
Computer Networks 219 (2022) 109451

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Edge intelligence for service function chain deployment in NFV-enabled
networks
Mohammad Ali Khoshkholghi ∗, Toktam Mahmoodi
Centre for Telecommunications Research, King’s College London, United Kingdom

A R T I C L E I N F O

Keywords:
Edge intelligence
Network function virtualization
Service chain deployment
Markov decision process
Distributed deep reinforcement learning

A B S T R A C T

With evolution of network function virtualization (NFV), network services can be provided as service function
chains (SCs), each consisting of multiple virtual network functions (VNFs). The deployment of SCs including
placement of VNF instances and virtual links connecting these functions, onto the substrate physical network
is a critical issue which significantly affects the performance of the offered network services. Due to the
unpredictable traffic and network state variations, as well as diverse quality of service (QoS) requirements,
an online SCs deployment approach is needed to cope with different service requests and real-time network
traffics. In this paper, we employ edge intelligence using a distributed deep reinforcement learning approach
to deploy SCs in order to jointly balance the load on the physical nodes and links in the edge environments.
The evaluation results show that the proposed approach outperforms state-of-the-art algorithms in terms of
minimizing the drop rate of the incoming service chain requests. In addition, the proposed approach is able
to rapidly deploy service flows even in the large real-world network typologies.
1. Introduction

NFV is an innovational network architecture which can improve
agility and flexibility of networks by decoupling network functions
such as routing, firewalls and intrusion detection from physical boxes
so that they can run as software-based applications. NFV is able to
dynamically scale the network function instances, send the VNFs across
a distributed network and upgrade the software without interrupting
services. VNFs can be hosted on cloud/edge physical machines in
the form of Virtual Machine (VM) or other containers such as Linux
container and Docker. Each SC consists of multiple VNFs which will be
processed in a predefined order to provide a specific network service.
SC deployment refers to the placement of VNF instances and virtual
links connecting them, into physical network nodes and links. Service
flows, then, traverse through the relevant SCs (requested by users)
mapped on the substrate network. Since the network traffic varies
over time in the real-world networks, the SC deployment should be
dynamically adjusted in response to the network load changes using
online placement approaches [1].

Load balancing refers to efficiently steering network traffic across
servers and links aiming to provide fault tolerance and delay guarantee
as two vital needs for the recent critical-mission applications. Based
on [2], about 20% packet loss occurs in the case of VNF placement with
100% CPU utilization since the high server and link utilization leads to
server failure and link bottleneck. Balancing the load of servers and

∗ Corresponding author.
E-mail addresses: ali.khoshkholghi@kcl.ac.uk (M.A. Khoshkholghi), toktam.mahmoodi@kcl.ac.uk (T. Mahmoodi).

links can reduce the queuing delay as well as the risk of congestion in
the network and consequently decreases the service drop rate allowing
the service providers to admit more user requests. Hence, considering
an efficient load balancing strategy is highly required to deploy an
effective SCs placement for the NFV Infrastructures (NFVI) to deal
successfully with real-time network traffic in a short time especially
for the mission-critical applications such as 5G and IoT applications
(AR/VR, online gaming and smart cities) as well as time-sensitive traffic
flows (such as in VoIP and Video Conferencing), where delay guarantee
and fault-tolerance are the critical requirements.

Due to the importance of SCs deployment problem, researchers have
addressed a variety of topics in the recent years, such as minimizing
energy consumption [3,4], monetary cost [5,6], end-to-end latency [7],
maximizing resource utilization [8], profit [9] as well as a trade-off
between multiple objectives such as joint latency and cost [10] and so
on. However, despite the importance of the subject, less effort has been
made about jointly balancing the network and server load. In addition,
the existing load balancing approaches in the literature [11,12], have
focused on the offline model-based heuristics or using optimization
solvers that are limited to particular system models assumed by authors
and they are not applicable for different scenarios or other real-time
networks. Moreover, these models need prior information about the
network traffic which is not available in practice. However, in this
vailable online 4 November 2022
389-1286/© 2022 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.comnet.2022.109451
Received 22 April 2022; Received in revised form 11 September 2022; Accepted 28
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

October 2022

http://www.elsevier.com/locate/comnet
http://www.elsevier.com/locate/comnet
mailto:ali.khoshkholghi@kcl.ac.uk
mailto:toktam.mahmoodi@kcl.ac.uk
https://doi.org/10.1016/j.comnet.2022.109451
https://doi.org/10.1016/j.comnet.2022.109451
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2022.109451&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Computer Networks 219 (2022) 109451M.A. Khoshkholghi and T. Mahmoodi
research, we aim to fill these research gaps proposing an online and
autonomous data-driven approach which is able to deal with different
scenarios and unforeseen network traffics in a short time.

Edge computing is a paradigm to shift the services from cloud to
the network edge. In edge computing, service provisioning is a major
challenge because of the distributed nature of these environments.
Compute nodes are geographically distributed as well as resources are
constrained and network delay is limited. Moreover, the user requests
arrive across the network with variation over time. Therefore, a cen-
tralized approach where one component (e.g. a remote cloud) is in
charge of deploying SCs on whole network using up-to-date global
knowledge of resource utilization and service demands is unrealistic in
real large-environments. Indeed, the SCs deployment approaches must
consider scalability issue to be properly applied to the edge environ-
ments enabling rapid deployment of service flows. To overcome this
challenge, edge intelligence can be considered as a great solution due to
its advantages of decreasing network traffic between edge devices and
cloud, improving service latency and response time as well as scalabil-
ity. Edge intelligence as a combination of edge computing and artificial
intelligence (AI) is an emerging paradigm running machine learning
(ML) algorithms at the network edge where data is generated. In this
paper, to employ the edge intelligence for the sake of efficient SCs
deployment in the edge environments, we propose a distributed deep
reinforcement learning (DRL) based approach which is able to deploy
the incoming flows in a distributed fashion instead of a centralized
approach. The further details on the proposed approach is provided in
Section 4.

The key contributions of this paper include:

• Focusing on service chaining, we formulate a Mixed-Integer Lin-
ear Programming problem with the objectives of load balancing
as well as reducing drop rate.

• An online solution using distributed DRL, and relying on the
actor–critic method, is devised to solve the above mentioned
problem.

• We develop an evaluation platform using real-world network
topologies and traffic patterns [13], and benchmark our dis-
tributed solution with centralized solution as well as two baseline
algorithms [14,15]; and

• Finally, we demonstrate the benefits of edge intelligence using
distributed DRL on the SCs placement problem and we show that
our solution is able to respond very fast to arriving service flows
even for larger network scales while reducing the service drop
rate.

The rest of this paper is organized as follows. The related works
are discussed in Section 2. In Section 3, we formulate the problem of
SCs deployment in order to jointly balance the servers and links load.
In Section 4, we illustrate our proposed online and distributed deep
reinforcement learning approach to solve the formulated problem in
details. Section 5 provides the performance evaluation of the proposed
approach compared with the baseline algorithms. Finally, we conclude
the paper in Section 6.

2. Related works

In this section, we investigate the SCs deployment problem and
existing solutions in the literature. The related works can be categorized
in terms of problem modeling, objectives and solution approaches.
Many existing studies have modeled the SCs deployment problem into
Binary Integer Programming (BIP) [16–18], Integer Linear Program-
ming (ILP) [8,19–21], Mixed Integer Linear Programming (MILP) [22–
24] and solving the problem using optimization solvers (e.g CPLEX
and Gurobi). Given the NP-hard nature of many of such formulated
problems, various heuristic and meta-heuristic methods are also pre-
sented to solve the service chaining problem [25,26]. Although these
2

approaches are efficient in the given use cases, however, applying them
to different scenarios may significantly decrease their performance due
to the specific assumptions considered in these works.

In terms of objectives, four metrics are mainly used in the literature,
including energy consumption, latency, resource utilization, and cost.
The first is network energy consumption as a result of deployed SCs.
Authors in [4] have proposed a VNF chaining and placement strategy
using game theory to minimize energy consumption of NFVIs. Another
work [3] presented an optimal VNF placement with minimum energy
consumption using CPLEX, however, it works well only for small scale
networks. A data-intensive service deployment scheme using genetic
algorithm has been proposed in [27] for edge environments. In [7],
an ILP model has been formulated to minimize end-to-end latency,
and to solve the problem, they leveraged a stable matching-based
algorithm for NFV-enabled edge environments. In [28], authors have
proposed heuristics to maximize the resource utilization. Also in [8],
a polynomial-time heuristic has been developed to efficiently solve the
ILP model formulated to maximize the resource utilization. The cost of
communication, computing resources and instances required to process
the service flows is defined as deployment cost. Some placement ap-
proaches aim to map the VNFs onto physical nodes and route the traffic
through the paths in the network in order to reduce the deployment
cost of service providers while satisfying the required quality of service
(QoS). Authors in [5] proposed a genetic-based algorithm to reduce the
monetary cost of SCs deployment on cloud/edge environment. Another
study [6], addresses the problem of VNF placement to minimize the
deployment cost by finding the minimum number of servers required
to host all VNFs in the network.

In some of the state of the art on the SC deployment, combination of
the above four metrics are considered as the objective function. In [10],
the authors formulated the problem as a MILP to jointly minimize
monetary deployment cost and end-to-end latency regarding several
constraints for edge environments. They have developed a genetic-
based algorithm and a bee-colony based algorithm to solve the problem
and compared the results with optimal solution obtained through an
optimization solver. In order to joint minimize the energy consumption
and traffic cost, the authors in [29] proposed a two-step algorithm
combining a matching approach and Markov approximation technique
to solve the problem. The first step of the algorithm aims to find an
appropriate subset of nodes to decrease the large solution space, and
the second step is to deploy SCs on the selected nodes to minimize the
network cost.

Finally, few papers considered load balancing as the objective func-
tion in the SCs deployment problem. In [2] and [30], authors have
proposed an optimized load balancing approach for NFVIs aiming
to balance the load on servers. Another study investigated the SCs
mapping problem focusing on the network load balancing through
minimizing the cost of all links in the network [31]. Another re-
search [11], proposed a solution for balancing the load among VNFs
by making a tree of SCs and then developing a flow-hash technique to
distribute load among service chains. Finally, authors in [12], proposed
an offline VNF placement algorithm which aims to jointly balance the
network and server load. They leveraged the water filling algorithm,
for this purpose. However, unlike the offline approach proposed in this
paper assuming a full prior knowledge of network traffic, due to the
unpredictable traffic and network state variations, as well as diverse
QoS requirements, an online SCs deployment approach is needed to
cope with different service requests and real-time network traffics.

As we discussed above, many studies have investigated the SCs
deployment problem regarding various objectives, and also few works
addressed the load balancing as their objective, however they ignore
joint balancing the load on servers and network using an online strat-
egy. Hence, there is a lack of online SCs deployment approach to
balance the load on nodes and links simultaneously while satisfying
delay constraints taking into account the real-time network variations.

In our work, we aim to fill this research gap.

Computer Networks 219 (2022) 109451M.A. Khoshkholghi and T. Mahmoodi
Fig. 1. An example of service chain deployment.
In addition, all the aforementioned studies, proposed mathemat-
ical programming approaches or model-based heuristics and meta-
heuristics which are designed for certain network topologies and ap-
plication scenarios. Scenario-customized solutions regardless of their
efficiency, are difficult to adopt practically to other type of networks
and applications. Recently, some researches have been conducted on
the goal of SCs deployment using machining learning techniques such
as reinforcement learning. These model-free techniques aim to develop
data-driven solutions which can be flexibly applied to different network
and applications scenarios. In [1], authors proposed a centralized deep
reinforcement learning approach for SDN/NFV-enabled networks. They
proposed an offline double deep Q network-based VNF placement
algorithm to minimize the deployment cost of services. Authors in [32]
proposed a centralized policy gradient based deep reinforcement learn-
ing approach to minimize the operational cost of the system. Another
work [15] tries to maximize the accepted service requests using a cen-
tralized deep deterministic policy gradient approach. However, these
centralized approaches may not be efficient for the edge environments
where resources are constrained and geographically distributed, as well
as the user requests arrive across the network with variation over time
while network delay is limited. Different from these studies, in this
paper we aim to employ edge intelligence for online SCs deployment
to jointly balance the network and server load using a distributed deep
reinforcement learning algorithm relying on an advantage actor–critic
approach.

3. System model and problem formulation

In this section, first, we illustrate the problem of SCs deployment
using an example and then, we formulate the problem as a MILP model.
The objective of this optimization model is to balance the load of
links and servers in order to decrease the number of rejected service
flows demanded by users while satisfying the delay constraints. Table 1
shows the variables used in the paper.

In the example shown in Fig. 1, a network consists of 8 physical
nodes connected by 10 physical links is presented. The physical nodes
represent edge servers and the network orchestrator located at a remote
cloud is in charge of SCs deployment. Some nodes are able to run
specific VNFs: node 1 = [VNF4], node 2 = [VNF1, VNF4], node 4 =
[VNF2], node 5 = [VNF3, VNF5], node 7 = [VNF4] and node 8 =
[VNF , VNF]. Users send their service requests to the network where
3

2 5
a service function chain including 5 VNFs is provided. A service flow 𝑟𝑖
corresponding to a given request enters the network through the ingress
node and traverses the VNFs in a specific order as: VNF1 (Firewall) →
VNF2 (Deep Packet Inspection) → VNF3 (Encryption) → VNF4 (Data
monitoring) → VNF4 (Decryption), and finally exits the network via
egress node. Based on a placement scheme, the NFV orchestrator
deploys the VNFs on the physical nodes as: node 2 hosts VNF1, node 4
hosts VNF2, node 5 hosts VNF3, node 7 hosts VNF4 and node 8 hosts
VNF5. Finally, flow 𝑟𝑖 is passed through the nodes over the selected
path.

The substrate network is represented by 𝐺 = (𝑉 ,𝐸), where 𝑉 refers
to the set of physical nodes denoted by 𝑉 = {𝑣1, 𝑣2,… , 𝑣𝑛} and 𝐸 is the
set of 𝐾 physical links between nodes indicated as 𝐸 = {𝑒1, 𝑒2,… , 𝑒𝑘}.
Each 𝑣 ∈ 𝑉 can host one or multiple VNFs. 𝑆 is the set of all service
chains provided by the system, each consisting of multiple VNFs with
strict precedence. Each service chain 𝑠 ∈ 𝑆 is defined as a directed
graph denoted by 𝑠 = (𝐹 ,𝐿), where 𝐹 is the set of VNFs and 𝐿 refers to
the set of virtual links between VNFs. Each 𝑓 ∈ 𝐹 is characterized by its
compute demands and processing delay, and each 𝑙 ∈ 𝐿 is characterized
by its bandwidth capacity. Each VNF instance can be hosted by a
physical node that has the relevant functionality with respect to the
resource constraints. Similarly, each virtual link can be mapped on a
physical link that satisfies the bandwidth and delay constraints. Binary
variable (𝑋𝑣

𝑠𝑓 = 1) indicates whether 𝑓 ∈ 𝐹 from service chain 𝑠 is
placed on 𝑣 ∈ 𝑉 or not (𝑋𝑣

𝑠𝑓) = 0.
Given the above-mentioned parameters, we formulate an optimiza-

tion model for VNF placement and virtual link embedding which aims
to jointly balance the load of nodes and links while satisfying end-
to-end latency requirements. Eq. (1) denotes the objective function
defined in this work. We model the objective as minimizing the max-
imum servers’ utilization and maximum links’ bandwidth utilization
over time, where server utilization is denoted by 𝐿𝑆 , 𝐿𝑁 is link band-
width utilization and 𝑡 indicates the time instants. 𝛼 ∈ [0, 1] is a weight
factor and can be adjusted based on the network states and service
requirements. The utilization values are normalized in this equation
(𝐿𝑆 , 𝐿𝑁 ∈ [0, 1]).

minimize
∑

𝑡∈𝑇
max

𝑣∈𝑉 ,𝑙∈𝐿
(𝛼𝐿𝑆 (𝑡) + (1 − 𝛼)𝐿𝑁 (𝑡)) (1)

where:

𝐿𝑆 (𝑡) =
∑ ∑

𝑛𝑣𝑓 (𝑡)𝑋
𝑣
𝑠,𝑓 ,∀𝑡 ∈ 𝑇 ,∀𝑣 ∈ 𝑉 (2)
𝑠∈𝑆 𝑓∈𝐹

Computer Networks 219 (2022) 109451M.A. Khoshkholghi and T. Mahmoodi

𝑓
𝑠
s
𝑍
o

l
b
(
t
c

w
b
r
n

w
o
n
e
v
c

w
p
p

m
E
b
l
l

w
g
a
o
a
0

s
o
r

𝐿𝑁 (𝑡) =
∑

𝑠∈𝑆

∑

𝑝∈𝑃
𝑞𝑠(𝑡)𝐻𝑝

𝑠𝑍
𝑒
𝑝 ,∀𝑡 ∈ 𝑇 ,∀𝑒 ∈ 𝐸 (3)

In Eq. (2), 𝑛𝑣𝑓 (𝑡) refers to the resource utilization of node 𝑣 by VNF
at time 𝑡. In Eq. (3), 𝑞𝑠(𝑡) denotes the traffic load on the service chain
at time 𝑡, 𝐻𝑝

𝑠 is a binary variable denoting whether path 𝑝 is used for
ervice flow 𝑠 (𝐻𝑝

𝑠 = 1) or not (𝐻𝑝
𝑠 = 0), and finally, binary variable

𝑒
𝑝(𝑡) indicates whether link 𝑒 is placed on the path 𝑝 (equals to 1)
therwise it equals to 0.

The constraints of the problem are defined as follows. Eq. (4), is the
atency constraint and ensures that the end-to-end delay experienced
y each service flow must not exceed the maximum tolerable latency
𝐷𝑠

𝑚𝑎𝑥) for the given service chain. In fact, this constraint guarantees
hat all service demands will be served within the expected time
onsidered in SLA between service providers and users.
∑

𝑝∈𝑃

∑

𝑒∈𝐸
𝐻𝑝

𝑠𝑍
𝑒
𝑝𝑑𝑒 +

∑

𝑣∈𝑉

∑

𝑓∈𝐹
𝑋𝑣

𝑓𝑑𝑓 ≤ 𝐷𝑠
𝑚𝑎𝑥,∀𝑠 ∈ 𝑆 (4)

here 𝑑𝑒 is the propagation delay of each physical link determined
y the distance between source and destination over link transmission
ate, and 𝑑𝑓 is the processing delay of VNF 𝑓 placed on a given physical
ode 𝑣.

Eq. (5) represents the resource capacity constraint of physical nodes
hich guarantees that all processing demands of VNFs in set 𝑆 mapped
n nodes will not exceed the remained processing capacity for any
odes in order to avoid resource overutilization. Similarly, Eq. (6)
nsures that the total bandwidth demands of virtual links in all ser-
ice chains mapped on physical links will not exceed the bandwidth
apacity for any physical links.
∑

𝑣∈𝑉

∑

𝑓∈𝐹
𝑋𝑣

𝑠,𝑓 𝜕𝑣,𝑓 ≤ 𝐶𝑎𝑝𝑣,∀𝑠 ∈ 𝑆 (5)

∑

𝑒∈𝐸

∑

𝑙∈𝐿
𝑌 𝑒
𝑠,𝑙𝜕𝑒,𝑙 ≤ 𝐶𝑎𝑝𝑒,∀𝑠 ∈ 𝑆 (6)

here 𝜕𝑣,𝑓 and 𝜕𝑒,𝑙 denote the processing demand of VNF 𝑓 from
hysical node 𝑣, and the bandwidth demand of virtual link 𝑙 from
hysical link 𝑒, respectively.

Eq. (7), enforces that all VNFs of a given service chain 𝑠 will be
apped on the available physical nodes. The constraint defined in
q. (8) ensures that each VNF instance of a specific service chain will
e instantiated on only one physical node. In addition, all the virtual
inks of each service chain, must be placed on the available physical
inks which is guaranteed by the Eq. (9).
∑

𝑣∈𝑉

∑

𝑓∈𝐹
𝑋𝑣

𝑠,𝑓 = |𝐹 |,∀𝑠 ∈ 𝑆 (7)

∑

𝑣∈𝑉
𝑋𝑣

𝑠,𝑓 = 1,∀𝑓 ∈ 𝐹 ,∀𝑠 ∈ 𝑆 (8)

∑

𝑒∈𝐸

∑

𝑙∈𝐿
𝑌 𝑒
𝑠,𝑙 = |𝐿|,∀𝑠 ∈ 𝑆 (9)

here |F| and |L| refer to the number of VNFs and virtual links in a
iven service chain 𝑠. Eq. (10), guarantees that all VNFs will be placed
nd processed in a predefined order for a given service chain 𝑠 mapped
n a selected path 𝑝. It should be mentioned that if 𝑋𝑢

𝑠,𝑎 = 1 and 𝑋𝑣
𝑠,𝑏 = 1

nd 𝑂𝑎,𝑏
𝑠 = 1, then we conclude that 𝑊 𝑢,𝑣

𝑠,𝑎,𝑏 = 1, otherwise it equals to
.
∑

𝑢,𝑣∈𝑝
𝑤𝑢,𝑣

𝑠,𝑎,𝑏 =
∑

𝑎,𝑏∈𝐹
𝑂𝑎,𝑏
𝑠 ,∀𝑠 ∈ 𝑆,∀𝑝 ∈ 𝑃 (10)

The constraints defined in Eqs. (11) and (12), enforce that each
ervice flow uses only one path to carry its traffic, and all VNFs
f a given service chain will be placed only on the selected path,
espectively.
∑

𝑝∈𝑃
𝐻𝑝

𝑠 = 1,∀𝑠 ∈ 𝑆 (11)

∑ ∑

𝐻𝑝
𝑠𝑋

𝑝,𝑣
𝑠,𝑓 = |𝐹 |,∀𝑝 ∈ 𝑃 ,∀𝑠 ∈ 𝑆 (12)
4

𝑣∈𝑉 𝑓∈𝐹
Table 1
Notations used in this paper.

Symbol Description

𝐺 Physical network
𝑉 Set of physical nodes
𝑆 Set of service chains
𝐹 Set of VNFs in a service chain 𝑠
𝐿 Set of virtual links
𝐸 Set of physical links
𝑃 Set of paths
𝛼 Weight factor 𝛼 ∈ [0,1]
𝐿𝑆 (𝑡) Server utilization at time 𝑡
𝐿𝑁 (𝑡) Link utilization at time 𝑡
𝑛𝑣𝑓 (𝑡) Resource utilization of node 𝑣 by VNF 𝑓 at time 𝑡
𝑞𝑠(𝑡) Traffic load on the service chain 𝑠 at time 𝑡
𝑑𝑒 Propagation delay of physical link 𝑒
𝑑𝑓 Processing delay of VNF 𝑓
𝐷𝑠

𝑚𝑎𝑥 Maximum tolerable delay for a service chain 𝑠
𝜕𝑣,𝑓 Processing demand of VNF 𝑓 from physical node 𝑣
𝜕𝑒,𝑙 Bandwidth demand of virtual link 𝑙 from physical link 𝑒
𝐶𝑎𝑝𝑣 Processing capacity of node 𝑣
𝐶𝑎𝑝𝑒 Bandwidth capacity of link 𝑒
𝑋𝑣

𝑠,𝑓 is 1, if VNF 𝑓 from service chain 𝑠 is mapped on physical node
𝑣, otherwise 0

𝐻𝑝
𝑠 is 1, if path 𝑝 is used for service flow 𝑠, otherwise 0

𝑍𝑒
𝑝 is 1, if link 𝑒 is placed on the path 𝑝

𝑌 𝑒
𝑠,𝑙 is 1, if virtual link 𝑙 from service chain 𝑠 is mapped on physical

link 𝑒, otherwise 0
𝑂𝑎,𝑏

𝑠 is 1, if VNF 𝑏 is the successor of VNF 𝑎 in the service chain 𝑠
𝑊 𝑢,𝑣

𝑠,𝑎,𝑏 is 1, if service chain 𝑠 traverses from VNF 𝑎 on node 𝑢 to VNF 𝑏
on node 𝑣, otherwise 0

𝑋𝑝,𝑣
𝑠,𝑓 is 1, if vnf 𝑓 from service chain 𝑠 is placed on node 𝑣 from

path 𝑝
𝜏 A given time slot
𝛿 The number of time steps in a given time slot
𝑅𝜏 The set of arriving flows at a given time slot
𝑟𝐶𝑣 The remaining capacity of node 𝑣
𝑟𝑊 𝑒 The remaining bandwidth of link 𝑒
𝐴𝑟

𝜏 The arrival time of flow 𝑟
𝑡𝑡𝑙𝑟 Time to live of flow 𝑟
 Observation space
 Action space
 The probability of state transitions
 Reward Function
𝑡 The feature set of flow 𝑟 at time step 𝑡
𝑡 The availability of a given VNF instance on server 𝑣
𝑟𝑑𝑐 Compute demand of flow 𝑟
𝑟𝑑𝑤 Bandwidth demand of flow 𝑟
𝑁𝑓 The number of unplaced VNFs
𝐷𝑟 The remained tolerable delay
𝑅𝑒𝑡 Discounted cumulative reward
𝑟𝑒𝑡 Reward obtained by action 𝑎 at time step 𝑡
𝛾 Discount factor in the range [0, 1]
𝜃 Actor update parameter
𝜃𝑐 Critic update parameter
𝜎 Actor learning rate
𝛽 Critic learning rate

4. Distributed deep reinforcement leaning approach

In this section, the proposed distributed deep reinforcement learn-
ing approach to optimize the deployment of service chains is discussed.
Machine learning based solutions are able to outperform the state-
of-the-art in diverse applications. In the problem of service chain
deployment, ML techniques can be very useful by learning network
dynamics using network statistics, traffic variations and past expe-
rience. Reinforcement learning based solutions, are alternatives for
the traditional optimization techniques especially for the environments
with high degree of variations. As a major problem, the conventional
techniques use algorithms with a high complexity because they need to
exchange information repeatedly to handle the dynamic changes and it
may increase the overhead. However, reinforcement learning leverages
a state–action mapping so that for each state as an input, RL agent

creates an action. In addition, unlike the conventional techniques which

Computer Networks 219 (2022) 109451M.A. Khoshkholghi and T. Mahmoodi

(
a
m

s
a
w
f
d
𝐴
o
a
a
t

𝑡
s

a

(
w
a
F
s

u
|

i
𝑎
s
s

e
w
j
f
r

𝑅

w

𝑅

i
d
w
a
o
c
[
d
t
t
v
t
r

𝐴

w
𝑠

need certain models predefined by experts, RL agent trains the model
via interactions with the environment. Instead of using a look up table
as in RL, deep reinforcement learning use deep neural network (DNN)
as an approximation function in order to deal with very large state
space. Therefore, DRL is able to serve many incoming service demands
even for the real-time environments with frequent network transitions.

In the following sub-sections, we specify observation space, action
space and reward function using Markov Decision Process (MDP) for
training DRL agents. Next, we explain the strategy used by agents
to place the service flows. Then, we introduce the machine learning
technique to create the agents, and finally illustrate the training and
inference framework.

4.1. Markov Decision Process

MDP model can be well adapted to the SCs deployment problem
to capture the dynamic network state transitions. The network state
space is incorporated with the number of network links and servers, and
the number of arriving service flows is associated with the frequency
of state transitions. To handle the dynamic network load changes, we
consider time slots 𝜏 including multiple time steps 𝑡, from 𝑡 to 𝑡 + 𝛿
𝛿 > 1). In each 𝜏, system controller monitors all the network links
nd servers, receives new service requests, eliminates timeout requests,
akes the decision for each SCs and finally update the network states.

We define 𝑅 as the set of all arriving service flows, 𝑅𝜏 ∈ 𝑅 as the
et of arriving flows at 𝜏, 𝑟𝐶𝑣 as the remaining capacity of node 𝑣 ∈ 𝑉
nd 𝑟𝑊 𝑒 as the remaining bandwidth of link 𝑒 ∈ 𝐸. Arriving flows
ill be served based on their arrival times. The arrival time of a given

low 𝑟 ∈ 𝑅𝜏 is defined as 𝐴𝑟
𝜏 . Each flow requesting a service chain is

edicated a time to live (TTL) defined as 𝑡𝑡𝑙𝑟. At each given time, if
𝑟
𝜏 ≤ 𝑡 ≤ (𝐴𝑟

𝜏 + 𝑡𝑡𝑙𝑟) then the flow is still alive, otherwise it is timed
ut and will be removed from the system. The MDP model is proposed
s < ,, , >, where refers to the observation space, , is the
ction space, denotes the probability of state transitions, and is
he reward function.
Observation Space. A vector is defined for each observation state

∈ as 𝑡 = (𝑟𝐶𝑡, 𝑟𝑊𝑡,𝑡,𝑡). The vector indicates that the ob-
ervation space includes four different parts. First, 𝑟𝐶𝑡 denotes the

remaining capacity of all nodes at time step t and is defined as 𝑟𝐶𝑡 =
(𝑟𝐶1

𝑡 , 𝑟𝐶
2
𝑡 ,… , 𝑟𝐶 |𝑉 |

𝑡). Second, 𝑟𝑊𝑡 represents the remaining capacity of
ll links at time step t and is defined as 𝑟𝑊𝑡 = (𝑟𝑊 1

𝑡 , 𝑟𝑊
2
𝑡 ,… , 𝑟𝐶 |𝐸|

𝑡).
Third, 𝑡 denotes the features of each service flow defined as 𝑡 =
𝑟𝑑𝑐 , 𝑟

𝑑
𝑤, 𝑡𝑡𝑙𝑟, 𝑁𝑓 , 𝐷𝑟) consisting of compute demand of the flow, band-

idth demand of the flow, remained TTL, the number of unplaced VNFs
nd the remained acceptable delay for the given flow, respectively.
inally, 𝑡 is the availability of the requested VNF instance in a given
erver 𝑣.
Action Space. Each physical node in the network is assigned a

nique index 𝑗 in a range from 1 to the number of nodes in the network
𝑉 |, 𝑗 = 1, 2,… , |𝑉 |. Action space, then, is determined as a set of node
ndices = {0, 1, 2,… , |𝑉 |}, where each integer denotes an action
∈ . If a given VNF 𝑓 ∈ 𝐹 cannot be allocated to any available

ervers, then 𝑎 = 0. Otherwise, the 𝑎 = 𝑗 denotes that the VNF 𝑓 is
uccessfully placed on the server 𝑗 ∈ 𝑉 .
Reward Function. The goal of the RL agent is to maximize the

xpected cumulative rewards that it receives in the long-term utility. As
e described in Section 3, the objective of the optimization model is to

ointly balance the network and server load upon which the objective
unction is formulated in Eq. (1). Based on the objective function, the
eward function can be defined as follows.

(𝑠𝑡, 𝑎) =

⎧

⎪

⎨

⎪

⎩

1
𝛼(𝐿𝑡

𝑆)+(1−𝛼)𝐿
𝑡
𝑁

if flow 𝑟𝑖 is accepted,

0 if flow 𝑟𝑖 is rejected
or incomplete,

(13)

In Eq. (13), since the agent aims to increase the cumulative reward
and the values of 𝐿𝑡 and 𝐿𝑡 are normalized to the range [0,1],
5

𝑆 𝑁
we defined the reward as a fraction in case the flow 𝑟𝑖 is accepted,
otherwise the reward is 0. The less maximum load on nodes and links,
the more reward will be gained for a given action.

4.2. Service chain placement strategy

In this sub-section, the strategy used for the placement of service
chains is presented. As we can see in Fig. 2, at each time slot (or
episode), a number of service flows can arrive in the system that
should be placed on the network. At the beginning of each time slot,
the controller eliminates timeout requests and releases their occupied
resources. Given the time slot 𝜏, two service requests 𝑟1, 𝑟2 ∈ 𝑅 arrive
in the system. The request 𝑟1 consists of 3 VNFs as (𝑓1,1, 𝑓1,2, 𝑓1,3) and 𝑟2
includes 3 VNFs as (𝑓2,1, 𝑓2,2, 𝑓2,3). We assume 𝑟1 has an earlier arriving
time, hence, it should be placed first.

At each state transition, only one VNF will be placed. Therefore,
starting from the state transition 𝑠𝑡, the first VNF 𝑓1 is supposed to be
mapped on a server. The agent collects the network statistics such as
remaining servers’ resources and links’ bandwidth, and also extract the
flow features, to make a list of candidate servers with enough resources
to host 𝑓1. Then, based on its policy, the agent takes an action from the
feasible actions, places the VNF on the selected server and allocates
required resources. Then, reward 𝑟(𝑎𝑖) will be calculated by the agent
based on the Eq. (13) and the state moves to 𝑠𝑡+1. If there is no available
server with sufficient resources and link bandwidth to host the VNF or
delay constraint is not satisfied, the VNF and consequently the flow
will be rejected as it happened to 𝑓2 and 𝑟1. In this case, the allocated
resources are taken back and the second flow 𝑟2 will be started to
deploy in the same way. As it can be observed at 𝑠𝑡+4, 𝑟2 is successfully
deployed and the corresponding reward is calculated. This procedure
will be continued for all the service flows arriving at time slot 𝜏.

4.3. Advantage actor–critic reinforcement learning

An advantage actor–critic reinforcement learning algorithm is de-
veloped to train the DRL agents in our work. At each time step 𝑡, the
DRL agent observes 𝑠𝑡, selects action 𝑎𝑡 from the feasible actions and
calculates the reward 𝑟𝑒𝑡. The agent aims to maximize the discounted
cumulative reward that it receives in the long-run as follows.

𝐽 (𝜃) = E(
𝑇−1
∑

𝑡=0
𝑅𝑒𝑡) (14)

here:

𝑒𝑡 = 𝑟𝑒𝑡+1 + 𝛾𝑟𝑒𝑡+2 + 𝛾2𝑟𝑒𝑡+3 +⋯ =
𝑇−1
∑

𝑘=0
𝛾𝑘𝑟𝑒𝑡+𝑘+1 (15)

In Eq. (15), 𝛾 ∈ [0, 1] is a discount factor to trade off between the
mportance of immediate and future rewards. As the DRL agent, we
evelop an advantage actor–critic reinforcement learning algorithm,
hich combines a police-based and a value-based DRL algorithm. Each
gent includes an actor network to generate a policy according to the
bservation states and the probability distribution of the agent, and a
ritic network to evaluate the policy based on a Temporal Difference
TD] error [33] as shown in Fig. 3. Since these networks perform
ifferent tasks, their architectures are different. The output layer of
he actor network is a set of probability distributions corresponding
o the feasible actions, and the output of critic network is only one
alue to evaluate the actor policy. In fact, the critic network estimates
he advantage function whereas the actor network creates a policy
epresented by 𝜋(𝑠𝑡, 𝑎𝑡). Advantage function can be defined as follows.

(𝑠𝑡, 𝑎𝑡) = 𝑄(𝑠𝑡, 𝑎𝑡) − 𝑉 (𝑠𝑡) (16)

here 𝑄(𝑠𝑡, 𝑎𝑡) refers to the Q-value of conducting action 𝑎𝑡 at state
𝑡 and 𝑉 (𝑠𝑡) is the value function at state 𝑠𝑡. Advantage function
determines the improvement obtained by action 𝑎𝑡 in comparison with

Computer Networks 219 (2022) 109451M.A. Khoshkholghi and T. Mahmoodi
Fig. 2. MDP model for service chain deployment.
Fig. 3. Advantage actor–critic reinforcement learning framework.

an optimal action at state 𝑠𝑡. Advantage actor–critic algorithm uses the
stochastic gradient decent method to update the parameters of neural
networks denoted by 𝜃 for the actor network and 𝜃𝑐 for the critic
network. The parameters are updated by the agent after reaching the
terminal state. From the bellman equation [34] formulated in Eq. (17):

𝑄(𝑠𝑡, 𝑎𝑡) = E[𝑟𝑒𝑡+1 + 𝛾𝑉 (𝑠𝑡+1)] (17)

we can rewrite the advantage function for the critic network as follows.

𝐴(𝑠𝑡, 𝑎𝑡; 𝜃𝑐) = 𝑟𝑒𝑡+1 + 𝛾𝑉𝜃𝑐 (𝑠𝑡+1) − 𝑉𝜃𝑐 (𝑠𝑡) (18)

Using the policy gradient method, the gradient of accumulated re-
ward is computed by Eq. (19). The advantage function 𝐴(𝑠𝑡, 𝑎𝑡; 𝜃𝑐) esti-
mates the difference between expected reward using policy 𝜋 compared
with the expected reward using a deterministic policy.

∇𝜃𝑗(𝜃) = E𝜋
𝜃 [∇𝜃 log𝜋(𝑠𝑡, 𝑎𝑡; 𝜃) × 𝐴(𝑠𝑡, 𝑎𝑡; 𝜃𝑐)] (19)

To maximize the long-term discounted reward following a selected
action, the policy parameter 𝜃 can be updated as follows.

𝜃𝑡+1 = 𝜃𝑡 + 𝜎
𝑇−1
∑

𝑡=0
∇𝜃 log𝜋𝜃(𝑠𝑡, 𝑎𝑡) × 𝐴(𝑠𝑡, 𝑎𝑡; 𝜃) (20)

where 𝜎 denotes the learning rate of the actor network. In addition, the
critic parameter 𝜃𝑐 can be updated as:

𝜃𝑡+1𝑐 = 𝜃𝑡𝑐 + 𝛽
𝑇−1
∑

𝑡=0
∇𝜃𝑐 (𝑟𝑒𝑡+1 + 𝛾𝑉𝜃𝑐 (𝑠𝑡+1) − 𝑉𝜃𝑐 (𝑠𝑡)) (21)

where 𝛽 is the learning rate of the critic network and 𝛾 is the discount
factor defined to give weights to the rewards of different time steps.
According to [35] and [36], in order to avoid premature convergence
6

to a sub-optimal policy and to encourage the policy to exploration, an
entropy regularization 𝐻 can be added to Eq. (20) as follows.

𝜃𝑡+1 = 𝜃𝑡 + 𝜎
𝑇−1
∑

𝑡=0
∇𝜃 log𝜋𝜃(𝑠𝑡, 𝑎𝑡) × 𝐴(𝑠𝑡, 𝑎𝑡; 𝜃)

+𝜂∇𝜃𝐻(𝜋𝜃(𝑠𝑡)) (22)

where 𝜂 is a weight factor to control the strength of entropy so that the
larger value of 𝜂 encourages more exploration.

4.4. Training and inference procedure

The service chain deployment approach proposed in this work, first,
trains a DRL agent offline using a centralized algorithm to reduce
computation overhead and avoid complexity of online training. In
this, a controller (at cloud) monitors and manages whole network and
trains the neural networks based on the observations of all nodes and
for all service flows in the network to ensure creating an optimal
policy. However, the centralized approach cannot be scaled online for
distributed and large-size networks with fast arriving service requests,
where hundreds of decisions should be made per just a few millisec-
onds. In addition, collecting data from whole network and sending
them to the central controller to make a global knowledge is costly
and even infeasible. To overcome this problem, a distributed approach
(DDRL) could be deployed in order to fast and consistent service chains
deployment. After offline training convergence, the trained model will
be sent to the nodes (edge servers) across the network, so that each
local node including an agent can decide for the arriving flows based
on its own training model. For each agent, training will be continued
online for the set of locally arriving flows. Fig. 4 shows the training and
inference procedure.

Algorithm 1 shows the offline training process of the proposed DDRL
approach. To alleviate the high variance of training caused by random
parameters, we train 𝑘 number of agents in parallel in a centralized
fashion. Then for each agent, the actor neural network (𝜋𝜃) and critic
neural network (𝑉𝜃𝑐) are initiated randomly (lines 2–4). Then, in each
parallel environment and for different episodes, the agent observes
current state 𝑠𝑡 in terms of observation space described in Section 4-A.
Based on the agent’s policy 𝜋𝜃(𝑠𝑡, 𝑎), an action is selected and performed
on the environment and the corresponding reward is calculated using
Eq. (13). As we discussed in Section 4-B, then, the state moves to the
next state 𝑠𝑡+1, where the agent observes the new state, as well as the
next VNF is considered for placement. The state transition including
current state, performed action, obtained reward and the new state are
stored in the memory (lines 5–13). At the end of each episode, the
policy parameter 𝜃 and critic parameter 𝜃𝑐 are updated using Eq. (21)
and (22), respectively (lines 14–15). This procedure will be repeated for
𝑀 number of episodes until the learning model reaches convergence.
Finally, the best agent with the highest obtained reward among 𝑘
parallel agents is selected as the trained model to be used for inference
in run-time process.

Computer Networks 219 (2022) 109451M.A. Khoshkholghi and T. Mahmoodi

1

D
o
t
p
t
o
f
u
p
a
s
a
u
s

5

p
t

Fig. 4. Training and inference procedure.

Algorithm 1: Offline Training Process of DDRL
1 begin
2 𝑘 ← number of parallel agents;
3 for 𝑘 agents in parallel do
4 Initialize the parameters of actor and critic neural

networks 𝜃 and 𝜃𝑐 ;
5 for Episode 1, ... , M do
6 Capture initial state 𝑠𝑡;
7 for time step t = 1, ... , T do
8 Agent selects action 𝑎𝑡 according to policy

𝜋𝜃(𝑠𝑡, 𝑎);
9 Perform action 𝑎𝑡 to place VNF 𝑓𝑡;
10 Calculate reward 𝑟(𝑎𝑡) using Eq. (13);
11 Observe new state 𝑠𝑡+1;
12 Transfer 𝑠𝑡 to 𝑠𝑡+1 and get the next VNF 𝑓𝑡+1;
13 Store transition (𝑠𝑡, 𝑎𝑡, 𝑟(𝑎𝑡), 𝑠𝑡+1);
14 Update policy parameter 𝜃 using Eq. (22);
15 Update critic parameter 𝜃𝑐 using Eq. (21);

6 Select the agent with the best policy 𝜋𝜃(𝑠𝑡, 𝑎) achieving the
highest reward;

Algorithm 2 illustrates the online inference and training process of
DRL algorithm. As we can see in line 2, the trained model provided
ffline by Algorithm 1, is deployed on the nodes across the network
o create an online and distributed approach for the SCs deployment
roblem. Given a set of arriving service requests 𝑅𝜏 at each time slot,
he request with the earliest arrival time is considered to be mapped
n the physical network. Then, for a number of time steps, if a service
low arrives at node 𝑣, the node’s agent starts the inference process
sing its own policy. First, the agent observes the current state 𝑠𝑡, and
erforms the action selected by the agent policy 𝜋𝜃(𝑠𝑡, 𝑎). Next, the
gent calculates the reward and shifts 𝑠𝑡 to 𝑠𝑡+1 and store the transition
tates in memory. If the current state is the terminal state, then, the
gent trains both actor and critic networks based on the state transitions
sing the defined equations. This procedure will be repeated for all the
ervice requests in 𝑅𝜏 .

. Performance evaluation

In this section, we explain the performance evaluation of the pro-
osed DDRL approach. The efficiency of our approach is evaluated
hrough simulation using real-traced network traffic patterns along
7

Algorithm 2: Online Inference and Training Process of DDRL
1 begin
2 Deploy the best trained model to every node 𝑣 ∈ 𝑉 ;
3 Select a request 𝑟 from a set of arriving request 𝑅𝜏 based on

their arrival time;
4 for time step t = 1, ... , T do
5 if Service flow 𝑟 arrives at node 𝑣 then
6 Capture initial state 𝑠𝑡;
7 Perform action 𝑎 to place VNF 𝑓𝑡 according to policy

𝜋𝜃(𝑠𝑡, 𝑎);
8 Calculate reward 𝑟(𝑎𝑡) using Eq. (13);
9 Observe new state 𝑠𝑡+1;
10 Transfer 𝑠𝑡 to 𝑠𝑡+1 and get the next VNF 𝑓𝑡+1;
11 Store transition (𝑠𝑡, 𝑎𝑡, 𝑟(𝑎𝑡), 𝑠𝑡+1);
12 if terminal state then
13 Update policy parameter 𝜃 using Eq. (22) at node

𝑣;
14 Update critic parameter 𝜃𝑐 using Eq. (21) at node

𝑣;

15 Continue for the next service request;

with real-world network topologies. We have implemented the pro-
posed approach in Python and developed DRL agents using Stable-
Baselines3 [37]. All the experiments are conducted on a Dell machine
with an Intel(R) core(TM) i7-10750H CPU @ 2.6 GHz, 6 cores and
12 threads, 16 GB of RAM and a Nvidia GeForce RTX 2070 GPU.
We run each algorithm 10 times and the best value is shown in the
measurement. In the fallowing sub-sections, we describe the evaluation
setting and then, present the numerical results obtained by DDRL
algorithm compared with the baselines in terms of several performance
metrics and for different scenarios.

5.1. Experimental setup

5.1.1. Network topologies and simulation settings
In this work, we have used the real-world network topologies ex-

tracted from SNDlib [13]. SNDlib’s network instances are widely used
in the previous studies as substrate networks to simulate the SCs place-
ment approaches (e.g. see [38]). We have selected four network scales
with 12, 22, 50 and 161 physical nodes to evaluate the scalability of the
DDRL approach. Since the topologies determine the location of nodes
and their interconnections, the link delay can be calculated according
to the distance between nodes. We set randomly and uniformly a
processing unit (CPU cores) to each physical node in the range [0, 2]
and the capacity of bandwidth of each physical link in the range [1, 10]
Gbps. We defined a set of VNFs, each with a given processing delay (5
or 10 ms). Each service chain contains 1 to 3 VNFs with data rate 1
Gbps, TTL 100 ms and various end-to-end delay deadlines (30, 40, 50,
60 and 100 ms).

5.1.2. Training process and hyperparameters
In the simulation, we considered 100,000 time steps during training

process and 20,000 time steps in the run-time process in which service
flows arrive in a real-traced load pattern. After each 50 steps, the
network states are observed and actions are performed. We set the
number of parallel agents to be trained offline as 𝑘 = 5 and the best
model is selected for the online phase. Adam optimizer [39] is used
to train the actor and critic neural networks each with a single hidden
layer with 64 nodes (ReLU activation). The learning rates for the critic
and actor networks are fixed to 0.001 and 0.0001, respectively; and the
discount factor is set to 0.99.

Computer Networks 219 (2022) 109451M.A. Khoshkholghi and T. Mahmoodi
Fig. 5. Flow rejection rate for different number of ingress nodes.

5.1.3. Baseline algorithms
In this sub-section, in order to evaluate the efficiency of the pro-

posed DDRL algorithm, we compare it against the following baselines.

• A state-of-the-art SCs placement approach (CA) [15]: A central
controller collects all network statistics and service flows’ features
and solve the placement problem using a deep deterministic
policy gradient (DDPG) approach.

• A non-recursive greedy approach (SP), which deploys SCs using
a shortest path algorithm. SP tries to place the first VNF instance
in the ingress node and the rest of VNFs at the closest neighbors
from the previous one.

• BSP [14]: A bidirectional heuristic algorithm to jointly place and
scale VNFs leveraging a destroy-and-repair strategy.

5.2. Numerical results

In this section, we present and analyze the experimental results
obtained by the proposed DDRL algorithm against three baseline al-
gorithms.

5.2.1. Evaluation with different number of ingress nodes
Fig. 5 shows the evaluation results in terms of flow rejection rate

against number of ingress nodes using Abilene topology with 11 nodes
and 15 links and its real-traced traffic patterns extracted from SDNlib.
The number of ingress nodes is increased from 1 to 5. By increasing
the number of ingress nodes, the network traffic is increased while the
compute resources and bandwidth capacity are fixed. Hence, with more
ingress nodes we expect more flow drops caused by resource saturation.
As it can be observed, DDRL outperforms all three baseline algorithms
for every number of ingress nodes by decreasing the flow rejection
rate. Given one and two ingress nodes, DDRL significantly reduces the
number of rejected flows compared with other algorithms, so that the
rejection percentage is not more than 5% while the rejection percentage
is up to 35%, 80% and 60% for CA, BSP and SP, respectively. Since
the network traffic is increased sharply from 3 ingress nodes, we can
see an increase in the number of dropped flows although still DDRL
obtains the lowest rate among others and this trend continues until 5
ingress nodes. CA algorithm works better than BSP and SP, and it can
successfully deploy SCs with almost the same rate for 3 to 5 ingress
nodes, although in all cases DDRL outperforms it by 19% (3 ingress
nodes), 11% (4 Ingress nodes) and 10% (5 Ingress nodes). For 3 to 5
ingress nodes, DDRL also obtains better results compared with BSP and
SP, up to 42% and 29%, respectively. These results show that DDRL
is quite successful in placing SCs on the network so that the rejection
rate is minimized even in the scenarios which the network resources
8

are highly saturated.
Fig. 6. Flow rejection rate with varying delay deadlines.

5.2.2. Evaluation with different delay deadline setting
Fig. 6 shows the results obtained by the algorithms in terms of the

flow rejection rate in 5 scenarios with varying delay deadlines and con-
sidering 4 ingress nodes. Delay deadline refers to a maximum tolerable
end-to-end delay in which a flow should be processed successfully. We
considered the deadlines as 30, 40, 50, 60 and 100 ms, by which we
can explore the performance of DDRL for the flows related to various
applications with different time-sensitivity and latency requirements.
Given a tight delay deadline as 30 or 40 ms, the percentage of dropped
flows is quite high, since the flows are dropped when they exceed the
certain deadline. We can see the rejection rate of DDRL is slightly better
than CA for 30 and 40 ms deadlines, however it decreases the rejection
rate up to 22% and 37% compared with SP and BSP, respectively.

By increasing the delay deadline, since DDRL has more time to
exploit the network to find an optimal placement for incoming flows,
it is able to distribute and balance the load on more nodes and links
farther away, and consequently it obtains a better rate of successful
deployment of the flows. Hence, the higher delay deadline the less
rejection rate can be observed by DDRL. The performance of BSP is
again the worst among all algorithms and it drops many flows although
for the higher deadlines it obtains less rejection rate. The rejection rate
is dropped about 10 percents by SP from 30 to 40 ms and it shows
the same rate afterwards, because SP simply selects the shortest path
for the flows and the end-to-end delay required by SP to place the
flows is less than 40 ms. The CA algorithm works better than SP and
SA and the rejection rate is decreased from 30 to 50 ms but becomes
constant afterwards. DDRL significantly outperforms all the baselines
specially for the higher deadlines so that in the last scenario with
100 ms deadline, it is able to reduce the rejection rate by 34%, 88%
and 51% compared with CA, BSP and SP, respectively.

Fig. 7 shows the average end-to-end delay obtained by 4 algorithms
for different delay deadlines. The obtained results are in line with the
results discussed for Fig. 6 and illustrates the reasons behind them. By
increasing the deadline from 30 to 100 ms, DDRL constantly exploits
higher end-to-end delays within the deadline to deploy more flows by
which the number of rejected flows is decreased. CA although uses
higher delay to deploy more flows from 30 to 50 ms, but does not
exploit beyond 50 ms. Similarly, SP and BSP stop exploiting higher
delays at some points as well (SP: 40 ms and BSP: 50 ms).

5.2.3. Evaluation with different network topology
To evaluate the scalability of the proposed DDRL algorithm in

comparison to the baselines, we have used 3 network topologies as
Geant, Germany50 and Brain including 22 nodes, 50 nodes and 161
nodes respectively, along with Abilene network. The results shown in
Fig. 8 indicate the efficiency of DDRL for different network topologies

Computer Networks 219 (2022) 109451M.A. Khoshkholghi and T. Mahmoodi
Fig. 7. Average end-to-end delay with varying delay deadlines.

Fig. 8. Flow rejection rate for different network topologies with increasing number of
nodes.

with increasing number of physical nodes. As it can be observed,
due to the distributed technique used by DDRL algorithm upon which
agents are spread across the network, the performance of the algorithm
is independent of the network size. The rejection rate obtained by
DDRL for the networks including 11 and 50 nodes is 4%, for 161-
node network is 8%, while it is slightly higher for 22-node network.
However, CA increases the number of dropped flows by increasing
the network size since it uses a central approach where an agent is
responsible for the whole network. For the larger network sizes, CA
even could be worse than SP since it will increase the end-to-end delay
of the flows and exceed the deadline which could consequently lead
to flow rejections. SP also obtains the results regardless of the network
size since it only focuses on the shortest paths in the network. DDRL
outperforms other algorithms significantly in all 4 scenarios e.g. for
50-node network by 36% (SP), 56% (CA), and 61% (BSP).

Fig. 9 shows the evaluation results in algorithmic scale obtained
on the average inference execution time for 4 network topologies with
increasing number of nodes. As we mentioned before, an online service
chain deployment algorithm should be very fast to make decisions
even for large-scale networks with dynamic changes, to be applied to
the real-world run-time networks. It can be observed that the average
inference time for each placement decision obtained by DDRL is less
9

Fig. 9. Average inference execution time for different network topologies with inc-
reasing number of nodes.

than 1 millisecond even for larger networks since each agent is in
charge of its own local decisions. However, the CA algorithm which
uses a central agent, increases the inference time by increasing the
number of nodes so that for larger networks, e.g. 161 nodes, it may
takes few seconds to make decisions which consequently causes many
flow rejections. The inference time results are in line with the results
discussed for Fig. 8 where by increasing the network size, CA needs
more inference time which leads to more flow rejection rate, however,
DDRL can handle the flows very fast even for larger networks and
therefore, it can successfully deploy a very high percentage of incoming
flows in different scenarios. In addition, the SP algorithm is quite fast
and make a decision within few milliseconds. BSP obtained the worst
results and its average inference time is even more than 100 s for the
larger networks. Therefore, DDRL outperforms all other algorithms in
terms of the inference execution time. As a conclusion, based on the
results shown in Figs. 5 to 9, the proposed online DDRL approach
is quite successful to deploy SCs very fast and efficiently onto the
substrate networks even for the large-scale ones with the realistic traffic
patterns and dynamic changes.

5.2.4. Evaluation of load balancing
This subsection evaluates the efficiency of the proposed algorithm

compared with the baseline algorithms in terms of load balancing as
formulated in Eq. (1) in Section 3. As shown in Fig. 10, DDRL out-
performs three other algorithms for every number of ingress nodes by
minimizing the maximum resource utilization especially for 3 ingress
nodes and afterwards where the resource demand is increased sharply
while the resource capacity is fixed. The BSP algorithm obtains the
worse results among all algorithms in this measurement as it tries to
place VNFs into the nodes as much as they have remained capacity.
Moreover, as it can be observed in Fig. 11, in terms of minimizing the
maximum bandwidth utilization, DDRL obtains the lowest percentage
among others whereas the SP algorithm presents a poor performance
in this metric especially by increasing the number of ingress nodes and
consequently network traffic since it uses a static and non-recursive
shortest path approach which may lead to link overutilization. These
results show that DDRL is quite successful in placing SCs on the network
so that the load is balanced on joint links and nodes of the network.

6. Conclusions

In this paper, we studies the online service chain deployment prob-
lem considering dynamic network traffic in NFV-enabled networks.
First, we formulate the problem as a MILP model where the objec-
tive function is jointly balancing the load on the physical nodes and

Computer Networks 219 (2022) 109451M.A. Khoshkholghi and T. Mahmoodi
Fig. 10. Maximum resource utilization for different number of ingress nodes.

Fig. 11. Maximum bandwidth utilization for different number of ingress nodes.

links of the network. In order to solve the service chain problem, we
propose a distributed and online approach using deep reinforcement
learning. The goal is to devise a service chain placement policy to
minimize the number of dropped service flows while balancing the
load on nodes and links satisfying the end-to-end latency constraints.
An on-policy advantage actor–critic reinforcement learning technique
has been used to develop the DRL agents. Simulation results show that
DDRL algorithm can respond very fast just in less than one millisecond
to arriving service flows even for larger network scales. The results
also demonstrate the performance improvement of the proposed DDRL
approach in terms of the number of dropped service flows compared
with the state-of-the-art baseline algorithms. In the future work, we
are planing to extend our work by leveraging a federated learning
technique to continue online learning of agents collaboratively using
a reward aggregator.

CRediT authorship contribution statement

Mohammad Ali Khoshkholghi: Conceptualization, Methodology,
Software, Data analysis and interpretation, Writing. Toktam Mah-
moodi: Conceptualization, Critical revision, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.
10
Data availability

Data will be made available on request.

References

[1] J. Pei, P. Hong, M. Pan, J. Liu, J. Zhou, Optimal VNF placement via deep rein-
forcement learning in SDN/NFV-enabled networks, IEEE J. Sel. Areas Commun.
38 (2) (2019) 263–278.

[2] T. Wang, H. Xu, F. Liu, Multi-resource load balancing for virtual network
functions, in: 2017 IEEE 37th International Conference on Distributed Computing
Systems, ICDCS, IEEE, 2017, pp. 1322–1332.

[3] M.A. Raayatpanah, T. Weise, Virtual network function placement for service func-
tion chaining with minimum energy consumption, in: 2018 IEEE International
Conference on Computer and Communication Engineering Technology, CCET,
IEEE, 2018, pp. 198–202.

[4] R. Bruschi, A. Carrega, F. Davoli, A game for energy-aware allocation of
virtualized network functions, J. Electr. Comput. Eng. 2016 (2016).

[5] M.A. Khoshkholghi, J. Taheri, D. Bhamare, A. Kassler, Optimized service chain
placement using genetic algorithm, in: 2019 IEEE Conference on Network
Softwarization (NetSoft), IEEE, 2019, pp. 472–479.

[6] M. Xia, M. Shirazipour, Y. Zhang, H. Green, A. Takacs, Network function
placement for NFV chaining in packet/optical datacenters, J. Lightwave Technol.
33 (8) (2015) 1565–1570.

[7] K.S. Ghai, S. Choudhury, A. Yassine, A stable matching based algorithm to
minimize the end-to-end latency of edge nfv, Procedia Comput. Sci. 151 (2019)
377–384.

[8] D. Li, P. Hong, K. Xue, J. Pei, Virtual network function placement and resource
optimization in NFV and edge computing enabled networks, Comput. Netw. 152
(2019) 12–24.

[9] F. Paganelli, P. Cappanera, A. Brogi, R. Falco, Profit-aware placement of multi-
flavoured VNF chains, in: 2021 IEEE 10th International Conference on Cloud
Networking (CloudNet), IEEE, 2021, pp. 48–55.

[10] M.A. Khoshkholghi, M.G. Khan, K.A. Noghani, J. Taheri, D. Bhamare, A. Kassler,
Z. Xiang, S. Deng, X. Yang, Service function chain placement for joint cost and
latency optimization, Mob. Netw. Appl. 25 (6) (2020) 2191–2205.

[11] P.-C. Lin, Y.-D. Lin, C.-Y. Wu, Y.-C. Lai, Y.-C. Kao, Balanced service chaining
in software-defined networks with network function virtualization, Computer 49
(11) (2016) 68–76.

[12] A. Zamani, B. Bakhshi, S. Sharifian, An efficient load balancing approach for
service function chain mapping, Comput. Electr. Eng. 90 (2021) 106890.

[13] SNDlib URL http://sndlib.zib.de.
[14] S. Dräxler, S. Schneider, H. Karl, Scaling and placing bidirectional services with

stateful virtual and physical network functions, in: 2018 4th IEEE Conference on
Network Softwarization and Workshops (NetSoft), IEEE, 2018, pp. 123–131.

[15] S. Schneider, R. Khalili, A. Manzoor, H. Qarawlus, R. Schellenberg, H.
Karl, A. Hecker, Self-learning multi-objective service coordination using deep
reinforcement learning, IEEE Trans. Netw. Serv. Manag. (2021).

[16] J. Pei, P. Hong, K. Xue, D. Li, Efficiently embedding service function chains with
dynamic virtual network function placement in geo-distributed cloud system,
IEEE Trans. Parallel Distrib. Syst. 30 (10) (2018) 2179–2192.

[17] J. Liu, Y. Li, Y. Zhang, L. Su, D. Jin, Improve service chaining performance
with optimized middlebox placement, IEEE Trans. Serv. Comput. 10 (4) (2015)
560–573.

[18] Y. Liu, J. Pei, P. Hong, D. Li, Cost-efficient virtual network function place-
ment and traffic steering, in: ICC 2019-2019 IEEE International Conference on
Communications, ICC, IEEE, 2019, pp. 1–6.

[19] F. Bari, S.R. Chowdhury, R. Ahmed, R. Boutaba, O.C.M.B. Duarte, Orchestrating
virtualized network functions, IEEE Trans. Netw. Serv. Manag. 13 (4) (2016)
725–739.

[20] D. Li, P. Hong, K. Xue, et al., Virtual network function placement considering
resource optimization and SFC requests in cloud datacenter, IEEE Trans. Parallel
Distrib. Syst. 29 (7) (2018) 1664–1677.

[21] D. Qi, S. Shen, G. Wang, Towards an efficient VNF placement in network function
virtualization, Comput. Commun. 138 (2019) 81–89.

[22] H. Tang, D. Zhou, D. Chen, Dynamic network function instance scaling based
on traffic forecasting and VNF placement in operator data centers, IEEE Trans.
Parallel Distrib. Syst. 30 (3) (2018) 530–543.

[23] H. Hawilo, M. Jammal, A. Shami, Network function virtualization-aware orches-
trator for service function chaining placement in the cloud, IEEE J. Sel. Areas
Commun. 37 (3) (2019) 643–655.

[24] M. Zeng, W. Fang, Z. Zhu, Orchestrating tree-type VNF forwarding graphs
in inter-DC elastic optical networks, J. Lightwave Technol. 34 (14) (2016)
3330–3341.

[25] M.A. Khoshkholghi, Y. Sharma, M.G. Khan, A. Al-dulaimy, J. Taheri, Resource
allocation models in/for edge computing, 2020.

http://refhub.elsevier.com/S1389-1286(22)00485-6/sb1
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb1
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb1
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb1
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb1
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb2
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb2
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb2
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb2
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb2
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb3
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb3
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb3
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb3
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb3
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb3
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb3
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb4
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb4
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb4
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb5
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb5
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb5
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb5
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb5
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb6
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb6
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb6
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb6
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb6
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb7
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb7
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb7
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb7
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb7
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb8
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb8
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb8
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb8
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb8
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb9
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb9
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb9
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb9
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb9
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb10
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb10
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb10
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb10
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb10
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb11
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb11
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb11
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb11
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb11
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb12
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb12
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb12
http://sndlib.zib.de
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb14
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb14
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb14
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb14
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb14
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb15
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb15
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb15
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb15
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb15
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb16
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb16
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb16
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb16
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb16
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb17
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb17
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb17
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb17
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb17
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb18
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb18
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb18
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb18
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb18
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb19
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb19
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb19
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb19
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb19
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb20
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb20
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb20
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb20
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb20
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb21
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb21
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb21
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb22
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb22
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb22
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb22
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb22
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb23
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb23
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb23
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb23
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb23
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb24
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb24
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb24
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb24
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb24
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb25
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb25
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb25

Computer Networks 219 (2022) 109451M.A. Khoshkholghi and T. Mahmoodi
[26] M.G. Khan, J. Taheri, M.A. Khoshkholghi, A. Kassler, C. Cartwright, M. Darula, S.
Deng, A performance modelling approach for sla-aware resource recommendation
in cloud native network functions, in: 2020 6th IEEE Conference on Network
Softwarization, NetSoft, IEEE, 2020, pp. 292–300.

[27] S. Deng, Z. Xiang, J. Taheri, M.A. Khoshkholghi, J. Yin, A.Y. Zomaya, S. Dustdar,
Optimal application deployment in resource constrained distributed edges, IEEE
Trans. Mob. Comput. 20 (5) (2020) 1907–1923.

[28] A. Mohammadkhan, S. Ghapani, G. Liu, W. Zhang, K. Ramakrishnan, T. Wood,
Virtual function placement and traffic steering in flexible and dynamic software
defined networks, in: The 21st IEEE International Workshop on Local and
Metropolitan Area Networks, IEEE, 2015, pp. 1–6.

[29] C. Pham, N.H. Tran, S. Ren, W. Saad, C.S. Hong, Traffic-aware and energy-
efficient vnf placement for service chaining: joint sampling and matching
approach, IEEE Trans. Serv. Comput. 13 (1) (2017) 172–185.

[30] X. Fei, F. Liu, H. Xu, H. Jin, Towards load-balanced VNF assignment in geo-
distributed nfv infrastructure, in: 2017 IEEE/ACM 25th International Symposium
on Quality of Service, IWQoS, IEEE, 2017, pp. 1–10.

[31] F. Carpio, S. Dhahri, A. Jukan, VNF placement with replication for loac balancing
in NFV networks, in: 2017 IEEE International Conference on Communications,
ICC, IEEE, 2017, pp. 1–6.

[32] Y. Xiao, Q. Zhang, F. Liu, J. Wang, M. Zhao, Z. Zhang, J. Zhang, NFVdeep:
Adaptive online service function chain deployment with deep reinforcement
learning, in: Proceedings of the International Symposium on Quality of Service,
2019, pp. 1–10.

[33] R.H. Crites, A.G. Barto, Elevator group control using multiple reinforcement
learning agents, Mach. Learn. 33 (2) (1998) 235–262.

[34] M. Sewak, Deep Reinforcement Learning, Springer, 2019.
[35] V. Mnih, A.P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver,

K. Kavukcuoglu, Asynchronous methods for deep reinforcement learning, in:
International Conference on Machine Learning, PMLR, 2016, pp. 1928–1937.

[36] H. Khan, A. Elgabli, S. Samarakoon, M. Bennis, C.S. Hong, Reinforcement
learning-based vehicle-cell association algorithm for highly mobile millime-
ter wave communication, IEEE Trans. Cogn. Commun. Netw. 5 (4) (2019)
1073–1085.

[37] A. Raffin, A. Hill, M. Ernestus, A. Gleave, A. Kanervisto, N. Dormann, Sta-
ble Baselines3, GitHub Repository (2019) https://github.com/DLR-RM/stable-
baselines3.

[38] D. Bhamare, A. Kassler, J. Vestin, M.A. Khoshkholghi, J. Taheri, IntOpt: In-band
network telemetry optimization for NFV service chain monitoring, in: ICC 2019-
2019 IEEE International Conference on Communications, ICC, IEEE, 2019, pp.
1–7.

[39] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, 2014, arXiv
preprint arXiv:1412.6980.
11
Mohammad Ali Khoshkholghi received his Ph.D. degree in
Computer Science from the Faculty of Computer Science and
Information Technology at the University Putra Malaysia
in 2017, and Bachelors and Masters of Computer Science
from Iran, in 2007 and 2011, respectively. He is currently
a research associate in the Center for Telecommunication
Research (CTR), Department of Engineering, King’s College
London (KCL), UK. Before joining KCL, he worked as
a postdoctoral research fellow with the DISCO Research
Group, Department of Computer science, Karlstad Univer-
sity, Sweden, from 2018 to 2020. He has also worked as a
researcher and university lecturer within computer science
in industry and academia. He serves as the referee, TPC and
editorial board member for many prestigious journals and
conferences. His research interests lie in the area of Edge
and Cloud Computing, Network Function Virtualization and
Machine Learning.

Toktam Mahmoodi (Senior Member, IEEE) received the
B.Sc. degree in electrical engineering from the Sharif
University of Technology, Iran, and the Ph.D. degree in
telecommunications from King’s College London, U.K. She
was a Visiting Research Scientist with F5 Networks, San
Jose, CA, USA, in 2013, a Postdoctoral Research Associate
with the ISN Research Group, Electrical and Electronic
Engineering Department, Imperial College, from 2010 to
2011, and a Mobile VCE Researcher, from 2006 to 2009. She
has also worked in mobile and personal communications in-
dustry, from 2002 to 2006. She has worked with a Research
and Development Team on developing DECT standard for
WLL applications. She is currently the Head of the Centre for
Telecommunications Research, Department of Informatics,
King’s College London. She has contributed to, and led
a number of FP7, H2020, and EPSRC funded projects,
advancing mobile and wireless communication networks.
Her research interests include 5G communications, network
virtualization, and low latency networking.

http://refhub.elsevier.com/S1389-1286(22)00485-6/sb26
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb26
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb26
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb26
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb26
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb26
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb26
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb27
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb27
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb27
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb27
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb27
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb28
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb28
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb28
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb28
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb28
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb28
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb28
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb29
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb29
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb29
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb29
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb29
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb30
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb30
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb30
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb30
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb30
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb31
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb31
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb31
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb31
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb31
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb32
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb32
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb32
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb32
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb32
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb32
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb32
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb33
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb33
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb33
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb34
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb35
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb35
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb35
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb35
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb35
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb36
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb36
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb36
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb36
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb36
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb36
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb36
https://github.com/DLR-RM/stable-baselines3
https://github.com/DLR-RM/stable-baselines3
https://github.com/DLR-RM/stable-baselines3
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb38
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb38
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb38
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb38
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb38
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb38
http://refhub.elsevier.com/S1389-1286(22)00485-6/sb38
http://arxiv.org/abs/1412.6980

	Edge intelligence for service function chain deployment in NFV-enabled networks
	Introduction
	Related Works
	System Model and Problem Formulation
	Distributed Deep Reinforcement Leaning Approach
	Markov Decision Process
	Service chain placement strategy
	Advantage Actor–Critic Reinforcement Learning
	Training and Inference Procedure

	Performance Evaluation
	Experimental Setup
	Network topologies and simulation settings
	Training Process and Hyperparameters
	Baseline algorithms

	Numerical Results
	Evaluation With Different Number of Ingress Nodes
	Evaluation With Different Delay Deadline Setting
	Evaluation With Different Network Topology
	 Evaluation of Load Balancing

	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	References

