outliers, we have applied ‘Local Outlier Factor 

(LOF)’ algorithm which looks at the local neighbourhood of a data point 

and measures the local deviation of density of a sample with it’s 

neighbour. We have found F1 accuracy: 0.086956 and ROC AUC score: 

0.520737 which shows flip of a toss situation in inferring data points as 

breakpoints.  

▪ By analyzing t-distributed stochastic neighbour embedding 

visualization (Figure 5.19) we have found semantic overlaps of 

dissimilar chunk data points. We also have found from the latent 

representation of ‘Autoencoder’ [Figure 5.20(b)] that breakpoints can be 
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present among closer proximities of data points with higher 

probabilities. So, dissimilar objects of distant points with lower 

probabilities are not always the only indicatives of breakpoints.    

- We also have calculated the 95th percentile of breakpoint prediction values for  

K-Means and found F1 accuracy: 0.043478; for Isolation Forest and found F1 

accuracy: 0.086956 as shown in Table 5.2. 

- After decoding data from autoencoder’s latent representation, we have found 

decreasing F1 score [Figure 5.20(e)] which means it mostly can infer non-

breakpoints with lower reconstruction errors. We have found the model a bit 

overfitting at some epochs while being in synch for few other cases although 

having decreasing validation loss and increasing validation accuracy.  

- These findings are important for the research in cognitive science as 

conventional clustering and pattern mining techniques for user behaviour 

modelling [39], task identification [40], clickstream modelling [39] don’t fit 

well with inference making in case of cognitive and perceptual variances. Our 

finding on feature distances also opposes with Lee et. al’s [115] distance 

curve’s peaks denoting as breakpoints. But their finding matches with ours 

while detecting human specified breakpoints by using existing ‘Changepoints’ 

detection technique. Our ‘Contextual Attention’ approach outperforms Iqbal et. 

al’s [111] approach to infer breakpoints where they found detection accuracy 

of 69% - 87% by using CFS and MPL techniques.  

- Although we have achieved promising performance for the supervised 

learning on contextual attention but for unknown scenario our experiment 

setting on unsupervised learning did not perform well. From the later 

approach, we have found F1 accuracy between 0.043 to 0. 087; ROC AUC 

between 0.47 and 0.52 (it means the model has no class separation capacity).    

- For achieving improved performance of breakpoint inference, we have tested 

with an automatic model parameter tuning technique known as ‘OPTUNA’ to 

find the best combination and achieved 94% as overall accuracy after 200 trial 

runs. As shown in Table 5.3, we also have tested with other ‘Hyperparameter  
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Optimization’ techniques i.e, ‘TPOT’, ‘ANN’, ‘Bayesian Hyperpot’ and obtained 

similar results. 

iv.  

Lastly, We have implemented few eXplainable AI (XAI) techniques for interpreting 

model’s decision making process, unfolding blackbox calculations of probabilities 

towards predictions, computing feature importance and understanding their 

local/global implications. The aim is to provide transparent validations of above 

explained evaluation results and building trust on machine produced results through 

human judgemental process.  

- We have found the most performant types of machine learning algorithms are 

ensemble of ‘Decision Trees (RandomForest, LightGBM)’ in hyperparameter 

tuning (Table 5.3) for inference making. So, we have used those algorithms for 

measuring feature contributions on model predictions in line with XAI 

techniques. 

- After considering several sample instances we have found ‘Visit_Count 

(number of times the user has navigated to the webpage) as one of the top 

locally contributing features. For example–  

▪ Calculated SHAP value of X_train.loc[421,:]in line with LightGBM 

classifier shows that it pushes the prediction to the right (higher) 

[Figure 6.1(b)] and ‘URL Length (string length of the url)’ has the 

strongest relevance as shown by ‘SHAP Dependence Plot’ [Figure 6.3(i)]. 

▪ LIME tabular representation [Figure 6.5(i)] of X_test.loc[310] in line 

with ‘Random Forest classifier’ shows similar results for it’s true class 

‘non-breakpoint’.  

▪ Alike SHAP, LIME approaches, we also have found ‘Visit_Count’ and 

‘URL_Length’ as top contributing features after calculating ‘Decision 

Tree’ feature importance as shown in Figure 6.10(a) along the 

‘Prediction Path’ (Figure 6.9) too. 
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- We also have found from test.loc[310] text sample after applying ‘Random 

Forest’ as classifier that the word ‘youtube’ is positively correlated with 

prediction as a ‘breakpoint’ [Figure 6.5(ii)]. The ELI5 global feature importance 

in line with ‘Ridge Classifier (estimating coefficients of multiple-regression 

models where independent variables are highly correlated)’ has also identified 

‘youtube’ as one of the top positively (having least negative) affecting word on 

model prediction [Figure 6.12(i)].   

- While drawing the decision path we have found quite a few leaves with Gini≥0 

which are ideal for minimizing ‘MAEs (Mean Absolute Errors)’ as shown in 

Figure 6.8 (a,b). We also have found ‘ASM (Attribute Selection Measure)’ and 

decision criteria for classification and regression are different. This is 

important because decision the decision of making strategic splits heavily 

affects a tree’s accuracy. 

We have aimed to judge the validity of obtained evaluation results from Chapter 5 due 

to lack of required data from ‘CTA (Cognitive Task Analysis)’ as described into Chapter 

4 to measure constructs of BMs (Behavioural Markers) and compare those outcomes 

with evaluations results. The ‘blackbox’ and ‘whitebox’ calculations (knowns as XAIs) 

of probabilities towards predictions have unfolded most importantly the prediction 

path and it’s contributing features for human judgement  and build trust on machine 

produced results. 

 

7.2 Additional Work and Scopes of Further Development 

We have discussed limitations of our current approach in each chapter. However, 

there are scopes to improve or test other approaches still. We started with another 

project which can be a potential area to explore to extend and improve results of our 

current research in some cases. 
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Canadian Crimes By Cities 1998-2012 
Data Source: : http://open.canada.ca 

 (i) 

 
(ii) 

 
 

Figure 7.2: (i) ProvViz - An analytic state suggestion system (GST View): A) Automatic analytic 
state capture panel, B) †Canadian Crime (by cities 1998-2012) Visualization on map. C) Bar chart 
and line chart for showing temporal crime statistics. D) Automatic state suggestion panel. (ii) 
Preliminary ontology development for ProvViz. 
 

http://open.canada.ca/
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7.2.1 Ontological Approach for Data Provenance 

We have followed computational approaches so far to elicit user’s intent of reaching 

goal. But we have not considered implementation of any domain related knowledge 

for inference making which might be needed in areas like intelligence analysis for 

decision making. Implementing/changing/switching such knowledge as semantic 

data layer may be needed alongside understanding of user’s analytical behaviour 

during intelligence analysis. For an example – switching from ’West Midlands policing 

policies’ to ‘Belgium policing policies’ for the purpose of case based reasoning. On the 

otherhand, implementing/maintaining/changing such knowledge architecture is 

crucial at the code level during run time into any system. One of the potential solutions 

of this problem can be adopting an ontological approach to operate as underlying 

architecture of the dataset and make changes there when it is needed. To test the idea, 

we have developed a prototype [above] that captures analyst’s interactions 

automatically. We have named this prototype as  ‘ProvViz’ that works interactively 

with the Canadian map’s ‘GST (Geo-Spatial and Temporal) view’ with total number of 

crimes visualizations for 1998-2012† (red circles) and . The bigger the circle is - means 

more crimes occurred in a city than the comparatively smaller ones. 

 

It also includes another view known as ‘CDR (Call Data Records) view’, developed by 

using VAST Challenge 2015 dataset‡. The initial version of schema shows the 

relationships among different crime types and their subtypes occurring in Canadian 

cities. From the schema we can see that ‘All’ crimes have ‘Types’ and these types are 

related to different ‘cities’ where it occurred. All cities have ‘subtypes’ of crimes 

occurred in different times of the year. After interacting, this system suggests relevant 

states based on the computation of developed initial version of ontology as shown in 

above. 

 

 

†   GST Analysis:  Canadian Crimes by Cities during 1998-2012 
     http://open.canada.ca/ 
 
‡   CDRs Analysis: VAST Challenge 2015: 
     MC2 http://vacommunity.org/VAST+Challenge+2015 
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(i) 

 

 

(ii) 

Figure 7.3: Preliminary version of analytic provenance ontology for ‘PROV’ – (i) WebProtege 
class view, (ii) WebVowl visualization.  
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We aim to further develop this simple ontology by creating a semantic representation 

of data for a large complex system like *VALCRI’s AUI (Figure 3.2) so that it can 

discover associations of different crime types both geo-spatially and temporally. This 

will be help to answer the question – ‘ why has the crime occurred? ’.  We also aim to 

infer inconsistencies in data, derive new data as ontologies support automatic 

reasoning as well by using existing concepts, relations and additional axioms relevant 

for the specific domain [119].     

 

7.2.2 Ontological Approach for Analytic Provenance 

Alongside data provenance, we aimed to develop an analytic knowledge 

representation as well with an assumption that the system-led sensemaking may 

enhance support into sensemaking steps. The system can proactively or reactively 

help analysts by inferring ‘what he/she is trying to do’. There is no W3C ontology 

available to represent such analytical knowledge. Currently, only available PROV-DM 

or PROV-O are the conceptual data model that form a basis for the W3C provenance 

(PROV) family of specifications. Design of ontology for ‘process provenance’ can be 

useful to domain specific systems for automatic execution of procedures or guiding 

analysts to reach the goal.  

 

As shown in above, we have attempted to develop a preliminary version of ontology 

by using captured process provenance data from *VALCRI’s AUI. We have not tested 

it yet with such large complex system but aim to develop it further in future and 

store/retrieve captured analytic provenance data with it’s ontology.  

 

We have chosen the ontological approach is because - Ontology is one of the 

approaches for knowledge representation. It supports reusability and share ability 

[121]. Ontologies enable us to share the domain and the knowledge between 

applications [120, 121]. Ontologies create machine-understandable descriptions of 

learning resources and provide the personalization and adaptively. Currently, data  
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mining and machine learning communities have developed a large set of algorithms 

and techniques to identify trends and patterns in different types of data. These range 

from simple association rule and clustering algorithms [122] to sophisticated models 

for pattern recognition [123]. Various visualization tools like - VIZREC [124] also has 

used such technique to develop visualization recommendation systems that can 

automatically identify and interactively recommend visualizations relevant to an 

analytical task. But those techniques are not always suitable for an intelligence 

analysis system where domain specific policies and procedures need to be 

implemented during sensemaking for achieving plausible conclusion compliant with 

law.   



 

260 
 

 References 

Middlesex University London 

References 

[1] K. Xu, S. Attfield, T. J. Jankun-Kelly, A. Wheat, P. H. Nguyen and N. Selvaraj. Analytic 
provenance for sensemaking: A research agenda. In: Computer Graphics and 
Applications, IEEE, 35: 3, 2015. 
 

[2] R. Chang and J. Crouser. Visual Analytics and Provenance. Tufts University Course 
Description. Retrieved from http://www.cs.tufts.edu/comp/250VA/, 2012. 
 

[3] C. Görg, Y. A. Kang, L. Zhicheng  and J. Stasko. Visual analytics support for intelligence 
analysis. Computer, 46(7), 30-38, 2013. 
 

[4] P. Pirolli and S. Card. The sensemaking process and leverage points for analyst 
technology as identified through cognitive task analysis. In: Proceedings of the 
International Conference on Intelligence Analysis, 2–4, 2005. 
 

[5] Y. A. Kang, C. Görg and J. Stasko. Evaluating visual analytics systems for investigative 
analysis: Deriving design principles from a case study. In: Proceedings of the IEEE 
Symposium on Visual Analytics Science and Technology, VAST’09, 139-146, 2009. 
 

[6] Y. A. Kang and J. Stasko. Characterizing the intelligence analysis process: Informing 
visual analytics design through a longitudinal field study. In: IEEE VAST Oct. 2011, 
21-30, 2011. 
 

[7] Y. A. Kang, C. Görg and J. Stasko. How can visual analytics assist investigative 
analysis? Design implications from an evaluation. IEEE Transactions on 
Visualization and Computer Graphics, 17(5), 570–583, 2011. 
 

[8] C. Görg, Y. A. Kang, L. Zhicheng and J. Stasko. Visual analytics support for intelligence 
analysis. Computer, 46(7), 30-38, 2013. 
 

[9] G. Cybenko and B. Brewington. The Foundations of Information Push and Pull. 
Abstract. To appear in Mathematics of Information, Institute for Mathematics and 
Applications Proceedings.  
Retrieved from: http://www.dartmouth.edu/~gvc/push.html, 1997. 
 

[10] D. Gotz and M. X. Zhou. Characterizing user’s visual analytic activity for insight 
provenance. In: Proc. IEEE Symp. Visual Analytics Science and Technology (VAST), 
123–130, 2008. 
 

[11] 
 

R. Heuer. Psychology of intelligence analysis. Center for the Study of Intelligence, 
Central Intelligence Agency, 1999. 
 

http://www.cs.tufts.edu/comp/250VA/
http://www.dartmouth.edu/~gvc/push.html


 

261 
 

 References 

Middlesex University London 

[12] A. Tversky and D. Kahneman. Judgment under Uncertainty: Heuristics and Biases. 
In: Science Vol. 185, Issue 4157, pp. 1124-1131 
DOI: 10.1126/science.185.4157.1124, 1974. 
 

[13] F. Sørmo and J. Cassens. Explanation Goals in Case-Based Reasoning. In: Proceedings 
of the ECCBR 2004 Workshops, 165-174, 2004. 
 

[14] C. North, R. Chang, A. Endert, W. Dou, R. May, B. Pike, and G. Fink. Analytic 
provenance: process+ interaction+ insight. In: CHI'11 Extended Abstracts on Human 
Factors in Computing Systems, ACM, 33-36, 2011. 
 

[15] T. J. Jankun-Kelly, K. L. Ma, and M. Gertz. A model and framework for visualization 
exploration. IEEE Transactions on Visualizations and Computer Graphics 13(2), 
March/April 2007, 357–369, 2007. 
 

[16] D. Keim, G. Andrienko, J. D. Fekete, C. Gorg, J. Kohlhammer and G. Melancon. Visual 
analytics: Definition, process, and challenges. In: Information Visualization: Human-
Centered Issues and Perspectives, 154-175, 2008. 
 

[17] J. Thomas and K. Cook. Grand challenges. In J.  Thomas & K. Cook (Eds.), Illuminating 
the path: The research and development agenda for visual analytics (p 19-32). 
Washington, DC: National Visualization and Analytics Center, 2005. 
 

[18] Y. B. Shrinivasan and J. J. van Wijk. Supporting the Analytical Reasoning Process in 
Information Visualization. ACM Human Factors in Computing Systems (CHI), 
Florence, Italy 2008. 
 

[19] W. Pike, J. Bruce, B. Baddeley, D. Best, L. Franklin, R. May and K. Younkin. The 
Scalable Reasoning System: Lightweight visualization for distributed analytics. IEEE 
Symposium on Visual Analytics Science and Technology, VAST'08, 131-138, 2008. 
 

[20] 
 

C. T. Silva, J. Freire and S. P. Callahan. Provenance for visualizations: Reproducibility 
and beyond. Computing in Science & Engineering, 9(5), 82-89, 2007. 
 

[21] R. Eccles, T. Kapler, R. Harper, W. Wright. Stories in GeoTime. IEEE Symposium on 
Visual Analytics Science And Technology, 7(1):19–26, 2007. 
 

[22] R. Walker, A. Slingsby, J. Dykes, K. Xu, J. Wood, P. H. Nguyen, D. Stephens, B. L. W. 
Wong and Y. ZHENG. An extensible framework for provenance in human terrain 
visual analytics. IEEE Transactions on Visualization and Computer Graphics, 
19(12):2139– 2148, 2013. 
 

[23] C. Plaisant, R. Mushlin, A. Snyder, J. Li, D. Heller and B. Shneiderman. LifeLines: using 
visualization to enhance navigation and analysis of patient records. In: Proceedings 
of the AMIA Symposium, 08(98):76–80, 1998. 
 

[24] P. H. Nguyen, K. Xu, A. Wheat, B. L. W. Wong, S. Attfield and B. Fields. SensePath: 
Understanding the Sensemaking Process through Analytic Provenance. In: IEEE 
Transactions on Visualization and Computer Graphics, 20(1):41-50, 2016. 



 

262 
 

 References 

Middlesex University London 

 
[25] S. Gratzl, A. Lex, N. Gehlenborg, N. Cosgrove and M. Streit. From Visual Exploration 

to Storytelling and Back Again. Eurographics Conference on Visualization (EuroVis), 
Volume 35, Number 3, 2016. 
 

[26] R. L. Helmreich, A. C. Merritt and J. A. Wilhelm.  The Evolution of Crew Resource 
Management Training in Commercial Aviation. International Journal of Aviation 
Psychology, 9(1), 19-32, 1999. 
 

[27] R. Flin and L. Martin.  Behavioral Markers for Crew Resource Management: A Review 
of Current Practice.  In: THE INTERNATIONAL JOURNAL OF AVIATION PSYCHOLOGY, 
11(1), 95–118, 2001.  
 

[28] G. Fletcher, R. Flin, P. McGeorge, R. Glavin, N. Maran and R. Patey. Rating 
nontechnical skills: developing a behavioral marker system for use in anaesthesia. 
In: Cognition, Technology, and Work 6, 165–171, 2004. 
 

[29] S. Yule, R. Flin, S. Paterson-Brown, N. Maran and D. Rowley. Development of a rating 
system for surgeons’ nontechnical skills. In: Medical Education 50, 1098–1104, 
2006. 
 

[30] L. Mitchell and R. Flin. Scrub practitioners’ list of intra-operative nontechnical skills-
SPLINTS. In: Flin, R., Mitchell, L. (Eds.), Safer Surgery. Ashgate Publishing Ltd., 
Aldershot, England, pp. 67–82, 2009. 
 

[31] R. Flin, R., P. O’Connor, M. Crichton. Safety at the Sharp End: Training Nontechnical 
Skills. In: Ashgate Publishing Ltd., Aldershot, England, 2008. 
 

[32] C. North. Toward measuring visualization insight. In: IEEE Computer Graphics and 
Applications, Volume: 26, Issue: 3, pages: 6-9, Electronic ISSN:  1558-1756, 
DOI: 10.1109/MCG.2006.70, 2006 .  
 

[33] P. Saraiya, C. North, and K. Duca.  An Insight-Based Methodology for Evaluating 
Bioinformatics Visualizations. In: IEEE TRANSACTIONS ON VISUALIZATION AND 
COMPUTER GRAPHICS, VOL. 11, NO. 4, JULY/AUGUST 2005 
 

[34] G. Fletcher, R. Flin, P. McGeorge , R. Glavin, N. Maran and R. Patey.  Anaesthetists' 
Non-Technical Skills (ANTS): evaluation of a behavioural marker system. In: British 
Journal of Anaesthesia, 90 (5): 580-8, DOI: 10.1093/bja/aeg112,  2003. 
 

[35] K. Reda, A. E. Johnson, J. Leigh, M. E. Papka. Evaluating user behavior and strategy 
during visual exploration. In: BELIV’14, Paris, France,   
DOI:10.1145/2669557.2669575, 2014.  
 

[36] 
 
 
 
 

L. L. Lacher, G. S. Walia, F. Fagerholm, M. Pagels, K. Nygard, J. Munch. A Behavior 
Marker tool for measurement of the Non-Technical Skills of Software Professionals: 
An Empirical Investigation. In:  Proceedings of the 27th International Conference on 
Software Engineering and Knowledge Engineering (SEKE), 
DOI:10.18293/SEKE2015-227, 2015. 

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=38
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=38
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=34132
https://doi.org/10.1109/MCG.2006.70
http://dx.doi.org/10.1145/2669557.2669575


 

263 
 

 References 

Middlesex University London 

 
[37] N. Riem, S. Boet, M. D. Bould, W. Tavares and V. N. Naik. Do technical skills correlate 

with non-technical skills in crisis resource management: a simulation study. British 
Journal of Anaesthesia 109 (5): 723–8 (2012), Advance Access publication 31 July 
2012 . doi:10.1093/bja/aes256. 
 

[38] A. Endert, C. North, R. Chang, M. Zhou. Toward Usable Interactive Analytics: 
Coupling Cognition and Computation. In: IEEE Computer Graphics and Applications, 
Volume:35, Issue:4, Page(s): 94 –99, DOI: 10.1109/MCG.2015.91,  2015. 
 

[39] G. Wang, X. Zhang, S. Tang, C. Wilson, H. Zheng, B. Zhao. Clickstream User Behaviour 
Models. In: ACM Transactions on the WebJuly 2017 Article No.: 21 
https://doi.org/10.1145/3068332, 2017.  
 

[40] W. Hua, Y. Song, H. Wang, X. Zhou. Identifying Users’ Topical Tasks in Web Search. 
In: WSDM'13: Proceedings of the sixth ACM international conference on Web search 
and data mining, Pages 93–102, 
https://doi.org/10.1145/2433396.2433410,February 2013. 
 

[41] W. Wu, H. Li, H. Wang, and K. Q. Zhu. Probase: A probabilistic taxonomy for text 
understanding. In SIGMOD, 2012. 
 

[42] R. Jones and K. L. Klinkner. Beyond the session timeout: automatic hierarchical 
segmentation of search topics in query logs. In: CIKM, pages 699–708, 2008. 
 

[43] X. Li, C. Joshi, A. Y. S. Tan, R. K. L. Ko. Inferring User Actions from Provenance Logs. 
In: TRUSTCOM '15: Proceedings of the 2015 IEEE Trustcom/BigDataSE/ISPA - 
Volume 01, Pages 742–749, https://doi.org/10.1109/Trustcom.2015.442, 2015. 
 

[44] F. Zhang, W. He, X. Liu  and P. G. Bridges. Inferring users' online activities through 
traffic analysis. In: WiSec '11: Proceedings of the fourth ACM conference on Wireless 
network security, Pages 59–70, https://doi.org/10.1145/1998412.1998425, 2011. 
 

[45] N. Kodagoda, S. Pontis, D. Simmie, S. Attfield, B. L. W. Wong, A. Blandford, C. Hankin. 
Using Machine Learning to Infer Reasoning Provenance from User Interaction Log 
Data: Based on the Data/Frame Theory of Sensemaking. In: Sage Journals, Volume: 
11 issue: 1, Page(s): 23-41, doi.org/10.1177/1555343416672782, 2016. 
 

[46] G. Klein, J. K. Phillips, E. L. Rall, D. A. Peluso. A data-frame theory of sensemaking. In: 
R. R. Hoffman (Ed.), Expertise out of context: Proceedings of the Sixth International 
Conference on Naturalistic Decision Making (p. 113–155). Lawrence Erlbaum 
Associates Publishers, 2007. 
 

[47] C. C. Gramazio, J. Huang, D. H. Laidlaw. An Analysis of Automated Visual Analysis 
Classification: Interactive Visualization Task Inference of Cancer Genomics Domain 
Experts. In: IEEE transactions on visualization and computer graphics, vol. 14, no. 8, 
August, 2015. 
 

 

https://doi.org/10.1109/MCG.2015.91


 

264 
 

 References 

Middlesex University London 

[48] E. T. Brown, A. Ottley, H. Zhao, Q. Lin, R. Souvenir, A. Endert, R. Chang. Finding 
Waldo: Learning about Users from their Interactions. In: IEEE Transactions on 
Visualization and Computer Graphics ( Volume: 20, Issue: 12), DOI: 
10.1109/TVCG.2014.2346575, Dec. 31, 2014. 
 

[49] J. Shen, L. Li, T. G. Dietterich, J. L. Herlocker. A Hybrid Learning System for 
Recognizing User Tasks from Desktop Activities and Email Messages. In: IUI '06: 
Proceedings of the 11th international conference on Intelligent user interfacesJanuary 
2006 Pages 86–92 https://doi.org/10.1145/1111449.1111473, 2006. 
 

[50] D. Bahdanau, K. Cho, Y. Bengio. Neural Machine Translation by Jointly Learning to 
Align and Translate. In: 3rd International Conference on Learning Representations, 
(ICLR), http://arxiv.org/abs/1409.0473, 2015. 
 

[51] T. Luong, H. Pham, C. D. Manning. Effective Approaches to Attention-based Neural 
Machine Translation. In: Proceedings of the 2015 Conference on Empirical Methods 
in Natural Language Processing, Pages:1412–1421, DOI:10.18653/v1/D15-1166, 
2015. 
 

[52] J. Cheng, L. Dong and M. Lapata. Long Short-Term Memory-Networks for Machine 
Reading. In: Journal: CoRR, Volume: abs/1601.06733, eprint: 1601.06733, url: 
http://arxiv.org/abs/1601.06733,  2016. 
 

[53] A. Vaswani, N.  Shazeer, N.  Parmar, J.  Uszkoreit, L.  Jones, A. N. Gomez, Ł. Kaiser, I. 
Polosukhin. Attention is all you need. In: NIPS'17: Proceedings of the 31st 
International Conference on Neural Information Processing Systems, Pages 6000–
6010, 2017. 
 

[54] P. Joshi. Article: How do Transformers Work in NLP? A Guide to the Latest State-of-
the-Art Models, Analytics Vidhya, url: 
https://www.analyticsvidhya.com/blog/2019/06/understanding-transformers-nlp-
state-of-the-art-models/? ,  2019. 
 

[55] J. Devlin, MW Chang, K. Lee, K. Toutanova. BERT: Pre-training of Deep Bidirectional 
Transformers for Language Understanding. Journal: CoRR, url: 
http://arxiv.org/abs/1810.04805,  volume: abs/1810.04805,  2018. 
 

[56] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever. Improving language 
understanding with unsupervised learning. Technical report, OpenAI, 2018. 
 

[57] M. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer. 
Deep contextualized word representations. In NAACL,  2018. 
 

[58] P. Linardatos, V. Papastefanopoulos, S. Kotsiantis. Explainable AI: A Review of 
Machine Learning Interpretability Methods. In: Entropy 2021, 23, 18. 
https://dx.doi.org/ 10.3390/e23010018, 2021. 
 

[59] F. Doshi-Velez, B. Kim, Towards a rigorous science of interpretable machine 
learning. arXiv 2017, arXiv:1702.08608, 2017. 



 

265 
 

 References 

Middlesex University London 

 
[60] A. Adadi, M. Berrada. Peeking inside the black-box: A survey on Explainable Artificial 

Intelligence (XAI). In: IEEE Access, 6, 52138–52160, 2018. 
 

[61] T. Miller. Explanation in artificial intelligence: Insights from the social sciences. In: 
Artif. Intell., 267, 1–38, 2019. 
 

[62] L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, L. Kagal. Explaining explanations: 
An overview of interpretability of machine learning. In: Proceedings of the 2018 IEEE 
5th International Conference on Data Science and Advanced Analytics (DSAA), Turin, 
Italy, 1–3 October 2018; pp. 80–89,  2018. 
 

[63] M. T. Ribeiro, S. Singh, and C. Guestrin. Why Should I Trust You? In: Proceedings of 
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data 
Mining - KDD ’16. New York, New York, USA: ACM Press, pp. 1135–1144, 2016. 
 

[64] S. M. Lundberg, G. Erion, H. Chen, A. DeGrave, J. M. Prutkin, B. Nair, R. Katz, J. 
Himmelfarb, N. Bansal & SI. Lee. From local explanations to global understanding 
with explainable AI for trees. In: Nature Machine Intelligence, volume 2, pages: 56–
67, January 2020. 
 

[65] E. Strumbelj, and I Kononenko. Explaining prediction models and individual 
predictions with feature contributions. Knowledge and information systems 41.3 
(2014): 647-665. 
 

[66] S. M. Lundberg, B. Nair, M. S. Vavilala, H. Mayumi, J. E. Michael, A. Trevor, D. E. Liston, 
D. KW. Low, SF. Newman, J. Kim & SI. Lee.  Explainable machine-learning predictions 
for the prevention of hypoxaemia during surgery. Nat Biomed Eng 2, 749–760, 
https://doi.org/10.1038/s41551-018-0304-0, 2018. 
 

[67] P. F. Vitiello and R. S. Kalawsky. Visual analytics: A sensemaking framework for 
systems thinking in systems engineering. In: IEEE International Systems Conference 
SysCon 2012,  pp. 1-6, doi: 10.1109/SysCon.2012.6189489, 2012. 
 

[68] W. A. Pike, J. Stasko, R. Chang and T.A. O′Connell. The science of interaction: 
Information Visualization, 8(1): 263-274, 2009. 
 

[69] Wong, B. L. W., Xu, K. and Attfield, S. Provenance for intelligence analysis using visual 
analytics. In: CHI 2011: Workshop on Analytic Provenance, Vancouver, BC, Canada, 
07-08 May 2011. 
 

[70] S. J. Attfield, S. K. Hara, and B. L. William Wong. Sensemaking in Visual Analytics: 
Processes and Challenges. In: EuroVAST’10: The 1st European Symposium on Visual 
Analytics Science and Technology, 2010. 
 

[71] J. Islam, K. Xu, B. L. W. Wong. Uncertainty of Visualizations for SenseMaking in 
Criminal Intelligence Analysis. In: EuroRV3: EuroVis Workshop on Reproducibility, 
Verification, and Validation in Visualization, ISBN 978-3-03868-066-6, p25-29, 2018. 
 

https://doi.org/10.1038/s41551-018-0304-0


 

266 
 

 References 

Middlesex University London 

[72] J. Islam, C. Anslow, K. Xu, B. L. W. Wong.  Analytical Provenance for Criminal 
Intelligence Analysis. In: VALCRI WHITE PAPER SERIES, VALCRI-WP-2017-009, 
http://valcri.org/,  2017. 
 

[73] B. L. W. Wong, C. Rooney, N. Kodagoda. Analyst User Interface: Thinking Landscape 
as Design Concept. VALCRI-WP-2017-002 AUI Thinking Landscape. 
http://valcri.org/, 2016. 
 

[74] K. Brodlie, R. A. Osorio, A. Lopes.  A Review of Uncertainty in Data Visualization. In: 
Expanding the Frontiers of Visual Analytics and Visualization, (2012). ISBN 978-1-
4471-2803-8, pp 81-109, 2012. 
 

[75] E. Geoffrey, A. Dix. Decision Making Under Uncertainty in Visualisation? In: IEEE 
VIS2015. Chicago, USA, Oct 25, 2015 - Oct 30, 2015. In: POTTER, Kristi, ed., Rüdiger 
WESTERMANN, ed.. VDMU (2015): Workshop on Visualization for Decision Making 
under Uncertainty. IEEE VIS2015. Chicago, USA, Oct 25, 2015 - Oct 30, 2015. 
 

[76] D. Sacha, H. Senaratne, B. C. Kwon, G. Ellis & D. A. Keim. The role of uncertainty, 
awareness, and trust in visual analytics. In: IEEE Transactions on Visualization and 
Computer Graphics (Proceedings of the Visual Analytics Science and Technology) 2016 
Jan; 22(1):240-9, doi: 10.1109/TVCG.2015.2467591, 2016. 
 

[77] B. PLEWE: The Nature of Uncertainty in Historical Geographic Information, 
Transactions in GIS, 6 (4), 431–456, 2002. 
 

[78] B. M. Muir: Trust between humans and machines, and the design of decision aids, 
International Journal of Man-Machine Studies 27(5-6), 527–539, 1987. 
 

[79] S. Mckenna, D. Mazur, J. Agutter, M. Meyer. Design Activity Framework for 
Visualization Design. In: IEEE Transactions on Visualization and Computer Graphics, 
Volume: 20, Issue: 12, ISSN: 1077-2626, Pages: 2191 – 2200, 2014. 
 

[80] G. Klein, J. K. Phillips, E. L. Rall, and D. A. Peluso. A Data-Frame Theory of 
Sensemaking. In: R. R. Hoffman, editor, Expertise out of context: Proceedings of the 
sixth international conference on naturalistic decision making, pages 113–155. 
Mahwah, NJ: Lawrence Erlbaum Associates, 2003. 
 

[81] S. Takken, B. L. W. Wong. Tactile reasoning: hands-on versus hands-off—What is the 
difference? In: Cogn Tech Work 17, 381–390. https://doi.org/10.1007/s10111-015-
0331-5,  2015. 
 

[82] B. L. W. WONG, L. ZHANG, I. D. H. SHEPHERD. VALCRI: Addressing European Needs 
for Information Exploitation of Large Complex Data in Criminal Intelligence 
Analysis[C]//European Data Forum. 2014: 19-20. 
 

[83] T. J. JANKUNKELLY, K. L. MA, M. GERTZ. A model and framework for visualization 
exploration[J]. IEEE Trans Vis Compute Graph, 13(2):357-369, 2007. 
 

[84] KE Weick. Sensemaking in Organizations. Sage, Thousand Oaks, CA, 1995. 

http://valcri.org/


 

267 
 

 References 

Middlesex University London 

 
[85] A. Endert, R. Chang, C. North, M. Zhou. Semantic Interaction: Coupling Cognition and 

Computation through Usable Interactive Analytics. Published in: IEEE Computer 
Graphics and Applications, Volume: 35, Issue: 4, July-Aug. INSPEC Accession 
Number: 15305788, 2015. 
 

[86] R. P. Cooper and T. Shallice. Hierarchical schemas and goals in the control of 
sequential behaviour, 2006. 
 

[87] G. W. Ryan. What do sequential behavioral patterns suggest about the medical 
decision-making process?: modeling home case management of acute illnesses in a 
rural Cameroonian village. Social Science & Medicine, 46(2), 209e225, 1998. 
 

[88] B. M. Yamauchi  and R. D. Beer. Sequential behavior and learning in evolved 
dynamical neural networks. Adaptive Behavior, 2(3), 219e246, 1994. 
 

[89] H. F. O'Neil. Perspectives on computer-based performance assessment of problem 
solving. Computers in Human Behavior, 15, 255e268, 1999. 
 

[90] H. F. O'Neil, S. Chuang, and G. K. W. K. Chung. Issues in the computer-based 
assessment of collaborative problem solving. Assessment in Education: Principles, 
Policy & Practice, 10, 361e374, 2003. 
 

[91] E. Care and P. Griffin. An approach to assessment of collaborative problem solving. 
Special issue: assessment in computer supported collaborative learning. Research and 
Practice in Technology Enhanced Learning, 9(3), 367e388, 2014. 
 

[92] M. L. Commons, E. J. Trudeau, S. A. Stein, F. A. Richards and S. R. Krause. The 
existence of developmental stages as shown by the hierarchical complexity of tasks. 
Developmental Review, 8, 237e278, 1998. 
 

[93] A. N. Fontenot.  Effects of Training in Creativity and Creative Problem Finding Upon 
Business People. In: the Journal of Social Psychology, I33(1), 11-22, 1992. 
 

[94] J. Islam, C. Anslow, K. Xu, B. L. W. Wong and L. Zhang. Towards analytical 

provenance visualization for criminal intelligence analysis. In: Computer Graphics 

and Visual Computing (CGVC’16), 15-16 Sept 2016, Bournemouth University, United 

Kingdom. ISBN 9783038680222. [Conference or Workshop Item] 

(doi:10.2312/cgvc.20161290), 2016. 
 

[95] R. Bakeman, and J. M.  Gottman. Observing interaction : an introduction to sequential 
analysis. New York : Cambridge University Press, 2nd Ed, 1997. 
 

[96] E. P. Torrance. The nature of creativity as manifest in its testing. In: R. J. Sternberg 
(Ed.), The nature of creativity (pp. 43–73). New York: Cambridge University Press, 
1988. 
 

https://eprints.mdx.ac.uk/view/creators/Islam=3AJunayed=3A=3A.html
https://eprints.mdx.ac.uk/view/creators/Anslow=3ACraig=3A=3A.html
https://eprints.mdx.ac.uk/view/creators/Xu=3AKai=3A=3A.html
https://eprints.mdx.ac.uk/view/creators/Wong=3AB=2E_L=2E_William=3A=3A.html
https://eprints.mdx.ac.uk/view/creators/Zhang=3ALeishi=3A=3A.html
https://eprints.mdx.ac.uk/20697/
https://eprints.mdx.ac.uk/20697/
https://doi.org/10.2312/cgvc.20161290


 

268 
 

 References 

Middlesex University London 

[97] E. Dane and M. G. Pratt. Exploring Intuition and its Role in Managerial Decision 
Making. In: Academy of Management Review, Vol. 32, No. 1, 
https://doi.org/10.5465/amr.2007.23463682, 2007. 
 

[98] E. Salas, K. Wilson, S. Burke, D. Wightman. Does Crew Resource Management 
Training Work? An Update, an Extenstion, and Some Critical Needs. Human Factors, 
2006. 
 

[99] S. Merritt. Affective Processes in Human-Automation Interactions. Human Factors, 
2011. 
 

[100] R. M. Hogarth. Educating Intuition. University of Chicago Press, 2001. 
 

[101] N. I. A. Rahman, S. Z. M. Dawal and N. Yusoff. Subjective responses of mental 
workload during real time driving: A pilot field study. In: IOP Conf. Series: Materials 
Science and Engineering 210 012076 doi:10.1088/1757-899X/210/1/012076, 2017. 
 

[102] J. Islam, B. L. W. Wong  and K. Xu. Analytic provenance as constructs of behavioural 
markers for externalizing thinking processes in criminal intelligence analysis. In: 
Community-Oriented Policing and Technological Innovations. Leventakis, Georgios 
and Haberfeld, M. R., eds. SpringerBriefs in Criminology . Springer, pp. 95-105. ISBN 
9783319892931. [Book Section] (doi:10. /978-3-319-89294-8_10), 2018. 
 

[103] A. N. Dragunov, T. G. Dietterich, K. Johnsrude, M. McLaughlin, L. Li, J. L. Herlocker. 
TaskTracer: a desktop environment to support multi-tasking knowledge workers. 
In: IUI '05: Proceedings of the 10th international conference on Intelligent user 
interfaces, Pages 75–82, January 2005. 
 

[104] D. Keim, T. Munzner, F. Rossi, M. Verleysen. Bridging Information Visualization with 
Machine Learning. Dagstuhl Reports, Volume 5, Issue 3, 10.4230/DagRep.5.3.1, ISSN: 
2192-5283, 2015.   
                     

[105] D. Gotz and M. X. Zhou. Characterizing users’ visual analytic activity for insight 
provenance. Information Visualization, 8(1):42–55, Jan 2009. 
 

[106] D. E. Rose, D. Levinson. Understanding User Goals in Web Search. In: WWW '04: 
Proceedings of the 13th international conference on World Wide Web, Pages 13–19, 
https://doi.org/10.1145/988672.988675, 2004. 
 

[107] A. Endert, W. Ribarsky, C. Turkay, W Wong, I. Nabney, I Díaz Blanco and F. Rossi. The 
State of the Art in Integrating Machine Learning into Visual Analytics. In: Computer 
Graphics Forum, Wiley, 2017, 36 (8), pp.458 – 486, DOI: 10.1111/cgf.13092, 2018. 
 

[108] J. M. Zacks and B. Tversky. Event Structure in Perception and Conception. In: 
Psychological Bulletin, volume: 127(1), pages: 3-21, 2001. 
 

[109] D. Newtson. Attribution and the Unit of Perception of Ongoing Behaviour. In: Journal 
of Personality and Social Psychology, 28 (1): 28-38. 
 



 

269 
 

 References 

Middlesex University London 

[110] P. Bogunovich and D. Salvucci. Inferring Multitasking Breakpoints from Single-Task 
Data. In: Proceedings of the Annual Meeting of the Cognitive Science Society, 32. 
https://escholarship.org/uc/item/720422kn, 2010.  
 

[111] S. T. Iqbal and B. P. Baily. Understanding and Developing Models for Detecting and 
Differentiating Breakpoints during Interactive Tasks. In: CHI 2007 Proceedings • 
Tasks, ACM 978-1-59593-593-9/07/0004, 2007. 
 

[112] C. Bors, J. Wenskovitch, M. Dowling, S. Attfield, L. Battle, A. Endert, O. Kulyk, and R. 
S. Laramee. A Provenance Task Abstraction Framework. In:  IEEE Computer 
Graphics and Applications, volume: 39, issue: 6, pages: 46-60, 
DOI: 10.1109/MCG.2019.2945720, 2019. 
 

[113] J. Vig. A Multiscale Visualization of Attention in the Transformer Model. In: 
Proceedings of the 57th Annual Meeting of the Association for Computational 
Linguistics: System Demonstrations, pages 37–42, 2019. 
 

[114] K. Clark, U. Khandelwal, O. Levy, C. D. Manning. What Does BERT Look At? An 
Analysis of BERT’s Attention. In: Proceedings of the 2019 ACL Workshop Blackbox 
NLP: Analyzing and Interpreting Neural Networks for NLP, DOI: 10.18653/v1/W19-
4828,  2019. 
 

[115] W. Lee, J. Ortiz, B. Ko, R. Lee. Time Series Segmentation through Automatic Feature 
Learning. Volume: abs/1801.05394, http://arxiv.org/abs/1801.05394, 2018. 
 

[116] T. Hastie, R. Tibshirani, J. Friedman. The Elements of Statistical Learning: Data 
Mining, Inference, and Prediction (2nd edition), Springer, February 2009. 
 

[117] A. Endert, P. Fiaux, C. North. Semantic Interaction for Visual Text Analytics. In: 
CHI’12, May 5–10, 2012, Austin, Texas, USA. ACM 978-1-4503-1015-4/12/05, 2012. 
 

[118] D. Fisher, I. Popov, S. Drucker and M. C. Schraefel. Trust Me, I’M Partially Right: 
Incremental Visualization Lets Analysts Explore Large Datasets Faster. In: 
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 
ACM 1673–1682, 2012. 
 

[119] T. Gruber. A translation approach to portable ontology specifications. Knowledge 
Acquisition, 5(2), 199-220, 1993. 
 

[120] Yu, Z., Y. Nakamura, et al. Ontology-based semantic recommendation for context-
aware e-learning. In: Ubiquitous Intelligence and Computing, 898-907, 2007. 
 

[121] S. Shishehchi, S. Banihashem, et al. A proposed semantic recommendation system 
for e-learning: A rule and ontology based e-learning recommendation system, IEEE, 
2010. 
 

[122] J. Han, M. Kamber and J. Pei. Data mining: concepts and techniques: concepts and 
techniques, Elsevier, 2011. 
 

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=38
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=38
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=8889560
https://doi.org/10.1109/MCG.2019.2945720


 

270 
 

 References 

Middlesex University London 

[123] C. M. Bishop. Pattern Recognition and Machine Learning (Information Science and 
Statistics). In: Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006. 
 

[124] M. Vartak, S. Huang, T. Siddiqui, S. Madden, A. Parameswaran. Towards Visualization 
Recommendation Systems. In: ACM SIGMOD Record, Volume 45 Issue 4, Pages 34-39, 
2016. 
 

[125] B. Shneiderman. The Eyes Have It: A Task by Data Type Taxonomy for Information 
Visualizations. In: Proceedings of the IEEE Symposium on Visual Languages, pp. 336-
343, 1996. 
 

[126] V. Khatri, S. Ram, R. T. Snodgrass, G. M. O'Brien. Supporting User-Defined 
Granularities in a Spatiotemporal Conceptual Model. In: Journal of Annals of 
Mathematics and Artificial Intelligence, Volume 36, Issue 1-2, pp 195-232, 2002. 
 

[127] C. C. Xi, J. H. Faghmous, A. Khandelwal, V. Kumar. Clustering Dynamic Spatio-
Temporal Patterns in the Presence of Noise and Missing Data. In: Proceedings of the 
Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI, 2015. 
 

[128] G. Fletcher, R. Flin, P. McGeorge. Anaesthetists' Non-technical Skills: Development 
of Behavioural Marker Taxonomy. In: Technical Report (97/SCR/1) to the Scottish 
Council for Postgraduate Medical and Dental Education. University of Aberdeen, 2001.  
 

[129] MA Runco (ed.). Divergent Thinking. Norwood, NJ: Ablex, 1991. 
 

[130] C. Rooney, S. Attfield, B. L. W. Wong, S. Choudhury. INVISQUE as a tool for 
intelligence analysis: the construction of explanatory narratives. In: International 
Journal of Human-Computer Interaction, 30 (9) . pp. 703-717. ISSN 1044-7318 
[Article] (doi:10.1080/10447318.2014.905422),  2014. 
 

[131] L. Xin, J. Chaitanya, Y. S. T. Alan, Ryan K. L. Ko. Inferring User Actions from 
Provenance Logs.  In: IEEE International Conference on Trust, Security and Privacy in 
Computing and Communications, Electronic ISBN: 978-1-4673-7952-6, DOI: 
10.1109/Trustcom.2015.442,  2015. 
 

[132] M. Levandowsky and D. Winter. 1971. Distance between sets. Nature 234, (34–35), 
1971. 
 

[133] LR James, RG Demaree, G. Wolf. Estimating within-group interrater reliability with 
and without response bias. J Appl Psychol; 69: 85-98, 1984. 
 

[134] LR James, RG Demaree, G. Wolf. An assessment of within group interrater 
agreement. J Appl Psychol; 78: 306-9, 1993. 
 

[135] PJ Johnson, TE Goldsmith. The importance of quality data in evaluating aircrew 
performance. US Federal Aviation Authority Technical Report. Available from 
Federal Aviation Authority website: www.faa.gov/avr/afs/aqphome, 1998. 
 

http://www.faa.gov/avr/afs/aqphome


 

271 
 

 References 

Middlesex University London 

 
A.   Systematic Literature Review 
 

P1 J. Clauser and S. M. Weir. Intelligence research methodology: An introduction to 
techniques and procedures for conducting research in defense intelligence. Washington: 
Defense Intelligence School (Google Books), 1976. 
 

P2 R. V. Katter, C. A. Montgomery and J. R. Thompson. Human processes in intelligence 
analysis: phase 1 overview (pp. 74). Alexandria: U.S. Army Research Institute for the 
Behavioral and Social Sciences, 1979. 
 
 

P3 M. Fischl and A. C. Gilbert. Selection of Intelligence Analysts: DTIC Document, 1983. 
 

P4 S. R. Schneider. The criminal intelligence function: toward a comprehensive and 
normative model. IALEIA Journal, 9(2), 403-427, 1995. 
 

P5 I. Wing. The characteristic of successful and unsuccessful intelligence analysts. In: The 
Journal of the Australian Institute of Professional Intelligence Officers, 9(2), 4-11, 2000. 
 

P6 A. Wolfberg. To transform into a more capable intelligence community: A paradigm shift 
in the analyst selection strategy (pp. 32). Washington: National War College, 2003. 
 

P7 D. T. Moore, L. Krizan and E. J. Moore. Evaluating Intelligence: A Competency-Based 
Model. International Journal of Intelligence and Counter-Intelligence, 18(2), 204-220. 
doi: 10.1080/08850600590911945, 2005. 
 

P8 D. M. Allen. Building a better strategic analyst: a critical review of the U.S. army’s all 
source analyst training program (pp. 59). Fort Leavenworth: United States Army 
Command and General Staff College, 2008. 

[136] TE Goldsmith, PJ Johnson. Assessing and improving evaluation of aircrew 
performance. Int J Aviat Psychol; 12: 223-40, 2002. 
 

[137] J. Islam, and Wong, B. L. W. Wong. Behavioural markers: Bridging the gap between 
art of analysis and science of analytics in criminal intelligence. European 
Intelligence and Security Informatics Conference (EISIC). In: 2017 European 
Intelligence and Security Informatics Conference, 11-13 Sept 2017, Dekelia Air 
Base, Attica, Greece. ISBN 9781538623855. [Conference or Workshop Item] 
(doi:10.1109/EISIC.2017.30), 2017. 
 

[138] A. George, Presidential Decisionmaking in Foreign Policy: The Effective Use of 
Information and Advice (Boulder, CO: Westview Press), Chapter 2, 1980. 
 

[139] B. Klampfer, R. Flin, R. L.Helmreich. Enhancing performance in high risk 
environments: recommendations for the use of behavioural markers. Ladenburg: 
Daimler-Benz Shiftung, Source: www.psyc.abdn.ac.uk/serv02:10, 2001. 
 

http://www.psyc.abdn.ac.uk/serv02:10


 

272 
 

 References 

Middlesex University London 

 
P9 N. Quarmby and L. J. Young. Managing intelligence the art of influence. Sydney: The 

Federation Press, 2010. 
 

P10 J. Richards. The art and science of intelligence analysis. Oxford: Oxford University Press, 
2010. 
 

P11 P. F. Walsh. Intelligence and intelligence analysis. London: Routledge, 2011. 
 

P12 J. Corkill and A. Davies. The contemporary Australian intelligence domain. In: The Journal 
of the Australian Institute of Professional Intelligence Officers, 21(2), 37-53, (UnPub), 
2013. 
 

P13 M. Gerber, B. L. W. Wong and N. Kodagoda. How analysts think: decision making in the 
absence of clear facts. Adaptation of the RPD model and the decision ladder to analysts’ 
decision making. In: Proceedings of the  7th European Intelligence Security Informatics 
Conference, EISIC 2016, on Counterterrorism and Criminology, 17-19 August, 2016, 
Uppsalla, Sweden (pp. To be published): SAGE Publications, 2016a. 
 

P14 M. Gerber, B. L. W. Wong and N. Kodagoda. How analysts think: Intuition, Leap of Faith 
and Insight. In: Proceedings of the  Human Factors and Ergonomics Society 60th Annual 
Meeting, 19-23 September 2016, Washington, D.C., USA (pp. 173-177): SAGE 
Publications, 2016b. 
 

P15 N. Selvaraj, S. Attfield, P. Passmore and B. L. W. Wong. How Analysts Think: Think-steps 
as a Tool for Structuring Sensemaking in Criminal Intelligence Analysis. In:  Proceedings 
of the 7th European Intelligence Security Informatics Conference, EISIC 2016, on 
Counterterrorism and Criminology, 17-19 August, 2016, Uppsalla, Sweden (pp. To be 
published): SAGE Publications, 2016. 
 

P16 B. L. W. Wong and N. Kodagoda. How analysts think: Inference making strategies. In: 
Proceedings of the  Human Factors and Ergonomics Society 59th Annual Meeting, 26-
30October 2015, Los Angeles, USA (pp. 269-273): SAGE Publications, 2015. 
 

P17 B. L. W. Wong, and N. Kodagoda. How analysts think: Anchoring, Laddering and 
Associations. In: Proceedings of the  Human Factors and Ergonomics Society 60th Annual 
Meeting, 19-23 September 2016, Washington, D.C., USA (pp. 178-182): SAGE 
Publications, 2016. 
 

P18 N. Qazi, B. L. W. Wong, N. Kodagoda and R. Adderley. Associative Search through Formal 
Concept Analysis in Criminal Intelligence Analysis. In: Proceedings of 2016 IEEE 
International Conference on Systems, Man, and Cybernetics SMC 2016, October 9-12, 2016, 
Budapest, Hungary: IEEE Press, 2016. 
 

 


