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A Method for Treating Dependencies Between Variables in a Simulation Risk Analysis Model 

Abstract 

This thesis explores the need to recognise and represent accurately the interdependencies 

between uncertain quantitative components in a simulation model. Therefore, helping to 

fill the gap between acknowledging the importance of modelling correlation and the 

actual specification and implementation of a procedure for modelling accurate measures 

of Pearson's correlation became the main aim of this research. 

Two principal objectives are stated for the developed Research Correlation Model 

("RCM"): (1) it is to generate Pearson-correlated paired samples of two continuous 

variables for which the sample correlation is a good approximation to the target 

correlation; and (2) the sampled values of the two individual variables must have very 

accurate means and variances. 

The research results conclude that the samples from the four chosen distributions that 

have been generated by the RCM have highly acceptable levels of precision when tested 

using X: tests and others. The results also show that an average improvement in precision 

of correlation modelling was over 96 percent. Even with samples as small as 10 the 

worst case correction factor is only just less than 90 percent, with the average correction 

factor being over 96 percent overall, so that the contribution made by the ReM here is 

quite impressive. 

Overall the analysis shows that in the case when the sample size is 10, the RCM 

consistently generates samples whose correlation is so much more precise than that 

generated by @RISK. The smallest of all the observed ratios of improvements of the 

RCM in comparison with the use of @RISK is 2.3: 1, in just one case when the medians 

were being compared. The average improvement ratio exceeded 100. 

It is concluded that the aIm of specifying, formulating and developing a Pearson 

correlation model between a pair of continuous variables which can be incorporated into 

simulation models of complex applications has been achieved successfully. 
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Chapter 1: The Thesis 

1.1 Introduction 

This thesis explores the need to recogmse and represent accurately the 

interdependencies between uncertain components in a model of a real world 

application, whether that model is analytical or so complex that it can only be 

modelled via some form of simulation. 

Uncertain components are variables that are used in a model and which have 

values that are not certain. I.e. Not deterministic. The level of uncertainty could 

be affected by internal factors, e.g. change of capital structure, or external 

factors, e.g. political or economic change. 

Quantitative risk analysis (QRA) usmg simulation is a powerful method for 

portraying the uncertainty and variability of a problem and for giving one a 

realistic appreciation of the problem's total uncertainty. One application area is 

that of capital budgetting, and it will be discussed in section 2.2. The role of 

capital budgetting in this thesis will be to illustrate or interpret many of the 

mathematical, statistical, economic, or operational research tools which \\ill be 

documented within the research. 
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One of the golden rules of QRA using simulation is that each scenario identified 

as an output by the simulation must be potentially observable in real life (Vose, 

2000). 

To illustrate this, suppose there is a model relating interest rates and mortgage 

rates. They should be positively correlated, so that an outcome of the simulation 

which allows, for example, a higher interest rate and lower mortgage rate is far 

from desirable. Thus, disregarding the correlation, which is a measure of 

interdependencies and the association between these two variables, may result in 

impossible combinations being generated, in which case the cash-flows 

calculated would not be practical. As a result, the whole process could waste 

resources e.g. money, time and effort. 

Any simulation model, therefore, must be restricted to prevent it from producing, 

in any iteration, a scenario that could not sensibly occur. 

During the early stages of this research it became very clear that commercial 

simulation or risk analysis packages, such as @RISK and Crystal Ball, enable 

some degree of correlation modelling to take place. However, the correlation 

modelling is based on Spearman's rank correlation technique (Curwin and Slater, 

2002), which is appropriate for variables represented on an ordinal scale. Where 

variables are continuous (such as $ to £ exchange rates and inflation rates) it 

would be rather more appropriate to measure correlation using Pearson's product 

moment correlation coefficient. These simulation models enable accurate 

representations of the probability distributions of the individual variables (i.e. the 

marginal distributions) to be generated, and research was carried out to identify 

any implementations of Pearson's method in commercial simulation or risk 

analysis packages. Initially nothing relevant was discovered, but eventually the 

work on NORTA and its derivatives (Cario and Nelson, 1997) was found. 
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This is discussed later in Chapter 2, but the conclusion drawn there shows that 

the NOR T A approach is very complex, requires the use of a great deal of 

computing and time-related resources, and is all too often non-robust in the sense 

that it fails to converge to an acceptable result. This thesis will demonstrate that 

it is indeed possible to generate multivariate samples whose marginal 

distributions for the individual variables are specified, such that the simulated 

sample values fit precisely to their marginal distributions, and for which the 

achieved product-moment correlation is very accurate. 

Indeed, Wall (1997) claims that literature on presenting Monte Carlo simulation 

often overplays the importance of the choice of which distribution to use to 

represent input variables which are believed to be uncertain and underplays the 

importance of assessing and including correlations between these inputs (further 

illustrations are discussed in Chapters 2 and 3). 

This claim by Wall and the desire to seek ways of modelling Pearson's 

correlation coefficients therefore have become the starting point for this research. 

Hence, helping to fill the gap between acknowledging the importance of 

modelling correlation and the actual specification and implementation of a 

procedure for modelling accurate measures of Pearson's correlation has turned 

into the main aim of this research. 

When this research originally began it was for a short time directed at examining 

new or better usage of economic parameters within capital budgetting. Rapidly 

this evolved into an intention to develop an economic risk analysis product 

suitable for the evaluation of a project such as a proposed new oil field in the 

petroleum industry, so that the drive would be on the application area, with new 

or revised 'building block' techniques being sought as appropriate on the way. 
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Quite soon after this stage, however, the current shortcomings relating to 

simulating product-moment correlations became apparent, and so the current 

emphasis emerged: to seek a more accurate and robust and/or less complex 

means of simulating product-moment correlations, with illustrative examples 

being drawn from numerous application areas, but principally those of capital 

budgetting and oil field economic analysis. 

1.2 Research question, aim and objectives 

1.2.1. The research question 

The main research question is: 

"How can the relationship between continuous variables be integrated in a 

simulation model using Pearson's product moment correlation?" 

Simulation is a technique of Operational Research which involves usmg a 

computer to imitate (simulate) the operation of an entire process or system by 

randomly generating and recording the occurrences of the various events that 

drive the system, just as if it were physically operating. This is explained in 

greater detail in Chapter 2. QRA models using simulation are more complex 

than the deterministic models that they build on. A major reason for this 

increase in complexity is that a simulation model is dynamic. 

There are a potentially infinite number of possible combinations of scenarios that 

can be generated by a risk analysis model. However the output from the 

simulation is only useful if these scenarios are viable in the real situation. 
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Therefore it is important that some sort of control can be imposed upon the 

sample values used in each scenario. This will prevent impossible combinations 

being used in producing a scenario which in return might then be used in 

decision making. 

1.2.2. The research aim 

Initially the research is intended to model the correlation between only a pair of 

continuous variables, so that the above research question leads to the primary 

aim of this research as follows: 

"To specify, formulate and develop a Pearson product moment correlation 

model between a pair of continuous variables which can be incorporated into 

simulation models of complex applications. " 

This model will be known as the 'Research Correlation Model' or RCM. In 

simulation parlance this is known as an 'Input Model', and contrasts with the bulk 

of the modelling complexity which goes into the building and specification of 

the 'Logical Model', for example to generate post-run analyses. It will become 

clear within this thesis that the general view is that commercial simulation 

packages are usually helpful and supportive to the user when designing, 

implementing and testing the logical model, for example with the provision of 

report writer routines, but in contrast the facilities for input models are either too 

limiting and elementary, or require lengthy and in-depth input by the user into 

complex input routines. Thus any advance which reduces the 'black box' element 

of the input model, or lessens the need for the user to oversee repetitive and high 

level mathematical and statistical computations is indeed laudable. 
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When the desirability of accounting for the interdependencies between two 

variables in a simulation model is recognised, the need for a model such as the 

RCM that could fulfil the requirement is obvious. 

A model by definition is a representation of real objects or situation (Hillier and 

Lieberman, 2005). Specifying a model includes: 

1. Finding a way of expressing the understanding of situations through the use 

of simplified constructions, the use of language, the use of diagrams or the 

use of mathematics. 

2. Constructing a transformation where outcomes are explained by a range of 

inputs and assumptions. Assumptions are things that are believed to be true 

for the model and they are imposed to limit the scope for formulating and 

developing of a model. 

3. Identifying which variables should usefully be modelled. A balance is 

needed between those inputs that are significant and those that may have 

some minor effect but do not significantly impact on the problem 

characteristics. 

4. Creating an understanding of relationships between the outcomes from a 

model with the inputs and assumptions that are affecting the outcomes. 

These relationships need to be specified in terms of being 'fit for purpose' 

rather than perfectly correct. 

5. Establishing the testing and verifying processes that best suit the aim and 

objective of the RCM. This will include the categories of data that are 

required to prove the validity of the model. 

6 
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The actual formulation is best described as the prototype that forms the 

foundation theoretical approach of the RCM identified in the research aim by 

combining certain methodologies that will be reviewed and proved to be useful 

in inventing a distinctive way of generating a pair of correlated sample values. 

Later in the thesis, in Chapter 6, the output from the formulation is proven to be 

acceptable by comparing with the output from a widely used commercial 

simulation package. The prototype is then extended to cope with broader or 

more complex modelling problems. This is when the prototype is developed as a 

computer model. 

1.2.3. The principal research objectives 

The research aim is to develop a product moment correlation model for two 

continuous variables, the functionality of which must attain two objectives, as 

follows: 

Research obj ective 1: 

The co"elation model must generate samples of pairs of values of continuous 

variables whose Pearson correlation coefficient has acceptable precision 

The correlation model should be able to produce numbers of pairs of correlated 

sample values, depending on the given type of probability distribution assigned 

to each variable and the relationship between them in terms of their Pearson 

correlation coefficient. At the end of the output, the two sets of the sample 

values generated from the model must have measures of inter-dependencies that 

are as close as possible to the required correlation coefficient. 

7 
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Research objective 2: 

The co"elation model must include a good representation of the uncertain 

variables 

The sample values generated from the correlation model not only need to 

correspond to the input correlation coefficient but also to abide by the descriptive 

statistics e.g. measures of central tendency and spread, etc. For example, the 

calculated sample mean of either of the variables needs to be acceptably close on 

some scale to the expected value of that variable. Thus, these descriptive 

statistics are calculated based on the parameters given to the assigned probability 

distributions. 

Being able to show that the output from the model will meet the requirement of 

the relevant descriptive statistics will ensure that these sample values are truly 

representative of the input variables. It is therefore an important process to 

validate if the research invention has been properly done and has achieved its 

aIm. 

1.2.4. Supplementary research objectives 

Alongside achieving the aim and objectives of this research, there are other 

objectives to be attained. They are: 

• Defining the terminology used in QRA, such as uncertainty, variability and 

risk. 

• Presenting, companng and contrasting different approaches used in 

quantifying uncertainty. This will form the basis for the appreciation of 

simulation. 

8 
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• Identifying how simulation works, together with its advantages over other 

approaches and its limitations. 

• Explaining the importance of assessing and including the interdependencies 

between uncertain variables in a simulation model. This will lead to the 

construction of a model which allows the interdependencies to be considered 

and incorporated, through product-moment correlations. 

• Illustrating how modelling dependencies can be achieved. Throughout the 

process, various statistical concepts will be discussed and it will be shown 

how they can be practically applied. 

• Indicating how the RCM can be incorporated into a QRA model in practice. 

It demonstrates the value and effort of the complicated modelling process. 

By the end of the research, a RCM is to be developed which will achieve the 

objectives defined above. 

9 
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1.3 Contributions to knowledge 

Upon completion of this research, the contributions to knowledge will be 

important in two academic areas, i.e. Statistics and Operational Research. They 

are as follows: 

Statistical Contributions: 

• Reinforcing the importance of modelling the interdependencies between 

uncertain components when simulation models are used. 

• Discovering a distinctive way of formulating Pearson correlated sample 

values of a pair of continuous variables during sampling processes. 

• Filling the gap between theoretical awareness of the significance of 

correlation and the actual practice of its use. In particular recognising the 

inappropriate use of rank correlations in many situations where the data are 

not ordinal and developing instead models of product-moment correlations. 

Operational Research Contributions: 

• Consolidating the advantages and limitations of choosing simulation as a 

means of carrying out risk analysis. 

• Improving the reliability and precision of simulation output and 

exemplifying the sensitivity and confidence of using simulation 

methodologies. 

• Showing the relevance and suitability of simulation and encouragmg its 

wider use. 

10 
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1.4 Thesis structure 

A brief outline of the structure of this thesis is shown in Figure 1.1. The whole 

thesis is divided into four parts. 

Part I Introduction and literature review (Chapters 1 and 2) provides an 

introduction to why this research is carried out, what are the purposes of doing 

this research, what are the aims and output of this research, and who it is to 

benefit. Chapter 2 emphasises a review of different approaches used when QRA 

is considered. It includes the advantages and disadvantages of each approach. It 

provides the theoretical background against which these approaches should be 

assessed, and how. In particular it defines and contrasts the two major measures 

of correlation (product-moment and rank correlation), and summarises key recent 

advances in the area of simulating correlations. 

Part II Methodology (Chapter 3) provides the background to how this research 

will be carried out in order to achieve the aim and objectives of this research 

defined earlier in section 1.2. It will then identify the methodologies to be used 

in developing the RCM. In essence, then, this chapter provides the functional 

specification and the first part of the technical specification of the RCM. The 

second part is dealt with in Chapter 5. 

Part III The Algorithms and the Computer Model (Chapters 4, 5 and 6) 

presented in the first part of Chapter 4 is the basis of the theoretical approach 

formulated for the RCM, together with a full illustrative example. The second 

part is the structure of the RCM as a computer model. Chapter 5 is the 

implementation of the theoretical approach into a computer based model where 

the theoretical approach is extended to include different types of probability 

distributions. 
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Chapter 1: The Thesis 

Chapter 6 is testing and verifying the validity of the Model and should ultimately 

demonstrate that the design and development of the RCM is appropriate. 

Part IV Conclusion (Chapter 7) assesses the results generated from the RCM 

and discusses how closely the mathematical or statistical methodologies used in 

the model achieve the aim and objectives of this research. Further work 

extending from this research will be recommended. 
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Chapter 1: The Thesis 

1.5 Overview of each chapter's contents 

Within this section, the individual chapters of this thesis are overviewed. The 

aim, objectives and the outcomes of each chapter will be briefly identified. 

Part 1: Introduction and Literature Review 

Chapter 1: The Thesis 

This chapter has provided an overvIew on this research in terms of the 

background to the research question, the research aim and objectives, and has 

also briefly described the evolution of the research. The research problem that 

has been identified in this chapter is that ignoring the interdependencies between 

uncertain components may result in unreliable output when carrying out risk 

analysis using simulation, and that there is a need to be able to model the 

relationship between two or more continuous variables using Pearson's product 

moment correlation. A methodology to solve this problem will be proposed. As 

a result, finding a way of incorporating interdependencies into a simulation 

model has become the aim of this research. By achieving the aim, this research 

will contribute to knowledge by filling in the gap between theoretical awareness 

of the problem and being able to model and incorporate appropriate measures of 

interdependency between continuous variables in practice. 
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Chapter 2: The Reasons for Using Simulation As a Tool for QRA 

This chapter provides a chronological review of the existing literature. It starts 

with the definitions of risk, uncertainty and risk analysis, and proceeds to show 

how QRA is carried out in practice. This chapter categorises different QRA 

techniques, and each category will be discussed in detail in terms of its 

advantages and disadvantages and when it should and shouldn't be used. This 

leads to the rationale for this research and the reason why simulation is chosen to 

be the most appropriate risk analysis approach. It provides the incentive for 

investigating its limitations and overcoming them where appropriate. 

The development and key aspects of discrete-event simulation are discussed in 

section 2.9. 

The chapter concludes with formal definitions of the two major forms of 

correlation, examines some of their key properties, and reviews the relevant 

literature on the modeling in practice of joint distributions of several variables 

when their individual marginal distributions are known (or assumed), and their 

pair-wise correlations are predicated. 

15 



Chapter 1: The Thesis 

Part II Methodologies 

Chapter 3: The Methodology for A Model Simulating Product Moment 

Correlation 

This chapter presents the methodological considerations to be taken into account 

in this research. It illustrates the pre-requisite knowledge for formulating a 

model which is able to generate sample values of a pair of correlated continuous 

variables. This chapter presents step by step the mathematical and statistical 

formulations of how to generate a pair of correlated sample values from the 

assigned probability distributions of the two variables, and which have a measure 

of interdependency via a defined product moment correlation coefficient. It also 

provides a strong justification for using Latin hypercube sampling in simulation, 

rather than the various traditional Monte Carlo approaches. 

Part III The Algorithms and The Computer Model 

Chapter 4: Simulating Accurate Correlations Between Two U[O,I) Samples: a 

Full Example, and the Specification of the ReM 

An illustrative example will be given to clarify the explanation of the algorithm 

formulation discussed in Chapter 3. As the RCM will be transformed into a 

computer based model, this is where the second part of this chapter also 

concentrates on the structure used to achieve the aim of this research from the 

perspectives of formulation, design and development. 
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Up to this point, the research is limited to variables which have standard 

Uniform distributions (i.e. U[O,I)), but this will be extended in chapter 5. These 

formulations are implemented as a theoretical model, and the testing of the 

output from this model will be compared later in Chapter 6 with that from a 

commercial simulation package currently available. 

Chapter 5: Implementing the RCM to Include Other Probability Distributions 

Within this chapter, the theoretical approach designed in the previous chapter 

with the extended scope to include other probability distributions will be 

implemented as a computer model. The structure of the completed RCM will be 

presented as a summary flow chart with fuller details of each constituent part. 

Chapter 6: Testing and Verifying the Validity of the RCM 

This chapter is concerned with documenting the testing process. The descriptive 

statistics calculated from the RCM will be tested using Microsoft Excel. This is 

to ensure that the programming for producing the descriptive statistics is free 

from human error. Descriptive statistics form a list of measurements on the 

sample values. They are presented in the model so that they can be used to 

check and compare the sample values generated with the specification of what 

was required. 

Once the model has been specified and then developed, it has to be verified that 

it is functioning as desired. In this chapter, the descriptive statistics calculated 

from the sample values generated from the RCM are investigated to ensure their 

acceptability. This chapter will support with evidence the claim that the 

formulation of the model has been appropriately designed, and will demonstrate 

an overwhelming improvement in the modelling capability of product-moment 

correlations compared with standard commercial packages. 
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Part IV Conclusion 

Chapter 7: Conclusion, Review and Recommended Future Work. 

This chapter sets out the overall conclusion on how closely the research output 

meets the initial aim and objectives. A summary of the problems faced during 

the research and the limitations on the research output is examined. 

Recommendations for further work extended from this research are suggested. 

For example, extending the analysis to cope with correlations between more than 

two continuous variables, and developing processes to model more accurately 

other measures of a variable such as its skewness and kurtosis. 
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Summary 

Within this first chapter, the problem of ignoring the correlation between 

variables in a simulation model has been recognised, and has led to the definition 

of the research question. This is followed by the research aim, to specify, 

formulate and develop a Pearson correlation model that can be incorporated into 

a simulation model. During the process of modelling, several desirable 

objectives have arisen, and these have been listed in the chapter. When they are 

all achieved, the contributions to the academic area of statistics and operational 

research will be significant. 

The structure of this thesis is divided into four main parts, each containing one or 

more chapters, and it is presented in a flow chart in Figure 1.1, the contents of 

which have been discussed in overview detail. 
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A Method for Treating Dependencies Between Variables in a Simulation Risk Analysis Model 

Chapter 2: The Reasons for Using Simulation As a Tool 

forQRA 

2.1 Introduction 

The objectives of this literature review chapter are two-fold. The theme of the 

first part begins by exploring the debate about risk and uncertainty, especially 

their meaning in the eye of Operational Research. 

Such terminology is not only the prerequisite for appreciating the need of risk 

analysis during, for example, a capital budgetting process, but also provides the 

comprehension for reviewing the emergence of using simulation as a tool for 

quantitative risk analysis (QRA). 

While the theme of the second part of this chapter is to review the emergence of 

using simulation in the QRA process, the different methodologies used in 

practice when uncertainty is taken into account are examined, with capital 

budgeting again being the vehicle for explaining or interpreting theses 

methodologies in many cases. Hull (1980) and Smith (1994) were of the opinion 

that capital budgetting decisions are among the most important of all 

management decisions. 
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After evaluating the advantages and disadvantages of using each methodology, 

the reasons for using simulation as a method for carrying out QRA becomes 

clear. These methodologies are summarised from different techniques used 

when uncertainty is considered. 

Similarly, at the end of this chapter, the reasons for nominating the particular 

forms of the research question and the aim and objectives of this research in 

Chapter 1 are justified. 

2.2 The environment of capital budgetting 

Capital budgetting is one of the most risky elements in the finance function due 

to the uncertainty in prevailing economic conditions (Van Home, 1995). It is 

highlighted as a vehicle here because the recognition of risk as an important 

component in capital budgetting decision-making has long been identified 

(Brookfield, 1995). The practice of using simulation in capital budgetting 

applications has been growing in recent years. 

Chansa and Mount-Campbell (1991) suggested that further research in the fi el d 

of capital budgetting is required and it should be concentrated on getting high 

quality project cash flow information based on uncertainty economic conditions. 

This can be done by developing appropriate tools for handling and reducing the 

riskiness of the investment decisions. 

The techniques used in including considerations of uncertainty are known as risk 

analysis techniques (Smith, 1994). This research is specifically focused on the 

application of risk analysis via simulation in situations where the variables are 

continuous. Consequently our main attention will be directed towards 

quantitative risk analysis (QRA) from Chapter 3 on. 
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Any investment appraisal technique that fails to take consideration of the cash 

flow information is most likely to lead to incorrect conclusions and erroneous 

recommendations (Brookfield, 1995). 

Vose (1996) asserted that an understanding of the techniques used to carry out 

risk analysis has not been matched by a corresponding growth in its popularity 

amongst businesses and government agencies, although the relatively recent 

emergence of risk analysis tools such as @RISK and Crystal Ball have enabled 

this delayed growth of use to begin. 

The above has certainly encouraged the needs for this research to look into the 

most popular approaches used in developing quantitative risk analysis models 

and help fill the gap of knowledge and also credibility in QRA. In the area of 

capital budgetting, for example, the result of this research might be to enable the 

development of a more comprehensive and useful project cash flow information 

tool that will improve the quality and confidence in the output which is used to 

aid decision making. 

2.3 The nature of risk 

Uncertainty and risk are the main components of any activities. They are not 

only limited to our private lives, they also occur in virtually all business 

decisions. 

Most of us have learned to live comfortably with day to day uncertainties and to 

make choices and decisions in their presence. When there is no great impact 

from a failure then commonly the uncertainty is simply ignored (McCray, 1975, 

and Morgan and Henrion, 1990). Nevertheless, Vose (1996) suggested that 

uncertainty and risk need to be understood so that rational decisions can be made. 
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2.3.1. The meaning of uncertainty 

As early as in Rowe (1977), through Ritchie and Marshall (1993), and up to 

Vose (2000), the definition of uncertainty has remained consistent. It can be 

concluded that uncertainty arises from one's imperfect knowledge about the past 

and/or doubt about the future, specifically the proposed decision and its possible 

consequences. This is illustrated in Figure 2.1: 
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Figure 2.1 Uncertainty in time scale 

Each person's imperfect knowledge could arise from not knowing precisely what 

had happened in the past and being unsure of what will happen in the future. 

The further the time frame is from the present, the more difficult it is to sketch 

the picture of the past or to predict the future with any confidence. 

It is more difficult to control the outcome of the event when one lacks 

information surrounding the future event with certainty, and this lack of certainty 

is, unfortunately, virtually always present. Rosenhead (1989) stated that it is 

dangerous to "attempt to pre-take the future". He focussed on the common 

practice of assigning probabilities of occurrence to the individual outcomes of 

events, whether they be measured on discrete or continuous scales. Wherever 

possible such estimates should not be used. 
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However, although clearly it is sensible to pay careful attention to the 

justification of choices of probabilities, including probability distribution 

functions (p.d.fs), there is often no alternative because QRA has to be carried 

out. Hence the relevant forecasts, etc., which arise from this process should 

never be regarded as deterministic as such information can only be predicted 

with at least a level of doubt. 

Example 

It help to illustrate the definition of uncertainty in a simple example. Suppose an 

entrepreneur is thinking of launching a new product into the market. He accepts 

that there will be two possible outcomes: either this new product will be accepted 

or rej ected by the market. 

Action Outcomes 

Launch a new product Accept 

Reject 

Here there is an uncertainty inherited in the action. This is because there are at 

least two possible outcomes, and the entrepreneur's uncertainty comes from his 

lack of information about how successful his launching would be. Actions open 

to him would include trying to estimate the probabilities of acceptance or 

rejection, perhaps by reviewing similar launches in the past, and evaluating their 

outcomes. 

It is also interesting to observe that a person, particularly a layman, will try to 

express his uncertainty as to the outcome of future events through the use of 

words such as 'probable', 'possible', 'expected', and 'likely'. Unfortunately 

some of the general words used in this context have very specific meanings in 

parallel contexts. E.g. 'expected'. 
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Uncertainty in a project 

Uncertainty arises when any of the events which constitute a project have wide 

ranges of possible outcomes as a result of imperfect knowledge of the events. In 

some cases these potential outcomes are mutually exclusive; in others there may 

well be a degree of interdependence. 

Such events could be a change of the taxation rates, changing demand for 

services/products, or a variation in costs and/or revenues, for example, and taken 

together they are highly influential on the project profitability. 

When anyone or all of the events have many different possible outcomes, this 

will make the overall outcome of the project highly uncertain. 

2.3.2. The meaning of risk and its relationship with uncertainty 

Risk can mean different things to different people (Cochrane, 1992). Singhvi 

(1980) said that "risk, like beauty, lies in the eyes of the beholder". 

Given that the word 'risk' is used in many different contexts with an equally 

wide variety of definitions, if we do not have a particular context in mind when 

asking people about risk, they will make up their own contexts based on their 

own experiences, beliefs, habits, etc. 

These contexts will be as immensely varied as each person's own experiences 

and concerns. People tend to relate risk to specific situations where there are 

particular stimuli considered being dangerous. 
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2.3.3. Risk as a result of uncertainty 

Hertz and Thomas (1984), Cooper and Chapman (1987), and Eschenbach ( 1996) 

gave the opinion that risk is something concerned with uncertainty and also 

resulting from uncertainty. 

The above expression implies that when there is uncertainty, there is risk. When 

an event (or activity) involves uncertainty, a risk arises from the decision. 

From the earlier example in section 2.3.1. the uncertainty is whether the new 

product will be accepted by the market if it is launched. If the action is 

undertaken, it is saying that the entrepreneur is taking the risk of making the 

decision or the decision is risky. 

2.3.4. Risk as the impact upon a decision maker 

Ho and Pike (1991) raised the opinion that risk is a measure of the consequences 

that impact on projects from the occurrence of an event. As a result risk is then 

a measure of how a particular project will impact upon the investor (or decision 

maker). 

The philosophy above on risk has two essential prerequisites: uncertainty and 

loss. Risk is then used to denote that the decision maker is uncertain as to the 

precise outcomes of the investment decisions, which involve the possibility of 

undesirable consequence or loss. 
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Less formally, Cavinato (1990) said that risk is the chance that a project you are 

sticking your neck out for will not live up to an estimated outcome. 

So, if the outcome of an action is uncertain or uncontrollable and may cause 

some loss (e.g. of money, human life), the action is risky (Indoinc.com, 1999). 

2.3.5. Risk as the notion of probability 

Risk as the notion of probability is not new to the academics. Singhvi (1980), 

for example, recorded that in 1975, a survey was carried out by Petty, Scott and 

Bird on 109 industrial corporations. A question was asked to management, 

'What is meant when you sayan investment proposal is risky?' The results of 

this survey are summarised in Table 2.1 following. 

Definition of risk 

Probability of not achieving a target return 

Variation in returns 

Payback period uncertain 

Uncertain market potential 

Entering an inexperienced area 

Success ratio (potential gainJpotentialloss) 

Miscellaneous 

% of total responses 

40 

30 

10 

7 

5 

4 

4 

Table 2.1 Management's definition of risk (Source: Singhvi, 1980) 

The survey showed that the definition of risk in the eye of management as the 

probability of not achieving a target return, for example making a loss, was 

identified by 40 per cent of the responding executives. 

27 



Chapter 2: The Reasons for Using Simulation As a Tool for QRA 

Next, 30 per cent of the respondents were principally concerned about variation 

in returns (although nothing is suggested in the analysis about the direction or 

directions of such variation). Only 10 per cent of the respondents define risk in 

terms of the payback period, which is the length of time before the cumulative 

expected return is at least equal to the costs incurred to date. 

Although this survey was carried out a long time ago, the conclusion produced 

from the survey, i. e. risk is the probability of not achieving the target, remained 

unchanged according to Ritchie and Marshall (1993). 

2.3.6. Stems of risk, illustrated via capital budgetting 

Uncertainty arises from imperfect knowledge about future event and risk is the 

consequence of uncertainty. It is important to identify - and hence try to control 

where possible - the factors which are contributors to this uncertainty. 

For example, in capital budgetting the major uncertainty comes from the 

predicted data, so that any decision based on decision criteria is recognised to be 

risky. 

Cavinato (1990) and Ho and Pike (1991) explain that the uncertainty inherent in 

the predicted data stems from three areas, as in Figure 2.2 below. 
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Figure 2.2 Stems of risk in capital budgetting 

The business environment might change for the worse. For example the 

underlying economic environment might deteriorate through considerable 

instabi lities in inflation levels and exchange rates following currency flotation 

Similarly, the operating situation could deteriorate, for example if the estimated 

schedule is not achieved on time Also the investment estimates might turn out 

to be wrong. For example, the estimated revenue and expenditure might be 

overestimated and underestimated respectively . 

In conclusion, when decision makers frequently have to confront the possibility 

of making the wrong decision and experiencing ' negative ' outcomes such as 

financial loss, Cooper and Chapman (1987) claimed that risk analysis has the 

greatest immediate acceptance in the area of investment project appraisal. It is 

therefore important to realise that the greater the understanding of the precise 

nature and level of the risk the better the decision will be and, ultimately, the 

firm ' s performance (Hertz and Thomas, 1984; Cooper and Chapman, 1987, and 

Ho and Pike, 1991). 
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2.4 Risk analysis 

Risk analysis was jelled into a distinct discipline around 30 years ago (Tversky, 

1974). It is increasingly demanded as part of capital project justification 

(Cavinato, 1990). As stated earlier, Hull (1980) and Smith (1994) claimed that 

capital budgetting decisions are among the most important of management 

decisions. 

Hillier (1962) advised that the amount of risk involved is often one of the 

important considerations in the evaluation of proposed investments. Decisions 

must be made in the face of uncertainty (Eschenbach, 1992; Randhawa and 

Douglas, 1993). Very often they involve a relatively large commitment of a 

company's resources and are instrumental in shaping its whole future. To a large 

extent the expenditures that project decisions involve are irreversible. Mistakes 

in capital investments not only affect immediate cash flows but also the 

operation of the business and future cash flows for years to come. E.g. The huge 

cost-over-run of the building of the new Scottish Parliament. 

Thus, the need to manage uncertainty is especially desired for large projects that 

have not been executed before and therefore involve much uncertainty in project 

schedule and project cost (Lucey, 1968; Mott and Tumay, 1992). Bierman (1986) 

confirmed, via a survey of US senior financial officers, the challenge of handling 

risk was one of the most prominent problems in capital budgetting practice. This 

has encouraged a research in finding or developing a tool for evaluating risk in 

the capital budgetting process. 
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2.4.1. Risk analysis definitions and its usefulness 

Hertz and Thomas (1984) declared that risk analysis is used when developing a 

comprehensive understanding of the risk associated with a variable is necessary. 

Within this research, this declaration will be extended to cope with several 

variables, together with their inter-dependencies. "Risk analysis is a process of 

identifying and evaluating risk factors and a study of the likelihood that an event 

will produce an unwelcome outcome or adverse effect of what may be and the 

impact should a failure occur" (Swaney, 1996; Quality Assurance Review Guide, 

1999). Bodily (1992) observed that the risk analysis process is primarily through 

estimating probabilities which involves collection and analysis of data, originally 

to estimate human morbidity or mortality, now expanded to range across many 

areas, from ecological health to economic well-being, etc. 

Risk analysis therefore estimates a range of possible results of a proposed 

investment decision based on the given input data and seeks to quantify the 

probability that the overall result will be in a specified range. It simulates the 

effects of the uncertainty surrounding key variables entering into the evaluation 

on the returns one is likely to achieve (Singhvi, 1980). 

Consequently risk analysis is used to examme the possible future outcomes 

before approving an investment proposal, a new product, or a future corporate 

strategy (Karady, 1985). For example, in evaluating a capital project, a company 

carries out a risk analysis to determine its financial risk in making the investment. 

The approach might incorporate a cash flow model, and the risk analysis might 

involve a simulation of the uncertainty in the net present value cash flow or other 

financial performance measures. 
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Risk analysis therefore efficiently provides risk managers with quantitative 

evidence which will enable them to: 

1. break down the complex problem into smaller and more manageable sub

problems, each of which can be analysed; 

2. measure exposure to extreme events. For example drastic market moves, or 

large changes in interest or exchange rates; 

3. reduce the risk of the project, if it is not acceptable, either by diversifying, 

risk sharing, or contingency planning to protect against unwanted scenarios 

(Balson et aI, 1992); and 

4. provide better ways for individuals and groups to reduce hazards or cope 

with their efforts (Phoa, 1999). 

2.4.2. The significance of risk analysis in the capital budgetting decision 

The researches of Richards and Contesse (1975); Hosseini (1986); Cozzolino 

(1979); Coats and Chesser (1982); Hertz and Thomas (1984); Karady (1985); Ho 

and Pike (1991); and Chadwell et al (1996), all concluded that firms recognised 

that risk analysis was critical in the proper evaluation of capital projects. 

Management relies heavily on risk analysis techniques for evaluating complex 

strategic projects, so that corporate success can be partly attributed to the use of 

such approaches. 

However, varying degrees of risk among projects should be taken into account 

(Eschenbach, 1992), so that the greater the risk in the outcome, the greater is the 

case for using the formal techniques of risk analysis. Eynon (1988) claimed that 

one of the seven deadly sins in the decision making process is to ignore risk 

analysis completely. 
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Hence, it is highly desirable for the success of the company during project 

planning to have as accurate financial estimates as possible. The system of 

generating accurate estimates must be established and maintained. In the many 

changes that take place within companies, the importance of generating accurate 

estimates cannot be overlooked. 

The contribution which risk analysis can make is to help managers' thinking 

processes, and this is done in the first instance by forcing them to confront the 

structure of the decision problem in a relatively unemotional manner. 

After the problem has been defined, Karady (1985) specified that evaluation of 

the cross-impacts or joint impact amongst the uncertain variables is vital in the 

risk analysis. By doing so, viable options can be identified and decisions makers 

eventually understand the risk associated in the project, and appreciate why one 

course of action might be more desirable than another. 

His thought eventually has become the stem of this research. This aspect of 

'cross-impacts / joint impact' referenced by Karady is thus reflected in the 

examination of product-moment correlations in the RCM. 

2.4.3. The application of risk analysis 

"who is at what kind of risk, when, where, with what effects, from what 

causes, with whom, responsible for, by what instruments, in what value 

context and at what costs and benefits for its management?" , 

Coates (1994) identified the general risk analysis question above as the starting 

framework for anyone quickly to develop a comprehensive overview of any 

situation with regard to any risk they are concerned with . 
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The principle of risk analysis may be used in various application areas (Quality 

Assurance Review Guide, 1999). For example, in the United States, and to a 

more limited extent in European countries, risk analysis emerged during the 

1980s as a major methodology for regulatory policy-making (Brod, 1992). 

Public agencies found themselves increasingly influenced by the impacts of 

national and state legislation, budget constraints on operations, new regulations 

and growing demands for resources. 

As this changing environment became more complex, it required the adoption of 

systematic approaches for evaluating the consequences of alternative 

management policies and external events. 

Risk analysis can be equally applied to both qualitative and quantitative 

evaluations of the risk arising from some activity (Bodily, 1992). It is tabulated 

in the user guides of two popular commercial simulation and risk analysis 

packages, Crystal Ball and @RISK, that risk analysis can be used in different 

application areas. 
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Both listed areas such as those below, for each of which an illustrative example 

has been given. 

Oil and gas - Texaco uses risk analysis to forecast inventory requirements and 

optimise production levels. 

Project management - risk analysis allows Hewlett-Packard to bring printers to 

market on-time. 

Finance - many companies, for example, the Pro Vise management group, use 

risk analysis to optimise portfolio profit. 

Negotiation Litigation - Pacific Bell called upon risk analysis to help negotiate 

financial settlement in 1994. 

Business planning - risk analysis boosted the new venture planning for 

recreation markets of a major American company, ExpertCorp. 

Costs management - 3M's use of risk analysis improves unit cost estimates. 

Forecasting - Risk analysis is used for forecasting prison populations by 

consultancies such as Fentress Inc. 

Environmental - Alcean uses risk analysis to determine the environmental 

damages that are caused by people who consume drugs in the United States and 

throughout the world. 
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2.5 Accounting for risk in decision making 

The importance of considering uncertainty, in capital budgetting or elsewhere, 

has widely been recognised by both practising managers and the academic 

community (Hull, 1980). Various techniques are used by decision-makers to 

cope with the risk associated with a proposed investment or project. 

These methods can be categorised into qualitative or quantitative techniques 

(Singhvi, 1980; and Smith, 1994). Qualitative techniques will only be mentioned 

in brief when it is necessary as part of the main discussion in this thesis which is 

essentially that ofQRA (i.e. Quantitative Risk Analysis). 

Qualitative techniques are used to distinguish the possibility of a risk occurring 

in a linguistic manner (Baker et aI, 1998). For example, a risk might described 

as low if that risk is unlikely to occur. Qualitative techniques are usually 

employed at the beginning to identify and rank risks. Those risks with a high or 

intermediate rank may then be further analysed through quantitative techniques. 

Examples of qualitative techniques to handle risk arising from uncertainty are 

various forecasting and problem structuring techniques, such as scenario writing, 

cross-impact matrices, robustness analysis, cognitive mapping, relevance trees, 

professional judgement, personal experience or brainstorming (Hanke et aI, 

2001). 

These techniques are prone to inconsistencies because they are dependent on the 

experience of the analyst allied to the judgements, and thus are subjective. 
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On the other hand, quantitative methods of coping with risk are normall y 

computationally based and utilise relative frequencies during the estimating of 

numerical probabilities of the consequences and likelihood of identified risks 

(Singhvi, 1980, and Baker et aI, 1998). Example techniques here are decision 

trees, portfolio theory, simulation, and risk-adjusted decision making methods. 

The results of a quantitative technique are compared against company criteria 

and decisions are made as to whether the risks are acceptable or not. 

Data used in quantitative techniques are either obtained from historical databases 

or are estimates, and so they contain some element of uncertainty, due to the 

possible use of subjectively attained values. The level of judgement required for 

each method used in quantitative techniques is discussed in the next section. 

2.6 Approaches: quantifying uncertainty 

Quantifying uncertainty is the first distinctive feature of risk analysis (Singhvi, 

1980). Various methods used to cope with uncertainty all essentially break down 

into three recognisable approaches, i.e. point analysis, scenario analysis and 

simulation analysis as shown in Figure 2.3 below, together with some examples. 

,..---

Quantitative 
Risk 
Analysis 

---1---

Point 
Analysis 

_-.Portfolio theory 

PERT 

Risk adjusted parameters 

Break-even analysis 

Scenario 
Analysis F

Expected monetary value 

- Decision trees 

- Sensitivity analysis 

Simulation -- Inference 

Figure 2.3 Examples of approaches used in coping with uncertaint~· 
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Authors, including Hertz (1964), Singhvi (1980), Gapenski (1990), Smith (1994), 

and Nanda and Miller (1996), claimed that, traditionally, the risk analyst tried to 

capture this uncertainty either using point analysis or scenario analysis, or 

sometimes both in the cash flow calculation such as NPV cash flow calculations 

or the IRR for project investment appraisal. However, when there are limitations 

on using the traditional methods to account for uncertainty, simulation is a better 

method in the project appraisal process, as explained below. 

2.7 Point analysis 

The traditional approach in developing the cost and schedule components of a 

project has been to create single point estimates and schedules with single point 

completion dates (Wendling and Lorance, 2000). 

Single point modelling involves using a single 'best guess' estimate, 1.e. the 

value which one thinks is most likely to be achieved, of each variable within a 

model to determine the model's outcome( s), including the uncertain variables. 

Gapenski (1990) described how, in a typical capital investment feasibility study, 

the analyst makes point estimates of the relevant component cash flows and then 

uses these values to forecast the expected profitability of the project. In this 

sense the model is deterministic. This all fits in nicely into the traditional 

decision process shown in Figure 2.4. 
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Information Calculations Decision 

Single value Economic criteria 

forecasts / 
(e.g. Rate of Return, 

(best guess) Net Present Value cash flO\\) 

., 

I Decision I Sensitivity analyses I 
I ~ 

Non-quantified 
factors 

Figure 2.4 The traditional decision process. 

(Source: Cooper and Chapman (1987, p208». 

For example, suppose the analyst projects the best estimate on annual inflation at 

3.5 percent for the next 5 years. For the same period, the analyst estimates that 

the capital costs will increase by seven percent a year and the other (operational) 

costs will increase by eight percent annually. 

Even if these projections are reasonable by historical standards and/or 

professional judgement, they are still merely estimates. The analysis often stops 

here, with high potential for incorrect interpretation, for example claiming that 

the profitability of the new investment is known with certainty and there are no 

risks involved. To correct this problem, the analysis must be extended to 

incorporate the uncertainty inherent in the project itself. 
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2.7.1. Risk adj usted parameters 

When there is a limitation in their ability to predict future estimates with any 

degree of precision, some analysts try to manipulate the "best guess" estimate by 

adjusting the values for each input variable or uncertain value. This will follow 

the 'Rule of Conservatism'. I.e. When estimating revenue, estimate low; when 

estimating cost, estimate high. This is often the first line of defence a project 

proposal goes through when it gets passed along to upper management (Cavinto, 

1990). There are various parameters which can be adjusted to cope with the risk 

or uncertainty associated with a proposed investment. 

2.7.2. Example of risk adjustment: cash flows 

Decision-makers often reduce the best estimates of future cash inflow. For 

example, an analyst may estimate the capital cost of a project at £500,000. But 

because of the uncertainty associated with this estimate, and the risk that the cost 

may turn out to be higher, they may use for evaluation purposes and to avoid 

underestimating the future cost, a value which is written up by, say, 10 percent, 

at £550,000. However, this clearly could lead to the project being deemed to just 

be uneconomic, whereas using the 'correct' estimate, £500,000, might lead to a 

positive economic assessment, so an additional source of risk will have been 

introduced inadvertently by this effort to avoid risk. This approach is frequently 

used by 'Risk Adverse' companies. 

Clearly such additional risk factors must be stated openly, lest they should not be 

recognised to be as such at some time in the future. 
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2.7.3. Example of risk adjustment: discount rates 

The risk adjusted approach may even be applied to the discount factor which is 

the rate used to calculate the present value of future cash flows in the discounted 

cash flow analysis, e.g. NPV cash flow calculation. The calculation of a NPV 

cash flow requires the selection of a discount rate, so that the decision may be to 

raise the discount rate for risky projects in relation to the overall cost of capita1. 

For example, the raising of a risk-adjusted discount rate from, say, 13 percent to 

18 percent, might be used to account for risks. Again, unless the reasons for 

using that value are explained, the decision arrived at from the evaluation might 

be very different. 

Certainly, the use of unrealistically high risk-adjusted discount rates would tend 

to reduce the risk of a company making an unproductive investment. Indeed, if 

there were an unlimited number of highly profitable investments in the industry 

waiting to be developed the use of this practice might be justified. If a project is 

still acceptable when discounted at this larger rate, this is fine. 

However, within an industry like the petroleum industry which is highly 

competitive, the use of risk-adjusted discount rates might lead to the rejection of 

acceptable investment opportunities. 

The conclusion is that the implementation of different discount rates implies that 

managers are incorporating risk in their long-term investment decisions. 
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2.7.4. Example of risk adjustment: the payback 

The risk adjusted approach can also be applied when the analyst does not use 

discounted cash flow analysis of investment opportunities. Their basic decision 

criterion is then the Payback - the time required to return the original investment 

in undiscounted terms. The basic concern is: "How soon will we get our money 

back?" In this case, the objective of accounting for risk is frequently a move 

simply to reduce the acceptable payback period for screening purposes, for 

example from 5 years to 3 years. In other words, the decision-maker may define 

a lower payback period for risky projects than the target payback period for 

normal risk projects. 

From the above analysis, adjusting the input values in the cash flow calculation 

to account for risk may appear at first sight to be very convenient, but it can 

return very misleading results and biased decisions. Gapenski (1990) pointed out 

that such cases the projects are being analysed subjectively and conservatively. 

Van Rensburg (1990) showed how adjusting the input parameters on the 

discounted cash flow decision criterion could be significant, and he therefore 

concluded that even minor adjustments to variables could have a significant 

effect on these criteria. Adjusting the input parameters not only cannot solve the 

problem of uncertainty, but a certain level of bias will be indirectly incorporated 

into the process by so doing. Certainly the analyst will have lost a degree of 

control over the situation. 
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2.8 Sensitivity analysis 

Using the risk adjusted parameters method on the point analysis by changing the 

best-guess estimate of the variable's subjectively builds risk into the evaluation. 

Brod (1992) maintained that the limitation of a forecast having a single expected 

outcome is clear: while it may provide the single best guess, it offers no 

information about the range of probable outcomes. 

Since conventional analysis had failed to give a satisfactory result using single 

best estimates in the project appraisal process, Pouliquen (1970) claimed that the 

most natural way to deal with this situation was to make a sensitivity analysis. 

A sensitivity analysis is also frequently referred as a 'scenario analysis', in which 

case it should not be confused with 'scenario writing', which is a qualitative 

method mentioned in section 2.5 above. 

Sensitivity analysis is used to see what would happen if other values of the input 

data were substituted and to examine the effects on the profitability criterion 

function of changes in the values of the key variables. One form of sensitivity 

analysis is to see how far revenues would have to drop or savings diminish until 

the minimum rate of return is reached (Cavinto, 1990). However, McCarthy 

(1994) argues that scenario analysis is merely an extension of the point analysis. 

By combining several point estimates, the analyst hopes to "bracket" the 

uncertainty in the projection. A particular case of sensitivity analysis is to assign 

minimum, best guess and maximum values to the key input variables and 

compute the corresponding values of the decision criterion, thus providing a 

range of possible results. These various combinations are commonly known as 

'what-if scenarios (Vose, 1996). 
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For example, Table 2.2 concerns the profitability of a proposed petroleum 

project, and has been broken down into five separate factors. Three values of 

each factor's value are included, i.e. minimum, best guess and maximum. In this 

table the abbreviation "b" represents "barrels". Since there are five factors and 

three values per factor, 35 = 243 possible 'what if combinations could be 

produced. This type of analysis improves the point analysis. However, there are 

a number of criticisms from different point of views, which are discussed below. 

Key Factors Minimum Best Guess Maximum 

Capital Expenditure (£mm) 305.0 332.0 378.0 

Exchange Rate ($ to £) 1.75 1.82 1.95 

Oil Price ($ per b) 24.0 38.0 48.0 

Recoverable Oil Reserves (mmb) 44.0 52.0 80.0 

Production Rate per Day (mb/d) 29.6 37.2 43.6 

Table 2.2 Example of petroleum project factors 

When sensitivity analysis was first introduced to replace point analysis, a number 

of researchers supported its use. For example, Rappaport (1967) and Hertz 

(1979) emphasised that sensitivity analysis is a logical adjunct to deterministic 

capital budgetting, particularly as a means of developing a better initial 

understanding of the nature and impact of risk. Hull (1980) and Chapman and 

Ward (1997) claimed that all effective quantitative modelling requires sensitivity 

analysis, so the analysts and the user of analysis can understand the relative 

importance of the components the analysis uses. Sensitivity analysis enables the 

most important parameters to be identified for further analysis, more detailed 

monitoring, or more sophisticated forecasting. 
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Sensitivity analysis using estimated single values is probably the most common 

method used in the quantitative economic evaluation of a venture. The method 

determines the relative sensitivity of a particular parameter's value and indicates 

those parameters which have the most influence on the measuring criterion. 

However, in the above example shown in Table 2.2 it is likely that there is too 

large a set of scenarios to have any practical use. As described in Singhvi (1980) 

and Mackenzie (1989), sensitivity analysis provides management with answers 

to a wide array of 'what if questions. Beyond some point, however, this rather 

mechanical exercise becomes less useful. 

This particular case of sensitivity analysis suffers from two important drawbacks, 

and other more general cases suffer from the second of these drawbacks. Firstly, 

the use of only three values of each factor. But what are the three values? Since 

there is no standard way of choosing the three values for the scenario analysis, 

they will vary from person to person and, therefore, bias in choosing those values 

will most probably occur. As concluded in Coleman et al (1995), the creation of 

multiple scenarios by arbitrarily varying key assumptions to account for future 

investment uncertainty is not well-suited for estimating risk in an economically 

meaningful fashion. 

Secondly, no recognition is given to the fact that a value close to the best guess 

value is much more likely to occur than the minimum and maximum perceived 

values, and so the three values are given the same weight. Therefore, while 

scenario analysis improves the point analysis by giving the best and worst case 

and gives the analyst a wider margin of error, it is still does not solve the 

problem in the point analysis. i.e. The likelihood of occurrence of a particular 

outcome of an event is not provided. 
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Bennett et al (1970), Lucey (1968), and Wagle (1978), show how sensitivity 

analysis lets the decision-maker concentrate efforts on refining those estimated 

values of parameters having the greatest effect on the rate of return. However, 

the result is still a single statistic providing neither indication of risk nor the 

degree of interaction between parameter values. It does not indicate the 

likelihood of obtaining this particular outcome. 

Ironically, the more combinations of variables one tries, the less clear the picture 

of the project may well become. 

Thus sensitivity analysis does not in itself assess the risk of an investment 

alternative, although it usually identifies potential sources of risk. To measure 

risk, we have to incorporate probability estimates of the 'what-ifs' occurring. 

McCarthy (1994) emphasised that decision analysis should really be able to give 

the whole picture of how likely are the occurrences of the possible outcomes of a 

project in terms of probability. For example, what is the probability of earning 

£50,000 from a specific investment? 

By highlighting a few key variables from the many project variables, sensitivity 

analysis helps focus the limited time and effort available for evaluation in the 

most productive way. Perhaps most importantly, sensitivity analysis plays a 

useful role in the evaluation process by providing a bridge between single-point 

appraisals of expected value and probabilistic risk analysis. This principle 

weakness of scenario analysis or sensitivity analysis, i.e. the failure to provide a 

probability of occurrence of the outcomes, is overcome by using simulation with 

probabilistic analysis, and this is discussed in the next section. 
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2.9 Simulation analysis 

The Term Simulation 

Cooper and Chapman (1987) and Nanda and Miller (1996) termed 

simulation as a technique that imitates the operations of a real world system 

as it evolves over time. 

The explanation behind this is that risk analysis models usmg simulation 

manipulate probabilities and probability distributions in order to assess the 

combined impact of risks on the project. As pointed out in section 2.6 above, the 

first distinctive feature of risk analysis is quantifying uncertainty. Here, the 

second distinctive feature of risk analysis is simulating the outcomes. It 

simulates the effects of the uncertainty surrounding key variables entering into 

the evaluation on the returns one is likely to achieve. 

This is important, as described by both Pouliquen (1970) and Singhvi (1980), 

who wrote that risk analysis should be used to estimate a range of possible 

results of a proposed investment decision based on the given input data and to 

state the probability that the overall result will be within a specified range. In 

other words, a forecast is obtained for a variable of interest in the form of a 

probability distribution. 

Risk analysis, by usmg simulation, is similar to scenano analysis in that it 

generates a number of possible scenarios. However, it goes one crucial step 

further by accounting for every possible value that each variable could take and 

weights each possible scenario by the probability of its occurrence (Vose, 1996). 
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Mott and Tumay (1992) suggested that whether the decision is to avoid risks or 

to take calculated risks, one thing the decision maker must do is "to buy 

insurance with an investment in simulation". 

In this case, risk analysis should not only provide a tool by which risks which 

can impact on project estimates of costs, schedule, and production can be 

quantified, the joint impact of these risks can also be examined. The most 

important is the identification of the definite perception of what overall risk 

really exists. 

2.9.1. The development of simulation 

Silbergh (1972) noted that before the advent of simulation, the decision-maker 

dealt with uncertainty in qualitative ways by making conservative forecasts or by 

using a risk-adjusted discount rate, or both. However, as shown above, one 

conclusion to be drawn is that risk analysis should eliminate the need for 

restricting one's judgement to a single 'best', 'worst' and 'most likely' 

evaluation. 

An early application of simulation to the analysis of the project investment 

appraisal was described by Hertz (1964). Before that, manual simulations, such 

as moving troops through the field, or playing a board game, were used. 

However, this can be very time consuming and with one or two simulated 

outcomes provides very little information on which to base a decision. With the 

increasing availability of faster and more poweful computers, and better 

understanding of quantitative modelling, simulation has become a very popular 

approach in recent years for the analysis of business problems. 
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Evans and Olson (1998) confirmed that simulation today is widely accepted in 

the world of business to predict, to explain, to train, and to help identify optimal 

solutions. Simulation is used extensively in manufacturing to model production 

and assembly operations, develop realistic production schedules, study inventory 

policies, analyse reliability, quality, and equipment replacement problems, and 

design material handling and logistics systems. It is used in designing and 

evaluating computer and communication networks and scheduling resources in 

complex projects. 

Simulation also finds extensive application in both profit-seeking service firms 

such as financial and retail companies, and in non-profit service organisations 

such as health care, government, and education. These applications involve the 

study of customer waiting-line behaviour, evaluating surgical schedules, and 

designing efficient work flows in offices, for example. 

For instance, simulation models can be used by a bank to help identify the 

number of tellers required to maintain a specific level of customer service as 

measured by waiting time or line length. Coleman et al (1995) observed that 

statistical market risk assessment uses probabilistic cash flow analysis as an 

objective means of measuring and analysing market-driven credit risk for a 

commercial real estate property, security, or pool of securities. 
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2.9.2. The simulation process 

Simulation calculations are made by a computer, which simulates the many 

possible outcomes of an investment decision. During simulation the computer 

chooses values at random from the probability distribution of each factor 

affecting the future cash flows. The computer then uses these random values to 

calculate the return over the project's life, for example. 

Then it repeats these calculations a number of times, each time choosing another 

set of values at random and generating values of the discounted cash flow return. 

In Figure 2.5 below is the summary of the described simulation process. 
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2.9.3. Criticisms of using simulation analysis 

Large number of trials required 

One of the criticisms raised in Cooper and Chapman (1987) and V ose (1996) 

against the used of simulation is that it often requires large number of trials to 

reduce sampling errors to an acceptable level, and this criticism becomes even 

more salient if extensive sensitivity analyses are required. 

For example, suppose it is forecast that the maximum daily production rate from 

a certain oilfield is equally likely to have any value between 12 million barrels 

per day (mb/d) and 20 (mb/d). Then the variable X, say, is Uniformly distributed 

so that x ~ U[12,20). Its expected value is 16 mb/d. Its standard deviation (s.d.) 

is " c / ~ 12 ) " where c = largest value - smallest value, = 20 - 12, = 8 mb/d. 

Hence if, say, 1000 values of the production rates are generated in the simulation 

the mean value and standard deviation of these 1000 production rates should be 

extremely close to 16 mb/d and 2.3094 mb/d respectively, or else needless bias 

will have been incorporated into the process. 

Early on in this research it was recognised that a fundamental requirement was to 

remove any unnecessary variation or randomness from the eventual risk analysis 

model. Unfortunately for many years the practice here would simply have been 

to use traditional Monte Carlo sampling methods, where the pure randomness 

associated with such a method often results in sample outcomes which either 

exhibit sizeable bias (e.g. a disproportionate number may be very small in value) 

or require very lengthy and expensive computer runs in order to ensure that the 

observed frequencies of the simulated values or ranges of values generated from 

the individual distributions are at least moderately close to the corresponding 

expected values. 
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Techniques aimed at reducing the quantity of effort (and thus cost) in order to be 

representative at a certain level are called Variance Reduction techniques. 

Although various techniques of variance reduction have been developed over the 

years to lessen the effort required to achieve specific levels of accuracy (Wilson, 

1984; Avramidis and Wilson, 1996), it was the advent of Latin hypercube 

sampling (Lhs) which revolutionised matters here, since this uses a form of 

'stratified sampling without replacement' (Iman and Conover, 1980) to ensure 

that a sample simulated from a particular population has, for example, values of 

its sample mean and standard deviation which are very close indeed to the 

corresponding population values. Thus, Lhs removes a major source of 

inaccuracy and thus risk. 

Much of the work on developing ever more accurate modelling of samples to 

ensure good sample means and s. d. s ensue can be traced back to the work of 

Pearson and Tukey (1965). 

Today it has became quite easy to develop routines to generate highly accurate 

and thus representative samples from given individual distributions. This 

research has achieved this so that, for example, extremely accurate samples from 

populations with Beta, Uniform, Triangular or Normal distributions can be 

generated, and it is easy to extend these approaches to deal with many other 

continuous 'named' distributions, or with distributions defined on the basis of 

historical relative frequencies. 

How Lhs is formalised, the advantages and disadvantages of using it and the 

comparison of the output results from using Monte Carlo sampling and Latin 

Hypercube sampling will be discussed in detail, starting in the next chapter, 

Chapter 3. 
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Simulation is a powerful method of investigating the riskiness of the projects. 

However, it still seems to be less favoured by corporate decision makers than is 

sensitivity analysis using deterministic data. According to Gapenski (1990) and 

Dingle (1997) the unpopularity of using simulation in the project investment 

appraisal process perhaps arises because of top management's widespread 

unfamiliarity with probability concepts, or even fear of the unknown. 

According to Newendorp (1985), although simulation has been used for many 

years, there is beginning to emerge evidence suggesting that, in generaL decision 

makers tend to make their distributions too narrow. That is, when asked to 

assign a range and distribution to a variable, the tendency is to make the range 

between minimum and maximum values too small. He clarified the above 

problem by claiming that this suggests that it is quite difficult to convert from 

thinking deterministically to thinking probabilistically (as required with 

simulation). However, it should not affect the choice of using simulation by the 

decision maker because as far as simulation is concerned the input distributions 

can have ranges of any magnitude. 

Is it always sensible to use simulation? F or example, in petroleum economic 

evaluation the decision maker may feel that simulation only has value in 

exploration areas where there is sufficient data available upon which to base the 

distributions. In virgin new exploration areas where there are no data available 

there is no guaranteed way to define the distributions - and hence, at first sight, 

no way to make a simulation analysis. 

However, Newendorp (1985) argued that quite the opposite is desirable. It is in 

these new areas where the uncertainty is the greatest where it is most important 

to consider variability. 
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The decision maker may only be able to determine or estimate a range of 

possible values, without knowing the exact shape of the distribution between the 

limits. But it is essential to consider variability in these new areas, and 

simulation is the only way this can be done. 

F or example, historical evidence from broadly similar projects can be used to 

help choose the distributions. It is likely that the minimum, most likely and 

maximum values of the individual parameters can be identified, and at worst a 

Triangular distribution or at best a Beta distribution can be used to model the 

variables. 

Rosenhead's recommendation (1989) that one 'should not pretake the future' has 

to be ignored here or uses of, and massive benefits arising from, the powerful 

simulation methodology would almost cease to exist. 

Ignoring dependency between variables is a crucial problem when usmg 

simulation in risk analysis models. It is also the main question that this research 

is trying to solve. An example of the problem is as follows. 

The expected profitability of an oil field can be expressed as the net present 

value of a cash flow of gross revenues net of operating costs, capital costs and all 

tax payments. These revenues and costs will in turn depend on other factors 

which are subject to economic, physical or political risk, such as possible 

changes in tax rates, the predicted price of oil per barrel (which will usually be 

expressed in U.S. dollars per barrel), the dollar-pound exchange rate, inflation 

(which impacts on the value of the writing down of capitalised costs), the amount 

of recoverable heavy-end gas (which could, for example, be converted into 

saleable propane), and so on. 
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Expert advice might be able to suggest probability distributions for these various 

factors, together with further partial dependencies between the factors. For 

example, it would seem reasonable to suppose that the reserves of oil and gas 

should be positively correlated. Similarly, the greater the gas content is so the 

greater will be the pressure within the petroleum reservoir, and therefore the 

greater will be the oil production rate. 

On the other hand a British production company would wish to produce high 

volumes of oil when the price in £ per barrel is high. Hence, for any given price 

of oil in $/b, if the $ to £ exchange rate increases the company will receive less 

£s per barrel, so that production would be cut back until more favourable 

exchange rates return. This indicates that there might be a negative correlation 

between the $ to £ exchange rate and the oil production rate. 

A further factor is that the planners must assume that the production from the 

field would be halted, perhaps permanently, once the remaining levels of 

petroleum have dwindled to levels which can no longer support production rates 

which will generate sufficient revenues to at least offset costs. Consequently, if 

the price of oil in $ drops then so will the volume of recoverable reserves, 

suggesting yet another positive correlation between two factors. 

Over the past few years there have been many publications on the use of 

simulation methods for analysing risk. Most explain how to describe a 

distribution for each random variable and then sample a value from each 

distribution for each pass using a random number as the entry point III a 

cumulative frequency distribution of the variables. Many analysts fail to realise 

that this procedure implies that each random variable is independent of all others 

(Newendorp and Root, 1976). 
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In reality, certain important random variables in large projects are dependent, 

and a realistic appraisal of risk and uncertainty must recognise such dependency 

relationships, as in the example of oil recoverable reserves and oil maXImum 

production rate above. 

One caution to be noted by decision makers is identified in Chapman and Ward 

(1997), which suggested that simulation makes it relatively straightforward to 

add large numbers of risks together in a single operation to assess their overall 

impact. Unfortunately, this convenience can seduce analysts into a naive 

approach to risk combinations which tends to overlook the importance of 

dependency between individual sources of risk. It also encourages decision 

makers to set up the combination calculations to present the end result and to 

ignore intermediate stages for specification and computational convenience. 

In addition, Wall (1997) reviewed that in recent high profile publications the 

presentation of Monte Carlo simulation-based cost analysis overplays the 

importance of the choice of which distribution to use to represent input variables 

and underplays the importance of assessing and including correlations between 

the variables. 

Effects of with-correlation and without-correlation 

Wall (1997) showed that correlations between variables of a cash flow model in 

a Monte Carlo simulation must be recognised explicitly. He carried out two 

simulation tests based on a complete (216 buildings) data set using Lognormal 

and Beta distributions, all simulations having 10,000 iterations. His results 

showed that although the mean of without-correlation simulations is not 

significantly different from with-correlation simulations there is a significant and 

substantial difference in the standard deviation. 
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The most important result is shown by the standard deviation statistic: not 

including correlations in the simulation can cause a serious mis-estimation of the 

spread of the distribution. This result was supported by the test statistics. 

The standard deviation of the with-correlations distribution is well within the 

confidence interval of the standard deviation of the observed distribution at the 

950/0 confidence interval, whereas the standard deviation of the without

correlations distribution is well outside the 95% confidence interval. Thus the 

standard deviation of the with-correlations distribution is not significantly 

different from the observed, whereas the without-correlation distribution is 

significantly different from the observed distribution. 

The common practice of excluding correlations results in mis-assessment of the 

risk of the project, which is serious since a key requirement of risk analysis is to 

assess risk. This result shows that the correlation between risk factors is 

important when simulation is used to produce estimates of the cash flow model. 

Neglecting correlations is an erroneous decision and it may well produce 

misleading results. 

Effects of choosing a different distribution 

The effect of choosing a different distribution can be observed from the same test 

which was carried out to show the significant of correlation in simulation by 

Wall (1997). In the test, Lognormal and Beta distributions were used to observe 

the significance of the choice of distribution in the simulation model. The test 

statistics showed that for both Lognormal and Beta distribution, they are broadly 

similar when compared with the dissimilarity between the without-correlation 

results and the test statistics. 
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This further verifies that the importance of calculating and incorporating 

correlation into simulations outweighs the importance of deciding which 

distributional form to use to represent the variables of the simulation. 

The above criticisms and discussions are further stressed in Uher (1996), who 

say that the correct assessment of dependence or correlation among risk variables 

in a simulation model is far more critical in terms of the accuracy of the result 

than the choice of the probability distributions for the input data. 

However, the mechanics of how individual distributions are combined is not 

always transparent to the decision maker. Together these factors can lead to a 

failure to appreciate insights from considering intermediate stages of the 

combination process and dependencies between individual sources of risk. As a 

consequence, the principal weakness of many simulation analyses, i.e. ignoring 

the interdependency between variables, is a serious risk in itself. 

To overcome the above problem relating to random variable dependencies, one 

immediate problem would then be how to modify the normal sampling 

procedures on each simulation to account for observed partial dependencies 

between random variables 

2.10 Key aspects of correlation 

2.10.1 Basic definitions 

The regressIOn of a variable on one or more other variables provides an 

indication of the way in which the first variable varies with the second or 

others, whereas correlation is a measure of how strongly these two or more 

variables are related to each other, if at all. 
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The two principal measures of correlation in current usage are Pearson's 

Product-Moment correlation coefficient and Spearman's Rank correlation 

coefficient. The former is applicable only when the variables are measured on 

cardinal scales, and the latter is most appropriately used when the data values 

are ordinal (Curwin and Slater, 2002). 

However, the latter is also often used as a convenient or necessary 

approximation to the product-moment correlation coefficient, particularly 

when (as with risk analysis packages such as @RISK or with spreadsheet 

programmes such as Microsoft Excel) product-moment correlation generating 

functions are not supplied. 

If two variables X and Yare assigned n paired values Xi and Yi in a simulation, 

for i = 1 to n, then the definition of Pearson's Product-Moment correlation 

coefficient for this sample is 

rp = covariance(x,y) 7 [ ( standard deviation of x) * ( standard deviation of y ) ]. 

Consequently 

n n n 
rp = (lin) L (Xi-mx)(Yi-my) 7[ { --J(1/n) L (Xi- mx)2 } * { --J(lIn) L (Yi-my)2}], 

i=l i=l i=l 

where mx and my are the sample means of the n values of X and Y respectively. 
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Alternatively if the values Xi, for i = 1 to n, represent the ranks of the n values of 

X (where the smallest rank, 1, is assigned to the smallest value) and the Yi values 

are correspondingly the ranks of the n values of the variable Y, the formula for 

Spearman's Rank correlation coefficient is easily derived from the above formula 

for rp, and is as follows (subject only to a small correction factor if any of the 

ranks are tied): 

n 
rs = 1 - 6 L d? /(n(n2 -1 )), where di = (Xi-Yi) 

i=l 

In each case it can be proved that the least and greatest possible values of rp or rs 

are -1 and 1, and a number of other standard properties of these two coefficients 

are discussed in Curwin and Slater. For example, rs is not as sensitive to 

changes in outlying values as rp. 

Example 

Suppose n = 4, and the 4 paired values (Xi,yi) are as follows: 

1 

3.7 

2.9 

2 

8.6 

2.0 

3 

7.6 

3.8 

4 

8.1 

3.3 

Here the sample means are mx = 7.0 and my = 3.0. :. The covariance ofx and y 

is -0.1150, and the two standard deviations are s\ = 1.9378 and Sy = 0.6595, so 

that rp = -0.0900 to 4 d.p.s. The ranks of Xi are 1,4,2 and 3 respectively, and 

the corresponding ranks of Yi are 2, 1, 4 and 3. The di values are -1, 3, -2, and 0 

(so that the total difference is zero, as always), and the d? values are 1, 9, 4 and O. 

Hence rs = 1 - 6 * 14/( 4 * 15 ), = -0.4. 
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A correlation matrix IS a symmetric and positive semi-definite matrix 

(Marsaglia and Olkin (1984»), and is used generally when more than two 

variables are being simulated. However, even in the direct correlated case of 

only two variables x and y, say, whose correlation is specified to be p, a 

correlation matrix M may be defined. 

Expressed as a table this matrix is: 

Correlation Matrix 

x y 

x 1 P 

Y P 1 

Note that this matrix is symmetric, and that the diagonal elements are both 1. 

Since it is to be positive semi-definite, its principal minors must both be ~ 0, so 

that 1 - p2 ~ 0, which implies that -1 :s; p :s; 1. 

Although it is not important in the direct context of this research, it is now 

shown that the user-defined values of partial correlation coefficients when 

there are more than two variables will have values which are not just 

individually constrained to being at most 1 in magnitude. 

61 



Chapter 2: The Reasons for Using Simulation As a Tool for QRA 

Example 

Suppose there are three variables, X, Y and Z, and that the correlations of X with 

Y and Z are desired to be 0.8 and -0.5 respectively, whereas the correlation 

between Y and Z is unknown, and equal to p, say. 

The correlation matrix in tabular form is: 

Correlation Matrix 

x y z 

x 1 0.8 -0.5 

Y 0.8 1 P 

z -0.5 P 1 

The 2x2 minor again yields -1 ~ p ~ 1. The 3x3 minor is 1 - p2 -0.8p -0.89. 

This is ::::: 0 if p2 + 0.8p - 0.11 ~ 0, so that -0.9196 ~ P ~ 0.1196 to 4 d.p.s. It 

would be erroneous to claim either that p is less than -0.9196, such as p = -0.95, 

or greater than 0.1196. 

Within the remaining chapters of this thesis only two variables will be correlated 

at anyone time, so that it is not necessary to use the concept of a correlation 

matrix. Note also that the emphasis in this research is on modelling product

moment correlation coefficients, so that after this section little more will be 

written about properties of rank correlation. 
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2.10.2 Literature review 

Lurie and Goldberg (1998) report that an important requirement relating to the 

mathematical consistency of a correlation matrix is that it must be positive semi

definite. Their paper deals with correlation in general and so, in this sense, it is 

equally applicable to product moment or rank correlation matrices. 

They describe the circumstances under which a user-defined correlation matrix 

may not be semi-positive definite, and use a combination of Cholesky 

decomposition of matrices and Gauss-Newton iterations to generate a revised 

correlation which is positive semi-definite and "as close as possible to the user's 

original matrix". A good example is illustrated in Price (2002) 

A useful extension of their procedure is derived from the consideration that 

there may be more certainty about the values of certain of the correlation 

coefficients than others, so that weights reflecting the individual levels of 

certainty can be incorporated within the objective function. 

This work is carried out in the context of desiring to generate random 

numbers from a selection of univariate distributions. Thus, the joint 

distribution of these variables is (except in quite limited circumstances) 

unlikely to be known or to be able to be predicated, whereas the marginal 

distributions of the individual variables may be specified by the user, together 

with specific information on the partial correlations (or possibly on the 

product moments up to some finite order). They report on the approaches 

used by other researchers in this field and discuss how problems are 

recognised to arise in the modelling of correlations if any of the variables 

have finite bounds (such as the beta or triangular distributions), for example in 

the work carried out by Vale and Maurelli (1983). 
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Certain researchers have overcome this difficulty (for example Li and 

Hammond (1975)), albeit at the cost of great computer computational effort, 

and yet even then the resulting correlation matrix may not be positive semi

definite. 

Clemen and Reilly (1999) examined the problem of constructing a 

probabilistic model in the contexts of decision analysis and risk analysis. 

They explained that typically this is achieved by defining a joint distribution 

of all the variables as a product of marginal and conditional distributions for 

the individual random variables. 

As the number of desirable variables grows within the model, the required 

number of probability assessments can grow exponentially. They devised an 

alternative approach using a copula, together with measures of pair-wise rank 

correlations. A copula, formally, is a means of expressing a joint cumulative 

distribution function of a set of random variables as a single function of these 

variables' marginal cumulative functions, so that no recourse to conditional 

distributions need be made. Thus the success of the Clemen and Reilly 

procedure relies on the fact that rank correlations do not depend on marginal 

distributions. 

In this context the copula approach would be equally applicable if the matrix 

of dependence measures is expressed in terms of Kendall's 1, rather than 

Spearman's ps. 

Unfortunately, in the context of this thesis, this method cannot be applied 

when it is desired to express the relationships between the variables in terms 

of the Pearson product-moment correlation, pp, since pp depends on the 

marginal distributions. 
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However, this paper is instructive on ways of helping the user or modeller to 

think about the relationships among the random variables. The paper also has 

a very clearly developed example to illustrate the procedure. They conclude 

by raising a key question: "Rather than asking if experts can assess 

correlations accurately, perhaps we should ask whether they can assess 

correlations well enough to be useful in the modeling process. The results 

reported in this paper suggest an affirmative answer." Here, then, clearly, they 

are in agreement with the observations noted earlier by Wall (1997) and Uher 

(1996). 

Iman and Conover (1982) developed a procedure for generating a desired rank 

correlation matrix on a multivariate input random variable in a simulation 

study. 

It must be stressed here that the measure of correlation is rank correlation and 

not product-moment correlation, so that it is relatively unhelpful in the 

context of this thesis. Because rank correlations are being used, the method is 

distribution free so that the exact forms of the marginal distributions of the 

input variables are preserved. The method is quite straight forward to 

implement within a bespoke simulation study, and is equally applicable to 

either Monte Carlo or Latin hypercube sampling approaches. 

In practice this approach forms the basis for correlation modelling in commercial 

risk analysis and simulation programmes such as @RISK and Crystal Ball. In 

chapter 6 of this thesis it is demonstrated that, in contrast with quite accurate 

sampling from the marginal distributions, the generated rank correlation 

coefficients are much less accurate. 
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Iman and Conover observe in effect that "if the sample rank correlation is not 

satisfactory to the user, nothing prevents the prospective user from generating 

several (candidate) matrices of Spearman correlations, and then choosing the 

matrix that provides the most preferred rank correlation." This rejection method 

could well be long drawn out if the number of variables, n, is large. In this sense 

the Lurie-Goldberg use of a weighted objective function seems more attractive 

but, again, this latter can only be used with rank correlations. 

Schmeiser (1999) observes that commercial simulation software provides 

extensive support in creating the logical model, but relatively limited support for 

creating the input model. 

Most of the effort expounded by various researchers, such as Iman and Conover, 

and Lurie and Goldberg, has been directed at developing complex input models 

that cater for rank correlations only. However Schmeiser notes that Cario and 

Nelson (1997) and Chen (1999) "at least tackle the harder problem of providing 

the desired Pearson correlation". 

The NORTA ("NORmal To Anything") method involves a components-wise 

transformation of a multivariate normal random vector into a random vector with 

specified marginal distributions for the individual variables. Ghosh and 

Henderson (2002) observe that the approach is equally valid for both rank and 

product-moment correlations, which is a definite step ahead from the Iman- and 

Conover -deri vatives. 

Chen (2001) developed a procedure to generate n-dimensional random vectors 

using the NOR T A approach. He stated that n( n-l )/2 non-linear equations need to 

be solved to ensure that the generated n-D random vector has the specified 

correlation statistics. This method is computationally more complex yet 

improves the Cario-Nelson algorithm's speed and robustness. 
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Indeed, it is the question of robustness that raises the largest doubt about the 

Cario-Nelson algorithm. Ghosh and Henderson (2002) observed that the 

NORTA method has been shown to fail for some feasible correlation matrices 

(i.e. the random vector has the given marginal distributions and the generated 

matrix is an acceptable approximation to the required correlation matrix). 

They concluded that this feasibility problem becomes steadily worse with 

increasing n in general, and actually fails in the vast majority of cases even in 

as low a dimension as n = 17. However, they propose an augmentation 

procedure that, initially at least, appears to be retaining an accurate 

approximation as the dimension increases. 

2.10.3 Inspiration 

The vanous increasingly-complex derivatives of the Imam and Conover 

approach are making progress in this general modelling area, but appear to be 

making ever greater demands of the modeller. 

The Iman and Conover approach only works with rank correlations and, 

although it can cope with modelling quite large dimensions of vectors, the 

accuracy of the generated correlation matrix usually leaves a great deal to be 

desired. The NOR T A approaches show some promise when dealing with 

relatively small numbers of variables (perhaps n less than 15 at best), and 

does seem capable of addressing the product-moment correlation problem, but 

otherwise the method crashes with disquieting frequency. It is likely that 

future NORTA-augmentation procedures (along the lines promised by Ghosh 

and Henderson) will produce a more robust and accurate simulation input 

model, but this is likely to be at the expense of ever greater demands on 

resources. 
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The enormous effort to specify (and fit) the joint distribution is a huge 

drawback, particularly where larger numbers of variables are concerned, and 

this (and other) drawbacks make their use impractical for a model of 

relatively modest complexity. Aiming for the simpler goal of matching only 

the marginal distributions (i.e. the claimed distributions of the individual 

variables) and the correlation matrix, may well capture the essence of the 

dependence between the components while being able to work with easily 

implementable methods that work well in higher dimensions (Ghosh and 

Henderson, 2002). Consequently a quite different approach from the NORT A

derivatives would be attractive, and such a one is defined, specified, 

developed and tested within the remainder of this thesis. 
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Summary 

The first part of this chapter defined the scope of this research by starting with 

the meaning of uncertainty and risk. Uncertainty is therefore defined as the 

result of imperfect knowledge about an event and risk is the result of uncertainty. 

This has lead to identifying the significance of employing risk analysis within the 

environment with some real world examples from various application areas. 

While data used for evaluation are not always known precisely, these parameters 

may be the best estimates of experienced personnel or they may be based on a 

very cursory analysis of minimal data. Consequently, decisions must be made in 

the face of this uncertainty. As a result, risk associated with parameter estimates 

must be incorporated in any QRA model. 

The second part of this chapter analysed the three main approaches used in risk 

analysis during the capital budgeting evaluation. Simulation is thought to be 

able to provide an objective evaluation for a project 

The use of simulation is recommended as it can represent uncertainty in terms of 

continuous probability distributions rather than just a few values, and therefore it 

provides a better replica of a project's real-world risk/return characteristics than 

does point analysis or sensitivity analysis. It is especially useful when there is a 

simultaneous change in many variables. Simulation provides a better framework 

for analysis in that it is easier to estimate a range of values for the variable rather 

than one best point estimate. The more the uncertainty in estimating a variable, 

the greater is the advantage of employing simulation (Nanda and Miller, 1996) 

However, QRA using simulation has suffered from several drawbacks that have 

been pointed out in this chapter. The most serious one is ignoring the 

dependency between these uncertain variables. 
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This leads to the research question on how to incorporate the dependency into a 

QRA model using simulation. 

The next chapter will demonstrate the structure of the RCM and the methodology 

used to formulate it. Some pre-requisite know-how and proof of the relevance of 

methods used in the RCM will be explained before the actual building of the 

model is discussed in detail. 

Finally, Bennett et al (1970) and Vose (1996) remind us that, in the final analysis, 

any evaluation technique is only as good as the estimates of its input parameters 

and must be used in conjunction with sound managerial judgement. These 

techniques only provide management with information tools to aid in the 

decision-making process. 
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A Method for Treating Dependencies Between Variables in a Simulation Risk Analysis Model 

Chapter 3: The Methodology for A Model 

Simulating Product Moment Correlation 

3.1 Introduction 

Chapter 2 concluded that simulation analysis is recognised as an improved 

approach over point and scenario analysis when uncertainty from the project 

needs to be incorporated and the risk from undertaking the project needs to be 

analysed. Nevertheless, it was identified that there are a number of limitations 

from using simulation analysis. 

The two main problems that this research is trying to solve are: 

Problem 1 - Ignoring the dependencies among key factors leads to the risk of 

generating unrealistic random numbers as the input for subsequent calculations. 
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Problem 2 - Traditionally in Monte Carlo simulation a large number of trials is 

required in order to generate an observed frequency distribution which closely 

approximates to the required probability distribution for either key factors or 

decision criteria. 

This chapter in effect describes the various 'building blocks' that have eventually 

been chosen to contribute to the RCM, for example sorting and shuffiing routines. 

It also describes the two major approaches to sampling from a single distribution: 

the basic concepts of Monte Carlo sampling, and the relatively recent and very 

powerful extension of stratified sampling know as Latin hypercube sampling. 

The key objective of this chapter is that the samples which are generated and the 

correlations between the samples should be very accurate reflections of the 

populations from which they are drawn, in order to maximise the confidence of 

the planner that the modelling is as correctly representative as possible. 

By the end of this chapter, what is arrived at is a means of generating random 

numbers from U[O, 1) using Latin hypercube sampling, with perfect sample means 

and variances and for which the sample correlation coefficient is not only a 

product-moment coefficient but is also very accurate. 

It is worth noting that this research restricts its scope to handling two correlated 

variables. Simulating product moment correlations among three or more 

variables will become a future extension of this research. 

One assumption of the Research Model is that the two variables defined in the 

model have values which are cardinal, so that Pearson's product moment 

correlation coefficient should be used. Spearman's rank correlation coefficient is 

not appropriate since it is best used when the data variables are ordinal. 
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Various authors have shown how Spearman ' s Rank Correlation Coefficient can 

be modelled, for example N ewendorp and Root (1976), Wall (1997), and Vose 

(2000). 

This research uses a bottom-up approach to produce the output of two sets of 

correlated sample values Thjs will begin with the statement of the assumptions 

of the probability distributions of the individual variables, together with 

assumptions about various pair-wise correlations between the variables. 

The following is the schemata of this chapter The building block in each step will 

be discussed before the formulation of the research model is explained . 

Concept 
Overview 

l 
Building Block 

I 
I I j I 

Latin hypercube Adj ustment of Initial Pairing Swapping to 
Sampling trom Two Sampled Values of Values -. Improve 

Distributions Correlati on 

I I j I 
~ 

... Algorithm . . 

FOn1lUlation 

Figure 3.1 Chapter schemata 
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3.2 An algorithm to generate accurate pair-wise correlations 

The two primary objectives here are: 

(i) to generate and adjust the two samples in such a way that the two sample 

means and their standard deviations are equal to the corresponding 

population parameter values J.lx, ax, J.ly and a y; and 

(ii) to choose a suitable set of pairings of the two sets of sample values 

without replacement so that the correlation between the two samples is 

acceptably close to the population product-moment correlation 

coefficient, p. 

Suppose the first sample is that of a variable x whose sampled values are Xi for 

i = 1 to n, and for which the expected value and variance are /lx and (32 x. Similarly 

the second sample consists of n values of a variable y. The key notations used are 

as follows: 

Symbol Range or Description 

Xi Values from the first distribution, for i = 1 to n 

Yj Values from the second distribution, for j = 1 to n 

J.lx and J.lv The two population expected values 

ax and a y The populations' standard deviations 

p or Pxy The target product-moment correlation coefficient 

The algorithm to achieve these objectives is in two parts, the first of which is 

described firstly in broad outline in section 3.2.1. and the second in more detail 

within section 3.3 to 3.6. 
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Initially, i.e. in Chapter 3, the distributions ofx and y is to be restricted to U[O,l), 

so that ~x = ~y = Y2, and (Jx = (J\ = ~, but the results are extended to more 
. -v12 

general distributions in Chapter 5. 

3.2.1. Conceptual approach 

The conceptual approach is represented in this section to give an overview of the 

steps related to the RCM, and then the algorithm implemented within the model is 

explained. 

It begins by defining two variables X and Y to have U[O, 1) distributions, so that 

their population means are both equal to Y2 and their s.d.s are both equal to 1/~12. 

The four major steps are: 

Step 1 

Generate n representative 'realisations' of X which are sampled randomly in turn 

from n equi-probable equal-width sub-domains of the overall domain [0,1) of X, 

and which are adjusted to ensure that the sample mean is Y2, and the s.d. is 1/~12, 

these n values being stored in the array ~; 

Step 2 

Generate similarly n representative realisations of Y which are then stored in the 

array y; 
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Step 3 

Identify a good starting sequence in which the values from ~ and y should be 

paired in order to achieve a sample correlation which has a first-order 

approximation to the required correlation p; and 

Step 4 

Adjust the pairings so that the final sample correlation is very close indeed to the 

required value p. The accuracy of the final sample correlation will ultimately (in 

Chapter 6) be bench marked against that achieved by using the commercial 

package @RISK. 

3.3 Generate a random sample using Latin hypercube sampling 

3.3.1. Sampling method used 

What is meant by randomness is that the process which produces the number is 

not deterministic, so that we cannot be sure what number will be produced next. 

These random numbers are transformed into samples from the required 

distribution. 

It is often not good enough if the modeller wishes to minimise the sampling errors 

(the set effect) that occur due to shortish run length (Pidd, 1998). The two most 

popular sampling methods in current usage are Monte Carlo and Latin hypercube 

sampling. The latter is a sampling method using descriptive sampling and it is 

preferred in this research. The advantages of using Latin hypercube sampling 

method are demonstrated below. 
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3.3.2. Monte Carlo sampling 

Monte Carlo sampling is the oldest, least sophisticated and yet still most popular 

sampling method used in academia and businesses. 

Monte Carlo sampling got its name from the code name of an American project 

on the atom bomb during the Second World War and not, as some people believe, 

from the town in Monaco with the same name that is so well known for its 

casinos (Vose, 1996). 

The process of Monte Carlo sampling can be viewed as two steps. First, select a 

uniformly distributed value between 0 and 1. For example, in Visual Basic, this is 

a call to the function RND. Second, use the cumulative density function (CDF) 

for the distribution of its risk factor to identify a value of this random variable. 

Monte Carlo sampling satisfies the purist's desire for an unadulterated random 

sampling method. It is useful if one is trying to get a model to imitate a random 

sampling from a population or for doing statistical experiments. 

However, the randomness of its sampling means that it will over- and under

sample from various parts of the distribution and cannot be relied upon to 

replicate the input distribution's shape unless a very large number of iterations are 

performed. 

For nearly all quantitative risk analysis modelling, the pure randomness of Monte 

Carlo sampling is not really relevant. Increasingly users are far more concerned 

that the model should reproduce the distributions that we have determined for its 

inputs. Otherwise, what would be the point of expending so much effort on 

getting these distributions right? 
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3.3.3. Latin hypercube sampling 

Latin hypercube sampling addresses this issue by providing a sampling method 

that appears random but that also guarantees to reproduce the input distribution 

with much greater precision and therefore efficiency than Monte Carlo sampling. 

Latin hypercube sampling, or Lhs, is an option that is now available for most 

commercial risk analysis programmes, for example. @RISK and Crystal Ball. It 

uses a technique known as 'stratified sampling without replacement' (lman and 

Conover, 1980) and proceeds as follows: 

To generate n random values from U[O, 1) using Latin hypercube sampling: 

1) Divide the domain of X into n mutually exhaustive classes: [O,1/n), 

[lIn,2/n), . . . , [I-lIn,1), so that the probability that X takes a value in 

anyone of these classes is constant at 1 In. 

F or example, if n = 10 

2) These classes are closed at the left and open at the right. E.g. In the first 

class, [0, lin], a realisation Xl will be generated which will satisfy 

° ~ Xl < lin. The formula used to generate the general value, Xi, is: 

xCi) == (i-1)/n + (l/n) * 8, = (i -1+ 8)/n, 

for i = 1, 2, ... , n, where 8 is a random number from U[O, 1). 

Note that an alternative (and inter-changeable) notation for xci) used in this thesis 

IS Xi. 
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Example, with n = 10: 

I e xCi) 

1 0.2487 0.02487 

2 0.1986 0.11986 

3 0.9143 0.29143 

4 0.8849 0.38849 

5 0.4312 0.44312 

... . .. ., . 

Thus each class contains exactly one random value. The sample mean, mx, say, 

should be approximately liz and the s.d., sx, say, should also be approximately 

equal to 1/~12. It is illustrated below how this can be achieved when n is an even 

number. 

3.3.4. When n is an even number 

In fact if the value ofn is restricted to being an even number (such as 10, 20, 100 

or 1000, but not 25) it is easy to ensure that the sample mean is exactly equal to 

Y2. To achieve this simply ensure that the n random numbers 8 are generated in 

antithetic pairs which sum to 1. O. For example, if one value of 8 is 0.374 then its 

antithetic value is 1 - 0.374, = 0.626. This is probably the easiest variance 

reduction procedure to implement. 
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Example: 

8 1-8 

0.4996 1-0.4996 = 0.5004 

0.1433 1 - 0.1433 = 0.8567 

0.0019 1 - 0.0019 = 0.9981 

Thus 5 random numbers from U[O,l) can generate 2 * 5, = 10, values in a sample 

of size 10, with each of 5 class of width 1/5 containing two antithetic values. 

From this can be seen the desirability of making n even, not odd. 

Figure 3.2 taken from Vose (1996) illustrates the use of stratification that is 

produced for 20 iterations of a Normal distribution. It is observed that the 

intervals get progressively wider towards the tails as the probability density drops 

away. 

80 



Chapter 3: The Methodology for A Model Simulating Product Moment Correlati on 

£ 
.............................. .. ........ _ ........ _._ ....... _ .. __ ............................. . 

.. ........ ... .... ... ... , .... ........ ........ . -- .. _- .... _- ... ........ _--_ ....... _- ..... -... .... . 

0.8 ::: ~_.~,._~,.:: :: .. :: .. ':.: :. ::.:: ::.::: ::::::: .::.: .. ::::: ... : .... :.:::.:::::.::::.::.:::::: :: . 

....... .. . " ........... ............ ... ..... ........ .... --_ ... __ .... _--- ... _-- ... _---- .. 
0.6 ............................................. ... .... _-- .......... ---- ..... -- ... ----- .. 

:F(x) ... .... .. .... , ................ .......... .. _-._, ............ _----- . 

0.4 

0.2 

100 150 200 250 

x 

00 1 ! 
0000 

re x) 

100 

300 350 

Figure 3.2 Example of the effect of stratification in Latin hypercube sampling 

(Sou rce: Vose, 1996) 

8] 



Chapter 3: The Methodology for A Model Simulating Product Moment Correlation 

3.3.5. Comparing results between Monte Carlo and Latin 

hypercube sampling methods 

The improvement offered by Lhs over Monte Carlo can be easily demonstrated. 

Figure 3.3 taken from Vose (1996) compares the results obtained by sampling 

from a Triangular(O, 10,20) distribution with LHS and Monte Carlo sampling. 

The charts of Figure 3.3 show that Lhs consistently produces values for the 

statistics that are nearer the theoretical values of the input distribution than Monte 

Carlo sampling. It can also be observed that the histogram of the sample 

distribution of the 300 iterations resembles a triangle far more closely for Lhs. 

Of course, the random nature of Monte Carlo sampling means that another set of 

simulations might have produced more accurate results were we to have repeated 

the experiment, but we could never guarantee it. 
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3.4 Maximum absolute errors (MAE) when antithetic variables and 

Latin hypercube sampling are used 

The use of antithetic variables which are used in the Research Model is one of the 

key methods in the process of variance reduction in discrete event simulation, 

where variance reduction is aimed at reducing the size of the random sample 

required to ensure that the sample mean does not differ significantly from the 

desired value at any specified level of significance. Suppose X is a variable which 

is distributed as U[O,l), and 2n values are to be simulated, consisting ofn pairs of 

values. In the ith pair let the random numbers (r.n.s) from U[O,I) that are used be 

8i and 1-8i. This pair of random numbers is antithetic in that their sum is always 

equal to I. 

This section proves that the maximum absolute errors in the sample s.d. and 

variance can be reduced when the antithetic method and Latin hypercube 

sampling is used. Suppose n values of X are sampled from U[O, I) so that the i
th 

value, xci), has a value generated in the interval [(i-I)/n, i/n). For brevity the 

analysis is restricted so that n is an even number, although the analysis of the case 

where n is odd is also easily derived. 
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3.4.1. Case where antithetic sampling is not used. 

The greatest sample standard deviation will occur when the value assigned to 

xci) either equals the lower class boundary value, (i-l )/n, when i < nl2, 

or equals the upper class boundary, i/n, when i > nl2. 

On the assumption that the sample mean is adjusted to V2, the sample variance will 

be: 

V = { [x (1) - 112 ]2 + [ x(2) - 112 ]2 + .... + [ x(n) - 112 ]2} In. 

Suppose it is expressed in the form that V = Vleft + V right, where the terms 

contributing to Vleft will be those for which i < nl2. The terms for which i > nl2 

will constitute Vright. It is clear from symmetry that V1eft = V right, and that therefore 

V = 2*Vleft. Let n = 2k. 

Hence V = (2/n) * { [ O/2k - 112 f + [ 1I2k - 112 ]2 + [ 2/2k - 112 f + ... + 

[ (k-1)/2k - 112 f } 

= ( 2 I n3 ) * { k2 + (k_l)2 + .... + 12 } 

= ( 2 I 8k3 
) * {k * ( k+ 1 ) * ( 2k+ 1) I 6 } 

= (1 + 11k) * (2+ 11k) I 24 

= ( 1 + 21 n ) * (1 + lin ) I 12. 

Note that V ---+ 1112 as n ---+ 00 

The maximum absolute error in the sample variance is thus: 

( 1 + 2/n ) * (1 + lin ) I 12 - 1112 = [3/n+2/n2]1 12. 
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3.4.2. Case where antithetic sampling is used 

If the sampling is carried out using antithetic variables then the contributions to 

the variance from a general linked pair of classes, class 2w-l and class 2w, will be: 

(X2w-l - l;2 )2 + ( X2w _ l;2 )2 

= ( ( 2w-2 + 8 )/n - l;2 )2 + ( ( 2w-l + 1 - 8 )/n - l;2 ?, 

= (1/4n2
) * { (4w - 4 + 28 - n)2 + (4w -28 _n)2 } 

= (l/4n2) * { [( 4w-2-n) -2(1-8)]2 + [( 4w-2-n) + 2(1-8)]2 } 

= { 16w2 -8(2+n)w + n2 + 4n + 8 } I 2n2 + 2(1-8)2 In2
, for any integer value ofn. 

The contribution from this pair is clearly maximised when 8 = o. 

So, the maximum variance arises in the limiting case in which every first value of 

the pairs of antithetic variables is at the left hand class boundary (i.e. in the odd 

numbered classes), and the second sampled value in each pair is at the right hand 

class boundary (i.e. in the even numbered classes). 

This maximum variance is then (1/2n3)L {16w2 -8(2+n)w + n2 + 4n + 8}, summed 

from w = 1 to nl2 

= [ 1 + 8/n 2 ]112, = 1112 + 2/(3n2). 

Hence the maximum error in this variance is 2/(3n
2

) 

Note again that V ~ 1112 as n ~ 00 

E.g. Ifn = 10, the maximum errors in the variance are "[ 3/n + 2/n2] I 12", 

= 0.32 I 12, = 0.0267 to 4 d.p.s if antithetic sampling is not used, or "2/(3n
2
)", 

= 0.0067 if antithetic sampling is used. 
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Even for such a small sample size, the latter maximum error is approximately a 

quarter of the former maximum error. 

3.4.3. Example of the MAE in the sample mean and variance 

It is easy to verifY that the maximum absolute error in mx is half a class width , 

0.5 

n 
E.g. If n = 100 then the value of mx will lie in the range 

0.495 :=;; mx :=;; 0.505. The maximum error would occur when either all values x (i) 

are at their lower class boundary or, from symmetry, when they are all at their 

upper class boundary. 

The maximum absolute error in the sample variance, S2 x, will depend on whether 

the values of e are generated as antithetic pairs. These maximum errors were 

derived in section 4.4 above. 

If antithetic random number generation is not used then the maximum absolute 

error in the sample variance will be [3/n + 2/n2 
] I 12. For example, when n is 

10 this will be 0.02667, whereas when n = 100 this reduces to 0.00252, and when 

n = 1000 this reduces further to 0.00025. In practice the error in the sample 

variance is usually very much smaller than the 'worst case' upper bounds. 

If antithetic random number generation is used then the formula for the maximum 

absolute error in the variance is 2 I 3n2 so that, if n = 10, the maximum absolute 

error in the variance is reduced from 0.02667 to 0.00667. 

Similarly when n = 100 the maximum error is reduced from 0.00252 to 0.00007, 

and when n = 1000 it is reduced from 0.00025 to 0.0000007. 
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Example: 

We can compare these maXImum absolute errors ("mae") in the variance for 

several values of the sample size, n: 

Sample 
Non-Antithetic Sampling: Antithetic Sampling: 

A-;.-N, 

Size, n 
mae = [ 3/n + 2/n2 ] I 12, mae = 2 I 3n2, 

= 8 I (2 + 3n) 
=N, say = A, say 

10 0.02667 0.00667 0.25 

10 0.00252 0.0000667 0.02649 

1000 0.000252 0.000000667 0.002665 

Clearly the use of antithetic variables guarantees greater accuracy in the variance, 

and this accuracy increases with the sample size, n. 

Now consider the ranges within which these variances must correspondingly lie. 

Example 

n = 10 

The population vanance IS 1112, = 0.08333 to 5 d.p.s. Using the above 

expressions for the maximum absolute errors in the variance in the case of 

samples of size 10, for example, the sample variance V, say, must lie in the range 

0.05667 ~ V ~ 0.11000 if antithetic random number generation is not used or in 

0.07667 ~ V ~ 0.09000 ifit is used. The former is correct only to 1 d.p., whereas 

the latter is almost correct to 2 d.p.s. 
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n = 100 

The corresponding ranges ifn = 100 are 0.08082 ::; V::; 0.08585 

and 0.08327 ::; V ::; 0.08340 respectively, which are correct to (almost) 2 d.p.s 

and (almost) 4 d.p.s. 

n = 1000 

Similarly if n = 1000 the range if antithetic random number generation is not used 

is 0.08308 ::; V::; 0.08358, which is still not certainly correct to 3 d.p.s, but if the 

antithetic approach is used the range is 0.0833327 ::; V ::; 0.0833340, which is 

correct to 5 d.p.s. and is almost guaranteed to be correct to 6 d.p.s. 

In summary, the maximum ranges within which the sample variance must lie in 

these three cases are as follows: 

Sample Size, Range of Non-Antithetic Range of Antithetic 
n Variance Varaince 

10 0.05667::; V::; 0.11000 0.07667 ::; V ::; 0.09000 

100 0.08082 ::; V ::; 0.08585 0.08327 ::; V ::; 0.08340 

1000 0.08308 ::; V ::; 0.08358 0.08333207 ::; V ::; 0.08333340 

The population variance of these U[O, 1) variables should be 0.083333 to 6 d.p.s, 

so that this table of the sample variance ranges clearly confirms that antithetic 

sampling will greatly improve their guaranteed accuracy, and hence greatly 

increase the confidence in the sample parameter values. 
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3.4.4. Adjusting to correct the sample mean and variance 

The next stage is to linearly transform the values of the K array so that the sample 

mean of the n values Xl to Xn is Y2 and the s.d. is 11-/12. This is achieved via the 

transformation X (i) ~ Y2 + [ xCi) - mx ] / [ Sx * -/12 ]. 

This linear transformation is easily verified since the mean value and standard 

deviation of the transformed xCi) value should be Y2 and 11-/12 respectively: 

E[ transformed xCi) ] = Y2 + [Y2 - Y2] / [ Sx * -/12], = Y2 - 0, = Y2, as required, 

and its variance = 0 + Var ( sampled value xCi) ) / [ Sx * -/12 ]2 - 0 

= ( s/ ) / 12 (sx2 
), = 1112, as required. 

Similarly transform the n values of the array y. 

For example, suppose a sample of 10 values of xCi), 0.00246, 0.19754, 0.24756, 

etc., have been generated using pairs of antithetic random numbers from U[O,l), 

and that the standard deviation of these 10 sampled values is Sx = 0.28840 to 5 

d.p.s (whereas the population s.d. is ax = 1 / -/12, = 0.28868 to 5 d.p.s). 

The value of " Sx * -/12 " is thus equal to 0.99905, and the transform formula 

yields the three corresponding transformed values of xCi) which, together with the 

transformed values of the other seven sampled xCi) values, will ensure that the 

transformed sample mean remains equal to liz, and the sample s.d. becomes 1 / 

-/12, as required. 
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. 
x(i) before transform I x(i) after transform 

1 0.00246 0.00293 

2 0.19754 0.19783 

3 0.24756 0.24780 

Maximum possible change to an individual sampled value from U[O,l) 

The maximum possible change to a value can be calculated. For example, if 

n = 100 and antithetic random number generation is used, the absolute change in 

xCi) will be 8i , say, 

= I [ xci) - Y2 ]- [ xCi) - Y2 ] / [ sx * --)12 ] I 

= I [ xCi) - Y2 ] * [ 1 - 1 / ( sx *--)12 ) ] I . 

Now, 1 - 1 / ( sx *--)12 ) will be greatest when Sx is most extreme, for example 

0.28840 as above. Hence the maximum absolute change in 1 - 1 / ( Sx *--)12 ) is 

0.00095 to 5 d.p.s, so that no xCi) value will increase or decrease by more than 

0.5 * 0.00095, = 0.00048 to 5.d.s., which is 0.0048 of a class width. It should be 

clear that the largest individual change will be to one of the two extreme values 

(Xl or XlO in this example). Thus, Xl above changes by 0.00293 - 0.00246, 

= 0.00047 (which is just less than the maximum possible change 0.00048 above), 

whereas the change in X3 is only 0.00024. 

Even so, for the two extreme values Xl and xn, a check must be made lest they 

should become just less than 0 or just greater than 1 respectively, although this is 

clearly very unlikely. If either of these two extreme-case transforms is infeasible 

(and this is likely to happen only very infrequently), simply generate a new sample 

of the variable concerned, transform the values again, and check. 
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3.4.5. Advantages 

Now the values x(1 .. n) form a sample of size n whose: 

1) sample mean and s.d. exactly match those of the underlying U[O, 1) 

population; 

2) n values are approximately spread out regularly through the range of the 

cumulative density function or c.d.£.; and thus whose 

3) n values are being sampled at approximately equal points throughout the 

domain of the inverse c.d.f 

Hence if, say, n = 1000 values are sampled and adjusted in this way, and if the 

observed and expected frequencies are fitted to 10 classes we'd expect a X2 

goodness of fit test to yield a very small value of the test statistic. Thus the 

expected frequencies, Ei, would all be 100, and the observed frequencies, Oi, 

would be close to 100, so that the term "( Oi - Ei )2 / Ei " would be a small 

fraction. Hence the value of X2 would be small, showing that the sampled data 

closely mirror the assumed underlying Uniform distribution. A similar process 

can be found in Avramidis and Wilson (1996). 
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3.5 Pairing: generating an initial correlation 

N ow we need to discover which of the Yj values should be paired with each 

individual Xi value without replacement in such a way that the product-moment 

correlation of the paired samples is as close as possible to the required correlation 

coefficient, p. 

To achieve this, consider the following linear transformation which defines a new 

array yO(1, .. , n) for values of a, band c which are to be determined. 

yO (i) = a + b*x(i) + c*<p(i), for i = 1, 2, ... , n. 

The values <jl(i) are to be n separate (and independent) values sampled from 

U[O,l), and are also to be independent of the xCi) values, so that the covariance of 

~ and <jl = 0 . We require the sample mean and s. d. of the n yO(i) values to be 1/2 

and 1/"12 respectively, and we require the product-moment correlation between 

the paired samples to be as close as possible to p. 

Now, E(yO) = a + b * E(x) + c * E(<jl), 

= a + Yzb + Yzc, = 1/2, 

so 2a + b + c = 1 

Var(yO)= E[(yO-E(yO))2],= E[(yO-Yz)2] 

= E[( b(x-Yz) + c(<jl-Yz) )2], 

= b2var(x) + c2var(<jl), = (b
2
+c

2
) 112, 

= 1112, 

So b2 + c2 
= 1 , 

(1) 

(2) 
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Cov(x,yO) = PCJxCJyo = p1l2, = E[(x-Y2)*(a + b*x + c*<I> - Y2)] 

= E[ b(x-Y2)2 + c(x-Y2)( <I>-Y2) ], 

since the covariance of ~ and ft is zero 

= bll2 + 0, = p1l2, 

so b = p. 

Hence in (2) c = -V(1_p2), and 

in (1) a = ( (1 - p - -V(1_p2) ) / 2. 

[ Note that equally we could take 

c = --V(1_p2), and a = ( (1 - p + -V(1_p2) ) / 2 ] 

:. yO(i) = [ 1 - p - -V(1_p2) ] /2 + P * xCi) + -V(1_p2) * <I>(i), 

for i = 1, 2, ... , n. 

(3) 

(4) 

Suppose, for example, that the target correlation is p = 0.30, and that values of 

xci) have been generated for a sample of size 10. Suppose also that values of <I>(i) 

have been generated, so that the following table shows the first three pairings of 

xCi) and <I>(i), together with the calculated values ofyO(i) using formula (4) above. 

x(i) <1>( i) yO(i) 

0.00293 0.1470 0.014138 

0.19783 0.2578 0.178305 

0.24780 0.5013 0.425580 

Note that if p = 0, this reduces to yO(i) = <I>(i), so that YO will be independent of X, 

whereas if p = 1, this reduces to yO (i) = x (i), so that YO will be perfectly 

correlated on X. 
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Similarly if p = -1, this becomes: 

yO(i) = [ 1 + 1 ] / 2 - x(i) + 0, = 1 - x(i), which means that these two variables 

from U[O, 1) are then perfectly negatively correlated. 

In summary, in these three extreme cases: 

p yO(i) 

° <p(i) 

1 x (i) 

-1 1 - xci) 

Otherwise if the magnitude of p is closer to 1 than to 0, the term p * x(i) will be 

more influential than -J( 1_p2) * <p(i), so that a relatively firm correlation will be 

created between the values ~ and y, whereas if the magnitude of p is closer to ° 
than to 1, the random term -J( 1_p2) * <p(i) will be the dominating factor in the 

generation ofyO(i). Algebraically we can verify the following: 

E[yO] = [ 1 - P - -J(1_p2) ] /2 + P * E[x] + -J(1_p2) * E[<p] 

= [ 1 - P - -J(1_p2) ] /2+ P * Yz+ -J(1_p2) * Yz, 

= liz, as required. 
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Hence: 

Var(yO)= (lIn) L [ (yO(i) - Yz )2 ], = (lIn) L [ { p * (x(i) - Yz) + 

-J(l_p2) * ( <p(i) - Yz) }2 ] 

= p2 * L [ ( xCi) - Yz ) 2 ] + (l_p2) * L [ ( <p(i) _ Yz )2] 

+2p-J(l- p2) * L [ ( xci) - Yz) * ( <p(i) - Yz) ] 

= p2 * var(x) + (l_p2) * var(<p) + 2p-J(l_p2) * cov(x,<p) 

= p2 * 1/12 + (l_p2) * 1112 + 2p-J(l_p2) * 0 

= 1112, as required. 

Similarly the expected correlation between the ~ and yQ values will be 

= (i/n) * L [ ( xCi) - 112 ) * ( yO (i) - 1/2) ] 7 [ crxcr~ ] 

= (lin) * L { [p * (x(i) - Yz )+ -J(l_p2) * ( <p(i) - Yz) ] * [x(i) - Yz ]} 7 [ crxcr~ ] 

= { p * var(x) + -J(l_p2) * cov(x,<p)} 7 [ crxcr~], = { p * (1/12) + -J(l_p2) * 0 } 

7 [ 1112 ], 

=p. 

In practice the sample variance will be close to the required value p, as we'll see, 

but it doesn't necessarily follow from the equation (4) defining yQ in terms of ~ 

and ~ that YO will have a Uniform distribution. 

The n values in the ~ array are strictly monotonic increasing, but the values in the 

yQ array are probably not, unless the value of p is very close to 1.0. The sample 

mean and s.d. of the generated yO(i) values may be exactly what are required, but 

the skewness (and kurtosis) of these generated values often differ significantly 

from the corresponding parameter values of a Uniform distribution. 
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Hence the array yQ should not be regarded as an ideal sample of values of the 

variable Y which is ~ U[O,l). Indeed these yO (i) values will be used to decide 

which individual values of the generated y array will be paired with which of the 

xCi) values, as will be seen. 

3.5.l. The usefulness of the array yQ as a ranking proced ure 

At this point in the process a sample of n monotonically increasing values of X ~ 

U {O, 1) will have been generated and transformed, so that their sample mean and 

s.d. are equal to Yz and 1/~12 respectively. Similarly n monotonically increasing 

values of Y ~ U[O,I) will have been generated and transformed. These two sets 

of n values are stored in the arrays ~ and y respectively. 

Also n values of the array yQ will have been generated using <p, but these values 

are almost certainly not monotonically increasing (unless p is very close indeed to 

I in value), and the distribution of the variable YO need not be U[O,I). These yQ 

values will be used to decide which individual values in the arrays ~ and yare to 

be paired, the supposition being that, since ~ and yQ have a correlation roughly 

equal to p then, after pairing is completed, so will the arrays ~ and y. Later (in 

section 3.6) the swapping routine will be described which should greatly increase 

the precision of the correlation between x and y, and which will thus go a long 

way towards achieving the research objectives defined in Chapter 1. 

The procedure here is perhaps best developed via an example. The sample size is 

n = 5, so that antithetic sampling has not been used. The target correlation is 

p = 0.6, so that formula (4) simplifies to yOU) = -0.2 + 0.6 xci) + 0.8 <p(i). The 

table of the simulated (and transformed) values of xci) and y(i) now follows, 

together with generated values of <p(i) and hence the calculated values of yOU)· 
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All the values in these four arrays are written to only 2 d.p.s for readability, but 

even so the sample means of the ~ and y arrays are equal to 0.5, and their 

variances are close to 1/12 (= 0.08333). The sample means and variances of the <j) 

and yQ arrays are irrelevant. 

The fifth and sixth columns in the table show the ranks of xCi) (which are 

monotonically increasing) and yOU) (with the smallest value in each case having 

rank 1, etc.). The eight and ninth columns show the values and ranks (currently 

monotonically increasing) of the values yU), where the index "j" has been chosen 

deliberately in order to distinguish it from the index i of xCi). The ranks of y(i) are 

also monotonically increasing. 

1 xCi) <j)(i) yOU) Rank ofx(i) Rank of yOU) J yU) Rank ofyU) 

1 0.10 0.72 0.436 1 3 1 0.14 1 

2 0.30 0.19 0.132 2 1 2 0.21 2 

3 0.46 0.35 0.356 3 2 3 0.50 3 

4 0.74 0.56 0.692 4 5 4 0.78 4 

5 0.90 0.41 0.668 5 4 5 0.87 5 

The sample mean and variance of the xCi) values are 0.5 exactly and 0.0838 

respectively, so that the sample mean is perfect and the variance, which should be 

0.0833, is quite acceptable for values recorded to 2 d.p.s only. 

The sample mean and variance of the y(i) values are 0.5 exactly and 0.0858. 
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Now re-order the y(j) values so that their ranks are the same as those of 

yO(i). 

For example the first value in y will be the third ranked, which is 0.50, and the 

second will be the first ranked: O. 14. The resulting ranks of the re-ordered values 

in y will in effect be the inverses of the ranks of yQ. 

The table of values of xci) and the correspondingly paired y(i) values will thus be 

as follows: 

I xCi) Rank ofx(i) Re-ordered y(i) Rank ofy(i) 

1 0.10 1 0.50 3 

2 0.30 2 0.14 1 

3 0.46 3 0.21 1 

4 0.74 4 0.87 4 

5 0.90 5 0.78 5 

The sample product-moment correlation coefficient of these five paired values is 

easily calculated to be 0.646 to 3 d.p.s, which for a first attempt (and with such a 

small sample size) is a creditable first approximation to the target value of 0.6. 

The procedure covered in the following section will usually enable the precision 

of the set of pairings in this first approximation to be greatly improved. 
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3.6 Swapping 

This is to be the key step of this algorithm: identifying how thi s approximation 

can be improved. Figure 4.2 summarises the approach that is described in this 

section. 

Now, the sample correlation, rxy, is equal to the sample covariance di vided by the 

product of the two sample standard deviations, so that 

I ( Xi - liz ) * ( Yi - liz ) 

= n * r xy * (1/-)12)2, 

= I XiYi - lIzI ( Yi - V2 ) - V2I ( Xi - V2 ) - I liz * V2, 

= Ixy - nl4 . 

Ideally this Ixy should be equal to n * p * (1 /-) 12)2- n/4, so that the error in Ixy 

is n * ( r xy - P ) / 12 + n/ 4 - nl4, = n * ( r xy - p ) / 12 . 

.. Sample X 
Sample Correlation Required correlation 
Coefficient = r:\")' coefficient = p 

Sample Y 
~L 

Error in IXY = ~ 

Swapping 

/~ 
Contribution Reduction 

= i Oi ,j = lOi,j 

Figure 3A Swapping approach 
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Hence we would like to reduce Ixy by ( nl12 ) * ( rxy - p ), = ~, say, which could 

be positive or negative (of course, if it is zero then the sample correlation is 

already perfect!). 

Suppose two of the pairings contributing to Ixy are (Xi,yi) and (Xj,Yj), where j > i, 

so that their contribution to Ixy is XiYi + XjYj, and consider the effect of swapping 

the order of these two Y values, so that the two pairings would become (Xi,Yj) and 

(Xj,yi). 

The sample means and s.d.s would be unchanged, but the contribution to Ixy 

would become XiYj + XjYi, and the reduction in Ixy would be XiYi + XjYj - XiYj - XjYi, 

= (Xj - Xi) * (Yj - yD, = 8i,j, say. Similarly if ~ < 0 then define 8i,j to be the required 

increase in Ixy: 8i,j = (Xj - xD * (Yi - yj). 

Hence if 0 < 8ij < 21 ~ 1 then swapping the order of Yi and Yj within the array y 

will improve the required accuracy of the sample correlation. 

Hence scan each combination of the values of Xi, Yi, Xi and Yj, and compute the 

test statistic 8ij. Find the optimal value ofi and j (if any) which will then make the 

most progress in transforming the value of r xy to p, with reference to the 

appropriate double inequality statement bulleted above. This means that scanning 

of the pairs of values has to be over the ranges 1 s i < nand i < j s n, so that the 

number of combinations of i and j will be V2n(n-l). 

Note that, since Xj - Xi > 0, if ~ > 0 so that the sample correlation is to be 

decreased, we only have to consider values Yi and Yj for which Yj> Yi· There are 

similar economics if ~ < O. 
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Thus, if values of i and j can be found which will improve the sample correlation 

in this way, swap the two values of y, and repeat the process, continuing until no 

further progress can be made. The experience so far is that in the great majority 

of cases between 1 and 3 iterations are necessary. 

The above algorithm is demonstrated in the next chapter by using an example 

where n is small, = 10, and the target sample correlation is 0.7. Steps 1 to 3 of 

the algorithm generate samples with correlation 0.6051, and one iteration of step 

4 increased the correlation coefficient to 0.693 1, which has over 99 percent 

accuracy. No further improvements were found. Put another way, the reduction 

in the error exceeds 98.8%, which is highly satisfactory. 
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Summary 

This chapter has demonstrated the method for simulating accurate correlations 

between two samples drawn from U[O, 1) variables, in which the sample mean 

values and standard deviations are equal to their corresponding population 

parameters. 

This is taken a step further in Chapter 4 when a larger example is worked through. 

This chapter also examines how the various building blocks are modelled. 

In Chapter 5 the algorithm developed in the current chapter will be extended to 

deal with variables having more general distributions, such as beta or normal. In 

Chapter 6 the results of a large number of tests of the RCM are reported, and 

these results are compared with the corresponding results from an industry

standard risk analysis package. 
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Chapter 4: Simulating Accurate Correlations 

Between Two Samples: A Full Example, and the 

Specification of the RCM 

4.1 Introduction 

This chapter is in two parts. The mam objective of the first part is to 

demonstrate the formulation and building blocks discussed in Chapter 3 with a 

fully detailed step by step example. Here the two variables still have U[O, 1) 

distributions. 

The RCM is a computer based model, so that in the second part of this chapter a 

flow chart and sequence diagram demonstrate the construction of the RCM. The 

function of each process, the input it requires, and the output it generates must be 

specified clearly, so that the flow of data through the model can be clearly 

identified and understood. 
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4.2 An illustrative example of the algorithm 

Example
1

: Generate two samples of size 10 from populations which are U[O, 1) 

and whose product-moment correlation coefficient is 0.7. 

Step 1 - generate X 

Divide the domain of X, [O,l), into 10 mutually exhaustive classes: 

= [0.0,0.1), [0.1,0.2), [0.2,0.3), and so on, up to [0.9,1.0). 

Next generate the 10 random numbers, 8, say, from U[O, 1) to be stored in array 

8( 1 .. 10)2. Choose the 10 values of 8 to consist of 5 antithetic pairs, so sample 5 

values of8 i.e. : 8 1 83 85 87 89 , , , , . 

81 = 0.02462 82 = 0.97538 

83 = 0.47559 84 = 0.52441 

85 = 0.95135 86 =0.04865 

87 = 0.31880 88 = 0.68120 

89 = 0.76934 810 = 0.23066 

1 This example. in \vhich the very small sample size is 10. is not particular~y practical from the 
simulation point of vic\\. However it means that the steps of the algonthm can be vIewed 
without running the risk of being lost in masses of data. 

2 Note that. if required. the 10 values in e could be shuffled into a randomised order (as 

illustrated in Chapter :1). 
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Now generate 10 values of xO, one in each of these classes, using the general 

formula: 

xO(i) == (i-l)/n + (l/n)*8(i), = (i - 1 + 8(i)) / n, for i = 1,2, ... , n, where n = 10. 

For example, in the third class, xO(3) 

= 0.2 + 8(3) * 0.1, 

= 0.2 + 83 * 0.1, = 0.2 + 0.47559 * 0.1, = 0.24756. 

The 10 values of xO will thus be: 

0.00246, 0.19754, 0.24756, 0.35244, 0.49514, 0.50486, 0.63188, 0.76812, 

0.87693 and 0.92307. 

Because antithetic random numbers have been used in the generation of the array 

xO the sample mean value will be exactly lh, = mx, and the variance, V, is 

calculated to be 0.08349 to 5 d.p.s, whereas the population variance is 0.08333, 

so that the relative error is only 0.2 percent. Note that this value of V lies within 

the range 0.07667 s V s 0.09000 derived earlier and is much closer to the true 

value, 0.08333, than the limits give reason to expect. 

The sample s.d. = Sx = 0.28895. 

Now transform the xO values to become the final x values via 

xCi) = lh + [xO(i) - mxO ] / [ sxO * -J12 ]. 

i.e. xCi) = lh + ( xO(i) - 1/2 ) * 0.99905, so that the sample mean of the xCi) values 

is V2 and their s.d. is 1/-J12. 
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The 10 adjusted values, x(l .. 10), are as follows (to 5 d.p.s): 

i x6(i) before transform x(i) after transform 
1 0.00246 0.00293 

2 0.19754 0.19783 

3 0.24756 0.24780 

4 0.35244 0.35258 

5 0.49514 0.49514 

6 0.50486 0.50486 

7 0.63188 0.63175 

8 0.76812 0.76787 

9 0.87693 0.87657 

10 0.92307 0.92267 

The sample s.d. was fractionally too large (0.28895 versus 0.28868), so that the 

effect of the multiplier 0.99905 above has been to bring all the values slightly in 

towards the sample mean, 12. The two middle values are not changed to 5 d.p.s, 

but the extreme values are changed the most. For example the first value is 

changed from 0.00246 to 0.00293. 

As mentioned earlier, it is possible that a result of such a transformation (or 

scaling) could be that either x(1) might become smaller than 0 and/or x(n) might 

exceed 1, in which case a new sample xO should be generated. In this case this 

isn't necessary. 
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Step 2 - generate Y 

In the illustration of this step, all calculated values are correct to 4 d.p.s. 

Using Latin hypercubes generate 10 values of Y, and store them in the array 

yLhO, so that yLhO(1) to yLh0(10) will be (in this example) 0.0193, 0.1807, 

0.2685, 0.3315, 0.4668, 0.5332, 0.6372, 0.7628, 0.8076, and 0.9924. The 

sample mean here is automatically equal to Y2, and the s.d. is SyL = 0.2902. The 

transform formula (4) then transforms the array yL into y, say, via the formula 

yO) = Y2 + [ yL(i) - Y2 ] / [ 0.2902 * --.) 12 ] 

Note that, as with the generation of the 10 values of xO, the random numbers 

have been generated in antithetic pairs so that, for example, the first two values 

yL(1) and yL(2) are 0 + 0.1 * 0.193 and 0.1 + 0.1 * (1-0.1933) respectively. i.e. 

The 5 pairs of antithetic random numbers from U[O, 1) have not been shuffled. 

Next transform these variables into a new array, yLh(l..n), which has its s.d. 

equal to 1/--.)12. 

I Generated value ofyLhO(i) Transformed value: y Lh(i) 

1 0.0193 0.0218 

2 0.1807 0.1824 

3 0.2685 0.2698 

4 0.3315 0.3323 

5 0.4668 0.4669 

6 0.5332 0.5331 

7 0.6372 0.6365 

8 0.7628 0.7614 

9 0.8076 0.8060 

10 0.9924 0.9898 
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Step 3 - pairing 

Next we must decide which individual values in x are to be paired with which 

values in yLh. 

First we generate the values of the yRO array, where the ith term is defined to be: 

yRO(i) = [ 1 - P - --J(1_p2)] /2 + P * xCi) + --J(l_p2) * <p(i), for i = 1,2, ... , n. 

To achieve this generate values of <pO(i), which will be 10 r.n.s from U[O,I) in 5 

antithetic pairs and located within Latin hypercubes. 

For example, the first two values are: 

<p0(l) = ( 1 -1 + 0.6892) /10, = 0.06892; and 

<p0(2) = ( 2 -1 + ( 1 - 0.6892 ) ) / 10, = 0.13108 

r.n.S Antithetic pairs <pO(i) 

0.6892 81 = 0.06892 82 =0.13108 

0.879 83 = 0.28790 84 =0.31210 

0.3003 85 = 0.43003 86 =0.56997 

0.6220 87 = 0.66220 88 =0.73780 

0.8262 89 = 0.88262 810 = 0.91738 

Of course now yRO(i) will generally take small or large values within its class as 

<p0(i) is small or large respectively. This could exaggerate the correlation so, 

having generated the n (= 10) values of <pO(i) we now shuffie them into a random 

order to become the values of the array <p which will be used in the generating 

formula above for yRO(i). 
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These reordered values are, for example, 

<p = {0.66220, 0.43003, 0.91738, 0.28790, 0.06892, 0.56997, 0.13108, 

0.31210, 0.73780, 0.88262 }. 

Thus, for example, <p(1) = <p0(7), and <p(2) = <p0(5). 

Next calculate the values of yRO(i) using the values of x(j) derived in Step 1 and 

the values of <p(j) listed above: 

yRO(i) = [ 1 - p - -J(l_p2)] /2 + P * xCi) + -J(l_p2) * <p(i), for i = 1, 2, ... , n. 

For example, x(1) = 0.00293 and <p(l) = 0.66220, so that 

yRO(l) = [ 1 - 0.7 - -J0.51 ]/2+ 0.7 * 0.00293 + -J0.51 * 0.66220, 

= 0.2679 to 4 d.p.s. 

The 10 values of yRO(i) are: 

0.2679,0.2385,0.6215,0.2453,0.1887,0.5534, 0.3288, 0.5533,0.9334, 1.0691. 

[Within the programme these values are then rearranged in order of increasing 

size, to become the array yR, in which case they would be 

0.1887,0.2385,0.2453,0.2679,0.3288,0.5533, 0.5534, 0.6215, 0.9334,0.9691.] 

The key aspect here is, however, that in general the above values of yRO(i) will 

not be monotonically increasing, so that we need to identify their individual 

ranks. For example, yRO(1) = 0.2679, and this is the 4th largest of the values in 

the array yR, so that the rank of yRO(1) = 4. Similarly we can identify the ranks 

of the other 9 values ofyRO(i), as in the following table, Table 4.1. 
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The sixth column in Table 4.1 contains the values of yLh which were derived 

above in Step 2, and so these are monotonically increasing with sample mean 1,12 

and variance 1112. 

I x(i) yRO(i) yR(i) Rank ofyRO(i) yLh(i) y(i) 

1 0.0029 0.2679 0.1887 4 0.0218 0.3323 

2 0.1978 0.2385 0.2385 2 0.1824 0.1824 

3 0.2478 0.6215 0.2453 8 0.2698 0.7614 

4 0.3526 0.2453 0.2679 3 0.3323 0.2698 

5 0.4951 0.1887 0.3288 1 0.4669 0.0218 

6 0.5049 0.5534 0.5533 7 0.5331 0.6365 

7 0.6318 0.3288 0.5534 5 0.6365 0.4669 

8 0.7679 0.5533 0.6215 6 0.7614 0.5331 

9 0.8766 0.9334 0.9334 9 0.8060 0.8060 

10 0.9227 1.0691 1.0691 10 0.9898 0.9898 

Table -1-.1 Paring process 

Note that it has happened here that yR0(10) exceeds 1 (being equal to 1.0691 to 

4 d. p. s), but this isn't important since the distribution of yRO is not intended to be 

U[O, 1). The use of the array yRO is simply to generate the rankings, so that the 

array of yLh(i) values can be reordered to have the same ranks. This reordered 

version ofyLh is named y. 

For example, because the rank of yRO(1) is 4, the value of y(1) will be the 4th 

largest value in the monotonic increasing array yLh(i): 0.3323. Continue in this 

way to complete the seventh column in Table 4.1. 
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The two arrays x and y in the second and seventh columns have their sample 

means equal to lj2, and their variances are 1112, = 0.0833 to 4 d.p.s. Their 

covariance should be approximately P*O"x *0"\, = 0.7 * 0/12), = 0.0583. 

However, the generated covariance of the x and y values is 0.0504, not 0.0583, 

and so their correlation is 0.6051, not 0.7. Hence our goal now is to increase this 

the sample correlation to a value closer to 0.7 if possible. 

Step 4 - swapping 

The final step in the algorithm is to swap pairs of values in the array y( 1. .n) until 

the correlation coefficient between x and y is as close as required. Figure 4.2 

documents the swapping process in this example for cross referencing 

throughout the demonstration below. 

The covariance = (lin) *[ L { x(i)*y(i) } - J.lx *J.ly ], summed from i = 1 to n. 

Write the sum simply as LXY , so that LXy should take the value 

n * [ 0.0583 + 0.5*0.5], = 3.0833 to 4 d.p.s. 

However the actual current value ofLxy is easily calculated to be 2.9771, so that 

the ideal net increase in LXY is desired to be 3.0833 - 2.9771, = 0.1062 (with all 

calculations being carried out to 4 d.p.s.). This can be described as the target 

increase in LXY, and in Table 4.2 below these three values are shown in the third, 

fourth and fifth rows of the column corresponding to each iteration. 

Consequently in each iteration the way in which the values in x and yare paired 

is adjusted so that the current inaccuracy in LXY is increased (or decreased, as 

appropriate) as much as possible. This is achieved by sequentially swapping 

pairs of values in y, y(i) and yU), say, until no further improvements can be 

identified. 
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Seeking always the largest possible change is a "greedy" approach, and is also 

known as a "steepest descent" approach, these terms being used frequently in 

other applications of Operational Research. 

Now we'll consider the actual changes or "swaps" to make to pairs of yO) and 

y(j) values, iteration by iteration, until no further improvements can be identified. 

'Swap' Iteration 1 

Target: LXY should be increased by 0.1062, or as close as possible to this value. 

1.e. Currently the value of LXY is 2.9771, but it should be 3.0833 to 4 d.p.s, so 

that the target increase in LXY is 0.1062 (= 3.0833 - 3.0043). Note that in this 

example the value of LXY is to be increased but could, equally well, need to be 

decreased. In the notation defined earlier the value -0.1062 is assigned to~. I.e. 

Previously ~ was defined to be the required decrease in LXY· 

Thus, suppose two of the pmnngs contributing to LXY are (Xi,Yi) and (Xj,Yj), 

where j > i, so that their contribution to LXY is XiYi + XjYj, and consider the effect 

of swapping the order of these two y values, so that the two pairings would 

become (Xi,Yj) and (Xj,yi). The sample means and s.d.s would be unchanged, but 

the contribution to LXY would now become XiYj + XjYi, and the increase in LXY 

would be oi,j = (Xj - Xi) * (Yi - yj). The ten values of Yi and Yj are currently as 

shown in the second and third columns in Table 4.2. 

Now the values in x are strictly monotonic increasing so that Xj > Xi (when j > i), 

and thus Xj - Xi > O. :. We need only to consider elements in the y array for 

which Yi - Yi is > 0 in this example. Hence, for example, taking i = 1 and j = 3 

will not work since Yi - Yj = YI - y, = 03323 - 0.7614, and this is 1101 > O. 
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Now, in this manual calculation, it is simply a case of finding two values of i 

and j such that 8i,j is> 0, and then scanning through the values in Table 2 to find 

better improvements if possible. 

Note also that it doesn't matter if the increase in LXY exceeds 8i,j, as long as the 

net increase is less than 2 * 8i,j so that the value of LXY becomes closer to the 

target than before. 

The first step here is clearly achieved by swapping Y1 and Y2, so that the value of 

81,2 = (0.1978-0.0029)*(0.3323-0.1824), = 0.0292. This isn't a big improvement 

in LXY, but it still i .... ' an improvement, and so will become the "incumbent" 

increase. Now we look for other values of Yj for j > 2 to swap with Y1 such that 

the incumbent increase will be improved, and so on. 

Thus keeping i = 1, the best improvement is obtained by setting j = 5, so that the 

incumbent value of 8i,j is 81,5 = (0.4951-0.0029)*(0.3323-0.0218), = 0.1528. 

Note that this value makes LXY too big, being 3.1299, but it will still be closer to 

the target sought, which is 3.0833, the excess now being only 0.0466 compared 

with the value 0.1062 before the start of this iteration. i.e. The resulting 

improvement in the correlation coefficient if we stopped here would already be 

over 50 percent: the value of f,y is now 0.7559. 

Now try taking i = 2 and considering j ~ 3. The best case here is when j = 5, and 

yields 82.5 = 0.0477, which gives a shortfall of 0.0585 in the target improvement 

in LXY, compared with the excess of 0.0466 reported above, so that the 

incumbent pairing is still i = 1 and j = 2. 
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Continue in this way until we discover that the best improvement is obtained 

when i = 3 and j = 7 , when 03,7 = (0.6318-0.2478)*(0.7614-0.4669), = 0.1131, so 

that Ixy is then equal to = 0.1131 + 0.29771, = 3.0902. Then rx)' becomes equal 

to 0.7082, so that over 93.5 percent of the initial error in the value of the product

moment correlation coefficient has been corrected already, in just one iteration. 

Hence, as a result of iteration 1, swap y3 and y7, to yield the updated y vector of 

values in the fourth column of Table 4.2 at the start of Iteration 2. 

'Swap' Iteration 2 

The current value ofIxy is 3.0902 and should be increased by 3.0833 - 3.0902 

= -0.0068 ideally (adjusting for 4 d.p. accuracy), or as close as possible to this 

value. The negative sign shows that Ixy should actually be decreased. 

This time the best improvement to LXy is -0.0084 when Y9 and YlO are swapped, 

so that Ixy becomes 3.0849, and the sample correlation becomes 0.6980. If any 

further improvement is possible, Ixy should ideally be increased by 0.0016. 

'Swap' Iteration 3 

On inspection no further improvement can be made. As a result of these two 

swaps, the product-moment correlation coefficient has increased from 0.6051 to 

0.6980, so that the improvement in the error is almost 97.9 percent. 

115 



Chapter 4.: A Full Example. and the Specification of the RCM 

It is important to observe that this method is a heuristic. Although the results 

quoted later in this thesis indicate that almost always (if not always) great 

improvements in the sample correlation can be achieved, an alternative swapping 

(or other) heuristic might be identified which would achieve even better results. 

In conclusion in this example, the two samples both have sample mean equal to 

V2 and s.d. equal to 1/...)12, and their sample product-moment correlation 

coefficient is 0.6980, which is only around one quarter of one percent less than 

the target value, 0.7. 
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The table recording the targets and achievements in these iterations is as follows: 

p = 0.7: Swapping: Iteration 1 Iteration 2 Iteration 3 

Current Sample LXY ~ 2.9771 3.0902 3.0817 

Ideal Required LXY ~ 3.0833 3.0833 3.0833 

Target Increase in LXY ~ 0.1062 -0.0068 0.0016 

Correlation before iteration: 0.6051 0.7082 0.6980 

I x(1..10) y(1..10) y(1..10) y(1..10) 

1 0.0029 0.3323 0.3323 0.3323 

2 0.1978 0.1824 0.1824 0.1824 

3 0.2478 0.7614 0.4669 0.4669 

4 0.3526 0.2698 0.2698 0.2698 

5 0.4951 0.0218 0.0218 0.0218 

6 0.5049 0.6365 0.6365 0.6365 

7 0.6318 0.4669 0.7614 0.7614 

8 0.7679 0.5331 0.5331 0.5331 

9 0.8766 0.8060 0.8060 0.9898 

10 0.9227 0.9898 0.9898 0.8060 

J. J. J. 
Values of y(i) to Swap ~ Y3 and Y7 Y9 and YIO No more! 

Achieved Change in LXY ~ 0.1131 -0.0085 -----

Table .... 2 Swapping process 
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4.3 The computer based ReM 

In Chapters 3 an approach was developed for generating a set of correlated pairs 

of random numbers, each variable having the underlying Uniform distribution 

U[O, 1), and the procedure was demonstrated in section 4.2. The outcome of the 

example in section 4.2, i.e. the generated product-moment correlation coefficient 

of the two samples, was tested against the required correlation coefficient and 

shown to be within a satisfactory range. The algorithm required for achieving 

this objective is written in the Gen2Corr function in the computer model using 

Microsoft Visual Basic (VB). 

The next chapter, chapter 5, will then apply the formulated algorithm from 

Chapters 3 and 4 to a selection of more general probability distributions, i.e. the 

general Uniform, Triangular, Normal and Beta distributions. The process of 

transforming the two sets of random numbers into these distributions is written in 

the TwoDist function in the RCM. 

Selecting which programming language was to be used in this research was not a 

significant issue. The computer model developed in this research is used as a 

tool for testing and verifying if the algorithm designed and formulated in this 

research is achieving its objectives, namely accurately modelling the Pearson 

correlation between two continuous variables in the simulation process. 

This section pictures the formulation of the RCM via flow chart and sequence 

diagrams. Each process will be explained briefly. 
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4.3.1. Specifying the RCM - flow chart 

Within the implementation stage, the designed model can be presented in a more 

apparent manner, firstly, by a flowchart as Figure 4.1, which is a graphic 

representation of the steps in the solution of a problem, in which symbols 

represent processes and the data flow through the system is presented. It 

highlights that Gen2Corr and TwoDist are the two main functions which are built 

within the RCM. 

Gen2Corr 

It is shown that the RCM requires four different types of input. I. e. Probability 

distributions, relevant parameter values, the defined population correlation 

coefficient, and the required sample size. 

The last two inputs will be used to begin the data flow into Gen2Corr, and the 

output from Gen2Corr will be two sets of correlated random numbers from 

U[O,l). These two outputs are called XO(l..n) and YO(l..n). 

Gen2Corr represented the date flow and routine of the conceptual approach that 

was discussed in the previous chapter, Chapter 3. I.e. After the initial swapping 

the final adjusted arrays are X(l..n) and Y(l..n). These have perfect sample 

means and s.d.s. 
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TwoDist 

TwoDist is a function to generate sample values from two assigned probability 

distributions ( in particular, their c.d.f. s) with corresponding input for parameter 

values. The two sets of correlated random numbers generated in Gen2Corr enter 

TwoDist as additional inputs to start the process. 

Approach used in TwoDist: 

1) Requires the two U[O, 1) samples X(l..n) and Y(l..n) generated by Gen2Corr 

and inputs the two p.d.f.s and required sample size. 

2) Transforms the assigned probability distributions into cumulative form in 

InvCdf 

3) Uses the output from Gen2Corr in conjunction with the two c.d.f.s to identify 

the initial sample values from the input distributions with - at this stage -

only an approximate value for the product moment correlation coefficient. 

These two arrays are currently called Xlnit( 1 .. n) and YInit( 1 .. n). 

4) Adjusts the initial sample means and standard deviations to match with the 

expected values corresponding to the assigned probability distributions. Now 

these values are stored in XFinal(l..n) and YNext(l..n). 

5) Swaps the adjusted sample values if necessary until their correlation 

coefficient is acceptably close to the desired correlation coefficient. Only the 

YNext(i) values may be altered, so that these values are finally stored in 

YFinal( 1 .. n). 
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At the end of the process in TwoDist, two sets of sample values will have been 

generated. They are not only correlated, but the shapes of the frequency 

polygons or histograms constructed using these sample values will be very 

similar to the assigned probability distributions. This will be demonstrated using 

descriptive statistics generated in the RCM. 

The inclusion of expanded probability distributions into TwoDist will be 

discussed in Chapter 5. 

4.3.2. Sequence diagram 

This section produces a Sequence Diagram, Figure 4.2, where the data flow of 

this RCM is shown. The purpose of creating a Sequence Diagram is different 

from that of creating a flow chart. A flow chart is where the steps that the 

programme will be going through in the RCM are presented, whereas the 

sequence diagram is showing: 

1) the through flow of the data; 

2) the place where the data are stored after each process; 

3) the output from each step; 

4) where the input is coming from; and 

5) where the output is going to 
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Chaptcr~: A Full Examplc. and the Specification of the RCM 

sub Gen2Corr 

subGen2Corr generates two sets (to be stored in the X and Y arrays) of 

correlated random numbers from U[O, 1). The four individual processes involved 

here are ProduceLHRandomNum to Swapping below. 

ProduceLHRandornN urn 

The RCM does not use pure random numbers from a built-in random number 

generator. In fact, these random numbers are generated in a function called 

ProduceLHRandomNum where a sample of n random numbers is generated 

using the Latin hypercube sampling method and returns them to Gen2Corr. 

AdjustXLHRandornN urn 

The final array generated by Gen2Corr will be passed to 

AdjustXLHRandomNum for adjustment so that the expected mean and variance 

from these n sample values are transformed to 112 and 1/12 respectively, since 

these sample values should reflect a Uniform distribution. These adjusted values 

will then be returned to Gen2Corr as the array X(l..n). 

When it is done, the same process will be gone through for random numbers 

which will be stored in YLh(l. .n). 

Pairing 

Gen2Corr now contains the X and YLh arrays which contain the adjusted 

random numbers of X and Y from ° to 1 respectively. These values are passed 

to the function named Pairing where the shuffling, sorting and ranking of array 

YLh via YRO( 1 .. n) takes place for the purpose of correlating array YLh with 

array X to get a good degree of relationship between them. The resequenced 

YLh array is now called Y(l..n). 
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Swapping 

Now the n values in the arrays X and Yare ready for the function in Gen2Corr 

called Swapping where the sequence in array Y will be rearranged but the array 

X will remain unchanged so that the product moment correlation between these 

two sets of data are as close to the required correlation as possible. They are 

updated in arrays X(I. .n) and YO .. n) by Gen2Corr for the next use. 

subTwoDist 

As mentioned before, the final output from Gen2Corr will be used to join the 

initial input in TwoDist. The output from Gen2Corr was the two sets of random 

numbers which have the Uniform distribution's property and have been adjusted 

for mean, standard deviation and correlation coefficient with an acceptable level 

of precision and an approximate correlation. These arrays are X(I..n) and 

Y(l .. n). The four processes comprising subTwoDist are described below. 
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ProducelnvCdfX 

The X(l..n) values are passed to the function called ProducelnvCdfX which 

involves transforming the assigned probability distributions into cumulative 

form. This situation is most relevant when, of course, the distributions of the 

two variables are more complex than U[O, 1), as described in Chapter 5. The 

transformation process will then map the array X against the corresponding c.d.f. 

to get the values. At the end of the process, these sample values will be stored in 

TemplnvCdfArray and are available as output from TwoDist. 

ProducelnvCdfY 

Here the values in the array Yare treated in the same way that the values of X 
were in ProducelnvCdfX. 

Adj ustXlnvCdf 

To ensure the sample values in XInit(l. .n) are truly representing the assigned 

probability distribution, they need to be adjusted for mean and standard 

deviation. This is done in the function named AdjustXInvCdf. The resulting 

array is called XFinal(1 .. n). 

Adj ust YlnvCdf 

Similarly, to ensure the sample values in YInit(l..n) are truly representing the 

assigned probability distribution, they need to be adjusted for mean and standard 

deviation. This is done in the function named AdjustYInvCdf. The resulting 

array is called YNext(1 .. n). 
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Swap2 

Finally, the adjusted values of YNext are swapped until the correlation 

coefficient between these two sets of data is acceptably close here, and these 

values are stored in the array YFinal. The final outputs from Swap 2 are returned 

to TwoDist and are then ready to be used. The arrays are XFinal and YFinal. 

A summary of the functions used in the ReM, together with the objectives, input 

and output from each function, are tabulated in Table 4.2 below. 

127 



Chapter -1-: A Full Example. and the Specification of the RCM 

Function Name Task Input Output 

suhejen2Corr 
Store returning values which are between () - I will be used as 

Not applicable Not applicahle 
probability in TwoDist 

ProduceLI-lRandomNum Generate random numbers using Latin Hypercube method 
Sample X(1 .. n) or Y(1.n) from 

U[O.I) 
X()(1..n) or YO(1.n) 

Ad] ustXI J IRandomN um Adjust X or Y array for mean and standard deviation so that they 
XO( l .. n) or YO( I .. n) X(1 .. n) or YLh( l.n) 

Adjust YI J lRandomNum ha ve perfect means and s. d. s 

Pairing 
Sort and rank array YLh so that X and YI ,h have some sort of 

relationship 
X(l..n), YLh(1n) X( I..n). Y( I.n) 

Swap 
Rearrange the order of Y via YRO( I .. n) so that their relationship is 

X( I.n), Y(1..n) X( I .. n) and remT[Ulged Y( I .. n) 
closest to required 

suhTwol )ist 
Store retunling values which have been assIgned for probability 

Not apphcahle Not applicable 
distributions 

Produceln vCdf X Use the X(1..n) or Y( I.n) output Irom Gen2Corr to generate a X( I..n) or Y( I..n), the given pdl's, 
Xlnit( l.n) or Ylnit( In) 

Produceln vCdlY sample "v1th the required prohabilitv distribution relevant parameters values 

Ad) ustX ImCdf 
Adjust Xlnit( I..n) or Ylnit( 1 .. n) for mean mld standard deviation Xlnit( I .. n) or Ylnit( l..n) XFinal or YNe'\t 

Adjust YlnvCdf 

S\\ap2 
Rearrange Ole order of tcnns within YNe'\t so that the correlation 

with X(l.n) is acceptablY close to the required correlation 
XFinal( I .. n), YNe'\t( 1 .n) Xhnal( In) and Yl;inal( 1 .. n) 

Table 4.3 Tabulated functions in the ReM 
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Summary 

This chapter has further demonstrated the conceptual approach discussed in Chapter 3 

with a full illustrative step by step example. As the conceptual approach needs to be 

turned into a computer model for the purpose of testing the algorithm formulation 

designed in this research, the second part of this chapter presented the conceptual 

approach in flow chart and sequence diagrams. For each process is explained its function, 

the input required by the process, and the output arising from the process. 

There are two components in the computer model i. e. Gen2Corr and TwoDist. The 

conceptual approach discussed in Chapter 3 and first part of Chapter 4 is encapsulated 

within Gen2Corr. The main difference between Gen2Corr and TwoDist is that the latter 

not only targets U[O,l) distributions in the formulation, but also other probability 

distributions such as Triangular, Normal and Beta distributions. 

Consequently, Chapter 5 will explain specifically the ProduceInvCdf process which 

includes how the non-analytical inverse density function is built into the RCM, and how 

the swapping process is incorporated. 
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A Method for Treating Dependencies Between Variables in a Simulation Risk Analysis Model 

Chapter 5: Implementing the Correlation Model 

to Include Other Probability Distributions 

5.1 Introduction 

In Chapter 4, an approach was demonstrated for generating a set of correlated 

pairs of random numbers, each variable having the underlying Uniform 

distribution U[O, 1). An algorithm required for achieving this objective is written 

in the Gen2Corr function in the computer model. 

The algorithm has been extended to a more general probability distributions, i.e. 

the general Uniform, Triangular, Normal and Beta distributions. The process of 

transforming the two sets of random numbers onto these distributions is written 

in the TwoDist function in the computer model. 

The process built in TwoDist is presented in Figure 5.1 below. The mathematics 

of the transformation and how it is handled in programming will become the 

main discussion issues in this chapter. 
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The input into TwoDist consists of 0) n pairs of numbers between ° and I from 

U[O, 1) called X(I .. n) and Y(1 .. n) , such that their sample product-moment 

correlation coefficient has been adjusted by Gen2Corr to be acceptabl y close to 

the required correlation coefficient, together with (2) the types and parameters of 

the key distributions to be modelled . The lnvCdf function matches the values of 

X(l.n) and Y(1 .. n) against the respective c.d.fs, which either are analytical 

functions or have to be generated using numerical integration (see below) 

;.:: : :. ... 
" . :. : : .. : :: 

. . . : 

,': . . .. :. :::::: ~ : 
';': " 

.. :. ;: :. ,: , ",: , :,.::,., :;::::.:::::,:::,:::: : :,::: 

Inputs: 
1. Required 

Two samples InvCdf 
~ 

correlation 
from Gen2Corr f---+ 2. Two distributions 

~ ---------. 
Xlnit( l .n) Ylnit( 1 .n) 

1 
Adj ust Xlnit(i) for mean Adjust Ylnit(i) for mean 
and staJ1dard deviation and standard deviation 
~ XFinal ( I .. n) ~ Yne\: t ( l..n) 

I 

~r 

Swap pairs of va lues in YNe:-.1 ( 1 .n) 
~ better correlation 

Final samples are XFinal ( 1 .n) and 
YFinal (1n) 

Figure 5.1 TwoDist flow chart 

13 I 



Chapter 5: Implementing the Correlation Model to Include Other Probability Distributions 

At the end of the InvCdf routine two samples, XInit(l..n) and YInit(l..n), either 

having any of the selection of probability distributions available in the RCM, are 

generated. At this stage their sample means and s.d.s are not necessarily equal to 

their population parameter values, and their sample product-moment correlation 

coefficient is only a first approximation to the target value. 

These two sets of sample values are then adjusted for mean and s.d., resulting in 

arrays XFinal(l..n) and YNext(l..n), so that they accurately represent the 

required probability distributions. Note that this does not guarantee that other 

key parameters are accurately represented, e.g. skewness, kurtosis and higher 

moments, but in practice the skewness and kurtosis are reasonably acceptable 

values, and in general their accuracy appears to increase with sample size. 

The last step in the TwoDist function is swapping selected pairs of values from 

YNext(l. .n) so that the correlation coefficient of the final two arrays is as close 

as possible to the required product-moment correlation coefficient. This is 

discussed in section 5.3 below. 

These final two samples are called XFinal(l. .n) and YFinal(l. .n). At this stage 

for both of the samples, their sample mean and standard deviation will be equal 

to the expected values of the parameter of the input distribution, and their 

product-moment correlation coefficient will be a very good approximation to the 

required product-moment correlation coefficient. 
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5.2 Generating sample values using the InvCdf function 

This section describes the algorithm in terms of the mathematics and 

programming that are built into the InvCdf routine. The purpose of this routine 

is to generate samples X and Y using the correlated random numbers generated 

in Gen2Corr, called X(1 .. n) and Y(l..n), onto the assigned probability 

distributions. Within InvCdf the general element (ith) of these two input arrays is 

called Init[i]. 

Table 5.1 below shows how the inverse density function built in the TwoDist 

function transforms Init[i] into each of two sets of sample values with which the 

distribution is assigned. Pseudo code has been used to demonstrate the various 

functions. The notations used in this table are explained below. 
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Probability Distribution Formulae for Simulating Values [ 

Uniform (min, max) Min + (max - min) * Init[i] 

Triangular (min, mode, max) ifInit[i] < (most likely - min) / (max - min) 

Min + {Init(i) * (max - min) *(mode _ min)} 12 

Else 

Max - {(1 - Init[i]) * (max - min) * (max - mode)} 12 

Normal (mean, std_deviation) For j = 1 to n 

If Init[i] between CDFN[j] and CDFN[j+ 1] 

a + (b - a) * zx 

end if 

nextj 

where a and b are the class boundaries of the fh class 

zx = fraction between j and j+ 1 

Beta ( least, mode, greatest) For j = 1 to n 

IfInit[i] between CDFB[j] and CDFB[j+ 1] 

a + (b - a) *zx 

end if 

nextj 

where a and b are the class boundaries of the fh class 

zx = fraction between j and j+ 1 

Table 5.1 Formulae for simulating "alues from the four distributions 
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In the above table, the inverse density functions for Uniform and Triangular 

distributions are standard book formulae. It is a clear cut mathematical 

calculation to derive the cumulative curve for the Uniform distribution i.e. 

simply fit the generated Init[i] into the standard formulae. 

The only additional step for generating the cumulative curve for the Triangular 

distribution is that prior to those steps as for Uniform distribution, it is necessary 

to identify if Init[i] lies within the left or right part of the p.d.f so that the 

appropriate formula is used. Because of the straight forward process in both the 

Uniform and Triangular cases, this will not be discussed further in this chapter. 

However, the Normal and Beta distributions require specially designed routines 

because their c.d.f.s are not analytic functions. 

To construct a cumulative curve for both Normal and Beta distributions, 

calculate and accumulate the area under the curve when it is divided into n strips. 

This follows the well-known Simpson's rule, which is a method of approximate 

numerical integration, equivalent to assuming that the curve being integrated is 

the same as a series of piecemeal quadratic curves with the same endpoints and 

midpoint for the n-strips into which the area is divided. The flow of constructing 

a cumulative curve for Normal and Beta distribution using Simpson's rule is 

presented in Figure 5.2 below. Details in each step will be discussed below. 
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Divide total area into n strips "" 
~ 

Simpson Rule 
Calculate strip centre and two 
ends 

(numerical integration) 

>- - Calculate strip area 

. ~ 
. ... - Accumulate and store strip area 

-Scale each stored strip area 

Use the corresponding f(x) 

~ formulae to calculate the 
p.d.f. of each strip centre and Cumulative density Transform 
two ends l-/ ~ 

function probability into 
sample value 

Figure 5.2 Simpson's Rule process 

5.2.1. Modelling the Normal distribution in subGetNormalDistribution 

The purpose of subGetNormalDistribution is to generate the c.d.f. F(z) if z is 

N(0,1), for z from -4 .0 to 4.0 in 1000 equal intervals. Hence cdf(O), cdf(500), 

and cdf(1000) are equal to 0.0, 0 .5 and 1.0 respectively. 

For example, cdf(745) = 0 .975 because z = -4 .0 + 745 * 8/1000 = 1.96, and 

<1>(1.96) = 0.975. The choice of 1000 as the number of intervals was made after 

some experimentation, and the calculated values were tested to be acceptably 

close to values tabulated elsewhere. 

To form the c.d .f. of a Normal distribution, the area under the curve will be 

calculated and accumulated . Initially, a standard N ormal distribution is used, for 

which the total area on the right and left are symmetric. Therefore, this function 

will only calculate the c.d .f. for the positive half i.e. z > o. 
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Simpson ' s rule is applied here to integrate the area under the curve into 1000 

strips so that, if a typical strip lies between x = a and x = b: 

f(x)dx ~ (b-a) [ f(a) + 4fCh{ a+b}) + feb) ] / 6 

Because great accuracy is required , the strip limits are calculated as double 

precision numbers, for which the strip centre is vi#, and the two ends are viLeft# 

and viRight#, and their p.d .f. values are fi #, fileft# and firight# respectively 

calculated using: 

1 -1 x-!l ( J 
2 

f(x) = r;:-e 2 ~ 
-v2n 

w# = 0.004 

hw# = 0.002 

kO = 1 I Sqr(2 * pi) 

For i = I To 1000 

Vi# = i * w# - hW#: viLeft# = vi# - hw#: viRight# = vi# + hw# 

fi# = Exp( -0.5 * (viA 2)) 

fileft# = Exp(-0 .5*(vile£t#y2) 

firight# = Exp( -0 .5 *(viright#y2) 

StripArea# = kO * w * (fiLeft# + 4 * :fi + fiRight# ) f 6 

TemplnvCdf(i) = TempInvCdf(i - 1) + StripArea# 

Next i 
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The frequency of the right hand side of the distribution from z = 0 to 4 and the 

range is divided into 1000 strips to become i = 1 to 1000. Each strip is therefore 

of width w# = 0.004, and hw# = 0.002 is half of the strip width. The choice of 

"±4 s.d.s" was made because the probability of getting a value which is more 

than 4 s.d.s from the mean is negligible, whereas the probability of getting a 

value which is 3 s.d.s from the mean or more is not neligible . 

There are two constants in the formula for the p.d.f. f(x) above: 

The first constant _ 1_ , kO, ensures that the total area under the p.d.f curve IS 

.J27r 

1 .0; and the second constant = e = Exp (1) . 

Standardising an x value yields 

Z = (x- !l)/a , which is also the value of vi # or vileft# or viright#, as appropriate. 

To account for - V2 [(x- !l)/a]2, calculate fi #, fileft# and firight# which are the 

p.d.f. values of the strip centre and two ends respectivel y. 

Now calculate the strip area using Simpson's Rule : 

StripArea# = kG * w * (fiLeft# + 4 * fi# + fiRight#) 16 

Accumulate each strip area with the previous accumulated strip areas and store in 

TemplnvCdf(i) . 

TemplnvCdf(i) = TempInvCdf(i - 1) + StripArea# 
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To make sure the final c .d. f. ie. TemplnvCdf(1000) value = 1.0 exactly, scale 

each area stored in Templnvcdf(i) . Assume the final c .d .f. is t: 

t = TemplnvCdf( 1000) 

For i = 1 To 1000: TemplnvCdf(i) = TemplnvCdf(i) I t: 

Next i 

(Note that t shou ld be very close in value to 1) 

To find the corresponding c.d .f. for Z between -4 to 4, the above 1000 values of 

TemplnvCdf(i) are now to include the left hand side of the distribution i.e. z < O. 

As a result , the area of each strip is twice the initial area, so that the area stored 

in TemplnvCdf(i) becomes the area stored in TemplnvCdf(2 * i). 

Thus, for values of z > 0 : 

CDFN(O) ~ 0 : CDFN(500) = 0 .5: CDFN(1000) = 1 

For i = 1 To 500: CDFN(500 + i) = TemplnvCdf(2 * i) : Next i 

Whereas for values of z < 0, symmetry yields : 

For i = 1 To 500: CDFN(i) = 1 - TemplnvCdf(lOOO - 2 * i) : Next i 

At the end of this routine, the cumulative distribution of a standardised Normal 

distribution will have been constructed . 

Finally, use the constructed curve to find a sample value from a Normal 

distribution, where Init[i] is the probability. 
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Scan the range to find the strip that the assigned cumulative probability falls into , 

then calculate the corresponding sample value w here: 

a = the lower class boundary of the rh class, 

b = the upper class boundary of the /1 class, 

zx = fraction between j and j+ 1 to get the exact sample value in the range 

The pseudo code for this is : 

For j = 1 to n 

Iflnit[i] between CDFNO] and CDFNQ+ I] 

a + (b - a) * zx 

end if 

nextj 

140 



Chapter 5: Implementing the Correlation Model to Include Other Probability Distributions 

5.2.2. Modelling Beta distributions 

There are various ways of defining the parameters of a Beta distribution. Of 

course the smallest and largest possible values must be specified: 'a' and 'b'. 

Other possible parameters are the modal value, the expected (i.e. mean) value, 

the median (Q2), and either or both of the two shape parameters v and w. 

In general, if the variable in question, x, lies in a :S x :S b and the Beta distribution 

is then defined in terms of the shape parameters v and w, the p.d.f. ofx is 

f(x) = [ (x_ar-1(b_x)w-l ]~[ (b-af+w-1S(v,w) ], where S(v,w) = r(v)r(w)~r(v+w), 

ex: 

and the Gamma function, reS), is defined to be equal to f e-'xo-1dx. 

o 

It can be shown by differentiation that the modal value of this distribution is 

m = a + (b-a)(v-l )/(v+w-2), and the mean value is 1.1 = a + (b-a)v/(v+w). 

(See section S.2.2a. below). 

Hence standardise the value of x: x ~(x-a) / (b-a), so that 0 ::;; x ::;; 1. 

This standardised Beta function is not unique (unlike the standardised Normal 

function), because it will vary with the shape (i.e. skewness and kurtosis) of the 

distribution. 

In practice it does not seem sensible to ask a user to recognise from the shape of 

the required Beta distribution what the values of v and ware to be. It is, 

however reasonable to state where the modal value, m, is. , 

Thus, the approach here is to specify the values of a, band m only, not even 

requiring the value of 1.1. Then by judicious choice of either v or w, it is possible 

to calculate the other shape parameter and the value of 1.1. 
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A desirable property is that the slope of the p.d.f. function, f(x), tends to zero as 

x ---7 a or x ---7 b in the general Beta distribution, or as x ---7 ° or 1 in the 

corresponding standardised distribution. It will also be shown that in this case 

both v and w should be > 2. (See section 5.2.2a. below). 

Suppose now that the modal value of x in a :S x :S b is closer to a than to b, so that 

m < (a+b)/2, and thus a + (b-a)(v-I)/(v+w-2) < (a+b) / 2. 

2a(v+w-2) + 2(b-a)(v-I) < (a+b)(v+w-2) 

2(b-a)(v-I) < (v+w-2)(a+b-2a) 

2(b-a)( v-I) < (v+w-2 ) (b-a) 

Now, a < b, so that b - a > 0. Divide this expression throughout by (b-a) 

yielding 2(v-I) < v + W - 2, which simplifies to v < w. 

... If the modal value, m, is closer to the left hand limit a than to b, it has been 

shown that v < w, and that there is positive skewness. 

Ifm < ~ then a + (b-a)(v-l)/(v+w-2), < a + (b-a)v/(v+w), where b - a > 0, 

so that (v -1 )(v + w) < v(v + w -2) ---7 - (v + w) < -2v, or v < w. 

Hence for positive skewness: m < ~ < (a+b) / 2, and v < w, where v and w > 2. 

So, if the chosen Beta distribution is to have positive skewness, choose a 

convenient value of v which is greater than 2, such as v = 3, say. The value of w 

will be larger than v and can be deduced from the formulae for m: 

m = a + (b-a)(v-1 )/(v+w-2). 
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Putting v = 3, m = a + (b-a)(2)/(w+ 1). Then w+ 1 = 2(b-a) 1 (m-a), 

so that w = [ 2(b-a) - (m-a) ] 1 (m-a), = (2b-m-a) 1 (m-a). 

For example, if a = 10, b = 40 and m = 20 then w = (80-20-10)/(20-10), = 5, so 

that v = 3 and w = 5 (with v < w). 

The value of jJ. would then be calculated to be 

jJ. = a + (b-a)v/(v+w) = 10 + 30*3 1 (3+5), = 10 + 90/8, = 21.25, and this is> m. 

Note that the mean value is greater than the modal value, but only just. 

10 m=20 25 

u=21.25 

40 

A question might be asked: "why would one not specify the values of a, b, m and 

jJ., so that one states jJ. rather than v?" 

For example, a = 10, b = 40, m = 20 (as above) and jJ. = 25. This makes jJ. rather 

larger than m, but it also will yield non-desirable values ofv and w: 

lim = a + (b-a)(v-1 )/(v+w-2)" gives 20 = 10 + 30(v-l)/(v+w-2), ----* 2v - w = 1. 

Also, "jJ. = a + (b-a)v/(v+w)" yields v + w = 3v, so that w = 2v, ----* v = 1, < :2 
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This demonstrates that, although from the shape of the Beta curve it is easy to 

identify the values of a, band m, it is not an easy skill to estimate the expected 

value. It is easier, of course, to standardise the distribution so that 0 :S x :S 1. 

This is easily achieved via the transformation x ~ (x-a) I (b-a). 

F or this particular standardised Beta distribution the modal and mean values are 

then mO and j.l0, say, where mO = (v-I) I (v+w-2) and j.l0 = v I (v+w). 

In the above example, where a = 10, m = 20 and b = 30, we chose v = 3 and 

deduced that w = 5. Then mO = 2/6 = 0.3333 to 4 d.p.s, and j.l0 = 3/8, = 0.375. 

Ifv = 3 then mO = 2 I (w+ 1), so that w = 2/mO -1 ,= 6 - 1, = 5, as before. 

Then the rules for specifying the values ofv and ware: 

(1) If the standardised modal value, m<l>, < 0.5, set v = 3; calculate w from 

w=-l +2 ImO 

(2) From symmetry, if m<l> > 0.5, set w = 3, and calculate v from 

v = ( 1 + mO ) I ( 1 - mO ) 

(3) If m<l> = 0.5, so that the distribution is symmetric, set v = w = 3. 

If all 3 cases the expected value, 11, is v ,and is thus easily calculated. 
v+w 

[In all this description the smaller of v and w is always to be equal to 3. This 

could be any positive value which is greater than 2, so that "3" is arbitrary. For 

example, it could equally well be "2.5"]' 
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S.2.2a. The standardised Beta distribution and its expected value 

To standarise x, set a = 0 and b = 1, so that 

x Y- l (1-x),,-l 
f(x) = and 

B(v, w) 

df (v -1)x Y-2(1_ x),,-l - (w -1)x Y-l(1_ x),,-2 
= = 0 at the finite tails 

dx B(v, w) , 

ifx Y- 2 =0 or (1-x),,-2 =0 or (v-I)(l-x)-(w-1)(x)=0. 

When x = 0, X\'-2 = 0 if v > 2; when x = 1, (l-xt-2 = 0 if W > 2; and 

(v -1)(1- x) - (w -1)(x) = 0 if x = v-I ,and this is where the mode occurs 
v+w-2 

l·f df 0 . d - = ,as reqUIre. 
dx 

The expected value of the standardised Beta distribution is ~<P, say, 

f
l Y-l(1_ ),,-1 

= x.x x dx. 
B(v, w) 

o 

1 1 y-l \\-1 1 

ff(x)dx=f x (I-x) dX,=1 so that Sx Y- 1(1-x),,-l dx =B(V,W). 
B(v, w) 

o 0 0 

. =fl x(Y+l-1\1-x),,-1 dx = B(v+1,w) *SI x(Y+l-1)(l-x),,-l
dx 

.. ~<P 0 ~(v, w) ~(v, w) 0 ~(v + 1, w) 

_ r(v+I)r(w)/r(v+w+1) *1 = vr(v) * r(v+w) _ v 
- r(1,)r(W)/r(1' + w) rev) (v + w)r(v + w) v + w 

:. 110 = v / (v+w), as claimed earlier. 
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The required values to calculate the fi #, fileft# and firight# values which are the 

frequencies of the strip centre and two ends respecti vely are obtained. The 

calculation for f(x) , i.e. ~(v, w) = f(v) few) -0- f(v+w), is discussed in section 

5.2.3 . 

To continue the process in subGetBetaDistribution, Simpson ' s Rule is used and 

each strip area is accumulated and stored in TemplnvCdf(i). 

StripArea::::: w * (fiLeft# + 4 * fi# + fiRight#) / (6*betavw) 

TemplnvCdfO) = TemplnvCdf(i - 1) + StripArea 

To ensure the final c.d .f. value = 1.0 exactly and all the others are adjusted pro 

rata is achieved when generating the standardised Normal c.d.f. values, let t be 

the 1000lh c.d.f. value of the Beta Distribution. 

t = cdfB(lOOO) 

For i = 1 To 1000: cdffi(i) = cdffi(i) / t: Next i 

The c.d .f. of the standardised Beta distribution has now been constructed, and to 

find a sample value using the constructed curve for a general Beta di stribution, 

where Init[j] is the probability, scan the interval that the assigned cumulative 

probability falls into then calculate the corresponding sample value where : 

a = left hand class boundary of this interval and 

b = greatest, 

zx = fraction between j and j+ 1 to get the exact sample value in the range 
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For i = 1 to n 

If Init[i] between CDFN[j] and CDFN[j+ 1] 

a + (b - a) * zx 

end if 

nextj 

5.2.3. -Modelling a Gamma function in subGetGamma 

The lower part of the formula for f(x) , i_e_ r(v)r(w) / r(v + w) , is calculated in a 

different function called subGetGamma. 

A gamma function of a parameter xO > 10 is calculated using Simpson ' s rule. 

To start the routine, reduce the parameter to between 1 and 2 if neccessary. 

For example: gamma(3 .7) = (3 .7 - 1) * gamma (3 .7 - 1) 

= 2.7 * gamma(2 .7) 

= (2.7 * 1. 7) * gamma(1 . 7) 

= 4.59 * gamma(1 .7) 

This is expressed as: 

Betweenland2: 

IfxO > 2 Then xO = xO - 1 ~ factr = factr * xO : GoTo Betweenland2 

Now calculate gamma(8), for 0 :::; 8 :::; 1, using : rex) = f; e- ' x
8

-
1
dx . 
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Since it is the area of a Gamma distribution that is calculated, Simpon ' s rule is 

used . To integrate a Gamma distribution from 0 to 30, say, di vide the total area 

from x = 0 to x = 30 into 30,000 strips of width 0.001 . For each strip evaluate 

the function in the middle, at the left and right which become vi#, vileft# and 

viright# . (N.B. Integrating up to x :s CfJ cannot be done here, but the area to the 

right of x = 30 is infinitesimal, so that any value greater than 30 can be ignored). 

Back to the example above, Gamma(3 .7) = 4.59* f e- 1.7 *xO.7 dx 

For simplicity, define k = 8 - 1. The programmed p.d.f. values vi#, vileft# and 

viright# are expressed as: 

fi# = Exp( -vi) * (vi 1\ k) 

fiLeft#= Exp( -viLeft) * (viLeft 1\ k) 

. fiRight# = Exp( -viRlght) * (viRight 1\ k) 

At the end of the routine, the relative frequency of each strip has been calculated. 

Finally, each strip area is accumulated with the previous accumulated strip area. 

For j = 1 to 30,000 

StripArea# = w * (fiLeft# + 4 * fi# + fiRight#) / 6 

gamma = gamma + Strip Area 

Nextj 

The output is the value of gamma(x) . Restore to the original parameter 

f Gamma(x) ~ gamma * factr 

The same process is carried out for f(v) , few) and f (v + w). 
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5.3 Improving the correlation value via swapping 

This section demonstrates how the adjustment of sample Y is handled in the 

programming so that the correlation with sample X is made closer to what it is 

supposed to be. Figure S.3 is a flow chart of the swapping process. 

It can be seen that sample Ixy or named "SumXYNow" is used to compare with 

the required Ixy to identify the required improvement in sample Y. The 

difference, "ModDif', between the sample correlation coefficient and required 

correlation coefficient is calculated to identify if any swap is necessary in sample 

Y. If the answer is 'yes', then the routine will start taking two values in sample 

Y and swap. If the particular pair passes the conditions set in the routine, it is 

said that the pair is significant in the particular run and the contribution or 

reduction in sample Ixy will be stored, but will be overwritten subsequently if a 

better pair is found. 

The routine will stop either when "ModDiff' is very small and insignificant, or 

no better pair can be swapped, or when the routine has carried out four complete 

runs. 'Four' is an arbitrary number but, in practice, either the process usually is 

completed in or before the 4th full iteration, or the improvement from the Sth full 

iteration normally is very small indeed. Later it is observed that a larger number 

of runs may sometimes be required if the sample size is large (section 6.3.4.). 
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y 

Loop i = 1 to n 

Sum(XFinal[i]*YFinal[i]) 
EndLoop 

Calculate Difference 
between SumXYN ow 
and SumXYReqD 

Find 2 indices of 
Yfinal[] to swap 

Swap YFinal[ aO] 
and YFinal[bO] 

S umXYN 0\\ 

ModDif 

y 

aO, bO 

L-------~---.~S~ow 

Figure 5.3 Swapping process 
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To start the swapping process, the sample Ixy or " sumxyNow" is calculated 

using the generated sample values The required Ixy or " SumxyReqd", and is 

calculated as np * a x a y + n~x * ~y . 

The sample correlation coefficient named "rxy", and is compared with the 

required correlation coefficient or named "roxy" in the programme. 

For each of the paired values in tum: 

xy = XFinal(i) * YFinal(i) 

sumxyNow = sumxyNow + xy 

AvexyReqd = roxy * sigmax * sigmay + mux * muy 

SumxyReqd = AvexyReqd * n 

rxy =::;: (sumxyNow I n - rnux * muy) I (sigmax * sigmay) 

AvexyNow = sumxyNow I n 

ModDif= Abs((AvexyNow - mux * rouy) I (sigmax * sigmay) - fOXY) 

The difference between the sample value ofIxy and the required value ofIxy is 

called "sumxychange" and its absolute value is called "Diffxy". 

SUTIlXyChange = (SurnxyReqd - sumxyNow) 

AvexyChange = SumxyChange I n 

Diftxy = Abs(SumxyChange} 

"ModDif' is the average absolute change that is sought in the product of each 

sampled pair. 
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If the " rxy" value is equal to "roxy" to four decimal places (ie. if "ModDif ' is 

less than 0.00005 or "ModDif ' is less than 0.0001 * required correlation 

coefficient in absolute terms), the swapping process will cease and set the current 

sample values to be the final samples X and Y. 

IfModDif < 0.00005 Or ModDif < 0.0001 * Abs(roxy) 

Then GoTo GetResuIt 

If the above condition doesn ' t hold , then this potential improvement process is 

repeated until it is satisfied. Initially the two values which are to be swapped are 

aO and bO o Hence the process continues until either the ' improvement indicator ', 

"intlmprove", does not change from zero, or until four (arbitrary) full iterations 

have been completed. 

aO = -1: bO = -1: intImprove = 0 : Varlmprove = 0 

F or a = 1 To n - 1 

For b = a + 1 To n 

xa = XFinaJ(a) : xb = XFinal(b): ya = YFinal(a) : yb = YFinal(b) 

z = (xb - xa) * (ya - yb): upz = updn * z 

lfupz > 0 And upz < 2 * Diffxy - 0.0001 

And Abs(upz - Diffxy) < Abs(varImprove - Diffxy} 

Then 

varImprove = upz: intImprove = 1: aO = a: bO = b 

End If 

Nextb 

Next a 

152 



Chapter 5: Implementing the Correlation Model to Include Other Probability Distributions 

The routine swaps two values in sample Y in each swap . There will be 

1 
- n(n - 1) combinations in each individual run (i .e. iteration) . 
2 

To make the z value become absolute, it is multiplied by an index called "updn" 

and becomes "upz". 

If sumxyNow < SumxyRegd Then 

sUpdn = "increase" : updn = 1 

Else 

sUpdn = "decrease": updn = -1 

End If 

To check if the particular swap will help to improve the sample correlation, the 

following two conditions must be satisfied, otherwise the next possible swap will 

be considered : 

1. There must be an improvement ; and 

2. The contribution or reduction must be less than twice what it is required 

in "Diffxy" =~ , otherwise the new approximation will be worse than the 

existing one. 

For example, if LXY = 600 but the ideal required value is 597, we will wish to 

reduce LXy by 3, so that ~ = 3. If, then, the actual reduction is b ij = 8, the revised 

value of LXY would be 592, and this will not pass the test in condition 2) because 

the new value of LXY would be further from the target than before. Hence this 

undesirable pairing will not be assigned to be the incumbent pairing. 
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592 59 597 600 

required range 

The remaining required improvement = Abs( upz - Diffxy) must be less than the 

previous improvement = (varlmprov - Diffxy), so that this new approximation is 

better than the previous one. 

The initial "varlmprov" is set to be varlmprov = 100000 * sigmax * sigmay, so 

that it is impossible for the first iteration to fall into the third condition 

insensibly. 

At the end of each complete iteration, the best pair of values of Y will be 

swapped and will be used for the next iteration. This is therefore a "greedy" 

algorithm (or "steepest descent/ascent" algorithm), and it may well be that an 

alternative search algorithm could achieve even better results. 

After the maximum of four iterations, the programme will stop and identify the 

two samples in the last run as the required final paired samples X and Y. (As 

stated earlier, only rarely is 4 iterations not enough, and usually this occurs only 

if the sample size is large, such as 500). 
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Summary 

The previous chapter, Chapter 4, demonstrated the algorithm used to generate 

correlated pairs of random numbers, each variable having the underlying 

distribution U[O, 1). The generated product-moment correlation coefficient of the 

two samples was shown to lie within a satisfactory range. 

Chapter 5 has demonstrated how this algorithm within the RCM is actually built 

into processes and routines within Gen2Corr. 

The computer coding description has also been extended from the base approach 

involving two U[O,l) distributions to dealing within the routine TwoDist with a 

selection of other more general distributions: the general Uniform, Triangular, 

Normal and Beta distributions. 

The general Uniform distribution was chosen because it's the simplest 

generalisation and has a simple analytic Inverse cdf function. The general 

Triangular distribution also has an analytic inverse function, albeit in two 

sections on either side of the mode. Unlike the general Uniform distribution, 

however, the transformation from the U[O, 1) sample generated in Gen2Corr does 

not have its sample mean equal to the expected value, so that both the sample 

mean and s.d. will need to be adjusted. The general Normal distribution was 

chosen because it does not have an analytic cdf and therefore its inverse cdf does 

not exist as an analytic function. 
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However a convenient property is that all general Normal distributions can be 

standardised to a unique N(O)) distribution, so that the inverse cdf values 

calculated within the RCM could be easily benchmarked against readily 

available tables. The general Beta distribution was chosen because it is under

used in practice (i.e. it probably should be used more often because of its great 

flexibility) and, although its cdf is not an analytic function (and thus its inverse is 

also not analytic), the restriction in every case of either v = 3 or w = 3 ensures 

that inverse mappings are readily easy to calculate, and then can be benchmarked 

against tables of incomplete beta functions. 

The results arising from a large number of balanced trials using the RCM are 

shown in the next chapter. In each trial the two variables are each assigned one 

of these four general probability distributions, for a variety of parameter values. 
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Chapter 6: Testing and Verifying the Validity of 

the RCM 

6.1 Introduction 

The primary aim of this chapter is to demonstrate and illustrate the level of 

accuracy of the output from the ReM. Thus, section 6.2 below examines the 

four general distributions incorporated into the ReM, verifies the accuracy of the 

way in which they have been modelled, and assesses the accuracy of the sampled 

output. 

The results of key tests are presented in this section 6.2, and the output from 

computer runs of the ReM which underpin this section form Appendices I to 

VII. 

Section 6.3 then - more significantly - assesses the preClSlon of the final 

correlation coefficients between the samples, and the output from a range of 

experiments shows clearly that real and significant progress is indeed achieved. 

Some representative results are shown in section 6.3.2 and section 6.3.3, and the 

tabulated results from further combinations compri se Appendix VIII. 
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Finally, in section 6.4 attention turns to comparing the results of the RCM with 

those obtained by carrying out corresponding runs of @RISK and, in the area of 

modelling, it is demonstrated clearly that the RCM returns greatly improved 

precision. Again representative comparisons are presented here (in section 6.4) in 

tabulated form, and Appendix IX contains further comparisons to support the 

conclusions drawn here. 

6.2 Checking the modelling of, and output from, the four general 

distributions 

6.2.1. Introduction and methodology 

The RCM enables variables to be represented which have any of four separate 

probability distributions of occurrence: the general Uniform, Triangular, Normal 

and Beta distributions. In each case only variables with continuous p.d.f.s have 

been included. Variables in the first two cases above have inverse c.d.f.s which 

are analytic functions. In both the Normal and Beta cases this is not true, so that 

solving F(x) = k for a given value ofk requires tables of values of the c.d.f., F(x), 

to be compiled within the programme as discussed in Chapter 5. 

Other popular distributions could have been included as p.d.f. types, such as the 

Lognormal and exponential distributions, but it was not an objective to provide 

here a RCM which can cope immediately with any category of distribution. 

Rather, the focus was to be to demonstrate the achievement for a typical 

selection of p.d.f. types, so that the correlation algorithm can be incorporated 

into a programme and use it with other p.d.f. types if desired. 
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It should be noted that, although the sampling of the arrays from the two 

distributions is carried out by the RCM using a particular form of Latin 

hypercubes, the correlation algorithm is equally applicable when the sampling is 

carried out by other means, for example using Monte Carlo Simulation. 

The purpose of this section is to examine each of these four p.d.f. types and to 

demonstrate that in each case the sample of simulated values has a prefect 

sample mean and standard deviation and that the "shape" of the sample is 

acceptable. Two possible alternative ways of assessing the shape are (i) to 

compare the skewness and kurtosis of the simulated values with the 

corresponding expected parameter values; or (ii) to carry out a goodness of fit 

test. Effectively the second alternative, in the form ofaX2 test (Hoel, 1984), is at 

least as powerful as the first, since a non-significant result would imply that both 

the measured lack of symmetry and the degree of peaked-ness are acceptable. In 

addition the l tests are more popular in practice than the test of skewness and 

kurtosis. 

Thus for each of the four p.d.f. types, a set of parameter values was chosen, and 

then 100 values of the variable were generated. The parameter values chosen 

were U[18,38), T(10,30,40), N(100,62), and B(12,15,30) respectively. The 

analysis in sections 6.2.2. to 6.2.5. will conclude that the modelling of these four 

distributions is highly acceptable. Consequently little would be gained either by 

carrying out more than 25 runs or generating larger samples, such as 500. In the 

case of samples of size 10, the sample means and standard deviations were 

analysed and were found to be perfect, but a l test would be inappropriate here, 

because the total frequency is only 10. A Kolmogorov-Smirnoff test could be 

carried out (Hoel, 1984), but would appear to be of only minimal value. The 

One-Sample K-S test is a non-parametric test which compares the expected cdf 

of the variable with its observed cumulative frequencies. 
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Like other non-parametric tests, the K-S test is only slightly less powerful with 

large samples than parametric tests such as X2 tests, but the K-S test can be used 

with small samples - albeit with caution - whereas the X2 test cannot be used at 

all with small samples. The parameter values chosen here are fairly random and, 

in the case of the Triangular and Beta distributions, illustrate negative and 

positive skewness respectively. 

In each case a total of 25 such runs were carried out. The 100 generated values 

per each of the 25 runs are included in the four tables comprising Appendix I to 

IV, the values being sorted for convenience into ascending order. 

The analysis in each of the following four subsections shows for the first run 

only of the 25 runs how the sample mean and s.d. are calculated, and compares 

them with the theoretical expected value and its s.d. The 100 observed values 

simulated in the run are then investigated to see how many fit into each of 10 

equi-probable (and exhaustive) sub-ranges of the overall range of the values the 

variable could take. 

For example, in section 6.2.2. the variable has a U[18,38) p.d.f. Therefore 

splitting this range into 10 equi-probable sub-ranges will produce intervals 

[18.0000,20.0000), [20.0000,22.0000),. , and [36.0000,38.0000), with all 

recording of results and analysis being done to 4 d.p. accuracy, so that the 

expected frequencies in each of these 10 intervals will be 100 -;- 10, = 10. 

One final point needs to be made before progressing to the analysis of these four 

cases. When the initial sample of 100 values is generated in the TwoDist 

routine, the use of Latin hypercubes means that one value is generated in each of 

the 100 equi-probable intervals. Hence at this stage a l test should give a 

perfect fit, with the l value being zero. 

160 



Chapter 6: Testing and Verifying the Validity of the RCM 

However, the linear transformation required to adjust the sample mean and s.d. 

to become equal to the corresponding parameter values implies that each 

simulated value may be shifted - either increased or decreased - by a small 

amount. Consequently the observed frequencies within the ten classes could 

vary slightly from 10. i.e. Each one could become either 9 or 11, and it is 

possible to visualise the case where an observed frequency could increase to 12 

or even decrease to 8. 

6.2.2. Results from the general Uniform distribution U[a,b) 

In this section the Uniform distribution used is U[ 18,3 8), so that the least 

possible and greatest possible values are 18 and 38 respectively, and the variable 

is equally likely to take any value between these two limits. 

Note again that the consequence of "[" and ")" is of extreme mathematical 

interest and relevance only, so that theoretically the least value, 18 exactly, could 

be generated as a simulated value, but the largest possible simulated value cannot 

quite attain 38, but will be as close to - but less than - the exact value 38 as the 

particular computer being used will allow. To all intents and purposes, therefore, 

there is no practical distinction between U[18,38), U[18,38), and U[18,38]. 

The expected value is Il = ( a + b ) 72, = 5672, = 28 exactly, 

and the S.d. is (J = (b-a) 7 (12 )12, = 20 7 (12)12, = 5.7735 (to 4 d.p.s). 

The 100 values per run are displayed in the first 100 cells in the respective 

column of the 25 columns (i.e. runs) in Table 1 in Appendix I. Thus the 100 

simulated values in the first run are 18.1588, 18.2414, ... , 37.8795, and form 

the contents of cells Al to AI00 in this table. 
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At the base of this column cell AI04 contains the sample mean which is 

calculated via the Excel function A VERAGE(Al..AI00), and is 28.0000. 

Similarly the s.d. of the 100 values is calculated via STDEVP A(Al..Al 00), and 

is 5.7735. 

Hence the sample mean and standard deviation are perfect. 

The c.d.f. for this distribution for values ofx from 18 to 38 is F(x) = (x-I8) + 20. 

Hence the upper class boundaries of the 10 equi-probable sub-intervals of 

[18,38) can be found by solving F(x) = d +10, for d = 1,2, ... , 10, and so they 

will be 20.0000, 22.0000, and so on, to 38.0000. 
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Table 6.1 following shows for each class its lower and upper class boundaries, 

the first and last members observed from the table to lie in this class and , 

therefore the observed frequency of this class: 

1 Xi Class Lower Upper Observed class 

Boundary Boundary Frequency 

1 to 18.1588 to 1 18.000 20.0000 10 

10 19.9170 

11 to 20.0147 to 2 20.0000 22.0000 10 

20 21.9187 

21 to 22.1891 to 3 22.0000 24.0000 10 

30 23.8770 

31 to 24.0179 to 4 24.0000 26.0000 10 

40 25.9695 

41 to 26.0840 to 5 26.0000 28.0000 10 

50 27.9914 

51 to 28.0811 to 6 28.0000 30.0000 10 

60 29.8964 

61 to 30.1193 to 7 30.0000 32.0000 10 

70 31.8848 

71 to 32.0863 to 8 32.0000 34.0000 10 

80 33.9513 

81 to 34.1517 to 9 34.0000 36.0000 10 

90 35.8416 

91 to 36.0070 to 10 36.0000 38.0000 10 

100 37.8795 

Table 6.1 100 simulated values from U[18,38): run 1 of 25 
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The observed frequencies in all classes are 10, so that the test statlstIc, 

I(O-E)2/E, has the value 0, showing that the shape is acceptable at any level of 

significance. 

Hence for this run the generated output from U[18,38) has been demonstrated to 

be perfect in respect of the sample mean and standard deviation, and also perfect 

in terms of the goodness of fit test used here. This verifies the accuracy of the 

programming of this distribution, and the precision of the generated output. 

6.2.3. Modelling the general Triangular distribution T(a,m,b) 

In this section the Triangular distribution used is T(10,30,40), so that the least 

possible, modal and greatest possible values are 10, 30 and 40 respectively. 

The expected value is j.l = ( a + m + b ) 7 3, = 807 3, = 26.6667 to 4 d.p.s., 

and the s.d. is () = [ ( a2 + b2 + c2 - b*c - c*a - a*b ) 7 18 ]12, = ( 700 7 18 )12, 

= 6.2361. 

The 100 values per run are displayed in the first 100 cells in the respective 

column of the 25 columns (i.e. runs) in Table 2 in Appendix III. Thus the 100 

simulated values in the first run are 12.1841,12.7143, ... , 39.8854, and form 

the contents of cells Al to AI00 in this table. At the base of this column cell 

AI04 contains the sample mean which is calculated via the Excel function 

A VERAGE(Al .. AI00), and is 26.6667. Similarly the S.d. of the 100 values is 

calculated via STDEVPA(Al..AI00), and is 6.2361. Hence the sample mean 

and standard deviation are perfect. 
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The c.d.f. for this distribution for values ofx from 10 to 40 will be in two parts: 

F(x) = (x-10)2 7 600 if 10:::::; x < 30, or F(x) = 1 - (40-x)2 7 300 if30 :::::; x:::::; 40. 

Hence the upper class boundaries of the 10 equi-probable sub-intervals of 

[10,40) can be found by solving F(x) = d 710, for d = 1, 2, ... , 10. For 

example, when d = 1, this upper class boundary is U1 = 10 + ( 60 * 1 )12, 

= 17.7460, and this will then be the lower class boundary of the next class, h , 

say. 
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Table 6.2 below shows for each class its lower and upper class boundaries, the 

first and last members observed from the table to lie in this class, and therefore 

the observed frequency of this class: 

1 Xi Class Lower Upper Observed Class 

Boundary Boundary Frequency 

1 to 12.1841 to 1 10.000 17.7460 10 

10 17.4353 

11 to 17.8760 2 17.7460 20.9545 10 

20 20.7041 

21 to 21.1913 3 20.9545 23.4164 10 

30 23.2330 

31 to 23.5668 4 23.4164 25.4919 10 

40 25.4525 

41 to 25.5825 5 25.4919 27.3205 10 

50 27.1982 

51 to 27.4559 6 27.3205 28.9737 10 

60 28.9012 

61 to 29.0111 7 28.9737 30.5132 10 

70 30.4598 

71 to 30.6367 8 30.5132 32.2540 10 

80 32.0703 

81 to 32.3491 9 32.2540 34.5228 10 

90 34.2674 

91 to 34.5712 10 34.5228 40.0000 10 

100 39.8854 

Table 6.2 100 simulated values from T(10,30,40): run 1 of 25 
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The observed frequencies in all classes are 10, so that the test statistic, 2:.(0-

E)2 IE, has the value 0, showing that the shape is acceptable at any level of 

significance. 

In 3 runs (number 3, 6 and 16) the observed frequencies are not perfect, but the 

calculated i value is still highly non-significant. 

Hence for this run the generated output from T(10,30,40) has been demonstrated 

to be perfect in respect of the sample mean and standard deviation, and also 

perfect in terms of the goodness of fit test used here. This verifies the accuracy 

of the programming of this distribution, and the precision of the generated 

output. 

6.2.4. Modelling the general Normal distribution N (J.l,a
2

) 

In this section the Normal distribution used is N(100,36). The expected value is 

J.l = 100 exactly, and the s.d. is 0" = 3612
, = 6 exactly. The least possible and 

greatest possible values have been defined within the code to be J.l ± 40", and so 

they are 76 and 124 respectively. 

The 100 values per run are displayed in the first 100 cells in the respective 

column of the 25 columns (i.e. runs) in Table 3 in Appendix III. Thus the 100 

simulated values in the first run are 85.8737, 86.8429, ... , 122.4235, and form 

the contents of cells Al to A100 in this table. At the base of this column cell 

AI04 contains the sample mean which is calculated via the Excel function 

A VERAGE(Al..A1 00), and is 100.0000. Similarly the s.d. of the 100 values is 

calculated via STDEVPA(Al..AIOO), and is 6.0000. Hence the sample mean 

and standard deviation are perfect. 

167 



Chapter 6: Testing and Verifying the Validity of the RCM 

The c.d.f is not an analytic function and so simulated values have to be 

generated in conjunction with tabled (or calculated) values of the standard 

Normal distribution, as defined earlier in Chapter 5.2. 

Hence from any table of the percentage points of the standard Normal 

distribution the class boundaries of the ten equi-probable classes can be 

calculated. For example, in the first class the lower class boundary will be 

100 - 4*6, = 76.000, and the upper class boundary will be 100 - 1.2816*6, 

= 92.3104. 
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Table 6.3 below has the same column headers as Table 6.2. 

1 Xi Class Lower Upper Observed Class 

Boundary Boundary Frequency 

1 to 85.8737 to 1 76.000 92.3104 10 

10 92.1960 

11 to 92.5762 to 2 92.3104 94.9504 10 

20 94.8388 

21 to 95.2093 to 3 94.9504 96.8536 10 

30 96.7414 

31 to 96.9917 to 4 96.8536 98.4802 10 

40 98.4284 

41 to 98.5299 to 5 98.4802 100.0000 10 

50 99.8338 

51 to 100.0511 to 6 100.0000 101.5198 11 

61 101.4504 

62 to 101.6556 to 7 101.5198 103.1464 10 

71 103.1271 

72 to 103.1685 to 8 103.1464 105.0496 10 

81 104.9481 

82 to 105.1257 to 9 105.0496 107.6896 10 

91 107.4719 

92 to 108.0038 to 10 107.6896 124.0000 9 

100 122.4335 

Table 6.3 100 simulated values from N(100,62
): run 1 of 25 
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The calculated value of l is 8 * ° + 1111 + 1/9, = 0.2020, and the number of 

degrees of freedom = 7. On the usual assumption in the null hypothesis that the 

errors are normally distributed, this result is not even significant at the 99.9 

percent level, when the critical value of l is 0.5549. 

Hence for this run the generated output from N(100,62
) has been demonstrated to 

be perfect in respect of the sample mean and standard deviation, and also 

extremely good indeed in terms of the goodness of fit test used here. This 

verifies the accuracy of the programming of this distribution, and the precision of 

the generated output. 

As before a total of 25 runs were carried out. Runs 3 and 11 are the worst runs. 

For run 3, the observed frequencies are 10, 11,9, 11,9, 10, 10,9, 10, 11 with l 
= 0.6061. Run 11 is very similar, again with l = 0.6061. Even so this 

calculated value of X2 is significantly small, so that even in these worst two runs, 

the degree of fit is significantly good. 

6.2.5. Modelling the general Beta distribution B(a,m,b) 

In this section the Beta distribution used is B(12, 15, 30), so that the least 

possible, modal and greatest possible values are 12, 15 and 30 respectively. 

In practice the most useful forms of the Beta distribution occur when the 

gradients of the two finite tails on both zero, so that the two shape parameters, v 

and w, are both greater than 2. For convenience, it has been assumed that if the 

skewness is positive (as here) then v = 3, and otherwise w = 3. Because the 

mode is a + (b - a)(v - 1)/ (v+w+2), in this example the value ofw is 11. 
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The expected value is /.l = a + (b - a) * v / ( v + w), = 15.8571 to 4 d.p.s. with 

[ 
b-a v*w]~ v = 3 and w = 11, and the s.d. is (j = (--) * ( ) = 1.9070. 
v+w v+w+l 

The 100 values per run are displayed in the first 100 cells in the respective 

column of the 25 columns (i.e. runs) in Table 4 in Appendix V. Thus the 100 

simulated values in the first run are 12.6418, 12.7258, ... ,23.0731, and form 

the contents of cells Al to AI00 in this table. At the base of this column cell 

AI04 contains the sample mean which is calculated via the Excel function 

A VERAGE(A1..AI00), and is 15.8571. Similarly the s.d. of the 100 values is 

calculated via STDEVPA(A1..AI00), and is 1.9070. 

Hence the sample mean and standard deviation are perfect. 

The c.d.f. is not an analytic function and so simulated values have to be 

generated in conjunction with calculated values of the standard Beta and Gamma 

distributions, as defined earlier in Chapter 5.2. 

In general, if the variable in question, x, lies in the range a::::; x ::::; b and the 

Beta distribution is defined in terms of the shape parameters v and w, then the 

p.d.f. ofx is given by f(x) = { (x-ar-1(b-x)W-l } / { (b-ar+w-l~(v,w) }, 

where f3(v,w) = rev) r(w) / r(v+w). 

XJ 

The general Gamma function, r(8), == f e-
x 

X
8
-

1 
dx. 

x=O 

If 8 is an integer then r(8) = (8-1)! 

The standardised value of x is achieved by the mapping z = (x-a)/(b-a), 

so that 0 ::::; z ::::; 1. 
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In this example, a = 12, m = 15, b = 30, v = 3, and w = II. 

:. B(v,w) = [(3) [(11) / [(14), so that B(3, 11) = 2! * 10! / 13! = 1/858, 

and z = ( x - 12) / 18. 

The probability that z is at most k is 
k k 

F(z) = f fez) dz, = f 858{ Z -2 (1-z) -IO}dz. 

z=O z=O 

Using integration by parts, the upper class boundaries of the 10 equally-probable 

sub-intervals ofB(12, 15,30) can be found by de-standardising the solution, z, of 

the equation: 

F(z) = 1 - 66(I-z)13 + 143(1-Z)12 - 78(1-z)11 = k, where k = 0.1, 0.2, ... , 0.9. 

For example, when k = 0.1 then solving by the Newton-Raphson method (Celia, 

1969) yields z = 0.0880 to 4 d.p.s, so that the first upper class boundary is 

"x = a + (b-a) * z", = 13.5839 to 4 d.p.s. Consequently in a run of size 100, we'd 

expect roughly 10 values to lie in the first decile, so that their values would lie 

between 12 and 13.5839. 
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Table 6.4 below shows for each class its lower and upper class boundaries, the 

first and last members observed from the table to lie in this class, and therefore 

the observed frequency of this class: 

1 Xi Class Lower Upper Observed Class 

Boundary Boundary Frequency 

1 12.6418 to 1 12.0 13.5839 9 

9 13.5004 

10 13.5897 to 2 13.5839 14.1679 11 

20 14.1560 

21 14.1959 to 3 14.1679 14.6619 10 

30 14.6434 

31 14.6934 to 4 14.6619 15.1314 10 

40 15.0991 

41 15.1521 to 5 15.1314 15.6081 10 

50 15.6004 

51 15.6337 to 6 15.6081 16.1190 10 

60 16.0817 

61 16.1448 to 7 16.1190 16.7004 10 

70 16.6469 

71 16.7202 to 8 16.7004 17.4205 10 

80 17.3738 

81 17.4635 to 9 17.4205 18.4760 11 

91 18.4619 

92 18.6662 to 10 18.4760 30.0000 9 

100 23.0731 

Table 6.4 100 simulated values from B(l2, 15,30): run 1 of 25 
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The calculated value of l is 8 * ° + 1111 + 1/9, = 0.2020, and the number of 

degrees of freedom = 7. On the usual assumption in the null hypothesis that the 

errors are normally distributed, this result is not even significant at the 99.9 

percent level (i.e. < 0.5549). 

Hence for this run the generated output from B(12, 15, 30) has been 

demonstrated to be perfect in respect of the sample mean and standard deviation, 

and also extremely good indeed in terms of the goodness of fit test used here. 

This verifies the accuracy of the programming of this distribution, and the 

precision of the generated output. 

As before a total of 25 runs were carried out. Seven of these runs were the 

worst, with the calculated value of l equal to 0.40404. Again, these worst 

values were significantly small, showing that the degree of fit is significantly 

good. 

6.3 Assessing the precision of the sampled correlation coefficients 

6.3.1. Introduction 

This section demonstrates the results and analysis of these results arising from 

two separate uses of the ReM. In the first example, the two variables both have 

U[O,1) distributions. In the second example the distributions of the two variables 

are Triangular and Beta distributions, with respective parameters (10, 30, 40) and 

(12, 15, 30). From now on these are referred to as T(10,30,40) and B(12,15,30) 

respectively. 

174 



Chapter 6: Testing and Verifying the Validity of the RCM 

The first example as demonstrated in section 6.3.2. could equally well have used 

two general Uniform distributions, but the linear transformations make this 

added generality pointless at this testing stage. In the second example as 

demonstrated in section 6.3.3., the skewnesses of the two variables are negative 

and positive respectively. 

Numerous combinations of distributions (and skewnesses), sample sizes and 

target correlations have been generated and examined during this research, and 

these are listed in Appendix V. A selection of key or representative combinations 

are reported and analysed in greater detail, either in this chapter or in Appendix 

VIII. If anything the results reported from this second example, in section 6.3.3., 

are the least satisfactory of all the combinations tested, and an objective here is 

to show that, even in this relatively poor set of results, the final results are very 

good. That is, during the testing stage of the RCM, very many tests were carried 

out on samples of simulated paired variables, including every combination of 

variables with large or small positive or negative skewness (where appropriate) 

and having Normal, Beta, Uniform or Triangular distributions. 

As mentioned previously, an objective of this research was not to provide this 

product moment correlation tool for any continuous distribution, so that the 

research was ultimately limited to variables with the four above distributions. 

For each of the two examples six cases were investigated, in which the target 

product moment correlation coefficients were assigned values -0.6, -0.4, -0.2, 

0.3, 0.5 and 0.7. These six values are meant to be indicative of a broad range of 

correlation values. It should be noted that, in the cases of perfect negative and 

positive correlations, -1.0 and 1.0, the RCM easily generates samples whose 

correlations are indeed -1.0 and 1.0 respectively. 
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One case is reported for the combination of the two U[O, 1) distributions in 

section 6.3.2, with a further 5 cases in Appendix VIII, and similarly two cases of 

the combination of T(lO,30,40) and B(12, 15,30) are examined in section 6.3.3, 

and the remaining 4 cases are also in Appendix VIII. In each of these 12 cases, 

the ReM was run with, in turn, sample sizes of 10, 100 and 500 values, thus 

creating 36 separate scenarios within sections 6.3.2 and 6.3.3 (together with 

Appendix VIII). In each of these scenarios 25 separate runs of the model were 

carried out. 

For example, in the scenario 'case (1) ofT(l0,30,40) combined with B(12,15,3), 

where p = -0.6, when sample sizes are 10 pairs)' the "mean = -0.608'" result 

reports that the mean value of the 25 sample correlation coefficients in these 25 

runs is -0.6084 before the swapping procedure described in section 5.6 is applied, 

and this is improved to -0.5987 as a result of this swapping. 

In section 6.3.2, case (1 ) (with p = -0.6) is tabulated, with the other 5 cases in 

Appendix VIII, and here the swapping process described in section 5.6 is not 

applied because the two distributions are, essentially, the "building block" U[O, 1) 

distributions. Hence these tables simply record the mean and median values, etc., 

of the correlation coefficients in the 25 separate runs for each of the three sample 
. . 

size scenanos. 

In section 6.3.3 cases (1) and (6) are tabulated (the other 4 cases being again in 

Appendix VIII), and in these six cases the tables are split into two parts: the first 

part shows the mean and median values, etc., of the correlation coefficients in the 

25 separate runs for each of the three sample size scenarios before the swapping 

process described in section 5.6, and the second part shows how the precisions 

are improved as a result of this swapping. Progress was almost always made, so 

that swapping improved the accuracy of the generated correlation coefficients, 

usually very significantly on a relative scale. 
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6.3.2. Tabulation of the generated sample correlation coefficients from 

paired U[O,I) distributions. 

Combining U[O,I) with U[O,I) via the RCM: Case (1): p = -0.6 

Distribution of the Generated Correlation Coefficients 

Sample Size: 10 100 500 

Mean -0.5994 -0.6000 -0.6000 

Median -0.5997 -0.6000 -0.6000 

Std.Dev 0.0028 0.0000 0.0000 

Range 0.0144 0.0000 0.0000 

Minimum -0.6070 -0.6000 -0.6000 

Maximum -0.5927 -0.6000 -0.6000 

* This table does not distinguish between the figures "Before" and "After" 

swapping as no swapping is required at this stage to improve the distributions of 

the generated correlation coefficients for U[O, 1) with U[O, 1). 
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6.3.3. Tabulation of the generated sample correlation coefficients from 

paired T(l0,30,40) and B(12,15,30) distributions. 

Combining T(10,30,40) with B(12,15,30) via the RCM: Case (1): p = -0.6 

Distribution of the Generated Correlation Coefficients 

U sing the ReM U sing the ReM 

Before Swapping After Swapping 

Sample 

Size: 10 100 500 10 100 500 

Mean -0.6084 -0.5977 -0.5992 -0.5987 -0.6000 -0.6000 

Median -0.6097 -0.5988 -0.5992 -0.5995 -0.6000 -0.6000 

Std.Dev. 0.0802 0.0117 0.0034 0.0030 0.0000 0.0000 

Range 0.2886 0.0477 0.0151 0.0132 0.0000 0.0000 

Minimum -0.7389 -0.6207 -0.6039 -0.6023 -0.6000 -0.6000 

Maximum -0.4503 -0.5730 -0.5888 -0.5891 -0.6000 -0.6000 

Combining T(10,30,40) with B(12,15,30) via the RCM: Case (6): p = -0.7 

Distribution of the Generated Correlation Coefficients 

Using the ReM U sing the ReM 

Before Swapping After Swapping 

Sample 

Size: 10 100 500 10 100 500 

Mean 0.6667 0.6821 0.6815 0.6989 0.7000 0.6984 

Median 0.6700 0.6793 0.6813 0.6997 0.7000 0.6989 

Std.Dev 0.0424 0.0077 0.0029 0.0028 0.0000 0.0017 

Range 0.1680 0.0268 0.0118 0.0141 0.0002 0.0061 

Minimum 0.5794 0.6694 0.6760 0.6880 0.6999 0.6940 

Maximum 0.7474 0.6963 0.6878 0.7021 0.7001 0.7001 
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6.3.4. Analysing the before and after swapping results when applied to two 

distributions which are Triangular(lO,30,40) and Beta(12,15,30) 

Unlike the example shown in section 6.3.2., the swapping procedure described in 

section 5.6 was required when applied to the example in section 6.3.3. One way 

to measure its effectiveness is to calculate the percentage of the error in the test 

statistic before swapping which is corrected as a result of swapping. Call this the 

correction factor. For example, in Case (1) the absolute error in the mean value 

before swapping is 0.0084, whereas after swapping it reduces to 0.0013, so that 

the correction factor is (1 - 0.0013 /0.0084) * 100, = 84.52%. 

The following table calculates these correction factors in each of the six cases for 

the mean value of the 25 paired-samples' calculated correlation coefficients, 

their median, standard deviation and range. 

In one case, the value of the median after swapping in Case (2) in Appendix 

VIII, the value is actually correct to 4 d. p. s, so that the maximum possible 

absolute error is then 0.00005, and this figure has been used in the calculation of 

the correction factor: (1 - 0.00005/0.0154) * 100%, = 99.68%. 

Correlating T(10,30,40) and B(12, 15,30): Average % 

Statistic % Correction Factor in each of the Six Cases Correction Factor 

when the sample size = 10 

(1) (2) (3) (4) (5) (6) 

Mean Value 84.52 95.74 95.98 99.12 99.08 96.67 95.19 

Median 94.85 99.68 95.00 99.27 95.80 99.00 97.27 

Std Deviation 96.26 97.39 95.97 96.39 95.73 93.40 95.86 

Range 95.43 97.36 93.98 96.62 96.29 9l.61 95.22 

Table 6.5 Correction factor showing the improyement of results after swapping when 
sample size is 10 
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Averaging these four average percentage correction factors yields an average 

improvement arising from swapping of over 96 percent. Even with samples as 

small as 10, as they are here, only one of the above 24 correction factors is less 

than 90 percent, so that the contribution made by swapping here is quite 

Impressive. 

When the results corresponding to samples of size 100 are analysed, the results 

after swapping are excellent. Only in case (6) is there any inaccuracy at all when 

measured to 4 d.p.s, and even in this case the smallest and largest of the resulting 

correlation coefficients are 0.6999 and 0.7001 when the target sought was 0.7. 

Similarly the analysis of the results when the sample sizes are 500 shows that the 

results after swapping are again excellent except in one case, number (6) again, 

where a number of the correlation coefficients arising from the generated 

samples were a little small. The average sample mean was around 0.2 percent 

below the target (0.7), although the median was a little closer to the target, 

suggesting that these data are positively skewed. The maximum correlation 

coefficient was 0.7001, which is fine, but the smallest was only 0.6940, which is 

an error of 0.86%. However this 'blip' is easily explained. 

At present in any run the programmed swapping procedure stops either when the 

correlation coefficient is within 0.00005 of the target or after a specific number 

of rounds of swaps (5), whichever is reached first. This '5' limit is applied 

irrespective of the sample size, whereas a probabilistic analysis suggests that the 

permissible maximum number of rounds should be proportional to the square 

root of the sample size. In practice the swapping procedure with samples of size 

10 virtually always took only 3 rounds or less. Hence the square-root rule would 

suggest that samples of size 500 might require up to around 20 rounds (possibly 

more) before the approach ceases to make any further progress. 

180 



Chapter 6: Testing and Verifying the Validity of the RCM 

[The speed with which this procedure is carried out on the current range ofp.c.s 

is very fast indeed, so that increasing the number of possible rounds of swapping 

from 5 to 20 would add just a second or so at most to the run time.] 

However, to put this apparently poor result into a proper context, the table in 

section 6.4.3. below shows that in the 25 corresponding runs carried out by 

@RISK when the targetted correlation was 0.7, it generated one sample of 500 

paired values in which the (rank) correlation coefficient was 0.6333 only, so that 

even here the minimum value 0.6940 generated by the RCM is still better by a 

factor of around 11 to 1. Further analysis of this case is detailed in section 6.4.3. 

6.4 Comparing the final results with one commercial risk analysis 

package 

6.4.1. Introduction 

In this section the final "after swapping" results of the three cases carried out in 

the two examples, which were tabulated in sections 6.3.2. and 6.3.3., are 

compared with the corresponding results of runs of @RISK using the same 

parameter values and sample sizes. The other nine cases in Appendix VIII are 

similarly compared with @RISK in Appendix IX. 

The analysis with respect to Crystal Ball has not been as rigorous, but generated 

broadly similar results, and so has not been included in this thesis for reasons of 

desirable brevity. 
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For example in case (1) in the second table below in section 6.4.3., the first 

reported value "mean = -0.4708" shows that, when running @RISK 25 times for 

the two triangularly distributed and beta distributed variables with samples of 

size 10 and a target correlation coefficient equal to -0.6, the average of the 25 

values of the 25 paired-samples' resulting correlation coefficients was -0.4708. 

These values are, of course, rank correlation coefficients. This figure, -0.4708, 

can be compared with the corresponding "after swapping" result generated by 

the ReM which is copied across from case (1) in section 6.3.2. This is -0.5987. 

In this example, the relative accuracy of these two averages can be calculated. 

Thus, the absolute error using @RISK is 0.1292 (= abs( -0.4708 - (-0.6)) ), 

whereas the absolute error using the ReM is only 0.0013. Hence, the ratio of 

these two absolute errors is 0.1292 to 0.0013, or approximately 99.4 to 1. i.e. 

The ReM is much more accurate in relation to this specific test statistic in this 

case. 

The reported (average) values of the median can be compared similarly. 

However, the comparison in relation to the other four reported statistics is a little 

different. For example, in section 6.4.3. in case (1), the two average values of 

the ranges are 0.7953 for the 25 samples of size 10 generated by @RISK and 

0.0132 for the corresponding output from the ReM. 

Ideally, of course, the ranges should be zero if perfect precision is attained. This 

is appropriate in all six cases in section 6.4.2. when the sample size is either 100 

or 500, with just one exception. (The exception is case (6) which, as previously 

mentioned, would almost certainly have been improved if the swapping 

algorithm was applied for a few more iterations.) So, in this case the ratio of the 

two absolute errors will be 0.7953 to 0.0132, or 60.25 to 1. 
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The performance of @RISK and the ReM after swapping, for the six cases of 

each of these two examples, are tabulated in sections 6.4.2. and 6.4.3. 

respectively. 

Having shown the 12 tables tabulating "@RISK" against "after swapping", a 

more comprehensive analysis of the results tabulated in sections 6.4.2. and 6.4.3. 

is assigned to section 6.4.4. In each of the six cases of the two examples we 

look for the critical values of the absolute error ratio. 
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6.4.2. Comparing the distribution of generated correlations generated by the 

RCM and @RISK when pairing U[0,1) and U[0,1). 

Combining U[0,1) with U[0,1): Case (1): p = -0.6 

Distribution of the Generated Correlation Coefficients 

RCM versus @RISK 

Using @RISK U sing the ReM 

Sample 

Size: 10 100 500 10 100 500 

Mean -0.8367 -0.8384 -0.8360 -0.5994 -0.6000 -0.6000 

Median -0.8379 -0.8333 -0.8335 -0.5997 -0.6000 -0.6000 

Std.Dev 0.0535 0.0150 0.0083 0.0028 0.0000 0.0000 

Range 0.1941 0.0491 0.0283 0.0144 0.0000 0.0000 

Minimum -0.9398 -0.8669 -0.8519 -0.6070 -0.6000 -0.6000 

Maximum -0.7457 -0.8178 -0.8236 -0.5926 -0.6000 -0.6000 
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6.4.3. Comparing the distribution of correlations generated by the RCM and 

(a),RISK when pairing T(10,30,40) and B(12,15,30) 

Combining T(10,30,40) with B(12,15,30): Case (1): p = -0.6 

Distribution of the Generated Correlation Coefficients: 

RCM versus @RISK 

Using @RISK U sing the RCM 

Sample 

Size: 10 100 500 10 100 500 

Mean -0.4708 -0.5953 -0.5818 -0.5987 -0.6000 -0.6000 

Median -0.5328 -0.5991 -0.5827 -0.5995 -0.6000 -0.6000 

Std.Dev. 0.2319 0.0591 0.0234 0.0030 0.0000 0.0000 

Range 0.7953 0.2161 0.0993 0.0132 0.0000 0.0000 

Minimum -0.8690 -0.7016 -0.6311 -0.6023 -0.6000 -0.6000 

Maximum -0.0737 -0.4855 -0.5318 -0.5891 -0.6000 -0.6000 

Combining T(10,30,40) with B(12,15,30): Case (6): p = -0.7 

Distribution of the Generated Correlation Coefficients: 

RCM versus @RISK 

Using @RISK U sing the RCM 

Sample 

Size: 10 100 500 10 100 500 

Mean 0.6392 0.6710 0.6770 0.6989 0.7000 0.6984 

Median 0.6215 0.6713 0.6770 0.6997 0.7000 0.6989 

Std.Dev 0.1332 0.0361 0.0180 0.0028 0.0000 0.0017 

Range 0.4254 0.1468 0.0815 0.0141 0.0002 0.0061 

Minimum 0.4489 0.5824 0.6333 0.6880 0.6999 0.6940 

Maximum 0.8743 0.7292 0.7147 0.7021 0.7001 0.7001 
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6.4.4. Analysing the ra;RISK and ReM (after swapping) results when 

applied to two Uniform[O,l) distributions 

For each of the two examples in section 6.4.2. and 6.4.3. above, the absolute 

error ratio (as defined in section 6.4.1.) is calculated across the six cases, for the 

sample mean, median, standard deviation and range values. 

These values are shown in columns (1) to (6) in the two following tables, the 

first for the results of section 6.4.2., and the second for section 6.4.3. One final 

preliminary is that, when any of the statistics is correct to the shown accuracy 

level of 4 d.p.s, the error is taken to be the maximum possible error in such a 

case, 0.00005. 

In the instances where the RCM's results were very accurate the error ratio would 

clearly be very high indeed. Consequently, the mean ratio might be unduly 

affected by one or more very high values, so that the median absolute error ratios 

are reported for the six cases, together with the minimum value. 

First the results of correlating samples from the two U[O, 1) variables will be 

investigated. Each value in the columns headed (1) to (6) is the ratio of the 

absolute error from the @RISK runs to the absolute error using the RCM with 

swappmg. 

186 



Chapter 6: Testing and Verifying the Validity of the RCM 

Median Least 
Sample Correlating U[O, 1) and U[O, 1): Abs. Abs. 
Size = 10 Absolute Error Ratio in each of the Six Cases Error Error 

Ratio Ratio 

Statistic (1) (2) (3) (4) (5) (6) 

Mean 394.5 222.8 261.8 29.9 1743.0 458.6 328.2 

Median 793.0 345.0 125.0 175.4 415.8 753.3 380.4 

Std.Dev. 19.1 52.8 105.1 78.0 30.1 7.9 41.5 

Range 13.5 49.6 77.6 67.6 24.7 5.9 37.2 

Table 6.6 Comparing of@RISK and "after swapping" results when Correlating U[O,I) 
and U[O,I) with the sample size is 10 

6.4.5. Analysing the @RISK and ReM (after swapping) results when 

applied to two distributions which are Triangular(lO,30,40) and 

Beta(12,15,30) 

The table of the ratios of absolute errors when the samples contained 10 pairs of 

values is as follows: 

29.9 

125 

7.9 

5.9 

Median Least 

Sample Correlating T(10,30,40) and B(12, 15,30): Abs. 

Size = 10 Absolute Error Ratio in each of the Six Cases Error 

Ratio 

Statistic (1) (2) (3) (4) (5) (6) 

Mean 99.4 154.0 131.4 1,225 246.5 55.3 142.7 

Median 134.4 136.0 5.6 1,100 2.3 261.7 135.2 

Std.Dev. 77.3 124.0 119.6 156.0 98.7 47.6 109.1 

Range 60.2 120.6 73.5 196.0 121.7 30.2 97.0 

Table 6.7 Comparing of a'RISK and" after swapping" results when Correlating 
T(10,30,~0) and B(12,15,30) the sample size is 10 
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In the individual cases reported when the sample size is 10, the worst result when 

benchmarking the performance of the ReM against that of @RlSK occurs in 

case (5), when the target correlation was 0.5. The reported median value using 

@RlSK is 0.4977, so that the error is 0.0023. The corresponding median value 

of the 25 runs of the ReM is better, and is 0.5010, but the ratio of absolute errors 

is 0.0023 to 0.0010, or 2.3 to 1. This is the smallest recorded of all the observed 

improvements of the ReM in comparison with the use of @RlSK. The next 

worst comparison is in case (3), where the target correlation was -0.2, the ratio 

of absolute errors for the median being 0.0028 to 0.0005, or 5.6 to 1. 

In the first of these two cases, however, the sample mean generated by @RlSK is 

0.4507, compared with 0.5002 for the ReM, and so that their error ratio is 246.5 

to 1. The error ratio for the range is 121. 7 to 1, and the error ratio for the 

standard deviation is 98.7 to 1, so that the wide diversity of the values generated 

by @RlSK made it quite lucky that the median value was so close to the target. 

In the second of these two cases, where the error ratio of the median was only 5.6 

to 1, the error ratios of the mean, the range and the standard deviation are 131.4 

to 1, 73.5 to 1, and 119.6 to 1 respectively, so that the "5.6" figure is again 

fortunate, perhaps. 

Overall the analysis of the six cases in this section show that in this case the 

ReM consistently generated samples whose correlation was so much more 

precise than that generated by @RlSK. 
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Summary 

This chapter has demonstrated and tested the accuracy of the results generated 

from using the RCM in different senarios. Samples of continuous variables on 

interval scales whose p.d.fs are any of four different general types have been 

shown to have perfect means and standard deviations, and their frequency 

distributions have been shown by chi-square testing to be excellent. This 

concluded that these samples have passed the first test of being truly 

representative of the required probability distribution. 

Two major test areas in this chapter were, firstly, between the RCM 'before 

swapping' and 'after swapping'; and, secondly, between @RISK and the RCM 

after swapping. 

When these generated values were used as input to the correlation routines, the 

closeness of the generated sample product-moment correlation coefficient values 

to the targetted values was extremely good, and in every instance examined 

generated correlations which were markedly more accurate than those produced 

using the possibly inappropriate rank correlation approaches incorporated In 

popular commercial risk analysis and simulation software such as @RISK. 

Numerous other combinations of distributions and skewnesses have been 

examined during the course of this research, but, in order to avoid a massive 

dissertation report, only key or representative tests are reported. 

Thus it can confidently concluded that the objective of the RCM defined In 

chapter 1 has been successfully achieved. 
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The next chapter, Chapter 7, presents a summary of the conclusions drawn in the 

preceding six chapters; in addition some new conclusions about the contribution 

of the work are described. A critique of the research is presented, and a number 

of detailed suggestions are made for further work leading from the research 

described in this thesis. 
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A Method for Treating Dependencies Between Variables in a Simulation Risk Analysis Model 

Chapter 7: 

7.1 Introduction 

Conclusion, Review, and Recommended 

Future Work 

The objectives of this chapter are five-fold: 

)I' To restate the aim and objectives defined in Chapter 1. 

)I' To examine how closely the research output meets the initial aim and 

objectives. 

)I' To identify the contribution from this research. 

)I' To review the output from the research. 

)I' To suggest possible extensions of this research. 
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7.2 Restating the research aim and objectives 

The literature reVIew highlighted that a potentially crucial error when using 

simulation in risk analysis models is to ignore dependency between variables, 

since this could lead to infeasible or highly unlikely outcomes which would not 

be identified as such by the simulation. 

It thus could waste resources, e.g. money, time and effort, or even lead to 

inappropriate decisions being made by planners. Any simulation model in a 

quantitative risk analysis (QRA), therefore, should be monitored closely to 

prevent it from producing, in any iteration, a scenario that could not sensibly 

occur (Vose, 2000). 

Hence this thesis explores the need to recognise and represent accurately the 

interdependencies between uncertain components in a model as such. 

During the early stages of this research it became very clear that commercial 

simulation or risk analysis packages, such as @RlSK and Crystal Ball, enable 

some degree of correlation modelling to take place. However, the correlation 

modelling is based on Spearman's rank correlation technique, which is 

appropriate for variables represented on an ordinal scale. Where variables are 

continuous it would be rather more appropriate to measure dependency using 

Pearson's product moment correlation coefficient. Research has failed to 

identify any implementations of Pearson's method in commercial simulation or 

risk analysis packages. There is evidence that bespoke or consultancy packages 

are increasingly attempting to include product-moment representations, but the 

evidence seems to be that these are very complex, slow to run, and are all too 

often not robust. 
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Filling the gap between acknowledging the importance of modelling correlation 

and the actual specification and implementation of a procedure for modelling 

accurate measures of Pearson's correlation has turned into the main aim of this 

research. To avoid mistakes arising from complexity it was decided to limit the 

scope of this research to modelling product moment correlations between pairs 

of variables only. 

More specifically: 

"To specify, formulate and develop a Pearson product moment correlation 

model between a pair of continuous variables which can be incorporated into 

simulation models of complex applications. " 

Two principal objectives were stated in Chapter 1: 

Research objective 1: 

The correlation model must generate samples of pairs of values of continuous 

variables whose Pearson correlation coefficient has acceptable precision 

Research objective 2: 

The correlation model must include a good representation of the uncertain 

variables 

Comment on these two objectives 

Even when commercial packages such as @RISK and Crystal Ball generate rank 

correlation coefficients their values are often very different from the target 

values. When the number of variables exceeds 2 this may not be surprising if the 

user has specified infeasible combinations of partial correlation coefficients (see 

later). 
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However, when there are only two variables and the sample size is large, the 

sample correlation desirably should be close in value to that of the target value. 

Yet the analysis of the sampled rank correlation coefficients arising from the 

output of runs of @RISK using samples of size 500 in sections 6.4.2 and 6.4.3 

show that some of the results are not at all satisfactory. For example when 

seeking samples of size 500 with a correlation of 0.3 between two U[O,I) 

variables, the minimum value achieved in 25 runs was 0.3012 and the maximum 

was 0.4359, so that every run generated excess correlation. By way of 

comparison, here, the RCM generated 25 runs, in everyone of which the 

correlation attained was equal to the target value 0.3 to 4 decimal places, and, of 

course, these measures were Pearson correlation coefficients. 

U sing Latin hypercubes as a powerful means of variance reduction should enable 

the sample means and variances to be very close to their expected values. This is 

true of output from @RISK and Crystal Ball. However, the sample means were 

not exactly equal to expected values here, and similarly the sample variances 

differed from their expected values. 

Yet in the RCM a simple linear transformation has enabled exact parity to be 

achieved, without compromising the shape of the distribution of the generated 

values. 
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7.3 Meeting the research aim and objectives 

The results quoted in the relevant appendices and their analysis detailed in 

Chapter 6 show conclusively that the general aim has been achieved, and that the 

two principal research objectives restated above have been met. 

Other objectives have also been attained. They are: 

• Defining the terminology used in QRA, such as uncertainty, variability, risk, 

etc. (in Chapter 2). 

• Presenting, companng and contrasting different approaches used III 

quantifying uncertainty. This formed the basis for the appreciation of 

simulation (in Chapter 2). 

• Identifying how simulation works, together with its advantages over other 

approaches and its limitations (in Chapter 2). 
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• Explaining the importance of assessing and including the interdependencies 

between uncertain variables in a simulation model. This will make possible 

the construction of a model which allows the interdependencies to be 

considered and incorporated, through product-moment correlations (in 

Chapter 2). 

• Illustrating how modelling dependencies can be achieved. Throughout the 

process, various statistical concepts were discussed and it was shown how 

they can be practically applied (in Chapters 3 and 4). 

• Indicating how the RCM can be incorporated into a QRA model in practice. 

It demonstrates the value and effort of the modelling process (in Chapters 5 

and 6). 

7.4 Identifying the contribution of this research 

This thesis has demonstrated, principally in Chapter 6, but also in Appendices V, 

VI and VII, that the distributions and sampling of individual continuous 

variables having assumed probability distributions has indeed been modelled 

very accurately. 

Contributions to knowledge are as follows: 

Statistical Contributions: 

• Reinforcing the importance of modelling the interdependencies between 

uncertain components when simulation models are used. 
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• Discovering a distinctive way of formulating Pearson correlated sample 

values of a pair of continuous variables during the sampling processes. 

• Helping to fill the gap between theoretical awareness of the significance of 

correlation and the actual practice of its use. In particular recognising the 

inappropriate use of rank correlations in many situations where the variables 

are cardinal (i.e. continuous) and developing instead models of product

moment correlations. 

Operational Research Contributions: 

• Consolidating the advantages and limitations of choosing simulation as a 

means of carrying out quantitative risk analysis. 

• Demonstrating how to improve significantly the reliability and precision of 

simulation output and exemplifying the sensitivity and confidence of using 

simulation methodologies. 

• Showing the relevance and suitability of simulation and encouragmg its 

wider use. 

7.5 Review of the output from this research 

During the testing stage of the RCM, very many tests were carried out on 

samples of simulated paired variables, including every combination of variables 

with a range of large or small positive or negative skewness (where appropriate) 

and having general Normal, Beta, Uniform or Triangular distributions. These 

results are illustrated in Appendix V. 
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Here the means, standard deviations, and variances of the generated samples are 

so accurate that they exactly matched the corresponding population values and, 

therefore, no further explanation is required. 

It was not an objective of this research to provide this product moment 

correlation tool for all continuous distributions, so that the research was 

ultimately limited to variables with the four above distributions. Clearly it would 

be easy to extend this modelling to variables with other continuous distributions, 

such as exponential or Lognormal distributions. 

7.5.1. Proof of goodness of fit 

The X
2 

test was first used to test the accuracy of the generated distributions 

against the assumed probability distribution. The results are detailed in Appendix 

VI which was produced using 100 generated values as per 25 runs to a 

corresponding probability distribution. This output is summarised in the table 

below. 

x2 = 0.0000 X2 = 0.2020 X2 = 0.4040 X2 - 0.6061 

U [18,38) 25 0 0 0 

T (10,30,40) 22 3 0 0 

N (100,36) 9 11 3 ') 

B (12,15,30) 9 9 7 0 

Table 7.1 Number of runs in 25 attaining the shown levels of l 
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We can observe that: 

• The generated output from U[ 18, 38) has a perfect goodness of fit test. 

• In 3 runs the observed frequencies from T(10, 30, 40) are not perfect, but the 

calculated l value is still highly non-significant 

• The worst-case results when testing the Beta distribution were still better 

than the two worst-case results from the Normal distribution. In this latter 

case, the critical value of chi -square at the extreme 99.5 percent level of 

significance with 7 degrees of freedom is 0.989 so that even here there's a 

chance of well under 1 in 200 that the generated sample does not come from 

a Normal population. However, even in these two worst cases each of the 6 

critical observations (out of 100) missed the desired class by very small 

amounts indeed. 

Even here in the two worst cases we may conclude that the degree of fit is 

significantly good, confirming that sampling from these four distributions using 

Latin hypercubes and then scaling the sample means and s.d.s has generated 

samples which attain very high levels of precision and are thus acceptably 

representative on virtually any scale. 

7.5.2. Quantifying the improvement in the correlation coefficient 

The successful modelling of the RCM has been testified in two separate ways. 

1) Comparing the 'before' and 'after' swapping results when applied to two 

distributions which are (i) both Uniform [0, l)~ and (ii) Triangular( 1 0, 30, 

40) and Beta(12, 15, 30). 
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In case (i) the process of swapping was often never needed in the 

individual runs (because the results before swapping were already within 

the accepted tolerance limits). Sometimes when swapping was 

attempted, no further progress was made. 

In case (ii) the effectiveness was measured by calculating the percentage 

of the error in the test statistic 'before' swapping which was corrected as 

a result of swapping. This was called the correction factor. It was shown 

that an average improvement arising from swapping was over 96 percent. 

Even with samples as small as 10 only one of the 24 "worst case" 

correction factors documented in section 6.3.4 was less than 90 percent, 

with the average correction factor being over 96 percent overall, so that 

the contribution made by swapping here is quite impressive. With larger 

samples the results were even more impressive. 

2) Comparing the 'after swapping' results of the RCM with 

corresponding runs of @Risk when applied to distributions which 

are (iii) both Uniform[O,1); and (ii) Triangular(10, 30, 40) and 

Beta(12, IS, 30). 

Overall the analysis in section 6.4.S. shows that in the case when the 

sample size is 10, the RCM consistently generated samples whose 

correlation was so much more precise than that generated by @RISK. 

The smallest of all the observed ratios of improvements of the RCM 

in comparison with the use of@RISK was 2.3:1, and occurred in case 

(S) in section 6.4.S. In this case the medians were being compared. 

Most other improvement ratios were very much better than this with, 

for example, the median ratio of improvements for the four key 

parameters tabulated in this section ranging from 97.0: 1 to 1-.+2 7: 1. 
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The conclusion is that this broadly 100 to 1 improvement in the error ratios 

demonstrates clearly that the RCM has generated measures of correlation which 

are highly more accurate than that produced by @RISK. Additionally, of course, 

Pearson's product moment correlations are generated by the RCM, not by 

Spearman's rank correlation coefficients. Again it should be noted here that, of 

all the combinations of variables with different distributions whose results are 

outlined in Appendix V, the combinations of the distributions which formed the 

basis of the analysis in Chapter 6 were the ones which were most favourable to 

the output from @RISK. 

7.6 Recommended further work 

This research has been initially aimed at generating Pearson's correlation 

measure for a pair of continuous variables. Separate research is currently 

generating very promising results when Pearson's partial correlation coefficients 

are modelled in the case of three continuous variables. Eventually this should be 

extended to deal with a general number of continuous variables. Even with three 

variables there are problems with feasibility. For example, suppose the three 

variables are X, Y and Z, and that the user specifies high positive correlations of 

0.9 and 0.8 between X and Y and between X and Z respectively. 

Then an eigen value analysis, for example, will indicate that the correlation 

between Y and Z could not be as small as -0.5, say. This is already recognised in 

Crystal Ball, for example. An initial paper on this is scheduled for early 2006. 

Other factors relating to this are discussed in section 2.10 earlier. 

A second major area of research here will be to seek means of improving the 

shape of the individual generated frequency distributions while, at the same time, 

maintaining the perfect sample means and variances. 
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Initial research here is also progressing very well, with a perturbation of triplets 

of the sampled values from an individual distribution indicating a way ahead, so 

that measures of skewness and/or kurtosis can be improved. 

An initial paper on this is scheduled for mid-2006. 

The only correlation analysis generated by products such as @RISK relates to 

rank correlation. Current research into developing a heuristic swapping 

routine to be used to improve sample rank correlations is going very well, and 

a research paper on this is at a draft state. The objective here is to formalise 

this into a research paper by the end of 2005. The experimental work has 

shown that quite substantial improvements can be made when the number of 

variables is just two, and it looks very promising when this is increased to 

four or five. 

Ultimately, of course this should be extended to a larger dimension so that it 

could be considered as an alternative to the Cario-Nelson NORT A-based 

approaches. This would begin to address the concluding concern of 

Schmeiser (1999) that " ... the state of the art (simulation) is far from 

allowing novice practitioners to build complex input models in the way that 

they can build complex logical models in today's commercial software." 

The "rank correlation heuristic" which forms the basis of the research described 

in the previous paragraph could be ported to become a input model post

processor if the input model has been, for example, the one generated by 

products such as @RISK or if, more generally, the input model is based on any 

derivative of the Iman and Conover distribution-free approach. This would 

alleviate the observations of a number of authors (including Iman and Conover 

themselves) that the accuracy of the generated rank correlation matrix is too 

often compromised to a lesser or greater extent. 
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A possibly even more attractive outcome here would be to port the input rank 

correlation matrix generated by, for example, @RISK into a future generalised 

form of the product-moment heuristic swapping algorithm which has been 

developed in this research and detailed in this thesis. This would enable the 

practitioner to generate samples with accurate marginal distributions and 

acceptable product-moment representations of the pair-wise relationships 

between the sampled variables, without the shear complexity, demand on 

computing resources, or risk of infeasibility currently posed by the OR T A 

derivatives. In fact a paper on this by Pryor and Sim was presented at OR47 in 

September 2005 and, following favourable feedback, will shortly be extended to 

a working paper prior to submission for publication. 

One of the limitations of products such as Microsoft Excel that have been 

identified during this research has been that these spreadsheet programmes do 

not have built-in routines to generate rank correlations, and yet if @RISK output 

including rank correlations is imported into Excel it is then not possible to carry 

out further post-analysis of this part of the output. Similarly, Crystal Ball (which 

is marketed as "an Excel add-in" can generate only rank correlations, which can 

the neither be verified nor processed within the spreadsheet. 

One way around this is to use an alternative package such as SPSS, which would 

perhaps pose a needless additional expense to users. There are available a 

number of spreadsheet rank correlation add-ons which have been produced by 

commercial companies but, again, these are costly, so that the generation of a 

simple academic routine to provide rank correlation (and possibly other non-

parametric) functions would seem desirable. 
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Price (2002) has highlighted the convenience of being able to use three-point 

parameterisations of certain distributions. In his case this was in the context of 

developing a commercial schedule risk analysis product utilising the Lurie

Goldberg algorithm. For example, the beta distribution requires four parameters 

to specify it, such as the least and greatest value, together with either the two 

shape parameters v and w or the modal and mean values /-l and m. Within this 

thesis, in chapter 6, has been described a method of using only three parameters 

to obtain an acceptable representation of any beta distribution of the category 

that appears so often in practice. I.e. Where the tails have zero gradients. This 

part of the thesis is currently being extended into a research paper, and the first 

draft version has been produced in May 2005." 

Finally, the 'triplet perturbation' approach which is proving very promising in 

the second potential area outlined above could also be effective in improving the 

Pearson correlation modelling algorithm developed in the RCM. 

It is interesting to see the current effect of the RCM on skewness and kurtosis. 

An initial test of comparing the skewness and kurtosis of generated samples from 

examples of these distributions has been carried out. The detail of these test 

results is reported in Appendix VII. 
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The analysis is summarised in two tables below. 

Sample size - 10 Sample size = 100 Sample size = 500 

Uniform[ 18,3 8) 0.0174 0.0001 0.0000 

Triangular(l 0,15,40) 0.0849 0.0021 0.0002 

Triangular( 1 0,3 0,40) 0.0959 0.0031 0.0002 

Normal(lOO,36) 0.1387 0.0232 0.0055 

Beta(12,15,30) 0.2127 0.0310 0.0098 

Beta(l2,25,30) 0.1149 0.0196 0.0036 

Table 7.2 The maximum absolute difference in the measure of skewness 

Sample size = 10 Sample size = 100 Sample size = 500 

Uniform[ 18,3 8) 0.0204 0.0001 0.0000 

Triangular(1 0,15,40) 0.2319 0.0059 0.0005 

Triangular( 1 0,30,40) 0.1839 0.0078 0.0006 

Normal(lOO,36) 0.6248 0.0922 0.0212 

Beta(12,15,30) 0.8301 0.1427 0.0502 

Beta(12,25,30) 0.4367 0.0682 0.0148 

Table 7.3 The maximum absolute difference in the measure of kurtosis 

Generally the accuracy of the modelling of both skewness and kurtosis is seen 

from these two tables to improve markedly with sample size, as would be 

expected. At first sight the precision levels of the calculated skewness values 

seem to be much better than those of the kurtosis values. However, each 

expected kurtosis value is rather larger than the corresponding absolute size of 

the expected skewness value so that the relative errors in the calculated kurtosis 

values are on average only a little worse than those of the calculated skewness 

values. 
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The largest single difference in the above two tables is 0.8301 which is when the 

sample size is lOin one run of the simulation of values of a B(l2,15,30) 

variable. The research currently being carried out elsewhere into improving 

skewness and/or kurtosis suggests that this maximum difference can be 

dramatically improved. 

Overall, given that there was no obj ective in this research to generate highly 

accurate measures of shape, the above two tables demonstrate that the RCM 

seems to be dealing acceptably with skewness and kurtosis. Additional non

comprehensive experiments suggest that the measures of skewness and kurtosis 

currently being generated by the RCM are rather better than the corresponding 

output from @RISK, but it isn't appropriate to attempt to quantify this 

improvement here. 

In conclusion here the heuristic product-moment correlation improvement 

algorithm developed within this research has been built on the ideal of 

generating sample values from the individual (i.e. marginal) distributions using 

Latin hypercubes. It is to be stressed that this heuristic is equally applicable if 

the sampling from the marginal distributions is carried out using a Monte Carlo 

approach, with or without any other form of variance reduction, or a more basic 

deterministic approach, such as sampling values from a lattice of points. 
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Summary 

It is concluded that, based on the analysis of results generated from this research, 

the aim of specifying, formulating and developing a Pearson product moment 

RCM between a pair of continuous variables which can be incorporated into 

simulation models of complex applications has been achieved successfully. 

The extensions identified in the previous section make it possible to envisage a 

much less complex (and more robust) alternative to the various Cario-Nelson 

NORTA derivatives when generating samples from a multivariate distribution 

whose marginal distributions and product-moment (or rank) pair-wise 

correlations are assumed. Similarly one can envisage an add-on to typical Iman

Conover distribution-free procedures, the benefit of which would be to improve 

the quite inaccurate representations of the generated rank correlations frequently 

currently generated by these procedures and/or to generate acceptably accurate 

product-moment correlations. 

The contributions from this research can be seen in two areas. Both the statistical 

contribution which has discovered a distinctive way of formulating Pearson 

correlated sample values of a pair of continuous variables during sampling 

processes, and the operational research contribution which is to improve the 

reliability and precision of simulation output and exemplify the sensitivity and 

confidence of using simulation methodologies. 
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Appendix I 

100 generated values as per 25 runs of U[18,38) 
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Appendix I: U[18, 38) 

100 generated values as per 25 runs in column A to Y 

A 

18.1588 J.§.012~ _ __ 18.0015 18.0001 18.0956 18.1655 
2 18.2414, 18.3886i 18.2246 18.3058 18.398918.3997 -18.3046 
3.113}7J6

1 -t~~~Q6'18:4890:- J8.43Q4 f8.48~9---=~' 18.5582 1 18.4869 ~::~~:~ 
4 18.6286 ~.7701' 18.7108 18.7699 18.7144 18.6390 18.6416 187133 18.7862 
51~._818?1 J~:8635 .-.1 8.9131 'J8~~7_~1:a·84.~(-1_~.-9073:- ~8.9745 18'8207 1 18.9045 
6 19.181_4-1- 19---,1}72 J9.0867 19.1298 19.1506 19.0934 19.0254 19:1795 1 19.0957 
7 19.3Q84, 1~.2_~75; 19.2323~1~3943- -19---:-394T 19'.3451--19.3411 -19.2840 19.2120 
8 19.4917. 19.§J32 1~·5676 -19~4060: 19.4056 19.4555-19.458~19.5162 19.5882 
9 19.6831' 19.6850 1 19~6377 1 !f.'7284 I 19.7883 19.6451 :----=j9.7326 19.7374 19_6-904 
10 19.~1J9J.9.9156 19.9621 19:8719 19.8120 19.9555~9.8673 19.8628--19~9098 
11 ___ 2~0~~X]0.1716 20.1203 20.0969 20:1088-20.1918 20.0716 20:-1345+- 20.0397 
12_.2_Q.~~{* 20.2290 20~2796 2Q.3034 20.2915 _n20.~688-20.3283 ~0:26S71-20-,~605 
13 . .29.4903

1 
20.4115 20.4136 2Q.4165 20.4806 29.5488 _20.5522- 20.4091 20.4754 

~: }~~~~:;ul~~~~jJ~}~~~i. ~~~~~li ~~~};;, ~~~~J~ -1g~~1! -~~~~!; . ~~~~: 
16 _ 21.06Q~ . ~.1.02081 . .1J_.00._1~+- 21 .. Q~Q1J, 21.1474 2~12§5 __ .21.094.Z -21.0255 21.1'954 
17~L~~99 _~1.2482 _~~.3~.Z~ ~1.20~1 i ]1.?_107 21.3467 21.3991 21.3470 21.2449 
18 21.5002 21.5523r 21.4123 21.5912 21.5895 21.4538 21.4008 21.4532 21.5553 
19 21.6811.21)10aT 21.7778 21.6800 21.7008 21.6706 -2f.6462 21.7106 21.6278 
20 21.9187 21.981* 21.8221 21.9202 21.8994 2 j .9299·21:9537, 21.8896, 21.9724 
21 - 2~~T8~1 __ 2?.15.-6~ 22.1704 22.0412 22.176. 9: -22."61~'22.1561+ 22.1160 22.0070 
22 .22.21.19.1_ 2? __ 2441 22.2295 22.3590 22.22~~1 22.3898 ___ 22:2438._ 22~2a42 22..3931 
23_ ?2.5~7() 22.4076: 22.5900 22.4229 22.5970. 22.4428 22.5603 22:5985 22.5727 

~: ~~:~~~j,~l~;;~ 1- ~~:~~~~ ~-~~:~~r~1 ~~:~~~~~n ~~~~;~~ ~~~~~!~- i~:~~~~ ~~:~~~~ 
t----- ~. .~ .. - -- ----- ---.- ----- .. 

26 23.0818 23.1729[ 23.1232[ 23 .. 0~~_?3.071.1,._2~.17?§., 23 .. 1159 23.1078 23.0973 
27 23.3064 23.3340 23.3681 23. 39!5.2I 23.3431J 23.3210. 23.2914 23.2739 23.2184 
28 23.4936 23.4663 23.4318 23.4050 23~45-70-23.47931 --23~5085-- 2:fs262 23.5817 
29 23.7231 23.6527 23.6766 23.6112 23.7072 23.6365,'23.77101 2.3.6776 2~.7910 
30 23.87701 23.9476 23.9233 23.9889 23.8929 23.9638 23.8289 23.9225 23.8091 
31 24.0179' 24.1686 24.0904 24.0159 24.0834 24.082.8- 24.1141"- 24.0088; - 24.0029 

--------

32 24.3822 24.23171 24.3095! 24.3843 24.3167 24.3175 24.2859 24.3913 24.3972 
33 24.4369 24~44221 - 24.56831 24.4811 24.4868. 24.402~F24.4766 24.4260 24.5153 
34 24.7631 24.7581] .24.63f6'" 24.7190 - 24.71331--24.7974' 24.7233- 24.7741 24.6848 
35 24.8567 24.8454 24.96422.4~9353; -- 24.8681 24.9530 24.8016 24.8294 24.9216 
36 25.1433' -25~1-5491 25.0358 25~0648t-'-25:f320 25.0472 25.1983 -25.1707 -25.0785 
37 25.2038 1 25.3013 1[ 25:3255' 25.36'03' 25.3874- '25.3092 25.2266-25.3915' - 25.3100 
38 25.5963t ~ 2.?.498_~~~ .. 1714T .~5.~~9~ J _25.41?:7 ~~49.!Q..~5739 _.?5 .. 4086- 25.4901 
39 25.63051 25.7240, 25.6822 25.70981 25.7274 25.6082 25.6425, _~5.7754 25.6102 
40 25.9695 -25.876,f -25.91771 -.2~ .. ~903 _25~8727 __ 2~)920 25.9S.75_~5.8_246 25.9898 
41 26.0840 26.12147 26.0274' 26.0253 26.1510 26.0458 26.0619 26.0506 26.0503 
42 26.3160 26.2787-26.3726~ 26.3748 26.249126~3543 26.3381 26.3495 26.3497 
43 26.5097 26.4201 26.5339 26.4739t---;26.5369'-26.4164 - ~6.5849 2.§.4315 26.4951 
44 26.6903 26.7800 26.6661 26:7261 26.6631 26.7837 26.6150 26.7685 26.7049 
45 26.9117 26.9886 26.8263 26.8803 26.8459 26.9915 26.9094 26.8070 26.9030 
46 27.0883 27.0114 27.1737 27.11914-27.1541 27.0086 __ 2X·0906 27.1931 27.0971 
47 27.3562 27.2766 27.2005 27.3918 27.2059 27.3930_~7.342627.3132 27.3401 
48 27.4438. 27.5235 27.5995 27.4083 27.5942 27.4070 27.4573 27.4869 27.4600 
49 27.6086 1 27.6695 27.6611 27.7032 27.6029 27.6454 27.7606 27.7347 27.7842 
50 27.9914 27.9305 27.9389 27.8968+- 27.9971 27.9546 27.8394 27.8653 27.8158 
51 28.0811 28.0080 28.11781--28.1184 28.1683 28.0043 28.1410 28.1372 28.1728 
52 28.3188 28.3920 28.2822 28.2816 28.2316 28.3957 28.2591 28.2628 28.2272 
53 28.4118 28.5780 28.4696 28.5617 28.4396 28.5166 28.5348 28.4657 28.4810 
54 28.7882 28.6219 28.7304 28.6383 28.7604 28.6834 28.6652 28.7343 28.7189 
55 28.8624 28.8987 28.9358 28.9527 28.8110 28.8000 28.8362 28.8594 28.8216 
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Appendix I: U[18, 38) 
100 generated values as per 25 runs in column A to Y 

A 

56 29.1376 29.1012, 29.0642 29.0473 29.1890 29.1784 
57 29.3206' 29.2814 29.3098 29.2543 29.278? ___ 29.3418 
58 29.4794 29.5185 29.4903 29.5456 29.5211 29.4738-29.579429.4217 29.4581 
59 29.7035i 29.7862 29.6576 _?9~61~~ 29.7162'-- 29)06{ 29.7890 29.6091 29.7427 
60 29.89641 29.8137 29.9425 29.987Q. -29.8838 29.893~ 29.811 0-2~i.9909 -- 29.8573 
61 30.1193, 30.0502 30.0430 30.0843 3o.119f-30~6i90 -30.1567 -30.0923 30.0930 
62 30.2807 30.3497 30.3571 30.3156 30~i809-30.3709 30.243330--:-3076 30.3069 
63 __ ~-"~~59 30.5107 30.4879 30.4159 303531~30.4-586- -39:5223-30.5028 30.4710 
64 30.7341 30.6891 30.7122 30.7840 30.7468 30.7412 30.6777 30.6972'--30.7289 
65 30.9818 30.8088 30.8874 30.8213 30.9604....lQ.8123i-3D.9569 30.9283 -30.9873 

66 __ .333_1~.·'._403-__ ~1~86~tt ____ 3;._-111-·:~1693-~10~11 31.1127 31.1786 31.0395 31.1874 31.0431~ 31.07fl-31.0126 
67 31.273~ 31.2918 _1.1 ~978-~j .3106 ___ 31--"24§~~' ~31.3.685 31.2747 
68 31.5.?62! _~1.-5081 31.5021 31.4892 31.5537 31.4314 31.5252 
69 31.71511 31.6939 31.7968 31.7577---3f.7448' 31--:6748-- 31.6360 31.6351 31.7410 
70 _. }1.884

ii
8

1

:-31.9059 31.8032 3T8422 I 31.8551 31.9249 31.9640 31.9648 31.8589 
71 __ 3?Q.863 32.1090 32.0680 32.1150 32.1136 32.1927 32.1808 32.0607 32.0444 
72}2}136 32.2907 32.3321 32.2849 32.2862 32.2070 32.2193'~2.3391· 32.3554 
73 32.5465 32.4752 32.4721 32.4158 32.4154 32.4446, 32.5427 32.5445 32.5647 
74 32.653!5t 32.7245 32.7280 32.7840 32.7844 32.7550 32.6574 32.6554 32.6352 
75 32.8325 j 32.8292 32.9947 32.8825 32.87~31 -32.9590~-- 32-:-8561- 32.8988 32.8995 
76 3_~1.674 33.17Q41:3.~3.00.§.il 3~.117~1 33.1275 33.0406 33.1440 33.1011 33.1004 
77 33.2119 33.3464, 33.2598: 33.3120 - 33~252~33.3425~33.35571 33.3567 33.2460 
78 }3.5880 33.4532 33.540}L 33.4878 33.5477 33.4571 33.4444 33.4431 33.5538 
79 33.6486 33.64391 33.65271 33.7220 33.7486 33.7992 33.6251 33.6082: - 33.6412 

----- ---- --- ----1-

80 33.9513 33.9557 33.9474 33.8778' 33.8512 33.8003 33.9750 33.9917 33.9586 
81 _ 34.151i'~~4.0418134.Q~69i_-34.0342i 31-.0885 34.0448 34.0497 34.0151' 34.0884 

~~ ~~~~; j ~!~~ ~~;~~~ ~~~~~t ~:;~~~; ~~~,-;:!~~ ;:~}~~ ~~~~: 
84 - 34.6097[--34.7351 i 34.6668t 34.6409T 34.6315 34.6511 34.7346 34~601-6- --34.7640 
85 34~8690 i -34.8845 i 34:-9646 . 3-4.9386 34.8676! 34~8537---34~9865 '34.97 46 ~-34.9637 
86 35.13C)gl 35.1150i 35-:-0955,-35.0611 35~322r 35.1457 35.0136 35.0253 35.0361 

~~ ~~~~fl-~~~~~ 1= ~;!~~~I ~~'~~U;;~~o~;~~~~-1H~~t ;;~~; ;;!~~~ 
89 35.7582 I 35.6234 35.6905, 35.6228: 35.6417 35.6317 35. 7389 35~218T"- 35.7842 

~~ ;~:~~;~r~{~~8~~~r- ;~:~~:~-=~~:~;~~---;~:~!~~ ;~:~~;~ ;~:~~~n~~~~~ - ;~:~~~~ 
92 36.3928J 36"--312s.i_}6.2~~~·_~36.3559- 36.3373 36.2148 36.2460 36.2163 36.3303 
93 36.558836.5646 r 36.4633 r 36.5804, 36.5738 36.4037 36.5023 36.4516 36.5500 
94 36.64111 36.6348 ~-. _ 3§ .. 7368'-- __ 3(3.65~~~ _~(3 .. 6259T ~~J9_~7 ~(3.(3979 36.7482 36.6498 
95 36.8966 36.9143 36.8358! 36.9593 36.8066 36.9001 36.9635 36.9756 36.9867 
96 37.1032 37.0850 37.1644 37.0404 37."1931- 37.0~92 37.Q367 37.0242 37.0131 
97 37.2412 37.3534 37.2175 37.2940 37.3449 37}~69_3Z.2011 37.2565 37.3793 
98 37.5586 37.4459 37.5826 37.5057 37.4547 37.4123 37.5~~1_ 37.5433 37.4204 
99 37.7203 37.6584 37.7627 37.7632 37.6072 37.6852 37.6J)_9 37.7423 37.6806 
100 37.8795 37.9408 37.8375 ' 37.8364 37.9_9241~Z.~141_. __ ~7.9~?3 37.85~74 37.9192 

101 ----t-
102 
103 mean 
104 28.0000 
105 std.dev 
106 5.7735 
107 

28.0000 

5.7735 

28.0000, 28.0000 , 

5.7735 5.7735 
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Appendix I: U[18, 38) 
100 generated values as per 25 runs in column A to Y 

J R 
18.0066 18.1320~_~8.7894 18.0012 18.0204 18.1022 
18.3936 __ 18.2676, ,~3.6488~~~94 ~8.3790-- 18.2974 
18.~413! 18.5546 18.4398 34.7925 18.5281 18.5465 18.5610 
18.6588 18.6456 f8.7599 32.85-47 18.7618- 18.6724 18.6589 18.602~8.6386 
~8·~i~0 18.8709: 18.8-714 2f1238~18.9722-18~95~-1-8~96-98-18.8293- 18.8621 
19.1552 19: 1293i--19~ 1283 24.~1()? 1- 19.62~~_ 19 __ 0493 -19.0296-19.1705 19.1376 

7 19.3981 19.2987 19.2994 ~4~~532:_192613_1g.3574 -.19.3005~ 19.2fo-0--19~143 
8 19.4020 19·~015 1~.5003 18.9187 19.5387 19.4431 19.4990 -f9.5898 19.4853 
9 19.7838 19.6226 19.6842 36:1905 19.7584~19.6498 19.6903 19.7759 --19:7285 
10-19.8163(_19.9775 19.9155 30.848419.8417 f9.9506 ---19.9092- 19~82401 19.8711 
11 20.1X~6_~ 2().0160 20.01-.9.8, 31.-5727 20.061Y-20.027i20.0631 20~14171 20.0605 
12 20.2215 20.3842 20.3889 19.6054j-" 20.3383- icf3733 20j364 20.2581 20.3392 
13 '2().4!1fOr.:JQ·5776r.:J0.5256~ .3:l1!48r-- 20.5658 26.5684, 20.4553 -26.-4912 20.4786 

20.72421 20.(3_226' _ 20.6741, 25.3755 20.6942·---io.6320-20.74-42 --20~7087 20.7211 
20.9260 20.9554 20.8851: 37.5505 i6.8986 20.8122---io.9347 20.9894 20.9702 
21.0741 21.04481 21. f146i 27.8711: 21.101421.188i-21.0649 t-- 21'-0105' 21.0295 

17 21.3873 21.3721 21.3324 :--31.8235 21.3820 if2156 --21.3664 --2f.3925 21.2952 

14 
15 
16 

18 21.4128 21.4281 21.4673 29.1703 21.4 fa() 21.5848 21.4332---21-.--4074 21.5045 
19 21.6565 21.6590 21.7010 19.2556 21.6340 21.7881 21.7496~'-i1.6779;- 21.6085 
20 219436 219412 21898i 280652 21.96611--21.-8123' 21.8500' '21.9220 21.9913 
2122:0267122:0248 22:0012" 37:7262 22.1093~- ~~.16~?~.1033 __ 22.1754 _~2.1410 
22?2.3734 r- 22:3753~ 22.3~8(31 __ 22.9149 22.2907 22.2402 22.2964 22.2245 22.2588 
2322:570iJ_22.5~48:_ 22.47021 __ 32.1609 22.5-770--22.4629'-' 22.5198 22.5089 22.5142 
24_ 22.62971 22.6~53J _2~.72~_6--L33.7945 22.6230'-22.7374 -22:6799-i2:69f6---22.6856 
25 22.8138 22.9197: 22.9925. 23.0855 "-22.-93012Y83~-22.8i5-6c- 22.9676; 22.9200 

----1---- _________ l- --.-

26 23.1862 23.0~()<4J 23.00731 ,30.0839 23j5699' 23.1650 23.1247: 23.03231 23.0798 
27 23.3475 23.207.Qj 23.3251! 26.3838 23.2897, 23.26-3-61 23.2827- 23.2016 23.2143 
28-23.4526 23.5922 -. 23.4748~ 22.2012 23.5103T23:5372! 23.5170' -i3.5984-+- 23.5855 

~~ ~~:~8~~~ ~~:~~~~-i-~}~~~~ I ;~:b~:~-n-~~:~~~~ ~~:~~~~- ~~:~~~~--~§~:~~~~ ~~:~~;~ 
--j-------- --------! ----- - ---- - ---- ~---- --- • - --- -+--

31 24.0095 24.0817 24.1108 36.4985 24.0335 24.1039 24.1271 24.0550 24.1550 
24.2448 
24.5895 
24.6104 
24.8804 

32 24.-3905] 24.31~~124~289f- 29.2032-24~3665 24.296~ 24.2727 24.3449 
33 24.4414 24.4437 24.5088 29.5966 i 24.4039 24.4381 24.4148 24.5546 

-- + ---+----- - -_. 

34 24.7587 24.7564 24.6911 19.5451 24.7961 24.7621 24.7850 24.6454 
------- -. --

35 24.8799 24.9912 24.9124 i 18.4114 24.9881 24.9270 24.8294 24.8156 
----- ----------------~----------- - -------

3625.120225.008825.087429.602025.011925.0732 25.1705 25.1843 25.1195 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 

25.2996 25.2858 25.2462 32.2387 _25.2867 __ 2_5.2228 ?§.2902 ?.?-"3~05+--~5.3624 
25.5004 25.5142 25.5537 21.5401 25.5133 25.§ZZ.'L25.?0~X __ 25.4094 25.4375 
25.6225 25.6780 25.7983 2E'-'-5814~i -25.-6251 25.7352 25.7819 25.6791 25.6397 
25.9776 25.9221 25.8016 -23.9516l--2S]749i 25.8649 - 25.sfao·' 25.9209 25.9602 
26.1452 26.0112 26.1196 -37.2486 26~1453 26.13€f1 -_?~. f22~ 26.11"14 26.0750 
26.2549 26.3889 26.280431 ~1513 26.2547 26.2640 26.2778 26.2886 26.3249 
26.5906 26.4698 26.5110 35.2119 26.4658 26.-5060 26.5430 26.5085 26.4554 
26.6094 26.7302 26.6890 25.7678 26.7342 26.6941 26.6569 26.6915 26.7445 
26.9510 26.9567 26.8086 37.0976 26.9983 26.915726.8931 26.8727 26.9929 
27.04911 27.0434 27.1913 28.3347+ 27.0_0-.1.1+-27-'--0844 27. f068 " 27.1273 27.0071 
27.3674 27.3953 27.2876 28.8296 27.3064 27.2158 27.3919 27.2008 27.3320 
27.4326 27.4047 27.5124 33.8050 27.4936 -27.5842~7.4081 ~ 27.5992 27.4680 
27.6630 27.7193 27.7726 23.2077 27.7027 27.6652 27.6865 27.6916 27.6980 
27.9370 27.8807 +- 27.8274 22.4661 27.8973 27.9348 27.9135 27.9084 27.9020 
28.0287 28.0148 1 28.0397 24.5896 28.0400 28.0551 28.1175 28.1818 28.1377 
28.3713 28.3852 28.3603 25.4247 28.3600 28.3449 28.2825 28.2182 28.2624 
28.5117 28.5637 28.4094 24.3462 28.5868 28.5084 28.4177 28.4610 28.5432 
28.6882 28.6363 28.7906 30.4910 28.6132 28.6915 28.7823 28.7390 28.6568 
28.9099 28.8987 28.9751 22.7344 28.8580 28.9665 28.9250 28.8611 28.9402 
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Appendix I: U[18, 38) 
100 generated values as per 25 runs in column A to Y 

J R 
29.0901 29.1 Q13~_______ 29.1420 29.0334 29.0750 29.1389 29.0598 
29.2111 29.2857: 29.2910: 26.9914 29.3466 29.2754-29.ii65-29.2849 29.3457 

~~~~~~~J}~~~~:~_ -_~~:~~~_~ 1~:~~~~ ~~:~~~: ~~:~~~~ ~~~~~~; ~~:~~~~ ~~:~;~ 
29.8919 29.8644 29.808cIT 24.0542 --~ ._-

__ . _____ I __ 29.9382 29.9132 29.8107 29.8710 29.9723 
30.1525 30.1906 30.0806' 22.1993 30.1113 30.0766 30.0661-30.-0879 30.0240 
30.2474 -3b~2094130.3195 34.4069 30.2887-- 30.3233 30.3340-30.3121 30.3761 
3Q __ 40_0§.L 36.4994r 30.4272 35.1853 30.5649 i 30.5232-30.4378-30.4254 30.4957 
30.79941 30.7006 3cfi719 3~.8141l 30.6351~-36J§766 -30.76~30.i747 30.7044 
}Q.9496 , ~Q.88§2~ 30.9~84, 2~ .. 5£4~_ ~0.8351_ -30.87fZI _ 30.9554. _ 30.9Q79 30~9368 
31.Q5041 31.1_107 ~01.1Ji _35 .. E397? 3J.1~49_31.J_282 31.0-¥a..._~.0922 -3f0633 
31.31091 31.3585 31.3891 21.2604 31.2192 31.3483 31.3921 i 31.3632 -3f3320 
31.4891/ 31.4414 31.411020.8-768 31.5808--- 31.4515- -31.408-1~31.436931.4681 
31.7394 31.6714 31.6716 36.9016 31.6i()~~.. 31}§~5 ~1.651~ __ ~1.7265 31.7284 
31.8605: 31.9285 31.9285 36.7007 31.9797' 31.8103 31.9489 31.8736 31.8717 
32.1038 32.0579 32.1579 20.4150 32.1439 32.139St 32.1533--32.1365, 32.1807 
32.2961' 32.3420 32.2423 33.2705 32.2561- 32.2599--32.2470+ 32.2636 1 32~2195 
32.4981 32.4603, 32.5353 21.7896 32.4297 32.4045 32.4463 32.5443 32.5372 

;~:~~~~--;~:~;!~l--~~~~~~~· -;~:~~:~ I ;~:~~~r }~:~~~T -;~:~~~~.. ;~:~~;~ ~~:-~~;~ 
;;~;:I~};I~¥ai .~~~~~ .. ;~,~H: ~H~~~i- ;}}~!L;f~:~~lI~~:L ~f~~~~ 
~~c~~~! 35~~~;E~;~~; }H~~f ~l~~~~I-i}~~f~ 1 - ~~;~~~ :~i5;~~:~a~:; 
}3.924~ __ :3.~.8622j 3,'3.91.'31, __ ~?.~333 j ~,'3 __ 8775~§579 ___ .33.8111 33.8822 33.9938 
34.J_Q.1_5~4_ .. 0219L_34 ... 0739j 20 }}9~J_34. 1§08 . 34...1_103 34.1485 34.1360 34. 1253 
34.2984 34.37801 34.3264 27.0087, 34.2392 34.2893 34.2518 34.2641 34.2750 
34~4i49-34.5172 34.5-077 37.8730; 34.5462 -3-4.5481' 34.5721 34.4622, 34.5058 
34.77~~ __ 34~68271_ 34.6926 - 34.04.621 34.653~ )4.6?1_5 --34.6283L_3~.7~~+- 34.6~45 
34.987_01. ~_4...a..2511 _ .. 34.892.1 ~5J3.~~. 4 .. _.. 34.8260 '. 34.9j.!.5~, 34.9_~~4_34.97.96. 34.8912 

;;~~~~ ~;;~~~~;J~~~, -1~~~~f~~~~~:~, ;;~~:~ ;;~~~ -~}~?~ ;;~~~ 
35.5088 f 35.5924 1 35.5310 1 28.6755; 35.53361 35.4710... 35.46~~. 3~~?7~ 1_ 35.4587 
35.6456 35.6799 35.78431 19.9953' 35.7436 35.6027 35.7026 35.6235 35.6078 

;~~b~:~ I ;~:~~~~-- -;~:~~~61- --g~~6~~~=-~ ;~:~~!:- ;~:~~~~ ;~:~;:;~-;~:~~~~ . ;!:~~~~ 
36.3304:36.2084 --36.21331 --33.5291! 36.3955 ~36j38~ 36.2252-36.3951 36.3560 
36.4730: 36~5074 36.4729: 27.7i~9j 36~~~161 __ }~.4798i -36-:5798~~_36-.5?52_ 36.5670 
36.7268 36.6924 36.7275120:7856 36.7184 36.7197 36.6207:,'36.6149 36.6334 
36.8242 36.8948 36.92051 36~20If7~- 36.8581 36.9278' 36~88-60~ 36.9581.. __ 36.8901 
37.1757 37.1050 37.0798 i -18~2013'- 37~1419·37.-6ifi ---37J_!~5_37.0420 ~7.1103 
37.3225 37.2638 37.299819.0821 3i343f--37-.212f- 37.2461 37.2366 37.2856 
37.4774 37.5359 37.5006 35.5875- 37.4569 37.5873 37.5545 37.563~_ 37.5148 
37.6601 37.7510 37.6830 32.7525 37.7321 37.6616 37.6170 37.7970 37.6918 
37.9398 37.8488 37.9174 29.9978 37.8679 37.9379 37.9836,- 37.8032 37.9086 

mean 
28 .000h8 .0000 28.0000 

28.0000: 28.0000 28.0000 28.0000 28.0000 28.0000 

std.dev 
i 

5.7735 5.7735 5.7735 5.7735 5.7735 5.7735 5.7735 5.7735 5.7735 
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Appendix I: U[18, 38) 
100 generated values as per 25 runs in column A to Y 

s y 
18.0044 18.1804 1~01Z~_ 18.0744 
18.3950 18.2196 18.3525 1 18.3899 18.2660 -fB.3259 
18.5441 18.4310 ~.559§" -18.585~8~4429 18.5495 
18.6554 18.7690: 18.7408 18.6404 -18.6141-----r8.7569 18.6507 
18.9171 18.891 r- 18.87951 18.8665 18.9251---18-:9375---18:9118 
19.0824 19.1089"-19 ___ 1?1.4[ 191335 1~f0742--19~0624- ---19.0885 
19.30981 19.2627 19.2529 19.2033 19.39fo- -19.3763' -19~2 
19.4897' -19~37319:5480i 19.5967 19.408319.4235- 19.4510 
19.7337 19.7300--19.T754r19.-65-80'i 19.673~ 19.7298-19.6019 

1 0-19.86~~_ 19.?JOO __ 19~8255 ---'f9~420~! f9--:-925i-19.8701~19~9983 
20.04381 20.0693 20.0671: 20.-1859---20.1719 20:1469--20.1362 
20.3558]20.3307 .-- ~(f3~~7 r~_2Q.2141 • _ -- 20.2276 --20.2529-- 20.2641 
20.4061 -20.56541 20.4516 1 20.4634 --20~4766 20.4005 --20.4937 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 

---~- ------j-

20.79.?.?_:_ ?Q.6346! 20.7492 20.7366 - 20.7229 -20.799420.7065 
20.9294 20.9224, 20.8061 20.8350-20.852Y 20.9120 20.8279 

-_22- 11 .. 206760261_ -2211--.03--57_27_68-_-~- 21.1947 21.1650 2~1468~K0878! 21.1723 
21.3563 21.3452 21.3915~-.39811-21.3425 

21.5330 21.4472. 21.4444 21.454T 21.4080 21.4018-- 21.4577 
21.7209 21.6449+ 21.6521 21.6268 ·-i1.76-162(765Y- 2-1.6346 
21.878i--2T9551 21.9485 21.97322-1:8379'- 21~342---21.9656 
22.198} __ 22.15671 _?}1624J_?.2.0?.~9~= 22.1292-- i2.1233_~=_ 22.9_877 
22.2016 22.2433 22.23821 22.3171 22.2704 22.2766 22.3125 --- --------_. --------- +-- -.-- -- --- ---- ---
22.5343 22.4446 22.~?~~ 22.59981 22 ___ 4.806; 22.4570. 22.4272 
22.6653- --22.7554i 22.6754

1
22.6002 22.7190L22.7429 i 22.7729 

22.9599[ --22.9484J_~2.8932 -- -22.8311 '--22.801-8 22.8740 __ -=22.8497 

~;:~_ ~~: l ~~:~;~ ~ ~;:~-~~;~-r--·--~_;_ :~~:_ t_~%:~~~:" _ ~;:2_1 ~_~;_ - _ -~;_:~~~ __ ~ 
23.4320: 23.5784 23.5932 23.5213 23.5002 23.5436 23.5540 
23.72841 23.786cf-2~.~1J8_23.6i83 23.6599 __ 23.7468- f?.70~7 
23.8713 23.8140 23.9527 23.9517 23.9398 23.8531 23.8974 
24.1812 1 24.12831-24.0650 i- 24.~_9..Q.11 24.1059" 24.1504 24.0830 
24.2186 .24.27~ ZL24}~541 24.2099f __ 2~~29~~ ___ £~L~1_9..6~24.3171 
24.55631 24.4322 I 24.5342 24.4505: 24.5237' 24.5521 24.4293 

________ ----~ _____ ----------t--- - -----------.------- ----.-- ------

24.6435, 24.7678 24.6661.: 24}4~5 __ 24.6761 ~_?1§479 _..1~.770? 
24.8184! 24.815724.950_81 __ 2!8999 24.9910 ___ ~4.9972 24.~!.66 
25.1815 25.1843_J'? __ Q49~1 25.1001 25.00882_~0()_~Z._?_5.Q?}5 
25.3077 25.3170 25.2657 25.3972 25.2650 25.2483 25.3136 

~~:j~~~ I-~;~:~~~r -~~:;~:-~~-1~:j~~: i-1-H~-f -~~:~;; ~. -~-~~~~~; 
I ~ ---------- - ------ -- -

25.8990 25.9547 25.8860 25.8442: 25.8968 25.8769. 25.9667 
26.0755 --26.00f1~ 26:1262"-2Ef.-1662 26.1466~9523_ ~6.(rt:~1 
26.3244 26.3989 26.2740: 26.2338 26.2533-- 26.3476 26.3210 
26.4765 26.5992 26.4050 26.5638 26.5301_2i3.-491L_26.5147 
26.7235 26.6008 26.7951 26.6362 26.6698 26.70~6 __ ?_6.6853 
26.9371 26.9462 26.8619 26.8220 26.8748 26.8318 26.9265 
27.0628 27.0538 27.1382 27.1780 27.1251 27.1682 .27.0735 
27.2520 27.2686 27.2983 27.2821 27.2426 27.225~ 27.2221 
27.5479 27.5314 27.5018 27.5179 27.5574 27.5742 27.5779 
27.7544 27.6489 27.70~ 27.635~7.6712 27.6354 27.6799 
27.8456 27.9511 27.8950 27.9646 27.9287 27.9646 27.9201 
28.0936 28.1529 28.1243 28.0619 28.1774 28.1190 28.0603 
28.3064 28.2471 28.27~ 28.3381. 28.2226 28.2810 28.3397 
28.5746 28.4437 28.5853 28.4606 28.5204 28.4685 28.4948 
28.6255 28.7563 28.6147 28.7394 28.6796 28.7315 28.7052 
28.9237 28.9501 28.9327 28.8176 28.9946 28.8068 28.9519 
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Appendix I: U[18, 38) 
100 generated values as per 25 runs in column A to Y 

s y 
29.0764 29.0499 29 .. 0672 29.1824: 29.0055 29.1932 29.0480 
29.2~~11 29.3322 2~.2366 :29--:-32471- 29.4000--29~268!f ·--29.2365 
29.~6_20.1. ~9.4678: 29.56331- 29._~7~31-·29.40OT·- 29.5316-29~5635 
29.7974 29.7695. 29.6736 29.7570· 29.6881 29.74~ 29.6022 
29.8Q2Il 29.830-5: 29.9262 29~8430·- 29.9120-29.8589 .. 29.9977 
30.0499 30.0440 30.1538 36-.1372-30:1484--30.0879-30~0843 
30.3503---30.3560 -30.2460 30.2628-' 30.2518 30.3121' 30.3157 
30.5889 30~4489; 30.4262 30.5526 30.481530:5407-3-0.5874 
30.6113:}0.751~ _30.7735 30.6474 3QJ187. 1_3_0.65~ 30.6125 
30.8201! 30.9861 30.8073 30.8757 30.87771 30.9407 30.9675 
31·1_~Q1 ~._3f01~~I ___ ~1.1924 31.1243 31.1226~31.0§93~ .. ~ 3!-.9325 
31.3694 31.2067 31.2563 31.2862 31.2904 31.3528 31.3465 
31 .4308i -jf:5933 I 31 .5433 31.5138 31 .5099 - 31~44ii- -31.4534 
31.6305 1 . 31.i~()51~1.7700 31.65~61 31.-6868-_·3-1.6180_31:6894 

31.9.6. 9. ?'I_ .. 3! .. 813~1· 31.~.2961.·' _~.h9~.711 .. .3.1 .. 9. 13!5_ .. 3.1 ... ~821. __ .. ~.1.9105 32.007!5~2 __ 109.~~ 32 .. 1338 32.1470[ 32.0817 32.1060 32.1081 
32.3~2~ __ ~2.2903 L _. j2.~~57_ 32.253() 3~~31 ~6-- -3?29~1- _ 3~.2917 
32.5333 32.5893: 32.46471 32.5210i 32.4820 32.4291 32.4466 

33.0267 ,_33.1 ()97. __ 33·()9Z~ .33 __ 0855 _~:3.0~?cfl_~3..Q1~§~ __ 3:3 __ 1.6_54 
33.2374. 33.3059 33.2865 33.3249. 33.3607 33.2759 33.2984 

" .--'. . ._.- _ .... -. _. _._. . 

_ 33.562911_~3.494_1 _...?3.5129t ...l.~ .. ~7!5.1 __ :3~.4397 . ...l?!524_2_~5015 

-ingj:~j!t![1. ~~;!rt~mi(~!~-E]~ iU~i~ 
34.5341, 34.5676 34.4461 ' 34.5371' 34.4652 34.4614 34.5712 
34.66631 34.6324'1 ___ 34.7532:-34.6629 .. 34. 735i-34~ 7387 34.6287 

~:~~~ i J:;~;!~l~:~~~~t-~~~~~In-~H~l~~@~~~ :-~f~~~~ 
35.3477 35.2408i 35.2114: 35.22141 35.3819 __ 35 .. ?8~_:3J5 ___ 2_677 
35.4527 35.5592 35.5878 35.5786

t 
35.4187' 35.5163 35.5321 

35.6749, - -35. 7:22$r~35~6290~-35._()~~Ql_35-.64_08 "-35.644 f' .352124 
35.9256 35.8774.}5.97021 3!5.97~_}5.959_8_ 35.9.560 35.8873 
36.1637 36.0102 36.00541 36.1333 36.1614 36.1951 36.1030 
36.23-68 36.3898:·36.39371 36.2667 36.2392 - 36.2051 36.2968 

~~~~~; ~;~~611~;~~~ 1=i:J~~~! _ ~~.~.~~ ~~~~t---::~_~~~ 
36.8517 36'~:3011 _3().801 Q. 36 ____ a.~~1 3_~844 7. 36.87Z.~__ 36~~0 
37.148837.1699 37.1981 37.1770 37.1560 37.1230. 37.18Q! 
37.3809 37.3269~·· 37.302i- 37.3395 37.3314 ·--37.i537- -37.3865 
37.4196: 37.4791 37.4968 3i46()6 -37.4692 37.5464'37.4132 
37.6417, 37.7672 37.7086: 37.6693 37.7028· 3T6479 37.7462 

1 

37.9589 i 37.8328 37.8904 37.9307 37.8979 37.9523 37.8535 

I 

103 mean r= 
104 28.0000 
105 std.dev 
106 5.7735 
107 

28.0000 28.0000 

5.7735 5.7735 

28.0000 28.0000 28.0000 28.0000 

5.7735 5.7735 5.7735 5.7735 
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Appendix II: Triangular (10, 30, 40) 
100 generated values as per 25 runs in column A to Y 

A 

12.1841 11~~ ~2.1535 __ 12.153~_ 11.5717 11.3582 11.9161 
12.7143 12·8Q?0_12.6754_1~.6754 _- 13.064i-13.1936 -12.8486 
1~~~L____ 14.2066 .1_~.8~2~. 13.832~_13.8453 13.7587 13.4976 14.2166 
14.8782 14.6449 14.2291 14.5827 14.5827 14.S-84f14.-6847 -14900 
1521Eff- 15.0505 i 15.3294' -14.9279-14~9279 -- 14.9392 15:6778--' 7 __ J4.2~93 ___ ____ ____ _ _ ___ __ _ 15.3076 15.0565 
15.71~~~_J..§..864~ 15.5Z.~~ J_5.:9456 15.945.~_.....l5.948~_J 5.8571 __ -15.6689 15.8348 
16.3749 1 ~.029~_16·?§X_~ 1.§...1 008_~.1 008 16.4099 16.3375 16.12~f8 --16.2973 
16.5995 :J6.§91§"~ _16.6_58Q...;. ~81 06 _ 16.8-"06- 16.5331 -- 16.6284---16.838616.6275 
17.27281 171962.!.7 .0 736," 16 9264 16.926417.3090"17.1570 17. 0225 171304 

i!ijiltJ~l!~ ~lH~!iriHmfj~-i~~ "];m~_ii~m-iH~i~ i~mi 
13 1B-"~~~.Q_n)8.6?~~1_813?a 18.6038. _18.6038 .18-"!7~ 1~ __ E>~14 18.5496- 18.4784 
14 n~445t _18.98Q~...J8.8963J_ 19.030~ __ 19.0}Q.8 __ .18.8782 m 1~·9957 19.1272! 19.1473 
15 19.4273. _.19.4~57. _ 19.2282[ 1.Q...327Ql 19.3270 19.1908 19.1778 19.3204 19.3723 
16!~.55.2~_: _19.5206""---.l.9:Z.!!~_19.6i25J- 19.6~25---19.Z.E)~1_ 19.7921 19.6716 19.5772 
17 20.00401 19.9232, 19.9964, 20.0374! 20.0374 20.0802 19.9913 20.0707 19.7985 
18 20.1~f6~~ 20.2661-- 26~1i66i20.1413; -20.1413 20~1-08-9- 26~21231 - 20.1489 20.3713 

~~ ·!~f~!f ~~!!f1g~fi!]1~-~~~:-%~iii:1~i~i~ -~H~{i" ~HE! ~Hm 
22 21.2?.Z?J_21:~af33 [_?j.i2~9~_ i(2969: 21.2969 )"1.2856'-21.3621 ~ 21.358~ _ 21.2767 
23 21.5963 21.5011. 21.7272! 21.6584 21.6584 21.6783 21.5901. 21.6946 21.5534 
24 21.8938 -21.98291-21)481 j 21.8204- 21.8204 --iTao96-2-1:-90i4 121".-8178 21.9224 
25 22.0289 22.0246 ·-22~19361- 22.05-31-22.0531' -2-io200- 22.0124+22.2029- 22.2097 
26--2i.457822.4611· 2-2~28~-2i~4251--i2.425122~4655 22.4828-·---2-i3091- 22.2706 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

____ _ __ - --I ----------- ---------

22.7141 22.5224 22.6396 1 22.5953: 22.5953 22.6256 22.5032 22.5087 22.6455 
-.- 1 - ------ - __ n --------- --- -- - -

22.7357: 22.9252: 22.8000: 22.8469 22.8469 22.8250 22.9532 22.9597 22.7969 
23.1119_L)2.9926: 22.9699, 23:1342\---23:1342 23.Q692I -23])2-16- -23~1881 23.1101 
23.2330! 23.3817 23.3946: 23.23§:3_23.2363 23}E)E)7_?3.3623 ~3.2095 23.2597 
23.5668 23.5831. 23.5137 23.59671 23.5967. 23.6272 23.5087 23.4445 23.6163 
23.7002 23.6887] 23. 7 4-9_~_ J_3'E>~~?: 23.6698 23.~_4§6 23.7705 23.8441 23.6499 
23.9380 23.9115 j _ 23.8722 24.0442 I 24.Q~42..'- 24.0619 23.92!~_?}.919~ 23.8878 
24.1927 24.22521 24.2571· 24.0898: 24.0898 24.0789 24 __ 2178 21.236Q. ____ 24.2436 
24.2806 24.3100: - 24:4f62 _}_~_.37361 __ ?1}736-----Z4.42j}4 n __ 24.3672 __ 2~ ... ~859_?4:3576 
24.6873.24~6668 24.5573 24.6010 24.6010 24.5523 24.6181 24.6098 24.6165 
24.7247; 24.i637~-24.8512 24.745724.7457 24.8777 24~24-24.7937 24.7189 
25.0593' 25.0896 1 24~j06[ _ 25.046<L....25.()~§9 -- 24.9216 ?4.92031 25~6180 __ 25.0721 
25.1252 25.2350 25.1869! 25.1651 25.1651 25.1024 25.21721 25.2359 25.1350 
25.4525 25.3557 25.4066i25~4230~- 25.423025".4901 - 2!5.3797---25:3705 25.4525 
25.5825 25.6531 25.4911-+-25.63~25.6383-- 25.6439-25.6068- 2-5.6342 25.6316 
25.7697 25.7127 25.8710 -25.7i66--2~72§§--25~Z264_-25.7646 25.7463 25.7332 
25.9426 25.97061' 25.9729 26.0347 26.0347 25.9694 25.9509 26.0527 26.0252 
26.1641 26.1510 26.1484 26.0873-26.0873--- 26-.1572 26.1760 26.0834 260969 
26.2587 26.3940 26.3598 26.2790 26.2790 2E5:4256-- 26.3802 26.4164 26.3702 
26.5845 26.4669-26.5017 26.5813 2Ef5813 26~4408 26.4857 26.4577 26.4915 
26.6534 26.7889 26.7683 26.6881 26.6881 26.7433 26.7899 26.6387 26.6641 
26.9116 26.7947 26.8172 26.8964 26.8964 26.8462 26.7983 26.9557 26.9203 
27.0735 27.0621 27.0265 27.0262 27.0262 _27.0134 27.0155 27.0152 27.0654 
27.1982 27.2285 27.2667 27.2663 27.2663 27.2830 27.2786 27.2863 27.2279 
27.4559 27.3314 27.3700 27.3505 27.3505 27.4568 27.3507 27.4905 27.3935 
27.5076 27.6512 27.6173 27.6355 27.6355 27.5342 27.6360 27.5044 27.5935 
27.7364 27.7687 27.7691 27.7750 27.7750 27.7569 27.7305 27.7063 27.6722 
27.9050 27.8949 27.8995 27.8924 27.8924 , 27.9138 27.9360 27.9664 27.9943 
28.0193 28.0542 28.0631 28.0018 28.0018 28.0057 28.0378 28.1615 28.1331 
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Appendix II: Triangular (10,30,40) 
100 generated values as per 25 runs in column A to Y 

A B F 
56 28.2871 28.2758 28.3313 28.2949 28.2026 
57 28.4637 28.3753 28.4557 28.4557 28.41 i3~ 28.4823~ 28-.3997 28.3925 
58 28.4972 28.6095 28.5702 ~8·_~I52. ~~8:S35iu?8.58111 28.5058 28.5938 28.5984 
59 28.~yo1_5I--28.76:39, ~2§~7605. 28.7403 28. 74ro+-28. 7868 28.67i(f~28~7581~28.6792 
60 28.9012 i 28.8651J_28.~7?~ 28.8945~ 28~945 28.8508- 28.9526 -2~.?785 28.9556 
61 29.0111! 29.03691 29.0813 ~9·f=U1~- 29-~-;f1-11 29.o387 _____ ?_~,.p_86L~J~0~_ 29.0600 
62 29~2229: 29.224529.1894 29.1574 29.1574 29.2316 29.1?72 ---.?9.1484 29.2090 
63 29.39~5_~ 29.3469 29.3156 29.4337-29.4337-- 29.4364~29.4154 29.3106- 29A002 
6429:5()~1_ 29.5369 29.5778 29.4579' -- 29.4579 29A572 - 29.4702- 29:5790- 29.4921 
65 29.6146, 29.6273 29.7064 29.7034-- 29-:-7034 29.686529.'7007 29.6611- 29.7237 
66 29.8518_ 29.8688 29.8013 29.8014- 29.8014-----29.8199'" 29.7970 29.8410 29.7819 
67 29.9518 1 30.0316 30.0477 30.0~76-- 30.0~?~._~-29.9~0§ __ 29.9670, -_29.9334 29.-9824 

~~ ~~:11~~i- ;~:~~~~ ;~:~~~~ ;~:~~1~ ;~:~~~;'~b:~~~' ;~:~~~~ -i~.~~~~I;~:~~~~ 
70 304598j 30.4896 30.3987 30.4896. -~30.4896 -30.3802 30.4630-~.4209- 30.4406 
71 30'6367" 30.5772 30.6708 30.5616~- 3()~561630.6254-30.6f73~30.6720·- 30.6276 
72_30:~7~8 - 30.7697 30.689~+ 30.7959 30.7959" 30.7318-- ~30.7289 3().6774 --30.7297 
73 30.9184

1 
30.9355 30.8670 I 30.9823 30.9823 30.9935 30.9101 30.8896 30.9136 

74 31.0481 31.0659 31.1510 31.()2951~L0295 31.0!8~_ 31:'"0912 ~}1.1155 31.1002 
75 
76 

31.21471 31.2626! 31.2278 31.3400 31.3400 31.3028 31.2665 31.2192 31.1999 
31.4311 1-31.4188' 31.4 705: 31.3523:--31.3523 31 .3900 ,- 31.4138 - --:31 .4652 31 .4959 
31.5659r-31.()_'!~il_ 31.6532--~31.65371- 31.6537 31.5566 31'.661-0 ~--31.5381 31.5712 

78 31.7860 31.7431 j 31.7523'- 31.7471-'--31.7471 31.8464 31.7260 31.8542 31.8326 
79 32.0177 31~89g51 31~9325T-31 .. f!94r_.31.8945 31.8854 -~?0!08 -3-f940L 31.9914 
80 32.0703j __ 32.2311. _~?.21_t5-4J __ 32.2499 j _}2.2~99 32-"?~~1.:. __ 3.?.1149 32.188~ 32.1510 
81 32.3491 32.3181 32.<4..5131 32.3275: :3?}_2!_~3_2"-3_13.7_ 32.4059 32.3928 32.3183 
82 -32.513f~_jj.~8_65, 32.47041 32.591_1'_:g.5911J~:3?6048_}~.494~_~?5094 ~3.?6020 
83 32.8241' 32.6542: 32.8599! 32.7088 32.7088 32.8342 32.7039 32.8580 32.7148 
84 32.8528' 33.0713-:--32~88021 33.029133.0291:~8-99-3~~33.-0161-32-.86()O- --33.0243 

77 

85 33.1640 33.2448 33.2705 33.0878 33:0878 33.2489 33.0915 33.2196 33.1268 
86}3.3796 33.3417l33~33791 33.5212133~5212 33.3523 33.4975 33.3649 33.4814 

33.5748_,33.7"3,,,7...,6

J
, 33,.7,450

1 
33,_ .551:3Lu3_,3, .. 5513~3j.7575 33.5657 33.7394- 33.5725 

33.8961 33.7753 33.7915i 33.98601 33.9860 --33.7707-----33.9492 33.7700 33.9651 
3~f-1988j4.()7681-34.0613---34.2018- --34.2018 34.-1679-34~1805 34.1102 34.1427 
34.26-74 -----34~443()T--34.4858· 3-4:3311 34~3311 34-.3639- 34.33~ 34.4030 34.3938 
34.5712 --34.5867' 34.7981 34.-723f 34.7:23-1--:34.6197--34.6879- 34~6§21_ 34.71_96 
34.9986

1 

35.0341 34.84031 34.9091 34.9091 35-:-0160- 34.9208 34.947:3_ 34.9146 
35.1572; 35.404035~1519i 35.4002-35.4002 35~4248 35.3774 35.1825 35.4219 
35.6418 I 35.434 i 35.7345: 35-.4595 35.4595--35.4319'35.4559 35.6616 35.4395 
35.7960 35.8267 36.0652 35.8165 35.8-f65 36.0145;~~~.9-~9.i.. 35.7658 35.8655 
36.4332 36.4571 36.2265' -36.4938 36.49-38 ---36.2673 _36.2567 36.5208 36.4384 
36.6630 36.7237 36.8874 36.9713~~36-:9713- 36.8576-- 36.5680 36.8929 36.7360 
37.3190 37~3094 37.158~ 37.0585 37.0585 37.1768 37.5026 37.1051 37.3243 
37.5241 37.7859 38.2343 38.0169 38.0169-3~.?053 37.8567 38.1212 38.1418 
39.8854 38.9583 38.3495 38.601~38.601.4.-· 38.3648: 388096 38.4196 38.4424 

87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 
101 
102 
103 
104 
105 
106 
107 

mean 
26.6667 

std.dev 
6.2361 

26.6667 26.6667 

6.2361 6.2361 

26.6667 26.6667 26.6667 26.6667 26.6667 26.6667 

6.2361 6.2361 6.2361 6.2361 6.2361 6.2361 
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1 
2 
3 
4 
5 
6 

Appendix II: Triangular (10,30,40) 
100 generated values as per 25 runs in column A to Y 

J P R 
12.1}82~_ 1Q.761~ __ . -r- 11.9338

1 

11.3891 12.2289 12.2491 12.3019 
12.7151 13.4387 -12.7736! u 12.8383 1:f.17~~_-12.617~'-12.6671 12.5706 
13.4747 13.~§20_14.0561_ 13.6495 14.1097 13.9458 13.7324 13.5324 
14.8824 14.6_5_~~ 14.3810 14.514L __ 14.7300 14.3-725 '-14.4875- -14~67 4 7 14~8360 
15.0432_~041~~ ~.9479 15.0083 15.2112 15.1096 15.of35- 14.9835- 15.3037 
15.8698 t _1.!5. 9546 , .1?9250 15.8809 15.6996 15.8228 15.8750 15.9083 - -15~631 0 

7 16.2588 1§~1~~ __ 16.1439 16.3634 16.9691 , __ 16.068916.2674-f~f443 16.0807 
8 16.6859[. 16.5213 1_ 1_~.7680 16.5681 16.8397 16.8693--16.6585 -16.7798 16.8443 
9 17.3096. 17.Q~?~6.9749 17.3226 17.2774~---r7:0486---17.004017.2062· 16.9-239 
10 1Z·~Z?7,.J.Z·6_559L_.17.6736 17.3479 17.3921-1f6381 -17.6510 17.468(- 17.7373 
11 17.9201 18.11~QJ 18.0118 17.9682 1?-9720 -17.8568- -17.9648 -17.74~17.813-1 
12 18 .. ~1i.Q~_ 18.1945 _18.2059 18.2525 18.2491-18.3844 18.2548' 18~4653 18.4113 
13 18.63971 _18.7§94 _18.61~81 18.5492 18~6539- 18~'5411 18.55-1818.7655 18.5873 
14 19.0109 18-,~598+- 18.9~381 __ 19.082§.L 1§~8_4T ·1~-115_Q_-19.079-5~- -18:8-797- 19.0578 
15 19.3287119.?140 19.3140 19.2303 19.2279 19.2664 19.435Y 19.2549 19.4417 
16 1~.6337 ---.!§l.8029 19.6323 -19,.i152 1~.7181l:-19J01~~ 19.5152.._ 19.6966 19.5201 
17 19.9272, 19.9057 20.0319 .'19.9118, _J.~8332J 1~_8766 19.9725 20.0772 19.9749 
18 .2Q.2§01i __ 20.3369 20.1442 20.26~5J 20.3408,_20 .. 3197 20.2039 20.1658 20.2114 
19 20.6084r 20.6195 20.5169 20.42041 20.5722, 20.4347 20.6047- 20.6016 20.5503 
20 20.73701 20.77831 20.8-1451 20.9088' 20.7-642' 26~9162---20.7292 20.7371 20.7916 

~; ~~~;~~I~~~~~t3 ~~:~~t~~~! L-~~_;i~~! ~B~1~--X;~~~ ~~~B: _ ~~~;;; 
23 21,§68~._Jn17~_~17264, ~3T1 21_~5a_ 2U211_21J221_ 21,5972 21,5075 
24 21.8176_21.81101 21.7?J~121.82391_..11~~33 21.77~9-.?1.7552_ l1.'~823 21.9724 
25_?,?_.QJ23 22._2470J 22.12881 22.0700 22.0412 22.0190_21.9971 22.1269 22.0304 
26 22.4703 22.2815, 22.3498 22.4066 22.4385 22.4741 22.4769 22.3543 22.4511 

_. __ ._--)_.-. . . -- .. -- - . __ .. _-- --._--

27 22.6175 1 22.?8?~L 22.5324+. ??-,1~88~2.50~8_._.?2.5465 22.4871 22.5423 22.6419 
28 22.8296L_22.9Q17[ 22.90691 22.9383 22.9368 _?2.9093 ~...1?91~6 22.8991 22.8039 
29 22.9841', 22.9966 23.0858' 23.1601 23.0214 23.1589 23.1697 23.0344 23.1386 

-I---------------~ __ -- -- - l_ --- -- -~- ----- - --- -------- ----- ---

30 23.3870! 23.4092 23.2831 23.2077 23.3492 23.2254 23.1982 23.3345 23.2338 
~ - - -> ------

31 23.4804 23.5162 23.5064: 23.5381, 23. 63,2?-L __ 23.44i.3._ 23.4962 23.5952 23.4766 
32 23. 7867 ~~3.'78~Q.l . 23 .. 7~~?~ .. 23.7247 i, ?_~.6359' 23.832Q... __ ~~. 7662.. 23~6705 .. ~~. 7~90 
33 23.91261 23.94~4 23.8961_~~i-O_Q~~ 23.8852 23.9888 23.9841 24.0048 23~113 
34 24.22081 24.2200 I 24.2352 24.1209 24.2485 24.1560 24.1462 24.1276 24.2208 
35 24.3148' 24.4670 ..- 24~3255 24.3972' -24.329-7-' 24.3316 24.404724.4 780 24.3436 
36 24.658724-:-5341~ '24.6477 24.5739 24.646(-24-.6522 24.5668 24.4955- 24.6293 

-------, 

37 24.8438 24.8035~·· 24.8585, 24.7507- 24.8954 24.760~24.746~ 24.8398 24.8803 
38 24.9482 25.0108 24.9344· 25.0371 2~ . .s99~?04-01. __ 2?.0~..15.:... .. 24.9_507 2,!.9109 
39 25.f460: 25.2311- -25.1095 25.2763 25.2218 25.2419 25.1643 25.1651 25.2652 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 

25.4455[- 25~3757J 25.4773 25.3684'- 25.3692 '25.3549 25.4200 25.4199 25.32_10 
25.5631 i 25.6177[ 25.5746 25.56ii' 25~535725.5419 25.5104 25.5610 25.6648 
25.7979 25.7611! 25.7897 25. 7967!-25.8301 ~ 25~8286- --25.8486~ 25. 79_~4. 25.6963 
25.9668 25.9316~ 25.9406 26.0296~ 25:9314 25.9290 25.9134 25.9690 25.9825 
26.1506 26.1999 26.1808 26.08-i4~·· 26.1919-- . 26.1977 26.2031 26~ 1484 26.1344 
26.4246 26.3595 26.2761· 26.2552 26.2662 26.3304 26.3093 26.3577 26.3709 
26.4321 26.5088 26.5846 26.5995 26.5962 26.5354 26.5471 26.4990 26.4851 
26.7882 26.6631 26.6181 26.6299 26.z25~2~.7335 26.7126 26.6474 26.7852 
26.7910 26.9245 26.9658 26.9482 26.8613 26.8552 26.8676 26.9314 26.7935 
27.1188 26.9896 27.1115 27.0684 27.0638 27.0778 27.0271 27.0562 27.0697 
27.1675 27.3023 27.182~ 27.2188 27.2315 27.2180 27.2607 27.2310 27.2160 
27.4849 27.4799 27.4555 27.3659 27.468~ 27.4791 27.3564 27.3763 27.4526 
27.4944 27.5039 27.5325 27.6144 27.5212 27.5099 27.6248 27.6040 27.5265 
27.6898 27.7668 27.7792+-27.6764 27.7483 27.7962 27.7797 27.8058 27.7973 
27.9680 27.8939 27.8893 27.9836 27.9213 27.8722 27.8826 27.8551 27.8614 
28.1467 28.0758 28.0720 28.0487 28.1121 28.0397 28.1332 28.1089 28.1253 
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Appendix II: Triangular (10,30,40) 
100 generated values as per 25 runs in column A to Y 

J R 
56 28.1789 28.2639 28.2793 28.2191 28.2003 
57 28.4748~~.4606 i~8.3413 28.3938 28.3427 28.4002 28.3343 28.4634 28.4826 
58 28.5056 .2,~.?J}2 28.6497 28.5898- 28.6494 28.5893--- 28.6498 1 28.5199 28.4980 
59 28.7741 28.8068 28.8153 28.7886 28.'7489 28.6i~ 28.6741- 28~7319 28.7549 
60 _ 28.8497" 2_8.8'1'?1.L 28.8f1T28.8395 28.888-5~· 28~540' - 28.9544-28.8949' 28.8689 
61 29.0152 28.9767' 29.0422 29.0549 29.0760_ 29-.Q?4Ef-'-29.0156 - 29.0137 - 29.0616 
62 29.2405 29.2714 -29.227529.20611 29.1949 29.2406 29.2464 29.2456--29:1948 
63 29.:3441" '29.3772 --29~3543- 29.4253~29.3925 29.3245- 29.3659 29.3014 29.3941 
64 29:5341' 29.4920-29.5387 29~4587' --29.5016' 29.5629-29-:5196--29.5803 29.4848 
65 29.6368 29.6225'- 29.7180-, -29~6324 - 29.6250' . 29.7254 -'29.7462- 29.7210 29.7024 
66 29.8537 '29.-8-565 29~i888 29~8641 29.8817- 29.775129.7526 29~7745 -29.7891 
67 29.9557j-29.9559- 29.9177 30~0110 29.951630~6329 29.9643-30.0312 30.0362 

I ------ .------. .. -- -----'.,---- --------- ____ . 

68 }QJ...3~6i-.l.0.1257: ,}.Q.1§50 . 30.g9004,}0.1612. __ ~O.0l1?. 30:l394. 30.0682 30.0591 
69 30.2510 1 30.3414 30.2999 30.3286 30.2863 30.2598 30.2299, 30.2325 30.2422 

30.4572~_Q.3500' ~Q.42§i'_ 3Q.3858 30.4396~0.4577 . 30.4880 30.4814 30.4670 
30.6146 30.5521 30.6153 30.5599 30.6607 30.5990 30.6154 30.5476 30.5438 
30.7255 3-0.7710) 30.7436 30.7891 3()~6981 30.7508 30.7345 30.7995 30.7986 
30.9000 . -30.8392-+--30.8645 i 30.9067 -30.84231 30.9705 30.8874 30.9830 30.9367 
3fo95i -3f1376t31.1521~!-31.0973' 31:"f7541 31.0335 31.1191 31.017e[ 31.0593 
31.240731.-193cr--31.2299T 31.21i2131.235(-31".2682 31.2672 31.2727' 31.1914 

~~-:':~;~ l~~:~~~~ r-_;~:~~,~~L_ ···~~~:f~'-~~:~~~~~ . ;-~ :~1~;! ~~ ~~~~:. --~~ ::~:~ ~~ :~~~; 

70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 
101 
102 
103 
104 
105 
106 
107 

;~~:~~HH~~~l~~~~~t, -;~~~]~r-R~~~~ ~R~:~ ;~~~ ;~!~~~ ;:~~~~ 

~~~ml-ii!i~ Hm~!!!!~![ ~HmJ ~~:m- HEi_~Jtm~_ i~:m 
~~:~~~~~-~~~}~~~~ . j~~§16~ L_,jj]~~~ i'~i~~~~~ '~~}~r~{, ;~~~;}--~-~~~~~~ ;~: ~~;~ 
. . .. 1..--,·_ .. · ~ .. -~. -, .. -- ._-.--

33.1214 33.1010: 33.1075 33.2402 33.2428 33.1962 33.1096 33.0930 33.1088 
33.4619 33.4459; 33.5039 33.3519 33.3628 33.3932- 33.4899 33.5010 33.4769 
33.7432 33.6360; 33.6524;-33:6515 33.7113 33.6739 33.7511 33.6468 33.5440 

_., - _. , j. .. _. __ ..... _--.-_ ... -_ .. _,- .. _--_ .... , _ .. '--'" 

33.7623 33.8312: 33.88}~_3~.8694~.82??. 33.8416 33.7706 33.8702 33.9708 
34.2449.3i: 1448 34.13111 34.2523. __ ,34.05§T_}4.2092_ ~4.00~i+ 34.1274 34.1528 
34.2617 34.3197 34.4083 j 34.2687 34.4878 34.3065 34.5258. 34.3922 34.3577 
34.7640 r 34.7430 I 34.69,29 I 34.585f~ ~~!I2E'-' 34}920 34. 7684~~4.?1 08 , ~4. 7052 
34.8399 i 34.8135 34.9448 35.0439 34.8617 34.8203 34.8537: 34.9053 34.9026 
35.1245·-35.1174~35.1571 3-5.1594 + 35~3857-35~3714-'-35.1148-35:1688 35.2825 
35.7261, 35.679235.7244+- 35.7042 - 35"}f777 35.468-Y-35~7582~~6884·--35.5552 
35.9830 i 35.7558"36.0-629 36.01'32 - 36~0166~35.9968~--35.9083 '-36~0,72~ 35.9427 
36.2728 36.4 709 i-36.2242-36.'2588' 36.2719 c- 36.26~36~3770 +_3§.1914 36.3200 
36.8161 36.856ji 36.9670~ 36.8-244' 36]5("3~-36.i315'36.91f3 36.9081 36.8983 
37.1924! 37.08121 37.0680----37.2033 37.0843-- 3i3006 37.1046_37.1056 37.1056 
37.6649 37.5738 38.1 f70~- 37.7557' 38.1452 37.8655 37..1981 37.7199 37.6680 
39.2548 39.4255 38.4754 39.0482 38.4406 38.8058 38.9588 39.1284 39.2559 

mean 
26.6667 26.6667 26.6667 26.6667 26.6667 26.6667 26.6667 26.6667 26.6667 

std.dev 
6.2361 

6.2361 6.2361 6.2361 6.2361 6.2361 6.2361 6.2361 6.2361 
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Appendix II: Triangular (10,30,40) 
100 generated values as per 25 runs in column A to Y 

s y 
1 11.6966 11.9866 11.5170 11.9446 12.0267 11.2787 12.0533 
2 12.9940 12.7896 13.1158 12.8289 12.7785 13.2307 12.7624 
3 13.8792 14.15621?75~0 14.0016~~4.0569 -14.2176 --13.7428 
4 14.5510 14.2809 14.6783 14.433_~~_-.14.3~9~ 14.2817-14.6625 
5 14.9204 15.1365 15.3731 15.3325 15.0441 15.1206-15.0853 

---_.-. 

6 15.9595. 15.7584 15.5810 15.5833 15.8512-15.8241---15.8169 
7 16.4610 16.0440 16.3752 _-.l6.3z'?~1§-928016.3455 16.0491 
8 16.4779 16.8542 16.5860 16.5555 16.8784 16.6248 16.8612 
9 17.0684 17.1031 17.1749' -f6.9659--17.0668- 17.0248--17.0205 
10 17.5986[ 17.5524_1Z.519~ lJ·6834~7.595~ 1J .. 6688---.1?6395 
11 18.02011 17.998i' 17.75451 17.8685 17.8532 17.9477 17.8703 -----::+ -- - - . 
12 18.2085: 18.2163 18.478418.3449;- 1~~6~~118.3()65~_J8:3486 
13-1(5E)1~~j~.8633r 18~5~.1..L- Hf7352T!~ .. 5925 18.7569 _18.7595 
14 19.0Z.~1, _~8312 __ 1_~._06671 18.96191 19.()~37+J~.91521~._t!830 
15 19.2117 19.1791 19.1920, 19.2203 19.1567. 19.3207 19.3096 

-- -- --j---- - - ~ ----r------- - ----1- --.--__ 

16 J~.739T _1~J_5921 1~.77321 19.7231 1~_..?_~64!1.§)~65.§~ __ ~_9.6421 
17 20.0453 19.8585i 19.9699 19.8162 19.9213 19.8585 19.8007 

~~~~J~;r;rr~~~ i ~~~~I~~~~;: ~~~~~;; ~~,~~~-~;~~~ 
20 20.8388: 20.77381 20.79851 20.9Q92! 20.7340 20.9533 20.7570 

;~ ;~~~~65 -;~ :;~~~r~~f~~~~· ~~ :;~~~ --- ~~:::;~"- -~~ :~~~~ -;~~;~~ 
23 21.7341 ~ __ ~~.72~f3r_21.71?3~ 21.5806 21.6312 2~857 21.51~g 
24 21.7513: 21.7482 21.7820 21.8952 21.8479 21.9129 21.9588 -r - ----------,----- ---- - --- --------------------
25 22.2290! 22.2258, 22.0692. 22.1438 22.0942 22.2088 22.0964 

- --- - ---- ---------------------------- -- ----- -

26 22.25781 22.2527' 22.4228 22.3350 22.3855 22.2915 22.3842 , + ---
27 22.68821_ 22.6604, 22.6099 22.6~8Q__ 22.5001 22.~762 _?.? .. 6563 
28 22.7606 22.7806 22.8444 22.7936 22.9391. 22.8829 22.7878 
29 23.14871 -23: 1330'23: 1 023 i -23.1535 23.1422 - -23:120:2- 23.0904 
30-23.22731 23.2357 23.27831 23.2158---2i2283--23~2658 23.2805 
31 __ 23.4658-4 23.4854 '_?_3,4980 1 23.4196' 23.5960~ 23.63~~: ?~ .. 4?~4 
32 23.80391 23.7781 r 23.77621 --23-:-842323.6701 23.6466 23.8348 
33 23.9973:-- -24.0435-23:9]06 L-23~9845~ 24.()055 23:9526-~23.8593 
34 24.1413 24.0892 24.17021 24.1478 24.1277 24.1931 24.2720 
35 24.3597 -24.4737 24.42721 24.4861~- 24.3148 24.3831' - 24.4410 
36 2{6194, 24.?.9_0~~_ 24.5~2l 24.48?1. __ -f4.6579- 24.60i1 -24~5345 
37 24.7825 24.7666 24.7845! 24.7390: 24.8295 _ 24.~5~ 24.88}1 
38 25.0145 25.0248 ___ 25."0128r __ ?!5.05f3- 2-4 .. B6?5 ___ ~4.9_468 24.9100 
39 25.1304 25.1705 25.2924: 25.1722 25.2928 25.2141 25.2447 
40 25.4615 25.4173 25.3004" 25.4149----25.29-52-2..5--:38-19-~.3440 
41 25.6829 25.6169 25.6321' 25.5968 25-.5392 25.!540~ 25.5130 
42 25.6863, 25.7476 _25.7351

1 
25.766f 25.8?~~ 25.8285 25.8497 

43 25.9377', 25.9233 25.9191 25.9739 26.0029 25.9570 25.9653 
44 26.1874' 26.1977 26.2029 26.1466 26.1174 26.1686 26.1555 
45 26.4264 26.3803 26.3597 26.3871 26.4099 26.4184 26.2639 
46 26.4393 26.4816 26.5017' 26.4734 26.450) 26.4460 26.5953 

26.7116 26.6949 26.6556 26.7046 26.6541 26.6584 26.7175 
26.8769 26.8903 26.9273 26.8790 26.9280 26.9270 26.8662 
26.9891 26.9971 27.1137 27.0018 26.9852 26.9839 27.1297 
27.3064 27.2957 27.1772+-27.2893 27.3045 27.3078 27.1624 
27.4150 27.4665 27.4273 27.4722 27.45E+- 27.4318 27.4055 
27.5752 27.5217 27.5562 27.5139 27.5267 27.5537 27.5799 
27.6795 27.6879 27.7920 27.726~ 27.6682 27.7439 27.7088 
27.9900 27.9798 27.8709 27.9393 27.9954 27.9204 27.9564 
28.0524 28.0161 28.016s+- 28.0130 28.1150 28.0487 28.1333 
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56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 

Appendix II: Triangular (10, 30, 40) 
100 generated values as per 25 runs in column A to Y 

s y 
28.2852 28.3194 28.3201 28.2175 28.2817 28.2002 
28.4601 28.4838 28.4079 28.4346 28.3890-i8.3445 - 28.3860 
28.5337 28.5088 28.5i59~"28.555T- 28.5986 2a.639ff -28.6024 
28.800828.7830+- .?f6693~ 28.7207 28~71?§ 28,7157 28.6983 
28.8371 28.8539 _28.95TO_.~8.~13.9_, 2§.91~.1 ~8~~12?_ ?8~9341 
28.9938_29. to.06, 29.0Q44 ?9.0482 _ 29.0648 _ 28.9962 28.9846 
29.2764 __ ?~: 170Q~_29~254~ __ .29.'.?,1 ~ 29.2004 29.26304., ,_?~.2807 
29.3292}9.2940 29.3592._,29.3099 29.4024,29.41~7~:34?4 
29.5642 29.5987. _ 29:~223 _ 29.5800 29.4859 29.4636 29.5415 
29.6265",~9_}_?04,~~.§8§~ ?9.7~6~ 29.6766 29.7361 29.6000 
29.8801 29.7870 29.8070: 29.7872 29.8247 29.7584 29.9013 

----------

29'-~,~,~a..~ 29.9~10 ?~.94 71 ?~.9s..18 __ 29.946,~ ___ 2~-,9841 29.9462 
30J63§.:. 30.1314 30.1512 30.1575: 30.1598 30.1139 30.1613 
30.2690: ._ 30.35§.~+_~0.3542t 30.348f= 30.3190- 30.3163 30.2152 

70~O.4-~§.7; 30.36861 30.3556! 30.3737 30.4000 30.3936 30.5067 
71 30.5320· 30.6229 30.6598'1' 30.5671' 30.591'0' 30.6407 30.5703 
72 '30.8284i-3().7366 30.6tf2-5~---30.789530)6191 30.7013 30.7840 
73 30.9570 [--'30.9383' 30'.'9932" 30.9655 30.9670-3().9979-'30~064 

31.05(391 31..9?74 31.00~7i 31.045Z,,_.31.0408 30:998}_,~1.1 034 
75 _ 31.3Q?~31.2172_~1:.?~.?i_, 3,~-,~'!.11 31,.2224, _,31.29?:3., 31.2510 
76 31.38681_ 31.4806 31.4660 u~1.35051 31.4673. _ 31.3773 31.4390 

31.691 ~31.6228] 31.5684,~1.5794, ,31,-6.?7~ . ..l.1.5368 31.6435 
31.7106: 31.7823 31.8169 31.8222 31.7697 31.8484 31.7540 

74 

77 
78 
79 3i()f37T--32~6'098r---32.0214 ___ ~1~~I2~ '3 f9808-~-32.0468 '31.9331 
80 32.1284 32.1351, 32.1009 32.2201: 32.1559 32.0739 32.2059 
81 3i.3;26sl-32,32Si 32~2927·32.4357 32.4219 32.2671 32.3244 

J --------~__ --------- -~----- -

82 32.59961 32.5944 32.6073, 32.4800 32.4898 32.6324 32.5903 
I --

83 32.8424: 32.8272, 32.7185 32.7232 32.7873 32.7475 32.8004 
84 32.89~~+ 32.91211 32.9977 3~~0135 32.94??_32.9656 32.9303 
85 33.11721 33.2409 t 33,-??,~~" 33.1666: 33.16.1~~ 33.1552 33.1324 
86 ,~~~4,9g9L_:3.~}§(3~L 33.2915 33,j,~76~ 33.4371. 33.4-250, ~46~~ 
87 33.6831: 33.75391 33.5970 33.5355 ',~3.5411~_~~.571}~_33.~~30 
88 33.8484[ 3~1~14-l._33~9130 .34..0Q26 33.~849 _33.9374~9794 
89 34.2211 34.1401! 34.0019 34.174~ __ 34.1998 34.Q302~_34.1592 
90 34.3119 34.4008 r 34.5164 34.3590 34.3272 34.4823 34.3698 
9134.6242[ 34.6955 ~ 34~353 34.720tf 34.6250-34.6916-34.7653 
92 35.0140! 34.9444~ 34.8690--34.9112 35.0064' - 34.9106-34.8603 
93 35.4248 i '3sj743 i 35.21'64 -35.3199'35~ 1186 35-:-1960-35.1849 

35.43471 35.4929, 35.6230 -35.542035.7567 35~6412~5.6822 
36.1299; 36.0105 35.8898 35.9276-' 35~79-56- ---36.0022~35.8009 
36.1507 36.2827 36.3748 36~3653 36.'5121' 36~2465-36~50§5 
36.9168 36.8300 36.7989 36.5744-- 36.665~5 . 36'.7042-36.5487 
37.1153 37.2209~ 37.2104 37.5314 37.4015 37.3171 37.5587 
38.1763 38.1297 37.7262 38.1167 37.9673 37.7471 38.1191 
38.3993 38.4674 39.0805 38.4704 3t3.6635}9.0194 38.4563 

94 
95 
96 
97 
98 
99 
100 
101 
102 L • 

103 mean 
104 26.6667' 26.6667 
105 std.dev 
106 6.2361 6.2361 
107 

26.6667 

6.2361 

26.6667 26.6667 26.6667 I - 26.6667 

6.2361 6.2361 6.2361 6.2361 
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Appendix III: Nonnal (100,36) 
100 generated values as per 25 runs in column A to Y 

A E 
1 85.8737' 84.§~8_2 85.3771 81.8872 84.0757 83.5384 84.8797 
2 86.8249 86.9071_._._~6.3486 87.6167- 87.0078 87.2558 86.64i8 
3 88.0376 88.0827 88.5783 88.0953 87.8767· 88.1347 88.0651 88.5964 
4 89.7061 89.1616~ 88.6065 89.0427 89.5062·-· 89.0660 89.2293 
5 90.072~.,_89.6~11; 8_9~~~79L 89.4448 '90.0690 89.4792 89.6784 89.9464 ~~:~~~~ 
6 90.6179 90.4965 ~ 90.1544 90.5393 90.3328 90.5629 1 90.5097' 90.3308~ 90.4276 
7 91.~327_~. 90.6638 90.849i--90~6964--90.9085" 91.0230 90.9905 90.80i1~-·90.8939 
8 91.4433 91.5040' .. 91.23981 91.3882- 91.4953 91.1428--g:r.2720' 91.4873 91.2154 
9 92.0531 91.i836-·~·.6319r 91.4973- 91.833{ -~8713 91.76i3-- 91.6591 91.6893 
10 ,....§l2.J~~6~ ·92.0499- ·92.09~9:-~2.223{ -92.1968 91.928·6-92.'1167 92.2596 92.0554 
11 .92:5?~2 i 92.3988 _~2}~?~~.3258 92.4847-- 92.58·30 92.5839-- 92~5964' 92-.2648 
12 92~94~9~:~9~21_ 92.7892! 92.7972, 92.9075- 92.598·7 -92.6796 9i713s-92.8541 
13 9~.~650~ 93.0791 ,,93.1 OQ7' _~?.[~ 0 ~93-.0294· 93:15~93.0965 93.0095- 9is859 
1493.3800 93.337~ 93.2359, 93.3507 93.5546-··93.2408 93.3679 93.4928 93.4495 
15 93~§..@f_~.721193:5.1_?~~ 93.5~§§~~ 93.7~9.1;_ .. ~3.5013i_-9~,-51.8?_ 93.651f--·93.6355 
16 93.9i46. 93.78231 93.9094; 93.8390, 93.9293 93.9704, 94.0199 93.9382 93.8037 
17 94.2995: 94.1085 94.1408 94.1756 '94~1672- -942265-- 94.1803 94.2596 93.9840 
18 94.4490f94.3832 94.285494.25~ 94.4826 94.2497 94.3570 94.3221- 94.4452 
19 94)98i 94.6162, 94.5884! 94.4672 94~5629- 94.6968 94.5967 94.5490: 94.6537 --+-- - ------------- '--------------
20 94.8388 94.7962 94.7630, 94.8859 94.9949 94.7019 94.8564 94.9432 94.7083 

~~ -~;:~~~;~--~;~~~~~~-;!:;-~~~ ~ ~~:~~;~1 ~;-:~~~~ ~-·~}~~-~i ~;:~~~1- -.~;:~~~~- ~;:~~~~ 
23 ._~5-,5151r· 9?}§52: 95.§JJ6T 95.458~_.~5.5094-··-·9~~4.~9J,~-95-:-4398 .95.5361 95.3785 
24 95.7388 95.Z?~1' .. _~5.5280i 95.5854 _ ~§J145 ~?.5913 95.6858 95.6316 95.6665 
25 95.8401 95.7617 95.8752; 95.7666 95.8318 95.7550 95.7671 95.9294 95.8901 
26 96.161496:0994- - 95~945i 96.0558 96.158996~106896:1305 ·96.0114 95.9375 

- ------.- --- ------> - - -> ------ -~--

27 96.3531 96.1468 96.2219 96.1880 96.3390 96.2250 96.1463 96.1654 96.2287 
- ------ - - - ------ - ----- ------ -

28 96.3693 96.4582 96.3466, 96.3834: 96.3913 96.3796 96.4936 96.5133 96.3462 
________ _ _ __ -+-_ --------, --

29 96.6725 96.5102 96.4785 96.6066: 96.6904 96.5225 96.5464 96.6896 96.5895 
30 -96~741L 96.8112 96.8089 _~~§§§9·-··96:?49~_.=_96.79$f9 ~.~095 96.7061 _ .96.1.0.58 
31 96.9917i 96.9674 96.9017 96.9664 97.0450 97.0025 96.9228 96.8876 96.9834 
32 97.0919~--97.0493 97.0856 -9i:0235~, 97.0822'--97.6176- 97.1257- 97.197197.0096 
3397.2709: 97.2225 97.1816 -9i~3161~' -9i.3054----g7.341 i··-97.2472- 97.2554-- 97.1954 

1-- -- --- -- ------ ----+-----

34 97.4632 97.4672 97.4835 97.3518 97.4893 97.3550 97.4737 97.5021 97.4743 
35 97.5298 97.5335 97.6088' 97.5749i-9i.647f~9i630-1j7.5905 ~7.6192: 97.5639 
36 97.8389, 97.8138 97.7202 97.7543--97.7999"-97.7268 97.7872-97.7947 97''7683 
37 97.8675; 97.8429 97.9534 97.8696~--gj~9225- 9Y9845· - 9i~956 9i9394 97.8494 
38 98.1241 i 91f1486' 98.0245~- 9~f 1080-· 98~1626-98.6·193- 98.0256-- 98.1167' '98-.·1305 
39 98.17491 ·-98.2646 -98:2216_~-9l[20~~-.-98:299.~ 98J634-·_98.~6.!.498~2906~ =~8-:-1808 
40 98.4284 98.3611' 98~3935 98.4107 98.4134 98.4747 98.3913 98.3975 98.4362 
41 98.5299: 98:600798.4666 98.5851 98.5927 --98.5992- 98.5738- 98.6095 98.5813 
42 98.6767 98~6489--98.7760 9·8.6570- 98.i387-98.6663-98~7015 98.7000 98.6640 
43 98.8130 98.8590 98.8598 98.9095 98.9073-·9~f8648· -98.~530 -98.9495 98.9033 
44 98.9891 99.0071 99.0046 98.95i8 99.0354 99:0195 99.0375 98.9747 98.9624 
45 99.0647 99.2083 99.1804 99.1117 99.1886- 99.2426 99.2064 99.2495 99.1894 
46 99.3276 99.2690 99.2993 9903649 99.35-97- -99.2553 99.294f 99.2838 99.2910 
47 99.3836 99.5398 99.5248 ·99.45·51- ., 99.4640 99.5100 99.549~9.4352 99.4365 
48 99.5954 99.5447 99.5664 99.6326 99.6861 99.5975; 99.5568 99.7033 99.6547 
49 99.7296 99.7729+-99.7460 99.7440 99.7697 99.7406 99.7417 99.7540 99.7795 
50 99.8338 99.9165t- 99.9544 99.9523 99.9801 99.9740 99.9683 99.9875 99.9204 
51 100.0511 100.0057 100.0445 100.0256 100.108~+_~.g0.1260 100.0308 100.1654 100.0649 
52 100.0951 100.2871i100.2634 100.2777 100.2390 100.1943 100.2815 100.1776 100.2418 
53 100.2918 100.3920' 100.3995 100.4027 100.4455 100.3930 100.3655 100.3563 100.3121 
54 100.4387 100.5056 100.5175 100.5089 100.5018'-t-:f00.5346 100.5503 100.5899 100.6034 
55 100.5392 100.6504 100.6670 100.6086 100.6778 100.6183 100.6427 100.7679 100.7309 
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Appendix III: Nonnal (100, 36) 
100 generated values as per 25 runs in column A to Y 

A 

56 1QO]]!31 j 100.85~_JOO.8616 1QO.914?~1Q0.8716.100.9193 100.8793 100.7952 
57 _100.9383 1 100.94]4,J.Q!.0016 ---.191.Q~08 10~00~00.9953~101.cf546 100.9888~ 100~9728 
58 10~.9690~ 101~168~! 101·14?? 1Q~.1Q6~_lQ1.14§l_ 1~1-:-1554,101:07681~1i19 101.1683 
59!01. ~_5?L 10J .317-.11101 }_?56 . 191.3035 JQl..2959: 101.3536' 1 01.2403~101.3293 101.2460 
60 _}01.3455! 101.41541Q1::4391_J.Q1.4.5:4Q 1~1.4703 10f.4166·10T50~101.4460- 101.5158 
61 1 01.4504, 191.5844~. 1~Q1 J>421 . ~1 01.669)~1 016300-'101 :6013101~6392 1of6845 - 101 :6196 
62 101.65561Q1.7722 J01.7§.98 _J01.71?1.,. 101.]54§_101~i949 -101-:-7302101.7125101.7694 
63 101.8232 1Q~8966101.87~4: 1~·9~~?~.101.8606 102])049-101.9722 101.87611'01.96'51 
64 101.8939 10~0~~1. JO~.151§l_. 1Q?,.02}4J'o2:J523· 102.0264 102.0288 102~1530102.0606 
65 102i>1?3 1 02.1880 --.19_2.288_5: 1~?2..~2? 102.2268 1 02.2675 102.2706'-102~2394 '1o:f30-56 
66 102.2931 1 02.4'1651 02. 39Q61 02.3876-, -1 b2~4242102.4-1'08102 .3735'-'102 .4315102.3-682 
67 102.3988 102.6250 102.66131 102.6578-102.5139102.5533- 10i,558'1' 102.5320 -102.5872 
68 1 02~?}§f31 1=Q? ... ~663~. ~10j:6801T 1Q.2.6f35j 0i,7~§)~8-1~6? 78~~..! oi~ 7 428 .1Q[7954. 102.7487 
69 102.6876 102.8385j 102.9?Q~i 10?8649 __ 102.9_~96.102.~~873102.87_1_1 102.9313 102.9205 
70 102.9397 103.1284, 103.04941 103.1460 103.0008 103.0277 103.1029 103.0671 103.0936 

.--~.-.. -. . ...... -"j-'~' .... . ._-_... ._- ._- .- ._. . .. ~ --- _.. ..~. 

71 103.1271 103.2244 103.34911 103.2253 103.3109 103.2972 103.2716 103.3416 103.2995 
72 103.1685 103.4351 103.3691J 103.4-829' 103~467 103.4140 103.3935 103j47S:-103.4117 
73_103 __ 12_S.3~1Q~~·§1§..~_1()~.~56491 1Q~~.687_6_~1O~ __ §.745 103-.7010 1()3.591~_ 163.~5790· 103 __ 6137 
74 103.5624 103.7588 103.8769' 103.7395 103.6928 103.7288 103.7889 103.8254 103.8186 
75 103.7387 103:973if;-f03.9613t104.0805· 103.9900 104.0462--T()3.9804 10'3.9386 103~.9282 

----- -------- L ______ j ~. __ _______L_________ _ ___ <__ _ _ _ __ _ 

76 103.9679 104.1447 104.2283 1 104.0940i 104.1142 104.1359: 104.1413 104.2072 104.2536 
77 ==104~109194}931J. 1Q~.4297;1'o4.4259. 104.~2559_ 19:4.3190 104.4118 104.2869 104.3365 
78J 04.34~Q. J 04.?004 j. 104.5392 J'o4.5290 104.6216 104.6384 104.4831 1 04.63~4, 104.6250 
79 104.5922 104.6726: 104.7386 104.6919 104.7640 104.6814 104.7964 104.7284 104.8009 
80 104.6486 105.0392l· 105.05-31 i105.()868 ~ 104.9162 1 ()-S.0960 104.9113 105.0625 104.9783 

~~ ~J ~::.~~~~ ~6~~~~~t J6lj}~~~ ~~::~~~: ~ ~;:: ~;}~~;::~;~ .~I~;~~~~;~;~:~~~~. ~ ~;::~~~ 
831 05.46~:41_1Q5..'.5_1 1?t-1.0?7790 1 05.6024: 1 05. 704~~_.J.9§J 425 105.5677 105.7503 1 0.5.§.1 07 
84 105.4959 105.98451 105.8021 105.9671' 105.7390 105.8165 105.9209 105.7526 105.9631 
85 J 05,8396 106.1836 1062506 106;0345 i..1 06 .. 01i~ 1 06 .. ~1]3. -106~0069 +- 1 Q6.1623 106 .. 0809 
86 106.0807 106.2955 106.3289 106.5377 106.4191! 106.3372 106.4753 106.3299 106.4924 
87 -_1()6~3013~106.7589 1~9§..8077 106.5731: J06~6684j 106~8132~106.~5?0 106.767Z+-1Q6.5994 
88 106.67~6 10~.8035 106.8632 107.091m06.~3<4: 10_6.82.89_!Q7.00.~Q... 106.~Q~8 107~o.671 
89 107.0245 , 107.1648 107.1879 107.35361 107.-.3060L1Q7.391U07.2884~107.2111 107.2827 
90 107.10591 107.6140' 107.7116 107.5128! 107.3907 107.5487 19X.4716.107.5695 107.5922 
91 107.4719i107.79391108~1086 1.28.0Q~2IJQZ-.8654-~ 107.~~92.1.Q7.§l18~ 107.89_~S. 108.0031 
92 108.0038: 108~36~9()! 108.1631 108.2463: 108.2668 108.3802 108.2176 108.2595 108.2548 
93 108.2068 i 108.86451 108.5725 108.9022 --f()8.4504 1 08.9293 _J~Q.8.8?41- 1 08.~5696..! 08.9333 
94 108.8503 1 108.9066[ 10~.'3~i66 fQ8.98}~._ f09.2§?'O' 108.~~~1_ 108.9315 109.2249 108.9576 
95 109.0632 109~4579: 109.8602 109.4881 109.6579 109.7704 109.7049~ 1Q§l .. 3727 109.5604 
96 109.9961 110.410~~~ 110..1.948 1JO.5f77~110.Q33~-1 IO.J_528 11Q..09~ 110.~!37 11Q.4303 
97 110.3574 11().8451I 111.1792t-111.3195 110.7970, 1~J~1123,!1Q __ 5832 111.1328 110.9160 
98111.4880111.8864111.6620111.4744111.7870111.6797 112.2563 111.5076 111.9671 
99 111.8799 112.8535 113.9667 113.4289 f13.0444~-113.8ii5--113.0026 ~ 113.6261 113.7300 
100 122.4335 116.1465' 114.268sr114.98-39 115.2307 114:2948 115.6029 114.4045 114.5195 

~~~t - 1= 
103 mean 
104 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 

105 std.dev t 
106 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 

107 

224 



1 
2 
3 

Appendix III: Normal (100, 36) 
100 generated values as per 25 runs in column A to Y 

J L M N 0 P Q R 
8~.4337+- ~~~~~~9. 85 __ Q9!D! _85.686() __ 84~158_ 83.6J~!! __ 8!5.5601 __ ~5.6243 85.7513 
86 __ 5008 1 8Z·~~~1 86.?,~32i8~~~020 __ ~6.6244 87.2158 86.2781 86.2850 86.2455 
j!7.6!~~, ~~.4308 88.38708~1~Z~ _. ~.'.847788~170- 88.2718 88:0094 87.7555 

4 89.4611 _~9.3831~_ 8~~Z~59l ~~.03,QL 89.2181'-88.8458 - 88.952189.1958 -89.4032 
5 89.,6~2~,_89.8~,~89.464~~_ 8§).'.?f36~.- 89.7638 8-9.7048-89.5640 -89.5505 89.9237 
6 _90.?_229, ~Q.J765~_ ,. 90.5!~8 ~~O.5006 90.2873' --90~4661 90.4867 90.5393' 90.2718 

90.9122 _~1,-3.198 9Q·Z3?1 __ ~0~~~28' 90~666490.7160 90.8809 '90.T769 90.7311 
91.3248 ~!.3~?~_ 91.3455. __ .91.1812 91.4179-9f4923'--'91.2607 91.39-29 91.4700 
91.9033: ~J..8620 ~...?407 9f8863 §f8250- 91.6595 9fs86S- 91.7894 91.5444 
91.9650 92.3595, 92.1793-~i1~9093-91.929T 92.1951 92.1758 92.0272 92.2821 
92.4467 92.7555 92.4785 92.4621" 92.4477 92.3887 92~4532- 92~2769 92.3489 
9? ... Z872 I 92.8231 92~64i7--92.7089f 92.6892--- 92.8462- 92)C)52 92.8993-- 92.8665 
93.063793~i9§3 93.0285, ~@~~626: 93.0359 9i9797 -,-_92.9595-93.1'532 93.0158 
93.3738 93.4599 93.3099 i 93.4104 i 93.3141 93.4606 93.4027 93.2488 93.4090 

7 
8 
9 
10 
11 
12 
13 
14 
15 93.6355! 93.666693.5843 '93.5323 93.5170-93.5856-

u

--9f6966--93.5600 93.7244 
16 93.8839 94.138193.8458 93.9289 93.920193.9430~ 93.7615 93.9206 93.7883 
17 94.1205J)4.219~ 94.1700-- --94.0878 94.0130 94.0824 94~1326 94.2273 94.1554 
18 94.3865 94.5580 94.2604, 94.3699 94.421894.4372 94j183 - 94.2501 94.3443 

!! EEl!; !!~l~~ti~~1!'I~illrf~!ril!!!~-E~!E! j1~;! 
24 95.6050 95.6939 95.5308: 95.5958! 95.6449 95.5797 95.5399 95.6458 95.7221 
25 ,_9~1?55: 96.()~2X:~--9~f.8251~ 95.Z~f3Z~95.7601+-§l_5)68f-95~727}3~-_~9-5~835i 95.7669 
26 96.1087 96.0488 95.9969 96.0474 96.0690 96.1200 96.0999 96.0110 96.0915 
27 96.2221 [ 96.2769, -96.~}89. 96~1188- 96-.1206 __ ~(3.: 176~';"'96...1QZ7:-96.1563, 96.2385 
28 96.3855: 96.5186 96.4298 96.4588 96.4560 96.4562 96.4659 96.4320 96.3633 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 

96.5045·-96.K904: ·96~5688. 96.6304i-96.5218 96.6491- 96.6364- 96.5365: 96.6213 
96.8151 96.9032 96.72231 96:6673T 96.7766- 96.7005 96.6586--96.7685' 96.6948 
96.8872 96.9845' --9-6.8962~- 96.923~--9'6.9974 96.8699 - 96.8897 96.9705' 96.8822 

~;:~~~~l ~;~~~~:i- ~}~;~~~ §~:~§3~i ~~:~~~~ ~~:~~[~~--~;~~~,~~. ~~-:~~~~ ~;:~~:~ 
97.4614 97. 52ToT 97.4663: 97.3770 97.4794' 97.4230 97.39(3~._~7.3846 97.4596 
97.5347 97.7106' 9i.5373 97.5934'97.5433- 97.5603 97.5990 97.6588 97.5554 
97 .8039 ,-97.762~ 9Y7918 -- 97. 7324 ____ ~7.?.$?697~811_9 . 97.-7266 97 :6i26_~97. 7792 
97.9496' 97.97021 --97~9591--97.8718 97.9909 97.8971 97.8686 97.9438 97.9768 

~~~~~~~l ~~:;b~6~'-~~:~-~!;'- ~~~~~-~r--!~~~1~- ~~~~;~~ ~§~~~b~ - ~~:~~~~ ~~.~~;~ 
98~4i7~t--98~4164+-98.4554 98j15698~37()4~98.3699--98.4057 -98.4Q60 _~_8}26_8 
98.5221f 98~60i3_: 98.534~98.5?_01+- 98.5-049_,~(52()J~~~if4786- 98.5195" 98.6028 
98.7117 98.7212 98.7094 98.7099 98.7446 98.7522 98.7531 98.7125 98.6283 
98.849098.8572 --98.8330 98.9002 -' 98.8276-98.8340'98.8069_ 98.8508 98.8607 
98.9994 99.0730 99.0313 98.94f7' 99.0425-- 99~6546' --99.0~_43 98.99~O 98.9850 
99.2257 99.2025 99.1105 99.0861 99.1042--99.1643 99.1324 99 .. 1711 99.1801 
99.2319 99.3244 99.3689 99.3734 99.380699.3351" 99.3310 99.2888 99.2750 

47 99.5301 99.4513 99.3972 99.3990 99.4903 99.5016 99.4704 99.4132 99.5268 
48 99.5325 99.6684 99.6934 99.6689 99.6057 99.6046 99.6021 99.6538 99.5338 
49 99.8118 99.7229 99.8191 99.7720 99.7796 99.7948 99.7385 99.7606 99.7689 
50 99.8536 99.9872 99.8807 99.9020 99.9251 99.9158 99.9406 99.9115 99.8948 
51 100.1291 100.1392 100.1194 100.0297 100.1324 100.1432 100.0237 100.0374 100.1001 
52 100.1374 100.1599 100.1876 100.2487 100.1791 100.1702 100.2605 100.2378 100.1650 
53 100.3099 100.3888 100.4082 100.3039 100.3819 100.4248 100.3990 100.4179 100.4054 
54 100.5595 100.5008 100.5078 100.5805 100.5383 100.4931 100.4917 100.4623 100.4629 
55 100.7224 100.6629 100.6748 100.6400 100.7131 100.6450 100.7206 100.6929 100.7025 

225 



Appendix III: Nonnal (100, 36) 
100 generated values as per 25 runs in column A to Y 

J M N 0 P R 
56 100.7519 100.~JB5_JOO.852~~_10Q.8~6 JOQ.818Q~100.8798 100.7791 100.7944 100.7713 
57 101.0271 101.0132100,-~249 .100.959~10() .. 9~6 __ ~OO:9784- 100.90i1101.02i5-- 101.0343 
58 101 ,-0§61 , __ 1 Q1..Q§56l0..1.~_180 101·1451._1Q1.2189 101. f570-1 01.2060 --;10'1.0759- 101.0488 
59.101.3122 1 01.3378!Q1:_3785 _1 01.336~ __ 1 01.3150 101.24211 01.2293-fo1.2784 1 01.2938 
60 101.3855; 101.~~?9 .. 1Ql·384.5_ 101.3~5L101.4513-101~5098101.5022-- 101.4367 101~4042 
61 101.t)4Z6 TJ01·50Q~, ~Ql:60?~ 10~:597~_ 101.6372 1-01--:S795---~101.5628-101.553i 101.5936 
62 1 OJ.7723 i _1 O~ .J'~~~01:.I88§. ___ .1Q1J493 --101-:-7568101.7957 101.7943---f01.785i 10U265 
63101_.8774'JQ1~t)8 ,J.Q) .9185 101.9732-101.9588 101.8809' 101.9162 -10f8423 101.9288 
64 102.0732 !102.012.6J.J.02.1102 1Q2.:0078 _102m2-1102:1271102.0754-102.1306- 1020223 
65 J.02.18Q.!.I_J02.1461 , 102.300~ 102.1895 102.2020 -102.2989 102.3--153 102.2794 102.2505 
66 102.4122102.3915 102.3765 f02~43-78- 102A781102.3Sio 102.3221102.336i 102.3431 
67 102.5231; 102.4979 102~5-168' 1(f2.5988 f02.5548 102.6330-102.5522--102.6165 102.6121 
68 10i7252'-162~6814- 102.8237~ 1'02.6865 '102.7869- 102.6753--102.7456--102.6573-102.6372 
69 102.8473'102.9137' 102~9397~ 102:9488 102.9252--102.8828 --;f02.8454 102.8381- 102.8383 
70 103.0729: 102.9230 103.0780' 103.0116"103.0942-1-03.0999103.1292- 103.1112- 103.0843 
71 103~244i' 103.1406-'103.2873' 103.2025 103.3376 103.2545 103.2690 103.1836' 103.1682 
72 1 03.3656-f03--:-3746i 103.4284 103.4536! 103.3788 103.4205 1 03.3996 -103~4591 1'03.4462 

--~.-... - _.------_ .. , --.----- .... - ..... -

73 193.55~8; 1 03'-4~77; 103.5613 i 1 03.5~~21_ 103.5372. JQ~.66~J.03.5671 . JQ~.6596. 103.?968 
74 103.7689! 103.7673 103.8772 103.7908l 103.9030 103.7294 103.8209 103.6974 103.7303 
75 103.9269 103.8267 103.9627: 103.9219'-103.968T 103.9859-- 103~9831-103.976i103.8742 

- - - -------.- -- ------ I -- --- - ----

76 104.1385 104.1135 104.2232 104.1964 104.2175 104.1473 104.1493 104.1246 104.1963 
77 104.2511 104.2727 104.3043~ 104.2709104.4617 -104.3822' -104.3808 104.3219 104.4049 
78 104.?_~~211.9~,-42~~~~104~64il104.6259' 104.5030~ 104.?257 __ f04.5291. 104.5554 104.4360 
79 104.74331 104.6669 104.8370, 104.8394 104.7736' 104.8237 104.8344 104.7659 104.7385 
80 104.9058: 104.8235T 104.9476 104.8691 105.0122 104.8973 104.8915

1 
104.9247 104.9152 

81 --105.1_79411 05~1209 ~_J 05.119~~-1 05.1135 ~ 105.2063---105.2505. 1 05.08§?_105.237~ __ -1o-~~2.?87 
82 105.3277: 105.20961 105.5381 105.4620 105.4461 105.3311 105.5091 105.3136 105.2828 

~!--~ ~~:~~~; i ~ ~~~;~~~ I-~ 6f:~}1' ~ 6;:~f~-;~~ ~;:~~~j ~ 4 ~~:~t~~ ~-~~:~{~~ ~~:~~~~ ~~;:~~~~ 
85 '106.0122 105.9055;-106.0612 ·106.17791106~2168 106.1324 106.0365' 105.9997 105.9999 

.. __ .. j. __ , .... _. --L~.. .._. . _.---. • ... --.- ... 

86 106.4043 106.2960i 106.5217 106.3071, 106.3561 106.3599 106.4767 106.4710 106.4239 
87 u106.7336 106.51-4~jJOf:3...6966: 106.6§73i ~I()6.76--56, 106.6·~8_!... 106.7844 ,106.6417 __ 106.5021 
88 106.7562

1 
1-06.7410 106.9717,.;,106.9)_58i106.8977_.1Q6.8B..67, 1..96.8075 ____ 106.90~107.0066 

89107}3 .. 57 .. 1'_1..9(1.1131.1 07. '.2]1.6. 107.~79.1;1.0} .... 178.9 .. __ 10.!.3?99_ .. 107 .. _0935_.1.07.21.6. 0 _1.97
.2262 

90 107.3563 107.3216i 107.6135 107.3992: 107.7118 107.4493 107.7286 107.5408 107.4768 
91 107.9834 107.84281107.9725 -107.7928;--108-:-0733 108.6586-- 108.0362107.9406 10!-9114 
92 108.0805 j 107.9315:1 08.29-77 _IQ8.3I~·1' 1 O~. f88j~J.Q8.Q950 .1.Q8.14'6f--1 0f3._1~04_ 108.1642 
93 108.4514'1'108.3210 108.5782 108.5359 108.8860 108.8234 108.4877 108.5~64~ 108.6651 
94 109.27461 109.0765"-109.3608109.2842' 109.0126; 108.9567 1·09.372~_109.2490 10~.0377 
95 109.6455 109.1837--109.8554' '109.7321 109.784~ 109.7~~01Q9.5g00 109.8068 109.5897 
96 110.0812 116:2443" 110.1-000~ HO.1027~ 110:1-718---1 fO.1160 _1'1QJ989J09.9~3 110.1575 
97 110.9574 110.8727 111.3169111.01io: 111.i857 11i[?'606-!.11 .. .1_89!:) 1.1.1. 1464 111.1018 
98 111.6222 111.2622 111.4966' 111.6892 '111 ~524 (J11.8718 ____ 111.5?_20. 111.4958 111.4677 
99 112.5483 112.1944 113.673f~ 112.7890 113.7406 113.0306 112.8951 112.6976 112.5588 
100 117.3851 118.2146 114.6166 116.4948-11~:5168 115.5955 116.1568 116.8225 117.3924 
101 
102 
103 mean 

100.0000 104 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 
. - -

105 std.dev 
6.0000 6.0000 106 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 

107 

226 



1 
2 
3 
4 
5 
6 

Appendix III: Normal (100, 36) 
100 generated values as per 25 runs in column A to Y 

STy 
84.3792 85.0299 83.9992 84.9460 83.3359 85.1747 
86.8874 86.5416 - .----t- -- ----~ -- ------

______ _ 87.14~ 86.6'L~8 86.5347 87.3397 86.5007 
88.1703 88.5165 88.0763 88.3242 88.4005 88.6882 - 87.9786 
89.0170 88.6733 §~.230i-- 88.8671T B8~8186 88.768-1' 89.1412 
89.4486 89.6779 90.0089 89.8989 89.5850 89.7487 89.6263 
90.5654 90.3453 90.229~~0.}675'-9Q.~ 90.4969-- ~Q.4109-

7 91.0642 90.6378 91.0326 90.9693 90.6308 91.0181 90.6479 
8 91.0807 91.4281 91.236~J 91.1478- ~f4594~2876 91.439,4 
9 91.6416 91.6610 91.7877; 91.5379 91.6355 91.6634 91.5887 
10 921253[92.6713 - 92.0994T 92.1932~.1177 i 92.2465 92.1538 

j; -~~~~!-~Em!-ii:;i~f~~~m~ -!r~ri~i~' -;[m~ 
15~}.5116: -_~3.~733L 93.5316] 93~5f10 }L3~4607 93.6495 93.5847 
16 93.9448 93.94971 94.0051 93.9236 93.9771 93.9244 93.8575 
1794.1921 '-94.0304; 94~ 1632 93.9992 94.0864 94.0856 --93.9865 

-- -+ -- , - --------

18 __ 94.2682 94.3950. 94.36~~~_ 94.4320 I 94.3557 94.4 720 94.4469 
19 94 .. 5. 566ti-- 94.5913, 94.6.282i 94.4842! 94.6318. 94-.. -.518.2- - 94.6122 
20 94.8248 94-.7633.--94.8204 94.8729 t 94.7360-r-9~-.9527~ 94.7525 
21 94.9479 95.0389 1 95.0267 95.03121 94.9250 95.0073 95.0984 
22 
23 

9?2.~?41-95.1830r-9K2793 95.1965 i - 95~30~~_=~t~}~~~--=- 95.-'132Z 
95.5271' 95.51331_~5--,??28 95.4000, 95.4407! __ 95.4450;... 95.3510 

24 95.5405 95.5289 95.5867 95.6455 95.6096 95.6981 95.6950 
25 95.9123 __ .§l?9009 95.8087 95.8390 ~ _~5.~013 ._~5._9264~5.~_020 
26 95.9347' 95.9218 96.0815 95.9876 96.0275 95.9901 96.0257 
27 96.2688!96~23861 96.2257 96.2305 i - -96.1f64 - 96.2094' 96.2369 
28 _9_~._~~191 __ ~.3320 i 96.4064 96.3436 ~ __ ~6.4_574T-96.4454· Q6-.~:3.~~ 
29 96.6261 96.6058 96.6052 96.6230, 96.6146 96.6281 96.5738 ---- - --- +---- ~- -----------

;~ -}~~~I~=~---~§:~~~jl- _~~:~~-bl_ ~~:~~~~ ~~~t~r_--§~-~b~~~ __ ~~~i;~ 
32 97.1360 97.10841_~!.1258: _~7 .. 1.§95 ___ 97.0251i _ 97.Q3.~_97.1534 
33 97.2872 97.3161 97.2767 97.2706 97.2870 97.2706 97.1725 
34 97.4000 97.35191 97.43f9 9i3985 -97.3826 1 97.4580 97.4959 

~~ ~i~i~t]i~~~l~[~~~~l Jj~~:~: -~i~i~~ i~~li~~~~ 
37 97.9054(_ 97.8863!_97.91.29~_ 97.861ZJ. 97.9359

1 
97.9.763' _~ .. 7.91~9 

38 98.0900 I 98.0919 98.0933 98.1132 98.0417', 98.0486 98.0003 
39 98.1825 98.2084 98.3156 98--:-2099' 98.3059 ~2E.304 '-98.2679 

98.4486 98.4070: - 98~321998.4050-- 98.3078-98.3942' -98.3476 
98.6281 98.5687 -98.5880' 98.5522' 98.5045 98.5215-98.4840 
98.6308 98.6751 98.6711 98.6903 98.7354 98.7535 98)580 
98.8362 98.8189 98.8205 -98.8601- 98.8-827 98.~579-- 98~8527 
99.04211 99.0453 99.0528 99.0025 98.9771 99.031_Q.._ 99.0096 
99.2409' 99.1974 99.1823 99.2025 99.2200 9~2371 ~9.0995 
99.2517 99.2823 99.3003 99.2747 99.2537 99.2600 99.3769 
99.4811 99.4622 99.4290 99.4696 99.4253 99.4372 99.4803 

40 
41 
42 
43 
44 
45 
46 
47 
48 99.6217 99.6286 99.6586 99.6181 99.6583 99.6640 99.6069 
49 99.7179 99.7203 99.8180 99.7233 99.7074 99.7124 99.8335 
50 99.9926 99.9793 99.8726 99.9726 99.9838 99.9907 99.8618 
51 100.0876 100.1291' 100.0893 100.1329 100.1184 100.0983 100.0737 
52 100.2293 100.1779 100.2024 100.1698 100.1790 100.2053 100.2280 
53 100.3222 100.3260 100.4118 100.3594 100.3049 100.3737 100.3431 
54 100.6028 100.5901 100.4827 100.5516 100.6005 100.5319 100.5668 
55 100.6599 100.6233 100.6143 100.6189 100.7102 100.6480 100.7291 

227 



Appendix III: Nonnal (l00. 36) 
100 generated values as per 25 runs in column A to Y 

s V W Y 
56 100.8753 100.9042 100.8857 100.9031 100.8050 100.7910 
57 -101.0396 -101.0592 --100.9752 - 101.01"08-100.9652 100.9646 
58 -1 01:1-095T-1 01 ~0830-101~1335 f01.1253 -1 01.1641 101.1701 --- --+ ------- -- ----- --------
59 101.3666i 101.3468 101.2225 101.2843 10-:-1.=27=3=-=7C--: 101.2623 
60 10f4621- 101.4161' -101.5-012,101".4720 -101.4751 101.4924 
61 1 01-~5563; 161.6606'- 101~5479 i101--.606-()--101.6195 1 01 ~5432 -101.5423 
62 10(8403: 101.7304 101~7975~101~7778~10f7558-101.8097101.8400 
63 1 01.8~~3" 19-1~85_64 __ 1 Q1.903~r101.8703 1 OL9623 -101§679101.9084 
64 1 02.1 ~82 102.1731._.1.02.0721 J02.1508 J.Q2~0489 -102.0141-102.1099 
65 102.2039 102.3025: 102.2448 102.2962 102.2498- 102.2996 102.1715 
66 102.4765 102.3742 102.373-~102:3717i10i4089 102.323410i4955 
67 162.5_518 1Q2.5863 102.5249102.551211-02.5423- 102.5677 102.5448 
68 -102.7895' 102.7530 102.7491 102.i7BO 102.ma- 102.7103 102.7828 
69 102.9058, 103.0022 102.9716 T02.9895:- 102.9536~ 102.9320 -102.8425 -----1 . ____ ~ _ _ ____ . ___________________ _ 

701 03.112~L1 03.0150 1 02.973211q3.(~X~_~_ 103.0428 103.0165 103.1638 
71 103.1955 103.2952 103.3055! 103.2306 103.2529 i 1()3.2861 103.2337 
72 1 03.52~_2J 1 0~.~2Q2~ fc)~3302 t_"-Q~..4756 f03.4405" 1 03.352f1-03~4686 
73 103.6623! 103.6418 103.6689 103.6682 103.6656 103.6751 103.6029 
74 103.77191103.79~f6J 163.6804' 103.7562' 103.7466 103.6-756-163.-8191 
75 104.0468 103.94831 103.90761 104.0806 103.945-S104.00il103.9812 
76 104.134'L+ 1 ()4.?}_~~_..1()4.1_~4!511Q4.0_~09' 1 0{.2JI~_J 04.0883-1Qi.187~ 
77 104.4~~!5JJ04}947: 1Q~ ... ?~~! __ 104.~4_28 10~.3906J04~2622 104 ___ ~1?9 
78 104.4905 104.5708 104.5685 104.6107 104.5477 104.6032 104.5349 
79 -1()~f82571 104.8228f 104.7933J 104.7216' 104.7812!104.8211 -104.7329 

:~ --~~~~T~;~L~~::i~~-~~ ~~~~~:~~J~~;:~§~1~ ~~::;;;f ~~::~~~;- ~~~~~~~. 
82 105.4801' 105.4763 105.4436 1 105.3429 105.3485 105.4707 105.4665 
83 105.75';f9~1(f5~7400105:5682-:- 105~6-176- 105.68~f1--105.5998--105.7041 
84 105.8124' 105.83661 -105.8838 105.9474 1()5.8609 105.8459 1oKs519 
85 1 06.()~8811 06.21_43" --1Q6.2I61 1_ 1q6:12~3-i-106.1120 ___ 1 06.0617.-106.9835 
86 1 06.502411 06..36Q?_U06.21~8i 1_Q.~4378_~06.1~~9. _ 106.37?! __ 106.4747 
87 1 06. 728~! _~ 06.81~~ 1 06.57 45_J06.5!524_1Q6.5~QO. to..~._5423 _1 06.5725 
88 106.92541106.8489' 106.9480 107.1088 107.0810 106.9746, 107.0804 
89 107.37691 107.2817" 107.05-44 107.3f74--10i3424-10Y08581oi2j88 

____ -----1---__ ___ - - . ____ - __ .--- 00--- ------ ---

90 107.4886: 107 .6_0}2 ,1 07~684~1 1_0~5452 _ 107.4992_107.638_4_ 1 07 .55~~ 
91_107.8794107.!~747-,- 1_0I~96_001108.0007107.87~1Q7.9Q.!1... 1_08.0~74 
92 108.3824 108.2961 108.1313: 108.2464 108.3640 108.1813 108.1801 
93 108.9345'108.8706 108.5869 108.7899 108.5122-168.5556- 108.6075 
94 108.9482. 109.0340- 109.1428 109.0955 109.3916--109.1~~7109~2927 
95 109.9489 109. i762' 1 09~5232 -109.6468 109.4467109.6826 109.4625 
96 109.9803, 110.1888 -1-10~25351 1"0.3104 110.53611-fo.-0496_1 !0"-~333 
97 111.2209[ 1fr0779_110.~42(.J10.6446 110.7cS65~_11QJ782_J 10.6030 
98 111.5736 111.7747 111.6703 112.3691 112.1038 111.8641. 112.4254 
99 113.8110 113)023 f12.6932 113.6638 113.3017--112.7312 113.6717 
100 114.3950 114.5916 i 116~6071- 114.5942 115.1659 116.3505 114.5575 
101 
102 

103 mean +- ~ 
104 100.0000 100.0000 100.0000+--100.0000 100.0000 100.0000 100.0000 
105 std.dev 
106 6.0000 6.0000 6.0000 6.0000-+--6.0000 6.0000 6.0000 
107 
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Appendix IV: Beta (12. 15.30) 
100 generated values as per 25 runs in column A to Y 

A 

1 12.6418 12.4595 12.52601 12.4663 12.5661 12.5650 12.5910 12.1845 12.5500 
2 1~·t2~8[n_n1?--Z~Z7i 12.7636 12.7410 ___ .12.7013~.6856 12.6286~ 12.8184 12.7406 
3 12.9772 12.9486 12.8492 12.8969. 12.9221 12.9151 12.8898- --.. ~ 
4 13.b44~- 12.96261 13.1070 13.02161 13.0116;· 13.0050 13.0022~ ~~:~~~~ ~~:~~~~ 
5- 13.21~ij-1~.09531 13.1700 13.1397T _13.1673~ 13.1709- 13.0971 13.1729 13~1725 
6 13.23421 13.2526, 13.2376 13.2152. 13.20~n185413.2337 131933 
7 13.3340'13.2927' 13.3683 13.3203 13.35n-13.2879 . 13.2188 -~ . ---- -~-~- 13.3091 13.2955 13.3578 
8 13.4581 13.4075 13.3862 13.3859~_1_~3663~~.4~1~-13~3748--13.4216 13.3816 
9~?QQ~ 13.474~~ ~3.~809 13.4895 13.4647; 13.4453 - 13.4718 13~5079-· f3.5057 
10 13.5897 13.5306t.J.~·574!5~ _13.5214 -13.55761- 13.5668~5-185n 13.5136 13.5357 
11 13.6~26" 13.5912 1 1~:6297: 13.596~ r- 13.~435 1-_13.~108- 1 ~.6029 __ 13.~~25 13.6114 
12 13.7079 13.6889, 13.6982' 13.6890: 13.6542, 13.6771 13.6651 13.7111 13.7022 
13 13.7642 1:f7244 -13.78341 13.7274 13.7630;13.7~f52-- 13.6980- 13.7613 13.7237 

-~. I ------ .•.. -- . ---.----. _____ • 

14 13.8426 13.8099 13.7952 13.8116 13.7871 13.7961 13.8215 13.7894 13.8398 
.---.. --- -~. . -1- -- .... - - -- --.-- ---... ____ ~_._ 

15 13.8?~~ _J}.~~~.? __ 1 ~ ... 87.851_! ~.?5~~. 13.8765 13.8767 13.8758 13.8726 13.8652 
16 13.9645 13.9387. 13.933g+ 13.9201 13.9086, 13.9004 13.8842 13.913Y 13.9351 
17 14.0Q~~13-:g443:-13.9896: --13:g770T4-:-606113.9881--13.97~-f3.9940 13.9691 
18 -~4.0531t· . .J.4.0~4Ji .. _.14.0. 468 f~.0273_1.{0120· ---14~b167-14.0132---14.0198 14.0558 
19 14.116~nJ4..!061 t_J4.Q817_ 14.0737 14.0924 14.0968 -14~6979- 14.0989 14.0780 
20 14.156014.110714.168314.146614.1351 14.124014.108414.130914.1623 

--~-~__ -1 __ _____ _ _______ _ _____ ____ _ _______ _ 

21 14.1959 14.1997 14.2065 14.1892 14.1672, 14.2098 14.1599 14.2037: 14.1749 
22 ~2821- -~14~2271' 14.2506 14.2408" -14.2691 14.2205; -'14.2572 14.2356 14.2732 

~~~::~~~ --}f~~~~r ~ !~' -~~ ::~~~; I~~~::-~~~-r-~ ::-;~!~r---~ !:~:!~ ~~.~~~~~ ~ ::~;~~ 
25 14.4187 _ 1_1.388~J_14.4Q41 _14.3TiQi __ 14.4-183_-14.3715 . . 14.4038 1_4}859 14.3875 
26 14.4539, 14.4421 14.4515 14.45641 14.4201 14.4620 14.4190 14.4564 14.4606 
27 14.5249! 14.4875'-14.5126 -~46951 14.476314.4958-14.4666- 14.4955 14.5027 
28 14.54031 14.5-40f--14.5373; 14.5599-14.5574 14.5342--14.5531 14.5431 14.5403 
29 14~6097l14.6034r14.575TI 1~f5789.L 14.5685-14~605f--14~5-i39 14.5861 14.5908 

~~ ~:~~:~t·· _~_::~~l~~--~::~~I~[ -~!-:~~~~+ _-~:~~{~~~~:~~~~~J -~:.~:~~:~ ~::~::~ ~::~~~~ 
32 14.74681" 14.7341: 14.7353 14.7143 24.7346 14.734J 14.7439 14.7572 14.7303 
33_J4.??~0.L 14.I869L14.7821 14.78~4. 14.789?1.i.].§l52 14.7539 14.7821 14.7961 

341_4.85~Q ... 1 j _1~.8.1.i. t-: 14.8336 14.8196
-l- .14.8.1.55 .14.80.7. ~ 14.84.26 ... 14 .. 82.90 14.8147 

35 14.8816 14.8659 14.8785 14.884~ 14.876~~14.88~_ 14.8~~~_14.8()~~1 14.8616 
3614.92801 14~924.614.9234 14.90731 _14.9162_ 1~ __ ~052 14.89~3.J4.~314 14.9361 
37 14.99541 --14.9605 14.9592 14.9742! 14.94851 14.9848 14.9548 14.9827 14.9557 
38 14.9979 -15.0182115.0283 15.0051~-5.o3f7~- 14.9938: . 15.0201-15.00~5 15.0282 

~ _ _ ___ t------- _ -~- - ______ 1.-_____ -

39 15.077915.0475' 15.0701 15.0773 15.0687 15.0772: 15.0586 1~0708 15.0823 
40 15.099115.1194 15.1029 15.0899--15.0988~15.0893 15.1§5~ __ 15.1Q~1_ 15.0879 
4115.1521 -15.1413T 15.1483! 15.161015~1390 15.1426 15.1383 15.1626 15.1378 
42 15.2091-15~iI41~ 15.2.106 15.1945, 15~2160 ·-15.2119 15.2148 1~2004 15.2190 
43 15.2490 T5~2281r 15.i~58! 15.2560-= 15.2246 ___ !.5.25~-15.2344_ 15.2~87 15.2465 
44 15.2970 15.3167 15.2898+---15.2885 15.3190 15.2886 1?_.}08~ 15.3031 15.2976 
45 15.3450 15.3576 15.3589' 15.3320 15.3-547 15-.3437 15.3226 15.3503 15.3652 
46 15.3871 15~3776 15.3747 15.4028 15.3-783 "--5.3898 15.4119 15.3917 15.3675 
47 15.4444 15.4551 15.4297 15.4382 15.4275 15.4528 15.4235 15.4287 15.4302 
48 15.4 753 15.4 723 15.4934 15.4884 15.4967 15.4 725 15.5039 15.5050 15.4927 
49 15.5091. 15.5284 15.5218 15.5571 15.5125 15.5337 15.5422 15.5287 15.5159 
50 15.6004. 15.5932 15.5927 15.5633 15.6050 _15.5853 15.5800 15.5986 15.5992 
51 15.6337 15.6304 15.6113 15.6395 15.6383 15.6254 15.6572 15.6367 15.6058 
52 15.6679; 15.6881 15.6974 15.6775 15.6749 15.6901 15.6627 15.6870 15.7042 
53 15.7431 15.7584 15.7431 15.7146 15.7286 15.7428 15.7198 15.7262 15.7496 
54 15.7528 15.7590 15.7619 15.8018 15.7828 15.7712 15.8005 15.7963 15.7573 
55 15.8144 15.8452 15.8205 15.8527 15.8404 15.8343 15.8175 15.8358 15.8049 
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56 
57 
58 
59 
60 
61 
62 
63 

Appendix IV: Beta (12. 15, 30) 
100 generated values as per 25 runs in column A to Y 

A 

15.8805 15.8855~5.86§6 __ 15.~736 15.8831 15.9068 15.8898 15.9037 
15.9035 15.9372 J?9~~: 15.9129_J~~402 15.9388 15.9614 15.9327 15.9450 
15.9936 15.9905 ~97~~ 1 ~.0132 _ 15.97~9 15.9843 15.9692 15.9989 15.9673 
16.0219 16.0610 16.0201 16.0577_16.0575 --1-6.0390 -- _16.0551 -~16.0647 16.0211 
16.0~17, 16.07~~_ 1E>.09_~516.0793 _1~OJ29 16.0959 16.0893 16.0783 16.1017 
16.14481~6.1413 1 ~"-132~_16.J_4~ 16 __ 123i --16.1408 -----r6.1373-16.1505 16.1633 
16.1696_1E>·21~~r~6.1988 __ 16.2119i~·2~2~_~209_6 __ 16.2244~~16.2079 16.1733 
16.2310 16.2420: 16.26941 16.2380, 16.2281 16.2711 16.2728 -16~2455 16.2371 

64 16.3007 -1 Ef33681 16.2816'--16-:3374' - 16.3394- ffi.3013 --16.3117 -16.3353 16.3199 
65 16.3446· 1_6 __ .3_98 __ 6 __ -·_--1_--_6.350 __ 2 __ ~_. 16.3863 i-----=f6.34~-16.3774 16.4016 16.3826 163820 
66 n_16.4F61 16.4096.--.l6.4~761 16.4180 J.6~4~32 16.4244 16.413i---16~4270 16:4023 
67 16.4777! 16.4922 16.45941 16.5013 16.4934 16.4995 16.4925 16.4689 16.4639 
68 1~.508~_r 16.5517 16.55-191 16.5379 16.5361 16.5370 16.5598 - 16.5773 16.5546 
69 __ 16.5?~~+ f6~6317--16~5705 --16.6424 16.6275 -16.6397--16.5952 16~5884 16.6151 
70 16.6469, 16.6578, 16.6828, 16.6425 16.6467 16.6423 16.7041 16.7022 16.6455 

-----1 - -. ----- -- -- ----

71 16.7202 16.7476J _ 16.7077 16.7303 16.7428 16.7246 16.7475 16.7600 16.7169 
72 _16.7559._.J6.7979-16.7972 f~&161_~§.7860 16.81281 16.8080 16.7851 16.7970 
73 16.8342: 16.8605 16.8796 16.8726, 16.8732 16.8929. 16.8870 16.8922 16.8695 
7416.901211'6~951 O' 16.8872 16.933Oj 16.9199 16.9096 16.9351 16.-9178 16.9073 

- I i 

75 16.9473; 17.0419. 16.9541. 17.0028 16.9804 17.0320 16.9923 17.0201 17.0207 
76 17.0631'-1T04i1~ 17.0911--17.0828 T- 17.0927- f7.0480-17:11~17.0685- 17.0312 

- - ---- -,---- ------

77 17.0959 17.1461 17.1616 17.1360 17.1186 17.1522 17.1425 17.1324 17.1588 
78 17.2019 17.2404' 17.1719; -17.24~fi--T7.2483 17.2236 17.2586- 17.2525 17.1867 
79 17.2304 17.2943, 17.2581

t
! 17.2920 17.2651--1i3129-- 17.3301 17.2917 17.2600 

80 -17.3!38 ff405S'- 17.l~~4._ --1J.401~ 17.~132-=Jl-3763r 1Z.3842 17.4048 17.3971 
81 17.4635 17.4502 17.4207 17.4919 17.4898 17.4 772 17.4525 17.4360 17.4844 ---- -- --------

82 17.4670 17.5848 17.5530 17.5357 17.5210 17.5465 17.5982 17.5954 17.5036 
83 17.5763 - -17.6770 17.6296--'17.6241 17.6720- 17.6282 17.6396 17.6026 17.6160 
84 17.7076, ~7192 17.7004~17.7642 17.6982 17.7560 17.7738- 17.7903 17.7296 
85 17. 7959:-f7.884 f 17.7780 17.7947 17.7910 17.8628- -17.8283 1 i.7966--t- 17.8505 
86--17.-8717 --17.9057 17.9423 17.9900 17.9737 17.9141 17.9818 17.9907 17.8846 
8717.~7021 18.0132r--18.0322 ___ I~.oE>.~ 1~059~ __ 113.06~9 __ 18.()9_Q!3~ 18.0324 17.9847 
88 18.12581 -;f~f.21751 18.1152 18.1511. 18.1349 18.1474 18.1539 18.1890 18.1867 
89 18.26571 18~3443r--18~251518.2467 18.3084 18.2991- 18.3520 18.2814 18.2122 
90 18.3044 1 18.3761~ 18:3803 18.4639' f8:-3729-18~4011 18.3844 18.4274 18.4449 
91 18.4619[" 18~583~t - 18-:-482618.5222- 18.4966 _18.510~~ 18.60,!~_ 18.6057 18.5431 
92 18.6662f 18.6976-- 18.7f17 18.7537 18.7560 18.7616 18.6997 18.6630 18.6680 
93 18.8538~ 18.9571 18.7700- 18.8861 18.8020-18:-89-70--18.9189' 18.8232 18.7638 

18.9272 18~9974f9.6987 19.0592- 19.1296-~1B.g41£.J.9.06-36--19.1336 19.1341 
19.1192 19.3451 19.2714 19.1709 19.18~~ _~"-3655_ 19.2415._ 19.3119 19.2532 
19.5196 19.4649 19.4267 19.6633. 19.5997 19.4216 _19 . .E>.158 19.4873 19.4767 
19.6563 19.7711 19.6561 19.9071" 19.9222=~1Q.84_~3 19.9388 19.8920 19.6931 
20.1773 20.2830 20.2986 -20.0902 20.0365 20.1641 2Q.1073 20.1054 20.2779 
20.3606 20.77071 20.4641 20.7059 20.5946 20.6641 20.9946 20.7349 20.5098 
23.0731 21.7096 22.5530 21.8410 22.1322 21.9590 21.3619 21.7513 22.3892 

94 
95 
96 
97 
98 
99 
100 
101 
102 
103 mean 
104 15.8571 15.8571 15.8571 15.8571 15.8571 15.8571 15.8571 15.8571 15.8571 

105 std.dev 
1.9070 106 1.9070 1.9070 1.9070 1.9070 1.9070 1.9070 1.9070 1.9070 

107 
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Appendix IV: Beta (12, 15, 30) 
100 generated values as per 25 runs in column A to Y 

J 
R 

1 __ 12.3~?~~ 12.5817 12.6408 12.1314 12.5923 
2 12.76411 12.6655 . __ . 12.7703 12.8237 12.6637 
3 12.83751 12.8919 12.8461 12.9152, 12.8453 12.8821-12.9f89~ 12.8953 12.8408 
4 13.0513 . -13.02.1Q, _13~643~- 13.0097~- 13.0952 __ 13.02T3 13.129513.0389-- 13.0690 
5 13 .. 1248.L 13.09381 13.09§3J ---.13.1282,_1?1,1?.?~_1~.1377 13.2161--'13.1816 -13.1387 
61~:~~.1g: . .1~.2575l.,~24041 ~.2329 13.2748 13.2041--13.2675 13.1895 13.2207 
7 13.2695 13.3303i 13.3435: 13.2955 13.2934 - -133001 13.3608 13.3237 13.3025 
8j3.4221r -13.3735i- 1]'3459 ='13.4168' 13.4463 13.3941 13.4636-13.3980 13.4077 
9 . ~.4852.-.1~'!~~4_ 13.4681 13:4760-n50Ta 13.464413:5404- 13.5022 13.4920 
1 0 .~~ 3..§124 13.5261[ 1~.5i72 -13.5409: 13.5400, 13.5354 13.5796- 13.5236 13.5224 
11 13.5759L...Jl~~217! 13.6326 -13.62301 13.6051 13~7'84 '13.6546-'-'13.6317" 13.6239 
12 13.6959 i .13.6633 . 13~6461 . -T3.6702 ~'T 3.7084 13.69548.7330 13.6700" 13.6666 
13 1~-=-t3111 H13.7295f' 1~)061; .1 ~.f568 j ,13.721 ~-_ '13.7654--.13.8092 13.7175 13.7219 
14 13.~1'~~807~~_~.8181! . .1~.7~,96i1}.8422 ,13.765!_~!~.8248 _ 13.8341 13.8193 
15 _..13.8612 !.1} .. 8741t_13.8755J1,~.87ssr.1}-"-?,901, 13.8630 13.9261 13.8786 13.8868 
16 13.9052: 1.~.~9~?J13.8883i 1,3-"-9Q(3~_.13.9110 13.90471-3.9367- 13.9113 13.8922 
17 13.~§§91 13.9~~2~ 13.9918' 13 .. ~Z52~ 14.0043 ~-"9671 14.0()68 13.9654 13.9893 
18 14.0291! 14.01691 14.0008 14.0345' 14.0228 14.0287 14.0764 14.0508 14.0172 
1914.089~t 14.0784[14.053814.0670' 14~12()4·-14.0966- 14-1402 14.0722 14.0998 

;~:: : ~~~CHT~KJ: :~~ r =::1~g~---f :1gj~ --+: 1!~-L_ : :~~~} ::: ;~~ :: : ~~~ 
22 14.2350: 14.2176-1- 14.2281! 14.2350 14.2455 14.2340. 14.2766T 14.2674 14.2617 

;! ~::~~~~~I 'J:~j~!~r-~~J~~~r nm~{j~j~f ~1~~~~~n.~!:;~~~_~i::~~~' ~::;;:~ ~::;~~~ 
25, 14}J4-~114 . . 3.J281144102j14u38.701 .1.4.3812 14.411.1" 14.4?~J 14.3754 14.3861 

;~-~-:::~~~ !~}{.}~~~l~.:::~~~ ~ :~~~}~ I ,t::;1~~' ,+1].~;~: .. ~ ;::~~~ ~ :::~;; ~ ::::~~ 
28 14.53591 14.5591 14.5487 14.5185 14.5300 14.5186 14.5740 14.5484 14.5454 
29-14:5996-'- u1.4.§662] 14. 58E).BJ_ 14 .. 60?J~ 14":?805~'14.585~~14.5977'~-"§_900 14.5722 
30 14.6192 14.6143! 14.6290 14.6197i 14.6549 14.6326 14.6680 14.6434 14.6511 

----- --1 -- T-- -- -_ .. -- -------t- ---------- • 

31 14.666414.6811· 14.7039! 14.6694, 14.679514.661714.683614.679714.6691 
32 14.7443 1. 4 .•... 73081'.14.7043.,.~. 14)49~ .. 1 14.7456 14.7481 f4. 7676 14.7446 14.7451 
33 14.7820 14.7610j 14.7795; 14.76361 14.7885 14.7811 14.7895 14.7892 14.7592 
34 14.8189 f4.8401· -14:8183' 14.8444' 14.8242 14.8186 14.8454 14.8240 -1'4.8441 
35 14.8951· 14.~917[-14~72~.~_J4..,~2~ 14.8727 14.8579 14.8826 14.8923 14.8925 
36 14.8953; .. 14.8981 14.9144 14.9145 14.9271 14.9310 14.9353 14.9093 14.8993 
37 14.9666 14.956-9 14.9446 14.98i8~ 14.9670 14.9459 14.9643 14.9495 14.9678 
38 15.0123"'--f5'.020j' '15.0311 14.9965- 15.0191 15.0313 15.0359:-f5'.0395 15.0114 
39 15.0774- 15.6594 c-15.0~27'J -~I5.0~62~-_15.,O<t2~ 15'.0]04 _15.051 O~ _~.0627 15.0545 
40 15.0902 15:1061- '15.1217 15.1220 15.1301 15.0953 15.1314 15.1138 15.1125 
41 15.1454 15.1580 15.1370115.1649~" 15.1474~ '15.1'656 15:1706 15.1659 15.1312 
42 15.2113 15.1958 15.2164: 15.1954'-15.2118 15.1890"15~1-944 15.1985 15.2238 
43 15.2720 15.2388 15:2661 15.2278

1 15~25i7-1~26?B--15.2421 15.2606 15.2261 
44 15.2744 15.3040 15.2771 15.3215 15.2890 15.2812 15}Q.~3 15.2925 15.3177 
45 15.3533 15.3357 15.3316 15.3328 -15.3656~'15.34~1_ J5.321~~_ f5.3246 15.3630 
46 15.3842 15.3975 15.4026 15.4067 15.3698 15.3908 15.4117 15.4 ~ 15.3707 
47 15.4335 15.4202 15.4357 15.4346

c 

15.4602 -15~1?59~ 15.4396 15.4315 15.4323 
48 15.4967 15.5048 15.4912 15.4966 15.4655 15.5015_ 15.4795 15.5030 15.4931 
49 15.5231 15.5512 15.5235 15.5305 15.5407 15.5280 15.5530 15.5316 15.5537 
50 15.6017 15.5677 15.5980 15.5945 15.5772 15.5938 15.5542 15.5964 15.5653 
51 15.6373 15.6362 15.6241 15.6193 15.6121 15.6221 15.647!+-15.6429 15.6178 
52 15.6851 15.6793 15.6948+-15.7022 15.7009 15.6970 15.6506 15.6814 15.6975 
53 15.7437 15.7081 15.72~ 15.7394' 15.7468 15.7580 15.7008 15.7356 15.7273 
54 15.7781 15.8070 15.7895 15.7807 15.7632 15.7603 15.7906 15.7871 15.7867 
55 15.8541 15.8151 15.8192 15.8141 15.8079 15.8471 15.8215 15.8205 15.8201 
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Appendix IV: Beta (12, 15. 30) 
100 generated values as per 25 runs in column A to Y 

J R 
56 15.8722 _1? ___ ~Q~7_ 15.9035 15.9095 15.9040 15.8754 15.8668 15.9053 15.8970 
57 15.9552 15.9114 15.9498 15.9171 15.9221 15.9316 15.9403 15.9598 15.9354 
58 15.9773 16.0134 15.9793-16.0132- 15.9945 15.9977 15.9470--15:9709 159874 
59 16.0682 ____ J~~0412.r 16.0645'16.0490-16-:D243- 16.0553 16.0372 16.0332' -16:0574 
60 16.0777 16.0946 16.0777: 16.0923 16.1020 16.0862 16.0564 16.1096 16.0770 
61 _16~1~~'§'_ 16.1721-1~J~~Z~16.1567 1_6.1~16.1267 16.1361 16.1596 16.1391 
62 16.2269: 16.1793 16.1920 16.2000 16.1720 f6.2319- 16.1667 16.1985 16.2107 
63 16~2600t 16.25Z1L.._.'1.§..~~6f-16:i518 __ 16.2?70 1_~255L 16222tf 16.2565 16.2433 
64 1§.}~~4 _!f.).~1_~~!_ 16.2956 16.3271 16.3344 !6.3~~ 16.2958 16.3233~-16.3286 
65 16}95~ 16.~Oo.,!_~3580 16.3798 16.3650 16.3492 16.3568 16.3629 16.3593 
6616.429~, 16.402~,_~45~2 1S..,!28~ __ 16.4232 16.4617 _16.3842 16.4460 16.4416 
67 16.5201 16.4610 16.5094 16.4942 16.4833 16.4672 16.4342 -16.4717- 16.4852 

--I 

68 16.531T 16·~Z93~_16.5385 __ 16.5493 1s..5~83_ !6.§8J~ 16.5364 16.5734 16.5510 
69 16.6206 16.6083 1f.).f.)~()~ ___ 16.6201 16.6182 16.5977 16.5837 16.5906 16.6176 
70 16.6780 16.6756 16.6738. 16.6685 16.6466 16.6956 16.6235 16.6988 16.6632 

1 ----- ___ _ 

71 16.7500 16.7653 16.7357 16.7077 16.7554 16.7456 16.6675 16.7667 16.7069 
7216.8053; __ }6J741~-:-16~~1~6! 16.8364 16.7629 16.8036-- 16.7877 16.7770 16.8292 
73 1§'~.Q051 16.891()c- 16.86T7'~ 16.8860 16.8283 16.892T~_~66 ----.!.~~.±~~ ___ 16.8402 
74 16.9211_~_16.913()j 16.9501 16.9232 16.9546 16.9225 1f.) __ ~1_Z4 16.9()§6 __ 16.9622 
75 16.9987 16.9.736! 17~()4~ 17.0218 16.9708 16.9931 __ 16.9791 17.0237 16.9956 
76 17.1049 17.1130 17.0944 17,0660 17.0895 17.1039 17.0032 17.0628 17.0852 

------------ -.- - ---

77 17.1255 .!7.1§-!3J J].1293!_E.1650 17.1113 17.1723 17:11~~_ 17.1537 17.1154 
78 17.2751. 17.1942' 17.2667 17.2177 17.2412 17.2184 17.1537 17.2275 17.2613 
79 17.3361": - f':2840 17.2744'-17.3267 17.2847 17.3022 17.2567 17.3289 17.3138 
80 fY3766t--17.408~17.4356·-17.3694! 17.3767 17.4030 17.3167 17.3653 17.3733 
81 17.56i.2~--=-1j.~fi9~1 i'4-§~o: ~}L~5E)1:_- 17:4269-=-_-_1f5056 17.3945 17.5016----17.4521 
82 17.5446 17.5983 17.5855 17.5746 17.5664 17.5352 17.5035 17.5267 17.5693 

__ -f-- _ - - ---- - ------ -~____ ----, 

83 17.6585 17.6520: 17.6975 17.6947 17.6252 17.6916 17.5766 17.6826 17.6228 
84 17.7526 17.7356 f7.709117.696~- 17.7259 f7.711f 17.6714 17.7057 17.7588 

-- --, 

85---17.864-5; 17.8248 17.820-9- 17~8814- 17.8334 17.8528 17.7922 17.8083 17.7880 
-1-- c- ----. 17.9899 86 17.9412. 17.9566! J.Z.9823~ 17.9027..L 1Z.~0?1 __ 17.9410 17.8370 17.9744 

87 18.0334 18.02091 18.0?.§8 18.0852E.9809 18.054~ 18.0000 18.0552 18.0901 
88 18.213318.198818.183818.131618.1971 18.180518.049518.1601 18.1162 
89 18.3253-18.2824 18.3321 18.3471 18.2180 18.3403 18.1759 18.2623 18.2391 
90 18.4074·-18.4240~i-18.3958 18j596~ __ 18.4450_~8.~823 18~534 _18.4440~.4634 
91 18.6361 18.5064~-'-18.5363 18.6129 18.5144 18.5454 18.4742 _1~5621 18.5275 
92 18.6625~7709·-18~7654 18.6571-18~7068- 18.7492 18.6001 18.7057 18.7382 
93 18.8157118.8157---'-18.8232 18.8277 -18.9376 -18~8071-18.8402 18.8754 18.9025 
94 19.1805 i 19.1421" 19.1652 19.1298 -1"8.9464'-19~1781 18.8858-- 19.066Cj" 19.0301 
95 19.2511-'- 19.2813 19.3113- -19.2757-19~459-f9.3957-- 19:1757 19.f94J_ 19.3815 
96 19.5971 19.5222 19.5227 19.5307- 19.619719.4'1"98 19.3846 19.6222 19.3974 
97 19.9418 19.6706 19.7939 1~.771f19~74:;29~=--19.981~_19-.8256 - 19,7454 19.7188 
98 20.0968 20.42~20.2774 __ ~_0~2655 __ 2()·?142 , ..10.04_()5 19.8905 20.2890 20.3284 
99 21.0181 20.7388 1 20.9213 20.7456 20.5281 20.8137 20.3036 20.7471 20.6604 
100 21.3215 21.7491 21.452521--:-7358 22.3089- }1.636§ 23.4558 21.7066 21.9351 
101 
102 
103 mean ~ 
104 15.8571 15.8571 15.8571 15.8571 15.857.!..t-J 5.8571 15.8571 15.8571 15.8571 
105 std.dev I 
106 1.9070 1.9070 1.9070 1.9070 1.9070 1.9070 1.9070 1.9070 1.9070 
107 
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1 
2 
3 

Appendix IV: Beta (12, 15, 30) 
100 generated values as per 25 runs in column A to Y 

s u y 
12.2793 12.5540! 12.5937 12.5790 
12.7908 1~.6756 "12.7517 12.7620 12.6407 
12.8909 12.8723 12.9106 12.9184 -- -12.858-7 

4 1}.0189j 12.996()- 1~0260--13.0855 13.1369 13.0285 
5 _13.10i41---.1}J1~~_13.0758" 13:11335-13.0867 13.1908 13.1430 
6 13.2430 _13.2040, 13.i60~( 13.2475 13.2715- 13.3062-13.1881 
7 
8 
9 
10 
11 
12 
13 

13.~2~8 .1-~-.31901 _J}.3~25-1- 13-.3~7( "13.2956' u13~3728 _~_13.2982 
13.3699 13.3793 13.3590, 13.4080 13.41651 13.4584 13.386f 
13.4562 13.4976- 13.487313.4772---13.44611 -13.55f7---13.4268 
13.-5490 -T3~5667 -13.5160 f3.5979-, 13.5704 13.574613.5638 
f3.6135 "13~5-i6f13~6123 --13:64351-13.6388" -1~6779-- -13.5867 

~ ;:~~~~L J~:t2~!t-~~ ;:~!~-];: ~~;~ -{;:~~~~-~:;~ ~~ --~-~-;:~~;~ 
14 13.82141 13.8076 13.8141 13.8323-13.788713.8275 -13.7724 
15 13~8441 i 1~.8557 1~~§401',--1A·881 f--13.8410--13 .. 8787 13.8678 
16 13. 9286

r
' ~ 3.91511 ~39248 i 13.94.' 13c9402 139890_11c~25 

ii H~~~~~:~~~t~:~!!l i:m~ i:~~~~~~:~i~ iH~~~ 
20..14.1129 "J4.1438 --1';i:1248T 14.1486~. 14.1147 14.1577- 14.1049 
21 14.2066 14.2122 14.2001 14.2237 14.2023 14.2326 14.2079 

----- - -- ------- ---- ------ --- f- -+ -, 

22 J4.2215 1-4.2136:.14.?_?1~.24§1. 14.2319 14.2_680 14.2094 
23 14.3Q~!3.. _1.111'.121 ___ 14.2885: _.14.2911. 14._3162 14.3182 14.3075 
24 14.3247 14 :3.532 ~--1..4,3_3_82 , 14. :3.780 I 14.3227 14.3803 14.3159 
25 14.3786 14.4146; 14.3898 14.3983 14.3932 14.4401 14.4053 
26 14.4540 14.4155 14.4364 14.4667, 14.4440 14.4512 14.4177 
27 14.5109 - 14.4943:" 14.5067-14~5T34 14.4733'--14.5264 14.4945 
28 14~5193 14.5328

1 

14.51-71-14.5447-14~5597" 14.5554--14.5262 
29 14.5881 14.6083] 14.-5-965 --14.6039 14.59~ 14.6290 14.5804 
30 14.6347 14.E>..117! 14.6200! 14.6432f~_1_i~~3_1414-:-6391 14.6336 
31 14.671.~ 14.66831 14_ .. 6919; 14.7009 14.6791 14.6968 14.6571 
32 14.7432: 14.743311.1..7168j 14.7342 1£7378- 14~7565i 14.7'~~ 
33 14.7618 14.78551 14.7886, 14.7769, 14.8002 14.7726 14.7620 
34 14.8425, 14.815a:-1~.8Q98:J4.8138~-- 14~8057 J4J649_- 14.8346 
35 14.8543: 14.8518 14.8772' 14.8737 14.8793 14.8827 14.8778 
36 14.~390L 14.9384 14.9104-;14.93221 14§151~"14-.9364 14.9085 
37 14.96461 14.9495 14.9530; 14.9860 1 14:9768--14.9909--14.9620 
38 _ 15.0171 r 15.0290 :-1S:D230L 15.Cl043-'-- 15-:-00~ -15.0101--15.0130 

~; ~~:~~;;l-~~:~;~~1 ~;:~~ll" ~;:~-~~~--~}~6:~~--~~~:~~~~- ~~:~~~~ 
41 15.179i -15.1430 15.1668

1 
15 __ 1527 ___ 15.~464-15~1671_ 15.1387 

42 15.1797[-15 .. ~125 15.1867 15.207.0 15.2113 15.1976 15.2144 
43 15.2349; __ .15.2442 15.2588 15.2533 15.2713 1§ ... 2683 15.2414 

15.3135 i 15.3006 15.2843 15.2921 15.2752 15 .. ?799 15.3018 
15.3521 15.328815.361215.344215.348215.3301 15.3611 
15.3870 15.4067 15.3728 15.388~ 15.3884" 15.4025 15.3733 
15.4508 15.4233 15.4607 15.4246 15.4385 15.4261 15.4522 
15.4808 15.5044 15.4659 15.4961 15.4898 15.4923 15.4751 
15.5580 15.5360 15.5567 15.5372 15.5247 15.5504 15.5397 
15.5678 15.5860 15.5644 15.5737+--15.5972 15.5556 15.5824 
15.6155 15.6182 15.6294 15.6219 15.6328 15.6366 15.6440 
15.7075 15.7009 15.6889 15.6821 15.6856 15.6599 15.6758 
15.7277 15.7526 15.7549 15.7088 15.7246 15.7306 15.7586 
15.7949 15.7655 15.7628+-. 15.7910 15.7925 15.7583 15.7609 
15.8456 15.8327 15.8564 15.8253 15.8440 15.8234 15.8397 

44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
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Appendix IV: Beta (12,15,30) 
100 generated values as per 25 runs in column A to Y 

s y 
56 15.8807 15.8894 15.8655 15.8844 
57 _J5.91~9: _ 1?~t>64-15.91-2~ 15.9170 
58 1_~.0138 15.9714 'J 6.0171: 15.9733 15.9886 15.9500 16.0151 
59~6.Q4041 16.0514 16.0428 16.0319-16:0269 -. 16.0338 ·16~0561 
60 16.1 04f3~_ 16.0894 T16.-6®3 --~-16.Q771:_ - 16.1 f06 .----:u3.056~f-16.0881 
61 16.1708 .. 16.1748: 16.17771 16.1525i 16.164i--f6.1333-16.1571 
62 Hf1907 16.182f-16~1798-16~1686--f6.1888· -16:-1661- 16.2039 
63 -1-6.24Q5: n 1?-.2_~~~T- 1 (3-"-?~_631!(3·2694- - 16.i58S--16.2450 16~2379 
64 1~.344_5: 16·~~~'!L~3~OfiL_!(3.2699 16~3163-16.2694·· 16.3473-
65_1 (3.3733 [ 16.4037; 1_6 __ 378(31 16.3672-16.3946. 16.3251 16~3550 

~~ ~ ~:1~~~ --~ ~:~~~~ 1- ~ ~::~~r--l~:~~~1· ~-~:~;:-~ ~:1~~f-n-~~::~~~ 
68 f6.5861]. -.1~~~?9J __ 1~~~3®T-- 16.5310 16_}tI~_16.5i91 -16.552t 
69 16.62071 16.6425 16.6333 16.5708 16.5908 16.5952 16.6081 

------ j - -- - - -. ----------1 - -- -----

70 16.6755' 16.64861 16.6597 16.6662' 16.6940 16.6070 16.6901 
1Ef7:3.139· 1~.7430j16.7201 . 16.68951 16.7063-16~i190'- 16.7127 71 

72 
73 
74 

~~~~~~~ -_~1~~~~~~'- jJ~~~~ -~-~~~~~~~ _ - ~~~~~~g~ -~-::~~~~ ~~:~:;: 
16 913(;, .16. 9664 t_~9642 : 16.8872 16.9458 1 ll:S64516 9340 

75. 17.04-55_11Z.0~1~L_JZ.g1!01 17.0014~ 17.0051 16.9644 17.0218 
76 17.0512+ 17.0674 17.07881 17.0194 17.0788 17.0122 17.0807 

;~--~}1j~~!. ~~J~~~ 1-~ ; :~~~~~~ ; ~1~-~~i-H~ ~ ~;r -~ ; ~§~t- H~~~~ 

H ~H~~f~;~;~i1mr-W¥a~:-~~i~i' -iIRt[;fr:~~~ 
82 17.5245 1.7.5961! 17 .. 5707 •.. 1. 7 .. 54491 1?-,-~354 _ 17.4X?_9~_ . .17.5630 
83--f~6673 17.6752:-17.6856+ 17.6033 17.6335' 17.5342 17.6786 
84 -17.7381J7-??3-8~_Y7.71§O-i7.6990~ 17.7520 17.7063·17.7343 
85 17.8417_17.8~16117.88591_17.8127_ 17.8471 17.8086 JJ.8889 
86 17.9577 17.9112 17.9120 17.8755 17.9309 17.8111 17.9190 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 
101 
102 

18.0.216~'_ 1 .. 8.0474 18.0493 18.0060" 17.9970 17.9423 .. J.8 .. 0237 
18.218818.183318.187218.110018.221818.102018.2266 
18.2Ef83 --18.2628 18.2987 18.2652 18.2351 18.1710_ !fi·3466 
-18.4617 -18.4602 18.4274 18.3293 18.4723 18.3471 --.18.3892 
18.5067!18.5935 18.4981 18.4596 18.589§ 18.~23S._ j8.5074 
18.7942T8.6901 18.8038 18.6969 18.6741 18.5357 18.8Q68 
18.8661 -18.8397 18.8362 18.7578 18.8863 18.7717 18.9156 
19.1068: . 19.1306 19.1441 19.0669 19.0533 18.944219.0667 
19.3514' 19.3939 19.2032 19.-.15971 19.2_335- __ 19.0849-~ 19.4013 
19.4711' 19.4145 19.6499 19.5039 19.5698 19.~763 __ 1_9.43?7 
19.8fs8 19.9380; 19.9f35- -19.6414 19.9576 19.61§~_1Q.8550 
20.2398 26.0770 i- 20.1168- 20.2523 20.028~ _?0,-126~ __ 20·.?!l9 
20.9177: 20.i714' 20.8520 20.3988 20.6751 20.2939 21.0147 
21.4433121.7163 21.5607 22.-8589 21.9082 23.4830 21.3355 

i .. -r-~ .... __ .-

103 mean r= 
104 15.8571. 
105 std.dev 
106 1.9070 
107 

15.8571 

1.9070 

15.8571 

1.9070 

15.8571 15.8571 

1.9070-t- 1.9070 
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A Method for Treating Dependencies Between Variables in a Simulation Risk Analysis Model 

Appendix V 

Miscellaneous tests of mean values, standard deviations 
and Pearson correlation coefficients for different 
combinations of distributions 

Note that the expected values and Variances (and hence the standard deviations) of the 
general Uniform, Triangular, Normal and Beta distributions are stated in sections 6.22 to 
6.2.5 respectively. 

Note also that the reported precision of the calculated correlation coefficient when the 
target value is 0.7 is sometimes better for samples of size 100 than for samples of size 
500. This apparent anomaly arises because only a maximum of four iterations in the 
swapping routine was allowed. The anomaly disappears when, as previously discussed, 
this maximum iteration limit is increased to, say, 20. 
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Appendi \: V: Miscellaneous T e ·t ' 

[ Expected correla,tion -0.6 

Mean value of computed 
correlation of25 runs Sample size 

Distribution combination 10 100 500 
B( 12,15,30) B(12,15,30) -0.5994 -0.6000 -0.6000 
B(12,15,30) N(100,36) -0.6002 -0.6000 -0.6000 
B(12,15,30) T(10,15,40) -0.6005 -0.6000 -0.6000 
B(12,15,30) U(18,38) -0.5996 -0.6000 -0.6000 
B(12,15,30) B( 12,25,30) -0.6005 -0.6000 -0.6000 
B(12,15,30) T(10,30,40) -0.6011 -0.6000 -0.6000 
N(100,36) B(12,15,30) -0.5985 -0.6000 -0.6000 
N(100,36) N(100,36) -0.5991 -0.6000 -0.6000 
N(100,36) T( 10,15,40) -0.5996 -0.6000 -0.6000 
N(100,36) U(18,38) -0.5998 -0.6000 -0.6000 
N(100,36) B(12,25,30) -0.5994 -0.6000 -0.6000 
N(100,36) T( 1 0,30,40) -0.6002 -0.6000 -0.6000 
T(1 0, 15,40) B(12,15,30) -0.5992 -0.6000 -0.6000 
T(10,15,40) N(100,36) -0.6009 -0.6000 -0.6000 
T(10,15,40) T(10,15,40) -0.6000 -0.6000 -0.5999 
T(1 0, 15,40) U(18,38) -0.6009 -0.6000 -0.6000 
T(1 0, 15,40) B(12,25,30) -0.6003 -0.6000 -0.6000 
T(l 0, 15,40) T(10,30,40) -0.5996 -0.6000 -0.6000 
U(18,38) B(12,15,30) -0.5997 -0.6000 -0.6000 
U(18,38) N(100,36) -0.599 -0.6000 -0.6000 
U(18,38) T(10,15,40) -0.5995 -0.6000 -0.6000 
U(18,38) U(18,38) -0.5994 -0.6000 -0.6000 

U(18,38) B(12,25,30) -0.5986 -0.6000 -0.6000 

U(18,38) T( 1 0,30,40) -0.5997 -0.6000 -0.6000 

B(12,25,30) B(12,15,30) -0.5995 -0 6000 -0.6000 

B(12,25,30) N(100,36) -0.5994 -0.6000 -06000 

B(12,25,30) T(1 0, 15,40) -0.5986 -0.6000 -0.6000 

BJ12,25,30) U(18,38) -0.6000 -0.6000 -0.6000 

B(12,25,30) B( 12,25,30) -0.6001 -0.6000 -0.6000 

B(12,25,30) T(10,30,40) -0.5995 -0.6000 -0.6000 

T(10,30,40) B(12,15,30) -0.5987 -0.6000 -0.6000 

T(10,30,40) N(100,36) -0.5995 -0.6000 -0.6000 

T(10,30,40) U(18,38) -0.5993 -0.6000 -0.6000 

T(10,30,40) B(12,25,30) -0.6004 -0.6000 -0.6000 

1'(10,30,40) T(10,15,40) -0.5988 -0.6000 -0.6000 

T(10,30,40) T( 1 0,30,40) -0.5997 -0.6000 -0.6000 
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Appendi:-: V: Mi ' cellaneous T e5t ' 

[ Expected correlation -0 .4 

Mean value of computed 
correlation of 25 runs Sample size 

Distribution combination 10 100 500 
B(12,15,30) B(12,15,30) -0.3999 -0.4000 -0.4000 
B(12,15,30) N(100,36) -0.3994 -0.4000 I -0.4000 
B(12,15,30) T(l 0, 15,40) -0.3990 -0.4000 -0.4000 
B(12,15,30) U(18,38) -0.3999 -0.4000 -0.4000 
B(12,15,30) B(12,25,30) -0.3997 -0.4000 I -0.4000 
B(12,15,30) T(10,30,40) -0.3996 -0.4000 -0.4000 
N(100,36) B(12, 15,30) -0.3998 -0.4000 -0.4000 
N(100,36) N(100,36) -0.3994 -0.4000 -0.4000 
N(100,36) T(10,15,40) -0.4001 -0.4000 -0.4000 
N(100,36) U(18,38) -0.3994 -0.4000 -0.4000 
N(100,36) B(12,25,30) -0.3982 -0.4000 -0.4000 
N(100,36) T(10,30,40) -0.3994 -0.4000 -0.4000 
T(1 0,15,40) B(12,15,30) -0.4001 -0.4000 -0.4000 
T(10,15,40) N(100,36) -0.3995 -0.4000 -0.4000 
T(10,15,40) T(10,15,40) -0 .3993 -0.4000 -0.4000 
T(10,15,40) U(18,38) -0.4006 -0.4000 -0.4000 
T(10,15,40) B(12,25,30) -0.3994 -0.4000 -0.4000 
T(1 0, 15,40) T(10,30,40) -0.3992 -0.4000 -0.4000 
U(18,38) B(12,15,30) -0 .3997 -0.4000 -0.4000 
U(18,38) N(100,36) -0.3993 -0.4000 -0.4000 
U(18,38) T(1 0, 15,40) -0.4008 -0.4000 -0.4000 
U(18,38) U(18,38) -0.3998 -0.4000 -0.4000 
U(18,38) B(12,25,30) -0.4001 -0.4000 -0.4000 
U(18,38) T(10,30,40) -0.4003 -0.4000 -0.4000 
B(12,25,30) B(12,15,30) -0.4007 -0.4000 -0.4000 
B(12,25,30) N(100,36) -0.4002 -0.4000 -0.4000 

B(12,25,30) T(1 0, 15,40) -0.4001 -0.4000 -0.4000 

B[12,25,30) U(18 ,38) -0.4006 -0.4000 -0.4000 

B(12,25,30) B(12,25,30) -0.3998 -0.4000 -0.4000 

B( 12,25,30) T(10,30,40) -0.3989 -0.4000 -0.4000 

T(10,30,40) B(12,15,30) -0.3998 -0.4000 -0.4000 

T(10,30,40) N(100,36) -0.4007 -0.4000 -0.4000 

T(10,30,40) U(18 ,38) -0.3 998 -0.4000 -0.4000 

T(10,30,40) B(12,25,30) -0.4007 -0.4000 -0.4000 

T(10,30,40) T(10,15,40) -0.4001 -0.4000 -0.4000 

T(10,30,40) T(10,30,40) -0.3989 -0.4000 -0.4000 
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Appendi:-; V: Miscellaneou:> Te;;ts 

[ Expected correlation -0.2 

Mean value of computed 
correlation of 25 runs Sample size 

Distribution combination 10 100 500 
B(12,15,30) B(12,15,30) -0.1 998 -0.2000 -0.2000 
B(12,15,30) N(100,36) -0.2004 -0.2000 -0.2000 
B(12,15,30) T(l 0, 15,40) -0.2012 -0.2000 -0.2000 
B(12,15,30) U(18 ,38) -0.2006 -0.2000 I -0.2000 
B(12,15,30) B(12,25,30) -0.1999 -0.2000 -0.2000 
B( 12, 15,30) T(10,30,40) -0.1 999 -0.2000 I -0.2000 
N(100,36) B(12,15,30) -0.2007 -0.2000 -0.2000 
N(100,36) N(100,36) -0.1 991 -0.2000 -0.2000 
N(100,36) T(10,15,40) -0.1990 -0.2000 -0.2000 
N(100,36) U(18,38) -0.2001 -0.2000 -0.2000 
N(100,36) B(12,25,30) -0.1998 -0.2000 -0.2000 
N(100,36) T(10,30,40) -0.2007 -0.2000 -0.2000 
T(10,15,40) B(12,15,30) -0.2013 -0.2000 -0.2000 
T(10,15,40) N(100,36) -0.2008 -0.2000 -0.2000 
T(10,15,40) T(1 0, 15,40) -0.2005 -0.2000 -0.2000 
T(10,15,40) U(18 ,38) -0.2006 -0.2000 -0.2000 
T(10,15,40) B(12,25,30) -0.2008 -0.2000 -0.2000 
T(10,15,40) T(10,30,40) -0.2003 -0.2000 -0.2000 
U(18,38) B(12,15,30) -0.2002 -0.2000 -0.2000 
U(18,38) N(100,36) -0. 2004 -0.2000 -0.2000 
U(18,38) T(10,15,40) -0.2001 -0. 2000 -0.2000 
U(18,38) U(18,38) -0.2001 -0.2000 I -0.2000 
U(18,38) B(12,25,30) -0.1997 -0.2000 -0.2000 
U(18,38) T(10,30,40) -0.2008 -0.2000 -0.2000 
B(12,25,30) B(12,15,30) -0.2006 -0. 2000 -0.2000 
B(12,25,30) N(100,36) -0.2003 -0.2000 -0.2000 
B(12,25,30) T(1 0, 15,40) -0.2006 -0.2000 -0.2000 

B(12,25,30) U(18 ,38) -0.2014 -0.2000 -0.2000 

B(12,25,30) B(12,25,30) -0.2012 -0.2000 -0.2000 

B(12,25,30) T(10,30,40) -0. 2002 -0.2000 -0.2000 

T(10,30,40) B(12,15,30) -0.2000 -0.2000 I -0.2000 
T(10,30,40) N(100,36) -0.2007 -0. 2000 I -0.2000 

Ti l 0,30,40) U(l8,38) -0.2001 -0.2000 -0.2000 

T(lO,30,40) B(12,25,30) -0.1998 -0.2000 -0.2000 

Til 0,30,40) T(1 0,15,40) -0.1998 -0.2000 -0.2000 

Til 0,30,40) T(10,30,40) -0.1997 -0.2000 -0.2000 
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Appendi:-..: V: Miscellaneou' Te-t ' 

Expected correlation 0.3 

Mean vaJue of\;omputed 
oorrelatiofl()f25 runs . Sample size 

Distribution combination 10 100 SOO 
B( 12, lS,30) B(12,IS,30) 0.2998 0.3000 0.3000 
B( 12, lS,30) N(100,36) 0.2996 0.3000 0.3000 
B(12,lS,30) T(l 0, lS,40) 0.3001 0.3000 0.3000 
B(12,1S,30) U(18,38) 0.3007 0.3000 0.3000 
B(12, lS,30) B(12,2S,30) 0.3004 0.3000 0.3000 
B(12,lS,30) T(10,30,40) 0.3019 0.3000 I 0.3000 
N(100,36) B(12,lS,30) 0.3002 0.3000 0.3000 
N(100,36) N(100,36) 0.3003 0.3000 0.3000 
N(100,36) T(l 0, lS ,40) 0.2990 0.3000 0.3000 
N(100,36) U(18,38) 0.3008 0.3000 0.3000 
N(100,36) B(12,2S,30) 0.2998 0.3000 0.3000 
N(100,36) T(10,30,40) 0.299S 0.3000 0.3000 
T(10,lS,40) B(12,lS,30) 0.300S 0.3000 0.3000 
T(10,1S,40) N(100,36) 0.2994 0.3000 0.3000 
T(10,IS,40) T(l 0, lS,40) 0.300S 0.3000 0.3000 
T(10,1S,40) U(18,38) 0.3009 0.3000 0.3000 
T(1 0, 1S,40) B(12,2S ,30) 0.3004 0.3000 03000 
T(10,IS,40) T(10,30,40) 0.2993 0.3000 0.3000 
U(18,38) B(12,1S,30) 0.3004 0.3000 0.3000 
U(18,38) N(100,36) 0.2999 0.3000 0.3000 
U(18,38) T(l 0, lS,40) 0.2992 0.3000 0.3000 
U(18,38) U(18,38) 0.3001 0.3000 0.3000 
U(18,38) B(12,2S,30) 0.2997 0.3000 0.3000 
U(18,38) T(10,30,40) 0.3002 0.3000 0.3000 
B(12,2S,30) B(12,1S,30) 0.300 0.3000 0.3000 
B(12,2S,30) N(100,36) 0.3009 0.3000 0.3000 
B( 12,2S,30) T(1 0,1 S,40) 0.3003 0.3000 0.3000 

BD2,2S,30) U(l8,38) 0.3007 0.3000 03000 

B(12,2S,30) B(12,2S,30) 0.2994 0.3000 03000 

B(12,2S,30) T(10,30,40) 0.3004 0.3000 0.3000 

~(1 0,30,40) B(12,lS,30) 0.2993 0.3000 0.3000 

T(10,30,40) N(100,36) 0.2996 0.3000 0.3000 

1110,30,40) U(18 ,38) 0.3002 0.3000 0.3000 

T(10,30,40) B(12,2S,30) 0.2991 0.3000 0.3000 

T(10,30,40) T(1 0, IS,40) 0.2996 0.3000 0.3000 

T(10,30,40) T(10,30,40) 0.3001 0.3000 0.3000 
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Appendj\: V: Mi .' celJaneolls Te:;ts 

[ Expected correlation 0.5 

.. . - ... 

Mean value of computed 
correlation of 25 runs Sample size 

Distribution combination 10 100 500 
B(12,15,30) B(12,15,30) 0.5001 0.5000 0.5000 
B(12,15,30) N(100,36) 0.4993 0.5000 0.5000 
B(12,15,30) T(l 0, 15,40) 0.5000 0.5000 0.5000 
B(12,15,30) U(18 ,38) 04999 0.5000 05000 
B(12,15,30) B(12,25,30) 0.5000 0.5000 0.5000 
B(12,15,30) T(10,30,40) 0.5006 0.5000 05000 
N(100,36) B(12,15,30) 0.4998 0.5000 0.5000 
N(100,36) N(100,36) 0.5003 0.5000 0.5000 
N(100,36) T(1 0, 15,40) 04997 0.5000 0.5000 
N(100,36) U(18,38) 0.5003 0.5000 0.5000 
N(100,36) B(12,25,30) 0.501 0.5000 0.5000 
N(100,36) T(10,30,40) 0.5005 0.5000 0.5000 
T(1 0, 15,40) B(12,15,30) 0.4991 0.5000 0.5000 
T(1 0, 15,40) N(100,36) 0.4998 0.5000 05000 
T(10,15,40) T(1 0, 15,40) 0.4995 05000 0.5000 
T(1 0, 15,40) U(18,38) 0.4999 05000 05000 
T(10,15,40) B(12,25,30) 0.4988 0.5000 05000 
T(10,15 ,40) T(10,30,40) 05000 0.5000 0.5000 
U(18,38) B( 12,15,30) 0.5001 0.5000 05000 
U(18,38) N(100,36) 0.4997 0.5000 05000 
U(18,38) T(1 0,15,40) 0.5000 05000 0.5000 
U(18,38) U(18,38) 0.4992 0.5000 0.5000 

U(18,38) B(12,25,30) 0.5002 0.5000 05000 

U(18,38) T(10,30,40) 0.4993 0.5000 0.5000 

B(12,25,30) B(12,15,30) 0.5002 0.5000 05000 

B(12,25,30) N(100,36) 0.5005 0.5000 0.5000 

B(12,25,30) T(l 0, 15,40) 0.4999 05000 I 05000 

B(12,25,30) U(18,38) 0.5002 0.5000 i 0 5000 

B(12,25,30) B(12,25,30) 0.5009 0.5000 0.5000 

B(12,25,30) T(10,30,40) 0.5001 0.5000 0.5000 

T(10,30,40) B(12,15,30) 0.5016 0.5000 0.5000 

T(10,30,40) N(100,36) 0.5000 0.5000 0.5000 

Ti l 0,30,40) U(18,38) 0.4999 0.5000 0.5000 

T(10,30,40) B(12,25,30) 0.4995 0.5000 0.5000 

T(10,30,40) T(1 0, 15,40) 0.5002 05000 I 0.5000 

T{10,30,40) T(10,30,40) 0.5007 0.5000 0.5000 
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Appendi '\ V: Mi scell aneous Test ' 

Expected correlation 07 

Mean value of computed 
correlation of 25 runs Sample size 

Distribution combination 10 100 500 
B(12,15,30) B(12,15,30) 07002 0.7000 07000 
B(12,15,30) N(100,36) 0.6998 0.7000 0.7000 
B(12,15,30) T(10,15,40) 07004 0.7000 0.7000 
B(12,15,30) U(18,38) 0.7001 0.7000 I 0.6993 
B( 12,15,30) B(12,25,30) 0701 07000 06999 
B(12,15,30) T(10,30,40) 0.7001 0.7000 0.6982 
N(100,36) B(12,15,30) 0.7002 07000 0.6996 
N(100,36) N(100,36) 0.6992 0.7000 0.6997 
N(100,36) T(l 0, 15,40) 0.6998 0.7000 0.6963 
N(100,36) U(18 ,38) 0.7000 07000 0.6955 
N(100,36) B(12,25,30) 0.6998 0.7000 0.6998 
N(100,36) T(10,30,40) 0.7000 0.7000 06994 
T(10,15,40) B(12,15,30) 0.6989 0.7000 I 0.7000 
T(10,15,40) N(100,36) 07002 07000 07000 
T(10,15,40) T(1 0,15,40) 0.6997 07000 0.7000 
T(l 0, 15,40) U(18 ,38) 06994 07000 0.7000 
T(1 0,15,40) B(12,25,30) 0.7001 07000 0.7000 
T(1 0, 15,40) T(10,30,40) 0.7005 07000 06968 
U(18,38) B(12,15,30) 0.6999 07000 07000 
U(18,38) N(100,36) 0.7003 07000 0.7000 
U(18,38) T(1 0,15,40) 06996 07000 07000 
U(18,38) U(18,38) 0.6998 07000 07000 

U(18,38) B(12,25,30) 07002 07000 0.7000 
U(18,38) T(10,30,40) 07006 07000 07000 

B(12,25,30) B(12, 15,30) 0.7000 07000 0.7000 

B(12,25,30) N(100,36) 0.7001 07000 07000 

B(12,25,30) T(10,15,40) 0.7001 0.7000 I 0 6993 

B(12,25,30) U(18,38) 0.6995 0.7000 0.7000 

B(12,25,30) B(12,25,30) 0.6986 o 7000 I 0 7000 

B(12,25,30) T(10,30,40) 0.6997 0.7000 0.7000 

T(10,30,40) B(12,15,30) 0.6993 0.7000 I 0.6985 

T(10,30,40) N(100,36) 0.6993 07000 0.7000 

1JIO,30,40) U(18,38) 0.6993 0.7000 0.7000 

T(10,30,40) B(12,25,30) 0.7004 07000 07000 

T(10,30,40) T(1 0, 15,40) 0.6993 07000 0.6932 

1110,30,40) T(10,30,40) 0.6999 0.7000 I 0.7000 
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Appendix V: Miscellaneous Tests 

Correlation of Normal(l 00,36) with Uniform[18,38) 
Computed sample means of 25 runs 

Correlation 
Sample size Mean value of computed mean values coefficient 

-0.6 10 100.0000 28.0000 
-0.6 100 100.0000 28.0000 
-0.6 500 100.0000 28.0000 
-0.4 10 100.0000 28.0000 
-0.4 100 100.0000 28.0000 
-0.4 500 100.0000 28.0000 
-0.2 10 100.0000 28.0000 
-0.2 100 100.0000 28.0000 
-0.2 500 100.0000 28.0000 
0.3 10 100.0000 28.0000 
0.3 100 100.0000 28.0000 
0.3 500 100.0000 28.0000 
0.5 10 100.0000 28.0000 
0.5 100 100.0000 28.0000 
0.5 500 100.0000 28.0000 
0.7 10 100.0000 28.0000 
0.7 100 100.0000 28.0000 
0.7 500 100.0000 28.0000 

Expected mean values ofN(100,36) and U[18,38) are 100 and 28 exactly 

243 



Appendix V: Miscellaneous Tests 

Correlation of Triangular(l 0, lS,40) with Triangular(1 0,30,40) 
Computed sample means of 2S runs 

Correlation 
Sample size Mean value of computed mean values coefficient 

-0.6 10 21.6667 26.6667 
-0.6 100 21.6667 26.6667 
-0.6 SOO 21.6667 26.6667 
-0.4 10 21.6667 26.6667 
-0.4 100 21.6667 26.6667 
-0.4 SOO 21.6667 26.6667 
-0.2 10 21.6667 26.6667 
-0.2 100 21.6667 26.6667 
-0.2 SOO 21.6667 26.6667 
0.3 10 21.6667 26.6667 
0.3 100 21.6667 26.6667 
0.3 SOO 21.6667 26.6667 
O.S 10 21.6667 26.6667 
O.S 100 21.6667 26.6667 
O.S SOO 21.6667 26.6667 
0.7 10 21.6667 26.6667 
0.7 100 21.6667 26.6667 
0.7 SOO 21.6667 26.6667 

Expected mean values ofT(10,1S,40) and T(10,30,40) are 21.6667 and 26.6667 (4 d.p.s) 
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Appendix V: Miscellaneous T c:-;h 

Correlation ofBeta(12, 15,30) with Beta(12,25,30) 
Computed sample means of 25 runs 

Correlation 
Sample size Mean value of computed mean values coefficient 

-0.6 10 15.8571 24.1304 
-0.6 100 15.8571 24.1304 
-0.6 500 15.8571 24.1304 
-0.4 10 15.8571 24.1304 
-0.4 100 15.8571 24.1304 
-0.4 500 15.8571 24.1304 
-0.2 10 15.8571 24.1304 
-0.2 100 15.8571 24.1304 
-0.2 500 15.8571 24.1304 
0.3 10 15.8571 24.1304 
0.3 100 15.8571 24.1304 
0.3 500 15.8571 24.1304 
0.5 10 15.8571 24.1304 
0.5 100 15.8571 24.1304 
0.5 500 15.8571 24.1304 
0.7 10 15.8571 24.1304 
0.7 100 15.8571 24.1304 
0.7 500 15.8571 24.1304 

Expected mean values ofB(12,15,30) and B(12,25,30) are 15.8571 and 24.1304 (4 d.p.s) 
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Appendix V: Miscellaneous Tc<;b 

Correlation of Normal(l 00,36) with Uniform(18,38) 
Mean value of computed standard deviation values of 25 runs 

Correlation 
Sample size Mean value of computed standard 

coefficient deviation values 
-0.6 10 6.0000 5.7735 
-0.6 100 6.0000 5.7735 
-0.6 500 6.0000 5.7735 
-0.4 10 6.0000 5.7735 
-0.4 100 6.0000 5.7735 
-0.4 500 6.0000 5.7735 
-0.2 10 6.0000 5.7735 
-0.2 100 6.0000 5.7735 
-0.2 500 6.0000 5.7735 
0.3 10 6.0000 5.7735 
0.3 100 6.0000 5.7735 
0.3 500 6.0000 5.7735 
0.5 10 6.0000 5.7735 
0.5 100 6.0000 5.7735 
0.5 500 6.0000 5.7735 
0.7 10 6.0000 5.7735 
0.7 100 6.0000 5.7735 
0.7 500 6.0000 5.7735 

Expected s.d. values ofN(100,36) and U(18,38) are 6 exactly and 5.7735 (4 d.p.s) 
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Appendix V: Miscellaneous T ~sb 

Correlation of Triangular(1 0,15,40) with Triangular( 1 0,30,40) 
Mean value of computed standard deviation values of 25 runs 

Correlation 
Sample size Mean value of computed standard 

coefficient deviation values 
-0.6 10 6.5617 6.2361 
-0.6 100 6.5617 6.2361 
-0.6 500 6.5617 6.2361 
-0.4 10 6.5617 6.2361 
-0.4 100 6.5617 6.2361 
-0.4 500 6.5617 6.2361 
-0.2 10 6.5617 6.2361 
-0.2 100 6.5617 6.2361 
-0.2 500 6.5617 6.2361 
0.3 10 6.5617 6.2361 
0.3 100 6.5617 6.2361 
0.3 500 6.5617 6.2361 
0.5 10 6.5617 6.2361 
0.5 100 6.5617 6.2361 
0.5 500 6.5617 6.2361 
0.7 10 6.5617 6.2361 
0.7 100 6.5617 6.2361 
0.7 500 6.5617 6.2361 

Expected s.d. values ofT(10,15,40) and T(10,30,40) are 6.5617 and 6.2361 (4 d.p.s) I 
I 
: 
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Appendix V: Miscellaneous T e:'.1:-; 

Correlation ofBeta(12,15,30) with Beta(12,25,30) 
Mean value of computed standard deviation values of 25 runs 

Correlation 
Sample size Mean value of computed standard 

coefficient deviation values 
-0.6 10 1.9070 2.6421 
-0.6 100 1.9070 2.6421 i 

! 

-0.6 500 1.9070 2.6421 
-0.4 10 1.9070 2.6421 
-0.4 100 1.9070 2.6421 
-0.4 500 1.9070 2.6421 
-0.2 10 1.9070 2.6421 
-0.2 100 1.9070 2.6421 
-0.2 500 1.9070 2.6421 
0.3 10 1.9070 2.6421 
0.3 100 1.9070 2.6421 
0.3 500 1.9070 2.6421 

-"" 

0.5 10 1.9070 2.6421 
0.5 100 1.9070 26421 
0.5 500 1.9070 2.6421 
0.7 10 1.9070 2.6421 
0.7 100 1.9070 2.6421 
0.7 500 1.9070 2.6421 

Expected s.d. values ofB(12,15,30) and B(12,25,30) are 1.9070 and 2.6421 (4 d.p.s) 
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A Method for Treating Dependencies Between Variables in a SImulation Risk Analysis \!,)Jcl 

Appendix VI 

x2 tests of25 runs of size 100 from each distribution 

Within this appendix samples from each of the four general distributions used in the 

ReM are tested for goodness-of-fit using the chi-square distributions. 

For example in the third case, in the first run of 25 of generating samples of size 100 

from N(100,36), the distribution of the 100 observed values are compared with the 

frequencies within which they would be expected to fall into 10 equi-probable mutually 

exhaustive classes, so that the expected frequencies are always all equal to 10 exactly. 

Here there are 10 classes and 7 degrees of freedom, so that the critical value at the 99.5 

percent significance level is 0.989 (from Murdoch, J & Barnes, JA. (1970) Statistical 

Tablesfor Science, Engineering, Management and Business Studies. Macmillan, 2nd Ed.). 

The largest value recorded here is for run 11, with X2 = 0.6061, so that even this worst

case value is more critical than the tabulated value, the probability that this sample is not 

from N(1 00,36) being less than 1 in 200. 

Similar conclusions can be drawn from the results for the other three general distributions. 
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Appendix VI X-=' tests (.)1' 25 l,,-ll"lS ur Sl/e \()O rl"~)\l\ "--~;'\\.2:h ,,-hst\-\\"lut\~)\\ 

l test of 25 runs of size 100 from Uniform (18, 38): observed frequencies 

Class Class Class Class Class Class Class Class Class Class No. of No. of 9 No. of 
Run 1 2 3 4 5 6 7 8 9 10 10 11 

2 
X 

1 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
2 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
3 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
4 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
5 10 10 10 10 10 10 10 10 10 10 10 0 I 0 0.0000 
6 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
7 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
8 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
9 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
10 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
11 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
12 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
13 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
14 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
15 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
16 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
17 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
18 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
19 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
20 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 

--~~ ~- ---- - -~-- - -~---- ---- --~ 

21 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
22 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 

- ~- -- - --- -- -- - -

23 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
24 10 10 10 10 10 10 10 10 10 10 10 0 i 0 0.0000 
25 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 

-------_. 
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Append1" VI X::' tests ur 25 1,-lHS or Sl/c..: 1 t..)0 fn .. )111 c..:a...::h I...hs\\ \b\1\ h)\\ 

l test of25 runs of size 100 from Triangular (10,30,40): observed frequencies 

Class Class Class Class Class Class Class Class Class Class No. of No. of No. of 
2 

Run 1 2 3 4 5 6 7 8 9 10 10 9 11 X 
1 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
2 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
3 10 10 10 11 9 10 10 10 10 10 8 1 1 0.2020 
4 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
5 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
6 10 10 10 10 10 10 10 9 11 10 8 1 1 0.2020 
7 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
8 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
9 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
10 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
11 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
12 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 

- -~--~--

13 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
14 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 

- ------- _ .. - .- --- ----------- - -----'----, 

15 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
16 10 10 10 10 10 10 10 10 9 11 8 1 1 0.2020 
17 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
18 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
19 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
20 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
21 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
22 10 10 , 10 10 10 10 10 10 10 10 10 0 0 0.0000 
23 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
24 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
25 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
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App~n,--h' Vl X 2 tcsts or 25 run~ 01' SlIC \(.){) fn,."Hll ..:ach !"'h~'\.\ \\")\\'\.\1..)\1 

x2 test of25 runs of size 100 from Normal (100,36): observed frequencies 

Class Class Class Class Class Class Class Class Class Class No. of No. of No. of 
2 

Run 1 2 3 4 5 6 7 8 9 10 10 9 11 X 
1 10 10 10 10 10 11 10 10 10 9 8 1 1 0.2020 
2 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
3 10 11 9 11 9 10 10 9 10 11 4 3 3 0.6061 
4 10 10 10 10 10 10 10 9 11 10 8 1 1 0.2020 
5 10 9 11 10 10 10 10 10 10 10 8 1 1 0.2020 
6 10 10 10 10 10 10 10 9 11 10 8 1 1 0.2020 
7 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
8 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
9 11 9 10 10 10 10 10 10 10 10 8 1 1 0.2020 
10 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
11 9 11 9 11 10 11 10 9 10 10 4 3 3 0.6061 

- - --

12 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
13 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
14 10 10 10 10 10 10 10 10 9 11 8 1 1 0.2020 
15 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
16 10 10 10 11 9 10 10 10 9 11 6 2 2 0.4040 
17 11 9 10 10 10 10 10 10 10 10 8 1 1 0.2020 
18 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
19 10 11 9 10 10 10 10 10 10 10 8 1 1 0.2020 
20 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
21 11 9 10 10 10 10 10 10 10 10 8 1 1 0.2020 
22 10 10 11 9 10 10 10 9 11 10 6 2 2 0.4040 
23 10 11 9 10 10 10 10 10 10 10 8 1 1 0.2020 
24 10 9 11 10 10 10 10 10 10 10 8 1 1 0.2020 
25 10 10 11 9 10 10 9 11 10 10 6 2 2 0.4040 
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/\..pp~ndl:--'" V I· X~ t~~t, of 25 rUll~ or ~l/'-~ 1 t)t) rr, "')l\\ '-.:"ach ..... h,h \\"'l\\\ \I.. 'll 

x2 test of25 runs of size 100 from Beta (12, 15,30): observed frequencies 

Class Class Class Class Class Class Class Class Class Class No. of No. of No. of 
2 \ Run 1 2 3 4 5 6 7 8 9 10 10 9 11 X I 

1 9 11 10 10 10 10 10 10 11 9 6 2 2 0.4040 
2 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
3 10 9 10 11 10 10 10 10 10 10 8 1 1 0.2020 
4 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
5 10 11 9 10 10 10 10 10 10 10 8 1 1 0.2020 
6 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
7 10 11 9 10 10 10 9 11 10 10 6 2 2 0.4040 
8 11 9 10 10 10 10 9 11 10 10 6 2 2 0.4040 
9 10 10 10 10 11 9 10 10 10 10 8 1 1 0.2020 
10 11 9 10 10 10 10 10 10 10 10 8 1 1 0.2020 
11 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
12 10 10 10 10 10 10 10 9 11 10 8 1 1 0.2020 
13 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
14 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
15 11 9 11 9 10 10 10 10 10 10 6 2 2 0.4040 
16 10 10 9 11 10 10 11 10 10 9 6 2 2 0.4040 
17 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
18 10 10 10 11 9 10 10 10 10 10 8 1 1 0.2020 
19 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
20 11 9 10 10 10 10 10 10 10 10 8 1 1 0.2020 
21 10 10 10 10 10 10 10 9 11 10 8 1 1 0.2020 
22 9 11 10 10 10 10 11 10 10 9 6 2 2 0.4040 
23 10 10 10 10 10 10 10 10 10 10 10 0 0 0.0000 
24 10 10 10 10 10 10 10 11 9 10 8 1 1 0.2020 
25 10 10 11 9 10 10 10 9 11 10 6 2 2 0.4040 
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Appendix VII 

Miscellaneous tests of skewness and kurtosis 
for different distributions 

Within this appendix, the following results are utilised: 

(1) The expected values of the skewness of the general Unifonn, Triangular, 
Nonnal and Beta distributions are 0, -1 {(a+m-2b)(a-2m+b)(-2a+m+b)}/270cr3

, 

0, and 2[(w-v)/(v+w+2)] [(v+w+ 1) 1 vw t2 respectively. 

(2) Their corresponding expected values of the kurtosis are 9/5, 12/5,3, 
and 3 (v+w+ 1) [ vw(v+w-6) + 2(V+W)2 ] / [vw(v+w+2)(v+w+3) ]. 
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Appendix VII: Miscellaneous tests of skewness and kwtosis for different Jhlnrulllln-.; 

Correlation of Normal(l 00,36) with Uniform(l8,38) 
Average computed skewness values, runs of size 25 I 

I 

I 
! 

Normal(lOO,36) Un i form (1 8,38) 
Theoretical 

10 100 500 10 correlation 100 500 

-0.6 0.0304 -0.0150 0.0006 0.0159 0.0000 0.0000 
-0.4 -0.0952 -0.0129 0.0031 -0.0174 0.0000 0.0000 
-0.2 -0.0100 0.0232 -0.0006 -0.0061 0.0000 0.0000 
0.3 0.1387 -0.0023 0.0055 0.0173 0.0001 0.0000 
0.5 -0.0512 0.0206 -0.0008 -0.0059 0.0000 0.0000 
0.7 -0.0764 0.0097 -0.0013 0.0000 0.0000 0.0000 

Expected skewness values for N(l 00,36) and U(18,38) are 0 and 0 exactly 

Correlation ofTriangular(10,15,40) with Triangular(1 0,30,40) I 
Average computed skewness values, runs of size 25 ! 

Triangular(10,15,40) Triangular(10,30,40) 
Theoretical 

10 100 500 10 100 500 
correlation 

-0.6 0.5069 0.5036 0.5047 -0.2691 -0.3066 -0.3054 
-0.4 0.4198 0.5048 0.5049 -0.3339 -0.3071 -0.3053 
-0.2 0.4470 0.5068 0.5047 -0.2897 -0.3033 -0.3055 
0.3 0.5394 0.5041 0.5049 -0.2095 -0.3043 -0.3052 
0.5 0.4408 0.5062 0.5048 -0.3142 -0.3023 -0.3055 

0.7 0.4319 0.5050 0.5047 -0.3299 -0.3047 -0.3055 

Expected skewness values ofT(10,15,40) and T(10,30,40) are 0.5047 and -0.3054 
(4 d.p.s) , 
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Appendix VII: Miscellaneous tests of skcwncss and kurtosis for different distributions 

Correlation ofBeta(12,15,30) with Beta(l2,25,30) 
Average computed skewness values, runs of size 25 

i 

Beta(l2,15,30) Beta(12,25,30) 
Theoretical 

10 100 500 10 correlation 100 500 

-0.6 0.5527 0.6491 0.6742 -0.3468 -0.4389 -0.4196 
-0.4 0.5054 0.6731 0.6683 -0.4104 -0.4223 -0.4220 
-0.2 0.5915 0.6546 0.6779 -0.3083 -0.4361 -0.4210 
0.3 0.5347 0.6693 0.6707 -0.3751 -0.4136 -0.4224 
0.5 0.4615 0.7052 0.6644 -0.4218 -0.4213 -0.4200 
0.7 0.5222 0.6720 0.6717 -0.3860 -0.4428 -0.4197 

Expected skewness values for B(12,15,30) and B(12,25,30) are 0.6742 and 
-0.4232 (4 d.p.s) 

Correlation of Normal(1 00,36) with Uniform(l8,38) 
Average computed kurtosis values, runs of size 25 

Normal(100,36) Uniform(18,38 ) 
------

Theoretical 
10 100 500 10 100 500 

correlation 
-0.6 2.5513 2.9618 2.9788 1.8148 1.8000 1.8000 

-0.4 2.4458 3.0523 2.9875 1.7907 1.8000 1.8000 

-0.2 2.3752 2.9770 2.9827 1.7796 1.8000 1.8000 

0.3 2.4850 2.9091 2.9796 1.7997 1.8001 1.8000 

0.5 2.5223 2.9078 3.0038 1.7884 1.8000 1.8000 

0.7 2.4412 2.9526 2.9887 1.7935 1.8000 1.8000 

Expected kurtosis values for N(l 00,36) and U(l8,38) are 3 and 1.8 exactly 
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Appendix VII: Miscellaneous tests of skc\\ ness and kurtosis for different distributions 

i 

Correlation of Triangular(l 0,15,40) with Triangular(lO,30,40) 
Average computed kurtosis values, runs of size 25 

Triangular(10,15,40) Triangular(10,30,40) 
Theoretical 

10 100 500 10 100 correlation 500 

-0.6 2.3263 2.3966 2.3999 2.3134 2.4013 2.3998 
-0.4 2.1786 2.4025 2.4005 2.2833 2.4065 2.3998 
-0.2 2.1921 2.4059 2.4000 2.2247 2.3979 2.4001 
0.3 2.3712 2.3952 2.4005 2.2161 2.3940 2.3995 
0.5 2.2103 2.4018 2.4005 2.3007 2.3922 2.4006 
0.7 2.1681 2.4004 2.4000 2.3104 2.3978 2.4002 

Expected kurtosis value for T(10,15,40)and T(10,30,40) are 2.4 and 2.4 exactly 

Correlation ofBeta(12,15,30) with Beta(12,25,30) 
I 

Average computed kurtosis values, runs of size 25 

Beta(12,15,30) Beta(12,25,J0) 
Theoretical 

10 100 500 10 100 500 
correlation 

-0.6 2.6606 3.1570 3.2957 2.4422 2.8105 2.7400 
-0.4 2.6131 3.2737 3.2616 2.4836 2.7477 2.7542 
-0.2 2.7392 3.1835 3.3167 2.3181 2.8032 2.7468 

0.3 2.6138 3.2604 3.2745 2.4457 2.7210 2.7524 

0.5 2.4587 3.4315 3.2386 2.4471 2.7488 2.7430 

0.7 2.6509 3.2816 3.2810 2.4802 2.8230 2.7402 

Expected kurtosis values for B(12,15,30) and B(12,25,30) are 3.2888 and 
2.7548 (4 d.p.s) 
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Appendix VIII 

Further analysis of the sample product moment 

correlation coefficient between two variables. 

The results complete the cases referred to in section 6.3.2 

and 6.3.3. 
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Appendix VIII: Further analysis of the sample product moment correlation coefficient between two yariables 

Combining U[O,l) with U[O,l) via the RCM: Case (2): p = -0.4 

Distribution of the Generated Correlation Coefficients 

Sample Size: 10 100 500 

Mean -0.3994 -0.4000 -0.4000 

Median -0.4000 -0.4000 -0.4000 

Std.Dev 0.0031 0.0000 0.0000 

Range 0.0129 0.0000 0.0000 

Minimum -0.4064 -0.4000 -0.4000 

Maximum -0.3935 -0.4000 -0.4000 

Combining U[O,l) with U[O,l) via the RCM: Case (3): p = -0.2 

Distribution of the Generated Correlation Coefficients 

Sample Size: 10 100 500 

Mean -0.2005 -0.2000 -0.2000 

Median -0.2005 -0.2000 -0.2000 

Std.Dev 0.0037 0.0000 0.0000 

Range 0.0198 0.0000 0.0000 

Minimum -0.2123 -0.2000 -0.2000 

Maximum -0.1925 -0.2000 -0.2000 
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Appendix VIII: Further analysis of the sample product moment correlation coefficient between two yariables 

Combining U[O,l) with U[O,l) via the RCM: Case (4): p = 0.3 

Distribution of the Generated Correlation Coefficients 

Sample Size: 10 100 500 

Mean 0.2989 0.3000 0.3000 

Median 0.2992 0.3000 0.3000 

Std.Dev 0.0035 0.0000 0.0000 

Range 0.0154 0.0000 0.0000 

Minimum 0.2919 0.3000 0.3000 

Maximum 0.3073 0.3000 0.3000 

Combining U[O,l) with U[O,l) via the RCM: Case (5): p = -0.5 

Distribution of the Generated Correlation Coefficients 

Sample Size: 10 100 500 

Mean 0.5001 0.5000 0.5000 

Median 0.5000 0.5000 0.5000 

Std.Dev 0.0051 0.0000 0.0000 

Range 0.0259 0.0000 0.0000 

Minimum 0.4866 0.5000 0.5000 

Maximum 0.5126 0.5000 0.5000 
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A cndix VIII: Further anal sis of the sam Ie d t ro uc moment correlation coefficient between two variables 

Combining U[O,l) with U[O,l) via the RCM: Case (6): p = 0.7 

Distribution of the Generated Correlation Coefficients 

Sample Size: 10 100 500 

Mean 0.7000 0.7000 0.7000 

Median 0.7003 0.7000 0.7000 

Std.Dev 0.0026 0.0000 0.0000 

Range 0.0119 0.0000 0.0000 

Minimum 0.6941 0.7000 0.7000 

Maximum 0.7060 0.7000 0.7000 

Combining T(10,30,40) with B(12,15,30) via the RCM: 

Case (2): p = -0.4 

Distribution of the Generated Correlation Coefficients 

Using the Correlation Model Using the Correlation Model 

Before Swapping After Swapping 

Sample 

Size: 10 100 500 10 100 500 

Mean -0.3953 -0.4180 -0.4173 -0.3998 -0.4000 -0.4000 

Median -0.4154 -0.4179 -0.4172 -0.4000 -0.4000 -0.4000 

Std.Dev. 0.0116 0.0030 0.0021 0.0000 0.0000 
I 

0.0806 

Range 0.3412 0.0402 0.0128 0.0090 0.0000 0.0000 

Minimum -0.5500 -0.4381 -0.4249 -0.4043 -0.4000 -0.4000 

Maximum -0.2088 -0.3980 -0.4121 -0.3953 -0.4000 -0.4000 
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A endix VIII: Further anal sis of the sam Ie roduct moment correlation coefficient between two yariables 

Combining T(10,30,40) with B(12,15,30) via the RCM: 

Case (3): p = -0.2 

Distribution of the Generated Correlation Coefficients I 

U sing the Correlation Model Using the Correlation Model 
Before Swapping After Swapping 

Sample Size: 10 100 500 10 100 500 

Mean -0.2174 -0.2209 -0.2220 -0.2007 -0.2000 -0.2000 

Median -0.1900 -0.2183 -0.2215 -0.2005 -0.2000 -0.2000 

Std.Dev 0.0795 0.0142 0.0035 0.0032 0.0000 0.0000 

Range 0.2873 0.0618 0.0113 0.0173 0.0000 0.0000 

Minimum -0.3681 -0.2593 -0.2281 -0.2102 -0.2000 -0.2000 

Maximum -0.0808 -0.1975 -0.2168 -0.1929 -0.2000 -0.2000 

Combining T(10,30,40) with B(12,15,30) via the RCM: 

Case (4): p = 0.3 

Distribution of the Generated Correlation Coefficients 

U sing the Correlation Model Using the Correlation Model 

Before Swapping After Swapping , 

i 

Sample 

Size: 10 100 500 10 100 500 

Mean 0.2886 0.3228 0.3232 0.2999 0.3000 0.3000 
I 

Median 0.2863 0.3187 0.3235 0.2999 0.3000 0.3000 

Std.Dev. 0.0581 0.0132 0.0026 0.0021 0.0000 0.0000 

Range 0.2161 0.0486 0.0089 0.0073 0.0000 0.0000 

Minimum 0.1858 0.3028 0.3187 0.2962 0.3000 0.3000 

Maximum OA018 0.3513 0.3276 0.3035 0.3000 03000 
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1\ endix VIII: Further anal sis of the sam Ie roduct moment correlation coefficl'ent bet .. bl 
\\ l."Cn t\\ ,) "ana es 

Combining T(10,30,40) with B(12,15,30) via the RCM: 

Case (5): p = 0.5 

Distribution of the Generated Correlation Coefficients 

Using the Correlation Model Using the Correlation Model 

Before Swapping After Swapping 

Sample Size: 10 100 500 10 100 500 

Mean 0.4783 0.5048 0.5065 0.5002 0.5000 0.5000 

Median 0.4762 0.5033 0.5063 0.501 0 0.5000 0.5000 

Std.Dev. 0.0585 0.0099 0.0024 0.0025 0.0000 0.0000 

Range 0.2644 0.0387 0.0105 0.0098 0.0000 0.0000 

Minimum 0.3649 0.4920 0.5017 0.4948 0.5000 0.5000 

Maximum 0.6292 0.5306 0.5121 0.5046 0.5000 0.5000 
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Appendix IX 

Comparing the result of running the ReM with 

corresponding runs of @Risk. 

These results complete the remaining cases referred to 

in section 6.4.2. and 6.4.3. 
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Combining U[O,l) with U[O,l): Case (2): p = - 0.4 
--

Distribution of the Generated Correlation Coefficients: 

@RISK versus the RCM 

Using@RISK Using the RCM I 

Sample i 

Size: 10 100 500 10 100 500 

Mean -0.5337 -0.5293 -0.5357 -0.3994 -0.4000 -0.4000 

Median -0.5725 -0.5386 -0.5438 -0.4000 -0.4000 -0.4000 

Std.Dev 0.1637 0.0650 0.0302 0.0031 0.0000 0.0000 

Range 0.6397 0.2627 0.1120 0.0129 0.0000 0.0000 

Minimum -0.8305 -0.6503 -0.5951 -0.4064 -0.4000 -0.4000 

Maximum -0.1907 -0.3876 -0.4831 -0.3935 -0.4000 -0.4000 

Combining U[O,l) with U[O,l): Case (3): p = - 0.2 

Distribution of the Generated Correlation Coefficients: 

@RISK versus the RCM 
i 

Using@RISK Using the RCM 

Sample 

Size: 10 100 500 10 100 500 

Mean -0.0691 -0.2336 -0.2269 -0.2005 -0.2000 -0.2000 

Median -0.1375 -0.2162 -0.2258 -0.2005 -0.2000 -0.2000 

Std.Dev 0.3890 0.1033 0.0329 0.0037 0.0000 0.0000 

Range 1.5355 0.3501 0.1345 0.0198 0.0000 0.0000 

Minimum -0.7158 -0.4232 -0.2918 -0.2123 -0.2000 -0.2000 

Maximum 0.8197 -0.0731 -0.1574 -0.1925 -0.2000 -02000 I 
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Combining UfO,!) with UfO,!): Case (4): p = 0.3 

Distribution of the Generated Correlation Coefficients 

@RISK versus the RCM 

Using@RISK U sing the ReM 
Sample I 

Size: 10 100 500 10 100 500 

Mean 0.3329 0.3696 0.3751 0.2989 0.3000 0.3000 

Median 0.4403 0.3662 0.3848 0.2992 0.3000 0.3000 

Std.Dev 0.2730 0.0771 0.0381 0.0035 0.0000 0.0000 

Range 1.0408 0.3037 0.1347 0.0154 0.0000 0.0000 

Minimum -0.3360 0.1906 0.3012 0.2919 0.3000 0.3000 

Maximum 0.7048 0.4943 0.4359 0.3073 0.3000 0.3000 

Combining UfO,!) with UfO,!): Case (5): p = 0.5 

Distribution of the Generated Correlation Coefficients 

@RISK versus the RCM 

Using@RISK Using the ReM 

Sample 

Size: 10 100 500 10 100 500 

Mean 0.6743 0.7054 0.6966 0.5001 0.5000 0.5000 

Median 0.7079 0.7092 0.6957 0.5000 0.5000 0.)000 

Std.Dev 0.1534 0.0413 0.0111 0.0051 0.0000 0.0000 

Range 0.6431 0.1497 0.0499 0.0260 0.0000 0.0000 

Minimum 0.2519 0.6243 0.6720 0.4866 0.5000 0)000 

Maximum 0.8949 0.7740 0.7219 0.)126 05000 0.5000 
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Combining U[O,l) with U[O,l): Case (6): p = 0.7 

Distribution of the Generated Correlation Coefficients 

@RISK versus the RCM 

Using@RISK Using the RCM 
Sample 

Size: 10 100 500 10 100 500 

Mean 0.9293 0.9244 0.9243 0.7000 0.7000 0.7000 

Median 0.9260 0.9245 0.9244 0.7003 0.7000 0.7000 

Std.Dev 0.0206 0.0058 0.0021 0.0026 0.0000 0.0000 

Range 0.0706 0.0217 0.0085 0.0119 0.0000 0.0000 

Minimum 0.9008 0.9135 0.9199 0.6941 0.7000 0.7000 

Maximum 0.9714 0.9352 0.9284 0.7060 0.7000 0.7000 

Combining T(10,30,40) with B(12,15,30): Case (2): p = -0.4 

Distribution of the Generated Correlation Coefficients: 

@RISK versus the RCM 

Using@RISK Using the RCM After Swapping 

Sample 

Size: 10 100 500 10 100 500 

Mean -0.3692 -0.3870 -0.3899 -0.3998 -0.4000 -0.4000 

Median -0.3932 -0.4039 -0.3906 -0.4000 -0.4000 -0.4000 

Std.Dev. 0.2604 0.0679 0.0437 0.0021 0.0000 0.0000 

Range 1.0857 0.2170 0.1820 0.0090 0.0000 0.0000 

Minimum -0.7316 -0.4725 -0.4702 -0.4043 -0.4000 -0.4000 

I Maximum 0.3541 -0.2555 -0.2882 -0.3953 -0.4000 -0.4000 
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Combining T(10,30,40) with B(12,15,30): Case (3): p = -0.2 

Distribution of the Generated Correlation Coefficients: 

®RISK versus the RCM 

Using@RISK Using the ReM After Swapping 
Sample , 

I 

Size: 10 100 500 10 100 500 I 

Mean -0.1080 -0.2070 -0.1974 -0.2007 -0.2000 -0.2000 

Median -0.1972 -0.2259 -0.2006 -0.2005 -0.2000 -0.2000 

Std.Dev 0.3828 0.1118 0.0401 0.0032 0.0000 0.0000 

Range 1.2722 0.4036 0.1782 0.0173 0.0000 0.0000 

Minimum -0.7077 -0.3611 -0.2751 -0.2102 -0.2000 -0.2000 

Maximum 0.5645 0.0424 -0.0969 -0.1929 -0.2000 -0.2000 

Combining T(10,30,40) with B(12,15,30): Case (4): p = 0.3 

Distribution of the Generated Co.'relation Coefficients: 

@RISK versus the RCM 

Using@RISK Using the ReM After Swapping 

Sample 

Size: 10 100 500 10 100 500 

Mean 0.1775 0.2951 0.2990 0.2999 0.3000 0.3000 

Median 0.1900 0.2849 0.3023 0.2999 0.3000 0.3000 

Std.Dev. 0.3275 0.0714 0.0362 0.0021 0.0000 0.0000 

Range 1.4309 0.2361 0.1544 0.0073 0.0000 0.0000 

Minimum -0.6646 0.1809 0.2128 0.2962 0.3000 0.3000 

Maximum 0.7663 0.4170 0.3672 0.3035 0.3000 0.3000 
~~ 
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Combining T(10,30,40) with B(12,15,30): Case (5): p = 0.5 

Distribution of the Generated Correlation Coefficients: 

@RISK versus the RCM 

Using@RlSK Using the ReM After Swapping 

Sample 

Size: 10 100 500 10 100 500 

Mean 0.4507 0.4828 0.4855 0.5002 0.5000 0.5000 

Median 0.4977 0.4952 0.4875 0.5010 0.5000 0.5000 

Std.Dev. 0.2468 0.0682 0.0274 0.0025 0.0000 0.0000 

Range 1.1927 0.2757 0.1166 0.0098 0.0000 0.0000 

Minimum -0.4426 0.3259 0.4235 0.4948 0.5000 0.5000 

Maximum 0.7501 0.6016 0.5401 0.5046 0.5000 0.5000 
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