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ABSTRACT
Digital twins are increasingly used across a wide range of industries. Modeling is a key to digital twin development—both
when considering the models which a digital twin maintains of its real-world complement (“models in digital twin”) and when
considering models of the digital twin as a complex (software) system itself. Thus, systematic development and maintenance of
these models is a key factor in effective and efficient digital twin development, maintenance, and use. We argue that model-driven
engineering (MDE), a field with almost three decades of research, will be essential for improving the efficiency and reliability of
future digital twin development. To do so, we present an overview of the digital twin life cycle, identifying the different types of
models that should be used and re-used at different life cycle stages (including systems engineering models of the actual system,
domain-specific simulation models, models of data processing pipelines, etc.). We highlight some approaches in MDE that can
help create and manage these models and present a roadmap for research towards MDE of digital twins.

1 Introduction

Digital twins are among the key drivers of advanced manufac-
turing [1]. Recent surveys [2, 3] have identified a wide range of

application areas and technological approaches to building digital
twins. Digital twins are software systems that provide services on
top of virtual representations of actual systems. They typically
enhance actual systems into cyber-physical systems by providing
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mechanisms for data collection, (partial) modeling, planning,
and decision-making, and changing the state and behavior of
the actual system. Thus, digital twins are complex software
systems, raising questions about how they can be engineered both
efficiently and effectively.

In research and practice, there is no single definition of a digital
twin although all leading definitions have common features,
such as sending and receiving data from the actual system or
providing a virtual representation [4]. To navigate the design
options for twins, it is important for digital twin engineers to have
conceptual models [5] and reference models that capture such
twins’ essential features and variation points and to collaborate
with data scientists, as well as domain, system, and software
engineers. To date, there has been little attention paid in research
and practice to digital twin development methods. We argue
that models from software and systems engineering can be used
to define methods that are used to guide development teams
and could be used as the basis of digital twin development
platforms [6].

Digital twins manage models of the actual system and offer ser-
vices including, but not limited to analysis, diagnosis, prediction,
fault detection, and planning. Digital twins could cover different
capabilities [7]: (1) data fusion from sensors to detect properties;
(2) consolidation of properties to populate models; (3) the use
of model snapshots to provide dashboards and detect situations;
(4) projection of situations to speculate about future states
(simulation); (5) prediction of future situations from historical
information (learning); (6) adaptation that provides decision-
support (AI); up to (7) partial and total adaptive control. Each
type of service will place requirements on the representation and
processing of the system models.

The field ofModel-Driven Engineering (MDE) has been argued to
support the efficient and effective development, deployment, and
maintenance of software systems in general [8]. MDE could be
used throughout the digital twin life cycle to specify and design
a twin in order to provide a (possibly executable) prototype.
These models might be used to automatically generate parts
(or even all) of the twin, including configuring its connections
to the actual system [6, 9]. An alternative might be that the
twin uses models at run-time to execute the models directly
in order to improve its adaptability or its ability to provide
feedback.

This article reviews the opportunities for MDE to support the
field of digital twins. It is organized as follows: Section 2 shows
key aspects of digital twins and describes the state-of-the-art for
their contexts and life cycle; Section 3 sketches challenges around
models and modeling in digital twins; Section 4 provides an
overview of the key aspects of MDE relevant to the digital twin
life cycle; finally, Section 5 performs a gap analysis leading to a
research roadmap.

2 Digital Twins

To understand where digital twin engineering can be supported
by the field of MDE, we first describe what parts constitute

FIGURE 1 Digital twin schema derived from Tao et al. [11, 12].

digital twins, explain their life cycle, and describe relevant digital
twin contexts.

2.1 What is a Digital Twin

There aremany different definitions of “digital twins” in the liter-
ature [2] and recent standards such as [10], focusing on different
aspects. For the purposes of this paper, we use the following
conceptualization based on the 5D model from Tao et al. [11].
This conceptualization differentiates three key components (see
Figure 1):

1. The actual system, which is a system or object in the real
world. Note that our understanding includes a wide range of
systems and objects, including socio-technical or biological
systems. The actual systemoffers interfaces for output (that is,
sensing/extracting data about the state of the actual system)
and input (that is, controlling the state of the actual system
either directly or by supporting decision making processes of
human controllers).

2. A virtual representation of the digital twin, which includes
models and connected data digitally representing the config-
uration and state of the actual system.

3. A set of services provided on top of the information captured
in the digital twin, which includes, for example, services for
the synchronization of selected properties with the actual
system at a defined synchronization rate, for reasoning about
information from the virtual representation, and visualiza-
tion and reporting information to digital twin users [4].

A digital twin is a software system, that includes the virtual
representation of the actual systemwithmodels and data, and the
services needed to fulfill the purpose a digital twin serves.

To realize the software system representing a digital twin and its
services, industry and research suggest different reference archi-
tectures, for example, by the Digital Twin Consortium [13], the
standard series ISO-23247 for manufacturing [14, 15], Reference
Architecture Model Industry 4.0 (RAMI 4.0) [16], semantic Asset
Administration Shells [17], ormore conceptual architectures such
as the 3D model [18], the 5D model [11, 12], or the work by
Newrzella et al. [19], Kritzinger et al. [20], Josifovska et al. [21],
Boyes and Watson [22], or Eramo et al. [5]. These architectures
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provide an overview of different functionalities a digital twin
could cover. However, each concrete, domain-specific digital
twin’s software architecture has to be tailored for the purposes
it aims to cover.

2.2 Digital Twin Contexts

Digital twins can be designed for different categories of actual
systems. The actual system and its environment constitute the
context of the digital twin. There are fundamental properties
that characterize the context: whether the actual system is an
engineered or a nonengineered system, whether it is a controlled
or noncontrolled system and whether it contains inanimate or
animate components or humanbeings. Based on these properties,
we can distinguish three main categories of actual systems which
may form the context:

1. Engineered systems are systems whose design and realiza-
tion have been carefully planned.We differentiate three types
of such systems, based on whether they have been developed
with digital control in mind:
a. Cyber-physical (including embedded) systems are

technically engineered products or groups of products
comprising physical components and computational con-
trol devices. An example could be a robot, a modern
car, a wind turbine, an air plane, a production line, or
a power plant. Crucially, often they already have digital
components that provide an interface for a digital twin to
interact with the actual system.

b. Technical systems without software. This category
contains artefacts such as tables, steam engines, classical
bicycles, hydraulic presses, windmills, bridges, buildings,
and so forth. These systems are engineered, but do not
have a software component (yet). To allow the creation of
digital twins, we need to enhance the system with digital
interfaces for data collection and for detecting changing
states and behaviors.

c. Software systems sit somewhere halfway between the
previous two. Software is naturally digital, making the
creation of a digital twin of the software easier in prin-
ciple. However, the information captured digitally is not
typically the information onewants to reflect in the digital
twin, necessitating the creation of additional interfaces
(e.g., for the monitoring of build processes).

2. Biological/natural systems which are not designed by
human engineers and can exist without human intervention,
such as biological organisms and ecosystems, for example,
trees, forests, plantations, animal populations, or weather
phenomena. Here, creating digital interfaces is much more
challenging and often means a transformation from pure
biological to bio-technical systems.

3. Socio-technical systems and processes, including orga-
nizations, that is, systems that involve human behavior
and interaction between humans and technical systems. An
example could be a hospital, the flow of patients through
a healthcare system, or the organizational structure of a
company. They might already provide digital interfaces for
some aspects, for example, technical devices, but also require
to add new ones, for example, to detect human behavior.

These different categories each come with their own require-
ments as well as broader aims, such as supporting sustainability,
privacy, or maintainability.

2.3 Digital Twin Life Cycle

The life cycle of a digital twin is deeply connected to the life
cycle of the actual system it is twinning. The life cycle of the
digital twin and its actual system does not have to run in lockstep.
For example, consider digital twins used for simulation-based
prediction during system design: the life cycle of such a digital
twin will be fully completed alongside the design phase of the
actual system and the digital twinmay no longer be used once the
actual system has been constructed and is in operation. Figure 2
shows the life cycle of some examples for such actual systems and
some examples for digital twins.

For an engineered object, the life cycle includes the design,
construction, operation, and maintenance until the end of life.
A digital twin of a product line can accompany the whole life
cycle starting with, for example, engineering models created
during model-based systems engineering [23]; simulation and
forecasting services; simulation data in the design; continuous
updating of data andmodels with the reality during construction,
monitoring, and forecasting during operation until their demo-
lition or refurbishment during the end-of-life phase. The same
phases occur for a concrete production machine or one concrete
product produced in such a production machine. However, in
relation to the life cycle of the product line, their life cycles
start later.

The life cycle of biological systems such as humans, plants, or
animals includes the (optional) plan, growth, life, and end-
of-life phase. If we take a biological-system experiment as an
example—for example, to create a lab-grown ear—a digital twin
already accompanies the planning of the experiment and uses
services to check the plans with regulators, observe the ear
during its growing phase, and regulate the environment of the
ear to provide better growth. After transfer to a human, the ear
might be further observed and stimulated to determine whether
this experiment is successful or not. The same life cycle occurs
for other biological processes such as 3D bio-printing or in
vitro fertilization. Furthermore, a digital twin could accompany
humans or organs of humans such as a digital twin for the
brain [24], a humanheart [25], or lungs. For sensing and actuating
a biological system synchronized with its digital twin, digital
twin developers might consider the whole bio-technical system
including relevant technological solutions as the actual system.

The life cycle of software systems is similar to the one of engi-
neered objects. In waterfall-like development processes, develop-
ers start with the analysis and design of a system, implement,
generate, operate, re-engineer, stop, or replace the system in
the end-of-life phase. In agile processes, the first three phases
are continuously repeated for each software product increment.
During the whole life cycle, a digital twin could accompany such
a software system. If we create a software product line (SPL)—
used for developing families of similar software products—we
could have a digital twin for the SPL reference design and
implementations as well as each concrete realization of the SPL
in an individual software product.
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FIGURE 2 Digital twins for different types of actual systems and their life cycle.

The life cycle of socio-technical systems such as an organiza-
tion can be summarized as planning, set-up or founding an
organization, running it, and liquidating or monetizing it. If
a structured planning phase exists, for example, in start-up
incubators, if founders start by elaborating a business plan, or
if a crowdfunding campaign should support the funding of a
company, a corresponding digital twin could already exist from
the beginning. If a company already exists, the digital twin might
only exist during the operation of a company, for example, to
monitor business processes or key performance indicators.

Changes in the actual system and its environment may lead to
re-adjustments and changes in the digital twin, such as adding
new services, handling new types of models, or changing data
structures and visualization needs. These changes lead to the
need for continuous DevOps [26] cycles during the lifetime of the
actual system and its digital twin.

3 Challenges AroundModels andModeling in
Digital Twins

The previous section presented typical elements of digital twins
and their life cycle, highlighting some of the challenges in
developing and maintaining digital twins. Importantly, digital
twins include models (in the form of digital representations that
can be used to derive insights) of some actual system. This
section examines these models in detail: what are the different
types of models involved in a digital twin’s life cycle and how
can making these models explicit help us engineer and maintain
digital twins more efficiently and effectively.

Models are more than data: They capture structure and provide
context for the interpretation of data. Digital twins include
data gathered from the actual system and models that support
the interpretation and analysis of these data. Some models are
derived from data—either a posteriori from historical data or
(updating) dynamically. Other models are provided as a pri-
ori descriptions/prescriptions [27] independent of data, though
they may be parameterized with data from the actual system.
Where information cannot be easily measured or computed,
one can use approximation models, also known as surrogate
models. These aim to learn functional relationships between data
inputs and outputs statistically, but can sometimes lead to a
lack of explainability. Models are on the knowledge and infor-
mation planes of the well-known data–information–knowledge
hierarchy [28, 29].

In our discussion, we make a fundamental distinction between
two types of models as follows:

1. Models in digital twins aremodels of the actual system that are
maintained inside the digital twin. They capture information
about the actual system and enable analysis, simulation,
inspection, and so forth. These models can be descriptive,
predictive, or prescriptive (see [5]).

2. Models of digital twins, on the other hand, consider the
digital twin system as a complex software-intensive system
and capture information about the structure, behavior, and
state of the digital twin system.

The following subsections discuss each of these two types in turn.

4 of 12 Systems Engineering, 2025
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3.1 Models in Digital Twins

These are the models we often think of first when considering a
digital twin—after all, models of an actual system are an integral
part of every digital twin. Considering them as explicit artefacts,
rather than as an implicit model that perhaps emerges from data
in a database together with a particular analysis algorithm (say,
a deep-learning-based classifier), allows us to think about their
structure, purpose, and life cycle more deeply.

3.1.1 Kinds of Models

Digital twins include different kinds of models. In particular,
modeling experts differentiate structural and behavioral models
as follows:

1. Structural models, which capture the logical structure of
the actual system—that is, its subsystems, components, and
actors. Examples are, for example, structural models of rail-
work networks, citizen energy communities, or production
plants. Structural models can be expressed in general pur-
pose modeling languages—for example, Systems Modeling
Language (SysML) block definition diagrams—as well as
domain-specific modeling languages (DSMLs), for exam-
ple, domain-specific architectural component-and-connector
diagrams.

2. Behavioral models, which capture key processes and interac-
tions in the actual system and between the actual system and
its environment. A typical modeling language for such pro-
cesses in the business domain is the Business Process Model
and Notation (BPMN) standard. In the systems engineering
domain, statemachines are a familiarmodeling language, but
more domain-specific models also exist.

Orthogonal to these two kinds, modeling experts also structure
models based on properties of the system engineers aim to
develop models for engineered or natural systems. These models
could have structural and behavioral aspects.

1. Models for engineered systems capture detailed mechanisms,
the tangible structure, and behavior of these systems. Exam-
ples include CAD models, building information models
(BIM) in the construction domain, geographic information
system (GIS) models (for example of the geographical layout
of a railway network), or SysML models describing the
structure and behavior of a production machine.

2. Models for natural systems aim to describe the structure
and behavior of these existing systems. Examples include
mathematical models (e.g., ODE-style descriptions of chemi-
cal reaction networks), models describing the topology and
geographical structure of the world, or weather models as
simulations of the future state of the atmosphere through
time.

Models in digital twins can be captured in general-purpose
modeling languages but also in highly DSMLs [30, 31]. This broad
variety of languages raises challenges around integrating models
captured in different modeling languages, created by experts in

different organizational units, or focused on different aspects
of the actual system, ensuring their consistency and coherent
evolution over time.

Systems of interest for representation through a digital twin are
often systems of systems [32]. Different subsystems in such a
system of systems are controlled by different organizations or
actors, making the idea of a single, centrally managed digital
twin of the complete system unrealistic. Instead, for a practical
realization of digital twins, there is a need for federating digital
twins, reflecting the compositional construction of the system
being twinned and making the digital twin itself a system of
systems [33]. In such a situation, each of the “sub-twins”will have
its own ways of referring to key elements of the system being
represented. Centrally aligning these model concepts to a com-
monly agreed ontology is usually difficult because of the nature
of distributed organizational control in the actual system. Instead,
digital twin engineers need to be able tomap representations onto
each other. Capturing the decisions we make in such a mapping
explicitly is important for quality assurance purposes.

3.1.2 Purpose

Every model is constructed for a purpose [34]. The purpose
determines what aspects of reality we include in the model and
what we abstract away. This abstraction, in turn, determines what
the model can be used for and where its limitations lie. For
example, a simulation model created for analyzing the flow of
streams of passengers through an airport may not have enough
information to analyze individual passenger decision making.

This focus on a purpose and different abstractions is interesting
in the context of digital twins, where the lifetime can be long.
The questions digital twin users ask of a digital twin—that is,
the digital twin use cases—are likely to change, leading to a
slow change in the purpose of the digital twin over time. The
services in the digital twin need to evolve with this change.
As a result, the models underlying these services may no
longer be sufficiently accurate or include all the information
required and may need to change, too. This need for change
creates challenges aroundmaintainability and consistency: large,
monolithic models will be more difficult to evolve consistently,
efficiently, and systematically [35]. Even the modeling tools and
formalisms may change over time, given the potentially very
long lifetimes of digital twins and their actual systems. Equally,
evolvingmodelswill likely change the alignment betweenmodels
and the underlying data. One solution attempt might be to
collect as much data as possible and speculatively integrate as
much of it as possible into models even if this information
is not required for the current purpose. This solution attempt
may provide flexibility when the purpose changes (assuming
changes in purpose can be predicted reasonably well), but
will make the use of the models more difficult for the initial
purpose.

For digital twins to be used as decision-support systems (for
example, in socio-technical digital twins [36]) or even more
autonomously (as in the definition of digital twins proposed
by Kritzinger et al. [20]), digital twin users must be able to
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FIGURE 3 Life cycle of a digital twin in detail.

trust them [37]. This means digital twin users must be able to
understand how the digital twin has arrived at its decisions and
recommendations [38] and that themodels inside the digital twin
are sufficiently accurate representations of the actual system for
the recommendations and decisions to be appropriate. Simula-
tion is a core service provided by digital twins and fundamental
to its planning and decision-making capabilities. In the context
of engineered systems, trust in models and simulations has
been discussed under the labels of “experimental” or “validity”
frame [39, 40]. These take the perspective that the essential
validation required is whether a simulation can reproduce the
input–output behavior of an actual system to a desired level
of accuracy. In the context of complex systems (including bio-
logical and socio-technical systems), research suggests [41] that
a richer set of information is required to ensure trust in the
model, linkingmodeling decisions to the scientific literature, real-
world experimentation, expert decision-making, and so forth.
In particular, this approach suggests that we need to be able
to trust the structure of the models and not just their input–
output behavior. Establishing trust at this level requires making a
structured argument [42, 43], similar to how one might construct
a safety-assurance case. Where digital twins integrate artificial
intelligence, in particular, machine learning, similar arguments
are required to ensure trust [44].

3.2 Models of Digital Twins

Here, the focus is on some of the modeling concerns relevant as
part of the development of a digital twin as a complex software
system. This development can be connected to the model-based
systems engineering process [45], however, it is a process on its
own requiring agile development methods.

Figure 3 takes a closer look at the continuum formed by thewhole
life cycle of a digital twin, as supported byDevOps principles, that

is, the requirements analysis, design, generation and implemen-
tation, test, release, and operate phase. This continuum enables
the seamless transition from one step to another in the life cycle.
From a software engineering point of view, a high degree of re-use
is to be aimed for; libraries of models, dDSMLs, and digital twin
services foster such re-use (the green arrows in Figure 3 show the
library re-use).

Digital twin engineers collect relevant requirements for the digital
twin and create requirements models within the requirements
analysis phase of a digital twin. This collection can include
functional requirements of the digital twin to be built up to
specific user needs and wishes. The requirements are then used
to design the digital twin. In the design phase, we plan the
first version of the digital twin and create design models such
as for the system architecture or data structure, select which
languages should be available in the digital twin during its
runtime, and select which services from the service library to
include in the digital twin. The production code and test code
that uses the selected digital twin services and functionalities
are derived from the design models by hand or using generative
techniques as in Model-Driven Engineering (see Section 4). After
successful tests, the digital twin can be released and start its
operation. The operation of the digital twin is characterized
by the continuous monitoring of the actual system and its
context.

3.3 Models Across the Digital Twin Life Cycle

As digital twins exist for long-living actual systems, for example,
up to 20 years for injection molding machines or wind-turbine
parks, and up to 50 years for bridges or buildings, it is clear that
requirements for the actual system and the digital twin of it, and
its context may change massively. This continuous need to react
to changes requires an engineering approach with continuous
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FIGURE 4 Life cycle of the actual system accompanied by the life cycle of its digital twin.

DevOps cycles for the digital twin which influences both models
in digital twins and models of digital twins.

Since these continuous DevOps cycles of the digital twin are
triggered by changes in the system or its context, we are focusing
on these changes in the ongoing relationship between the actual
system and the digital twin. Figure 4 takes a closer look into the
four main phases of the life cycle of an engineered actual system:
design where the actual system is planned; construction where
it is built; operation where it is used; and end-of-Life where it
is refurbed, demolished, and recycled. In an ideal world, all of
these phases are accompanied by a digital twin that continuously
transforms from a design digital twin to a construction digital
twin, or monitoring digital twin. This transformation requires
continuous DevOps cycles for the digital twin (the DevOps cycle
from Figure 3 is shown as continuous gray loops below the actual
system in Figure 4).

Already at the beginning of the design phase of the actual system
in Figure 4, we have to engineer the digital twin by re-using

models of the actual system and digital twin services as discussed
in Figure 3, to have a digital twin already available when the
design of the actual system starts.

Depending on the type of actual system represented by the
digital twin, models of the system may already play a role
independently of the existence of a digital twin. In particular,
where the actual system is an engineered system (including, for
example, production line systems), models are likely to exist that
were used in developing the actual system. To ensure high fidelity
of the digital twin as well as efficient development of the digital
twin, it is helpful for digital twin engineers to be able to re-use
these models directly inside the digital twin. However, re-use can
be challenging, as it requires themodels to be kept consistentwith
the actual system throughout its design and implementation. It
also requires the definition of mechanisms for how elements
in the model connect to elements in the actual system. This
connection is a general requirement and may become easier

where design models are re-used, as the relevant traceability
information may already have been captured.

In the design phase ( in Figure 4), models about the actual sys-
tem are created, for example, systems engineering models. These
models are continuously updated in the digital twin as they evolve
in reality over time. Moreover, data about the engineered
system is created in third-party applications—for example, sets of
parameters in simulation and optimization software—and shared
with the digital twin and communicated back in other stages of
the design phase. The digital twin can handle data and models
as it includes services—for example, for data and parameter
visualization, simulation, or model validation.

The engineering process of the digital twin has to take into
account that the design process of the actual system often starts
with the design of objects which are then realized not in lots
of size 1 but where several actual systems are constructed and
operated. Thus, multiple digital twins have to be realized, based
on the same initial set of engineering models, data and services
at the beginning, which are then adapted to the actual context
during construction. When the planning of a product line moves
on to a concrete engineered product, we can transfer the
planning data and models of a product line digital twin to the
digital twins of concrete production machines. Those are then
further detailed during their design phase and receive updated
models, and data.

Changes in this design process or changing requirements might
make it necessary to start a new dev-cycle of the digital twin
and, for example, update existing models of digital twins, or
include additional models or services from the libraries.

Complex actual systems take some time to be actually
constructed—from several months up to several years for
production lines and factories. In this construction phase, we
receive data on the construction process and have to
update models if the planned ones deviate from reality. Based on
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such changes, engineers might have to update parameters in
the cyber-part of an actual cyber-physical object.

As in the design phase, also in this phase changing management,
changing laws, new key performance indicators, new services,
and new data might require changing the digital twin and
starting new dev-cycles.

In the operation phase, the digital twin monitors the actual
system and receives data continuously. One can compare
planned runtime models with real runtime models and if devi-
ations occur, the digital twin sends execution commands to
adapt the actual system. In additional development cycles ,
one can addnew languages—for example, to add runtimemodels,
or new services (e.g., for process discovery from data or process
conformance checking).

In the end-of-life phase, the actual system and its parts can take
different paths: The system can be deconstructed, parts can be
recycled, re-used, or thrown away. This change in the actual
system might require to reconfigure our digital twin, for
example, based on new data or the absence of expected data. Due
to legal reasons , we might need to keep data and models (or
the whole digital twin) longer than the actual system. Moreover,
we might re-use parts of the actual system and provide
related data, models, and services for the digital twin of the other
actual system.

To summarize some main challenges when developing and
evolving digital twins: Besides the current practice of ad hoc
development of digital twins, several problems are related to the
underlying complexities of the actual system [46, 47]: the system
complexity due to a large number of heterogeneous subsystems,
time complexity related to the long lifespan of the actual system
and changing realities, integration complexity due to heteroge-
neous artefacts, different stakeholders and heterogeneous views,
as well as information complexity due to heterogeneous data
and models. In addition, budget challenges might influence the
development andmaintenance of digital twins.Moreover, current
digital twin practices face a gap in information and feedback flows
between the different life cycle phases.

4 Model-Driven Engineering

As we have seen, models play a key role in many aspects of
digital twin development. This prominent role of models raises
important questions about how these models should be created,
maintained, manipulated, and used (see also Tao et al. [48,
Sect. V.B]). Some of these challenges have already surfaced in the
discussion above. For example, we have seen the importance of
being able to re-use models across life cycle stages.

MDE [8] is a subfield of software engineering that focuses on
using models as first-class artefacts in the software engineering
process. As a result, the field has developed many techniques
for the efficient development of modeling languages, effective
manipulation and validation of models, and techniques for
maintenance and optimization of models. These techniques will
also be useful in the creation and use of digital twins. The

next section discusses some of the ways in which MDE can
help address digital twin challenges and outlines some open
challenges that should be addressed between theMDE and digital
twin communities.

To set the context for this discussion, we briefly set out the key
concepts in MDE. For space reasons, this section cannot be an
exhaustive introduction to the field. For more detail, Brambilla
et al. [8] provide a good introduction.

∙ Models are the key ingredients of MDE. A model is an
abstraction of parts of the real world for a purpose.

∙ In MDE, models need to be expressed in amodeling language
that has been formalized (i.e., exists in a way that is unam-
biguously processable by a computer). Modeling languages
can be general-purpose, like the Unified Modeling Language
or SysML. For many projects, DSMLs, created specifically for
the development of applications in a particular domain, can
be more useful.

∙ Models can be transformed into other models or into text
(e.g., program code, documentation, reports, etc.) by auto-
mated model transformations, often expressed in dedicated
transformation languages.

∙ A large range of tools andmechanisms exist tomanagemodels.
These support model versioning, model comparison, model
analysis, model validation, model composition and re-use,
linking models, and many more.

5 MDE of Digital Twins: A Research Roadmap

The previous sections described the different aspects and pro-
cesses involved in MDE of digital twins. They covered the
topics of development, execution, and analysis of a digital twin,
and throughout, highlighted the concerns and considerations
developers should have in developing a digital twin. In this
section, we perform a gap analysis, discussing the remaining
challenges facing digital twin development and potential avenues
for future research topics. Figure 5 shows an overview of current
challenges, existing solutions from the MDE Body of Knowledge
and needed action items for each topic further discussed in the
following subsections.

5.1 Development Guidelines and
Standardization for Digital Twins and their
Engineering

Digital twin development is still largely “artisanal” and would
benefit from the possibility of re-use and from standardization
of development knowledge [49], such as ongoing in ISO/IEC
JTC 1/SC 41 for IoT and DTs1 or for cities and municipalities
in DIN SPEC 91607—2024-11 [50]. Even though implementation
differences exist between digital twins in different contexts and
environments, the potential to standardize reference architec-
tures or requirements capture for digital twins remains. In
an MDE-based approach to digital twin development, such
knowledge would be captured in DSMLs, models, and model
transformations. Research challenges remain around specifying
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FIGURE 5 Overview of the research roadmap: challenges, existing solutions from the MDE Body of Knowledge and needed action items.

the concrete DSMLs and transformations: For example, what are
the concepts required in DSMLs that can capture the typical
requirements, assumptions, and scope of digital twin systems?
What are the most important nonfunctional properties of digital
twin systems, including specific properties such as synchroniza-
tion frequencies and fidelity? How can they be captured in
models of digital twins and can such models be automatically
transformed for analysis at digital twin design time or even to
generate digital twin implementations that achieve the required
nonfunctional properties by construction?

5.2 Digital Twin Interoperability

Integration and data exchange between different components is
a key technical challenge in digital twin development. Correct
and timely data conversion when synchronizing the information
in the digital twin with the status of the actual system is crucial
for digital twin efficacy, particularly where virtual models and
services within a digital twin are largely heterogeneous and
use different data formats. Time-based qualities, security, and
modularity are core digital twin qualities and are closely tied
to design and data transfer concerns. An MDE approach could
help address these challenges in two ways as follows: (i) using
DSMLs, data formats could be standardized across components
for more efficient information interchange; and (ii) where such
alignment is not possible, the translations required could be
implemented using model transformation technology, making
them explicit and amenable to analysis and verification. Where
digital twin components are provided externally as “black boxes,”
MDE offers opportunities for automating the generation of
wrappers and glue-code to increase re-use efficiency. In the
area of simulation—keeping in mind that many digital twins
include a simulation capability—distributed co-simulation [51]

and the high-level architecture [52] are established approaches
for black-box composition. These approaches can be combined
with the generation capabilities of MDE to achieve even greater
flexibility across domains [53]. Challenges remain, of course. For
example, only a limited understanding currently exists of what
the structure of the information to be interchanged should be
(though work such as the Asset Administration Shell [17] has
made an MDE-based start on these questions). Equally, many
data interchange transformations need to be bidirectional. The
theory and tooling for bidirectional transformation is an active
research area within MDE.

5.3 Multiparadigm andMultiviewModeling for
Digital Twins

Models in a digital twin often span multiple levels of abstraction.
For example, a digital twin for agriculture may include a model
concerning the qualities and properties of fields such as turnover
rate and yield, but may also include a model on individual crops
and their optimal growth conditions, and so forth. Integrating
these different abstraction levels into a single digital twin is often
far from trivial. Communication protocols between models at
different abstraction levels, and aggregation of data collection
from those models, need to be considered carefully. Often, a
digital twin involves a diverse range of stakeholders during
development, maintenance, and use. Different stakeholders may
require different viewpoints on the digital twin (both in relation
to models in, and models of the digital twin), including the
type of data exposed to the user and the format/syntax of data
presentation. In MDE, the areas of multiparadigm andmultiview
modeling [54–56] address challenges like the two above, making
the theory and tools developed highly relevant for digital twin
development. Significant open research challenges remain. For
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example, research is needed on how to minimize development
overheads such as facilitating stakeholder engagement, imple-
mentation time for different data views, and view integration.
Bidirectional synchronization and transformations play a key role
here [57].

5.4 Model, Object, and Digital Twin Evolution

Section 2.3 discusses the relationship between the life cycle of
the actual system and the life cycle of the digital twin. We
highlighted that this relationship requires constant co-evolution
between the digital twin and the actual system—beyond just
bidirectional data updates, this also needs to support updates
to the structure of any models kept in the digital twin [58]. For
example, when new services and components are added to the
actual system, these need to also be represented in the digital
twin, requiring appropriate amendments to the structure of any
models in the digital twin. MDE research has a significant body
of work exploring aspects of co-evolution between models and
the reality they represent or reactive updates from one model
to connected models [59]. These ideas are also applicable in the
digital twin context. However, new challenges arise related to
the need for the digital twin to be updated automatically when
changes in the actual system occur. For example, how and when
a digital twin should be “disconnected from/reconnected to” the
actual system and how the virtual representation and services of
the digital twin can be updated appropriately and automatically.
Digital twin engineers also have to consider how these changes
may impact the consistency of models/meta-models and data
during transition periods.

5.5 Model-Based DevOps for DTs

Digital twins require models of the actual system. Creating
these models initially can be challenging. For engineered actual
systems in particular, models often already exist from the sys-
tem design phase. However, these can currently be difficult to
re-use when creating digital twins. In MDE, the idea of mod-
els@runtime [60, 61] provides tools and techniques for managing
system (design)models at runtime of a software system. This idea
has led to the extension of DevOps ideas to the space of run-time
model-based DevOps [62, 63], including the smooth transition
from design models to runtimemodels [64]. Digital twins need to
manage very largemodels and data sets efficiently and effectively,
and this management continues to be a research challenge
for models@runtime approaches, too. Similarly, digital twin
engineering still raises challenges around identifying appropriate
abstraction and refinement mechanisms to synthesize the rich
detail of actual data into processable model information and vice
versa [65]. Moreover, feedback from the operation phase of the
actual system and its digital twin back to the system design and
its design models could improve engineered systems.

5.6 Composition of Digital Twins

Actual systems are complex, and as discussed before, represent
actual systems of systems. As a consequence, digital twins cannot
be developed monolithically, but rather need to be considered

as federations of subtwins [33]. This federation raises challenges
about the safe and robust composition of different digital twins,
their models, and simulations. MDE has a long tradition of
exploring issues of modularity and composition/integration of
models, transformations, andDSMLs, both in foundational terms
and practical tools. All of these are applicable to digital twin devel-
opment and can provide significant benefits. MDE is also able to
capture typical digital twin composition operators in appropriate
DSMLs, which would enable more efficient expression of new
composition scenarios, including their dynamic manipulation
and optimization. However, significant challenges remain [64],
not least around managing information protection between dif-
ferent organizations in charge of different subdigital twins, and
in relation to supporting dynamic federation (and disbandment)
of digital twins. This challenge requires dynamically adjusting
models and simulations, possibly partway through simulation
runs, while making sure that real-time and historic data (which
may be based on different twin federations) aremanaged robustly
and reliably.

6 Conclusions

To create, maintain, and evolve digital twins along with their
actual system over a long lifespan is a significant engineering
challenge. Modeling is at the core of digital twins [48]. In this
paper, we have discussed different forms of modeling in and
of digital twins and how MDE provides the basic techniques
to support the digital twin life cycle in an agile manner. We
have identified different ways of applying MDE to digital twin
development and operation and have identified future research
challenges for MDE-based digital twin development.

Acknowledgments

This paper is the result of discussions during Dagstuhl Seminar 22362
“Model-Driven Engineering of Digital Twins”. We thank the team at
Dagstuhl for supporting our discussions. This study is partially funded
by the Deutsche Forschungsgemeinschaft (DFG, GermanResearch Foun-
dation) and the Agence Nationale De La Recherche (ANR)—France—
Model-Based DevOps—505496753 and ANR-22-CE92-0068. Website:
https://mbdo.github.io and partially funded by the Key Digital Technolo-
gies (KDT) Joint Undertaking through the European Union’s Horizon
Europe project MATISSE, grant agreement No. 101140216.

Open access funding enabled and organized by Projekt DEAL.

Data Availability Statement

Data sharing is not applicable to this article as no new data were created
or analyzed in this study.

Endnotes
1https://www.iso.org/committee/6483279.html

References

1. W. Xian, K. Yu, F. Han, L. Fang, D. He, and Q. L. Han, “Advanced
Manufacturing in Industry 5.0: A Survey of Key Enabling Technologies
and Future Trends,” IEEE Transactions on Industrial Informatics 20, no.
2 (2024): 1055–1068, https://doi.org/10.1109/TII.2023.3274224.

10 of 12 Systems Engineering, 2025

 15206858, 0, D
ow

nloaded from
 https://incose.onlinelibrary.w

iley.com
/doi/10.1002/sys.21815 by T

est, W
iley O

nline L
ibrary on [10/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://mbdo.github.io
https://www.iso.org/committee/6483279.html
https://doi.org/10.1109/TII.2023.3274224


2. M. Dalibor, N. Jansen, B. Rumpe, et al., “A Cross-Domain Systematic
Mapping Study on Software Engineering for Digital Twins,” Journal of
Systems and Software 193 (2022): 111361, https://doi.org/10.1016/j.jss.2022.
111361.

3. H. M. Muctadir, D. A. M. Negrin, R. Gunasekaran, L. Cleophas,
M. van den Brand, and B. R. Haverkort, “Current Trends in Digital
Twin Development, Maintenance, and Operation: An Interview Study,”
Software and Systems Modeling 23, no. 5 (Springer, 2024): 1275–1305,
https://doi.org/10.1007/s10270-024-01167-z.

4. J. Zhang, C. Ellwein, M. Heithoff, J. Michael, and A. Wortmann,
“Digital Twin and the Asset Administration Shell: An Analysis of 3
AASs Types and Their Feasibility for Digital Twin Engineering,” Journal
Software and Systems Modeling (SoSyM) (Springer, 2025), https://doi.org/
10.1007/s10270-024-01255-0.

5. R. Eramo, F. Bordeleau, B. Combemale, M. Van Den Brand, M.
Wimmer, and A. Wortmann, “Conceptualizing Digital Twins,” IEEE
Software 39, no. 2 (2021): 39–46, https://doi.org/10.1109/MS.2021.3130755.

6. M. Dalibor, M. Heithoff, J. Michael, et al., “Generating Customized
Low-Code Development Platforms for Digital Twins,” Journal of Com-
puter Languages (COLA) 70 (2022): 101117, https://doi.org/10.1016/j.cola.
2022.101117.

7. D. J. Wagg, K. Worden, R. J. Barthorpe, and P. Gardner, “Digital Twins:
State-of-the-Art and Future Directions for Modeling and Simulation in
Engineering Dynamics Applications,” ASCE-ASME Journal of Risk and
Uncertainty in Engineering Systems, Part B: Mechanical Engineering 6, no.
3 (2020): 030901, https://doi.org/10.1115/1.4046739.

8. M. Brambilla, J. Cabot, M. Wimmer, and L. Baresi, Model-Driven
Software Engineering in Practice, 2nd ed. (Morgan & Claypool, 2017).

9. J. C. Kirchhof, J. Michael, B. Rumpe, S. Varga, and A. Wortmann,
“Model-Driven Digital Twin Construction: Synthesizing the Integration
of Cyber-Physical Systems With Their Information Systems,” in 23rd
ACM/IEEE International Conference on Model Driven Engineering Lan-
guages and Systems (ACM, 2020), 90–101, https://doi.org/10.1145/3365438.
3410941.

10. International Electrotechnical Commission, ISO/IEC 30173:2023Digital
Twin – Concepts and Terminology (ISO/IEC, 2023), https://www.iso.org/
standard/81442.html.

11. F. Tao, W. Liu, M. Zhang, et al., “Five-Dimension Digital Twin Model
and Its Ten Applications,” Computer Integrated Manufacturing Systems
25, no. 1 (2019): 1–18.

12. F. Tao,M. Zhang, andA.Nee, “Five-DimensionDigital TwinModeling
and Its Key Technologies,” in Digital Twin Driven Smart Manufacturing,
ed. F. Tao, M. Zhang, and A. Nee (Academic Press, 2019), 63–81, chap. 3.

13. D. McKee, “Platform Stack Architectural Framework: An
Introductory Guide” (Digital Twin Consortium, 2023), https://
www.digitaltwinconsortium.org/platform-stack-architectural-fram-
formework-an-introductory-guide-form.

14. International Standardization Organization, "ISO/DIS 23247-1.
Automation Systems and Integration–Digital Twin Framework for
Manufacturing–Part 1: Overview and General Principles (ISO, 2020),
https://www.iso.org/standard/75066.html.

15. E. Ferko, A. Bucaioni, P. Pelliccione, andM. Behnam, “Standardisation
in Digital Twin Architectures in Manufacturing,” in 2023 IEEE 20th
International Conference on Software Architecture (ICSA) (IEEE, 2023),
70–81.

16. K. Schweichhart, Reference Architectural Model Industrie 4.0 (RAMI
4.0) - An Introduction (Publikationen der Plattform Industrie 4.0,
2016), https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/
Publikation/rami40-an-introduction.html.

17. S. R. Bader and M. Maleshkova, “The Semantic Asset Administration
Shell,” in Semantic Systems. The Power of AI and Knowledge Graphs: 15th
International Conference, SEMANTiCS 2019 (Springer, 2019), 159–174.

18. M. Grieves and J. Vickers, Digital Twin: Mitigating Unpredictable,
Undesirable Emergent Behavior in Complex Systems (Springer, 2017),
85–113.

19. S. R. Newrzella, D.W. Franklin, and S. Haider, “Three-DimensionDig-
ital Twin Reference Architecture Model for Functionality, Dependability,
and Life CycleDevelopmentAcross Industries,” IEEEAccessno. 10 (IEEE,
2022): 95390–95410, https://doi.org/10.1109/ACCESS.2022.3202941.

20. W. Kritzinger, M. Karner, G. Traar, J. Henjes, and W. Sihn, “Digital
Twin in Manufacturing: A Categorical Literature Review and Classifica-
tion,” in IFAC 51 (2018), 1016–1022.

21. K. Josifovska, E. Yigitbas, and G. Engels, “Reference Framework for
Digital Twins Within Cyber-Physical Systems,” in 2019 IEEE/ACM 5th
International Workshop on Software Engineering for Smart Cyber-Physical
Systems (SEsCPS) (IEEE, 2019), 25–31.

22. H. Boyes and T. Watson, “Digital Twins: An Analysis Framework and
Open Issues,” Computers in Industry 143 (2022): 103763, https://doi.org/
10.1016/j.compind.2022.103763.

23. S. Shoshany-Tavory, E. Peleg, A. Zonnenshain, and G. Yudilevitch,
“Model-Based-Systems-Engineering for Conceptual Design: An Integra-
tive Approach,” Systems Engineering 26, no. 6 (2023): 783–799, https://doi.
org/10.1002/sys.21688.

24. K. Amunts, M. Axer, S. Banerjee, et al., “The Coming Decade of
Digital Brain Research - a Vision for Neuroscience at the Intersection of
Technology and Computing,” Imaging Neuroscience 2 (MIT Press, 2024):
1–35, https://doi.org/10.1162/imag_a_00137.

25. G. Coorey, G. A. Figtree, D. F. Fletcher, et al., “The Health Digital
Twin to Tackle Cardiovascular Disease: A Review of an Emerging
Interdisciplinary Field,” npj Digital Medicine 5, no. 1 (Springer Nature,
2022): 126, https://doi.org/10.1038/s41746-022-00640-7.

26. G. Kim, J. Humble, P. Debois, J. Willis, and N. Forsgren, The DevOps
Handbook: How to Create World-Class Agility, Reliability, & Security in
Technology Organizations 2nd ed. (IT Revolution Press, 2022).

27. B. Combemale, J. Kienzle, G. Mussbacher, et al., “A Hitch-
hiker’s Guide to Model-Driven Engineering for Data-Centric Systems,”
IEEE Software 38, no. 4 (2020): 71–84, https://doi.org/10.1109/MS.2020.
2995125.

28. R. Ackoff, “From Data to Wisdom: Presidential Address to ISGSR,
June 1988,” Journal of Applied Systems Analysis 16 (1989): 3–9.

29. J. Rowley, “The Wisdom Hierarchy: Representations of the DIKW
Hierarchy,” Journal of Information Science 33, no. 2 (2007): 163–180,
https://doi.org/10.1177/0165551506070706.

30. B. H. C. Cheng, B. Combemale, R. B. France, J. M. Jézéquel, and
B. Rumpe, “On the Globalization of Domain Specific Languages,” in
Globalizing Domain-Specific Languages (Springer, 2015).

31. B. Combemale, R. France, J. M. Jézéquel, B. Rumpe, J. Steel, and D.
Vojtisek, Engineering Modeling Languages: Turning Domain Knowledge
Into Tools, Chapman & Hall/CRC Innovations in Software Engineering
and Software Development Series (CRC Press, 2016).

32. J. Michael, J. Pfeiffer, B. Rumpe, and A. Wortmann, “Integration
Challenges for Digital Twin Systems-of-Systems,” in 10th IEEE/ACM Int.
Workshop on Software Engineering for Systems-of-Systems and Software
Ecosystems (IEEE, 2022), https://doi.org/10.1145/3528229.3529384.

33. T. Olsson and J. Axelsson, “Systems-of-Systems and Digital Twins: A
Survey and Analysis of the Current Knowledge,” in 18th Annual System
of Systems Engineering Conference (SoSe’23) (2023), 1–6.

34. H. Stachowiak, Allgemeine Modelltheorie (Springer, 1973).

35. W. Torres, v. d. M. G. J. Brand, and A. Serebrenik, “A Systematic
Literature Review of Cross-Domain Model Consistency Checking by
Model Management Tools,” Software and Systems Modeling 20, no. 3
(Springer, 2021): 897–916, https://doi.org/10.1007/S10270-020-00834-1.

11 of 12

 15206858, 0, D
ow

nloaded from
 https://incose.onlinelibrary.w

iley.com
/doi/10.1002/sys.21815 by T

est, W
iley O

nline L
ibrary on [10/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1016/j.jss.2022.111361
https://doi.org/10.1007/s10270-024-01167-z
https://doi.org/10.1007/s10270-024-01255-0
https://doi.org/10.1109/MS.2021.3130755
https://doi.org/10.1016/j.cola.2022.101117
https://doi.org/10.1115/1.4046739
https://doi.org/10.1145/3365438.3410941
https://www.iso.org/standard/81442.html
https://www.digitaltwinconsortium.org/platform-stack-architectural-fram-formework-an-introductory-guide-form
https://www.iso.org/standard/75066.html
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/rami40-an-introduction.html
https://doi.org/10.1109/ACCESS.2022.3202941
https://doi.org/10.1016/j.compind.2022.103763
https://doi.org/10.1002/sys.21688
https://doi.org/10.1162/imag_a_00137
https://doi.org/10.1038/s41746-022-00640-7
https://doi.org/10.1109/MS.2020.2995125
https://doi.org/10.1177/0165551506070706
https://doi.org/10.1145/3528229.3529384
https://doi.org/10.1007/S10270-020-00834-1


36. B. S. Barn, “The Socio-Technical Digital Twin: On the Gap Between
Social and Technical Feasibility,” in IEEE Conference on Business Infor-
matics (2022), https://doi.org/10.1109/CBI54897.2022.00009.

37. P. Laplante, “Trusting Digital Twins,” IEEE Computer 55, no. 7 (2022):
73–77, https://doi.org/10.1109/MC.2022.3149448.

38. J. Michael, M. Schwammberger, and A. Wortmann, “Explaining
Cyberphysical System Behavior With Digital Twins,” IEEE Software 41,
no. 1 (IEEE, 2024): 55–63, https://doi.org/10.1109/MS.2023.3319580.

39. B. P. Zeigler, A. Muzy, and E. Kofman, Theory of Modeling and
Simulation, 3rd ed. (Elsevier, 2018).

40. J. Denil, S. Klikovits, P. J. Mosterman, A. Vallecillo, and H.
Vangheluwe, “The Experiment Model and Validity Frame in M&S,” in
Proceedings of the SymposiumonTheory ofModeling&Simulation (Society
for Computer Simulation International, 2017), 1–12.

41. S. Stepney and F. A. C. Polack, Engineering Simulations as Scientific
Instruments: A Pattern Language (Springer, 2018), https://doi.org/10.1007/
978-3-030-01938-9.

42. S. Zschaler andF.A.C. Polack, “TrustworthyAgent-Based Simulation:
The Case for Domain-Specific Modelling Languages,” Software and
Systems Modeling 22, no. 2 (Springer, 2023): 455–470, https://doi.org/10.
1007/s10270-023-01082-9.

43. P. Wilsdorf, S. Zschaler, F. Haack, and A. M. Uhrmacher, “Poten-
tial and Challenges of Assurance Cases for Simulation Validation,” in
2024 Winter Simulation Conference (IEEE, 2024), https://doi.org/10.1109/
WSC63780.2024.10838818.

44. S. Burton and B. Herd, “Addressing Uncertainty in the Safety
Assurance of Machine-Learning,” Frontiers in Computer Science 5 (2023):
1132580, https://doi.org/10.3389/fcomp.2023.1132580.

45. J. Bickford, D. L. Van Bossuyt, P. Beery, and A. Pollman, “Oper-
ationalizing Digital Twins Through Model-Based Systems Engineering
Methods,” Systems Engineering 23, no. 6 (2020): 724–750, https://doi.org/
10.1002/sys.21559.

46. K. Feichtinger, K. Meixner, F. Rinker, et al., “Industry Voices on
Software Engineering Challenges in Cyber-Physical Production Systems
Engineering,” in IEEE 27th International Conference on Emerging Tech-
nologies and Factory Automation (ETFA) (IEEE, 2022), https://doi.org/10.
1109/ETFA52439.2022.9921568.

47. J. Michael, Model-Driven Engineering of Digital Twins With Infor-
mative and Assistive Services, Aachener Informatik-Berichte, Software
Engineering (Shaker Verlag, 2025).

48. F. Tao, H. Zhang, A. Liu, and A. Y. C. Nee, “Digital Twin in Industry:
State-of-the-Art,” IEEE Transactions on Industrial Informatics 15, no. 4
(2019): 2405–2415, https://doi.org/10.1109/TII.2018.2873186.

49. S. A. Niederer, M. S. Sacks, M. Girolami, and K.Willcox, “Scaling Dig-
ital Twins From the Artisanal to the Industrial,” Nature Computational
Science 1, no. 5 (2021): 313–320.

50. DIN, “DIN SPEC 91607:2024-11: Digital Twins for Cities and Munici-
palities,” 2024, https://doi.org/10.31030/3575521.

51. S. Gil, E. Kamburjan, P. Talasila, and P. G. Larsen, “An Architecture
for Coupled Digital Twins With Semantic Lifting,” Software and Sys-
tems Modeling (Springer, 2024): 1–26, https://doi.org/10.1007/s10270-024-
01221-w.

52. IEEE, “IEEE 1516-2010: IEEE Standard for Modeling and Simulation
(M&S) High Level Architecture (HLA) – Framework and Rules,” 2010,
https://standards.ieee.org/ieee/1516/3744/.

53. S. Zschaler, N. Mustafee, A. Harper, et al., “On Simulation Reuse in
Healthcare Applications,” Journal on Simulation, Transactions of the SCS
(2025). Under review.

54. H. Vangheluwe, J. De Lara, and P. J. Mosterman, “An introduction to
Multi-ParadigmModelling and Simulation,” AI, Simulation and Planning
in High Autonomy Systems - AIS’2002 Conference (2002), 9–20.

55. M. Amrani, D. Blouin, R. Heinrich, A. Rensink, H. Vangheluwe, and
A. Wortmann, “Multi-paradigm modelling for cyber–physical systems:
a descriptive framework,”, Software and Systems Modeling 20, no. 3
(Springer, 2021): 611–639, https://doi.org/10.1007/s10270-021-00876-z.

56. P. J. Mosterman, H. Vangheluwe, “Computer Automated Multi-
Paradigm Modeling: An Introduction,” Simulation: Transactions of the
Society for Modeling and Simulation International 80, no. 9 (Sage
Journals, 2004): 433–450, https://doi.org/10.1177/0037549704050532.

57. F. Bordeleau, B. Combemale, R. Eramo, M. Van den Brand, and M.
Wimmer, “Towards Model-Driven Digital Twin Engineering: Current
Opportunities and Future Challenges,” in Systems Modelling and Man-
agement - First International Conference, ICSMM 2020, Communications
in Computer and Information Science, vol. 1262 (Springer, 2020), 43–54.

58. I. David and D. Bork, “Towards a Taxonomy of Digital Twin Evolu-
tion for Technical Sustainability,” in International Conference on Model
Driven Engineering Languages and Systems Companion (MODELS-C)
(ACM/IEEE, 2023), https://doi.org/10.1109/MODELS-C59198.2023.00147.

59. C. C. Raţiu,W. K. G. Assunção, E. Herac, R. Haas, C. Lauwerys, and A.
Egyed, “Using Reactive Links to Propagate Changes Across Engineering
Models,” Software and SystemsModeling (Springer, 2024), https://doi.org/
10.1007/s10270-024-01186-w.

60. H. Giese, N. Bencomo, L. Pasquale, et al., “Living With Uncertainty
in the Age of Runtime Models,” in Models@run.time - Foundations,
Applications, and Roadmaps [Dagstuhl Seminar 11481, November 27 -
December 2, 2011], LNCS, vol. 8378, (Springer, 2011), 47–100.

61. N. Bencomo, S. Götz, andH. Song, “Models@run.time: AGuided Tour
of the State of the Art and Research Challenges,” Journal Software and
Systems Modeling (SoSyM) 18, no. 5 (Springer, 2019): 3049–3082, https://
doi.org/10.1007/s10270-018-00712-x.

62. J. Hugues, A. Hristosov, J. J. Hudak, and J. Yankel, “TwinOps - DevOps
Meets Model-Based Engineering and Digital Twins for the Engineering
of CPS,” in 23rd ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems: Comp (ACM, 2020), https://doi.org/
10.1145/3417990.3421446.

63. B. Combemale andM.Wimmer, “Towards a Model-Based DevOps for
Cyber-Physical Systems,” in Software Engineering Aspects of Continuous
Development and New Paradigms of Software Production and Deployment
(Springer International Publishing, 2020), 84–94, https://doi.org/10.1007/
978-3-030-39306-9_6.

64. B. Combemale, J. M. Jézéquel, Q. Perez, et al., “Model-Based
DevOps: Foundations and Challenges,” in International Conference on
Model Driven Engineering Languages and Systems Companion (MODELS-
C) (ACM/IEEE, 2023), https://doi.org/10.1109/MODELS-C59198.2023.
00076.

65. N. Bencomo, J. Cabot, M. Chechik, et al., “Abstraction Engineering,”
arXiv, 2024, https://arxiv.org/abs/2408.14074.

12 of 12 Systems Engineering, 2025

 15206858, 0, D
ow

nloaded from
 https://incose.onlinelibrary.w

iley.com
/doi/10.1002/sys.21815 by T

est, W
iley O

nline L
ibrary on [10/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1109/CBI54897.2022.00009
https://doi.org/10.1109/MC.2022.3149448
https://doi.org/10.1109/MS.2023.3319580
https://doi.org/10.1007/978-3-030-01938-9
https://doi.org/10.1007/s10270-023-01082-9
https://doi.org/10.1109/WSC63780.2024.10838818
https://doi.org/10.3389/fcomp.2023.1132580
https://doi.org/10.1002/sys.21559
https://doi.org/10.1109/ETFA52439.2022.9921568
https://doi.org/10.1109/TII.2018.2873186
https://doi.org/10.31030/3575521
https://doi.org/10.1007/s10270-024-01221-w
https://standards.ieee.org/ieee/1516/3744/
https://doi.org/10.1007/s10270-021-00876-z
https://doi.org/10.1177/0037549704050532
https://doi.org/10.1109/MODELS-C59198.2023.00147
https://doi.org/10.1007/s10270-024-01186-w
https://doi.org/10.1007/s10270-018-00712-x
https://doi.org/10.1145/3417990.3421446
https://doi.org/10.1007/978-3-030-39306-9_6
https://doi.org/10.1109/MODELS-C59198.2023.00076
https://arxiv.org/abs/2408.14074

	Model-Driven Engineering for Digital Twins: Opportunities and Challenges
	1 | Introduction
	2 | Digital Twins
	2.1 | What is a Digital Twin
	2.2 | Digital Twin Contexts
	2.3 | Digital Twin Life Cycle

	3 | Challenges Around Models and Modeling in Digital Twins
	3.1 | Models in Digital Twins
	3.1.1 | Kinds of Models
	3.1.2 | Purpose

	3.2 | Models of Digital Twins
	3.3 | Models Across the Digital Twin Life Cycle

	4 | Model-Driven Engineering
	5 | MDE of Digital Twins: A Research Roadmap
	5.1 | Development Guidelines and Standardization for Digital Twins and their Engineering
	5.2 | Digital Twin Interoperability
	5.3 | Multiparadigm and Multiview Modeling for Digital Twins
	5.4 | Model, Object, and Digital Twin Evolution
	5.5 | Model-Based DevOps for DTs
	5.6 | Composition of Digital Twins

	6 | Conclusions
	Acknowledgments
	Data Availability Statement

	Endnotes
	References


