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Abstract 
This paper presents a genetic algorithm with a penalty function for the job shop scheduling problem. 

In the context of proposed algorithm, a clonal selection based hyper mutation and a life span extended 

strategy is designed. During the search process, an adaptive penalty function is designed so that the 

algorithm can search in both feasible and infeasible regions of the solution space. Simulated 

experiments were conducted on 23 benchmark instances taken from the OR-library. The results show 

the effectiveness of the proposed algorithm. 
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1. Introduction 
 

The job shop scheduling problem (JSSP) is one of the most well-known problems in both 

fields of production management and combinatorial optimization. The classical n-by-m JSSP 

studied in this paper can be described as follows: scheduling n jobs on m machines with the 

objective to minimize the completion time for processing all jobs. Each job consists of m 

operations with predetermined processing sequence on specified machines and each operation of 

the n jobs needs an uninterrupted processing time with given length. Operations of the same job 

cannot be processed concurrently and each job must be processed on each machine exactly once.  

Efficient methods for solving JSSP are important for increasing production efficiency, 

reducing cost and improving product quality. Moreover, JSSP is acknowledged as one of the 

most challenging NP-hard problems [1] and there is no any exact algorithm can be employed to 

solve JSSP consistently even when the problem scale is small. So it has drawn the attention of 

researches because of its theoretical, computational, and empirical significance since it was 

introduced. Due to the complexity of JSSP, exact techniques, such as branch and bound [2, 3], 

and dynamic programming [4, 5] are only applicable to modest scale problems. Most of them 

fail to obtain good solutions solving large scale problems because of the huge memory and 

lengthy computational time required. On the other hand, heuristic methods, include dispatching 

priority rules [6-8], shifting bottleneck approach [9-11] and Lagrangian relaxation [12-14], are 

attractive alternatives for large scale problems. With the emergence of new techniques from the 

field of artificial intelligence, much attention has been devoted to meta-heuristics. One main 

class of meta-heuristics is the construction and improvement heuristic, such as tabu search [15 -

17] and simulated annealing [18, 19]. Another main class of meta-heuristic is the population 

based heuristic. Successful examples of population based algorithms include genetic algorithm 

(GA) [20-22], particle swarm optimization (PSO) [23, 24], artificial immune system and their 

hybrids [25-27], and so on. 

Among the above methods, GA, proposed by John Holland [28, 29], is regarded as problem 

independent approach and is well suited to dealing with hard combinational problems. GAs use 

the basic Darwinian mechanism of “survival of the fittest” and repeatedly utilize the 

information contained in the solution population to generate new solutions with better 

performance. Classical GAs use binary strings to represent potential solutions. One main 

problem in classical GA is that binary strings are not naturally suited for JSSP. Another 

problem in classical GAs is premature convergence. Although GAs have better performance 
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than most of conventional methods, they could not guarantee to resist premature convergence 

when individuals in the population are not well initialized. From the view point of the JSSP 

itself, it is a hard combinatorial optimization problem with constraints. The goal of the 

scheduling methods is to find a solution that satisfies the constraints. However, some of the 

infeasible solutions are of similarity with the feasible optimal solutions, and may provide useful 

information for generating optimal solution. If we search only within the feasible regions, the 

generation of the optimal schedule not only requires long time but also decreases the possibility 

to obtain the optimal solution. Motivated by these perspectives, we proposed a novel genetic 

algorithm which adopts an operation based representation and a novel search scheme. The 

proposed genetic algorithm searches in both feasible and infeasible regions. In the proposed 

algorithm, the potential solutions are generated without considering the constraints. To handle 

the infeasible solutions, we proposed an adaptive penalty function to impose penalties on the 

evaluation functions. 

The remainder of this paper is organized as follows. Section 2 briefly introduces the genetic 

algorithms, and then proposes the modified genetic algorithm. Section 3 first introduces the 

basic penalty function, and then proposes the dynamic and adaptive penalty function. In Section 

4, the implementation of proposed algorithm is presented. In Sectio n 5, the corresponding 

computational and comparative results are given. Finally, conclusion remarks are given in 

Section 6. 

 

2. The modified genetic algorithm 
 

2.1 Classical genetic algorithm 
 

Genetic algorithm is a stochastic searching method with the features of generating and 

testing. It works on a randomly generated candidate solution pool, which is usually called 

“population”. Each encoded candidate solution is called “chromosome”. During the searching 

process, the selection, crossover and mutation operators are executed repeatedly until the stop 

criteria is satisfied. The flow chart of the classical genetic algorithm is shown in Fig. 1. 

 

 

 
Figure 1. Flow chart of the classical genetic algorithm. 

 

The quality of the chromosome is evaluated by the fitness value. Generally speaking, the 

chromosomes with higher fitness value have higher probability to generate child chromosomes. 

Thus, the selection rate is in accordance with the fitness value of each chromosome. However, if 
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there is no improvement of the highest fitness degree for a certain number of generations, it 

means that the selected parent chromosomes cannot generate better individuals. But if we still 

select parent chromosomes according to the fitness value for crossover and mutation operations, 

the chromosomes with similar scheme will be added to the population again and again, and the 

pseudo-optimal chromosomes will occupy the whole population at last. 

Let’s examine the crossover and mutation operator. Crossover exchange parts of genes of 

two parent chromosomes to generate new chromosomes. By combining two parent 

chromosomes’ features, the child chromosomes may get higher fitness value. The mutation 

operator changes genes in a variable region of the chromosome. The mutation operator keeps 

the diversity of the population and introduces features that are not present in the current 

population, therefore prevent premature convergence. But the crossover and mutation operators 

cannot work well when the pseudo-optimal individual dominates the whole population. 

Crossover operator uses parent chromosomes to produce child chromosomes, thus the child 

chromosomes have the same schemes with their parents. Mutation operator is a random process, 

if we perform high mutation rate, most of the chromosomes may become non-function or 

develop into harmful specificities; on the other hand, if we perform low mutation rate, the new 

introduced chromosome will soon be eliminated by the selection strategy because of the 

domination of the pseudo-optimal chromosomes. 

 

2.2. Modified genetic algorithm 
 

Based on the above discussions, the classical genetic algorithm cannot escape premature 

convergence consistently if the pseudo-optimal individual dominates the whole population. In 

this paper, we address two operations, one is the clonal selection based hypermutation, and the 

other is the lifespan extended strategy. The idea of these two operations is based on two 

observations. Firstly, to prevent premature convergence when the pseudo-optimal chromosomes 

dominate the whole population, chromosomes with high diversity are needed. Secondly, the new 

introduced chromosomes should have high diversity, but if they cannot compete with the 

pseudo-optimal chromosomes, they will be eliminated soon, thus, the diversified chromosomes 

should also have high fitness values. 

 

2.2.1. Clonal selection based hyper mutation 

 

According to the theory of clonal selection [30, 31], when animals are exposed to antigens, 

some of its bone marrow derived a kind of cells, named B lymphocytes. The B lymphocytes can 

recognize the antigen with certain affinity. These B lymphocytes will be stimulated to 

proliferate and mature into terminal antibody secreting cells. Proliferation of B lymphocytes is 

an asexual and amitotic process, which creates a set of clones identical to the parent B 

lymphocytes. And the proliferation rate is in direct proportion to affinity, i.e., the higher affinity, 

the higher proliferation rate. During proliferation, the clones undergo a hyper mutation, which 

diversifies the repertoire of the antigen-activated B cells. The receptor edit guides the process of 

proliferation hyper mutation which results in the B cells with high affinity survived.  

Motivated by the clonal selection theory, the proposed clonal selection based hyper  mutation 

operation can be described as follows. First, setup a clonal library, and then the elite 

chromosomes in the population are copied to the clonal library. After this, the elite 

chromosomes repeatedly reproduce themselves until the clonal library is full. Then the 

chromosomes in the clonal library undergo a high rate mutation. At last, replace the worst 

chromosomes in the population by the best chromosomes in the clonal library. By the clonal 

selection based hyper mutation, the new generated chromosomes either have higher fitness 

value in competence with the pseudo-optimal and higher diversity. Thus the algorithm has a 

higher probability to escape from the pseudo-optimal trap. 

 

2.2.2. Lifespan extended strategy 
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The process of lifespan extending strategy can be achieved by a pop_size dimension vector. 

The i-th element of the vector records the survival time of the i-th chromosomes in the 

population. The update strategy only replaces the individuals that survived longer than a fix 

time period. By the lifespan extending strategy, the new introduced chromosomes can not be 

eliminated soon after introduced. During the extended lifespan, they mature and can compete 

with other pseudo-optimal chromosomes. 

 

2.2.3. Outline of the modified genetic algorithm for JSSP 

 

As described above, the general outline of the modified genetic algorithm for JSSP can be 

summarized as follows. 

 

Step 1: Generate pop_size chromosomes as an initial population, where pop_size denotes the 

population size. Set iter=0, set up an empty clonal library G, and a pop_size dimension vector 

life. 

Step 2: Set iter=iter+1. Calculate fitness value f of each individual chromosome. 

Step 3: Select c pairs of chromosomes by direct selection strategy, then generate c pairs of child 

chromosomes using crossover operator, add these c pairs of child chromosomes to the clonal 

library. 

Step 4: Select s chromosomes by direct selection strategy. Copy these s chromosomes to the clonal 

library. 

Step 5: Reproduce chromosomes in clonal library until the clonal library size reaches clonal_size. 

Step 6: Select m chromosomes in the clonal library, then generate m child chromosomes using 

mutation operator, add these m child chromosomes to the clonal library. 

Step 7: Rearrange the chromosomes whose lives are longer than a fix time period in the population. 

Replace these worst k chromosomes by the best k chromosomes in the clonal library. 

Step 8: Stop, if the termination criterion is satisfied, else, clear the clonal library G, update vector life, 

go to step 2. 

 

In the above algorithm, the individuals in the clonal library undergo a high rate hyper 

mutation, so the parameter m is set much higher than the classical genetic algorithm.  

 

3. Constraints in JSSP and penalty methods 
 

3.1. Constraints in JSSP 
 

As described in Section 1, the JSSP is a problem with tight constraints. One constraint is that 

an operation must be processed after all of its precedent operations finished, namely technique 

constraint. The other constraint is that one machine can only handle exactly one job at a time, 

namely resource constraint. 

Generally, most genetic methods for JSSP only keep feasible solutions in their populations. 

There are three possible ways to preserve the feasibility [32]. One is to reject the infeasible 

solutions without consideration. The second is to repair the infeasible solutions to make them 

feasible. The third approach is to improve the operators so that they are guaranteed to produce 

feasible solution. However, these modified methods are disadvantageous somewhat. The 

modified method is often problem dependence that is computationally intensive. The operator 

improving methods consider no point outside the feasible region. They can be serious limitation 

if the search space contains large number of infeasible solutions and they can also be time 

consuming. Besides these disadvantageous, both of them need to be tailored according to the 

problem in hand. In addition, according to the scheme theorem and the building block 

hypothesis of Holland [28, 29], the schemes which have low schema order, short defining length 

and high fitness will grow in exponential progression, and will eventually mature into high 

schema order, long defining length and high fitness scheme, thus generate global optimal 

solution. If we search only within feasible regions, many of the low schema order, short 
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defining length and high fitness schemes contained in infeasible solutions will be lost. 

Therefore, the optimum solution may take a longer time to be found or cannot be found.  

 

3.2. The penalty method for constraints in JSSP 

 
An optimization problem with constraints can be described as follows [33]. 

 

Find             SFxxxxx n  ),,,(, 21


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                                                            (1) 
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where x


 is a design vector, )(xf


 is the objective function on the search space S , F  is the 

feasible region defined by the set of constraints 0)( xgi


, and Cn  is the number of constraints.  

To solve such problem, rather than the methods search only within the feasible solution space, 

the penalty method expands the search space to the infeasible solution regions by a penalty 

function. If a solution violates the constraints, a penalty is applied to worsen its objective 

function. A typical exterior penalty function has the following form [33].  
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where )(
~

xF


 is the penalized fitness function, )(xF


 is the fitness function and )(xP


 is the 

penalty function, and ir  is the penalty factor for the i-th constraint. To guide the search towards 

promising area of solution space, the penalty function )(xP


 should be deliberately designed. 

The design of )(xP


 depends on many factors such as the solution itself, the search history, 

and the other solutions, etc. To handle the constraints in JSSP, we should consider the following 

factors: 

1. The extent to which the solution violating constraints; 

2. The search history of the genetic algorithm; 

3. The proportion between feasible and infeasible solutions in the population; 

4. The proportion between fitness function )(xF


 and penalty function )(xP


. 

Based on the considerations above, the penalty function proposed in this paper is described 

as follows 
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where v  is a constant that controls the proportion between )(xF


 and )(xP


, k  is the iteration 

number, infeasiblen  is the number of infeasible solutions, n  is the number of solutions, function 

 )(xgi


 denotes the degree of x


 violating the i-th constraint, iw  is the factor denoting the 

importance of constraint i, and   and   are constants, respectively. From the above function 

we can see that the penalty imposed on infeasible individuals is increased with the generation 
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number k. The proportion between infeasible and feasible solutions is balanced by 
n

infeasiblen
 to 

avoid the infeasible solutions dominating the population. 

 

4. Implementation of modified genetic algorithm with penalty function for JSSP 
 

4.1. Representation 
 

Before solving the JSSP, we need to describe a proper representation for the solution of the 

problem, namely a scheduling, which is used in the proposed algorithms. In this paper, we adopt 

an operation-based representation method. For an n-job and m-machine problem, there are mn  

operations in all, so a mn  list is used to represent these operations. Each element of the list 

contains a 3-dimension vector <j, m, d>, where j represents the job index, m represents the 

machine index and d represents the duration of job j processed on machine m. Thus a 

chromosome of a candidate solution can be represented by a permutation of the operation 

indexes [ mn ,,2 ,1 ]. All possible permutations of the integers compose the solut ion space. 

A complete scheduling (both feasible and infeasible) for a problem can be obtained by the 

process called decoding. By scanning the chromosome from left to right, we first obtain the 

operation index, and then obtain the exact operation information by checking operation list. 

Thereafter, we assign the operation to the earliest time slot of the corresponding job and 

machine. A complete scheduling can be obtained when all the operations in the chromosome are 

scanned. It is obvious that the resource constraint is easy to be satisfied by assigning operations 

to time slot when both the job and machine are idle. However, the technique constraints are 

relatively difficult to satisfy. Therefore, when we decode a chromosome we make sure the 

resource constraints satisfied and leave the technique constraints unconsidered.  

 

4.2. Initial solution 
 

Empirical study shows that the initial solution methods affect the solution, so that the better 

initial solution might provide better results. In this paper, a new scheduling initialization 

algorithm is proposed based on the well-known algorithm of Giffler and Thompson (G&T) [34]. 

According to G&T, when assigning an operation of a job to a machine, the operation which has 

short processing time and an early starting time will have high priority to be selected. In this 

paper, we also take into account the critical operation. If hanging its schedule by moving 

forward or backward influences the finishing time of all the operations, i.e., influences the 

makespan, then this operation is called critical operation. 

Therefore, the earlier the finishing time of a critical operation appears, the higher the 

appearance possibility of minimum makespan is. However, it is usually impossible to identify 

the critical operations before we obtain the complete scheduling solution. So we need to first 

evaluate each operation and endow the operation identified as a possible critical operation with 

a higher priority to be scheduled. 

 

4.3. Crossover 
 

One of the important aspects of the technique involved in genetic algorithm is crossover. The 

process of crossover is designed as follows. First, two parental individuals parent1 and parent2 

are selected. A vector of length 
mj

 for the problem of j jobs and m machines is produced, 

which is randomly filled with elements of the set {0, 1}. This vector defines the order in which 

the operations of the newly produced offspring are drawn from parent1 and parent2, 

respectively. After an operation is drawn from one parent and deleted from the other one, it is 

appended to the newly produced offspring. This step is repeated until both parent1 and parent2 

have been exhausted and the offspring contains all the genes involved. This process is repeated 

by exchanging parent1 and parent2, and the other offspring is produced. 
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4.4. Mutation 
 

Mutation is another important operation in the proposed genetic algorithm. It is used to 

produce perturbations on chromosomes in order to maintain the diversity of population. 

Mutation process means random changes take place in a region of the chromosome. It is 

relatively easy to make some mutation operations for permutation representation. In this paper, 

three types of mutation are used. 

1. Inverse mutation. Select two inverse points in the permutation then reverse the sub 

permutation between the two points. For example, let the selected inverse points in permutation 

A  be 3 and 7, then the mutated permutation 'A  is shown as follows 

89|7654|123'

89|4567|123





A

A
 

2. Interchange mutation. Select two interchange points in the permutation then interchange 

their values. For example, let the selected interchange points in permutation A be 3 and 8, then 

the mutated permutation 'A  is shown as follows 

934567812'

984567312





A

A
 

3. Insert mutation. Select two points in the permutation then insert one after the other. For 

example, assume that the selected two points in permutation A are 6 and 3, then the mutated 

permutation 'A  is shown as follows 

457896312'

789645312





A

A
 

Of course, some mutation can be obtained is multiple application of a basic mutation. For 

example, the inverse mutation and interchange mutation can be obtained from multiple 

application of insert mutation. However, since there isn’t any principle for the design of 

mutations, the three types of mutations in this paper are designed concerning the performance of 

the algorithm. They are the ones that give the best performance.  

 

4.5. Penalized objective function 
 

According to Eq. (2), the penalized objective function consists of original objective function 

)(xF


 and the penalty function )(xP


. In JSSP, the objective is to minimize the makespan, i.e., 

the final completion time of all the jobs. For an operation permutation x


, we can get a complete 

scheduling   by decoding process. Thus, the original objective )(xF


 can be defined as 

 

]}[,],2[],1[max{)( mTTTxF 


                                        (5) 

 

where ][iT  is the final completion time of machining on the i-th machine, and )(xF


 is the final 

completion time of all the operations. 

For a JSSP of mnC  , there are Cn  technique orders for these Cn  jobs, these Cn  technique 

orders fall into Cn  technique constraints. By checking  , we can easily get the operation 

permutation )( j  of each job j. Then we can calculate the violation measurement function by 

comparing )( j  with the technique order of the j-th job. So the constraint violation 

measurement function )(xg j


 can be described as: 

- 71 -



Solving Job Shop Scheduling Problem Using Genetic Algorithm with Penalty Function 

Liang Sun, Xiaochun Cheng, Yanchun Liang  

 
















else0

violatesoperation  success s'operation  if1
)(

else0

violatesoperation precedent  s'operation  if1
)(

))()(()(

1

k
k

k
k

kkxg

succ

pre

m

k

succprej








               (6) 

 

so the penalized objective function can be described as 
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Different from Eq. (4), the parameter w in the penalty function (7) is identical because the 

constraints in JSSP are of the same importance. 

 

4.6. Termination criterion 
 

The termination criterion is satisfied if the best solution obtained is proved to be optimal or 

if the algorithm has performed a given total number of generations.  

 

5. Numerical experiments 
 

In order to verify the validity of the proposed algorithm, the computational simulation is 

carried out with some well-studied benchmarks. In this paper, 23 problems that were 

contributed to the OR-Library [35] are selected. The instances FT06, FT10, and FT20 are 

designed by Fisher and Thompson (1963), and instances LA01 to LA20 are designed by 

Lawrence (1984). The designers used them to compare performances of some heuristics and 

found these problems to be particularly difficult. So these problems have been used as 

benchmarks for study with different methods by many researches.  

 

5.1. Parameters selection 
 

Table 1. Parameter Values 

parameter value 

pop_size 50 
clonal_size 30 

c (crossover) 15 

m (mutation) 30 

minmum life 20 

k (replacement number) 10 

  0.5 

  0.5 

w 1.0 

 

The parameters of the proposed algorithm are selected by trial and error. However, the 

performance of the algorithm varies when solving different instances. If we leave  all of these 

parameters unchanged, they may not perform well. Through thorough testing, we found that a 

certain parameter set can get good result for instances with the same size. We also found that 

the proposed algorithm produces quite satisfactory solut ions by tuning only the parameter v in 

Eq. (7) and leave all the other parameters unchanged. In this paper, all the parameters except v 

were tested and the selected values are those that could result in the best computational results 
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concerning both the quality of the solution and the computational time. Thus, these select 

parameters are given in Table 1. For the parameter v, we can determine its value by turning 

from 0.50 to 0.59 with several times of running. And parameter v for different instance size is 

given in Table 2. 

 

Table 2. Selection of Parameter v 

instance size value 

66 0.50 

1010 0.56 

205 0.59 

105 0.53 

155 0.52 

205 0.55 

1510 0.54 

2010 0.54 

3010 0.50 

1515 0.51 

 

5.2. Simulation results and comparisons 
 

5.2.1. Effects of penalty function 

 

According to the penalty function (4), the number k of the generations and the number of 

infeasible solutions in the population infeasiblen
are adaptive parameters, and the relationship 

between them is shown in Figure 2, where
nn /infeasible

.  

0 100 200 300 400 500 600 700 800

0.0

0.1

0.2

0.3

0.4

0.5



generations  
Figure 2. Evolution curve of parameter  (test problem: FT10). 

 

From Figure 2, it can be seen that the curve fluctuates at around 0.25, that means the 

infeasible solutions usually occupy about 25% of the whole population. That is due to 

parameter   makes up a feedback loop during the search process. If the infeasible solutions are 

too many in the population, then   increases. Thus the harsh penalty is imposed on the 

infeasible solution and the search tends towards the feasible region. Else if the feasible 

solutions are too many in the population, then  decreases. Thus the light penalty is imposed on 

the infeasible solution and the search moves towards the infeasible region. 

According to the objective function (10), the parameter v determines the proportion between 

)(xF


 and )(xP


. So it affects the explore element as well as the computational time. Table 3 

presents the effect of parameter v on searching quality and computational time when solving 

instance FT10, where the listed items include the name of the test instance (Ins), the scale of the 
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problem (Size), the best known solution for the problem (BKS), the value of parameter v, the 

best relative error to BKS (BRE), the average relative error to BKS (ARE), the worst relative 

error to BKS (WRE). 

 

Table 3. Effect of parameter v (Test problem: FT10). 

Ins Size BKS v BRE(%) ARE(%) WRE(%) 

FT10 10*10 930 

0.50 3.23 4.36 5.32 

0.51 2.69 3.14 6.42 

0.52 1.72 2.43 5.58 

0.53 1.29 1.96 4.89 
0.54 0.75 1.60 3.31 

0.55 0.86 2.24 2.69 

0.56 0.00 1.13 3.27 

0.57 1.18 1.45 4.23 
0.58 1.18 3.69 8.16 

0.59 1.29 2.72 5.54 

 

From Table 3, it can be seen that the performance of the algorithm varies, and the values 

around 0.56 can produce better results with the turning of the parameter v. That is to say, 

parameter v affects the searching quality. We can select the parameter v by several times of 

turning. 

 

5.2.2. Comparisons of the results 

 

Table 4 summarizes the results of the experiments. The contents of the table include the 

name of each test problem (Ins), the scale of the problem (Size), the value of the best known 

solution for each problem (BKS), the value of the best solution found by using the proposed 

algorithm (CSGA), the number of running generations (Itr), the percentage of the deviation with 

respect to the best known solution (RD%), and percentage of the deviation with respect to the 

best known solution reported in other literatures. 

From Table 4 it can be seen that 21 best known solutions can be found among the 23 checked 

instances by using the proposed algorithm, which accounts for 91.3% of the total instances. And 

the average deviation of the obtained solutions from the best known solution is only around 

0.07%. The proposed algorithm yields a significant improvement in solution quality with 

respect to other algorithms except the approach proposed by Nowicki. Simulated results show  

that the proposed approach is a feasible alternative for solving job shop scheduling problems.  

 

6. Conclusions 
 

In this paper we propose a promising genetic algorithm with penalty function for the job shop 

scheduling problems. Different from traditional genetic algorithms, a clonal selection based 

hyper mutation and a life span extended strategy is proposed. Moreover, different from other 

methods, the proposed algorithm search on both feasible and infeasible regions of solution 

space with the aim of searching for the global optimum solution by an adaptive penalty function. 

The proposed algorithm effectively exploits the capabilities of distributed and parallel 

computing of swarm intelligence approaches and effectively makes use of the famous scheme 

theorem and the building block hypothesis of Holland. The algorithm is tested on a set of 43 

benchmark instances. Simulation results are compared with those obtained using other 

competitive approaches. The results indicate the successful incorporation of the proposed 

operators. In the future work, we will aim to extend the proposed algorithm to be applied to 

more practical and integrated problems. 
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Table 4. Comparisons of the results between CSGA and other approaches 

Ins Size BKS CSGA Itr RD% 

RD% 

Binato Nuijten Coello Nowicki 

[36] [37] [26] [16] 

Mt06 66 55 55 2 0.00 0.00 0.00 - 0.00 

Mt10 1010 930 930 703 0.00 0.86 0.00 1.18 0.00 

Mt20 205 1165 1165 2093 0.00 0.34 0.00 - 0.00 

La01 105 666 666 7 0.00 0.00 0.00 0.00 0.00 

La02 105 655 655 572 0.00 0.00 0.15 0.00 0.00 

La03 105 597 597 434 0.00 1.17 0.00 0.00 0.00 

La04 105 590 590 134 0.00 0.00 0.00 0.00 0.00 

La05 105 593 593 4 0.00 0.00 0.00 0.00 0.00 

La06 155 926 926 3 0.00 0.00 0.00 0.00 0.00 

La07 155 890 890 9 0.00 0.00 0.00 0.00 0.00 

La08 155 863 863 7 0.00 0.00 0.00 0.00 0.00 

La09 155 951 951 4 0.00 0.00 0.00 0.00 0.00 

La10 155 958 958 6 0.00 0.00 0.00 0.00 0.00 

La11 205 1222 1222 10 0.00 0.00 0.00 - 0.00 

La12 205 1039 1039 11 0.00 0.00 0.00 - 0.00 

La13 205 1150 1150 10 0.00 0.00 0.00 - 0.00 

La14 205 1292 1292 2 0.00 0.00 0.00 - 0.00 

La15 205 1207 1207 20 0.00 0.00 0.00 - 0.00 

La16 1010 945 945 1736 0.00 0.11 0.21 0.00 0.00 

La17 1010 784 784 769 0.00 0.00 0.38 0.13 0.00 

La18 1010 848 848 635 0.00 0.00 0.00 0.00 0.00 

La19 1010 842 844 1108 0.24 0.00 0.71 0.71 0.00 

La20 1010 902 907 2634 1.33 0.55 0.55 0.55 0.00 
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