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Abstract— Human papillomavirus (HPV) remains a leading 
cause of virus-induced cancers and has a typical size of 52 to 
55nm in diameter. Hence conventional light microscopy that 
usually sustains a resolution at ~100nm per pixel falls short of 
detecting it. This study explores four state of the art generative 
adversarial networks (GANs) for visualising HPV. The 
evaluation is achieved by counting the HPV clusters that are 
corrected identified as well as drug treated cultured cells, i.e. no 
HPVs. The average sensitivity and specificity are 78.81%, 
76.37%, 76.62% and 84.71% for CycleGAN, Pix2pix, ESRGAN 
and Pix2pixHD respectively. For ESRGAN, the training takes 
place by matching pairs between low and high resolution (x4) 
images. For the other three networks, the translation is 
performed from original raw images to their coloured maps that 
have undertaken Gaussian filtering in order to discern HPV 
clusters visually. Pix2pixHD appears to perform the best. 

Keywords— Generative adversarial network (GAN), super 
resolution, Human papilloma virus like particles (HPVLPs), 
Pix2pixHD, CycleGAN 

I. INTRODUCTION  
This work concerns with the determination of the presence 

of human papillomavirus (HPV) acquired using conventional 
light microscopes by employing state of the art computational 
imaging techniques, which constitutes being the first one to 
monitor HPV from light microscopic images and could 
potentially contribute to the development of an effective anti-
HPV drugs in the future. 

The human papillomavirus, or HPV, is a small, non-
enveloped, and double-stranded DNA virus. A papillomavirus 
has a diameter of 52–55 nm [1] and infects mucosal by 
inducing cellular proliferation. A high risk HPV remains a 

leading cause of virus-induced cancers, mainly being 
discovered in cervical and head-and-neck cancers. Among 
those, HPV16 and HPV18 retain the two major types that 
account for 70% of cervical cancer cases [2, 3].   

At present, the detection of HPV mainly relies on the 
molecular and cellular pathological evidence through 
labelling  HPV oncogenes or oncoproteins using the approach 
of polymerase chain reaction (PCR), in situ hybridisation and 
immune-histochemical staining. This is because conventional 
light microscopes (e.g. Nikon C2plus Ti2 MS (Laser scan 
confocal, PMT)) can only depict sample structures at a 
maximum of ~70nm/pixel whereas an HPV sustains a size of 
~50nm in diameter. In this study, a typical HPV like particles 
/structures (HPVLPs) retains a size of ~30-40 nm in diameter. 
This is because HPVLPs, viral inclusions (VIs) or virosome 
are viral factories where viruses assemble and replicate 
themselves with the support of host cellular components 
which could be somehow evading from the attack of host’ 
immune responses [4]. As a result, this miniature only takes 
up a space of 1 to 3 pixels in an image, exhibiting difficulties 
to distinguish the differentiating characters when factoring 
into noises or artefact derived from sample preparations.  

Hence, in this study, four state of the art generative 
adversarial networks (GAN) are investiagted towards 
visualization of HPV like particles. These deep learning 
architectures are ESRGAN [5], CycleGAN [6]. Pix2pix [7] 
and Pix2pixHD[8].  

GAN is a deep learning neural network denoting a class of 
computing machines that can learn a hierarchy of features by 
establishing high-level features from low-level ones based on 
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biologically inspired human vision systems. GAN [9], 
designating an approach to generative modelling using deep 
learning methods, such as convolutional neural networks 
(CNN) [10]. GAN performs an unsupervised machine 
learning and involves automatically discovering and learning 
the regularities or patterns from input data in such a way that 
the model can be used to generate or output new examples 
that plausibly could have been drawn from the original 
dataset. 

The ground truth is obtained using transmission electron 
microscope (TEM) to identify HPV like particles (HPVLP) 
which can achieve at a resolution at 0.5nm/px. Fig. 1 
epitomises the data sets collected in this study employing 
three imaging microscopic modalities at varying scales, 
including conventional microscope and high resolution (HR) 
microscopy (Fig. 1(b)(c)), and TEM ( Fig. 1(a) ). While a HR 
microscope can attain a sample image at nano scale (e.g. 
5nm/px), different from EM images (Fig. 1(a)), a HPVLP 
exhibits a challenge to apprehend from raw images as 
illustrated in Fig. 1(d) where those colorful pixels become 
unfathomable. Hence in this study, to visualize HPV, images 
are undertaken Fast Fourier Transform (FFT) Gaussian 
filtering first so that extraneous features can be cropped by 
filtering out less frequency signals in the Fourier space. In 
this paper large and small structures are constrained at 120 
and 3 pixels respectively as displayed in Fig. 1(e)).  

Fig. 1. Illustration of data sets applied in this study from three modalities, 
acquired at varying scales, including from (a): TEM, the ground truth; 
(b)(c): Data sets for training; (d)(e): low resolution datasets for testing. The 
bottom row of graphs of (a) to (c) are the selected regions on the top row of 
the same column that are acquired at a higher resolution. 

II. METHODLOGY 

A. Dataset 
In this study, as training datasets, both high resolution 

(HR) and low resolution (LR) images are obtained using 
Nikon A1plus Manual Microscope with Laser scan Confocal, 
GaAsP and applied. These fluorescence microscopic images 
(Fig. 1 (b) & (c)) were captured by scanning a microscopic 
slide carrying dual fluorescent labelling for HPV16 
oncoprotein E6/E7 in green and nuclei in blue (CaSki 
Control) and HPV treated with drugs (C33a). In addition, low 
resolution images, applied for testing, are captured using 
Nikon C2plus Ti2 Microscope using conventional confocal 
images (Fig. 1(d)&(e)).  Two band pass optical filter sets 
were used to acquire all these labelled cells, i.e. CaSki 
control. Table 1 provides details of the data acquisition 
information. 
 

TABLE 1. DETAILED INFORMATION ON THE MICROSCOPIES 
EMPLOYED IN THIS STUDY WHERE EXW = EXCITATION 
WAVELENGTH AND EMW = EMISSION WAVELENGTH. 
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JEOL JEM-
1400 

Transmissi
ve Electron 
Microscope 

0.5-6nm      

Nikon 
A1plus 
Manual 
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λ 100x Oil) 

70-180 
nm 

488, 
405n
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 510-
590 

(FITC
) 
 

450 
(DAPI

) 

20 

 
While a colour image has three colour channels, i.e. RGB, 

all the images in this study possess colours from only two 
channels, either blue-red or green-red, as listed in Table 1, 
which are used to label HPV16 E6/E7. Hence, to form a 
colour image, all the images studied in this work are 
uniformed by converting into red and blue channels with 
green channels being zero, which applies to both training and 
testing. 

B. GAN Architectures for Super Resolution Images 

ESRGAN [5] is an enhanced super resolution (SR) GAN 
trained to transform low-resolution images (e.g. 20nm/px) to 
a high-resolution one (5nm/px) with four-fold (×4) increase 
of resolution. Specifically, different from many other super 
resolution network trainings where mathematical formulas, 
e.g. bicubic, are employed to generate low-resolution images 
from the available data, this work employs matching pairs of 
low- and high-resolution images that are scanned 
experimentally. Fig. 2 illustrates an the architecture of  
ESGAN comprising two sub-networks, a generator and a 
discriminator where the generator contains twenty-three 
Residual-in-Residual Dense Blocks.  

Hence, the total loss (ℒ  ) for the generator in Eq. (1) 
integrate perception loss ( ℒ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ), structural similarity 
(SSIM) [11] loss, content loss ( ℒ𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝) and adversarial loss 
(ℒ𝐺𝐺𝑅𝑅𝑅𝑅) . 
ℒ = 𝛼𝛼ℒ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝛾𝛾ℒ𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 +  λℒ𝐺𝐺𝑅𝑅𝑅𝑅  + 𝛽𝛽 ℒ𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝  (1) 

In Eq. (1), SSIM index is defined in Eq. (2) to measure the 
similarity between two images in relation to spatial structure 
whereas the rest remain the same as applied in ESRGAN [5]. 

ℒ𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥𝑓𝑓 , 𝑥𝑥𝑝𝑝)   (2) 
where 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥,𝑦𝑦) = (2𝜇𝜇𝑥𝑥𝜇𝜇𝑦𝑦+𝑝𝑝1)(2𝜎𝜎𝑥𝑥,𝑦𝑦+𝑝𝑝2)
(𝜇𝜇𝑥𝑥2+𝜇𝜇𝑦𝑦2+𝑝𝑝1)(𝜎𝜎𝑥𝑥2+𝜎𝜎𝑦𝑦2+𝑝𝑝2)

   (3) 

Where 𝜇𝜇𝑥𝑥 , 𝜇𝜇𝑦𝑦 are the averages of  𝑥𝑥, 𝑦𝑦, with 𝜎𝜎𝑥𝑥 
2 ,𝜎𝜎𝑦𝑦2 being the 

variances of 𝑥𝑥 , 𝑦𝑦 respectively and 𝜎𝜎𝑥𝑥,𝑦𝑦  the covariance of 𝑥𝑥  



and 𝑦𝑦. The variables of 𝑐𝑐1 and 𝑐𝑐2 are applied to stabilize the 
division when a small denominator occurs and are set to be 
(0.01𝐿𝐿)2  and (0.03𝐿𝐿)2  respectively, whereby L stands for 
the dynamic intensity range of an image, e.g. L=255 for a 8-
bit image. 𝑥𝑥𝑓𝑓 , 𝑥𝑥𝑝𝑝 refer to fake (SR) and real (HR) images. 

The α, γ, λ and β in Eq. (1) are the coefficients to balance 
different loss terms and are set to be 1, 0.1, 0.005 and 0.1 
respectively for perceptual, SSIM, adversarial and content 
losses in this study. 
 

 

 
 (b)    (c) 
Fig.. 2. The architecture of GAN applied in this study. (a) Overall diagram. 
(b) Generator. (c) Discriminator. 
 

In Fig. 3, the network of Pix2pixHD [8] is depicted, where 
the training takes place to translate original images (A) to its 
corresponding processed maps (B) undertaking FFT 
Gaussian filtering and being coloured using a colour lookup 
table.  

 
Fig. 3. The architecture of Pix2pixHD. 
 
Fig. 3 decomposes the generator into two sub-networks, G1 
and G2 as global generator and local enhancer networks 
respectively. The network first trains a residual network G1 
on lower resolution images. Then, another residual network 

G2 is appended to G1 and the two networks are trained jointly 
on high resolution images. Specifically, the input to the 
residual blocks in G2 (right most graph) is the element-wise 
sum of the feature map from G2 (left graph) and the last 
feature map from G1. In this work, the input image has a 
resolution of 256×256 whereas the output coloured map has 
1024×1024 pixels, a four-folder increase. The overall loss 
combines both GAN (Eq.(1)) loss and feature matching loss 
as formulated in Eq.(4) [8]. 

min
𝐺𝐺

(( max
𝐷𝐷1,𝐷𝐷2,𝐷𝐷3

� ℒ𝐺𝐺𝐺𝐺𝐺𝐺(𝐺𝐺,𝐷𝐷𝑘𝑘)) + 𝜆𝜆 � ℒ𝐹𝐹𝑆𝑆(𝐺𝐺,𝐷𝐷𝑘𝑘))
𝐾𝐾=1,2,3𝑘𝑘=1,2,3

 

(4) 

Where  λ is a factor that controls the importance of the above 
two parts, ℒ𝐹𝐹𝑆𝑆  refers to the feature matching loss and 𝐷𝐷𝑘𝑘 
(k=1,2,3) the feature extractor, extracting features from each 
of the three blocks in Fig. 3. During the test, the parameters 
loadSize and fineSize are set to be 4 times of that of the input 
image. The Pix2pixHD will then upsample, fine tune and 
output a high resolution image four time as big as the input 
size. 

In addition, the GAN-oriented networks of Pix2pix [7] 
and CycleGAN [6] are also evaluated. Although these two 
networks are designed for image translation rather than 
generating high resolution, they can be employed to convert 
raw images into coloured filtered  maps to display visible 
HPVs. In addition, these systems do no need pixel to pixel 
matching pairs, the challenge facing any SR systems. 

. 

III. RESULTS 
The implementation is built upon Pytorch deep learning 
libraries [12,13], through the application of Python language. 
The training and testing took place under Windows 10 system 
with one GPU Nvidia GeForce GTX1060 with 16 Gbyte 
memory. The training samples comprise 2431 images with 
785 for validation and are of high resolution (x4). Test 
samples has 100 low resolution images containing 121 
HPVLP clusters with 40 samples being normal. The input 
size is 256×256 pixels whereas the output size from 
CycleGAN and Pix2pix remains the same. For Pix2pixHD 
and ESRGAN, the output size is 1024×1024 pixels, i.e., four 
time (x4) bigger. The training takes 50 epochs to complete 
for each network.  

Table 2 lists the classification accuracy of detected HPV 
clusters in comparison with high resolution (4X) images of 
ground truth. The drug treated samples are referred as normal, 
which have little trace of PHVLP clusters. 

TABLE 2. SENSITIVITY AND SPECIFICITY FOR FOUR 
APPROACHES IN PERCENTAGE (%) WHERE 
‘SEN’=’SENSITIVITY’, ‘SPE’=’SPECIFICITY’. 

IV.  V. SEN  

VI. (HP
V)  

VII. SPE 

VIII. (HP
V) 

IX. SEN 

X. (TREA
TED) 

XI. SPE 

XII. (TREA
TED) 

XIII. A
VG 

XIV. (
%) 

CycleGAN 74.28 85.98 75.40 79.60 
78.81 

Pix2pix 65.74 80.26 85.00 74.48 
76.37 

ESRGAN 70.14 81.63 77.5 77.01 
76.62 



ESRGAN(SSI
M) 

74.46 81.63 77.5 79.77 
78.34 

Pix2pixHD 86.66 84.84 82.14 85.22 
84.71 

 
To quantify the quality of generated high resolution 

images, spatial frequency spectrum analysis is commonly 
employed, which unveils the frequency extrapolation nature 
of the developed GAN system and the closeness of similarity 
between generated fake image and ground truth real image in 
appearance. Fig. 4 exemplifies such an example 
demonstrating a real (4(a)) and fake (4(b)) images and their 
respected frequency spectrum (in log scale) at Fig. 4(c) and 
3(d). The cross-section of radially averaged power spectrum 
showing in Fig. 4(e) indicates an overall good agreement with 
largely closeness of spatial frequency spectrum. 

 

 
Fig. 3. Comparison of spatial frequency spectrum between generated fake 
image and ground truth for Pix2pixHD. (a) Real B; (b) Fake B; (c) (d) Spatial 
frequency spectrum (SFS) of (a) and (b) resepctively;(e) Plot of cross-section 
of spatially averaged power spectrum of both real (in blue) and fake images 
(in orange) (in log scale). 
 

In Fig. 5, visual comparison between ESRGAN and 
Pix2pixHD is presented, where top row is for and bottom row 
for Pix2pix2D.  

 

 
Fig. 4. Comparison the final results (last row) for ESRGAN (top row) and 
Pix2pixHD (bottom row) approaches. The circles are identified HPV 
clusters. 
 

Because the training samples of ESRGAN are the 
matching LR and HR raw images, to visualize HPV clusters, 
the final SR image (Fig. 5(c)) is transformed by FFT (Fig. 
5(d)), which appears more different to ground truth (5(f)) than 
5(h) that is directly predicted by Pix2pixHD. However, since 
the goal of this study is to detect HPV clusters, the change of 
colour appearance may present no challenges. Fig. 5 also 
shows that by directly translating through the training from 
raw images to their corresponding filtered maps  by 
Pix2pixHD can lead to more accurate results with regard to 

detect HPV clusters. In Fig. 5(h), 4 out of 5 HPV clusters ( 
white circle) are detected in comparison with 5(f) (ground 
truth) whereas only 3 clusters in 5(d) are located. 

Further qualitative comparison is presented in Fig. 6 
between CycleGAN and pix2pix. 

 

 
Fig. 6. Comparison results between CycleGAN (6(c)) and Pix2Pix (6(d)). 
White circle refers to HPV clusters. 

 
Understandably, both CycleGAN and Pix2Pix networks 

are developed for image translation and only works at the 
same resolution between input and output. The advantage of 
these two networks is that they do not require paired training 
data. Both methods perform similar in terms of detection of 
HPV clusters, which can also be evidenced in Table 2. 

 

IV. DISCUSSION AND CONCLUSION 
This work might constitute the first one to identify Human 

papillomavirus like structures from conventional light 
microscopic images through the application of state-of-the-
art deep learning techniques, making a step further to allow 
fluorescence microscopy living up to their expectations. 
While a conventional light microscope has established to be 
an essential tool in studying cell structures, super resolution 
appears to be the desideratum for discerning these structures 
at nanoscale.  High risk HPVs, such as HPV16 and 18, have 
been confirmed to be associated with some cancers’ 
pathogenesis, especially cervical cancers. Hence early 
detection of HPV can assist to identify pre-cancerous lesions 
that subsequently can be treated before the onset of cancer 
development. While detecting HPV from biological 
specimens is valuable in diagnosing HPV associated cancers 
and monitoring therapeutic effects, direct visualization of 
HPV or HPVLP in cells or tissue samples cannot be achieved 
through traditional molecular and proteomic methods. Hence 
microscopic imaging has been resorted to for directly 
observing HPV or virus particles, which calls for the increase 
of microscope’s resolution (hence reducing pixel sizes) that 



is usually above 100nm/px [14] whereas a typical HPV has a 
size of ~50nm in diameter. While TEM provides a solution to 
capture those nanostructures, it is not readily available in 
additional to lengthy and complex sample preparation 
procedures.  

This study investigates four state of the art generative 
adversarial deep learning networks to differentiate HPV 
clusters under microscopy images, which are CycleGAN, 
Pix2pix, ESRGAN and Pix2pixHD. It has found that 
Pix2pixHD performs the best with sensitivity and specificity 
being 86% and 84% for detecting HPV clusters and 82% and 
85% for detecting normal (i.e. drug treated) cells. For the 
other three networks, the averaged sensitivity and specificity 
are 78% 76% and 76% for CycleGAN, Pix2pix, ESRGAN 
respectively. As a result, Pix2pixHD appears to be a suitable 
computational imaging tool to visualize the presence of HPV 
clusters from LR microscopic images. 

In addition to larger collection of samples for both 
training and evaluation, future work will ascertain the 
effectiveness of anti-HPV drugs in concern for treating 
cervical cancers or other HPV associated cancers through the 
employment of Pix2pixHD network to produce SR images 
from tissue or cellular samples. The generated SR to inspect 
HPV or HPVLP will provide a direct detection method for 
monitoring the distribution or amount of HPV load or virus 
like particles.  

While it presents advantageous to use TEM and HR 
microscopy at different research centres, it limits the number 
of acquired datasets due to sample preparation and travelling. 
On the other hand, this practice has led the trained system 
being robust by taking in the information from different 
scanners, especially when the test LR datasets come from 
different cohort of MS scanners. 

In the future, not only more cell lines infected by HPV 
will be included, but also the evaluation of the effectiveness 
of anti-HPV drugs will be conducted and verified by other 
molecular, cellular and proteomics laboratory techniques, 
raising the prospect of unravelling the insights of formation 
from HPV to cancer, while maintaining the prosperity of 
conventional light fluorescence microscopy.  

Furthermore, the authors will take the findings of 
effectiveness of generated super resolution (×4) forward and 
will consider to further to increase other scales, e.g. ×8, on 

the premise of availability of data pairs of both LR and HR 
images in the future. 
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