
Submitted to:
SR 2013

c© S. Busard, C. Pecheur, H. Qu, F. Raimondi
This work is licensed under the
Creative Commons Attribution License.

Reasoning about Strategies under Partial Observability
and Fairness Constraints

Simon Busard, Charles Pecheur∗

ICTEAM Institute,
Université catholique de Louvain,

Louvain-la-Neuve, Belgium
simon.busard@uclouvain.be

charles.pecheur@uclouvain.be

Hongyang Qu
Dept. of Computer Science,

University of Oxford,
Oxford, United Kingdom

Hongyang.Qu@cs.ox.ac.uk

Franco Raimondi
Dept. of Computer Science,

Middlesex University,
London, United Kingdom
f.raimondi@mdx.ac.uk

A number of extensions exist for Alternating-time Temporal Logic; some of these mix strategies and
partial observability but, to the best of our knowledge, no work provides a unified framework for
strategies, partial observability and fairness constraints. In this paper we propose AT LKF

po, a logic
mixing strategies under partial observability and epistemic properties of agents in a system with
fairness constraints on states, and we provide a model checking algorithm for it.

1 Introduction

A number of extensions exist for Alternating-time Temporal Logic; starting from [7], partial observability
has been investigated by many authors, see for instance [8] and references therein. But, to the best of
our knowledge, no work provides a unified framework for strategies, partial observability and fairness
constraints. For example, Jamroga and van der Hoek proposed, among other logics, ATOL, mixing
partial observability with strategies of agents [10]. Along the same lines, Schobbens studied ATLir[14],
seen as the minimal ATL-based logic for strategies under partial observability [9]. On the other hand,
some efforts have been made on bringing fairness to ATL. For instance the work of Alur et al. [1], or
the work of Klüppelholz and Baier [11] introduce the notion of fairness constraints on actions, asking
for an infinitely often enabled action to be taken infinitely often. For temporal and epistemic logics,
however, fairness conditions are normally provided on states. Furthermore, it has been shown that (weak,
strong or unconditional) fairness constraints on actions, can be reduced to (weak, strong or unconditional,
respectively) fairness constraints on states (see [2], for instance). In this paper we propose AT LKF

po, a
logic mixing strategies under partial observability and epistemic properties of agents in a system with
unconditional fairness constraints on states, and we provide a model checking algorithm for it.

To motivate the need for fairness constraints in ATL under partial observability, consider the simple
card game example in [10]. The game is played between a player and a dealer. It uses three cards, A, K
and Q; A wins over K, K wins over Q and Q wins over A. First, the dealer gives one card to the player,
keeps one and leaves the last one on table. Then the player can keep his card or swap it with the one on the
table. The player wins if his card wins over the dealer’s card. Under ATLir semantics, the player cannot
win the game: he cannot distinguish between, for example, < A,K > and < A,Q > (where < a,b >
means ”player has card a, dealer has card b”) and thus has to make the same action in both states, with a
different result in each case. Consider now a variation of this game: the game does not terminate after the
first round. Instead, if the player does not win, cards are redistributed. In this case, too, the player cannot
win the game: for instance, he will have to choose between keeping or swapping cards in < A,K > and
< A,Q >, so he won’t be able to enforce a win because the dealer (that chooses the given cards) can be

∗This work is supported by the European Fund for Regional Development and by the Walloon Region.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Reasoning about Strategies under Partial Observability and Fairness Constraints

unfair and always give the losing pair. But if we add one fairness constraint per intermediate state—i.e.
the states in which the player has to choose between swapping or keeping—the player has a strategy to
finally win the game. In this case, we only consider paths along which all fairness constraints are met
infinitely often: this situation corresponds to a fair dealer, giving the cards randomly. The player can thus
finally win because < A,K > will eventually happen—even if he cannot distinguish it from < A,Q >—,
so he knows a strategy to win at least a round: keeping his card.

Another example of application of fairness constraints in ATL is Multi-Agent Programs [5]. These
programs are composed of interleaved agent programs and fairness constraints are used to avoid unfair
interleaving. Dastani and Jamroga express fairness as formulae of the logic ATL* [5]; in this paper,
instead, we deal only with ATL and therefore fairness constraints cannot be expressed as formulae of the
logic. The situation is similar to the case of LTL versus CTL model checking: in the first case model
checking fairness is reduced to model checking a more complex formula using the same verification
algorithms; in the second case fairness is incorporated into bespoke verification algorithms. In our work
we chose ATL over ATL* because of complexity considerations (see Section 3).

The rest of the paper is structured as follows: Section 2 presents the syntax and semantics of AT LKF
po

and Section 3 presents two model checking algorithms for the logic. Finally, Section 4 summarizes the
contribution and draws some future work.

2 Syntax and Semantics

This section presents the syntax and semantics of AT LKF
po, an extension of ATL with partial observability

under fairness constraints on states. An extension with full observability under the same fairness constraints
AT LKF

f o is also presented because the model checking algorithm for AT LKF
po relies on the one for AT LKF

f o.

Syntax Both logics share the same syntax, composed of the standard Boolean connectors (∨, ∧, ¬, etc.),
CTL operators (EX , EU , EG, etc.) [4], knowledge operators (Kag, EΓ, DΓ, CΓ) [6] and strategic operators
(〈Γ〉X , 〈Γ〉G, 〈Γ〉U , 〈Γ〉W and their [Γ] counterparts) [1].

Models and notation AT LKF
f o and AT LKF

po formulae are interpreted over models M = 〈Ag,S,Act,T, I,
{∼i},V,F〉 where (1) Ag is a set of n agents; (2) S = S1× ...×Sn is a set of global states, each of which is
composed of n local states, one for each agent; (3) Act = Act1× ...×Actn is a set of joint actions, each of
which is composed of n actions, one for each agent; (4) T ⊆ S×Act×S is a transition relation between
states in S and labelled with joint actions (we write s a−→ s′ if (s,a,s′) ∈ T); (5) I ⊆ S is the a set of initial
states; (6) {∼i} is a set of equivalence relations between states, and ∼i partitions the set of states in terms
of knowledge of agent i—s∼i s′ iff si = s′i, i.e two states are indistinguishable for agent i if they share the
same local state for i; (7) V : S→ 2AP labels states with atomic propositions of AP; (8) F ⊆ 2S is a set of
fairness constraints, each of which is a subset of states.

A joint action a = (a1, ...,an) completes a partially joint action aΓ = (a′i, ...,a
′
j) composed of actions of

agents in Γ⊆ Ag—written aΓ v a—if actions in a for agents in Γ correspond to actions in aΓ. Furthermore,
we define the function img : S×Act→ 2S as img(s,a) = {s′ ∈ S|s a−→ s′}, i.e. img(s,a) is the set of states
reachable in one step from s through a.

A model M represents a non-deterministic system where each agent has an imperfect information about
the current global state. One restriction is made on T : ∀s,s′ ∈ S,s∼i s′ =⇒ enabled(s, i) = enabled(s′, i)
where enabled(s, i) = {ai ∈ Acti|∃s′ ∈ S,a ∈ Act s.t. (ai) v a∧ s a−→ s′}. This means that the actions

S. Busard, C. Pecheur, H. Qu, F. Raimondi 3

an agent can perform in two epistemically equivalent states are the same. The enabled function is
straightforwardly extended to groups of agents.

A path in a model M is a sequence π = s0
a1−→ s1

a2−→ ... of elements of T . We use π(d) for sd . A
state s is reachable in M if there exist a path π and d ≥ 0 such that π(0) ∈ I and π(d) = s. A path π is
fair according to a set of fairness conditions F = { f1, ..., fk} if for each fairness condition f , there exist
infinitely many positions d ≥ 0 such that π(d) ∈ f . A state s is fair if there exists a fair path starting at s.

A strategy for agent i is a function fi : S→ Acti where, for any state s, fi(s) ∈ enabled(s, i); a strategy
maps each state to an enabled action. We call these strategies global strategies. A uniform strategy for
agent i is a global strategy fi where ∀s,s′ ∈ S,s′ ∼i s =⇒ fi(s) = fi(s′), i.e. agent i cannot choose two
different actions for two indistinguishable states. The strategy outcomes from a state s for a strategy fi,
denoted with out(s, fi), is the set of paths a strategy can enforce, i.e. out(s, fi) = {π = s0

a1−→ s1...|s0 =
s∧∀d ≥ 0,sd+1 ∈ img(sd ,ad+1)∧ (fi(sd))v ad+1}. The definition of outcomes is naturally extended to
sets of strategies for a subset of agents.

Semantics The semantics of both logics are defined over states of a model M by defining the relations
M,s |=F

f o φ and M,s |=F
po φ , for AT LKF

f o and AT LKF
po, respectively. M can be omitted when clear from

the context. Both relations share a part of their semantics; we write s |=F φ if s |=F
f o φ and s |=F

po φ . The
s |=F

f o φ and s |=F
po φ relations are recursively defined over the structure of φ and follow the standard

interpretation for most of the operators. s |=F p if p ∈V (s); ∨ and ¬ are interpreted in the natural way.
s |=F Kiφ if φ is true in all fair reachable states indistinguishable from s for agent i, s |=F EΓφ if all
agents in Γ know φ , s |=F DΓφ if, by putting all their knowledge in common, agents of Γ would know φ ,
and s |=F CΓφ if φ is common knowledge among agents of Γ [6]. s |=F Eψ if there is a path π starting
at s satisfying ψ , π |=F Xφ if π(1) satisfies φ , π |=F φ1Uφ2 if φ1 is true along the path until φ2 is true,
π |= Gφ if φ is always true along π , and π |= φ1Wφ2 if π |= (φ1Uφ2)∨Gφ1 [4].

The meaning of the 〈Γ〉 operator is different in the two semantics:
(i) s |=F

f o 〈Γ〉ψ iff there exists a set of global strategies fΓ, one for each agent in Γ, such that for all fair
paths π ∈ out(s, fΓ),π |=F ψ;
(ii) s |=F

po 〈Γ〉ψ iff there exists a set of uniform strategies fΓ, one for each agent in Γ, such that for all
s′ ∼Γ s, for all fair paths π ∈ out(s′, fΓ),π |=F ψ .

The [Γ] operator is the dual of 〈Γ〉: s |=F [Γ]ψ iff s |=F ¬〈Γ〉¬ψ .

3 Model Checking AT LKF
f o and AT LKF

po

Model checking AT LKF
f o The model checking algorithm for AT LKF

f o is defined by the function J.KF
f o :

AT LKF
f o→ 2S returning the set of states of a given model M satisfying a given AT LKF

f o property. This
function is defined in the standard way for Boolean connectors, CTL and knowledge operators [4, 13].
The [Γ] operators are evaluated as follows:

J[Γ]XφKF
f o = Pre[Γ](JφKF

f o∩Fair[Γ])

J[Γ]φ1Uφ2KF
f o = µZ.(Jφ2KF

f o∩Fair[Γ])∪ (Jφ1KF
f o∩Pre[Γ](Z))

J[Γ]GφKF
f o = νZ.JφKF

f o∩
⋂
f∈F

Pre[Γ](µY.(Z∩ f)∪ (JφKF
f o∩Pre[Γ](Y)))

J[Γ]φ1Wφ2KF
f o =

νZ.(Jφ2KF
f o∩Fair[Γ])

∪ (Jφ1KF
f o∩

⋂
f∈F Pre[Γ](µY.(Jφ2KF

f o∩Fair[Γ])∪ (Z∩ f)∪ (Jφ1KF
f o∩Pre[Γ](Y))))

4 Reasoning about Strategies under Partial Observability and Fairness Constraints

where Pre[Γ](Z) = {s|∀aΓ ∈ enabled(s,Γ),∃a s.t. aΓ v a∧ img(s,a)∩Z 6= /0} and Fair[Γ] = J[Γ]G trueKF
f o.

µZ.τ(Z) and νZ.τ(Z) are the least and greatest fix points of function τ(Z). Intuitively, the Pre[Γ](Z)
operator returns the set of states in which Γ cannot avoid to reach a state of Z. Thus, J[Γ]GφKF

f o returns
the set of states in which Γ cannot avoid a path of states of JφKF

f o going through all fairness constraints
infinitely often; Fair[Γ] is the set of states in which Γ cannot avoid a fair path. Note that the 〈Γ〉
operators can be computed using the [Γ] and ¬ operators, but can also be computed directly using the
dual forms from the ones above. For example J〈Γ〉GφKF

f o = νZ.(JφKF
f o ∪Fair[Γ])∩Pre〈Γ〉(Z), where

Pre〈Γ〉(Z) = Pre[Γ](Z) = {s|∃aΓ ∈ enabled(s,Γ) such that ∀a,aΓ v a =⇒ img(s,a) ⊆ Z}. Z ⊆ S is the
complement of the set Z ⊆ S.

The correctness of the model checking algorithm for AT LKF
f o follows from Theorem 1.

Theorem 1. For all states s ∈ S, s |=F
f o φ if and only if s ∈ JφKF

f o.

Proof sketch. First, Reach[Γ](P1,P2) = µY.P2 ∪ (P1 ∩Pre[Γ](Y)) computes the set of states in which Γ

cannot avoid a finite path of states of P1 to a state of P2. We can prove it by induction over the computation
of the least fix point. It is true by definition of the least fix point and the Pre[Γ] operation.

Then, for the [Γ]Gφ operator, J[Γ]GφKF
f o = νZ.JφKF

f o∩
⋂

f∈F Pre[Γ](µY.(Z∩ f)∪(JφKF
f o∩Pre[Γ](Y)))

= νZ.JφKF
f o∩

⋂
f∈F Pre[Γ](Reach[Γ](JφKF

f o,Z∩ f)) computes the set of states in which Γ cannot avoid a
fair path (i.e. going through each f ∈ F infinitely often) that satisfies Gφ . We prove it by induction over
the computation of the greatest fix point and by using what has been proved just above.

Thanks to this, we can easily prove that Fair[Γ] = J[Γ]GtrueKF
f o computes the set of states in which Γ

cannot avoid a fair path (it is just a particular case of the [Γ]G operator).
Then, [Γ]X and [Γ]U operators compute the set of states in which Γ cannot avoid a successor in JφKF

f o
in which Γ cannot avoid a fair path, respectively in which Γ cannot avoid a finite path through states of
Jφ1KF

f o to a state of Jφ2KF
f o, in which Γ cannot avoid a fair path. In particular, the proof for [Γ]U directly

follows from the proof for Reach[Γ].
Finally, the proof for the [Γ]W operator is similar to the one for [Γ]G operator. The proof of correctness

of the algorithms for 〈Γ〉 operators follows from the proof for [Γ] operators, the duality of these operators
and standard fix point properties.

Model checking AT LKF
po – basic algorithm A basic algorithm is presented in Algorithm 1. It relies

on the model checking algorithm for AT LKF
f o. It uses two sub-algorithms: Split and J.KF

f o|strat , where
strat is a strategy represented as a set of state/action pairs. The latter is a modified version of the
algorithm described in the previous section with Pre〈Γ〉|strat replacing Pre〈Γ〉 where Pre〈Γ〉|strat(Z) =
{s|∃aΓ ∈ enabled(s,Γ) such that 〈s,aΓ〉 ∈ strat ∧∀a,aΓ v a =⇒ img(s,a) ⊆ Z}, i.e., Pre〈Γ〉|strat(Z) is
Pre〈Γ〉(Z) restricted to states and actions allowed by strat. Furthermore, J.KF

f o|strat recursively calls J.KF
po

on sub-formulae, instead of J.KF
f o.

The Split algorithm is given in Algorithm 2. Split(S×ActΓ) returns the set of uniform strategies of
the system (a uniform strategy is represented by the action for group Γ allowed in each state, and this
action needs to be the same for each state in the same equivalence class).

Intuitively, Algorithm 1 computes, for each possible uniform strategy strat, the set of states for which
the strategy is winning, and then keeps only the states s for which the strategy is winning for all states
equivalent to s.

Before proving the correctness of the basic algorithm, let’s prove the correctness of the Split algorithm.

Theorem 2. Split(Strats) computes the set of all the largest subsets SA of Strats⊆ S×ActΓ such that no
conflicts appear in SA.

S. Busard, C. Pecheur, H. Qu, F. Raimondi 5

Algorithm 1: J〈Γ〉ψKF
po

Data: M a given (implicit) model, Γ a subset of agents of M, ψ an AT LKF
po path formula.

Result: The set of states of M satisfying 〈Γ〉ψ .

sat = {}
for strat ∈ Split(S×ActΓ) do

winning = J〈Γ〉ψKF
f o|strat

sat = sat ∪{s ∈ winning|∀s′ ∼Γ s,s′ ∈ winning}
return sat

Algorithm 2: Split(Strats)
Data: Strats⊆ S×ActΓ.
Result: The set of all the largest subsets SA of Strats⊆ S×ActΓ such that no conflicts appear in SA.

C = {〈s,aΓ〉 ∈ Strats|∃〈s′,a′
Γ
〉 ∈ Strats s.t. s′ ∼Γ s∧aΓ 6= a′

Γ
}

if C = /0 then return {Strats}
else
〈s,aΓ〉= pick one in C
E = {〈s′,a′

Γ
〉 ∈ Strats|s′ ∼Γ s}

A = {aΓ ∈ ActΓ|∃〈s,aΓ〉 ∈ E}
strats = {}
for aΓ ∈ A do

S = {〈s′,aΓ〉 ∈ E|a′
Γ
= aΓ}

strats = strats∪Split(S∪ (Strats\E))
return strats

Remark 1. A conflict appears in SA⊆ S×ActΓ if there exist two elements 〈s,aΓ〉 and 〈s′,a′
Γ
〉 in SA such

that s′ ∼Γ s and aΓ 6= a′
Γ
, i.e. there is a conflict if SA proposes two different actions in two equivalent

states.

Proof sketch of Theorem 2. Split gets all the conflicting elements of Strats. If there are no such elements,
then Strats is its own largest non-conflicting subset; otherwise, Split takes one conflicting equivalence
class E and, for each of its largest non-conflicting subsets S—i.e. subsets of states using the same
action—it calls Split on the rest of Strats augmented with the non-conflicting subset S.

We can prove the correctness of Split by induction over the number of conflicting equivalence classes
of Strats. If Strats does not contain any conflicting equivalence classes, Strats is its own single largest
subset in which no conflicts appear. Otherwise, let’s assume that Split(Starts\E) with E a conflicting
equivalence class of Strats returns the set of all the largest non-conflicting subsets of Strats\E; then, by
what has been explained above, Split returns the cartesian product between all the largest non-conflicting
subsets of E and all the largest non-conflicting subsets of Strats\E. Because these cannot be conflicting
as they belong to different equivalence classes, we can conclude that Split returns the set of the largest
non-conflicting subsets of Strats.

The correctness of Algorithm 1 is then given by the following theorem.

6 Reasoning about Strategies under Partial Observability and Fairness Constraints

Theorem 3. J〈Γ〉ψKF
po computes the set of states of M satisfying 〈Γ〉ψ , i.e.

∀s ∈ S,s ∈ J〈Γ〉ψKF
po iff s |=F

po 〈Γ〉ψ.

Proof sketch. First, Split(S×ActΓ) returns all the possible uniform strategies of the system, where a
uniform strategy is represented by the only action allowed in each equivalence class of states—states
equivalent in terms of the knowledge of Γ—, this action being the same for every state of the class.

Indeed, the set of the largest non-conflicting subsets of S×ActΓ is the set of possible uniform strategies.
A non-conflicting subset of S×ActΓ provides at most one action for each equivalence class of states,
otherwise it would not be non-conflicting; second, a largest non-conflicting subset of S×ActΓ provides
exactly one action for each equivalence class of states, otherwise there would be a larger subset giving
one action for the missing equivalence classes and this subset would not be conflicting. Finally, a largest
non-conflicting subset of S×ActΓ is a uniform strategy because it is exactly the definition of a uniform
strategy: giving one possible action for each equivalence class. This thus ends the proof that Split returns
the set of all possible uniform strategies.

Second, winning = JΓKψKF
f oψ|strat returns the set of states for which the strategy strat is winning.

Indeed, it uses AT LKF
f o model checking algorithm, restricted to actions in strat. It thus returns the set

of states for which there is a (global) winning strategy in strat. As strat is, by construction, a uniform
strategy, winning is the set of states for which there exists a uniform winning strategy—in fact, it is strat
itself.

Finally, the set {s ∈ winning|∀s′ ∼Γ s,s′ ∈ winning} is the set of states s for which strat is a winning
strategy for all s′ ∼Γ s. sat thus accumulates all the states s for which there is a winning strategy for all
states indistinguishable from s. As this is exactly the semantics of the property, i.e. sat is exactly the set
of states of the system satisfying the property, the proof is done.

Improving the basic algorithm The first improvement proposed for the basic algorithm is the pre-
filtering of states to the ones satisfying the property under AT LKF

f o ; we can filter them because if a state
s does not satisfy 〈Γ〉ψ under AT LKF

f o, s cannot satisfy 〈Γ〉ψ under AT LKF
po. The second one is the

alternation between filtering and splitting the strategies. Both improvements are aimed at reducing the
number of uniform strategies to consider. The improved algorithm is presented in Algorithm 3. Using
this algorithm, we can compute J〈Γ〉ψKF

po as ImprovedJ〈Γ〉ψKF
po|S×ActΓ . The intuition behind Algorithm 3

is to start by computing the set of states satisfying the property and the associated actions (line 1), then
get all conflicts (line 2) and, if there are conflicts, choose one conflicting equivalence class of states and
possible actions (lines 6 to 8) and for each possible action aΓ, recursively call the algorithm with the
strategies following aΓ (lines 11 and 12)—i.e. split the class into uniform strategies for this class and
recursively call the algorithm on each strategy.

More in detail, Algorithm 3 returns the set of states satisfying the property in Strats. So, to get the
final result, we have to take all the states satisfying the property in S×ActΓ. Algorithm 3 uses the function
J.KF,ac

f o |strats. This function is a modification of the J.KF
f o|strats function where actions are linked to states.

More precisely, every sub-call to J.KF
po or Fair[Γ] is enclosed by StatesActionsΓ|strats to get all enabled

actions in these states, restricted to strats—StatesActionsΓ|strats(Z) = {〈s,aΓ〉 ∈ strats|s ∈ Z ∧ aΓ ∈
enabled(s,Γ)}—, and Pre〈Γ〉|strats is replaced by Preac

〈Γ〉|strats(Z) = {〈s,aΓ〉 ∈ strats|aΓ ∈ enabled(s,Γ)∧
∀a,aΓ v a =⇒ img(s,a) ⊆ Z}. For example, J[Γ]GφKF,ac

f o |Strats = νZ.(StatesActionsΓ|Strats(JφKF
po ∪

Fair[Γ]))∩Preac
〈Γ〉|Strats(Z).

Intuitively, StatesActionsΓ|strats(Z) returns all the states of Z with their enabled actions allowed by
strats and Preac

〈Γ〉|strats(Z) returns the states that can enforce to reach Z in one step, and the actions that

S. Busard, C. Pecheur, H. Qu, F. Raimondi 7

Algorithm 3: ImprovedJ〈Γ〉ψKF
po|Strats

Data: M a given (implicit) model, Γ a subset of agents of M, ψ an AT LKF
po path formula,

Strats⊆ S×ActΓ.
Result: The set of states of M satisfying 〈Γ〉ψ in Strats.

1 Z = J〈Γ〉ψKF,ac
f o |Strats

2 C = {〈s,aΓ〉 ∈ Z|∃〈s′,a′
Γ
〉 ∈ Z such that s∼Γ s′∧aΓ 6= a′

Γ
}

if C = /0 then
4 return {s ∈ S|∃aΓ ∈ ActΓ s.t. ∀s′ ∼Γ s,〈s′,aΓ〉 ∈ Z}

else
6 〈s,aΓ〉= pick one in C
7 E = {〈s′,a′

Γ
〉 ∈ Z|s∼Γ s′}

8 A = {aΓ ∈ ActΓ|∃〈s,aΓ〉 ∈ E}
sat = {}
for aΓ ∈ A do

11 strat = {〈s′,a′
Γ
〉 ∈ E|a′

Γ
= aΓ}∪ (Z\E)

12 sat = sat ∪ ImprovedJ〈Γ〉ψKF
po|strat

return sat

allow them to do so, restricted to actions in strats. J〈Γ〉ψKF,ac
f o |strats thus returns the states satisfying 〈Γ〉ψ

associated to the actions of strats that allow them to do so.
The correctness of Algorithm 3 is given by the following theorem.

Theorem 4. ImprovedJ〈Γ〉ψKF
po|S×ActΓ computes the set of states of M satisfying 〈Γ〉ψ , i.e.

∀s ∈ S,s ∈ ImprovedJ〈Γ〉ψKF
po|S×ActΓ iff s |=F

po 〈Γ〉ψ.

Proof sketch. First, J〈Γ〉ψKF,ac
f o |Strats returns the set of states s (and associated actions) such that there

exists a global strategy in Strats allowing Γ to enforce the property in s. This means that if a state/action
pair is not returned, Γ has no global strategy to enforce the property from the given state by using the
action given in the pair. By extension, there is no uniform strategy to enforce the property neither. Thus,
only state/action pairs returned by J〈Γ〉ψKF,ac

f o |Strats have to be considered when searching for a uniform

strategy in Strats. This also means that J〈Γ〉ψKF,ac
f o |Strats filters Strats to winning global strategies; if the

result is also a uniform strategy, all the states in the returned set have a uniform strategy to enforce the
property.

Second, ImprovedJ〈Γ〉ψKF
po|Strats returns the set of states satisfying the property in Strats. We can

prove this by induction on the number of conflicting equivalence classes of Strats: this is true if there are
no conflicting classes because Line 1 computes a winning uniform strategy—as discussed above—and
Line 4 returns the set of states for which the strategy is winning for all indistinguishable states. This is
also true in the inductive case because (1) filtering with J〈Γ〉ψKF,ac

f o |Strats doesn’t lose potential state/action
pairs and (2) the algorithm takes one conflicting class and tries all the possibilities for this class.

The final result thus is correct since it returns the set of states s for which there is a uniform strategy
in S×ActΓ that is winning for all states equivalent to s.

Complexity considerations Model checking AT L with perfect recall and partial observability is an
undecidable problem [14], while model checking AT Lir is a ∆P

2 -complete problem [9]. AT LKF
po subsumes

8 Reasoning about Strategies under Partial Observability and Fairness Constraints

AT Lir and its model checking problem is therefore ∆P
2 -hard. Algorithm 1 performs a call to [[.]]Ff o for

each uniform strategy: [[.]]Ff o is in P, but in the worst case there could be exponentially many calls to this
procedure, as there could be up to ∏i∈Γ |Acti||Si| uniform strategies to consider.

4 Conclusion

A number of studies in the past have investigated the problem of model checking strategies under partial
observability and, separately, some work has provided algorithms for including fairness constraints on
actions in the case of full observability. To the best of our knowledge, the issue of fairness constraints and
partial observability have never been addressed together.

In this paper we presented AT LKF
po, a logic combining partial observability and fairness constraints

on states (which is the standard approach for temporal and epistemic logics), and we have provided a
model checking algorithm.The proposed algorithm is similar to the one of Calta et al. [3]. They also split
possible actions into uniform strategies, but they do not provide a way to deal with fairness constraints.

Finally, the structure of our algorithm is compatible with symbolic model checking using OBDDs,
and we are working on its implementation in the model checker MCMAS [12], where fairness constraints
are only supported for temporal and epistemic operators.

References

[1] Rajeev Alur, Thomas A. Henzinger & Orna Kupferman (2002): Alternating-time temporal logic. J. ACM
49(5), pp. 672–713, doi:10.1145/585265.585270.

[2] Christel Baier & Joost-Pieter Katoen (2008): Principles of Model Checking. The MIT Press.

[3] Jan Calta, Dmitry Shkatov & Holger Schlingloff (2010): Finding Uniform Strategies for Multi-agent Systems.
In Jürgen Dix, João Leite, Guido Governatori & Wojtek Jamroga, editors: Computational Logic in Multi-
Agent Systems, Lecture Notes in Computer Science 6245, Springer Berlin / Heidelberg, pp. 135–152,
doi:10.1007/978-3-642-14977-1 12.

[4] E. M. Clarke, O. Grumberg & D. Peled (1999): Model Checking. MIT Press.

[5] Mehdi Dastani & Wojciech Jamroga (2010): Reasoning about strategies of multi-agent programs. In:
Proceedings of AAMAS 10, pp. 997–1004.

[6] Ronald Fagin, Joseph Y. Halpern, Yoram Moses & Moshe Y. Vardi (1995): Reasoning about Knowledge. MIT
Press, Cambridge.

[7] Wiebe van der Hoek & Michael Wooldridge (2003): Cooperation, Knowledge, and Time: Alternating-time Tem-
poral Epistemic Logic and its Applications. Studia Logica 75, pp. 125–157, doi:10.1023/A:1026185103185.

[8] W. Jamroga & T. Ågotnes (2007): Constructive knowledge: what agents can achieve under imperfect
information. Journal of Applied Non-Classical Logics 17(4), pp. 423–475, doi:10.3166/jancl.17.423-475.

[9] Wojciech Jamroga & Jürgen Dix (2006): Model Checking Abilities under Incomplete Information Is Indeed
∆P

2 -complete. In: EUMAS’06.

[10] Wojciech Jamroga & Wiebe van der Hoek (2004): Agents that Know How to Play. Fundamenta Informaticae
Volume 63(2), pp. 185–219.

[11] Sascha Klüppelholz & Christel Baier (2008): Alternating-Time Stream Logic for Multi-agent Systems. In:
Coordination Models and Languages, LNCS 5052, Springer, pp. 184–198, doi:10.1007/978-3-540-68265-3 12.

[12] A. Lomuscio, H. Qu & F. Raimondi (2009): MCMAS: A Model Checker for the Verification of Multi-Agent
Systems. In: Proceedings of CAV 2009, LNCS 5643, Springer, pp. 682–688, doi:10.1007/978-3-642-02658-
4 55.

http://dx.doi.org/10.1145/585265.585270
http://dx.doi.org/10.1007/978-3-642-14977-1_12
http://dx.doi.org/10.1023/A:1026185103185
http://dx.doi.org/10.3166/jancl.17.423-475
http://dx.doi.org/10.1007/978-3-540-68265-3_12
http://dx.doi.org/10.1007/978-3-642-02658-4_55
http://dx.doi.org/10.1007/978-3-642-02658-4_55

S. Busard, C. Pecheur, H. Qu, F. Raimondi 9

[13] Alessio Lomuscio & Wojciech Penczek (2007): Symbolic model checking for temporal-epistemic logics.
SIGACT News 38(3), pp. 77–99, doi:10.1145/1324215.1324231.

[14] Pierre-Yves Schobbens (2004): Alternating-time logic with imperfect recall. Electronic Notes in Theoretical
Computer Science 85(2), pp. 82 – 93, doi:10.1016/S1571-0661(05)82604-0.

http://dx.doi.org/10.1145/1324215.1324231
http://dx.doi.org/10.1016/S1571-0661(05)82604-0

	Introduction
	Syntax and Semantics
	Model Checking ATLKFfo and ATLKFpo
	Conclusion

