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A Method for Treating Dependencies Between Variables in a Simulation Risk Analysis Model

Abstract

This thesis explores the need to recognise and represent accurately the interdependencies
between uncertain quantitative components in a simulation model. Therefore, helping to
fill the gap between acknowledging the importance of modelling correlation and the
actual specification and implementation of a procedure for modelling accurate measures

of Pearson’s correlation became the main aim of this research.

Two principal objectives are stated for the developed Research Correlation Model
("RCM"): (1) 1t 1s to generate Pearson-correlated paired samples of two continuous
variables for which the sample correlation is a good approximation to the target
correlation; and (2) the sampled values of the two individual variables must have very

accurate means and variances.

The research results conclude that the samples from the four chosen distributions that
have been generated by the RCM have highly acceptable levels of precision when tested
using x” tests and others. The results also show that an average improvement in precision
of correlation modelling was over 96 percent. Even with samples as small as 10 the
worst case correction factor is only just less than 90 percent, with the average correction
factor being over 96 percent overall, so that the contribution made by the RCM here is

quite impressive.

Overall the analysis shows that in the case when the sample size 1s 10, the RCM
consistently generates samples whose correlation is so much more precise than that
generated by @RISK. The smallest of all the observed ratios of improvements of the
RCM in comparison with the use of @RISK i1s 2.3:1, in just one case when the medians

were being compared. The average improvement ratio exceeded 100.

It 1s concluded that the aim of specifying, formulating and developing a Pearson
correlation model between a pair of continuous variables which can be incorporated into

simulation models of complex applications has been achieved successfully.
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Chapter 1: The Thesis

1.1 Introduction

This thesis explores the need to recognise and represent accurately the
interdependencies between uncertain components in a model of a real world
application, whether that model is analytical or so complex that it can only be

modelled via some form of simulation.

Uncertain components are variables that are used in a model and which have
values that are not certain. I.e. Not deterministic. The level of uncertainty could
be affected by internal factors, e.g. change of capital structure, or external

factors, e.g. political or economic change.

Quantitative risk analysis (QRA) using simulation is a powerful method for
portraying the uncertainty and variability of a problem and for giving one a
realistic appreciation of the problem’s total uncertainty. One application area is
that of capital budgetting, and it will be discussed in section 2.2. The role of
capital budgetting in this thesis will be to illustrate or interpret many of the
mathematical, statistical, economic, or operational research tools which will be

documented within the research.
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One of the golden rules of QRA using simulation is that each scenario identified
as an output by the simulation must be potentially observable in real life (Vose,

2000).

To illustrate this, suppose there is a model relating interest rates and mortgage
rates. They should be positively correlated, so that an outcome of the simulation
which allows, for example, a higher interest rate and lower mortgage rate is far
from desirable. Thus, disregarding the correlation, which is a measure of
interdependencies and the association between these two variables, may result in
impossible combinations being generated, in which case the cash-flows
calculated would not be practical. As a result, the whole process could waste

resources €.g. money, time and effort.

Any simulation model, therefore, must be restricted to prevent it from producing,

in any iteration, a scenario that could not sensibly occur.

During the early stages of this research it became very clear that commercial
simulation or risk analysis packages, such as @RISK and Crystal Ball, enable
some degree of correlation modelling to take place. However, the correlation
modelling is based on Spearman’s rank correlation technique (Curwin and Slater,
2002), which is appropriate for variables represented on an ordinal scale. Where
variables are continuous (such as $ to £ exchange rates and inflation rates) it
would be rather more appropriate to measure correlation using Pearson’s product
moment correlation coefficient. These simulation models enable accurate
representations of the probability distributions of the individual variables (i.e. the
marginal distributions) to be generated, and research was carried out to identify
any implementations of Pearson's method in commercial simulation or risk
analysis packages. Initially nothing relevant was discovered, but eventually the

work on NORTA and its derivatives (Cario and Nelson, 1997) was found.
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This is discussed later in Chapter 2, but the conclusion drawn there shows that
the NORTA approach is very complex, requires the use of a great deal of
computing and time-related resources, and is all too often non-robust in the sense
that 1t fails to converge to an acceptable result. This thesis will demonstrate that
it is indeed possible to generate multivariate samples whose marginal
distributions for the individual variables are specified, such that the simulated
sample values fit precisely to their marginal distributions, and for which the

achieved product-moment correlation is very accurate.

Indeed, Wall (1997) claims that literature on presenting Monte Carlo simulation
often overplays the importance of the choice of which distribution to use to
represent input variables which are believed to be uncertain and underplays the
importance of assessing and including correlations between these inputs (further

illustrations are discussed in Chapters 2 and 3).

This claim by Wall and the desire to seek ways of modelling Pearson’s
correlation coefficients therefore have become the starting point for this research.
Hence, helping to fill the gap between acknowledging the importance of
modelling correlation and the actual specification and implementation of a
procedure for modelling accurate measures of Pearson’s correlation has turned

into the main aim of this research.

When this research originally began it was for a short time directed at examining
new or better usage of economic parameters within capital budgetting. Rapidly
this evolved into an intention to develop an economic risk analysis product
suitable for the evaluation of a project such as a proposed new oil field in the
petroleum industry, so that the drive would be on the application area, with new

or revised 'building block' techniques being sought as appropriate on the way.

S
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Quite soon after this stage, however, the current shortcomings relating to
simulating product-moment correlations became apparent, and so the current
emphasis emerged: to seek a more accurate and robust and/or less complex
means of simulating product-moment correlations, with illustrative examples
being drawn from numerous application areas, but principally those of capital

budgetting and oil field economic analysis.

1.2 Research question, aim and objectives

1.2.1. The research question
The main research question is:

“How can the relationship between continuous variables be integrated in a

simulation model using Pearson’s product moment correlation?”

Simulation i1s a technique of Operational Research which involves using a
computer to imitate (simulate) the operation of an entire process or system by
randomly generating and recording the occurrences of the various events that
drive the system, just as if it were physically operating. This is explained in
greater detail in Chapter 2. QRA models using simulation are more complex
than the deterministic models that they build on. A major reason for this

increase in complexity is that a simulation model is dynamic.

There are a potentially infinite number of possible combinations of scenarios that
can be generated by a risk analysis model. However the output from the

simulation is only useful if these scenarios are viable in the real situation.
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Therefore it is important that some sort of control can be imposed upon the
sample values used in each scenario. This will prevent impossible combinations
being used in producing a scenario which in return might then be used in

decision making.

1.2.2. The research aim

Initially the research is intended to model the correlation between only a pair of
continuous variables, so that the above research question leads to the primary

aim of this research as follows:

“To specify, formulate and develop a Pearson product moment correlation
model between a pair of continuous variables which can be incorporated into

simulation models of complex applications.”

This model will be known as the ‘Research Correlation Model” or RCM. In
simulation parlance this is known as an 'Input Model', and contrasts with the bulk
of the modelling complexity which goes into the building and specification of
the 'Logical Model', for example to generate post-run analyses. It will become
clear within this thesis that the general view is that commercial simulation
packages are usually helpful and supportive to the user when designing,
implementing and testing the logical model, for example with the provision of
report writer routines, but in contrast the facilities for input models are either too
limiting and elementary, or require lengthy and in-depth input by the user into
complex input routines. Thus any advance which reduces the 'black box' element
of the input model, or lessens the need for the user to oversee repetitive and high

level mathematical and statistical computations 1s indeed laudable.
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When the desirability of accounting for the interdependencies between two
variables in a simulation model is recognised, the need for a model such as the

RCM that could fulfil the requirement is obvious.

A model by definition is a representation of real objects or situation (Hillier and

Lieberman, 2005). Specifying a model includes:

1. Finding a way of expressing the understanding of situations through the use
of simplified constructions, the use of language, the use of diagrams or the

use of mathematics.

2. Constructing a transformation where outcomes are explained by a range of
inputs and assumptions. Assumptions are things that are believed to be true
for the model and they are imposed to limit the scope for formulating and

developing of a model.

3. Identifying which variables should usefully be modelled. A balance is
needed between those inputs that are significant and those that may have
some minor effect but do not significantly impact on the problem

characteristics.

4. Creating an understanding of relationships between the outcomes from a
model with the inputs and assumptions that are affecting the outcomes.
These relationships need to be specified in terms of being ‘fit for purpose’

rather than perfectly correct.

5. Establishing the testing and verifying processes that best suit the aim and
objective of the RCM. This will include the categories of data that are

required to prove the validity of the model.
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The actual formulation is best described as the prototype that forms the
foundation theoretical approach of the RCM identified in the research aim by
combining certain methodologies that will be reviewed and proved to be useful

in inventing a distinctive way of generating a pair of correlated sample values.

Later in the thesis, in Chapter 6, the output from the formulation is proven to be
acceptable by comparing with the output from a widely used commercial
simulation package. The prototype is then extended to cope with broader or
more complex modelling problems. This is when the prototype 1s developed as a

computer model.

1.2.3. The principal research objectives

The research aim is to develop a product moment correlation model for two
continuous variables, the functionality of which must attain two objectives, as

follows:

Research objective 1:
The correlation model must generate samples of pairs of values of continuous

variables whose Pearson correlation coefficient has acceptable precision

The correlation model should be able to produce numbers of pairs of correlated
sample values, depending on the given type of probability distribution assigned
to each variable and the relationship between them in terms of their Pearson
correlation coefficient. At the end of the output, the two sets of the sample
values generated from the model must have measures of inter-dependencies that

are as close as possible to the required correlation coefficient.
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Research objective 2:
The correlation model must include a good representation of the uncertain

variables

The sample values generated from the correlation model not only need to
correspond to the input correlation coefficient but also to abide by the descriptive
statistics e.g. measures of central tendency and spread, etc. For example, the
calculated sample mean of either of the variables needs to be acceptably close on
some scale to the expected value of that variable. Thus, these descriptive
statistics are calculated based on the parameters given to the assigned probability

distributions.

Being able to show that the output from the model will meet the requirement of
the relevant descriptive statistics will ensure that these sample values are truly
representative of the input variables. It is therefore an important process to
validate if the research invention has been properly done and has achieved its

aim.

1.2.4. Supplementary research objectives

Alongside achieving the aim and objectives of this research, there are other

objectives to be attained. They are:

e Defining the terminology used in QRA, such as uncertainty, variability and

risk.

e Presenting, comparing and contrasting different approaches used in
quantifying uncertainty. This will form the basis for the appreciation of

simulation.
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e Identifying how simulation works, together with its advantages over other

approaches and its limitations.

e Explaining the importance of assessing and including the interdependencies
between uncertain variables in a simulation model. This will lead to the
construction of a model which allows the interdependencies to be considered

and incorporated, through product-moment correlations.

e Illustrating how modelling dependencies can be achieved. Throughout the
process, various statistical concepts will be discussed and it will be shown

how they can be practically applied.

e Indicating how the RCM can be incorporated into a QRA model in practice.

It demonstrates the value and effort of the complicated modelling process.

By the end of the research, a RCM is to be developed which will achieve the

objectives defined above.
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1.3 Contributions to knowledge

Upon completion of this research, the contributions to knowledge will be

important in two academic areas, i.e. Statistics and Operational Research. They

are as follows:

Statistical Contributions:

Reinforcing the importance of modelling the interdependencies between

uncertain components when simulation models are used.

Discovering a distinctive way of formulating Pearson correlated sample

values of a pair of continuous variables during sampling processes.

Filling the gap between theoretical awareness of the significance of
correlation and the actual practice of its use. In particular recognising the
inappropriate use of rank correlations in many situations where the data are

not ordinal and developing instead models of product-moment correlations.

Operational Research Contributions:

Consolidating the advantages and limitations of choosing simulation as a

means of carrying out risk analysis.

Improving the reliability and precision of simulation output and

exemplifying the sensitivity and confidence of using simulation

methodologies.

Showing the relevance and suitability of simulation and encouraging its

wider use.

10
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1.4 Thesis structure

A brief outline of the structure of this thesis is shown in Figure 1.1. The whole

thesis is divided into four parts.

Part 1 Introduction and literature review (Chapters 1 and 2) provides an
introduction to why this research is carried out, what are the purposes of doing
this research, what are the aims and output of this research, and who it is to
benefit. Chapter 2 emphasises a review of different approaches used when QRA
is considered. It includes the advantages and disadvantages of each approach. It
provides the theoretical background against which these approaches should be
assessed, and how. In particular it defines and contrasts the two major measures
of correlation (product-moment and rank correlation), and summarises key recent

advances in the area of simulating correlations.

Part II Methodology (Chapter 3) provides the background to how this research
will be carried out in order to achieve the aim and objectives of this research
defined earlier in section 1.2. It will then identify the methodologies to be used
in developing the RCM. In essence, then, this chapter provides the functional
specification and the first part of the technical specification of the RCM. The

second part is dealt with in Chapter 5.

Part III The Algorithms and the Computer Model (Chapters 4, 5 and 6)
presented in the first part of Chapter 4 is the basis of the theoretical approach
formulated for the RCM, together with a full illustrative example. The second
part is the structure of the RCM as a computer model. Chapter 5 is the
implementation of the theoretical approach into a computer based model where

the theoretical approach is extended to include different types of probability

distributions.

11
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Chapter 6 is testing and verifying the validity of the Model and should ultimately
demonstrate that the design and development of the RCM 1is appropriate.

Part IV Conclusion (Chapter 7) assesses the results generated from the RCM
and discusses how closely the mathematical or statistical methodologies used in
the model achieve the aim and objectives of this research. Further work

extending from this research will be recommended.
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1.5 Overview of each chapter’s contents

Within this section, the individual chapters of this thesis are overviewed. The

aim, objectives and the outcomes of each chapter will be briefly identified.

Part 1: Introduction and Literature Review

Chapter 1: The Thesis

This chapter has provided an overview on this research in terms of the
background to the research question, the research aim and objectives, and has
also briefly described the evolution of the research. The research problem that
has been identified in this chapter is that ignoring the interdependencies between
uncertain components may result in unreliable output when carrying out risk
analysis using simulation, and that there is a need to be able to model the
relationship between two or more continuous variables using Pearson’s product
moment correlation. A methodology to solve this problem will be proposed. As
a result, finding a way of incorporating interdependencies into a simulation
model has become the aim of this research. By achieving the aim, this research
will contribute to knowledge by filling in the gap between theoretical awareness
of the problem and being able to model and incorporate appropriate measures of

interdependency between continuous variables in practice.

14
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Chapter 2: The Reasons for Using Simulation As a Tool for QRA

This chapter provides a chronological review of the existing literature. It starts
with the definitions of risk, uncertainty and risk analysis, and proceeds to show
how QRA is carried out in practice. This chapter categorises different QRA
techniques, and each category will be discussed in detail in terms of its
advantages and disadvantages and when it should and shouldn’t be used. This
leads to the rationale for this research and the reason why simulation is chosen to
be the most appropriate risk analysis approach. It provides the incentive for

investigating its limitations and overcoming them where appropriate.

The development and key aspects of discrete-event simulation are discussed in

section 2.9.

The chapter concludes with formal definitions of the two major forms of
correlation, examines some of their key properties, and reviews the relevant
literature on the modeling in practice of joint distributions of several variables
when their individual marginal distributions are known (or assumed), and their

pair-wise correlations are predicated.
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Part II Methodologies

Chapter 3: The Methodology for A Model Simulating Product Moment

Correlation

This chapter presents the methodological considerations to be taken into account
in this research. It illustrates the pre-requisite knowledge for formulating a
model which is able to generate sample values of a pair of correlated continuous
variables. This chapter presents step by step the mathematical and statistical
formulations of how to generate a pair of correlated sample values from the
assigned probability distributions of the two variables, and which have a measure
of interdependency via a defined product moment correlation coefficient. It also
provides a strong justification for using Latin hypercube sampling in simulation,

rather than the various traditional Monte Carlo approaches.

Part III The Algorithms and The Computer Model

Chapter 4: Simulating Accurate Correlations Between Two U[0,1) Samples: a

Full Example, and the Specification of the RCM

An illustrative example will be given to clarify the explanation of the algorithm
formulation discussed in Chapter 3. As the RCM will be transformed into a
computer based model, this is where the second part of this chapter also

concentrates on the structure used to achieve the aim of this research from the

perspectives of formulation, design and development.

16
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Up to this point, the research is limited to variables which have standard
Uniform distributions (i.e. U[0,1)), but this will be extended in chapter 5. These
formulations are implemented as a theoretical model, and the testing of the
output from this model will be compared later in Chapter 6 with that from a

commercial simulation package currently available.

Chapter 5: Implementing the RCM to Include Other Probability Distributions

Within this chapter, the theoretical approach designed in the previous chapter
with the extended scope to include other probability distributions will be
implemented as a computer model. The structure of the completed RCM will be

presented as a summary flow chart with fuller details of each constituent part.

Chapter 6: Testing and Verifying the Validity of the RCM

This chapter is concerned with documenting the testing process. The descriptive
statistics calculated from the RCM will be tested using Microsoft Excel. This is
to ensure that the programming for producing the descriptive statistics is free
from human error. Descriptive statistics form a list of measurements on the
sample values. They are presented in the model so that they can be used to

check and compare the sample values generated with the specification of what

was required.

Once the model has been specified and then developed, it has to be verified that
it is functioning as desired. In this chapter, the descriptive statistics calculated
from the sample values generated from the RCM are investigated to ensure their
acceptability.  This chapter will support with evidence the claim that the
formulation of the model has been appropriately designed, and will demonstrate
an overwhelming improvement in the modelling capability of product-moment

correlations compared with standard commercial packages.

17
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Part IV Conclusion

Chapter 7: Conclusion, Review and Recommended Future Work.

This chapter sets out the overall conclusion on how closely the research output
meets the initial aim and objectives. A summary of the problems faced during
the research and the limitations on the research output is examined.
Recommendations for further work extended from this research are suggested.
For example, extending the analysis to cope with correlations between more than
two continuous variables, and developing processes to model more accurately

other measures of a variable such as its skewness and kurtosis.

18
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Summary

Within this first chapter, the problem of ignoring the correlation between
variables in a simulation model has been recognised, and has led to the definition
of the research question. This is followed by the research aim, to specify,
formulate and develop a Pearson correlation model that can be incorporated into
a simulation model. During the process of modelling, several desirable
objectives have arisen, and these have been listed in the chapter. When they are
all achieved, the contributions to the academic area of statistics and operational

research will be significant.
The structure of this thesis is divided into four main parts, each containing one or

more chapters, and it is presented in a flow chart in Figure 1.1, the contents of

which have been discussed in overview detail.
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A Method for Treating Dependencies Between Variables in a Simulation Risk Analysis Model

Chapter 2: The Reasons for Using Simulation As a Tool
for QRA

2.1 Introduction

The objectives of this literature review chapter are two-fold. The theme of the
first part begins by exploring the debate about risk and uncertainty, especially

their meaning in the eye of Operational Research.

Such terminology is not only the prerequisite for appreciating the need of risk
analysis during, for example, a capital budgetting process, but also provides the
comprehension for reviewing the emergence of using simulation as a tool for

quantitative risk analysis (QRA).

While the theme of the second part of this chapter is to review the emergence of
using simulation in the QRA process, the different methodologies used in
practice when uncertainty is taken into account are examined, with capital
budgeting again being the vehicle for explaining or interpreting theses
methodologies in many cases. Hull (1980) and Smith (1994) were of the opinion

that capital budgetting decisions are among the most important of all

management decisions.
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After evaluating the advantages and disadvantages of using each methodology,
the reasons for using simulation as a method for carrying out QRA becomes

clear. These methodologies are summarised from different techniques used

when uncertainty is considered.

Similarly, at the end of this chapter, the reasons for nominating the particular
forms of the research question and the aim and objectives of this research in

Chapter 1 are justified.

2.2 The environment of capital budgetting

Capital budgetting is one of the most risky elements in the finance function due
to the uncertainty in prevailing economic conditions (Van Horne, 1995). 1t is
highlighted as a vehicle here because the recognition of risk as an important
component in capital budgetting decision-making has long been identified
(Brookfield, 1995). The practice of using simulation in capital budgetting

applications has been growing in recent years.

Chansa and Mount-Campbell (1991) suggested that further research in the field
of capital budgetting is required and it should be concentrated on getting high
quality project cash flow information based on uncertainty economic conditions.

This can be done by developing appropriate tools for handling and reducing the

riskiness of the investment decisions.

The techniques used in including considerations of uncertainty are known as risk
analysis techniques (Smith, 1994). This research is specifically focused on the
application of risk analysis via simulation in situations where the variables are

continuous Consequently our main attention will be directed towards

quantitative risk analysis (QRA) from Chapter 3 on.
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Any investment appraisal technique that fails to take consideration of the cash
flow information is most likely to lead to incorrect conclusions and erroneous

recommendations (Brookfield, 1995).

Vose (1996) asserted that an understanding of the techniques used to carry out
risk analysis has not been matched by a corresponding growth in its popularity
amongst businesses and government agencies, although the relatively recent
emergence of risk analysis tools such as @RISK and Crystal Ball have enabled
this delayed growth of use to begin.

The above has certainly encouraged the needs for this research to look into the
most popular approaches used in developing quantitative risk analysis models
and help fill the gap of knowledge and also credibility in QRA. In the area of
capital budgetting, for example, the result of this research might be to enable the
development of a more comprehensive and useful project cash flow information
tool that will improve the quality and confidence in the output which is used to

aid decision making.

2.3 The nature of risk

Uncertainty and risk are the main components of any activities. They are not

only limited to our private lives, they also occur in virtually all business

decisions.

Most of us have learned to live comfortably with day to day uncertainties and to
make choices and decisions in their presence. When there is no great impact
from a failure then commonly the uncertainty is simply ignored (McCray, 1975,
and Morgan and Henrion, 1990). Nevertheless, Vose (1996) suggested that

uncertainty and risk need to be understood so that rational decisions can be made.
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2.3.1. The meaning of uncertainty

As early as in Rowe (1977), through Ritchie and Marshall (1993). and up to
Vose (2000), the definition of uncertainty has remained consistent. It can be
concluded that uncertainty arises from one's imperfect knowledge about the past
and/or doubt about the future, specifically the proposed decision and its possible

consequences. This is illustrated in Figure 2.1

Unecertainty I Uneertainty |
Kneown with doub Known with doulbt

Past Present Future

——r——

Figure 2.1 Uncertainty in time scale

Each person’s imperfect knowledge could arise from not knowing precisely what
had happened in the past and being unsure of what will happen in the future.
The further the time frame is from the present, the more difficult it is to sketch

the picture of the past or to predict the future with any confidence.

It is more difficult to control the outcome of the event when one lacks
information surrounding the future event with certainty. and this lack of certainty
is, unfortunately, virtually always present. Rosenhead (1989) stated that it is
dangerous to "attempt to pre-take the future”. He focussed on the common
practice of assigning probabilities of occurrence to the individual outcomes of

events. whether they be measured on discrete or continuous scales. Wherever

possible such estimates should not be used.
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However, although clearly it is sensible to pay careful attention to the
justification of choices of probabilities, including probability distribution
functions (p.d.f's), there is often no alternative because QRA has to be carried
out. Hence the relevant forecasts, etc., which arise from this process should

never be regarded as deterministic as such information can only be predicted

with at least a level of doubt.

Example

It help to illustrate the definition of uncertainty in a simple example. Suppose an
entrepreneur is thinking of launching a new product into the market. He accepts
that there will be two possible outcomes: either this new product will be accepted

or rejected by the market.

Action Outcomes
Launch a new product Accept
Reject

Here there is an uncertainty inherited in the action. This is because there are at
least two possible outcomes, and the entrepreneur’s uncertainty comes from his
lack of information about how successful his launching would be. Actions open
to him would include trying to estimate the probabilities of acceptance or

rejection, perhaps by reviewing similar launches in the past, and evaluating their

outcomes.

It is also interesting to observe that a person, particularly a layman, will try to
express his uncertainty as to the outcome of future events through the use of
words such as ‘probable’, ‘possible’, ‘expected’, and ‘likely’. Unfortunately

some of the general words used in this context have very specific meanings in

parallel contexts. E.g. “expected .
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Uncertainty in a project

Uncertainty arises when any of the events which constitute a project have wide
ranges of possible outcomes as a result of imperfect knowledge of the events. In

some cases these potential outcomes are mutually exclusive; in others there may

well be a degree of interdependence.

Such events could be a change of the taxation rates, changing demand for
services/products, or a variation in costs and/or revenues, for example, and taken

together they are highly influential on the project profitability.

When any one or all of the events have many different possible outcomes, this

will make the overall outcome of the project highly uncertain.

2.3.2. The meaning of risk and its relationship with uncertainty

Risk can mean different things to different people (Cochrane, 1992). Singhvi
(1980) said that "risk, like beauty, lies in the eyes of the beholder".

Given that the word ‘risk’ is used in many different contexts with an equally
wide variety of definitions, if we do not have a particular context in mind when

asking people about risk, they will make up their own contexts based on their

own experiences, beliefs, habits, etc.

These contexts will be as immensely varied as each person’s own experiences

and concerns. People tend to relate risk to specific situations where there are

particular stimuli considered being dangerous.
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2.3.3. Risk as a result of uncertainty

Hertz and Thomas (1984), Cooper and Chapman (1987), and Eschenbach (1996)
gave the opinion that risk is something concerned with uncertainty and also

resulting from uncertainty.

The above expression implies that when there is uncertainty, there is risk. When

an event (or activity) involves uncertainty, a risk arises from the decision.

From the earlier example in section 2.3.1. the uncertainty is whether the new
product will be accepted by the market if it is launched. If the action is
undertaken, it is saying that the entrepreneur is taking the risk of making the

decision or the decision is risky.

2.3.4. Risk as the impact upon a decision maker

Ho and Pike (1991) raised the opinion that risk is a measure of the consequences
that impact on projects from the occurrence of an event. As a result risk 1s then

a measure of how a particular project will impact upon the investor (or decision

maker).

The philosophy above on risk has two essential prerequisites: uncertainty and
loss. Risk is then used to denote that the decision maker is uncertain as to the

precise outcomes of the investment decisions, which involve the possibility of

undesirable consequence or loss.
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Less formally, Cavinato (1990) said that risk is the chance that a project you are

sticking your neck out for will not live up to an estimated outcome.

So, if the outcome of an action is uncertain or uncontrollable and may cause

some loss (e.g. of money, human life), the action is risky (Indoinc.com, 1999).

2.3.5. Risk as the notion of probability

Risk as the notion of probability is not new to the academics. Singhvi (1980),
for example, recorded that in 1975, a survey was carried out by Petty, Scott and
Bird on 109 industrial corporations. A question was asked to management,
‘What is meant when you say an investment proposal is risky?’ The results of

this survey are summarised in Table 2.1 following.

Definition of risk % of total responses
Probability of not achieving a target return 40
Variation in returns 30
Payback period uncertain 10

Uncertain market potential
Entering an inexperienced area

Success ratio (potential gain/potential loss)

A~ b~ O

Miscellaneous

Table 2.1 Management's definition of risk (Source: Singhvi, 1980)

The survey showed that the definition of risk in the eye of management as the
probability of not achieving a target return, for example making a loss, was

identified by 40 per cent of the responding executives.
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Next, 30 per cent of the respondents were principally concerned about variation
in returns (although nothing is suggested in the analysis about the direction or
directions of such variation). Only 10 per cent of the respondents define risk in
terms of the payback period, which is the length of time before the cumulative

expected return is at least equal to the costs incurred to date.

Although this survey was carried out a long time ago, the conclusion produced
from the survey, i.e. risk is the probability of not achieving the target, remained

unchanged according to Ritchie and Marshall (1993).

2.3.6. Stems of risk, illustrated via capital budgetting

Uncertainty arises from imperfect knowledge about future event and risk is the
consequence of uncertainty. It is important to identify — and hence try to control

where possible — the factors which are contributors to this uncertainty.

For example, in capital budgetting the major uncertainty comes from the
predicted data, so that any decision based on decision criteria is recognised to be

risky.

Cavinato (1990) and Ho and Pike (1991) explain that the uncertainty inherent in

the predicted data stems from three areas, as in Figure 2.2 below.
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Environment

Operating
Situation

Investment
Estimates

Figure 2.2 Stems of risk in capital budgetting

The business environment might change for the worse. For example the
underlying economic environment might deteriorate through considerable

instabilities in inflation levels and exchange rates following currency flotation.

Similarly, the operating situation could deteriorate, for example if the estimated
schedule is not achieved on time. Also the investment estimates might turn out
to be wrong. For example, the estimated revenue and expenditure might be

overestimated and underestimated respectively.

In conclusion, when decision makers frequently have to confront the possibility
of making the wrong decision and experiencing ‘negative’ outcomes such as
financial loss, Cooper and Chapman (1987) claimed that risk analysis has the
greatest immediate acceptance in the area of investment project appraisal. It is
therefore important to realise that the greater the understanding of the precise
nature and level of the risk the better the decision will be and, ultimately, the

firm’s performance (Hertz and Thomas, 1984; Cooper and Chapman, 1987, and
Ho and Pike, 1991).
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2.4 Risk analysis

Risk analysis was jelled into a distinct discipline around 30 years ago (Tversky,
1974). 1t is increasingly demanded as part of capital project justification
(Cavinato, 1990). As stated earlier, Hull (1980) and Smith (1994) claimed that

capital budgetting decisions are among the most important of management

decisions.

Hillier (1962) advised that the amount of risk involved is often one of the
important considerations in the evaluation of proposed investments. Decisions
must be made in the face of uncertainty (Eschenbach, 1992; Randhawa and
Douglas, 1993). Very often they involve a relatively large commitment of a
company’s resources and are instrumental in shaping its whole future. To a large
extent the expenditures that project decisions involve are irreversible. Mistakes
in capital investments not only affect immediate cash flows but also the
operation of the business and future cash flows for years to come. E.g. The huge

cost-over-run of the building of the new Scottish Parliament.

Thus, the need to manage uncertainty is especially desired for large projects that
have not been executed before and therefore involve much uncertainty in project
schedule and project cost (Lucey, 1968; Mott and Tumay, 1992). Bierman (1986)
confirmed, via a survey of US senior financial officers, the challenge of handling
risk was one of the most prominent problems in capital budgetting practice. This
has encouraged a research in finding or developing a tool for evaluating risk in

the capital budgetting process.
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2.4.1. Risk analysis definitions and its usefulness

Hertz and Thomas (1984) declared that risk analysis 1s used when developing a

comprehensive understanding of the risk associated with a variable is necessary.

Within this research, this declaration will be extended to cope with several
variables, together with their inter-dependencies. "Risk analysis is a process of
identifying and evaluating risk factors and a study of the likelihood that an event
will produce an unwelcome outcome or adverse effect of what may be and the
impact should a failure occur" (Swaney, 1996; Quality Assurance Review Guide,
1999). Bodily (1992) observed that the risk analysis process is primarily through
estimating probabilities which involves collection and analysis of data, originally
to estimate human morbidity or mortality, now expanded to range across many

areas, from ecological health to economic well-being, etc.

Risk analysis therefore estimates a range of possible results of a proposed
investment decision based on the given input data and seeks to quantify the
probability that the overall result will be in a specified range. It simulates the
effects of the uncertainty surrounding key variables entering into the evaluation

on the returns one is likely to achieve (Singhvi, 1980).

Consequently risk analysis is used to examine the possible future outcomes
before approving an investment proposal, a new product, or a future corporate
strategy (Karady, 1985). For example, in evaluating a capital project, a company
carries out a risk analysis to determine its financial risk in making the investment.
The approach might incorporate a cash flow model, and the risk analysis might

involve a simulation of the uncertainty in the net present value cash flow or other

financial performance measures.
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Risk analysis therefore efficiently provides risk managers with quantitative

evidence which will enable them to:

1. break down the complex problem into smaller and more manageable sub-

problems, each of which can be analysed,

2. measure exposure to extreme events. For example drastic market moves, or

large changes in interest or exchange rates,

3. reduce the risk of the project, if it is not acceptable, either by diversifying,

risk sharing, or contingency planning to protect against unwanted scenarios

(Balson et al, 1992); and

4. provide better ways for individuals and groups to reduce hazards or cope

with their efforts (Phoa, 1999).

2.4.2. The significance of risk analysis in the capital budgetting decision

The researches of Richards and Contesse (1975), Hosseini (1986), Cozzolino
(1979); Coats and Chesser (1982), Hertz and Thomas (1984); Karady (1985); Ho
and Pike (1991); and Chadwell et al (1996), all concluded that firms recognised
that risk analysis was critical in the proper evaluation of capital projects.
Management relies heavily on risk analysis techniques for evaluating complex
strategic projects, so that corporate success can be partly attributed to the use of

such approaches.

However, varying degrees of risk among projects should be taken into account
(Eschenbach, 1992), so that the greater the risk in the outcome, the greater is the
case for using the formal techniques of risk analysis. Eynon (1988) claimed that
one of the seven deadly sins in the decision making process is to ignore risk

analysis completely.

‘v
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Hence, it is highly desirable for the success of the company during project
planning to have as accurate financial estimates as possible. The system of
generating accurate estimates must be established and maintained. In the many
changes that take place within companies, the importance of generating accurate

estimates cannot be overlooked.

The contribution which risk analysis can make is to help managers’ thinking
processes, and this is done in the first instance by forcing them to confront the

structure of the decision problem in a relatively unemotional manner.

After the problem has been defined, Karady (1985) specified that evaluation of
the cross-impacts or joint impact amongst the uncertain variables is vital in the
risk analysis. By doing so, viable options can be identified and decisions makers
eventually understand the risk associated in the project, and appreciate why one

course of action might be more desirable than another.

His thought eventually has become the stem of this research. This aspect of
‘cross-impacts / joint impact’ referenced by Karady is thus reflected in the

examination of product-moment correlations in the RCM.

2.4.3. The application of risk analysis

“who is at what kind of risk, when, where, with what effects, from what
causes, with whom, responsible for, by what instruments, in what value

context, and at what costs and benefits for its management?”

Coates (1994) identified the general risk analysis question above as the starting
framework for anyone quickly to develop a comprehensive overview of any

situation with regard to any risk they are concerned with.

‘J
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The principle of risk analysis may be used in various application areas (Quality
Assurance Review Guide, 1999). For example, in the United States, and to a
more limited extent in European countries, risk analysis emerged during the
1980s as a major methodology for regulatory policy-making (Brod, 1992).
Public agencies found themselves increasingly influenced by the impacts of
national and state legislation, budget constraints on operations, new regulations

and growing demands for resources.

As this changing environment became more complex, it required the adoption of
systematic approaches for evaluating the consequences of alternative

management policies and external events.

Risk analysis can be equally applied to both qualitative and quantitative
evaluations of the risk arising from some activity (Bodily, 1992). It is tabulated
in the user guides of two popular commercial simulation and risk analysis
packages, Crystal Ball and @RISK, that risk analysis can be used in different

application areas.
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Both listed areas such as those below, for each of which an illustrative example

has been given.

Oil and gas - Texaco uses risk analysis to forecast inventory requirements and

optimise production levels.

Project management - risk analysis allows Hewlett-Packard to bring printers to

market on-time.

Finance — many companies, for example, the ProVise management group, use

risk analysis to optimise portfolio profit.

Negotiation Litigation — Pacific Bell called upon risk analysis to help negotiate

financial settlement in 1994.

Business planning — risk analysis boosted the new venture planning for

recreation markets of a major American company, ExpertCorp.
Costs management — 3M’s use of risk analysis improves unit cost estimates.

Forecasting — Risk analysis is used for forecasting prison populations by

consultancies such as Fentress Inc.

Environmental — Alcean uses risk analysis to determine the environmental
damages that are caused by people who consume drugs in the United States and

throughout the world.
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2.5 Accounting for risk in decision making

The importance of considering uncertainty, in capital budgetting or elsewhere,
has widely been recognised by both practising managers and the academic
community (Hull, 1980). Various techniques are used by decision-makers to

cope with the risk associated with a proposed investment or project.

These methods can be categorised into qualitative or quantitative techniques
(Singhvi, 1980; and Smith, 1994). Qualitative techniques will only be mentioned
in brief when it is necessary as part of the main discussion in this thesis which is

essentially that of QRA (i.e. Quantitative Risk Analysis).

Qualitative techniques are used to distinguish the possibility of a risk occurring
in a linguistic manner (Baker et al, 1998). For example, a risk might described
as low if that risk is unlikely to occur. Qualitative techniques are usually
employed at the beginning to identify and rank risks. Those risks with a high or

intermediate rank may then be further analysed through quantitative techniques.

Examples of qualitative techniques to handle risk arising from uncertainty are
various forecasting and problem structuring techniques, such as scenario writing,
cross-impact matrices, robustness analysis, cognitive mapping, relevance trees,
professional judgement, personal experience or brainstorming (Hanke et al,

2001).

These techniques are prone to inconsistencies because they are dependent on the

experience of the analyst allied to the judgements, and thus are subjective.
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On the other hand, quantitative methods of coping with risk are normally
computationally based and utilise relative frequencies during the estimating of
numerical probabilities of the consequences and likelihood of identified risks
(Singhvi, 1980, and Baker et al, 1998). Example techniques here are decision
trees, portfolio theory, simulation, and risk-adjusted decision making methods.
The results of a quantitative technique are compared against company criteria

and decisions are made as to whether the risks are acceptable or not.

Data used in quantitative techniques are either obtained from historical databases
or are estimates, and so they contain some element of uncertainty, due to the
possible use of subjectively attained values. The level of judgement required for

each method used in quantitative techniques is discussed in the next section.

2.6 Approaches: quantifying uncertainty

Quantifying uncertainty is the first distinctive feature of risk analysis (Singhvi,
1980). Various methods used to cope with uncertainty all essentially break down
into three recognisable approaches, i.e. point analysis, scenario analysis and

simulation analysis as shown in Figure 2.3 below, together with some examples.

Portfolio theory
. | PERT
Point
Analysis | Risk adjusted parameters
| Break-even analysis
Quantitative Expected monetary value
Risk Scenario o
Analysis Analysis ——p—— Decision trees
Sensitivity analysis
| Simulation

Inference

Figure 2.3 Examples of approaches used in coping with uncertainty
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Authors, including Hertz (1964), Singhvi (1980), Gapenski (1990), Smith (1994),
and Nanda and Miller (1996), claimed that, traditionally, the risk analyst tried to
capture this uncertainty either using point analysis or scenario analysis, or
sometimes both in the cash flow calculation such as NPV cash flow calculations
or the IRR for project investment appraisal. However, when there are limitations
on using the traditional methods to account for uncertainty, simulation is a better

method in the project appraisal process, as explained below.

2.7 Point analysis

The traditional approach in developing the cost and schedule components of a
project has been to create single point estimates and schedules with single point

completion dates (Wendling and Lorance, 2000).

Single point modelling involves using a single ‘best guess’ estimate, i.e. the
value which one thinks is most likely to be achieved, of each variable within a

model to determine the model’s outcome(s), including the uncertain variables.

Gapenski (1990) described how, 1n a typical capital investment feasibility study,
the analyst makes point estimates of the relevant component cash flows and then
uses these values to forecast the expected profitability of the project. In this
sense the model is deterministic. This all fits in nicely into the traditional

decision process shown in Figure 2.4.
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Information Calculations Decision

Economic criteria
(e.g. Rate of Return,

forecasts
(best guess) / Net Present Value cash flow) —1

Single value

Decision
4

Sensitivity analyses ———

Non-quantified
factors

Figure 2.4 The traditional decision process.

(Source: Cooper and Chapman (1987, p208)).

For example, suppose the analyst projects the best estimate on annual inflation at
3.5 percent for the next 5 years. For the same period, the analyst estimates that
the capital costs will increase by seven percent a year and the other (operational)

costs will increase by eight percent annually.

Even if these projections are reasonable by historical standards and/or
professional judgement, they are still merely estimates. The analysis often stops
here, with high potential for incorrect interpretation, for example claiming that
the profitability of the new investment is known with certainty and there are no
risks involved. To correct this problem, the analysis must be extended to

incorporate the uncertainty inherent in the project itself.
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2.7.1. Risk adjusted parameters

When there is a limitation in their ability to predict future estimates with any
degree of precision, some analysts try to manipulate the “best guess” estimate by
adjusting the values for each input variable or uncertain value. This will follow
the ‘Rule of Conservatism’. I.e. When estimating revenue, estimate low; when
estimating cost, estimate high. This is often the first line of defence a project
proposal goes through when it gets passed along to upper management (Cavinto,
1990). There are various parameters which can be adjusted to cope with the risk

or uncertainty associated with a proposed investment.

2.7.2. Example of risk adjustment: cash flows

Decision-makers often reduce the best estimates of future cash inflow. For
example, an analyst may estimate the capital cost of a project at £500,000. But
because of the uncertainty associated with this estimate, and the risk that the cost
may turn out to be higher, they may use for evaluation purposes and to avoid
underestimating the future cost, a value which is written up by, say, 10 percent,
at £550,000. However, this clearly could lead to the project being deemed to just
be uneconomic, whereas using the ‘correct’ estimate, £500,000, might lead to a
positive economic assessment, so an additional source of risk will have been
introduced inadvertently by this effort to avoid risk. This approach is frequently

used by ‘Risk Adverse’ companies.

Clearly such additional risk factors must be stated openly, lest they should not be

recognised to be as such at some time in the future.
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2.7.3. Example of risk adjustment: discount rates

The risk adjusted approach may even be applied to the discount factor which is
the rate used to calculate the present value of future cash flows in the discounted
cash flow analysis, e.g. NPV cash flow calculation. The calculation of a NPV
cash flow requires the selection of a discount rate, so that the decision may be to
raise the discount rate for risky projects in relation to the overall cost of capital.
For example, the raising of a risk-adjusted discount rate from, say, 13 percent to
18 percent, might be used to account for risks. Again, unless the reasons for
using that value are explained, the decision arrived at from the evaluation might

be very different.

Certainly, the use of unrealistically high risk-adjusted discount rates would tend
to reduce the risk of a company making an unproductive investment. Indeed, if
there were an unlimited number of highly profitable investments in the industry
waiting to be developed the use of this practice might be justified. If a project is

still acceptable when discounted at this larger rate, this is fine.
However, within an industry like the petroleum industry which is highly
competitive, the use of risk-adjusted discount rates might lead to the rejection of

acceptable investment opportunities.

The conclusion is that the implementation of different discount rates implies that

managers are incorporating risk in their long-term investment decisions.
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2.7.4. Example of risk adjustment: the payback

The risk adjusted approach can also be applied when the analyst does not use
discounted cash flow analysis of investment opportunities. Their basic decision
criterion is then the Payback — the time required to return the original investment
in undiscounted terms. The basic concern is: “How soon will we get our money
back?” In this case, the objective of accounting for risk is frequently a move
simply to reduce the acceptable payback period for screening purposes, for
example from 5 years to 3 years. In other words, the decision-maker may define

a lower payback period for risky projects than the target payback period for

normal risk projects.

From the above analysis, adjusting the input values in the cash flow calculation
to account for risk may appear at first sight to be very convenient, but it can
return very misleading results and biased decisions. Gapenski (1990) pointed out

that such cases the projects are being analysed subjectively and conservatively.

Van Rensburg (1990) showed how adjusting the input parameters on the
discounted cash flow decision criterion could be significant, and he therefore
concluded that even minor adjustments to variables could have a significant
effect on these criteria. Adjusting the input parameters not only cannot solve the
problem of uncertainty, but a certain level of bias will be indirectly incorporated
into the process by so doing. Certainly the analyst will have lost a degree of

control over the situation.
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2.8 Sensitivity analysis

Using the risk adjusted parameters method on the point analysis by changing the
best-guess estimate of the variable’s subjectively builds risk into the evaluation.
Brod (1992) maintained that the limitation of a forecast having a single expected
outcome is clear: while it may provide the single best guess, it offers no

information about the range of probable outcomes.

Since conventional analysis had failed to give a satisfactory result using single
best estimates in the project appraisal process, Pouliquen (1970) claimed that the

most natural way to deal with this situation was to make a sensitivity analysis.

A sensitivity analysis is also frequently referred as a ‘scenario analysis’, in which
case it should not be confused with 'scenario writing', which is a qualitative

method mentioned in section 2.5 above.

Sensitivity analysis is used to see what would happen if other values of the input
data were substituted and to examine the effects on the profitability criterion
function of changes in the values of the key variables. One form of sensitivity
analysis is to see how far revenues would have to drop or savings diminish until
the minimum rate of return is reached (Cavinto, 1990). However, McCarthy

(1994) argues that scenario analysis 1s merely an extension of the point analysis.

By combining several point estimates, the analyst hopes to “bracket” the
uncertainty in the projection. A particular case of sensitivity analysis is to assign
minimum, best guess and maximum values to the key input variables and
compute the corresponding values of the decision criterion, thus providing a
range of possible results. These various combinations are commonly known as

‘what-if” scenarios (Vose, 1996).
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For example, Table 2.2 concerns the profitability of a proposed petroleum
project, and has been broken down into five separate factors. Three values of
each factor’s value are included, i.e. minimum, best guess and maximum. In this
table the abbreviation "b" represents "barrels". Since there are five factors and
three values per factor, 3° = 243 possible ‘what if® combinations could be
produced. This type of analysis improves the point analysis. However, there are

a number of criticisms from different point of views, which are discussed below.

Key Factors Minimum Best Guess | Maximum
Capital Expenditure (£mm) 305.0 332.0 378.0
Exchange Rate ($ to £) 1.75 1.82 1.95
Oil Price ($ per b) 24.0 38.0 48.0
Recoverable Oil Reserves (mmb) 44.0 52.0 80.0
Production Rate per Day (mb/d) 29.6 37.2 43.6

Table 2.2 Example of petroleum project factors

When sensitivity analysis was first introduced to replace point analysis, a number
of researchers supported its use. For example, Rappaport (1967) and Hertz
(1979) emphasised that sensitivity analysis is a logical adjunct to deterministic
capital budgetting, particularly as a means of developing a better initial
understanding of the nature and impact of risk. Hull (1980) and Chapman and
Ward (1997) claimed that all effective quantitative modelling requires sensitivity
analysis, so the analysts and the user of analysis can understand the relative
importance of the components the analysis uses. Sensitivity analysis enables the
most important parameters to be identified for further analysis, more detailed

monitoring, or more sophisticated forecasting.
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Sensitivity analysis using estimated single values is probably the most common
method used in the quantitative economic evaluation of a venture. The method
determines the relative sensitivity of a particular parameter’s value and indicates

those parameters which have the most influence on the measuring criterion.

However, in the above example shown in Table 2.2 it is likely that there is too
large a set of scenarios to have any practical use. As described in Singhvi (1980)
and Mackenzie (1989), sensitivity analysis provides management with answers
to a wide array of ‘what if® questions. Beyond some point, however, this rather

mechanical exercise becomes less useful.

This particular case of sensitivity analysis suffers from two important drawbacks,
and other more general cases suffer from the second of these drawbacks. Firstly,
the use of only three values of each factor. But what are the three values? Since
there is no standard way of choosing the three values for the scenario analysis,
they will vary from person to person and, therefore, bias in choosing those values
will most probably occur. As concluded in Coleman et al (1995), the creation of
multiple scenarios by arbitrarily varying key assumptions to account for future
investment uncertainty is not well-suited for estimating risk in an economically

meaningful fashion.

Secondly, no recognition is given to the fact that a value close to the best guess
value is much more likely to occur than the minimum and maximum perceived
values, and so the three values are given the same weight. Therefore, while
scenario analysis improves the point analysis by giving the best and worst case
and gives the analyst a wider margin of error, it is still does not solve the
problem in the point analysis. i.e. The likelihood of occurrence of a particular

outcome of an event is not provided.
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Bennett et al (1970), Lucey (1968), and Wagle (1978), show how sensitivity
analysis lets the decision-maker concentrate efforts on refining those estimated
values of parameters having the greatest effect on the rate of return. However,
the result is still a single statistic providing neither indication of risk nor the
degree of interaction between parameter values. It does not indicate the

likelihood of obtaining this particular outcome.

Ironically, the more combinations of variables one tries, the less clear the picture

of the project may well become.

Thus sensitivity analysis does not in itself assess the risk of an investment
alternative, although it usually identifies potential sources of risk. To measure

risk, we have to incorporate probability estimates of the ‘what-ifs’ occurring.

McCarthy (1994) emphasised that decision analysis should really be able to give
the whole picture of how likely are the occurrences of the possible outcomes of a
project in terms of probability. For example, what is the probability of earning

£50,000 from a specific investment?

By highlighting a few key variables from the many project variables, sensitivity
analysis helps focus the limited time and effort available for evaluation in the
most productive way. Perhaps most importantly, sensitivity analysis plays a
useful role in the evaluation process by providing a bridge between single-point
appraisals of expected value and probabilistic risk analysis. This principle
weakness of scenario analysis or sensitivity analysis, i.e. the failure to provide a
probability of occurrence of the outcomes, is overcome by using simulation with

probabilistic analysis, and this is discussed in the next section.
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2.9 Simulation analysis

The Term Simulation

Cooper and Chapman (1987) and Nanda and Miller (1996) termed
simulation as a technique that imitates the operations of a real world system

as it evolves over time.

The explanation behind this is that risk analysis models using simulation
manipulate probabilities and probability distributions in order to assess the
combined impact of risks on the project. As pointed out in section 2.6 above, the
first distinctive feature of risk analysis is quantifying uncertainty. Here, the
second distinctive feature of risk analysis is simulating the outcomes. It
simulates the effects of the uncertainty surrounding key variables entering into

the evaluation on the returns one is likely to achieve.

This is important, as described by both Pouliquen (1970) and Singhvi (1980),
who wrote that risk analysis should be used to estimate a range of possible
results of a proposed investment decision based on the given input data and to
state the probability that the overall result will be within a specified range. In
other words, a forecast is obtained for a variable of interest in the form of a

probability distribution.

Risk analysis, by using simulation, is similar to scenario analysis in that it
generates a number of possible scenarios. However, it goes one crucial step
further by accounting for every possible value that each variable could take and

weights each possible scenario by the probability of its occurrence (Vose, 1996).
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Mott and Tumay (1992) suggested that whether the decision is to avoid risks or
to take calculated risks, one thing the decision maker must do is “to buy

insurance with an investment in simulation”.

In this case, risk analysis should not only provide a tool by which risks which
can impact on project estimates of costs, schedule, and production can be
quantified, the joint impact of these risks can also be examined. The most

important is the identification of the definite perception of what overall risk

really exists.

2.9.1. The development of simulation

Silbergh (1972) noted that before the advent of simulation, the decision-maker
dealt with uncertainty in qualitative ways by making conservative forecasts or by
using a risk-adjusted discount rate, or both. However, as shown above, one
conclusion to be drawn is that risk analysis should eliminate the need for
restricting one’s judgement to a single ‘best’, ‘worst’ and ‘most likely’

evaluation.

An early application of simulation to the analysis of the project investment
appraisal was described by Hertz (1964). Before that, manual simulations, such
as moving troops through the field, or playing a board game, were used.
However, this can be very time consuming and with one or two simulated
outcomes provides very little information on which to base a decision. With the
increasing availability of faster and more poweful computers, and better
understanding of quantitative modelling, simulation has become a very popular

approach in recent years for the analysis of business problems.
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Evans and Olson (1998) confirmed that simulation today is widely accepted in
the world of business to predict, to explain, to train, and to help identify optimal
solutions. Simulation is used extensively in manufacturing to model production
and assembly operations, develop realistic production schedules, study inventory
policies, analyse reliability, quality, and equipment replacement problems, and
design material handling and logistics systems. It is used in designing and
evaluating computer and communication networks and scheduling resources in

complex projects.

Simulation also finds extensive application in both profit-seeking service firms
such as financial and retail companies, and in non-profit service organisations
such as health care, government, and education. These applications involve the
study of customer waiting-line behaviour, evaluating surgical schedules, and

designing efficient work flows in offices, for example.

For instance, simulation models can be used by a bank to help identify the
number of tellers required to maintain a specific level of customer service as
measured by waiting time or line length. Coleman et al (1995) observed that
statistical market risk assessment uses probabilistic cash flow analysis as an
objective means of measuring and analysing market-driven credit risk for a

commercial real estate property, security, or pool of securities.
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2.9.2. The simulation process

Simulation calculations are made by a computer, which simulates the many
possible outcomes of an investment decision. During simulation the computer
chooses values at random from the probability distribution of each factor
affecting the future cash flows. The computer then uses these random values to

calculate the return over the project’s life, for example.

Then it repeats these calculations a number of times, each time choosing another
set of values at random and generating values of the discounted cash flow return.

In Figure 2.5 below is the summary of the described simulation process.

*—_—/\ Select at random .
_ sets of these Determine Repeat
factors according decision process to

ez —>| to the chances —lH criteria for | — | giveaclear
they have of each portrayal of

i _ L. <k
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factors

Distribution of
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Figure 2.5 Simulation process

(Source: Hertz, 1964)
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2.9.3. Criticisms of using simulation analysis
Large number of trials required

One of the criticisms raised in Cooper and Chapman (1987) and Vose (1996)
against the used of simulation is that it often requires large number of trials to
reduce sampling errors to an acceptable level, and this criticism becomes even

more salient if extensive sensitivity analyses are required.

For example, suppose it is forecast that the maximum daily production rate from
a certain oilfield is equally likely to have any value between 12 million barrels
per day (mb/d) and 20 (mb/d). Then the variable X, say, is Uniformly distributed
so that x ~ U[12,20). Its expected value is 16 mb/d. Its standard deviation (s.d.)
is"c/ V12 ) " where ¢ = largest value - smallest value, = 20 - 12, = 8 mb/d.
Hence if, say, 1000 values of the production rates are generated in the simulation
the mean value and standard deviation of these 1000 production rates should be
extremely close to 16 mb/d and 2.3094 mb/d respectively, or else needless bias

will have been incorporated into the process.

Early on in this research it was recognised that a fundamental requirement was to
remove any unnecessary variation or randomness from the eventual risk analysis
model. Unfortunately for many years the practice here would simply have been
to use traditional Monte Carlo sampling methods, where the pure randomness
associated with such a method often results in sample outcomes which either
exhibit sizeable bias (e.g. a disproportionate number may be very small in value)
or require very lengthy and expensive computer runs in order to ensure that the
observed frequencies of the simulated values or ranges of values generated from

the individual distributions are at least moderately close to the corresponding

expected values.
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Techniques aimed at reducing the quantity of effort (and thus cost) in order to be
representative at a certain level are called Variance Reduction techniques.
Although various techniques of variance reduction have been developed over the
years to lessen the effort required to achieve specific levels of accuracy (Wilson,
1984; Avramidis and Wilson, 1996), it was the advent of Latin hypercube
sampling (Lhs) which revolutionised matters here, since this uses a form of
‘stratified sampling without replacement’ (Iman and Conover, 1980) to ensure
that a sample simulated from a particular population has, for example, values of
its sample mean and standard deviation which are very close indeed to the
corresponding population values. Thus, Lhs removes a major source of

inaccuracy and thus risk.

Much of the work on developing ever more accurate modelling of samples to
ensure good sample means and s.d.s ensue can be traced back to the work of

Pearson and Tukey (1965).

Today it has became quite easy to develop routines to generate highly accurate
and thus representative samples from given individual distributions.  This
research has achieved this so that, for example, extremely accurate samples from
populations with Beta, Uniform, Triangular or Normal distributions can be
generated, and it is easy to extend these approaches to deal with many other
continuous 'named' distributions, or with distributions defined on the basis of

historical relative frequencies.

How Lhs is formalised, the advantages and disadvantages of using it and the
comparison of the output results from using Monte Carlo sampling and Latin

Hypercube sampling will be discussed in detail, starting in the next chapter,

Chapter 3.
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Simulation is a powerful method of investigating the riskiness of the projects.
However, it still seems to be less favoured by corporate decision makers than is
sensitivity analysis using deterministic data. According to Gapenski (1990) and
Dingle (1997) the unpopularity of using simulation in the project investment
appraisal process perhaps arises because of top management’s widespread

unfamiliarity with probability concepts, or even fear of the unknown.

According to Newendorp (1985), although simulation has been used for many
years, there is beginning to emerge evidence suggesting that, in general, decision
makers tend to make their distributions too narrow. That is, when asked to
assign a range and distribution to a variable, the tendency is to make the range
between minimum and maximum values too small. He clarified the above
problem by claiming that this suggests that it is quite difficult to convert from
thinking deterministically to thinking probabilistically (as required with
simulation). However, it should not affect the choice of using simulation by the
decision maker because as far as simulation is concerned the input distributions

can have ranges of any magnitude.

Is it always sensible to use simulation? For example, in petroleum economic
evaluation the decision maker may feel that simulation only has value in
exploration areas where there is sufficient data available upon which to base the
distributions. In virgin new exploration areas where there are no data available

there is no guaranteed way to define the distributions — and hence, at first sight,

no way to make a simulation analysis.

However, Newendorp (1985) argued that quite the opposite is desirable. It is in

these new areas where the uncertainty 1s the greatest where it is most important

to consider variability.
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The decision maker may only be able to determine or estimate a range of
possible values, without knowing the exact shape of the distribution between the
limits. But it is essential to consider variability in these new areas, and

simulation is the only way this can be done.

For example, historical evidence from broadly similar projects can be used to
help choose the distributions. It is likely that the minimum, most likely and
maximum values of the individual parameters can be identified, and at worst a

Triangular distribution or at best a Beta distribution can be used to model the

variables.

Rosenhead’s recommendation (1989) that one ‘should not pretake the future’ has
to be ignored here or uses of, and massive benefits arising from, the powerful

simulation methodology would almost cease to exist.

Ignoring dependency between variables is a crucial problem when using
simulation in risk analysis models. It is also the main question that this research

1s trying to solve. An example of the problem is as follows.

The expected profitability of an oil field can be expressed as the net present
value of a cash flow of gross revenues net of operating costs, capital costs and all
tax payments. These revenues and costs will in turn depend on other factors
which are subject to economic, physical or political risk, such as possible
changes in tax rates, the predicted price of oil per barrel (which will usually be
expressed in U.S. dollars per barrel), the dollar-pound exchange rate, inflation
(which impacts on the value of the writing down of capitalised costs), the amount

of recoverable heavy-end gas (which could, for example, be converted into

saleable propane), and so on.
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Expert advice might be able to suggest probability distributions for these various
factors, together with further partial dependencies between the factors. For
example, it would seem reasonable to suppose that the reserves of oil and gas
should be positively correlated. Similarly, the greater the gas content is so the

greater will be the pressure within the petroleum reservoir, and therefore the

greater will be the oil production rate.

On the other hand a British production company would wish to produce high
volumes of oil when the price in £ per barrel is high. Hence, for any given price
of oil in $/b, if the $ to £ exchange rate increases the company will receive less
£s per barrel, so that production would be cut back until more favourable
exchange rates return. This indicates that there might be a negative correlation

between the §$ to £ exchange rate and the oil production rate.

A further factor is that the planners must assume that the production from the
field would be halted, perhaps permanently, once the remaining levels of
petroleum have dwindled to levels which can no longer support production rates
which will generate sufficient revenues to at least offset costs. Consequently, if
the price of oil in $§ drops then so will the volume of recoverable reserves,

suggesting yet another positive correlation between two factors.

Over the past few years there have been many publications on the use of
simulation methods for analysing risk. Most explain how to describe a
distribution for each random variable and then sample a value from each
distribution for each pass using a random number as the entry point in a
cumulative frequency distribution of the variables. Many analysts fail to realise
that this procedure implies that each random variable 1s independent of all others

(Newendorp and Root, 1976).
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In reality, certain important random variables in large projects are dependent,
and a realistic appraisal of risk and uncertainty must recognise such dependency

relationships, as in the example of oil recoverable reserves and oil maximum

production rate above.

One caution to be noted by decision makers is identified in Chapman and Ward
(1997), which suggested that simulation makes it relatively straightforward to
add large numbers of risks together in a single operation to assess their overall
impact.  Unfortunately, this convenience can seduce analysts into a naive
approach to risk combinations which tends to overlook the importance of
dependency between individual sources of risk. It also encourages decision
makers to set up the combination calculations to present the end result and to

ignore intermediate stages for specification and computational convenience.

In addition, Wall (1997) reviewed that in recent high profile publications the
presentation of Monte Carlo simulation-based cost analysis overplays the
importance of the choice of which distribution to use to represent input variables
and underplays the importance of assessing and including correlations between

the variables.

Effects of with-correlation and without-correlation

Wall (1997) showed that correlations between variables of a cash flow model in
a Monte Carlo simulation must be recognised explicitly. He carried out two
simulation tests based on a complete (216 buildings) data set using Lognormal
and Beta distributions, all simulations having 10,000 iterations. His results
showed that although the mean of without-correlation simulations 1s not
significantly different from with-correlation simulations there is a significant and

substantial difference in the standard deviation.
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The most important result is shown by the standard deviation statistic: not
including correlations in the simulation can cause a serious mis-estimation of the

spread of the distribution. This result was supported by the test statistics.

The standard deviation of the with-correlations distribution is well within the
confidence interval of the standard deviation of the observed distribution at the
95% confidence interval, whereas the standard deviation of the without-
correlations distribution is well outside the 95% confidence interval. Thus the
standard deviation of the with-correlations distribution is not significantly
different from the observed, whereas the without-correlation distribution is

significantly different from the observed distribution.

The common practice of excluding correlations results in mis-assessment of the
risk of the project, which is serious since a key requirement of risk analysis is to
assess risk. This result shows that the correlation between risk factors is
important when simulation is used to produce estimates of the cash flow model.
Neglecting correlations is an erroneous decision and it may well produce

misleading results.

Effects of choosing a different distribution

The effect of choosing a different distribution can be observed from the same test
which was carried out to show the significant of correlation in simulation by
Wall (1997). In the test, Lognormal and Beta distributions were used to observe
the significance of the choice of distribution in the simulation model. The test
statistics showed that for both Lognormal and Beta distribution, they are broadly
similar when compared with the dissimilarity between the without-correlation

results and the test statistics.
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This further verifies that the importance of calculating and incorporating
correlation into simulations outweighs the importance of deciding which

distributional form to use to represent the variables of the simulation.

The above criticisms and discussions are further stressed in Uher (1996), who
say that the correct assessment of dependence or correlation among risk variables
in a simulation model is far more critical in terms of the accuracy of the result

than the choice of the probability distributions for the input data.

However, the mechanics of how individual distributions are combined is not
always transparent to the decision maker. Together these factors can lead to a
failure to appreciate insights from considering intermediate stages of the
combination process and dependencies between individual sources of risk. As a
consequence, the principal weakness of many simulation analyses, l.e. ignoring

the interdependency between variables, is a serious risk in itself.

To overcome the above problem relating to random variable dependencies, one
immediate problem would then be how to modify the normal sampling
procedures on each simulation to account for observed partial dependencies

between random variables

2.10 Key aspects of correlation

2.10.1 Basic definitions

The regression of a variable on one or more other variables provides an
indication of the way in which the first variable varies with the second or
others, whereas correlation is a measure of how strongly these two or more

variables are related to each other, if at all.
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The two principal measures of correlation in current usage are Pearson's
Product-Moment correlation coefficient and Spearman's Rank correlation
coefficient. The former is applicable only when the variables are measured on

cardinal scales, and the latter is most appropriately used when the data values

are ordinal (Curwin and Slater, 2002).

However, the latter is also often used as a convenient or necessary
approximation to the product-moment correlation coefficient, particularly
when (as with risk analysis packages such as @RISK or with spreadsheet
programmes such as Microsoft Excel) product-moment correlation generating

functions are not supplied.

If two variables X and Y are assigned n paired values x; and y; in a simulation,
for i = 1 to n, then the definition of Pearson's Product-Moment correlation

coefficient for this sample is
rp = covariance(x,y) + [ ( standard deviation of x ) * ( standard deviation ofy) ]

Consequently

= (1) Y Garme)(yemy) < { V(U X G me)? *{V(1/m) _Z1 (virmy)® } 1,
1=1 1=1 1=

where my and my are the sample means of the n values of X and Y respectively.
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Alternatively if the values x;, for 1 =1 to n, represent the ranks of the n values of
X (where the smallest rank, 1, is assigned to the smallest value) and the y; values
are correspondingly the ranks of the n values of the variable Y, the formula for
Spearman's Rank correlation coefficient is easily derived from the above formula

for rp, and is as follows (subject only to a small correction factor if any of the

ranks are tied):

n
rs=1-6Y di/(n(n’-1)), where d; = (x;-yi)
1=1

In each case it can be proved that the least and greatest possible values of 1p or 15
are —1 and 1, and a number of other standard properties of these two coefficients
are discussed in Curwin and Slater. For example, rs is not as sensitive to

changes in outlying values as rp.
Example
Suppose n = 4, and the 4 paired values (x3,yi) are as follows:

1: 1 2 3 4
X;: 3.7 8.6 7.6 8.1
Vi 29 2.0 38 33

Here the sample means are m, = 7.0 and my = 3.0. . The covariance of x and y
is —0.1150, and the two standard deviations are s, = 1.9378 and sy = 0.6595, so
that rp = -0.0900to 4 d.p.s. The ranks of x; are 1, 4, 2 and 3 respectively, and
the corresponding ranks of yiare 2, 1, 4 and 3. The d; values are —1. 3, -2, and O
(so that the total difference is zero, as always), and the d;? values are 1,9, 4 and 0.

Hence rg=1-6*14/(4*15),=-0.4.
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A correlation matrix is a symmetric and positive semi-definite matrix
(Marsaglia and Olkin (1984)), and is used generally when more than two
variables are being simulated. However, even in the direct correlated case of

only two variables x and y, say, whose correlation is specified to be p, a

correlation matrix M may be defined.

Expressed as a table this matrix is:

Correlation Matrix
X y
X 1 p
y p 1

Note that this matrix is symmetric, and that the diagonal elements are both 1.
Since it is to be positive semi-definite, its principal minors must both be > 0, so

that 1 — p* > 0, which implies that -1 <p <1.

Although it is not important in the direct context of this research, it 1s now
shown that the user-defined values of partial correlation coefficients when
there are more than two variables will have values which are not just

individually constrained to being at most 1 in magnitude.
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Example
Suppose there are three variables, X, Y and Z, and that the correlations of X with
Y and Z are desired to be 0.8 and —0.5 respectively, whereas the correlation

between Y and Z is unknown, and equal to p, say.

The correlation matrix in tabular form is:

Correlation Matrix
X y z
1 0.8 -0.5
0.8 1 o
-0.5 p 1

The 2x2 minor again yields -1 < p < 1. The 3x3 minor is 1 — p> —0.8p -0.89.
This is > 0 if p*+0.8p — 0.11 <0, so that —0.9196 < p <0.1196 to 4 d.p.s. It
would be erroneous to claim either that p is less than —0.9196, such as p =-0.95,

or greater than 0.1196.

Within the remaining chapters of this thesis only two variables will be correlated
at any one time, so that it is not necessary to use the concept of a correlation
matrix. Note also that the emphasis in this research is on modelling product-
moment correlation coefficients, so that after this section little more will be

written about properties of rank correlation.
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2.10.2 Literature review

Lurie and Goldberg (1998) report that an important requirement relating to the
mathematical consistency of a correlation matrix is that it must be positive semi-
definite. Their paper deals with correlation in general and so, in this sense, it is

equally applicable to product moment or rank correlation matrices.

They describe the circumstances under which a user-defined correlation matrix
may not be semi-positive definite, and use a combination of Cholesky
decomposition of matrices and Gauss-Newton iterations to generate a revised
correlation which is positive semi-definite and "as close as possible to the user's

original matrix". A good example is illustrated in Price (2002)

A useful extension of their procedure is derived from the consideration that
there may be more certainty about the values of certain of the correlation
coefficients than others, so that weights reflecting the individual levels of

certainty can be incorporated within the objective function.

This work is carried out in the context of desiring to generate random
numbers from a selection of univariate distributions. Thus, the joint
distribution of these variables is (except in quite limited circumstances)
unlikely to be known or to be able to be predicated, whereas the marginal
distributions of the individual variables may be specified by the user, together
with specific information on the partial correlations (or possibly on the
product moments up to some finite order). They report on the approaches
used by other researchers in this field and discuss how problems are
recognised to arise in the modelling of correlations if any of the variables
have finite bounds (such as the beta or triangular distributions), for example in

the work carried out by Vale and Maurelli (1983).
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Certain researchers have overcome this difficulty (for example Li and
Hammond (1975)), albeit at the cost of great computer computational effort,

and yet even then the resulting correlation matrix may not be positive semi-

definite.

Clemen and Reilly (1999) examined the problem of constructing a

probabilistic model in the contexts of decision analysis and risk analysis.

They explained that typically this is achieved by defining a joint distribution
of all the variables as a product of marginal and conditional distributions for

the individual random variables.

As the number of desirable variables grows within the model, the required
number of probability assessments can grow exponentially. They devised an
alternative approach using a copula, together with measures of pair-wise rank
correlations. A copula, formally, is a means of expressing a joint cumulative
distribution function of a set of random variables as a single function of these
variables' marginal cumulative functions, so that no recourse to conditional
distributions need be made. Thus the success of the Clemen and Reilly
procedure relies on the fact that rank correlations do not depend on marginal

distributions.

In this context the copula approach would be equally applicable if the matrix

of dependence measures is expressed in terms of Kendall's 1, rather than

Spearman's ps.

Unfortunately, in the context of this thesis, this method cannot be applied
when it is desired to express the relationships between the variables in terms

of the Pearson product-moment correlation, pp, since pp depends on the

marginal distributions.
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However, this paper is instructive on ways of helping the user or modeller to
think about the relationships among the random variables. The paper also has
a very clearly developed example to illustrate the procedure. They conclude
by raising a key question: "Rather than asking if experts can assess
correlations accurately, perhaps we should ask whether they can assess
correlations well enough to be useful in the modeling process. The results
reported in this paper suggest an affirmative answer." Here, then, clearly, they

are in agreement with the observations noted earlier by Wall (1997) and Uher
(1996).

Iman and Conover (1982) developed a procedure for generating a desired rank
correlation matrix on a multivariate input random variable in a simulation

study.

It must be stressed here that the measure of correlation is rank correlation and
not product-moment correlation, so that it is relatively unhelpful in the
context of this thesis. Because rank correlations are being used, the method is
distribution free so that the exact forms of the marginal distributions of the
input variables are preserved. The method is quite straight forward to
implement within a bespoke simulation study, and is equally applicable to

either Monte Carlo or Latin hypercube sampling approaches.

In practice this approach forms the basis for correlation modelling in commercial
risk analysis and simulation programmes such as @RISK and Crystal Ball. In
chapter 6 of this thesis it is demonstrated that, in contrast with quite accurate
sampling from the marginal distributions, the generated rank correlation

coefficients are much less accurate.
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Iman and Conover observe in effect that "if the sample rank correlation is not
satisfactory to the user, nothing prevents the prospective user from generating
several (candidate) matrices of Spearman correlations, and then choosing the
matrix that provides the most preferred rank correlation.” This rejection method
could well be long drawn out if the number of variables, n, is large. In this sense
the Lurie-Goldberg use of a weighted objective function seems more attractive

but, again, this latter can only be used with rank correlations.

Schmeiser (1999) observes that commercial simulation software provides
extensive support in creating the logical model, but relatively limited support for

creating the input model.

Most of the effort expounded by various researchers, such as Iman and Conover,
and Lurie and Goldberg, has been directed at developing complex input models
that cater for rank correlations only. However Schmeiser notes that Cario and
Nelson (1997) and Chen (1999) "at least tackle the harder problem of providing

the desired Pearson correlation”.

The NORTA ("NORmal To Anything") method involves a components-wise
transformation of a multivariate normal random vector into a random vector with
specified marginal distributions for the individual variables. ~Ghosh and
Henderson (2002) observe that the approach is equally valid for both rank and
product-moment correlations, which is a definite step ahead from the Iman- and

Conover-derivatives.

Chen (2001) developed a procedure to generate n-dimensional random vectors
using the NORTA approach. He stated that n(n-1)/2 non-linear equations need to
be solved to ensure that the generated n-D random vector has the specified
correlation statistics.  This method is computationally more complex yet

improves the Cario-Nelson algorithm's speed and robustness.
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Indeed, 1t is the question of robustness that raises the largest doubt about the
Cario-Nelson algorithm. Ghosh and Henderson (2002) observed that the
NORTA method has been shown to fail for some feasible correlation matrices
(i.e. the random vector has the given marginal distributions and the generated
matrix is an acceptable approximation to the required correlation matrix).
They concluded that this feasibility problem becomes steadily worse with
increasing n in general, and actually fails in the vast majority of cases even in
as low a dimension as n = 17. However, they propose an augmentation
procedure that, initially at least, appears to be retaining an accurate

approximation as the dimension increases.

2.10.3 Inspiration

The various increasingly-complex derivatives of the Imam and Conover
approach are making progress in this general modelling area, but appear to be

making ever greater demands of the modeller.

The Iman and Conover approach only works with rank correlations and,
although it can cope with modelling quite large dimensions of vectors, the
accuracy of the generated correlation matrix usually leaves a great deal to be
desired. The NORTA approaches show some promise when dealing with
relatively small numbers of variables (perhaps n less than 15 at best), and
does seem capable of addressing the product-moment correlation problem, but
otherwise the method crashes with disquieting frequency. It is likely that
future NORTA-augmentation procedures (along the lines promised by Ghosh
and Henderson) will produce a more robust and accurate simulation input

model, but this is likely to be at the expense of ever greater demands on

resources.
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The enormous effort to specify (and fit) the joint distribution is a huge
drawback, particularly where larger numbers of variables are concerned, and
this (and other) drawbacks make their use impractical for a model of
relatively modest complexity. Aiming for the simpler goal of matching only
the marginal distributions (i.e. the claimed distributions of the individual
variables) and the correlation matrix, may well capture the essence of the
dependence between the components while being able to work with easily
implementable methods that work well in higher dimensions (Ghosh and
Henderson, 2002). Consequently a quite different approach from the NORTA-
derivatives would be attractive, and such a one is defined, specified,

developed and tested within the remainder of this thesis.
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Summary

The first part of this chapter defined the scope of this research by starting with
the meaning of uncertainty and risk. Uncertainty is therefore defined as the
result of imperfect knowledge about an event and risk is the result of uncertainty.
This has lead to identifying the significance of employing risk analysis within the

environment with some real world examples from various application areas.

While data used for evaluation are not always known precisely, these parameters
may be the best estimates of experienced personnel or they may be based on a
very cursory analysis of minimal data. Consequently, decisions must be made in
the face of this uncertainty. As a result, risk associated with parameter estimates

must be incorporated in any QRA model.

The second part of this chapter analysed the three main approaches used in risk
analysis during the capital budgeting evaluation. Simulation is thought to be

able to provide an objective evaluation for a project

The use of simulation is recommended as it can represent uncertainty in terms of
continuous probability distributions rather than just a few values, and therefore it
provides a better replica of a project’s real-world risk/return characteristics than
does point analysis or sensitivity analysis. It is especially useful when there is a
simultaneous change in many variables. Simulation provides a better framework
for analysis in that it is easier to estimate a range of values for the variable rather
than one best point estimate. The more the uncertainty in estimating a variable,

the greater is the advantage of employing simulation (Nanda and Miller, 1996).
However, QRA using simulation has suffered from several drawbacks that have

been pointed out in this chapter. The most serious one is ignoring the

dependency between these uncertain variables.
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This leads to the research question on how to incorporate the dependency into a

QRA model using simulation.

The next chapter will demonstrate the structure of the RCM and the methodology
used to formulate it. Some pre-requisite know-how and proof of the relevance of
methods used in the RCM will be explained before the actual building of the

model is discussed in detail.

Finally, Bennett et al (1970) and Vose (1996) remind us that, in the final analysis,
any evaluation technique is only as good as the estimates of its input parameters
and must be used in conjunction with sound managerial judgement. These
techniques only provide management with information tools to aid in the

decision-making process.
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A Method for Treating Dependencies Between Variables in a Simulation Risk Analysis Model

Chapter 3: The Methodology for A Model

Simulating Product Moment Correlation

3.1 Introduction

Chapter 2 concluded that simulation analysis is recognised as an improved
approach over point and scenario analysis when uncertainty from the project
needs to be incorporated and the risk from undertaking the project needs to be

analysed. Nevertheless, it was identified that there are a number of limitations

from using simulation analysis.

The two main problems that this research is trying to solve are:

Problem 1 - Ignoring the dependencies among key factors leads to the risk of

generating unrealistic random numbers as the input for subsequent calculations.
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Problem 2 — Traditionally in Monte Carlo simulation a large number of trials is
required in order to generate an observed frequency distribution which closely

approximates to the required probability distribution for either key factors or

decision criteria.

This chapter in effect describes the various 'building blocks' that have eventually
been chosen to contribute to the RCM, for example sorting and shuffling routines.
It also describes the two major approaches to sampling from a single distribution:
the basic concepts of Monte Carlo sampling, and the relatively recent and very

powerful extension of stratified sampling know as Latin hypercube sampling.

The key objective of this chapter is that the samples which are generated and the
correlations between the samples should be very accurate reflections of the
populations from which they are drawn, in order to maximise the confidence of

the planner that the modelling is as correctly representative as possible.

By the end of this chapter, what is arrived at is a means of generating random
numbers from U[0,1) using Latin hypercube sampling, with perfect sample means
and variances and for which the sample correlation coefficient is not only a

product-moment coefficient but is also very accurate.

It is worth noting that this research restricts its scope to handling two correlated
variables.  Simulating product moment correlations among three or more

variables will become a future extension of this research.

One assumption of the Research Model is that the two variables defined in the
model have values which are cardinal, so that Pearson’s product moment
correlation coefficient should be used. Spearman’s rank correlation coefficient is

not appropriate since it is best used when the data variables are ordinal.
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Various authors have shown how Spearman’s Rank Correlation Coefficient can

be modelled, for example Newendorp and Root (1976), Wall (1997). and Vose
(2000).

This research uses a bottom-up approach to produce the output of two sets of
correlated sample values. This will begin with the statement of the assumptions
of the probability distributions of the individual variables. together with

assumptions about various pair-wise correlations between the variables.

The following is the schemata of this chapter. The building block in each step will

be discussed before the formulation of the research model is explained.

Concept
Overview

v

Building Block

l

Latin hypercube Adjustment of Inm‘al Pairing Swapping to
Sampling from Two ———T Sampled Values — of Values — ‘Imprm}
Distributions Correlation

,

Algorithm
Formulation

Figure 3.1 Chapter schemata
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3.2 Analgorithm to generate accurate pair-wise correlations

The two primary objectives here are:

(1) to generate and adjust the two samples in such a way that the two sample
means and their standard deviations are equal to the corresponding

population parameter values i, ., u, and oy, and

(i1) to choose a suitable set of pairings of the two sets of sample values
without replacement so that the correlation between the two samples is
acceptably close to the population product-moment correlation

coefficient, p.

Suppose the first sample is that of a variable x whose sampled values are x; for
1= 1 to n, and for which the expected value and variance are y, and 6°,. Similarly

the second sample consists of n values of a variable y. The key notations used are

as follows:
Symbol Range or Description
Xj Values from the first distribution, fori=1ton
yj Values from the second distribution, forj=1ton

ity and py | The two population expected values

o and o, | The populations' standard deviations

P O Pyy The target product-moment correlation coefficient

The algorithm to achieve these objectives is in two parts, the first of which is

described firstly in broad outline in section 3.2.1. and the second in more detail

within section 3.3 to 3.6.
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Initially, i.e. in Chapter 3, the distributions of x and y is to be restricted to U[0,1),

1
so that p,= u,= %, and ox= o, = ——=, but the results are extended to more

J12

general distributions in Chapter 5.

3.2.1. Conceptual approach

The conceptual approach is represented in this section to give an overview of the
steps related to the RCM, and then the algorithm implemented within the model is

explained.

It begins by defining two variables X and Y to have U[0,1) distributions, so that
their population means are both equal to /2 and their s.d.s are both equal to 112,

The four major steps are:

Step 1

Generate n representative 'realisations' of X which are sampled randomly in turn
from n equi-probable equal-width sub-domains of the overall domain [0,1) of X,
and which are adjusted to ensure that the sample mean is V4, and the s.d. 1s 112,

these n values being stored in the array x;

Step 2

Generate similarly n representative realisations of Y which are then stored in the

array y,
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Step 3
Identify a good starting sequence in which the values from x and y should be
paired in order to achieve a sample correlation which has a first-order

approximation to the required correlation p; and

Step 4

Adjust the pairings so that the final sample correlation is very close indeed to the
required value p. The accuracy of the final sample correlation will ultimately (in

Chapter 6) be bench marked against that achieved by using the commercial

package @RISK.

3.3 Generate a random sample using Latin hypercube sampling

3.3.1. Sampling method used

What is meant by randomness is that the process which produces the number is

not deterministic, so that we cannot be sure what number will be produced next.

These random numbers are transformed into samples from the required

distribution.

It is often not good enough if the modeller wishes to minimise the sampling errors
(the set effect) that occur due to shortish run length (Pidd, 1998). The two most
popular sampling methods in current usage are Monte Carlo and Latin hypercube
sampling. The latter is a sampling method using descriptive sampling and it is
preferred in this research. The advantages of using Latin hypercube sampling

method are demonstrated below.
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3.3.2. Monte Carlo sampling

Monte Carlo sampling is the oldest, least sophisticated and yet still most popular

sampling method used in academia and businesses.

Monte Carlo sampling got its name from the code name of an American project
on the atom bomb during the Second World War and not, as some people believe,

from the town in Monaco with the same name that is so well known for its

casinos (Vose, 1996).

The process of Monte Carlo sampling can be viewed as two steps. First, select a
uniformly distributed value between 0 and 1. For example, in Visual Basic, this is
a call to the function RND. Second, use the cumulative density function (CDF)

for the distribution of its risk factor to identify a value of this random variable.

Monte Carlo sampling satisfies the purist's desire for an unadulterated random
sampling method. It is useful if one is trying to get a model to imitate a random

sampling from a population or for doing statistical experiments.

However, the randomness of its sampling means that it will over- and under-
sample from various parts of the distribution and cannot be relied upon to
replicate the input distribution's shape unless a very large number of iterations are

performed.

For nearly all quantitative risk analysis modelling, the pure randomness of Monte
Carlo sampling is not really relevant. Increasingly users are far more concerned
that the model should reproduce the distributions that we have determined for its
inputs. Otherwise, what would be the point of expending so much effort on

getting these distributions right?
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3.3.3. Latin hypercube sampling

Latin hypercube sampling addresses this issue by providing a sampling method
that appears random but that also guarantees to reproduce the input distribution

with much greater precision and therefore efficiency than Monte Carlo sampling.

Latin hypercube sampling, or Lhs, is an option that is now available for most
commercial risk analysis programmes, for example. @RISK and Crystal Ball. It
uses a technique known as 'stratified sampling without replacement’ (Iman and

Conover, 1980) and proceeds as follows:

To generate n random values from U[0,1) using Latin hypercube sampling:

1) Divide the domain of X into n mutually exhaustive classes: [0,1/n),
[1/n,2/n), . . ., [1-1/n,1), so that the probability that X takes a value In

any one of these classes is constant at 1/n.

For example, if n = 10

| | | | | | | | | | |

| 0 01 Joz |03 Jo+ [o05 o6 |07 0.8 109 |1.0

2) These classes are closed at the left and open at the right. E.g. In the first
class, [0,1/n], a realisation x; will be generated which will satisty

0 < x; < 1/n. The formula used to generate the general value, x;, 1s:

x(i) = (i-1)/n + (1/n) * 6, = (i -1+ O)/n,

fori=1,2,..., n, where 0 is a random number from U[0,1).

Note that an alternative (and inter-changeable) notation for x(i) used in this thesis

1S X;.
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Example, with n = 10:

i 0 x(i)

1 0.2487 0.02487
2 0.1986 0.11986
3 0.9143 0.29143
4 0.8849 0.38849
5 0.4312 0.44312

Thus each class contains exactly one random value. The sample mean, m,, say,
should be approximately ¥4 and the s.d., s, say, should also be approximately
equal to 1/¥12. Tt is illustrated below how this can be achieved when n is an even

number.

3.3.4. When n is an even number

In fact if the value of n is restricted to being an even number (such as 10, 20, 100
or 1000, but not 25) it is easy to ensure that the sample mean is exactly equal to
5. To achieve this simply ensure that the n random numbers 6 are generated in
antithetic pairs which sum to 1.0. For example, if one value of 0 is 0.374 then its
antithetic value is 1 - 0.374, = 0.626. This is probably the easiest variance

reduction procedure to implement.
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Example:

0 1-6
0.4996 1-0.4996 = 0.5004
0.1433 1 -0.1433 = 0.8567
0.0019 1 -0.0019 =0.9981

Thus 5 random numbers from U[0,1) can generate 2 * 5, = 10, values in a sample
of size 10, with each of 5 class of width 1/5 containing two antithetic values.

From this can be seen the desirability of making n even, not odd.

Figure 3.2 taken from Vose (1996) illustrates the use of stratification that 1s
produced for 20 iterations of a Normal distribution. It is observed that the
intervals get progressively wider towards the tails as the probability density drops

away.
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Figure 3.2 Example of the effect of stratification in Latin hypercube sampling

(Source: Vose, 1996)
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3.3.5. Comparing results between Monte Carlo and Latin

hypercube sampling methods

The improvement offered by Lhs over Monte Carlo can be easily demonstrated.
Figure 3.3 taken from Vose (1996) compares the results obtained by sampling
from a Triangular(0,10,20) distribution with LHS and Monte Carlo sampling.

The charts of Figure 3.3 show that Lhs consistently produces values for the
statistics that are nearer the theoretical values of the input distribution than Monte
Carlo sampling. It can also be observed that the histogram of the sample

distribution of the 300 iterations resembles a triangle far more closely for Lhs.
Of course, the random nature of Monte Carlo sampling means that another set of

simulations might have produced more accurate results were we to have repeated

the experiment, but we could never guarantee it.
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Figure 3.5 Comparison of the performance of Monte Carlo and Latin

hypercube sampling (Source: Vose, 1996)
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3.4 Maximum absolute errors (MAE) when antithetic variables and

Latin hypercube sampling are used

The use of antithetic variables which are used in the Research Model is one of the
key methods in the process of variance reduction in discrete event simulation,
where variance reduction is aimed at reducing the size of the random sample
required to ensure that the sample mean does not differ significantly from the
desired value at any specified level of significance. Suppose X is a variable which

is distributed as U[0,1), and 2n values are to be simulated, consisting of n pairs of

values. In the i pair let the random numbers (r.n.s) from U[0,1) that are used be

0; and 1-6;. This pair of random numbers is antithetic in that their sum is always

equalto 1.

This section proves that the maximum absolute errors in the sample s.d. and
variance can be reduced when the antithetic method and Latin hypercube
sampling is used. Suppose n values of X are sampled from U[0,1) so that the i"
value, x(i), has a value generated in the interval [(i-1)/n, i/n). For brevity the
analysis is restricted so that n is an even number, although the analysis of the case

where n is odd is also easily derived.
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3.4.1. Case where antithetic sampling is not used.

The greatest sample standard deviation will occur when the value assigned to
x(i) either equals the lower class boundary value, (i-1)/n, when 1 <n/2,

or equals the upper class boundary, /n, when 1> n/2.

On the assumption that the sample mean is adjusted to Y%, the sample variance will
be:
V={[x(1)-12 P+[x(2)-12 T +.. . +[x(n)-12 I’} /n

Suppose it is expressed in the form that V = Viea + Vygn, where the terms
contributing to Vi will be those for which i <n/2. The terms for which 1 > n/2
will constitute Vygy. It is clear from symmetry that Viea = Viign, and that therefore

V =2*Via Letn=2k

HenceV=(2/n)*{[O/2k-1/2]2+[1/2k-1/2]2+[2/2k-1/2]2+...+
[(k-1)2k-1/2T}
— 2/ ) ¥ { K+ (k17 + 1)
=(2/8K)* {k *(k+1)*(2k+1)/6}
= (1+1/k) * (2+1/k) / 24
=(1+2m)*(1+1/n)/12.

Note that V> 1/12 asn — .

The maximum absolute error in the sample variance is thus:

(1+2m)*(1+1m)/12-112 = [3/n+2/n°]/12.
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3.4.2. Case where antithetic sampling is used

If the sampling is carried out using antithetic variables then the contributions to
the variance from a general linked pair of classes, class 2w-1 and class 2w, will be:

(Xow-1 - V2 )+ (Xow - 2 )

=((2w-2+0)n-% Y +((2w-1+1-6)n-%)>,

= (1/4n°) * { (4w - 4 + 20 - n)> + (4w -20 -n)* }

= (1/4n°) * { [ (4w-2-n) -2(1-8) 1 + [ (4w-2-n) +2(1-0) ]}

= { 16w” -8(2+n)w + n’ + 4n + 8 } / 2n* + 2(1-6)* /n’, for any integer value of n.

The contribution from this pair is clearly maximised when 6 = 0.

So, the maximum variance arises in the limiting case in which every first value of
the pairs of antithetic variables is at the left hand class boundary (i.e. in the odd
numbered classes), and the second sampled value in each pair is at the right hand

class boundary (i.e. in the even numbered classes).

This maximum variance is then (1/2n°)Y { 16w” -8(2+n)w + n° + 4n + 8}, summed
fromw=1ton/2
=[1+8/mn*])/12,=1/12 + 2/(3n°).

. . . . . 2
Hence the maximum error in this variance is 2/(3n°)

Note again that V. — 1/12 asn — .

E.g. If n = 10, the maximum errors in the variance are “[ 3/n + 2/’ ]/ 127,
=0.32/ 12, = 0.0267 to 4 d.p.s if antithetic sampling is not used, or “2/(3 n’)”,

= 0.0067 if antithetic sampling is used.
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Even for such a small sample size, the latter maximum error is approximately a

quarter of the former maximum error.

3.4.3. Example of the MAE in the sample mean and variance

It is easy to verify that the maximum absolute error in m, is half a class width,

_o0s

- Egg. If n = 100 then the value of m, will lie in the range

0.495 <m,_ <0.505. The maximum error would occur when either all values x (i)

are at their lower class boundary or, from symmetry, when they are all at their

upper class boundary.

The maximum absolute error in the sample variance, s’, will depend on whether
the values of O are generated as antithetic pairs. These maximum errors were

derived in section 4.4 above.

If antithetic random number generation is nof used then the maximum absolute
error in the sample variance will be [ 3/n+ 2/n> ]/ 12 . For example, when n is
10 this will be 0.02667, whereas when n = 100 this reduces to 0.00252, and when
n = 1000 this reduces further to 0.00025. In practice the error in the sample

variance is usually very much smaller than the 'worst case' upper bounds.
If antithetic random number generation is used then the formula for the maximum
absolute error in the variance is 2 / 3n” so that, if n = 10, the maximum absolute

error in the variance is reduced from 0.02667 to 0.00667.

Similarly when n = 100 the maximum error is reduced from 0.00252 to 0.00007,

and when n = 1000 it is reduced from 0.00025 to 0.0000007.
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Example:

We can compare these maximum absolute errors ("mae") in the variance for

several values of the sample size, n:

Non-Antithetic Sampling: | Antithetic Sampling: T
Sample A+N,
_ mae=[3/n+2/n21]/12, | mae=2/3n2,
Size, n =8/(2+ 3n)
= N, say = A, say
10 0.02667 0.00667 0.25
10 0.00252 0.0000667 0.02649
1000 0.000252 0.000000667 0.002665

Clearly the use of antithetic variables guarantees greater accuracy in the variance,

and this accuracy increases with the sample size, n.

Now consider the ranges within which these variances must correspondingly lie.

Example

n=1/0

The population variance is 1/12, = 0.08333 to 5 d.p.s. Using the above
expressions for the maximum absolute errors in the variance in the case of
samples of size 10, for example, the sample variance V, say, must lie in the range
0.05667 < V < 0.11000 if antithetic random number generation is not used or in
0.07667 < V < 0.09000 if it is used. The former is correct only to 1 d.p., whereas

the latter is almost correct to 2 d.p.s.
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n= 1700
The corresponding ranges if n = 100 are 0.08082 < V < 0.08585

and 0.08327 < V < 0.08340 respectively, which are correct to (almost) 2 d.ps
and (almost) 4 d.p.s.

n= 1000

Similarly if n = 1000 the range if antithetic random number generation is not used
15 0.08308 < V < 0.08358, which is still not certainly correct to 3 d.p.s, but if the
antithetic approach is used the range is 0.0833327 < V < 0.0833340, which is

correct to 5 d.p.s. and is almost guaranteed to be correct to 6 d.p.s.

In summary, the maximum ranges within which the sample variance must lie in

these three cases are as follows:

Sample Size, Range of Non-Antithetic Range of Antithetic
n Variance Varaince
10 0.05667 <V <0.11000 0.07667 <V <0.09000
100 0.08082 <V <0.08585 0.08327 <V <£0.08340
1000 0.08308 <V <0.08358 0.08333207 <V <0.08333340

The population variance of these U[0,1) variables should be 0.083333 to 6 d.p.s,
so that this table of the sample variance ranges clearly confirms that antithetic
sampling will greatly improve their guaranteed accuracy, and hence greatly

increase the confidence in the sample parameter values.
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3.4.4. Adjusting to correct the sample mean and variance

The next stage is to linearly transform the values of the x array so that the sample
mean of the n values x; to X, is ¥ and the s.d. is 1/¥12. This is achieved via the

transformation x (1) > Y2+ [ x(1) -myx ] /[ ss * V12 1.

This linear transformation is easily verified since the mean value and standard

deviation of the transformed x(i) value should be ¥ and 1/v12 respectively:

E[ transformed x()) |=%+[ % — Y21/ [ s * V121, =% — 0, =%, as required,
and its variance = 0 + Var ( sampled value x(i) ) /[ sx * V12 7= 0

=(s2)/12 (s ), = 1/12, as required.
Similarly transform the n values of the array y.

For example, suppose a sample of 10 values of x(i), 0.00246, 0.19754, 0.24756,
etc., have been generated using pairs of antithetic random numbers from UJ[0,1),
and that the standard deviation of these 10 sampled values is s, = 0.28840 to 5
d.p.s (whereas the population s.d. is 6x = 1 /N12,=10.28868 to 5 d.p.s).

The value of " s * V12 " is thus equal to 0.99905, and the transform formula
yields the three corresponding transformed values of x(i) which, together with the
transformed values of the other seven sampled x(i) values, will ensure that the

transformed sample mean remains equal to %2, and the sample s.d. becomes 1/

V12, as required.
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i x(i) before transform x(i) after transform
1 0.00246 0.00293
2 0.19754 0.19783
3 0.24756 0.24780

Maximum possible change to an individual sampled value from U[0,1)

The maximum possible change to a value can be calculated. For example, if
n = 100 and antithetic random number generation is used, the absolute change in

x(i) will be &;, say,

= [[x@)-%]-[x()-% 1/[ s *V121]]
=[x -% 1*[1-1/(s.*N12)11.

Now, 1 -1/( s« *y12 ) will be greatest when s, is most extreme, for example =
028840 as above. Hence the maximum absolute change in 1 - 1/ ( s« *V12 ) is
0.00095 to 5 d.p.s, so that no x(i) value will increase or decrease by more than
0.5 * 0.00095, = 0.00048 to 5.d.s., which is 0.0048 of a class width. It should be
clear that the largest individual change will be to one of the two extreme values
(x; or xjo in this example). Thus, x; above changes by 0.00293 — 0.00246,
= 0.00047 (which is just less than the maximum possible change 0.00048 above),

whereas the change in x; is only 0.00024.

Even so, for the two extreme values x; and X, a check must be made lest they
should become just less than 0 or just greater than 1 respectively, although this is
clearly very unlikely. If either of these two extreme-case transforms is infeasible
(and this is likely to happen only very infrequently), simply generate a new sample

of the variable concerned, transform the values again, and check.
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3.4.5. Advantages
Now the values x(1 . . n) form a sample of size n whose:

1) sample mean and s.d. exactly match those of the underlying U[0,1)

population;

2) n values are approximately spread out regularly through the range of the

cumulative density function or ¢.d.f; and thus whose

3) n values are being sampled at approximately equal points throughout the

domain of the inverse ¢.d.f.

Hence if, say, n = 1000 values are sampled and adjusted in this way, and if the
observed and expected frequencies are fitted to 10 classes we'd expect a
goodness of fit test to yield a very small value of the test statistic. Thus the
expected frequencies, Ei, would all be 100, and the observed frequencies, O;,
would be close to 100, so that the term "( O; - E; )* / E; " would be a small
fraction. Hence the value of %*> would be small, showing that the sampled data
closely mirror the assumed underlying Uniform distribution. A similar process

can be found in Avramidis and Wilson (1996).
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3.5 Pairing: generating an initial correlation

Now we need to discover which of the y; values should be paired with each
individual x; value without replacement in such a way that the product-moment

correlation of the paired samples is as close as possible to the required correlation

coefficient, p.

To achieve this, consider the following linear transformation which defines a new

array yO(1, . ., n) for values of a, b and ¢ which are to be determined.

yO(i) = a + b*x(1) + c*¢(1), fori=1,2, . .., n

The values ¢(i) are to be n separate (and independent) values sampled from
U[0,1), and are also to be independent of the x(i) values, so that the covariance of
x and ¢ = 0. We require the sample mean and s.d. of the n y0(i) values to be 2
and 1/V12 respectively, and we require the product-moment correlation between

the paired samples to be as close as possible to p.

Now, E(y0) =a + b * E(x) + ¢ * E(¢),
=a+ Wb+ v, =%,

so2a+b+c=1 (1)

Var(y0)= E[(y0-E(y0))’],= E[(y0-3)’]
= E[( b(x-¥2) + ¢(¢-12) )],
= b’var(x) + c’var(9), = (b*+c?) /12,
= 1/12,
So, b’ +¢” =1 (2)
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Cov(x,y0) = posoy = p/12, = E[(x-Y2)*(a + b*x + c*¢ - 1%)]
=E[ b(x-12)" + c(x-12)(¢-1%) ],
since the covariance of x and 8 is zero
=b/12+0, =p/12,
sob=p. (3)

Hencein (2) ¢ = \/(l-pz), and
in(Ha=((1-p-V1-p?)/2.

[ Note that equally we could take
c=-V(1-p?), anda=((1 - p+V(1-p?))/2]

Y0 =[1-p-N1-pH)]/2+ p*x(1)+ \/(1-92) * (),
fori=1,2, ... n 4)

Suppose, for example, that the target correlation is p = 0.30, and that values of
x(1) have been generated for a sample of size 10. Suppose also that values of ¢(i)
have been generated, so that the following table shows the first three pairings of

x(1) and ¢(i), together with the calculated values of yO(i) using formula (4) above.

x(i) (i) yO(i)
0.00293 0.1470 0.014138
0.19783 0.2578 0.178305
0.24780 0.5013 0.425580

Note that if p = 0, this reduces to y0(i) = ¢(i), so that YO will be independent of X,
whereas if p = 1, this reduces to yO(i) = x (1), so that YO will be perfectly

correlated on X.
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Similarly if p = -1, this becomes:

yo(i)=[1+1]/2-x(i)+0,=1-x(i), which means that these two variables

from UJ[0,1) are then perfectly negatively correlated.

In summary, in these three extreme cases:

p yo(i)
(1)

1 X (1)

1 1-x()

Otherwise if the magnitude of p is closer to 1 than to 0, the term p * x(1) will be
more influential than \/(1—p2) * (i), so that a relatively firm correlation will be
created between the values x and y, whereas if the magnitude of p is closer to O
than to 1, the random term V(1-p%) * (i) will be the dominating factor in the

generation of yO(i). Algebraically we can verify the following:

E[yo] =[ 1-p- V(1-p?) 1/ 2+ p * E[x] + N(1-p°) * E[¢]
—[1-p-N1-p)1/2+p* Vet N(1-p") * 1,

= 14, as required.
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Hence:

Var(y0)= (I/n) Z [ (yO() - %2 )’ 1, =(I/m) 2 [ { p * (x(i) - %4 ) +
V(1-p%) * (§() - 5 ) 371
=P *DL(x() - %) T+ (1-pD) * S (o) - 1 )]
F2pN(1- ) * S (x() - ) * (o) - %) ]
= p* * var(x) + (1-p) * var(¢) + 2pV(1-p) * cov(x.0)
=p* * /12 + (1-p) * 1/12 + 2p\(1-p?) * 0
= 1/12, as required.

Similarly the expected correlation between the x and y0 values will be

= (/) * Z[(x(®)-1/2)* (yO() - 1/2) ] + [ 504 ]

=(Un) * T { [p* (x() - 2 )+ V(1-p) * (0() - Y2 ) ] * [ x(i) - 4 I} = [ox04 ]

= { p *var(x) + V(1-p’) * cov(x,0) } +[0:04],= { p *(1/12) + V(1-p?) * 0 }
~[1/12],

:p'

In practice the sample variance will be close to the required value p, as we'll see,
but it doesn't necessarily follow from the equation (4) defining y0 in terms of x

and ¢ that YO will have a Uniform distribution.

The n values in the x array are strictly monotonic increasing, but the values in the
y0 array are probably not, unless the value of p is very close to 1.0. The sample
mean and s.d. of the generated y0(1) values may be exactly what are required, but
the skewness (and kurtosis) of these generated values often differ significantly

from the corresponding parameter values of a Uniform distribution.
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Hence the array yO should not be regarded as an ideal sample of values of the
variable Y which is ~ U[0,1). Indeed these yO(i) values will be used to decide
which individual values of the generated y array will be paired with which of the

x(1) values, as will be seen.

3.3.1. The usefulness of the array y0 as a ranking procedure

At this point in the process a sample of n monotonically increasing values of X ~
U{0,1) will have been generated and transformed, so that their sample mean and
s.d. are equal to ¥ and 1/V12 respectively. Similarly n monotonically increasing
values of Y ~ U[0,1) will have been generated and transformed. These two sets

of n values are stored in the arrays x and y respectively.

Also n values of the array yO will have been generated using ¢, but these values
are almost certainly not monotonically increasing (unless p is very close indeed to
1 in value), and the distribution of the variable YO need not be U[0,1). These y0
values will be used to decide which individual values in the arrays x and y are to
be paired, the supposition being that, since x and yO have a correlation roughly
equal to p then, after pairing is completed, so will the arrays x and y. Later (in
section 3.6) the swapping routine will be described which should greatly increase
the precision of the correlation between x and y, and which will thus go a long

way towards achieving the research objectives defined in Chapter 1.

The procedure here is perhaps best developed via an example. The sample size is

n = 5. so that antithetic sampling has not been used. The target correlation is
p = 0.6, so that formula (4) simplifies to yO(j) = -0.2 + 0.6 x(1) + 0.8 ¢(i). The
table of the simulated (and transformed) values of x(i) and y(i) now follows,

together with generated values of ¢(i) and hence the calculated values of y0(j).
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All the values in these four arrays are written to only 2 d.p.s for readability, but
even so the sample means of the x and y arrays are equal to 0.5. and their
variances are close to 1/12 (= 0.08333). The sample means and variances of the )

and yO0 arrays are irrelevant.

The fifth and sixth columns in the table show the ranks of x(i) (which are
monotonically increasing) and yO0(j) (with the smallest value in each case having
rank 1, etc.). The eight and ninth columns show the values and ranks (currently
monotonically increasing) of the values y(j), where the index "j" has been chosen
deliberately in order to distinguish it from the index i of x(i). The ranks of y(i) are

also monotonically increasing.

1| x(1) | (1) | yO(4) | Rank of x(1) | Rank of yO(j) | j | y(j) | Rank of y(j)

1 {010 | 072 | 0.436 1 3 1 10.14 1

21030 0.19 | 0.132 2 1 2 1021 2
3 1046|035 |0356 3 2 3 1050 3
4 1074 | 0.56 | 0.692 4 5 4 (078 4
51090 | 041 | 0.668 5 4 5 1087 5

The sample mean and variance of the x(i) values are 0.5 exactly and 0.0838
respectively, so that the sample mean is perfect and the variance, which should be

0.0833, is quite acceptable for values recorded to 2 d.p.s only.

The sample mean and variance of the y(1) values are 0.5 exactly and 0.0858.
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Now re-order the y(j) values so that their ranks are the same as those of
yo().

For example the first value in y will be the third ranked, which is 0.50, and the
second will be the first ranked: 0.14. The resulting ranks of the re-ordered values

in y will in effect be the inverses of the ranks of y0.

The table of values of x(i) and the correspondingly paired y(i) values will thus be

as follows:
1 x(1) | Rank of x(1) Re-ordered y(i) Rank of y(i)
1| 010 1 0.50 3
2 | 030 2 0.14 1
31 046 3 0.21 1
4 | 074 4 0.87 4
51 090 5 0.78 5

The sample product-moment correlation coefficient of these five paired values is
easily calculated to be 0.646 to 3 d.p.s, which for a first attempt (and with such a

small sample size) is a creditable first approximation to the target value of 0.6.

The procedure covered in the following section will usually enable the precision

of the set of pairings in this first approximation to be greatly improved.
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3.6 Swapping

This is to be the key step of this algorithm: identifying how this approximation
can be improved. Figure 4.2 summarises the approach that is described in this

section.

Now, the sample correlation, r,, is equal to the sample covariance divided by the
product of the two sample standard deviations, so that

L(xi-Y2)*(yi-"2)

=n*ry * (1N12)%

=X Xyi- 2 (yi-%)- %I (x-%)-2 V%

= 2Xy - n/4.

Ideally this Zxy should be equal to n * p * (1/N12)*- n/4, so that the error in Xy
SN *(ry-p)/12+n/4-n/4,=n*(ry-p)/12.

Sample X ' ‘ .
Sample Correlation Required correlation

Coefficient = rxy coefficient = p

Sample Y \/

Errorin Y XY = A

!

Swapping

Contribution Reduction

=1 i = | &ij

Figure 3.4 Swapping approach
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Hence we would like to reduce Zxy by (n/12 ) * (1 - p ), = A, say, which could

be positive or negative (of course, if it is zero then the sample correlation is

already perfect!).

Suppose two of the pairings contributing to Xxy are (x;,yi) and (X;,y;), where j > i,
so that their contribution to Zxy is X;y; T X;y;, and consider the effect of swapping
the order of these two y values, so that the two pairings would become (x;,y;) and

(Xi,¥4).

The sample means and s.d.s would be unchanged, but the contribution to Xxy
would become x;y; + x;y;, and the reduction in Zxy would be x;yi + xjy; - Xiyj - Xj¥i,
= (% - %) * (¥j - yi), = &, say. Similarly if A <0 then define ;; to be the required

increase in xy: Oi; = (xj-xi) * (¥i - ¥j)-

Hence if 0 <9y <2 |A| then swapping the order of y; and y; within the array y

will improve the required accuracy of the sample correlation.

Hence scan each combination of the values of x;, yi, x; and y;, and compute the
test statistic 8;. Find the optimal value of i and j (if any) which will then make the
most progress in transforming the value of r, to p, with reference to the
appropriate double inequality statement bulleted above. This means that scanning
of the pairs of values has to be over the ranges 1 < i <nandi<j<n, so that the

number of combinations of i and j will be “2n(n-1).

Note that, since x; - x; > 0, if A > 0 so that the sample correlation is to be
decreased, we only have to consider values y; and y; for which y;> y;. There are

similar economics if A <0.
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Thus, if values of 1 and j can be found which will improve the sample correlation
in this way, swap the two values of y, and repeat the process, continuing until no
further progress can be made. The experience so far is that in the great majority

of cases between 1 and 3 iterations are necessary.

The above algorithm is demonstrated in the next chapter by using an example
where n is small, = 10, and the target sample correlation is 0.7. Steps 1 to 3 of
the algorithm generate samples with correlation 0.6051, and one iteration of step
4 increased the correlation coefficient to 0.6931, which has over 99 percent
accuracy. No further improvements were found. Put another way, the reduction

in the error exceeds 98.8%, which is highly satisfactory.
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Summary

This chapter has demonstrated the method for simulating accurate correlations
between two samples drawn from U[0,1) variables, in which the sample mean

values and standard deviations are equal to their corresponding population

parameters.

This is taken a step further in Chapter 4 when a larger example is worked through.

This chapter also examines how the various building blocks are modelled.

In Chapter 5 the algorithm developed in the current chapter will be extended to
deal with variables having more general distributions, such as beta or normal. In
Chapter 6 the results of a large number of tests of the RCM are reported, and
these results are compared with the corresponding results from an industry-

standard risk analysis package.



A Method for Treating Dependencies Between Variables in a Simulation Risk Analysis Model

Chapter 4: Simulating Accurate Correlations
Between Two Samples: A Full Example, and the
Specification of the RCM

4.1 Introduction

This chapter is in two parts. The main objective of the first part is to
demonstrate the formulation and building blocks discussed in Chapter 3 with a
fully detailed step by step example. Here the two variables still have U[0,1)

distributions.

The RCM is a computer based model, so that in the second part of this chapter a
flow chart and sequence diagram demonstrate the construction of the RCM. The
function of each process, the input it requires, and the output it generates must be

specified clearly, so that the flow of data through the model can be clearly

identified and understood.
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4.2 An illustrative example of the algorithm

Example': Generate two samples of size 10 from populations which are U[0,1)

and whose product-moment correlation coefficient is 0.7.

Step 1 — generate X

Divide the domain of X, [0,1), into 10 mutually exhaustive classes:

=[0.0,0.1), [0.1,0.2), [0.2,0.3), and s0 on, up to [0.9,1.0).

Next generate the 10 random numbers, 0, say, from U[0,1) to be stored in array
6(1..10)>. Choose the 10 values of § to consist of 5 antithetic pairs, so sample 5

values of 6 i.e. : 0, 63 65 07 09

0; =0.02462 0, =0.97538
03 = 0.47559 04 = 0.52441
0s =0.95135 B¢ =0.04865
07 =0.31880 0g = 0.68120
0o = 0.76934 010 = 0.23066

! This example. in which the very small sample size is 10. is not particularly practical from the
simulation point of vicw. However it means that the steps of the algorithm can be viewed
without running the risk of being lost in masses of data.

2 Note that. if required. the 10 values in 0 could be shuffled into a randormised order (as
illustrated in Chapter 3).
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Chapter 4: A Full Example. and the Specification of the RCM

Now generate 10 values of x0, one in each of these classes, using the general

formula:

X0(1) = (-1)/n + (1/n)*6(i), = (i- 1 +6() ) /n, fori=1,2,. .. n wheren=10,

For example, in the third class, x0(3)
=0.2+06(3)*0.1,
=0.2+0; *0.1,=0.2+0.47559 * 0.1, = 0.24756.

The 10 values of x0 will thus be:

0.00246, 0.19754, 0.24756, 0.35244, 0.49514, 0.50486, 0.63188, 0.76812.
0.87693 and 0.92307.

Because antithetic random numbers have been used in the generation of the array
x0 the sample mean value will be exactly Y2, = m,, and the variance, V, is
calculated to be 0.08349 to 5 d.p.s, whereas the population variance is 0.08333,
so that the relative error is only 0.2 percent. Note that this value of V lies within
the range 0.07667 <V < 0.09000 derived earlier and is much closer to the true

value, 0.08333, than the limits give reason to expect.
The sample s.d. = s, = 0.28895.

Now transform the x0 values to become the final x values via

x(i) = ¥4 + [ x0(1) - mx0 ]/ [ sx0 * V12 ].

ie x(i) =Y+ (x0@) - ¥2) * 0.99905, so that the sample mean of the x(i) values

is ¥ and their s.d. is 1N12.
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The 10 adjusted values, x(1 . . 10), are as follows (to 5 d.p.s):

i x0(i) before transform x(i) after transform
1 0.00246 0.00293
2 0.19754 0.19783
3 0.24756 0.24780
4 0.35244 0.35258
5 0.49514 0.49514
6 0.50486 0.50486
7 0.63188 0.63175
8 0.76812 0.76787
9 0.87693 0.87657
10 0.92307 0.92267

The sample s.d. was fractionally too large (0.28895 versus 0.28868), so that the
effect of the multiplier 0.99905 above has been to bring all the values slightly in
towards the sample mean, .. The two middle values are not changed to 5 d.p s,
but the extreme values are changed the most. For example the first value is

changed from 0.00246 to 0.00293.

As mentioned earlier, it is possible that a result of such a transformation (or
scaling) could be that either x(1) might become smaller than 0 and/or x(n) might

exceed 1, in which case a new sample x0 should be generated. In this case this

isn't necessary.
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Step 2 - generate Y

In the illustration of this step, all calculated values are correct to 4 dps.

Using Latin hypercubes generate 10 values of Y. and store them in the array
yLhO, so that yLhO(1) to yLhO(10) will be (in this example) 0.0193, 0.1807.
0.2685, 0.3315, 0.4668, 0.5332, 0.6372, 0.7628, 0.8076, and 0.9924. The
sample mean here is automatically equal to %, and the s.d. is syt. = 0.2902. The

transform formula (4) then transforms the array yL into y, say, via the formula
yi) =% +[yL()-'%1/[0.2902 %12 ]

Note that, as with the generation of the 10 values of x0, the random numbers
have been generated in antithetic pairs so that, for example, the first two values
yL(1) and yL(2) are 0 + 0.1 * 0.193 and 0.1 + 0.1 * (1-0.1933) respectively. i.e.
The 5 pairs of antithetic random numbers from U[0,1) have not been shuffled.
Next transform these variables into a new array, yLh(1..n), which has its s.d.

equal to 1/N12.

i Generated value of yLhO(i) Transformed value: yLh(i)
1 0.0193 0.0218
2 0.1807 0.1824
3 0.2685 0.2698
4 0.3315 0.3323
5 0.4668 0.4669
6 0.5332 0.5331
7 0.6372 0.6365
8 0.7628 0.7614
9 0.8076 0.8060
10 0.9924 0.9898
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Step 3 - pairing

Next we must decide which individual values in x are to be paired with which

values in yLh.

First we generate the values of the yRO array, where the i term is defined to be:

YROG) =[1-p-V(1-p*)1/2+p * x(i) + V(1-p?) * ¢(i), fori=1,2, .. .n

To achieve this generate values of $0(i), which will be 10 r.n.s from U[0,1) in 5
antithetic pairs and located within Latin hypercubes.
For example, the first two values are:

$0(1)=( 1-1+0.6892)/10, = 0.06892; and
$0(2)=(2-1+(1-0.6892))/10, =0.13108

rn.s Antithetic pairs ¢0(1)
0.6892 0; = 0.06892 0,=0.13108
0.879 05 = 0.28790 0,=031210
0.3003 05 = 0.43003 06 =0.56997
0.6220 07 = 0.66220 Bs = 0.73780
0.8262 0o = 0.88262 010 =0.91738

Of course now yRO(i) will generally take small or large values within its class as
$0(i) is small or large respectively. This could exaggerate the correlation so,
having generated the n (= 10) values of ¢0O(i) we now shuftle them into a random

order to become the values of the array ¢ which will be used in the generating

formula above for yRO(1).
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These reordered values are, for example,

¢ = { 0.66220, 0.43003, 0.91738, 0.28790, 0.06892, 0.56997, 0.13108,
0.31210, 0.73780, 0.88262 }.

Thus, for example, ¢(1) = $0(7), and $p(2) = $»0(5).

Next calculate the values of yRO(i) using the values of x(j) derived in Step 1 and
the values of ¢(j) listed above:

yROG) =[1-p-V(1-p?)1/2+p * x(i) + V(1-p) * ¢(i), fori=1,2, ... n.

For example, x(1) = 0.00293 and ¢(1) = 0.66220, so that
yRO(1)=[ 1-0.7-V0.51]/2+0.7 * 0.00293 +0.51 * 0.66220,
=0.2679to 4 d.p.s.

The 10 values of yRO(1) are:

0.2679, 0.2385, 0.6215, 0.2453, 0.1887, 0.5534, 0.3288, 0.5533, 0.9334, 1.0691.
[Within the programme these values are then rearranged in order of increasing
size, to become the array yR, in which case they would be

0.1887, 0.2385, 0.2453, 0.2679, 0.3288, 0.5533, 0.5534, 0.6215, 0.9334, 0.9691 ]
The key aspect here is, however, that in general the above values of yRO(1) will
not be monotonically increasing, so that we need to identify their individual
ranks. For example, yRO(1) = 0.2679, and this is the 4" largest of the values in

the array yR, so that the rank of yRO(1) = 4. Similarly we can identify the ranks
of the other 9 values of yRO(i), as in the following table, Table 4.1.
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The sixth column in Table 4.1 contains the values of yLh which were derived

above in Step 2, and so these are monotonically increasing with sample mean %

and variance 1/12.

i x(i) | yROG) | yR(@) | RankofyROG) | yLh(i) | y(i

1 0.0029 | 02679 | 0.1887 4 0.0218 | 03323
2 0.1978 | 0.2385 | 0.2385 2 0.1824 | 0.1824
3 0.2478 | 0.6215 | 0.2453 8 02698 | 0.7614
4 | 03526 | 02453 | 02679 3 0.3323 | 0.2698
5 0.4951 | 0.1887 | 0.3288 1 0.4669 | 0.0218
6 | 0.5049 | 0.5534 | 0.5533 7 0.5331 | 0.6365
7 0.6318 | 0.3288 | 0.5534 5 0.6365 | 0.4669
8 0.7679 | 0.5533 | 0.6215 6 0.7614 | 0.5331
9 | 08766 | 0.9334 | 0.9334 9 0.8060 | 0.8060
10 | 09227 | 1.0691 | 1.0691 10 0.9898 | 0.9898

Table 4.1 Paring process

Note that it has happened here that yRO(10) exceeds 1 (being equal to 1.0691 to
4 d.p.s), but this isn't important since the distribution of yRO is not intended to be
U[0,1). The use of the array yRO is simply to generate the rankings, so that the
array of yLh(i) values can be reordered to have the same ranks. This reordered

version of yLh is named y.

For example, because the rank of yRO(1) is 4, the value of y(1) will be the 4t
largest value in the monotonic increasing array yLh(i): 0.3323. Continue in this

way to complete the seventh column in Table 4.1.
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The two arrays x and y in the second and seventh columns have their sample
means equal to ', and their variances are 1/12, = 0.0833 to 4 d.p.s. Their

covariance should be approximately p*c*c,, = 0.7 * (1/12), = 0.0583.
However, the generated covariance of the x and y values is 0.0504, not 0.0583,
and so their correlation is 0.6051, not 0.7. Hence our goal now is to increase this

the sample correlation to a value closer to 0.7 if possible.

Step 4 - swapping

The final step in the algorithm is to swap pairs of values in the array y(1..n) until
the correlation coefficient between x and y is as close as required. Figure 4.2
documents the swapping process in this example for cross referencing

throughout the demonstration below.

The covariance = (1/n) *[ T { x(1)*y(Q) } - ux*py ], summed fromi=1 ton
Write the sum simply as £xy , so that Xxy should take the value
n*[0.0583+0.5*0.5], =3.0833t04d.p.s.

However the actual current value of xy is easily calculated to be 2.9771, so that
the ideal net increase in Txy is desired to be 3.0833 —2.9771, = 0.1062 (with all
calculations being carried out to 4 d.p.s.). This can be described as the target
increase in £xy, and in Table 4.2 below these three values are shown in the third,

fourth and fifth rows of the column corresponding to each iteration.

Consequently in each iteration the way in which the values in x and y are paired
is adjusted so that the current inaccuracy in Xxy is increased (or decreased, as
appropriate) as much as possible. This is achieved by sequentially swapping

pairs of values in y, y(i) and y(j), say, until no further improvements can be

identified.
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Seeking always the largest possible change is a "greedy" approach, and is also
known as a "steepest descent" approach, these terms being used frequently in

other applications of Operational Research.

Now we'll consider the actual changes or "swaps" to make to pairs of y(i) and

y(j) values, iteration by iteration, until no further improvements can be identified.

'Swap' Iteration 1

Target: Xxy should be increased by 0.1062, or as close as possible to this value.

i.e. Currently the value of Txy is 2.9771, but it should be 3.0833 to 4 d.p.s, so
that the target increase in Zxy is 0.1062 (= 3.0833 - 3.0043). Note that in this
example the value of Ixy is to be increased but could, equally well, need to be
decreased. In the notation defined earlier the value -0.1062 is assigned to A. Le.

Previously A was defined to be the required decrease in 2xy.

Thus, suppose two of the pairings contributing to Zxy are (xi,y;) and (x,yj),
where j > i, so that their contribution to Txy is Xiyi + X;y;, and consider the effect
of swapping the order of these two 'y values, so that the two pairings would

become (x..y;) and (x;,yi). The sample means and s.d.s would be unchanged, but
the contribution to £xy would now become Xiy; + X;yi, and the increase in Txy
would be 8i,j = (xj - xi) * (Vi - y;). The ten values of yi and yj are currently as

shown in the second and third columns in Table 4.2.

Now the values in x are strictly monotonic increasing so that x; > x; (when j > 1),
and thus x; - x; > 0. .. We need only to consider elements in the y array for
which y; - yj is > 0 in this example. Hence, for example, taking i=1andj=3

will not work since yi-y; = Y1~ Y3 ~ 03323 -0.7614, and this 1s not > 0.
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Now, in this manual calculation, it is simply a case of finding two values of i

and j such that 8i,j is > 0, and then scanning through the values in Table 2 to find

better improvements if possible.

Note also that it doesn't matter if the increase in Ixy exceeds 8i,, as long as the

net increase is less than 2 * 3i,j so that the value of Ixy becomes closer to the

target than before.

The first step here is clearly achieved by swapping y; and ys, so that the value of
61,2 = (0.1978-0.0029)*(0.3323-0.1824), = 0.0292. This isn't a big improvement
in Xxy, but it still is an improvement, and so will become the "incumbent"
increase. Now we look for other values of y; for j > 2 to swap with y; such that

the incumbent increase will be improved, and so on.

Thus keeping 1 = 1, the best improvement is obtained by setting j = 5, so that the
incumbent value of 81 is 05,5 = (0.4951-0.0029)*(0.3323-0.0218), = 0.1528.
Note that this value makes Xxy too big, being 3.1299, but it will still be closer to
the target sought, which is 3.0833, the excess now being only 0.0466 compared
with the value 0.1062 before the start of this iteration. 1i.e. The resulting
improvement in the correlation coefficient if we stopped here would already be

over 50 percent: the value of ry, is now 0.7559.

Now try taking i = 2 and considering j > 3. The best case here is when j = 5, and
yields 8,5 = 0.0477, which gives a shortfall of 0.0585 in the target improvement
in Exy, compared with the excess of 0.0466 reported above, so that the

incumbent pairing is still i = 1 and j = 2.
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Continue in this way until we discover that the best improvement is obtained
when i =3 and j = 7, when 837 = (0.6318-0.2478)*(0.7614-0.4669), = 0.1131, so
that Xxy is then equal to = 0.1131 + 0.29771, = 3.0902. Then ry becomes equal
to 0.7082, so that over 93.5 percent of the initial error in the value of the product-

moment correlation coefficient has been corrected already, in just one iteration.

Hence, as a result of iteration 1, swap y3 and y7, to yield the updated y vector of

values in the fourth column of Table 4.2 at the start of Iteration 2.

'Swap' Iteration 2

The current value of Zxy is 3.0902 and should be increased by 3.0833 —3.0902
= -0.0068 ideally (adjusting for 4 d.p. accuracy), or as close as possible to this

value. The negative sign shows that Zxy should actually be decreased.
This time the best improvement to “xy is -0.0084 when ys and y1o are swapped,

so that £xy becomes 3.0849, and the sample correlation becomes 0.6980. If any

further improvement is possible, Zxy should ideally be increased by 0.0016.

'Swap' Iteration 3

On inspection no further improvement can be made. As a result of these two
swaps, the product-moment correlation coefficient has increased from 0.6051 to

0.6980, so that the improvement in the error is almost 97.9 percent.
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It is important to observe that this method is a heuristic. Although the results
quoted later in this thesis indicate that almost always (if not always) great
improvements in the sample correlation can be achieved, an alternative swapping

(or other) heuristic might be identified which would achieve even better results.

In conclusion in this example, the two samples both have sample mean equal to
15 and s.d. equal to 1/V12, and their sample product-moment correlation
coefficient is 0.6980, which is only around one quarter of one percent less than

the target value, 0.7.

116



Chapter 4: A Full Example. and the Specification of the RCM

The table recording the targets and achievements in these iterations is as follows:

p=0.7:  Swapping: Iteration 1 | Iteration 2 | Iteration 3
Current Sample Zxy — 2.9771 3.0902 3.0817
Ideal Required Xxy — 3.0833 3.0833 3.0833
Target Increase in 2xy — 0.1062 -0.0068 0.0016
Correlation before iteration: 0.6051 0.7082 0.6980
i x(1..10) y(1..10) y(1..10) y(1..10)
1 0.0029 0.3323 0.3323 0.3323
2 0.1978 0.1824 0.1824 0.1824
3 0.2478 0.7614 0.4669 0.4669
4 0.3526 0.2698 0.2698 0.2698
5 0.4951 0.0218 0.0218 0.0218
6 0.5049 0.6365 0.6365 0.6365
7 0.6318 0.4669 0.7614 0.7614
8 0.7679 0.5331 0.5331 0.5331
9 0.8766 0.8060 0.8060 0.9898
10 0.9227 0.9898 0.9898 0.8060
L J, {
Values of y(i) to Swap — ys and y7 yoand yio | No more!
Achieved Change in Zxy — 0.1131 -0.0085 | -

Table 4.2 Swapping process
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4.3 The computer based RCM

In Chapters 3 an approach was developed for generating a set of correlated pairs
of random numbers, each variable having the underlying Uniform distribution
U[0,1), and the procedure was demonstrated in section 4.2. The outcome of the
example in section 4.2, i.e. the generated product-moment correlation coefficient
of the two samples, was tested against the required correlation coefficient and
shown to be within a satisfactory range. The algorithm required for achieving
this objective is written in the Gen2Corr function in the computer model using

Microsoft Visual Basic (VB).

The next chapter, chapter 5, will then apply the formulated algorithm from
Chapters 3 and 4 to a selection of more general probability distributions, i.e. the
general Uniform, Triangular, Normal and Beta distributions. The process of
transforming the two sets of random numbers into these distributions is written in

the TwoDist function in the RCM.

Selecting which programming language was to be used in this research was not a
significant issue. The computer model developed in this research is used as a
tool for testing and verifying if the algorithm designed and formulated in this
research is achieving its objectives, namely accurately modelling the Pearson

correlation between two continuous variables in the simulation process.

This section pictures the formulation of the RCM via flow chart and sequence

diagrams. Each process will be explained briefly.
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4.3.1. Specifying the RCM — flow chart

Within the implementation stage, the designed model can be presented in a more
apparent manner, firstly, by a flowchart as Figure 4.1, which is a graphic
representation of the steps in the solution of a problem, in which symbols
represent processes and the data flow through the system is presented. It
highlights that Gen2Corr and TwoDist are the two main functions which are built
within the RCM.

Gen2Corr

It is shown that the RCM requires four different types of input. I.e. Probability
distributions, relevant parameter values, the defined population correlation

coefficient, and the required sample size.

The last two inputs will be used to begin the data flow into Gen2Corr, and the
output from Gen2Corr will be two sets of correlated random numbers from

U[0,1). These two outputs are called X0(1..n) and YO(1..n).

Gen2Corr represented the date flow and routine of the conceptual approach that
was discussed in the previous chapter, Chapter 3. Le. After the initial swapping
the final adjusted arrays are X(1..n) and Y(1.n). These have perfect sample

means and s.d.s.
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TwoDist

TwoDist is a function to generate sample values from two assigned probability

distributions ( in particular, their c.d.f's) with corresponding input for parameter

values. The two sets of correlated random numbers generated in Gen2Corr enter

TwoDist as additional inputs to start the process.

Approach used in TwoDist:

Y]

2)

3)

4)

3)

Requires the two U[0,1) samples X(1..n) and Y(1..n) generated by Gen2Corr

and inputs the two p.d.f s and required sample size.

Transforms the assigned probability distributions into cumulative form in

InvCdf

Uses the output from Gen2Corr in conjunction with the two ¢.d.f's to identify
the initial sample values from the input distributions with — at this stage —
only an approximate value for the product moment correlation coefficient.

These two arrays are currently called XInit(1..n) and YInit(1..n).

Adjusts the initial sample means and standard deviations to match with the
expected values corresponding to the assigned probability distributions. Now

these values are stored in XFinal(1..n) and YNext(1..n).

Swaps the adjusted sample values if necessary until their correlation
coefficient is acceptably close to the desired correlation coefficient. Only the

YNext(i) values may be altered, so that these values are finally stored in

YFinal(1..n).
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At the end of the process in TwoDist, two sets of sample values will have been
generated. They are not only correlated, but the shapes of the frequency
polygons or histograms constructed using these sample values will be very
similar to the assigned probability distributions. This will be demonstrated using

descriptive statistics generated in the RCM.

The inclusion of expanded probability distributions into TwoDist will be

discussed in Chapter 5.

4.3.2. Sequence diagram

This section produces a Sequence Diagram, Figure 4.2, where the data flow of
this RCM is shown. The purpose of creating a Sequence Diagram is different
from that of creating a flow chart. A flow chart is where the steps that the
programme will be going through in the RCM are presented, whereas the

sequence diagram is showing:

1) the through flow of the data;

2) the place where the data are stored after each process;
3) the output from each step;

4) where the input is coming from; and

5) where the output is going to
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subGen2Corr

subGen2Corr generates two sets (to be stored in the X and Y arrays) of
correlated random numbers from U[0,1). The four individual processes involved

here are ProduceLHRandomNum to Swapping below.

ProduceLHRandomNum

The RCM does not use pure random numbers from a built-in random number
generator. In fact, these random numbers are generated in a function called
ProduceLHRandomNum where a sample of n random numbers is generated

using the Latin hypercube sampling method and returns them to Gen2Corr.

AdjustXLHRandomNum

The final array generated by Gen2Corr will be passed to
AdjustXLHRandomNum for adjustment so that the expected mean and variance
from these n sample values are transformed to 1/2 and 1/12 respectively, since
these sample values should reflect a Uniform distribution. These adjusted values

will then be returned to Gen2Corr as the array X(1..n).

When it is done, the same process will be gone through for random numbers

which will be stored in YLh(1..n).

Pairing

Gen2Corr now contains the X and YLh arrays which contain the adjusted
random numbers of X and Y from O to 1 respectively. These values are passed
to the function named Pairing where the shuffling, sorting and ranking of array
YLh via YRO(1..n) takes place for the purpose of correlating array YLh with

array X to get a good degree of relationship between them. The resequenced

YLh array is now called Y(1..n).
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Swapping

Now the n values in the arrays X and Y are ready for the function in Gen2Corr
called Swapping where the sequence in array Y will be rearranged but the array
X will remain unchanged so that the product moment correlation between these
two sets of data are as close to the required correlation as possible. They are

updated in arrays X(1..n) and Y(1..n) by Gen2Corr for the next use.

subTwoDist

As mentioned before, the final output from Gen2Corr will be used to join the
initial input in TwoDist. The output from Gen2Corr was the two sets of random
numbers which have the Uniform distribution’s property and have been adjusted
for mean, standard deviation and correlation coefficient with an acceptable level
of precision and an approximate correlation. These arrays are X(1..n) and

Y(1..n). The four processes comprising subTwoDist are described below.
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ProducelnvCdfX

The X(1..n) values are passed to the function called ProducelnvCdfX which
involves transforming the assigned probability distributions into cumulative
form. This situation is most relevant when, of course, the distributions of the
two variables are more complex than U[0,1), as described in Chapter 5. The
transformation process will then map the array X against the corresponding c.d.f.
to get the values. At the end of the process, these sample values will be stored in

TemplnvCdfArray and are available as output from TwoDist.

ProducelnvCdfY

Here the values in the array Y are treated in the same way that the values of X
were in ProducelnvCdfX.

AdjustXInvCdf

To ensure the sample values in XInit(1..n) are truly representing the assigned
probability distribution, they need to be adjusted for mean and standard
deviation. This is done in the function named AdjustXInvCdf. The resulting
array is called XFinal(1..n).

AdjustYInvCdf

Similarly, to ensure the sample values in YInit(1..n) are truly representing the
assigned probability distribution, they need to be adjusted for mean and standard
deviation. This is done in the function named AdjustYInvCdf. The resulting
array is called YNext(1..n).
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Swap2

Finally, the adjusted values of YNext are swapped until the correlation
coefficient between these two sets of data is acceptably close here, and these
values are stored in the array YFinal. The final outputs from Swap 2 are returned

to TwoDist and are then ready to be used. The arrays are XFinal and YFinal.

A summary of the functions used in the RCM, together with the objectives, input

and output from each function, are tabulated in Table 4.2 below.
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U[0.1)

Function Name Task Input Output
i i Store returning values which are between 0 ~ 1 will be used as . _
subGen2Corr o . Not applicable Not applicable
probability in TwoDist
( ) , Sample X(1.n) or Y(l.n) from )
Producel. HRandomNum Generate random numbers using Latin Hypercube method X0(1.n)or YO(1..n)

AdjustXLHRandomNum
AdjustYLIRandomNum

Adjust X or Y array for mean and standard deviation so that thev

have perfect means and s.d.s.

XO(l.n)or YO(1..n)

X(l.n)yor YLh(1..n)

Pairing

Sort and rank array YLh so that X and YLh have some sort of

relationship

X(1.n), YLh(1.n)

X(1.n). Y(1.n)

Swap

Rearrange the order of Y via YRO(1..n) so that their relationship 1s

closest to required

X(1.n), Y(1.n)

X(1.n)and rearranged Y(1..n)

subTwolist

Store returning values which have been assigned for probability

distributions

Not applicable

Not applicable

ProducelnvCdi X

Use the X(1..n) or Y(1..n) output from Gen2Corr to generate a

X(1.n)or Y(1..n), the given pdts,

XInit(1.n) or Ylmt(1..n)

with X(1..n) is acceptably close to the required correlation

ProducelnvCdly sample with the required probability distribution relevant parameters values
AdjustXInvCdf . _ ' ) o A . =
. Adjust XInit(1..n) or YInit(1..n) for mean and standard deviation Klmit(1.n) or Yimit(1..n) XFinal or YNext
AdjustYInvCdt
Rearrange the order of terms within YNext so that the correlation . N _
Swap2 XFinal(1..n), YNext(1..n) XFinal(1.n)and YEmal(1..n)

Table 4.3 Tabulated functions in the RCM
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Summary

This chapter has further demonstrated the conceptual approach discussed in Chapter 3
with a full illustrative step by step example. As the conceptual approach needs to be
turned mto a computer model for the purpose of testing the algorithm formulation
designed 1n this research, the second part of this chapter presented the conceptual
approach in flow chart and sequence diagrams. For each process is explained its function,

the input required by the process, and the output arising from the process.

There are two components in the computer model 1.e. Gen2Corr and TwoDist. The
conceptual approach discussed in Chapter 3 and first part of Chapter 4 is encapsulated
within Gen2Corr. The main difference between Gen2Corr and TwoDist is that the latter
not only targets U[0,1) distributions in the formulation, but also other probability

distributions such as Triangular, Normal and Beta distributions.
Consequently, Chapter 5 will explain specifically the ProducelnvCdf process which

includes how the non-analytical inverse density function is built into the RCM, and how

the swapping process is incorporated.
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A Method for Treating Dependencies Between Variables in a Simulation Risk Analysis Model

Chapter S: Implementing the Correlation Model
to Include Other Probability Distributions

5.1 Introduction

In Chapter 4, an approach was demonstrated for generating a set of correlated
pairs of random numbers, each variable having the underlying Uniform
distribution U[0,1). An algorithm required for achieving this objective is written

in the Gen2Corr function in the computer model.

The algorithm has been extended to a more general probability distributions, i.e.
the general Uniform, Triangular, Normal and Beta distributions. The process of
transforming the two sets of random numbers onto these distributions is written

in the TwoDist function in the computer model.
The process built in TwoDist is presented in Figure 5.1 below. The mathematics

of the transformation and how it is handled in programming will become the

main discussion issues in this chapter.
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The input into TwoDist consists of (1) n pairs of numbers between 0 and 1 from
U[0,1) called X(1.n) and Y(l..n), such that their sample product-moment
correlation coefficient has been adjusted by Gen2Corr to be acceptably close to
the required correlation coefficient, together with (2) the types and parameters of
the key distributions to be modelled. The InvCdf function matches the values of
X(1..n) and Y(1.n) against the respective c.d.fs, which either are analytical

functions or have to be generated using numerical integration (see below).

Inputs:
s . Required
['wo samples InvCdf correlation
from Gen2Corr 2. Two distributions
XInit(1..n) YInit(1.n)

Adjust XInit(1) for mean Adjust YInit(1) for mean

and standard deviation and standard deviation

— XImal (1..n) — Ynext(1l..n)

A 4

Swap pairs of values in YNext (1..n)
— better correlation

!

Final samples are XFinal (1..n) and
YFinal (1..n)

Figure 5.1 TwoDist flow chart
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At the end of the InvCdf routine two samples, XInit(1..n) and YInit(1..n), either
having any of the selection of probability distributions available in the RCM, are
generated. At this stage their sample means and s.d.s are not necessarily equal to
their population parameter values, and their sample product-moment correlation

coefficient is only a first approximation to the target value.

These two sets of sample values are then adjusted for mean and s.d., resulting in
arrays XFinal(1.n) and YNext(1..n), so that they accurately represent the
required probability distributions. Note that this does not guarantee that other
key parameters are accurately represented, e.g. skewness, kurtosis and higher
moments, but in practice the skewness and kurtosis are reasonably acceptable

values, and in general their accuracy appears to increase with sample size.

The last step in the TwoDist function is swapping selected pairs of values from
YNext(1..n) so that the correlation coefficient of the final two arrays is as close
as possible to the required product-moment correlation coefficient. This 1is

discussed in section 5.3 below.

These final two samples are called XFinal(1..n) and YFinal(1..n). At this stage
for both of the samples, their sample mean and standard deviation will be equal
to the expected values of the parameter of the input distribution, and their
product-moment correlation coefficient will be a very good approximation to the

required product-moment correlation coefficient.
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5.2 Generating sample values using the InvCdf function

This section describes the algorithm in terms of the mathematics and
programming that are built into the InvCdf routine. The purpose of this routine
is to generate samples X and Y using the correlated random numbers generated
in Gen2Corr, called X(1.n) and Y(l.n), onto the assigned probability
distributions. Within InvCdf the general element (i™ of these two input arrays is

called Init[1].

Table 5.1 below shows how the inverse density function built in the TwoDist
function transforms Init[i] into each of two sets of sample values with which the
distribution is assigned. Pseudo code has been used to demonstrate the various

functions. The notations used in this table are explained below.
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Probability Distribution

Formulae for Simulating Values

—

Uniform (min, max)

Min + (max — min) * Init[i]

Triangular (min, mode, max)

if Init[i] < (most likely — min) / (max — min)
Min + {Init(i) * (max - min) *(mode - min)}' *
Else

Max — {(1 — Init[i]) * (max — min) * (max — mode)}' :

Normal (mean, std_deviation)

Forj=1ton
If Init[i] between CDFN][j] and CDFN[j+1]
at(b—a)*zx
end if

next j

where a and b are the class boundaries of the j"™ class

zx = fraction between j and j+1

Beta ( least, mode, greatest)

Forj=1ton
If Init[i] between CDFB[j] and CDFB[j+1]
at(b-—a)*zx
end if

next j

where a and b are the class boundaries of the j"" class

zx = fraction between j and j+1

Table 5.1 Formulae for simulating values from the four distributions
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In the above table, the inverse density functions for Uniform and Triangular
distributions are standard book formulae. It 1s a clear cut mathematical
calculation to derive the cumulative curve for the Uniform distribution i.e.

simply fit the generated Init[1] into the standard formulae.

The only additional step for generating the cumulative curve for the Triangular
distribution is that prior to those steps as for Uniform distribution, it is necessary
to identify if Init[i] lies within the left or right part of the p.d.f so that the
appropriate formula is used. Because of the straight forward process in both the

Uniform and Triangular cases, this will not be discussed further in this chapter.

However, the Normal and Beta distributions require specially designed routines

because their ¢.d.f s are not analytic functions.

To construct a cumulative curve for both Normal and Beta distributions,
calculate and accumulate the area under the curve when it is divided into n strips.
This follows the well-known Simpson’s rule, which is a method of approximate
numerical integration, equivalent to assuming that the curve being integrated is
the same as a series of piecemeal quadratic curves with the same endpoints and
midpoint for the n-strips into which the area is divided. The flow of constructing
a cumulative curve for Normal and Beta distribution using Simpson’s rule is

presented in Figure 5.2 below. Details in each step will be discussed below.
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Divide total area into n strips w

I

. Simpson R

Calculate strip centre and two (num[c)rsig al intlelglfation)
n :

s > - Calculate strip area

l - Accumulate and store strip area

-Scale each stored strip arca

Use the corresponding f(x)
formulac to calculate the l
p.(‘if. Odf cach strip centre and L Cumulative density Transform
twa enas function » probability into

sample value

Figure 5.2 Simpson’s Rule process

5.2.1. Modelling the Normal distribution in subGetNormalDistribution

The purpose of subGetNormalDistribution is to generate the c¢.d.f. F(z) if z is
N(0,1), for z from -4.0 to 4.0 in 1000 equal intervals. Hence cdf(0), cdf(500),
and cdf(1000) are equal to 0.0, 0.5 and 1.0 respectively.

For example, cdf(745) = 0.975 because z = -4.0 + 745 * 8/1000 = 1.96, and
d(1.96) = 0.975. The choice of 1000 as the number of intervals was made after
some experimentation, and the calculated values were tested to be acceptably

close to values tabulated elsewhere.

To form the c.d.f of a Normal distribution, the area under the curve will be
calculated and accumulated. Initially, a standard Normal distribution is used, for
which the total area on the right and left are symmetric. Therefore, this function

will only calculate the c.d.f. for the positive half1.e. z> 0.
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Simpson’s rule i1s applied here to integrate the area under the curve into 1000

strips so that, if a typical strip lies between x =a and x = b:

f(x)dx ~ (b-a) [ f(a) + 4f(2{a+tbl) + f(b) ]/ 6

Because great accuracy is required, the strip limits are calculated as double
precision numbers, for which the strip centre is vi#, and the two ends are vileft#
and viRight#, and their p.d.f values are fi#, fileft# and firight# respectively

calculated using:

| -l(x-H
f(X):—ﬁe % e

w# = 0.004
hw# = 0.002
kO=1/Sqr(2 * p1)

Fori=1 To 1000
Vi# =i * w# - hw#: viLeft# = vi# - hw#: viRight# = vi# + hw#
fi# = Exp(-0.5 * (vi"2))
fileft# = Exp(-0.5*(vileft#)"?)
firight# = Exp(—O.S*(viright#)Az)

StripArea# = kO * w * (fiLeft# + 4 * fi + fiRight#) / 6

TemplnvCdf(i) = TemplnvCdf(i - 1) + StripArea#

Next i
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The frequency of the right hand side of the distribution from z = 0 to 4 and the
range is divided into 1000 strips to become i = 1 to 1000. Each strip is therefore
of width w# = 0.004, and hw# = 0.002 is half of the strip width. The choice of
“+4 s.d.s” was made because the probability of getting a value which is more
than 4 s.d.s from the mean is negligible, whereas the probability of getting a

value which is 3 s.d.s from the mean or more is not neligible.

There are two constants in the formula for the p.d.f. f(x) above:

The first constant o kO, ensures that the total area under the p.d.f. curve is

2z

1.0; and the second constant = e = Exp (1).

Standardising an x value yields:

z = (x—1)/c , which is also the value of vi# or vileft# or viright#, as appropriate.

To account for — "2 [(x—u)/o]z, calculate fi#, fileft# and firight# which are the

p.d.f. values of the strip centre and two ends respectively.

Now calculate the strip area using Simpson's Rule:

StripArea# = kO * w * (fileft# + 4 * fi# + fiRight#) / 6

Accumulate each strip area with the previous accumulated strip areas and store in

TemplInvCdf(1).

TemplnvCdf{i) = TemplnvCdf(i - 1) + StripArea#
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To make sure the final c.d.f ie TemplnvCdf(1000) value = 1.0 exactly, scale

each area stored in TempInvcdf(i). Assume the final ¢.d.f ist:

t = TemplnvCdf(1000)

Fori=1To 1000: TempInvCdf(i) = TemplnvCdf(i) / t:
Next i

(Note that t should be very close in value to 1)

To find the corresponding c.d.f. for Z between -4 to 4, the above 1000 values of
TemplnvCdf(i) are now to include the left hand side of the distribution i.e. z < 0.
As a result, the area of each strip is twice the initial area, so that the area stored

in TemplnvCdf(i) becomes the area stored in TempInvCdf(2 * 1).

Thus. for values of z > 0:

CDFN(0) = 0: CDFN(500) = 0.5: CDFN(1000) = |
Fori= 1 To 500: CDEN(500 + i) = TempInvCdf(2 * i): Next i

Whereas for values of z < 0, symmetry yields:

Fori= 1 To 500: CDFN(i) = 1 - TemplnvCdf(1000 - 2 * 1): Next 1

At the end of this routine, the cumulative distribution of a standardised Normal

distribution will have been constructed.

Finally, use the constructed curve to find a sample value from a Normal

distribution, where Init[i] is the probability.
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Scan the range to find the strip that the assigned cumulative probability falls into,

then calculate the corresponding sample value where:

a = the lower class boundary of the i™ class,
b = the upper class boundary of the " class,

zx = fraction between j and j+1 to get the exact sample value in the range

The pseudo code for this is:

Forj=1ton
If Init[i] between CDFN[j] and CDFN[j+1]
at(b-a)*zx
end if

next j
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5.2.2. Modelling Beta distributions

There are various ways of defining the parameters of a Beta distribution. Of
course the smallest and largest possible values must be specified: ‘a’ and ‘b’.
Other possible parameters are the modal value, the expected (i.e. mean) value,

the median (Q2), and either or both of the two shape parameters v and w.

In general, if the variable in question, x, lies in a < x <b and the Beta distribution

is then defined in terms of the shape parameters v and w, the p.d.f. of x is

f(x) = [ (x-2)""(b-x)"" J=[ (b-a)""""'B(v,w) ], where B(v,w) = T (I (W)+T(v+w).
oC

and the Gamma function, I'(0), is defined to be equal toJ. e“x"dx.
0

It can be shown by differentiation that the modal value of this distribution is
m = a + (b-a)(v-1)/(v+w-2), and the mean value is u = a + (b-a)v/(v+w).

(See section 5.2.2a. below).
Hence standardise the value of x: x —>(x-a)/ (b-a), sothat 0 <x < 1.

This standardised Beta function is not unique (unlike the standardised Normal
function), because it will vary with the shape (i.e. skewness and kurtosis) of the

distribution.

In practice it does not seem sensible to ask a user to recognise from the shape of
the required Beta distribution what the values of v and w are to be. It is,

however, reasonable to state where the modal value, m, is.
Thus, the approach here is to specify the values of a, b and m only, not even

requiring the value of u. Then by judicious choice of either v or w, it is possible

to calculate the other shape parameter and the value of .
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A desirable property is that the slope of the p.d.f. function, f(x), tends to zero as
X — a or X — b in the general Beta distribution, or as x — 0 or 1 in the
corresponding standardised distribution. It will also be shown that in this case

both v and w should be > 2. (See section 5.2.2a. below).

Suppose now that the modal value of x in a <x <b is closer to a than to b, so that

m < (a+b)/2, and thus a + (b—a)(v—1)/(v+tw-2) <(atb)/ 2.

2a(vtw—2) + 2(b-a)(v—-1) < (atb)(vtw-2)
2(b-a)(v—1) < (vtw-2)(a+b-2a)
2(b—-a)(v-1) < (vtw-2)(b-a)

Now, a < b, so that b — a > 0. Divide this expression throughout by (b-a)

yielding 2(v—1) <v +w — 2, which simplifies to v <w.

~. If the modal value, m, is closer to the left hand limit a than to b, it has been

shown that v < w, and that there is positive skewness.

If m < u then a + (b-a)(v—=1)/(vtw-2), <a+ (b—a)v/(v+w), where b —a >0,

so that (v —1 }(v + w) <v(v+ w-2) = — (vt w) <-2v,0orv<w.

Hence for positive skewness: m < u < (atb) /2, and v < w, where v and w > 2.
So, if the chosen Beta distribution is to have positive skewness, choose a
convenient value of v which is greater than 2, such as v = 3, say. The value of w

will be larger than v and can be deduced from the formulae for m:

m = a + (b—a)(v—1)/(vtw-2).
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Putting v =3, m = a + (b-a)(2)/(w+1). Then w+1 = 2(b-a) / (m-a),
so that w =[ 2(b—a) — (m-a) ] / (m-a), = (2b-m-a) / (m-a).

For example, if a = 10, b = 40 and m = 20 then w = (80-20-10)/(20-10), = 5, so

that v=3 and w = 5 (with v <w).

The value of pu would then be calculated to be

u=a+ (b-a)v/(vtw) = 10 + 30*3 / (3+5), = 10 + 90/8, = 21.25, and this is > m.

Note that the mean value is greater than the modal value, but only just.

10 m=20" 25 40

A question might be asked: “why would one not specify the values of a, b, m and

W, so that one states p rather than v?”

For example, a = 10, b =40, m = 20 (as above) and p = 25. This makes p rather

larger than m, but it also will yield non-desirable values of v and w:
"m = a + (b-a)(v—1)/(vtw=2)" gives 20 = 10 + 30(v—1)/(v+tw-2), = 2v—-w = 1.

Also, "u = a + (b-a)v/(vtw)" yields v + w =3v, sothat w=2v, > v = 1,<2
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This demonstrates that, although from the shape of the Beta curve it is easy to
identify the values of a, b and m, it is not an easy skill to estimate the expected
value. It is easier, of course, to standardise the distribution so that 0 < x < 1.

This is easily achieved via the transformation x — (x-a) / (b-a).

For this particular standardised Beta distribution the modal and mean values are

then mO and pO, say, where mO = (v-1) / (v+w-2) and p0 = v/ (vtw).

In the above example, where a = 10, m = 20 and b = 30, we chose v = 3 and
deduced that w=5. Then m0 = 2/6 = 0.3333 to 4 d.p.s, and n0 =3/8, = 0.375.
If v =3 then m0 =2/ (w+1), so that w=2/m0 -1 ,=6 -1, =5, as before.

Then the rules for specifying the values of v and w are:

(1) If the standardised modal value, m¢, < 0.5, set v =3; calculate w from
w=-1+2/m0
(2) From symmetry, if m¢ > 0.5, set w = 3, and calculate v from

v=(1+m0)/(1-m0)

(3) If m¢ = 0.5, so that the distribution is symmetric, set v=w = 3.

If all 3 cases the expected value, Y, is , and is thus easily calculated.

v+ W
[In all this description the smaller of v and w is always to be equal to 3. This

could be any positive value which is greater than 2, so that “3” is arbitrary. For

example, it could equally well be “2.57].
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5.2.2a. The standardised Beta distribution and its expected value

To standarise x, set a =0 and b =1, so that
X\'—l (1 _ X)\\'—l

f(x)= and
B(v, w)
v-2 w-—1 v—l w—2
df _(v=Dx' “(1=-x)" —(w=Dx' (1-x) =0 at the finite tails
dx B(v,w)

if x""2=0or 1-x)" "2 =0 or (v-1)(1-x)-(w-1)(x) = 0.

When x = 0, x2 =0 if v > 2; when x = 1, (1-)()“"2 =0 if w> 2; and

“~>

(v-DA-x)-(w-1D(x)=01f x = —V—_l—, and this is where the mode occurs
V+w-—2

if af _ 0, as required.
dx

The expected value of the standardised Beta distribution is po, say,

1 v—l1 w-—1
_ j‘ xx'  (1-%) Cdx
B(v.w)

1
v—1 w1
j f(x)dx = j (1=X)" " 4x —1 so that j - x)" ldx = v, w).

B(v,w) g
1 +1- w—
u(b ... (\ +1- 1)(1 X)“ -1 i = B(V+1,W) i} X(\ +1 1)(1_X) ldX
B(v,w) B(v,w) g B(v+1,w)
CTE+DIO)/T(+w+1) *] = F(v) , Tlv+tw) v
- IT(MHC(w)/T(v+w) F(V) (v+w)'(v+ w) V+WwW

. 0 = v/ (v+w), as claimed earlier.

145



Chapter 5: Implementing the Correlation Model to Include Other Probability Distributions

The required values to calculate the fi#, fileft# and firight# values which are the
frequencies of the strip centre and two ends respectively a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>