1	Potential use and perspectives of nitric oxide donors in agriculture
2	
3	Running title: Nitric oxide donors in agriculture
4	
5	Massimiliano Marvasi
6	
7	Department of Natural Sciences, School of Science and Technology, Middlesex University. The
8	Burroughs, London NW4 4BT, UK. Email: m.marvasi@mdx.ac.uk
9	
10	
11	Abstract
12	Nitric oxide (NO) has emerged in the last 30 years as a key molecule involved in many
13	physiological processes in plants, animals and bacteria. Current research has shown that NO can
14	be delivered via donor molecules. In such cases, NO release rate is dependent upon the chemical
15	structure of the donor itself and the chemical environment. Despite NO's powerful signaling
16	effect in plants and animals, the application of NO donors in agriculture is currently not achieved
17	and research is mainly at the experimental level.
18	Technological development in the field of NO donors is rapidly expanding in scope, to include
19	controlling seed germination, plant development, ripening, and increasing shelf life of produce.
20	Potential applications in animal production have also been identified.
21	This concise review focuses on the use of donors that have shown potential biotechnological
22	applications in agriculture. We provide insights into (i) the role of donors in plant production, (ii)
23	potential use of donors in animal production, and (iii) future approaches to explore the use and
24	applications of donors for the benefit of agriculture.
25	
26	Keywords: Nitric oxide donors, plant production, animal production, sodium nitroprusside

27 Introduction

Nitric oxide (NO) has emerged in the last 30 years as a key molecule involved in many physiological processes. In animals, NO controls vascular tone, leukocyte adhesion and aggregation, inhibition of platelet, apoptosis, immune response, inflammation, tissue repair, neurotransmission and angiogenesis ¹⁻⁵. NO has also been described as anticancer agent and as a key molecule involved in wound repair ⁶.

33 In plant, endogenous production of NO is known since the 1970s, and extensive knowledge on 34 the multiple effects of NO on different physiological and biochemical processes is available ⁷. 35 Emerging evidences suggest that NO function in plants has a more pervasive role during development than in the other kingdoms⁸. In plants, several different functions of NO have been 36 37 extensively reviewed by Yu and collaborators $(2014)^8$. NO is required for plant immunity 9,10 . hypersensitive cellular death ¹¹, and to cope with abiotic stresses ^{12,13}. Other functions include root 38 hair gravitropic responses ¹⁴⁻¹⁶, iron homeostasis ¹⁷, and regulation and balance between auxin and 39 40 reactive oxygen intermediates (ROIs)⁸.

41 In prokaryotes NO acts as an antimicrobial or dispersal agent and it is involved in virulence of bacterial and fungal pathogens ^{18,19}. NO has been described as a component of the offensive 42 strategy and developmental signal of hemi/biotrophic fungal and oomvcete plant pathogens²⁰. 43 44 With reference to bacteria, pathogenic bacteria have evolved transcriptional regulatory systems 45 that perceive NO gas and respond by reprogramming gene expression. NO acts as environmental 46 cues that trigger the coordinated expression of virulence genes and metabolic adaptations necessary for survival within the host ²¹. Genes involved in nitric oxide perception have been 47 48 identified in both Gram-positive and Gram-negative bacteria showing a universal effect of NO-49 mediated genetic regulation ^{22,23}.

50 Due to the universal effect of NO on living organisms, it is not surprising that such molecule has 51 been used as a tool for biotechnological applications. Delivery of gaseous NO via fumigation has 52 been demonstrated to alleviate some of the effects of abiotic stress on a wide range of fruits and vegetables ²⁴. However, it has to be noted that the application of NO as a gas on the industrial scale has several safety concerns: NO is a gaseous radical species, and its direct delivery, while possible, has significant limitations. Instead, it is safer and necessary to deliver NO using a reactive precursor ²⁵.

In biotechnological applications, the delivery on NO is mainly mediated via donor molecules 2,26 . 57 58 NO release rate is mediated by the chemical structure of the donor itself and the chemical environment including pH, light temperature and enzymatic reactions ^{2,27,28}. NO donors differ in 59 60 the kinetics and intensity of the generated NO, in both *in vitro* and *in vivo* conditions²⁹. In plant, 61 the process of donor decomposition depends on numerous factors. For example, in S-nitrosothiols 62 NO release rate is affected by plant metabolites, such as in the presence of reducing agents, i.e. ascorbic acid and reduced glutathione (GSH)^{29,30}. Endogenous nitric oxide may be additionally 63 64 stimulated or inhibited by live plant tissue, thus it is necessary to take into consideration these aspects when monitoring the amount of NO released by the donor 29 . 65

As previously mentioned, light affects NO releasing rate, for example sodium nitroprusside (SNP) has been shown to be very photosensitive ²⁹. *In vivo* experiments supported the hypothesis that releasing of NO from SNP varies according with light penetration, with highest NO release in epidermal cells exposed to the light ²⁹.

Of great importance is also the potential neutralization/toxicity of the donors once depleted from the nitric oxide. Some of them may release toxic, active compounds during their decomposition.
Plant and animal toxicity of by-products needs to be more fully confirmed, especially as subsequent reactions between decomposition products ³¹.

74

75 Different NO releasing-platforms have been extensively reviewed ^{3,25,32-36}. Examples are: 76 nanoparticles ^{37,38}, silica gel ^{39,40}, hydrogels, xerogels, dendrimers ⁴¹⁻⁴⁴ and small molecular weight 77 donor molecules ^{37,38}. Several reviews summarize the role small donors or nanocarriers for nitric 78 oxide delivery affecting plant physiological processes ^{45,46}. Due to the wide literature on the fundamental features of NO signaling in plants and animal, this mini review only focuses on the use of donors that have shown potential biotechnological applications in agriculture. Use of donors in field treatment has not yet been applied, but a number of potential applications have been identified. This review provides insights on (i) the potential role of donors in plant production (Table 1), (ii) potential use of donors in animal production (Table 2), and (iii) future approaches to explore the use and applications of donors for the benefit of agriculture.

87

88 NO donors for controlling seed vigor and dormancy.

89 Breaking dormancy involves tightly controlled signaling pathways that are important to maximize 90 growth and crop yield. Selection against dormancy has been always behind any domestication effort ⁴⁷. In some cases, the aim of removing dormancy has not been achieved, and in others, it 91 92 has gone too far resulting in susceptibility of pre-harvest sprouting ⁴⁷. Mechanical and chemical 93 strategies have been employed to reduce seed dormancy, such as abrasion of seed or exposure to H₂SO₄ or NaOCl. However, less aggressive molecules may find application in this context ⁴⁸. As 94 95 reviewed, SNP can find application to improve germination of seeds, also considering that NO is a signaling molecule active at very low concentrations (nmolL⁻¹ or pmolL⁻¹) and a minimal 96 97 quantity would be required for an effective treatment.

98 When seed dormancy was studied in *Amaranthus retroflexus* (seeds can only germinate over a 99 limited, high temperature range) exposure to SNP showed that relative dormancy of seeds was 100 significantly released. Interestingly, dormancy was reverted by using NO specific scavenger 2-101 phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO), confirming that NO signaling 102 pathway plays a role in the dormancy release and germination of *A. retroflexus* seeds ^{46,49}. 103 Interesting data about germination are also available for *Malus domestica* (apple), which has an

104 important commercial value on the market. In order to germinate, apple seeds must undergo a 3-

105 month long cold stratification. A pre-treatment with SNP resulted in an increase of 60% in 106 germination of dormant apple embryos (when compared with the untreated controls), and this 107 effect has been associated with marked increases in H_2O_2 and O_2 concentrations in the embryos 108 at early germination stages. Not-dormant embryos germinated well and young seedlings grown 109 from non-dormant embryos did not exhibit any morphological anomalies, such as asymmetric 110 growth ⁵⁰. However, further research should be conducted to clarify occurrence of anomalies in 111 yield and quality.

112 Nitric oxide was also identified to foster induction of new rootlets in *Panax ginseng*⁵¹. NO 113 released by SNP and S-Nitroso-N-acetyl-DL-penicillamine (SNAP) was shown to activate 114 NADPH oxidase activity, resulting in higher number of new rootlets in the adventitious root 115 explants. NO supplied through the donor would enhance antioxidant enzymatic activity reducing 116 H₂O₂ levels, lipid peroxidation, modulation of ascorbate and non-protein thiol concentrations in the adventitious roots ⁵¹. Interestingly, as complementary approach, the NO scavenger (PTIO, 2-117 118 phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl3-oxide) was used to reveal the contribution of NO 119 on the formation of new rootlets. The authors showed a significant decline in number of new rootlets under PTIO treatment ⁵¹. Concluding, low seed vigor and dormancy were controlled by 120 treating seeds with NO donors, in particular SNP⁴⁸. The use of nitric oxide donors may find 121 122 potential application in reducing long dormancy and improve germination rate.

123

124 NO donors for controlling salt stress

Seed germination is affected by salt stress. Twenty percent of the world's cultivated land and nearly half of all irrigated lands are currently affected by salinity ⁵². High salinity conditions can cause plant death or decreased productivity at the whole-plant level ⁵³. The complex regulatory processes of salt stress involve control of water flux and cellular osmotic adjustment, balance of cellular ion homeostasis which ultimately has impact on the cellular energy supply and redox homeostasis ⁵³⁻⁵⁵. 131 The use of donors have found a few encouraging applications to cope with salt stress. In peppers, 132 the application of SNP has been shown to alleviate the oxidative damage caused by salt stress, 133 which was mainly achieved by means of enhancing anti-oxidative capability in pepper seedlings 134 ⁵⁶. Studies in barley (*Hordeum vulgare*) also confirm the advantageous application of SNP during 50 mM NaCl salt stress response ⁵³. Barley leaves exposed to 50 µM SNP alleviated the damage 135 136 of salt stress reflected by decreased ion leakage, malendialdehyde, carbonyl, and hydrogen 137 peroxide content. In addition exposure to SNP increased the activities of superoxide dismutases, ascorbate peroxidases, and catalases ^{52,53,57}. SNP has also been used to pre-treat seed to enhance 138 139 seed germination of wheat in high salinity (Triticum aestivum L., cv. Huaimai 17). Seeds were 140 exposed to 0.1 mM SNP plus 300 mM NaCl for 20 h before germination, which increased 141 germination rate, weights of coleoptile and radicle when compared with NaCl alone. As factors 142 contributing to such plant development, authors identified that SNP enhanced seed respiration 143 rate, ATP synthesis, soluble sugar content and decreasing starch content. In addition the treatment 144 increased the activities of superoxide dismutase and catalase and decreased the release rate of malondialdehyde, hydrogen peroxide (H₂O₂), and superoxide anions (O₂ $^{-}$) in the mitochondria ⁵⁸. 145

146

147 NO donors for controlling heavy metal stress

Most of the heavy metals exert their toxicity with two principal mechanisms: as redox active or not-redox active mechanisms ⁵⁹. Autoxidation of redox active metals such as Fe^{2+} or Cu^+ may results in O_2^{\bullet} formation and subsequently in H_2O_2 and OH^{\bullet} . The toxicity mechanisms of notredox active metals are due to their ability to bind to oxygen, nitrogen and sulphur atoms ⁵⁹.

152 Copper is an essential micronutrient for plants and it is present in soil. However, copper poses 153 toxicity at high concentrations possibly by inducing oxidative stress ⁶⁰. With the increase of 154 copper stress, the germination percentage of seeds decreases gradually ⁶⁰. Pre-treatment of wheat 155 seeds with SNP significantly improved wheat seeds germination and alleviated oxidative stress 156 caused by copper toxicity. Treated seeds retained higher amylase activities when compared with 157 the un-treated controls. Authors identified that seed-pretreatment with SNP stimulated the 158 activities of superoxide dismutase and catalase, decreased the activities of lipoxygenases, 159 sustained a lower level of malondialdehyde, and interfered with hydrogen peroxide excessive 160 accumulation compared with the control, thereby enhancing the antioxidative capacity of wheat 161 seeds under copper stress ⁶¹.

162 Oxidative stress induced by iron was also modulated by exposing sorghum seedlets (Sorghum bicolor (L.) Moench) to SNP or diethylenetriamine NONOate (DETA NONOate)⁶². Authors 163 showed that incubation of seeds with 1 mmolL⁻¹ SNP protected against oxidative damage to lipids 164 165 and maintained membrane integrity. The content of the siderophore deferoxamine-Fe (III) 166 complex significantly increased in homogenates of sorghum embryonic axes excised from seeds 167 incubated in the presence of 1 mM SNP or1 mM DETA NONOate as compared to the control (SNP 19 \pm 2 nmol Fe g⁻¹ fresh weight (fw), DETA NONOate 15.2 \pm 0.5 nmol Fe g⁻¹ fw, and 168 Control 8 ± 1 nmol Fe g⁻¹, fw). The data presented by Jasid and collaborators (2008) showed that 169 170 in exposed sorghum embryonic axes, membranes and proteins were preserved from oxidative 171 damage during the initial steps of development. The treatment seemed to exert a double effect in 172 sorghum by increasing iron availability and preventing its toxicity ⁶².

Use of SNP was effective in the protection of wheat roots from Cadmium-induced oxidative 173 damage ⁶³. Cadmium is also present in the environment and it can induce oxidative stress in 174 175 plants. Pal Singh (2008) and co-workers identified that SNP has protective role against cadmium toxicity ⁶³. 50 or 250 µM cadmium alone or in combination with 200 µM SNP were delivered 176 177 hydroponically on grown wheat roots for 24 h. Supplementation of SNP in presence of cadmium 178 significantly reduced the Cd-induced lipid peroxidation, H₂O₂ content and electrolyte leakage in 179 wheat roots ⁶³. SNP supply with cadmium also decreased activities of scavenging enzymes, such as superoxide dismutase, guaiacol peroxidase, catalase, and glutathione reductase ⁶³. 180

181 Further examples of reduced toxicity of lead and cadmium has also been described by Kopyra and

182 Gwóźdź (2003) in lupin (*Lupinus luteus* L. cv. Ventus) seed germination ⁶⁴. Pretreatment of lupin

183 seedlings for 24 h with 10 µM SNP resulted in efficient reduction of the detrimental effect of 184 lead, cadmium and sodium chloride. In agreement with literature, the inhibitory effect of heavy 185 metals on root growth was accompanied by increased activity of superoxide dismutase, peroxidase and catalase ⁶⁴. Similarly in rice, application of 30 µM SNP counteracted partly 186 187 100 μ M cadmium toxicity by reducing H₂O₂ and malondialdehyde contents of Cd-exposed 188 seedlings. SNP markedly stimulated the activities of superoxide dismutase, ascorbate peroxidase, 189 guaiacol peroxidase and catalases. With reference to accumulation, Cd accumulation in seedlings 190 was also significantly reduced by SNP⁶⁵.

191 On the basis of current literature, it can be reasonably assumed the protective effect of NO in 192 stressed seeds and roots may be at least partly due to the stimulation of antiradicals mechanisms 193 and/or direct scavenging of the superoxide anion ⁶⁴. NO donors could be used to improve soil 194 management practices or seed preparation for sustainable use in salt or heavy metal affected soils 195 in future applications ⁵³.

196

197 Wound healing

198 Nitric oxide donors could also find biotechnological applications in wound healing. Wounding is 199 a special type of stress that plants encounter during pathogens attack. Plants have evolved 200 constitutive and induced defense mechanisms to properly respond to wounding and prevent infections ⁶⁶. After the wound, oligogalacturonides play a pivotal role in eliciting defense 201 202 responses, including production of ROS, pathogenesis-related proteins, nitric oxide, phytoalexins, glucanase, chitinase, and callose that protect plants against pathogen infections ^{66,67}. Endogenous 203 204 NO plays a pivotal role in plant responses to wounding. Studies in pelargonium leaves 205 (Pelargonium peltatum L.) showed the central role that NO plays in NO-mediated lignification and callose deposition during wound healing ⁶⁸. NO caused marked increase in H₂O₂ level 206 207 accompanied by time-dependent inhibition of catalase and ascorbate peroxidase activity. 208 NO/H_2O_2 ratio restricted the depletion of the low-molecular weight antioxidant pool (i.e. ascorbic acid and thiols) and was positively correlated with sealing and reconstruction in injured
 pelargonium leaves leading by lignin formation and callose deposition ⁶⁸.

París and coworkers showed that SNP can be applied to speed the wound healing response of 211 212 potato leaves ⁶⁹. Deposition of the cell-wall glucan callose was induced by the application of 213 SNP, and such induction was additive to the wound-induced callose production. Exposure to SNP showed an accumulation of wound-related phenylalanine ammonia-lyase enzyme ⁶⁹. In another 214 215 study, SNP has also been used to control cellulose synthesis in tomato (Solanum lycopersicum) roots ⁷⁰. Nitric oxide affected cellulose content in roots in a dose dependent manner: pmolL⁻¹ of 216 SNP increased cellulose content in roots while higher concentrations of nmolL⁻¹ of SNP had the 217 218 opposite effect: In addition, the expression of tomato cellulose synthase (SICESA) transcripts 219 SICESA1 and SICESA3 levels were repressed by increasing SNP concentrations ⁷⁰.

The above mentioned experimental evidences show the possible positive effect that NO donor may promote in restoration of wounded tissue through stabilization of the cell redox state and stimulation of the wound scarring processes ^{68,71}. In terms of agricultural applications, SNP might potentiate the healing responses in plants leading to a rapid restoration of the damaged tissue via wound-induced callose and cell wall cellulose production ^{69,70}.

225

226 Ripening

227 Of great interests are a few studies aimed in understanding the contribution of NO donors to the 228 ripening process. Gaseous NO in Prunus persica (peach) affects the differential accumulation of 229 proteins involved in ripening and senescence, consequently the action of SNP has been investigated to control ripening processes in plants ⁷². In a study by Hu and coworkers (2014) ⁷³, 230 231 mangos 'Guifei' treated with SNP exhibited a delay in ripening evidenced by the reduction of 232 metabolic cascades typically involved in the ripening process such as softening, flesh yellowing, 233 changes in soluble solid contents, titratable acidity, peaks of the respiration rate and ethylene production ⁷³. SNP treatment also increased total phenolics, flavonoids and lignin. ⁷³. 234

Among ripening processes, increase in soluble sugars and synthesis of secondary metabolites are important factors that support fruit's taste. Further applications of donors can be also found in herbal medicine. In *Ginkgo biloba*, for example, SNP treatments have increased soluble sugar, proline and secondary metabolite ⁷⁴⁻⁷⁶.

239

240 Post harvested shelf life

Consumers judge the quality of fresh fruit based on the appearance and firmness at the time of the purchase ⁷⁷. Maturity stages ultimately dictate the shelf life and fruit qualities ⁷⁷. A comprehensive review on the applications of NO gas and donors to cope with postharvest stress of fruits, vegetables and ornamentals is available by Wills and coworkers ⁷⁷. In this paragraph, only applications of NO donors in extending produces' shelf life have been reviewed.

246 Post-harvest strawberries and mushrooms were exposed to diethylenetriamine/nitric oxide 247 (DETANO), a solid NO-donor compound, in order to extent fruit shelf-life. The treatment was 248 found to quantitatively liberate NO in the presence of a range of acidic substances including citric acid²⁴. According to the authors, a solid mixture of DETANO, citric acid and wheat starch (added 249 250 as a filler and moisture absorbent) at the ratio of 1:10:20 was found to be stable for at least six 251 months when stored in dry air. When the dry mixture was placed in a container with strawberries 252 or mushrooms, the moisture released by the produce activated the mixture, resulting in a similar 253 extension of postharvest life as achieved by direct fumigation with the nitric oxide gas. The 254 author proposed a commercial use of such compounds via tablets or sachets.

Use of DETANO was also reported to inhibit browning in apple slices ^{78,79}. Fresh-cut apples (*Malus domestica* Borkh. 'Granny Smith') were dipped in a DETANO solution and the development of surface browning was examined during subsequent storage at 0°C and 5°C. Authors found that dipping in the DETANO solution inhibited the development of browning, considering the solution was slightly acidic buffered. Optimal treatment to delay browning was the dipping of slices in 10 mg/L DETANO dissolved in a phosphate buffer at pH 6.5. The 261 extension in post-harvest life achieved by DETANO was about 170% (compared to untreated 262 samples) and the extension in post-harvest life compared to water-dipped slices was about 100%. 263 Interestingly, 'Granny Smith' apple slices exposed to DETANO solution before storage at 5 °C 264 showed lower level of total phenolics, inhibition of polyphenolic oxidase activity, reduced ion 265 leakage and reduced rate of respiration but did not show significant effect on ethylene production or lipid peroxide level as measured by malondialdehyde and hydrogen peroxide levels ⁷⁹. A 266 267 comprehensive review of the applications of NO gas and donors to cope with postharvest stress of fruits, vegetables and ornamentals has recently highlighted by Wills and coworkers ²⁴. 268

269

270 *Co-application of nitric oxide donors with fertilizers.*

271 To our knowledge only one work is available on co-application on NO donors and fertilizers, 272 showing perhaps potential applications. Co-application of SNP into a controlled release fertilizer 273 or sprayed on leaves to supply NO was recently used to cope with iron deficiency stress in peanut 274 (Arachis hypogaea Linn) grown on calcareous soils. Under such conditions, iron deficiency 275 reduces plant growth and chlorophyll content. Iron homeostasis represents an important topic in 276 the plant mineral nutrition, since iron is an essential cofactor for fundamental biochemical activities ^{80,81}. Iron can be deficient under alkaline and oxidative conditions ⁸¹. An interconversion 277 278 between different redox forms based on the iron and NO status of the plant cells might be the core 279 of a metabolic process driving plant iron homeostasis 82 . 5.63 mg SNP and 18.90 mg FeSO₄ per g of fertilizer were applied in conjunction with 150 g Kg⁻¹ nitrogen, 150 g Kg⁻¹ P₂O₅, and 150 g Kg⁻¹ 280 ¹ K₂O. The treatment improved peanut growth and alleviated leaf interveinal chlorosis when SNP 281 282 was co-applied in presence of iron. The photochemical efficiency and photochemical maximum 283 efficiency of photosystem II (PSII) increased when compared with the not treated. Minimum 284 fluorescence yield decreased under NO-treated condition, which supported the protective effect of 285 NO on PSII in peanut leaves. SNP treatment increased the activities of antioxidant enzymes, and reduced malondialdehyde accumulation⁸³. 286

287

288 Perspectives on the use of nanoparticles releasing nitric oxide in produce and crop industry

The application of NO releasing nanoparticles in produce and crop industry is still at a preliminary stage. To our knowledge, liposomes or chitosan nanoparticles capable of mediating NO release have not been used in agriculture ⁴⁵. Polymeric nanoparticles have been proposed as cvtotoxic agents to treat plant parasites ⁴⁵.

- Formulation of dendrimers has also attracted attention for increasing the efficacy of active chemicals in agriculture ⁴⁵. Dendrimers are synthetic polymers with branching structure that rely on supramolecular properties which are new dimensions for targeting biofilms featuring drug encapsulation, binding and delivery to the target site ^{84,85}. Dendrimers act as a platform for NO
- transport and delivery but their application in agriculture is still not explored 3,32 .
- Finally, the donor S-nitrosoglutathione (GSNO) encapsulated in alginate/chitosan nanoparticles might be potentially used as controlled release systems applied via foliar route ⁸⁶.
- 300

301 Perspective on the use of NO donors in livestock industry and dairy production

302 Only few NO donors currently show potential applications in livestock industry and dairy 303 production. Indeed, current literature refers mainly to the use of donors for the study of the NO-304 mediated response on cellular physiology. Extensive bibliographical research in this field has 305 shown that only a few papers support potential applications.

306 Donors could find applications in the treatment and prevention of bovine mastitis^{87,88}.

307 Alginate/chitosan or chitosan/sodium tripolyphosphate were used to encapsulate the NO-releasing

- 308 molecule mercaptosuccinic acid (MSA) generating S-nitroso-MSA-alginate/chitosan particles ⁸⁸.
- 309 Staphylococcus aureus and Escherichia coli isolated from subclinical and clinical bovine mastitis

310 were killed by using up to 125 μg/mL of S-nitroso-MSA-alginate/chitosan particles. Indeed, the

- 311 results indicated that NO-releasing polymeric particles may be an interesting approach to
- 312 combating bacterial antibiotic resistances ⁸⁸.

313 NO donors could also find application in cow reproduction. Preliminary experiments with SNP 314 showed that up to 100μmolL⁻¹ of SNP differentially modulated oviductal contraction in Holstein 315 cows depended on the type of muscular strips. Results showed the estrous phase-dependent 316 changes related to the NO metabolic cascades could be of physiological importance to the oviduct 317 for secretory and ciliary functions involved in gametes and embryo(s) transportation during 318 reproduction ⁸⁹.

A similar experiment aimed to understand the role of NO in reproduction showed the contribution of the donor NOC-18 which induced the release of spermatozoa from the oviductal epithelia. As complementary approach sperm oviduct interaction was reversed by the addition of 30 μ g/ml hemoglobin, a NO scavenger ⁹⁰.

323 A few studies are available on the role of NO donors to the control of livestock weight gain ⁹¹. In 324 these experiments, 50 mg/day of diethylenetriamine-NO (DETA) supplemented to lactating sows 325 increased their production performance and growth of the nursing piglets. Body weights and 326 backfat thickness of sows, as well as body weights of piglets were measured at 0, 7, 14, and 21 327 days of lactation. Significant weight gain in the treatment (40.5 kg) greater than the not treated 328 (36.5 kg) was achieved up to 21 days of lactation. Dietary DETA supplementation to lactating 329 sows showed an improved growth of nursing piglets possibly by enhancing nutrient outputs in 330 milk due to increased blood flow across the mammary gland ⁹¹. On the contrary, SNP treatment 331 has not shown the same effect of nutrient uptake in chickens. SNP intraperitoneally administered 332 to chicks did not show any significant change in the nutrient uptake. Authors concluded that in 333 chicken, NO concentrations above physiological levels was not an important factor in the regulation of food intake ⁹². 334

335

336 Conclusion

The use of NO donors in agriculture is still in its infancy and applications are only at theexperimental level. However the technology of NO donors is promising, in particular when used

as an additive agent. The advantage of using NO donors is the extremely low effective
concentrations (picomolar or nanomolar). In addition, donors have recently been proposed as
dispersant agents to reduce biofilm biomass of pathogen such as *Salmonella*, pathogenic *Escherichia coli* and *Listeria* from materials of industrial interests ^{26,93-95}.

343 Therefore, NO donors could be used to obtain multiple effects during the same application, from 344 controlling bacterial pathogens to production. Controlling animal health and safety in dairy 345 production, for example, could be another interesting future application to exploit the potential of 346 NO donors.

347

348 Acknowledgements

I do extend my gratitude to Dr. Max Teplitski for his helpful comments during the preparation ofthis manuscript.

351

352

353 References

1 Howard MD, Hood ED, Zern B, Shuvaev VV, Grosser T and Muzykantov VR, Nanocarriers for

355 vascular delivery of anti-inflammatory agents. *Annu Rev Pharmacol Toxicol* 54:205-226

356 (2014).

2 Wang PG, Cai TB and Taniguchi N, *Nitric oxide donors*. Wiley-VCH Verlag GmbH & Co.

358 KGaA, (2005).

359 3 Seabra AB, Justo GZ and Haddad PS, State of the art, challenges and perspectives in the design

- 360 of nitric oxide-releasing polymeric nanomaterials for biomedical applications. *Biotechnol Adv*361 33:1370-1379 (2015).
- 362 4 Kim J, Saravanakumar G, Choi HW, Park D and Kim WJ, A platform for nitric oxide delivery.

363 *J Mater Chem B* **2**:341-356 (2014).

14

- 364 5 Georgii JL, Amadeu TP, Seabra AB, de Oliveira MG and Monte-Alto-Costa A, Topical S-
- 365 nitrosoglutathione-releasing hydrogel improves healing of rat ischaemic wounds. *J Tissue Eng*

366 *Regenerative Med* **5**:612-619 (2011).

- 367 6 Naghavi N, De Mel A, Alavijeh OS, Cousins BG and Seifalian AM, Nitric oxide donors for
- 368 cardiovascular implant applications. *Small* **9**:22-35 (2013).
- 369 7 Planchet E and Kaiser WM, Nitric oxide production in plants: Facts and fictions. *Plant Signal*
- *Behav* **1**:46-51 (2005).
- 8 Yu M, Lamattina L, Spoel SH and Loake GJ, Nitric oxide function in plant biology: a redox cue
 in deconvolution. *New Phytol* 202:1142-1156 (2014).
- 373 9 Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C, Zuo J and Dong X, Plant
- immunity requires conformational charges of NPR1 via S-nitrosylation and thioredoxins.
- 375 *Science* **321**:952-956 (2008).
- 376 10 Wang Y, Feechan A, Yun B, Shafiei R, Hofmann A, Taylor P, Xue P, Yang F, Xie Z, Pallas
- 377 JA, Chu C and Loake GJ, S-Nitrosylation of AtSABP3 Antagonizes the expression of plant
- 378 immunity. *J Biol Chem* **284**:2131-2137 (2009).
- 379 11 Romero-Puertas MC, Laxa M, Mattè A, Zaninotto F, Finkemeier I, Jones AME, Perazzolli M,
- 380 Vandelle E, Dietz K and Delledonne M, S-Nitrosylation of peroxiredoxin II E promotes
- 381 peroxynitrite-mediated tyrosine nitration. *Plant Cell* **19**:4120-4130 (2007).
- 382 12 Zhang A, Jiang M, Zhang J, Ding H, Xu S, Hu X and Tan M, Nitric oxide induced by
- 383 hydrogen peroxide mediates abscisic acid-induced activation of the mitogen-activated protein
- kinase cascade involved in antioxidant defense in maize leaves. *New Phytol* **175**:36-50 (2007).
- 385 13 Cantrel C, Vazquez T, Puyaubert J, Rezé N, Lesch M, Kaiser WM, Dutilleul C, Guillas I,
- 386 Zachowski A and Baudouin E, Nitric oxide participates in cold-responsive
- 387 phosphosphingolipid formation and gene expression in *Arabidopsis thaliana*. New Phytol
- **189**:415-427 (2011).

- 14 Lombardo MC, Graziano M, Polacco JC and Lamattina L, Nitric oxide functions as a positive
 regulator of root hair development. *Plant Signaling Behav* 1:28-33 (2006).
- 391 15 Kwon E, Feechan A, Yun B, Hwang B, Pallas JA, Kang J and Loake GJ, AtGSNOR1 function
- is required for multiple developmental programs in *Arabidopsis*. *Planta* **236**:887-900 (2012).
- 393 16 Hu X, Neill SJ, Tang Z and Cai W, Nitric oxide mediates gravitropic bending in soybean
- 394 roots. *Plant Physiol* **137**:663-670 (2005).
- 395 17 Graziano M and Lamattina L, Nitric oxide accumulation is required for molecular and
- physiological responses to iron deficiency in tomato roots. *Plant J* **52**:949-960 (2007).
- 397 18 Arasimowicz-Jelonek M and Floryszak-Wieczorek J, Nitric oxide: an effective weapon of the
- 398 plant or the pathogen? *Mol Plant Pathol* **15**:406-416 (2014).
- 399 19 Crane B, The enzymology of nitric oxide in bacterial pathogenesis and resistance. *Biochem*
- 400 Soc Trans **36**:1149-1154 (2008).
- 401 20 Arasimowicz-Jelonek M and Floryszak-Wieczorek J, Nitric oxide in the offensive strategy of

402 fungal and oomycete plant pathogens. *Front Plant Sci* 7:252 (2016).

403 21 Green J, Rolfe MD and Smith LJ, Transcriptional regulation of bacterial virulence gene

404 expression by molecular oxygen and nitric oxide. *Virulence JID* -5:8 (2014).

- 405 22 Firoved AM, Wood SR, Ornatowski W, Deretic V and Timmins GS, 419947; Microarray
- 406 analysis and functional characterization of the nitrosative stress response in nonmucoid and
- 407 mucoid *Pseudomonas aeruginosa*. J Bacteriol **186**:4046-4050 (2004).
- 408 23 Xiong Y and Liu Y, Biological control of microbial attachment: a promising alternative for
- 409 mitigating membrane biofouling. *Appl Microbiol Biotechnol* **86**:825-837 (2010).
- 410 24 Wills RBH, Pristijono P and Golding JB, Nitric oxide and postharvest stress of fruits,
- 411 vegetables and ornamentals. in *Nitric Oxide Action in Abiotic Stress Responses in Plants*, eds.
- 412 by Khan NM, Mobin M, Mohammad F and Corpas JF, Springer International Publishing,
- 413 Cham, pp. 221-238 (2015).

- 414 25 Quinn JF, Whittaker MR and Davis TP, Delivering nitric oxide with nanoparticles. J
- 415 *Controlled Release* **205**:190-205 (2015).
- 416 26 Barraud N, Storey MV, Moore ZP, Webb JS, Rice SA and Kjelleberg S, Nitric oxide-mediated
- 417 dispersal in single- and multi-species biofilms of clinically and industrially relevant
- 418 microorganisms. *Microb Biotechnol* **2**:370-378 (2009).
- 419 27 Maragos CM, Morley D, Wink DA, Dunams TM, Saavedra JE, Hoffman A, Bove AA, Isaac
- 420 L, Hrabie JA and Keefer LK, Complexes of NO with nucleophiles as agents for the controlled
- 421 biological release of nitric oxide: Vasorelaxant effects. *J Med Chem* **34**:3242-3247 (1991).
- 422 28 Keefer LK, Nims RW, Davies KM and Wink DA, "NONOates" (1-substituted diazen-1-ium-
- 423 1,2-diolates) as nitric oxide donors: Convenient nitric oxide dosage forms. *Method Enzymol*424 268:281-293 (1996).
- 425 29 Floryszak-Wieczorek J, Milczarek G, Arasimowicz M and Ciszewski A, Do nitric oxide
- 426 donors mimic endogenous NO-related response in plants? *Planta* **224**:1363-1372 (2006).
- 427 30 Noctor G, Mhmadi A, Chaouch S, Han Y, Neukermans J, Marquez-Garcia B, Queval G and
- 428 Foyer CH, Glutathione in plants: an integrated overview. *Plant, Cell Environ* **35**:454-484
- 429 (2012).
- 430 31 Miller MR and Megson IL, Recent developments in nitric oxide donor drugs. *Br J Pharmacol*431 151:305-321 (2007).
- 432 32 Roveda Júnior AC and Douglas Wagner F, Nitric oxide releasing-dendrimers: An overview.
- 433 Braz J Pharm Sci **49**:1-14 (2013).
- 434 33 Eroy-Reveles A and Mascharak PK, Nitric oxide-donating materials and their potential in
- 435 pharmacological applications for site-specific nitric oxide delivery. *Future Medicinal*
- 436 *Chemistry* **1**:1497-1507 (2009).
- 437 34 Tfouni E, Truzzi DR, Tavares A, Gomes AJ, Figueiredo LE and Franco DW, Biological
- 438 activity of ruthenium nitrosyl complexes. *Nitric Oxide* **26**:38-53 (2012).

- 439 35 Riccio DA and Schoenfisch MH, Nitric oxide release: part I. Macromolecular scaffolds. *Chem*440 Soc Rev 41:3731-3741 (2012).
- 441 36 Jen MC, Serrano MC, van Lith R and Ameer GA, Polymer-based nitric oxide therapies:
- 442 Recent insights for biomedical applications. *Adv Funct Mater* **22**:239-260 (2012).
- 443 37 Friedman AJ, Han G, Navati MS, Chacko M, Gunther L, Alfieri A and Friedman JM,
- 444 Sustained release nitric oxide releasing nanoparticles: characterization of a novel delivery
- platform based on nitrite containing hydrogel/glass composites. *Nitric Oxide* **19**:12-20 (2008).
- 446 38 Seabra AB and Duran N, Nitric oxide-releasing vehicles for biomedical applications. *J Mater*
- 447 *Chem* **20**:1624-1637 (2010).
- 448 39 Zanichelli PG, Sernaglia RL and Franco DW, Immobilization of the RuII(edta)NO+] Ion on
- the surface of functionalized silica gel. *Langmuir* **22**:203-208 (2006).
- 450 40 Doro FG, Rodrigues-Filho UP and Tfouni E, A regenerable ruthenium tetraammine nitrosyl
- 451 complex immobilized on a modified silica gel surface: Preparation and studies of nitric oxide
- 452 release and nitrite-to-NO conversion. *J Colloid Interface Sci* **307**:405-417 (2007).
- 453 41 Stasko NA, Fischer TH and Schoenfisch MH, S-Nitrosothiol-modified dendrimers as nitric
- 454 oxide delivery vehicles. *Biomacromolecules* **9**:834-841 (2008).
- 455 42 Stasko NA and Schoenfisch MH, Dendrimers as a Scaffold for Nitric Oxide Release. J Am
- 456 *Chem Soc* **128**:8265-8271 (2006).
- 457 43 Lu Y, Sun B, Li C and Schoenfisch MH, Structurally diverse nitric oxide-releasing
- 458 poly(propylene imine) dendrimers. *Chem Mater* **23**:4227-4233 (2011).
- 459 44 Benini PGZ, McGarvey BR and Franco DW, Functionalization of PAMAM dendrimers with
- 460 [RuIII(edta)(H2O)]–. *Nitric Oxide* **19**:245-251 (2008).
- 461 45 Seabra AB, Rai M and DurÃ; n N, Nano carriers for nitric oxide delivery and its potential
- 462 applications in plant physiological process: A mini review. J Plant Biochem Biot 23:1-10
- 463 (2013).

- 464 46 Krasylenko YA, Yemets AI and Blume YB, Functional role of nitric oxide in plants. *Russian J*465 *Plant Physiol* 57:451-461 (2010).
- 466 47 Benech-Arnold R, Rodriguez MV and Batlla D, Seed Dormancy and Agriculture, Physiology.
- 467 in *Encyclopedia of Sustainability Science and Technology*, ed. by Meyers ARSpringer New
- 468 York, New York, NY, pp. 1-14 (2015).
- 469 48 Haynes JG, Pill WG and Evans TA, Seed treatments improve the germination and seedling
- 470 emergence of switchgrass (*Panicum virgatum* L.). *HortScience* **32**:1222-1226 (1997).
- 471 49 Liu X, Deng Z, Cheng H, He X and Song S, Nitrite, sodium nitroprusside, potassium
- 472 ferricyanide and hydrogen peroxide release dormancy of Amaranthus retroflexus seeds in a
- 473 nitric oxide-dependent manner. *Plant Growth Regul* **64**:155-161 (2010).
- 474 50 Gniazdowska A, Krasuska U, Czajkowska K and Bogatek R, Nitric oxide, hydrogen cyanide
- and ethylene are required in the control of germination and undisturbed development of young
- 476 apple seedlings. *Plant Growth Regul* **61**:75-84 (2010).
- 477 51 Tewari RK, Hahn E and Paek K, Function of nitric oxide and superoxide anion in the
- 478 adventitious root development and antioxidant defence in *Panax ginseng*. *Plant Cell Rep*
- **27**:563-573 (2008).
- 480 52 Zhu J, Plant salt tolerance. *Trends Plant Sci* **6**:66-71 (2001).
- 481 53 Li Q, Niu H, Yin J, Wang M, Shao H, Deng D, Chen X, Ren J and Li Y, Protective role of
- 482 exogenous nitric oxide against oxidative-stress induced by salt stress in barley (*Hordeum*
- 483 *vulgare*). Colloid Surface B **65**:220-225 (2008).
- 484 54 Golldack D, Li C, Mohan H and Probst N, Tolerance to drought and salt stress in plants:
- 485 Unraveling the signaling networks. *Front Plant Sci* **5**:151 (2014).
- 486 55 Noctor G and Foyer CH, Ascorbate and Glutathione: Keeping active oxygen under control.
- 487 *Annu Rev Plant Physiol Plant Mol Biol* **49**:249-279 (1998).

- 488 56 Yu Ji-hua, Yong Shan-yu, Zhang Jie-bao, Xu Xiao-yun, Yan Xiao-hua and Wang Yu-jie,
- 489 Protective effects of exogenous nitric oxide on oxidative damage in pepper seedlings under

490 NaCl stress. *Xibei Zhiwu Xuebao* **27**:1801-1806 (2007).

- 491 57 Parida AK and Das AB, Salt tolerance and salinity effects on plants: a review. *Ecotoxicol*
- 492 *Environ Saf* **60**:324-349 (2005).
- 493 58 Zheng C, Jiang D, Liu F, Dai T, Liu W, Jing Q and Cao W, Exogenous nitric oxide improves
- seed germination in wheat against mitochondrial oxidative damage induced by high salinity.

495 *Environ Exp Bot* **67**:222-227 (2009).

- 496 59 Schützendübel A and Polle A, Plant responses to abiotic stresses: heavy metal-induced
- 497 oxidative stress and protection by mycorrhization. *J Exp Bot* **53**:1351-1365 (2002).
- 498 60 Gill T, Dogra V, Kumar S, Ahuja PS and Sreenivasulu Y, Protein dynamics during seed
- germination under copper stress in *Arabidopsis* over-expressing Potentilla superoxide
- 500 dismutase. J Plant Res 125:165-172 (2011).
- 501 61 Hu K, Hu L, Li Y, Zhang F and Zhang H, Protective roles of nitric oxide on germination and
- antioxidant metabolism in wheat seeds under copper stress. *Plant Growth Regul* 53:173-183
 (2007).
- 504 62 Jasid S, Simontacchi M and Puntarulo S, Exposure to nitric oxide protects against oxidative
 505 damage but increases the labile iron pool in sorghum embryonic axes. *J Exp Bot* 59:3953-3962
 506 (2000)
- 506 (2008).
- 507 63 Singh HP, Batish DR, Kaur G, Arora K and Kohli RK, Nitric oxide (as sodium nitroprusside)
- 508 supplementation ameliorates Cd toxicity in hydroponically grown wheat roots. *Environ Exp*
- 509 Bot 63:158-167 (2008).
- 510 64 Kopyra M and Gwóźdź EA, Nitric oxide stimulates seed germination and counteracts the
- 511 inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus. *Plant Physiol*
- 512 *Biochem* **41**:1011-1017 (2003).

20

- 513 65 He J. Ren Y. Chen X and Chen H. Protective roles of nitric oxide on seed germination and
- 514 seedling growth of rice (Oryza sativa L.) under cadmium stress. Ecotoxicol Environ Saf 515 **108**:114-119 (2014).
- 516 66 Savatin DV, Gramegna G, Modesti V and Cervone F, Wounding in the plant tissue: the
- 517 defense of a dangerous passage. Front Plant Sci 5 (2014).
- 518 67 Ferrari S, Savatin DV, Sicilia F, Gramegna G, Cervone F and De Lorenzo G,
- 519 Oligogalacturonides: plant damage-associated molecular patterns and regulators of growth and 520 development. Frontiers in Plant Science 4 (2013).
- 521 68 Arasimowicz M, Floryszak-Wieczorek J, Milczarek G and Jelonek T, Nitric oxide, induced by
- 522 wounding, mediates redox regulation in pelargonium leaves. *Plant Biol* **11**:650-663 (2009).
- 523 69 París R, Lamattina L and Casalongué CA, Nitric oxide promotes the wound-healing response
- 524 of potato leaflets. Plant Physiol Biochem 45:80-86 (2007).
- 525 70 Correa-Aragunde N, Lombardo C and Lamattina L, Nitric oxide: an active nitrogen molecule
- 526 that modulates cellulose synthesis in tomato roots. New Phytol 179:386-396 (2008).
- 527 71 Floryszak-Wieczorek J, Arasimowicz M, Milczarek G, Jelen H and Jackowiak H, Only an
- 528 early nitric oxide burst and the following wave of secondary nitric oxide generation enhanced
- 529 effective defence responses of pelargonium to a necrotrophic pathogen. New Phytol 175:718-
- 530 730 (2007).
- 531 72 Kang R, Zhang L, Jiang L, Yu M, Ma R and Yu Z, Effect of postharvest nitric oxide treatment
- 532 on the proteome of peach fruit during ripening. *Postharvest Biol Technol* **112**:277-289 (2016).
- 533 73 Hu M, Yang D, Huber DJ, Jiang Y, Li M, Gao Z and Zhang Z, Reduction of postharvest
- 534 anthracnose and enhancement of disease resistance in ripening mango fruit by nitric oxide 535
- treatment. Postharvest Biol Technol 97:115-122 (2014).
- 536 74 Fujisawa M and Ito Y, The regulatory mechanism of fruit ripening revealed by analyses of
- 537 direct targets of the tomato MADS-box transcription factor RIPENING INHIBITOR. Plant
- 538 Signal Behav 8 (2013).

- 539 75 Wang Z, Zhang J, Ren T and Dong Z, Targeted metabolomic profiling of cardioprotective
- 540 effect of *Ginkgo biloba* L. extract on myocardial ischemia in rats. *Phytomedicine* 23:621-631
 541 (2016).
- 542 76 Hao Gang-Ping, Du Xi-Hua and Shi Ren-Jiu, Exogenous nitric oxide accelerates soluble
- 543 sugar, proline and secondary metabolite synthesis in *Ginkgo biloba* under drought stress.
- 544 Zhiwu Shengli yu Fenzi Shengwuxue Xuebao **33**:499-506 (2007).
- 545 77 Rahman MM, Moniruzzaman M, Ahmad MR, Sarker BC and Khurshid Alam M, Maturity
- stages affect the postharvest quality and shelf-life of fruits of strawberry genotypes growing in
- 547 subtropical regions. J Saudi Soc Agricol Sci 15:28-37 (2016).
- 548 78 Pristijono P, Wills RBH and Golding JB, Use of the nitric oxide-donor compound,
- 549 diethylenetriamine-nitric oxide (DETANO), as an inhibitor of browning in apple slices. J
- 550 *Hortic Sci Biotech* **83**:555-558 (2008).
- 551 79 Huque R, Wills RBH, Pristijono P and Golding JB, Effect of nitric oxide (NO) and associated
- control treatments on the metabolism of fresh-cut apple slices in relation to development of
- surface browning. *Postharvest Biol Technol* **78**:16-23 (2013).
- 554 80 Vigani G, Zocchi G, Bashir K, Philippar K and Briat JF, Cellular iron homeostasis and
- 555 metabolism in plant. *Frontiers in Plant Science* **4**:490 (2013).
- 556 81 Zheng SJ, Iron homeostasis and iron acquisition in plants: maintenance, functions and
 557 consequences. *Annals of Botany* 105:799-800 (2010).
- 558 82 Ramirez L, Zabaleta EJ and Lamattina L, Nitric oxide and frataxin: two players contributing to
- maintain cellular iron homeostasis. *Annals of Botany* **105**:801-810 (2010).
- 560 83 Zhang XW, Dong YJ, Qiu XK, Hu GQ, Wang YH and Wang QH, Exogenous nitric oxide
- alleviates iron-deficiency chlorosis in peanut growing on calcareous soil. *Plant, Soil and*
- 562 *Environment* **58**:111-120 (2012).
- 563 84 Zarena AS and Gopal S, Dendrimer a new dimension in targeting biofilms. *Mini Rev Med*
- 564 *Chem* **13**:1448-1461 (2013).

- 565 85 Astruc D, Boisselier E and Ornelas C, Dendrimers designed for functions: From physical,
- photophysical, and supramolecular properties to applications in sensing, catalysis, molecular
- electronics, photonics, and nanomedicine. *Chem Rev* **110**:1857-1959 (2010).
- 568 86 Pereira AES, Narciso AM, Seabra AB and Fraceto LF, Evaluation of the effects of nitric
- 569 oxide-releasing nanoparticles on plants. 4th International Conference on Safe Production and
- 570 *use of Nanomaterials (Nanosafe2014)* **617**:012025 (2015).
- 571 87 Bouchard L, Blais S, Desrosiers C, Zhao X and Lacasse P, Nitric oxide production during
- endotoxin-induced mastitis in the cow. *J Dairy Sci* 82:2574-2581.
- 573 88 Cardozo VF, Lancheros CAC, Narciso AM, Valereto ECS, Kobayashi RKT, Seabra AB and
- 574 Nakazato G, Evaluation of antibacterial activity of nitric oxide-releasing polymeric particles
- against *Staphylococcus aureus* and *Escherichia coli* from bovine mastitis. *Int J Pharm* **473**:20-
- 576 29 (2014).
- 577 89 Yilmaz O, CaÅ, ka J, Bukowski R, Zalecki M, Wasowicz K, Jaroszewski JJ, Markiewicz W,
- 578 Bulbul A and Ucar M, Nitric oxide in the bovine oviduct: Influence on contractile activity and
- 579 nitric oxide synthase isoforms localization. *Theriogenology* 77:1312-1327.
- 580 90 Osycka-Salut C, Gervasi MG, Pereyra E, Cella M, Ribeiro ML, Franchi AM and Perez-
- 581 Martinez S, Anandamide induces sperm release from oviductal epithelia through nitric oxide
 582 pathway in bovines. *PLoS ONE* 7:e30671 (2012).
- 583 91 Sung Woo K and Guomao W, Dietary supplementation with a nitric oxide donor to the diet for
- 584 lactating sows enhances the growth of suckling piglets. *The FASEB Journal* 22:1116.3 (2008).
- 585 92 Choi Y, Ohno N, Okumura J and Furuse M, Effects of peripheral nitric oxide on food intake in
- 586 the chick. *Japanese Poul Sci* **33**:286-291 (1996).
- 587 93 Marvasi M, Chen C, Carrazana M, Durie IA and Teplitski M, Systematic analysis of the
- ability of nitric oxide donors to dislodge biofilms formed by *Salmonella enterica* and
- 589 Escherichia coli O157:H7. *AMB Express* **4**:42-014-0042-y. (2014).

590 94 Marvasi M, Durie IA, McLamore ES, Vanegas DC and Chaturvedi P, Salmonella en	enterica
---	----------

591 biofilm-mediated dispersal by nitric oxide donors in association with cellulose nanocrystal

hydrogels. AMB Express 5 (2015).

- 593 95 Marvasi M, Durie IA, Henriquez T, Satkute A, Matuszewska M and Prado RC, Dispersal of
- human and plant pathogens biofilms via nitric oxide donors at 4 °C. AMB Express 6:1-9
- 595 (2016).
- 596 96 Krasuska U and Gniazdowska A, Nitric oxide and hydrogen cyanide as regulating factors of
- 597 enzymatic antioxidant system in germinating apple embryos. *Acta Physiologiae Plantarum*
- **34**:683-692 (2011).
- 599 97 Tyagi JS, Sastry KVH, Mohan J and Sirajudeen M, Effect of sodium nitroprusside, a nitric
- 600 oxi1e donor on in vivo uptake of nutrients in broiler chicken. *Indian J Poul Sci* **37**:90-92
- 601 (2002).
- 602
- 603
- 604