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Abstract—The multiuser challenge within the field of 

Intelligent Environments, specifically concerning Indoor 

Positioning systems needs to be addressed. Solving this challenge 

is paramount for enabling customised services in indoor 

locations. This investigation aims to distinguish between 

multiple users in an Intelligent Environment and identify their 

specific locations at a given time by employing a visual interface 

to deploy localised and personalised services to specific 

individuals in real-time. The investigation is conducted in the 

Smart Spaces Lab of Middlesex University London (i.e., a fully 

functional Intelligent Environment). The investigation leverages 

the Lab's existing technology and uses BLE Beacons with a 

novel placement approach to complete the User Location 

challenge. User Data was also generated in the process, giving 

rise to many insights. On the other hand, Machine Learning was 

utilised to predict User Activity using the generated Data. The 

study also offers insight into the latest research concerning 

indoor positioning systems and their approaches. Additionally, 

the investigation benchmarks its approaches against the 

methods published in recent literature and reviews the 

limitations of this investigation, emphasising future work. 

Video-based evidence is provided to establish the investigation's 

authenticity and complement the description in this paper.  

Keywords—Intelligent Environments, Machine Learning, 

Activity Recognition, Data Generation 

I. INTRODUCTION  

“Intelligent Environment(s)” (IE) is an industry associated 
with a broad spectrum of domains ranging from Ambient 
Assisted Living, Smart Homes (SHs), and so forth  [1], [2].  
An IE can be defined as a physical space enhanced with 
computing, communication, and digital material  [3]. A 
closely linked concept to IE is the “Internet of Things” (IoT) 
due to its association with smart devices (i.e., Smartphones, 
Smart Televisions, etc.) as well as the communication (i.e., 
Sending/ Receiving) of data and information within a network 
[4], [5].  

Smart homes (i.e., a form of IE), equipped with smart 
technology, allow customers to experience customised 
services. Smart technologies enable individuals/users to be 
monitored and assisted, improving their quality of life and 
driving independence [6]. The technology is frequently 
utilised in the regulation of applications which include but are 

not limited to lighting, water, air conditioning, and home 
security   [7].  

However, enabling user-specific customised services within a 
multiuser IE depends on the identification of each user and 
their specific location within the IE  [1]. This is a significant 
challenge within the IE industry, and solving it is paramount 
due to the dependency on providing smart customised services 
[1]. An ancillary benefit of solving the challenge is the copious 
quantity of generated data, giving insight into the user’s 
behaviour (i.e., eating habits, sleeping patterns, activity 
patterns, etc.). This benefits additional stakeholders, which 
include but are not limited to energy providers, insurance 
providers, and ambient assisted living service providers  [2], 
[8], [9]. For instance, this data can provide valuable insights 
into the health (i.e., progression of diseases) of individuals 
with special needs, the energy utilisation patterns of the 
residents, enabling the optimisation of consumption  [2], [8].  

In essence, the IE domain is a multifaceted industry with a 
significant global impact, currently on an upward growth 
trajectory, setting the stage for this investigation. The study 
utlises Bluetooth Low Energy (BLE) technology building on 
the approach described in [1], evaluating its performance more 
systematically with a strategic placement of beacons and a 
temporal factor while generating user data in the process, 
enabling User Insight generation and Activity Recognition 
(AR) via Machine Learning (ML). This approach is 
advantageous due to its low energy, low cost, small form 
factor, and flexibility in placement optimisation (i.e., ease of 
altering beacon locations).as opposed to other alternatives. 
The Investigation was carried out at the Smart Spaces Lab of 
Middlesex University London. A variety of fascinating yet 
challenging issues arise in this multi-user IE study which will 
explored in the next sections. 

The remainder of the paper is segmented into seven sections. 
Section II focusses on the previous research work that is 
related to Positioning Systems specifically focusing on Indoor 
environments followed by AR with an emphasis on ML. 
Section III to VI presents the primary contribution of this 
investigation, which includes the data collection in an indoor 
localisation system allowing for multi-user capabilities in a 
smart home, obtaining insights from the generated data and   
respective contribution evaluations assessed in the Smart 
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Spaces Lab. Finally, sections VII and VIII  discusses the 
limitations and conclusions of the investigation reported in 
this paper. 

II. RELATED WORK 

Positioning Systems  

Positioning systems (PS) are pivotal in Smart Homes 
(SHs), and Assisted Living (i.e., forms of IE) for motives 
including but not limited to location awareness, personalised 
services, and data-driven services  [1], [2], [10]. Holistically, 
PS can be categorised as Indoor Positioning Systems (IPS) 
and Outdoor Positioning Systems (OPS). OPS has been well 
established as opposed to IPS via technologies such as Global 
Positioning System (GPS) and Cellular Networks (CN). 

Shifting the focus to IPS, Wi-Fi technology has gained 
traction in IPS owing to the extensive usage of wireless local 
area networks (WLANs) in indoor spaces/locations and the 
prevalence of mobile devices (i.e., Smartphones, smart tablets, 
etc.)   that are Wi-Fi-compatible, enabling a relatively low-
cost means of user monitoring in the indoor environment [11]. 
The Wi-Fi fingerprinting localisation approach is widely used 
for location estimation as it does not rely on historical data 
concerning wireless access point (AP) distribution and it does 
not involve estimating a receiver's angle [11]. The approach 
predicts a device's location via received signal strength 
indicator (RSSI) readings of available APs and then associates 
it with a specific user. This technology triumphs over GPS 
when it is ineffective in scenarios such as IPS [11]. The 
methodology in the approach is similar to the CN’s 
fingerprinting technique revolving around the The Received 
signal strength (RSS) metric of the RSSI approach.  

The measure is commonly represented in decibel-milliwatt 
(dBm) or milliwatt (mW) units, which indicate the actual 
intensity of the signal received at the receiver (Rx) [12]. The 
RSS method can determine the distance between a transmitter 
(Tx) and an Rx [12].  Generally, a higher RSS value indicates 
a closer distance between the Tx and Rx [12]. When the 
transmission power (RSSI) at a reference node (RN) is known, 
the absolute distance can be estimated using various signal 
propagation models [12]. However, RSS readings can be 
affected by interferences present within an indoor location. 
This includes but is not limited to the presence of many objects 
(i.e., furniture, equipment, etc.), objects with high density, and 
reflective surfaces (i.e., metal, glass, etc.)  [13].   

Albeit, Wi-Fi fingerprint technology producing more 

accuracy, it is associated with higher implementation and 

maintenance expenses, including a periodic recalibration 

phase  [14]. 
 
An alternative to RFID is a cost-effective and versatile 
technology utilised in IPS  [13]. RFID technology can be 
classified into two primary categories: Active and Passive 
systems [12].  An Active RFID system necessitates a source 
of power, can operate a few 100 meters away (i.e., relative to 
the RFID reader), and functions in Ultra-High frequency 
(UHF) and microwave frequencies, rendering it suitable for 
IPS  [12]. However, Active RFID systems are incapable of 
achieving accuracies finer than a meter and are not widely 
available on most portable consumer devices  [12]. 
Conversely, a Passive RFID system functions without a 
source of power and functions in certain UHF and microwave 
frequencies but cannot be directly used for IPS purposes  [12]. 

Interestingly, RSSI and RFID technology have been utilised 
synchronously in various IPS investigations  [13], [15]. The 

studies were further optimised via means including grouping 
RFID tags in a “constellation” and Machine Learning (ML) in 
the approaches of Hatem et al. and Gomes et al., respectively  
[13], [15]. 

Further, BLE, a form of radio technology is also well suited 
for IPS, given its low energy consumption, small form factor, 
and low cost [1], [16]. In Consideration of the benefits of BLE, 
it is the predominant technology utilised in solving the multi-
user challenge of this investigation. The small form factor of 
this technology is depicted in Figure 1 in terms of a BLE 
beacon powered by a CR2032 battery; interestingly, this is the 
specific type of beacon used in this investigation. The Figure 
also displays the BLE based android application from the 
approach of [1] used within this investigation.  

BLE is a viable option similar to RFID technology when 
mitigating privacy concerns associated with video processing 
IPS solutions [1]. However, BLE is associated with more 
effort during installation and deployment [1]. While BLE may 
be used synchronously with a variety of localization 
approaches, including Received Signal Strength (RSS), Angle 
of Arrival (AoA), and Time of Flight (ToF), the 
preponderance of BLE-based localisation systems now in use 
are RSS-based due to their simplicity  [12]. Consequently, the 
RSS approach is used in this study correspondingly. 

 

 
Figure 1: BLE Beacon and application Interface 

Solving the challenge of Indoor user localisation inherently 

generates data, creating an opportunity for AR; the 

consequent section delves deep into this area with a specific 

focus on the application of ML within the space.  

Activity Recognition 

Recognising the activity of residents (i.e., Sleeping, 
Eating, etc.) at a given time is pivotal for enabling smart 
services (i.e., Lighting conditions, Temperature conditions, 
etc.) within an IE [17]. The need for AR is amplified in 
individuals with special needs (i.e., Individuals diagnosed 
with Dementia, etc.)  [17]. 

According to the views of Bouchabou et al., there are two 
predominant methods for AR, specifically Vision-based 
systems and Sensor-based systems [17]. Sensor-based 
systems can be further categorised as Wearable Sensors, 
Object Sensors, and Ambient Sensors [17]. Vision-based AR 
uses cameras to monitor human behaviour and environmental 
changes [17]. Computer vision methods such as marker 
extraction, structure modeling, motion segmentation, action 
extraction, and motion tracking are used in this approach [17]. 



Privacy is the predominant drawback of vision-based systems 
in AR, as in the case of user localisation systems [17]. 
Alternatively, a Sensor-based system can present itself in 
many forms, including motion sensors, accelerometers, 
temperature sensors, and so on [17]. Due to the less intrusive 
nature of Sensor-based systems, they are more accepted, and 
fortunately, the current affordability of sensors has spurred 
favourable conditions for AR within IE [17]. In essence, the 
role of these systems is to generate the input, which then needs 
to be funneled into AR models to predict the activity of the 
residents [17]. 

AR within IE is a challenging task due to the complexity and 

variability of individual activities [17]. This is because every 

individual is unique, with distinct lifestyles, abilities, and 

habits leading to a plethora of diverse daily activities  [17]. 
Moreover, an individual’s activities are also linked with 

temporal drift, further exacerbating this challenge  [17]. The 

resident's routines and behaviour may evolve, causing a 

discrepancy between the training data and the current 

generated data over time [17]. Consequently, it can be 

deduced that a lucrative AR model is scalable while being 

adaptable  [17]. In alignment with recent literature, AR can 

be solved with two core techniques, specifically Knowledge-

Driven Approaches (KDA) and Data-Driven Approaches 

(DDA) [17]. DDA is based on user-generated data and ML 

approaches, while KDA requires expert domain knowledge 

and logical reasoning to produce rule-based models  [17]. 
 
This investigation at its core relies on DDA in unison with 
robust ML models explicitly used for AR, including the Naïve 
Bayes classifier (NB), Decision Trees (DT), Random Forest 
(RF), and Logistic Regression (LR) [17], [18]. DT is a non-

parametric technique for complex pattern recognition, 
especially in jobs requiring the classification of many patterns 
and features  [19]. The DT model’s primary goal is the 
sequential assessment of a decision function in a way that 
lessens the degree of uncertainty in recognising an 
unidentified pattern  [19]. Similarly, RF is a non-parametric 
technique utilised for classification and regression tasks  [20]. 
The RF model compromises a group of hyperparameters (i.e., 
number of trees, randomness, etc.) that must be defined for 
optimum performance  [20]. RF models have been used for 
two core purposes, specifically for future data prediction and 
determining the contribution significance of the predictor 
variables against the response variable  [20]. Another popular 
ML classification approach is LR  [21]. It is employed in many 
fields since it is easy to grasp and the outputs are interpretable, 
which permits a “what-if analysis” [21]. On the other hand, 
the NB approach assumes that all predictor variables are 
independent of one another given the response variable and 
then deduces the probability that an instance belongs to a 
specific class  [22]. Given its practical competency in the real 
world, this investigation has incorporated the NB 
classification approach [22].  

The subsequent sections initiate this investigation's main 
contribution, beginning with the Data Collection, leading to 
the User Location Prediction, AR, and Finally the User 
Insights segment. 

III. DATA COLLECTION 

This investigation is built upon by leveraging the well-
established Software (i.e., Web Servers, Databases, an 

Android application, etc.) and Hardware architecture (i.e., 
Smart sensors, smart switches, BLE Beacons, etc.) of the 
Smart Spaces Lab of Middlesex University London.  

As displayed in Figure 2. All locations, except for Room 04, 
Room 05, and the Shower, are used for Data Collection. The 
data that can be generated in the Smart Spaces Lab utilising 
its technology, as displayed in Figure 2. All locations, except 
for Room 04, Room 05, and the Shower, are used for Data 
Collection. This is indicated by the “N/A” stamps on the 
Figure.  

 

Figure 2: Smart Spaces Lab Map 

Further, Table 01 illustrates a sample of the type of Data used 
within this research by utilising the sensory equipment in the 
Lab and their respective descriptions. The complete version of 
the table can be found in [23]. 

Table 1: Data Sample 

Feature Name Description Unit/ Type 

Specific User  The Specific User within the 

IE 

N/A 

Time Stamp  Time of the activity  s/min 

Type of Day Weekday/Weekend N/A 

Activity  The activity (i.e., eating, 

sleeping, etc.) that the user 

carries out 

N/A 

Location Location of the user  N/A 

Routine Morning/Evening/Night N/A 

Bedroom Data 

Bed Pressure 

Sensor 

Senses if the user is on the bed  Binary  

Bedroom Motion 
Sensor

  

Senses the movement of the 
user  

Binary  

Bedroom Door 
Sensor 

Senses if the door has been 
opened 

Binary  

Bedroom Light 

Switch 

Senses if the lamp is turned on  Binary  

Energy Sensor 1 Senses if an electrical 
appliance is turned on  

Binary  

Bedroom BLE 

Beacon 

Used to determine the location 

of the user 

mW 

Living room Data 

Couch Pressure 

Sensor 

Senses if the user is on the 

couch 

Binary  

Energy Sensor 2 Senses if an electrical 

appliance is turned on  

Binary  

Living room 

Motion Sensor

  

Senses the movement of the 

user  

Binary  

Living room Door 
Sensor 

Senses if the door has been 
opened 

Binary  

Garden Door 

Sensor 

Senses if the door has been 

opened 

Binary  



Living room Light 
Switch 

Senses if the lamp is turned on  Binary  

Living room BLE 

Beacon(s) 

Used to determine the location 

of the user 

mW 

 

The first phase of Data Collection revolved around 
formulating Hypothetical scenarios within an IE, specifically 
a SH.  The generated scenarios account for a multitude of 
elements, including two users, type of day (i.e., Weekday or 
Weekend), a variety of activities, a selection of Routines, and 
so forth. This specific data can be accessed in  [23]. Next, the 
Hypothetical scenarios were acted out in person in the Smart 
Spaces Lab, and the generated data, which was logged on to 
the relevant databases, was downloaded via a cross-platform 
database software and then compiled using a secondary 
software. The final feature space consisted of 33 features and 
2678 instances. Due to the number of observations being more 
significant than ten times that of the features, the data is 
considered low dimensional, which is beneficial for ML. This 
is observed and discussed in the upcoming segments of this 
investigation. The generated data can be obtained from     [23]. 
The data is further explored via visualisations in the User 
Insights segment of the study. The next section discusses the 
User Location prediction element of the investigation, 
beginning with its implementation and concluding with its 
evaluation. Both The User Location prediction and ML AR 
were implemented successfully.  

IV. USER LOCATION PREDICTION 

A.Implementation 

     Extant BLE Beacon Technology of the Smart Spaces Lab 

was leveraged while harnessing the approach of M. Quinde 

et al. coupled with data-driven distinctive contributions (i.e., 

Beacon placement optimisation, User Location visualisation) 

within this study to achieve User Localisation.  

The approach of M. Quinde et al. used two beacons with a 

distance of 1m between each other (at the center of each 

location) in all the experimentation rooms within the Smart 

Spaces Lab [1]. The IPS's core component is an Android 

application that analyses the BLE beacons deployed in the 

lab, filters out the beacon with the strongest signal strength, 

and associates it with a specific room (i.e., the RSS approach) 

[1]. The primary assumption of this approach is that the 

residents of an IE have access to a smart device (i.e., 

smartphone, smart tablet, smartwatch, etc.) and always carry 

it in person while engaging in activities [1]. This enables each 

resident to be assigned a unique identifier within the 

application [1]. The implemented approach emphasises the 

importance of the strategic placements of the beacons within 

the experimentation locations [1].  Optimising the Beacon 

location was implemented via quantitative means of Analysis 

and Testing. The experimentation was based on three distinct 

approaches: Single Beacon, Dual Beacon, and Dual Beacon 

(Optimised) location layouts. Both the Single Beacon and 

Dual Beacon approach position the beacons on the ceiling of 

the respective rooms. In contrast, the Dual Beacon 

(Optimised) approach strategically positions the beacons in 

regions linked with a higher probability of more significant 

activity (i.e., areas more likely for the residents to spend more 

time). 

Additionally, the experimentation accounted for distinct 

acceptable time frames (i.e.,5 seconds and 15 seconds) of user 

location recognition when transitioning from one location to 

the next, with three iterations of each transition. Intriguingly, 

the “Location transitioning” element of the experimentation 

is considered as future work of the approach of M. Quinde et 

al.  [1]. After a thorough evaluation, the Dual Beacon 

(Optimised) approach triumphed over the alternatives. 

Further details on the approaches can be found in [23].  

 

The data (i.e., The MAC address of the closest beacon) was 

retrieved from the Beacon localisation database of the Smart 

Spaces Lab through SQL querying and stored as a variable 

within a script leveraging the Python programming language 

The Beacon MAC Address was associated with distinct 

locations (i.e., Bedroom, Living Room, Toilet, and Kitchen) 

within the Lab. Next, the User’s location was visualised via a 

maroon dot which would move to specific hard-coded 

locations/ coordinates within the map of the Lab depending 

on the Beacon MAC Address. The map of the Lab spanned 

the entire area of the interface, and the User Location dot was 

overlayed upon the map, while the Middlesex University 

Logo was used as the icon of the interface. Furthermore, the 

dynamic Interface for the User Location of this study can be 

observed in [23] and is evaluated in the subsequent section. 

B.Evaluation 

    The summarised performance metrics of the three distinct 

placement approaches of the investigation experimented with 

two different time frames (i.e., 5 seconds and 15 seconds) can 

be found in [23]. The techniques used explicitly used in this 

study are the 1 Beacon, 2 Beacons, and 2 Beacons (optimised) 

approaches. 

 

An approach's efficacy is considered superior if it is 

associated with higher values of the performance metrics 

used in the study. Considering the Accuracy metric, the 2 

Beacons (optimised) approach outperforms the alternatives. 

Intriguingly, the acceptable time frame attribute had an 

impact on the Accuracy across all approaches and metrics 

except Precision. Regarding the 2 Beacons (optimised) 

approach, there is a spike in accuracy from 58.33% to 

80.56%. There are better factors than the Precision metric in 

accessing the best approach in this study. This is because the 

experimentation is based on whether the system recognises a 

user's transition from one location to another.  Regarding the 

Recall and F1 score metrics, the 2 Beacon (optimised) 

approach again overpowers the alternatives with values of 

0.806 and 0.893, respectively. The values correspond to the 

15-second time frame. Table 2 simultaneously illustrates the 

performance metrics of recent literature in the field of IPS and 

the 2 Beacon (Optimised) approach. The approaches include 

BLE, RFID, and Wi-Fi-based technologies/techniques.   

 
Table 2:Beacon Performance 

IPS Approach  Accuracy Precision Recall F1-

score 

Recognition 

proximity 

BLE RSSI [1] 91.01%    Room-

Level 
RFID 

Clustering and 
Hierarchical 

Classification 

[13] 

99.36% 99% 99% 99% 5 cm 



RFID 
Constellation  

[15] 

    81 cm 

Wi-Fi 

Fingerprint  
[24] 

86%    Room-

Level 

BLE 2 Beacon 

(Optimised) 80.56% 100% 81% 89% 

Room-

Level 

 

A comprehensive review of the literature showed that it posed 

a challenge in the performance comparison of the distinct 

approaches. This challenge stems from various factors, 

including but not limited to missing performance metrics, 

different locations of IPS implementation, and varied 

methods of estimating the performance metrics. Accuracy is 

the primary indicator of performance used for analysis within 

this section due to the unavailability of other metrics. All the 

models perform with an Accuracy of over 80%, with the 

RFID Clustering and Hierarchical Classification approach 

associated with the highest accuracy at 99.36% and the BLE 

2 Beacon (Optimised) approach with the lowest at 80.56%.  

Although the BLE RSSI approach and the BLE 2 Beacon 

(Optimised) approach have been implemented in the Smart 

Spaces Lab at Middlesex University London, the methods 

used to acquire the respective performance metrics are 

different. The BLE 2 Beacon (Optimised) approach accounts 

for the transition between locations and considers acceptable 

time frames for user recognition within an IE, which is not 

implemented with the BLE RSSI approach. Further 

discrepancies between the different techniques include the 

IPS’s recognition proximity. For instance, the RFID 

Clustering and Hierarchical Classification approach had a 

location precision of 5 cm and 81 cm for the RFID 

Constellation approach, while the other techniques can only 

achieve room-level accuracy. The next segment focuses on 

the evaluation and results of the AR element of this study. 

Interestingly, the RF model outperformed the alternatives 

with performance metrics over 99%.  

V. ACTIVITY RECOGNITION WITH ML 

A. Implementation 

    The ML component of this investigation is based on six 

models, specifically DT, RF, LR, NB, a Dummy classifier 

(DC) model, and a tuned RF model. The classes predicted 

from the models included Eating, Resting, Sleeping, and 

Miscellaneous activities. After the models were executed, 

their performances were evaluated to distinguish the best 

model. The best model in this investigation was quantified as 

the RF model and was tuned.  

 

The computational hardware utilised in this segment of the 

investigation consisted of an 8th generation Intel Core i5 

processor, 16 GB RAM and an 8 GB GPU. The pipeline was 

implemented using the Python programming language. The 

data is then split into the independent and Target variables 

(i.e., User Activity) as this is a classification-based ML 

challenge. Due to the reason that ML models work purely on 

numerical input data, the data had to be preprocessed before 

the implementation of the ML pipeline. The preprocessing 

was executed by converting the Boolean variables (i.e., 

Lights, motion sensors, etc.) of the data into numeric format 

(i.e., from True or False to 1 or 0) and using the approach of 

Label encoding for the remaining independent categorical 

variables, which include the “Weekday/Weekend”, 

“Location” and “Routine” attributes.  It was observed that 

there are 2,678 instances corresponding to 32 independent 

variables. Next, the data was split into Train and Test data 

with a training size of 30% corresponding to 1874 instances.  

The next and final phase of this was to implement the ML 

pipeline of the DT, RF, LR, and NB models. It is imperative 

to emphasize that the data was further preprocessed before 

executing the DT through scaling the data for better 

performance. This is not required for the remaining models. 

Moreover, a random state parameter was included in the 

relevant models, including the LR, DT, and RF models, 

ensuring the models' reproducibility. The subsequent 

segment discusses the most accurate model's dominant 

features. To determine the most influential features of the ML 

element of the investigation, the model with the highest 

accuracy needed to be assessed.  This task was implemented 

by estimating the accuracy of all the models (i.e., DT, RF, 

LR, NB, and DC), Table 3 summarises the accuracy of the 

models.  

 
Table 3: Machine Learning Model Performance 

Model Accuracy of Train 

data 

Accuracy of Test 

data  

DT 1.000 0.998 

RF 0.999 0.999 

LR 0.957 0.964 

NB 0.735 0.720 

DC  0.241 

 

As illustrated in Table 3, RF can be deemed the model with 

the highest accuracy on test data and the best Bias-Variance 

trade-off. The DT, RF, LR, and NB models have an excellent 

Bias-Variance trade-off (i.e., The ability to be less susceptible 

to noise and identify the underlying patterns) and perform 

significantly better than the baseline/DC model. The 

performances of these models are further discussed in detail 

in the next segment.  

On the other hand, Figure 3 displays the most important 

features of the RF model in descending order. The top three 

attributes associated with the high influence on the model are 

the Location, Time, and Bedroom Bed Pressure. The 

contributions are over 25%, just under 20%, and just over 

10%, respectively. Strikingly, only five features are 

associated with a contribution of over 5%.   

 

Albeit the RF model exhibited superior performance on both 

training and testing data, it was tuned for further optimisation. 

The model was tuned on the maximum features hyper-

parameter and used the Out-of-bag (OBB) score as an 

indication of performance. The maximum features 

hyperparameter with the best performance was established to 

be 6 with 0.998 accuracy. In the succeeding phase leverages 

the tuned RF model and the DC model to visualise the ML 

element of the study via an interface that demonstrates the 

capability of the tuned model over the baseline using the 

Python programming language. Further, the total training 



time was 1.11 seconds for all the models with the Tuned RF 

Model contributing 0.49 seconds to the metric. This was 

estimated by running a timer during the training phase using 

the time module of the Python programming language. The 

total memory storage of the ML pipeline was estimated at just 

over 630 kilo Bytes by accounting for memory usage of the 

training data utilised, and ML models, which were 

implemented using the sys module of the Python 

programming language. 

.  

 

 
Figure 4: Machine Learning Interface 

 

Figure 4 displays the interface which benchmarks the 

performance of the tuned RF model against the baseline DC 

model using a visualisation approach. The Users' activities 

are represented by distinct icons, as showcased at the bottom 

of the interface in the Legend section. The backend of the 

interface uses test data to update the respective front-end icon 

of the Predicted Activity (i.e., model prediction) and the Real 

Activity, enabling performance comparison. A video 

demonstrating the interface can be accessed through [23]. In 

a real-world scenario, this can be the real activities of the user 

where it is beneficial to be monitored for dementia in a care 

home but would be dependent on the captured data. It should 

be noted that the implemented system does not account for 

anomalies within test data and would lead to a 

misclassification of the resident’s activity. Moreover, the 

System was tested with humans in the real physical Smart 

Spaces Lab. However, those participating in the validation do 

not live full time in the Smart Home due to legal constraints 

imposed by the University Campus. Consequently, the ML-

based User Activity prediction approach used in this 

investigation is extensively evaluated against alternative 

approaches in the next segment. 

B. Evaluation against published literature 

    As established, the study explores a pipeline of six ML 

models for User Activity Prediction/ AR. An approach's 

efficacy is considered superior if it is associated with higher 

values of the performance metrics used in the study, identical 

to the User Location element. All the approaches (i.e., DT, 

RF, LR, NB, and Tuned RF) perform better than the 

baseline/DC model. Further, the DT, RF, LR, and Tuned RF 

have all the performance metrics (i.e., Accuracy, Precision, 

Recall, and F1-Score) above 95%. On the other hand, the NB 

model is only associated with values of just over 70%. 

However, it still performs better than the DC model, where 

all its performance metrics are under 30%. Notably, the RF 

models are quantified to be the best-performing techniques. 

Interestingly, the tuning phase of the RF model shows no 

improvement in performance. Due to the Superior 

comparative performance of the RF model, it will be used to 

benchmark the investigation’s performance against recent 

Literature concerning User Activity Prediction in IEs.  

 
Figure 5 simultaneously illustrates the performance metrics of 
recent literature in AR and the tuned RF approach. The 
approaches include K-Nearest Neighbor (KNN), Support 
Vector Machine (SVM), RF, Gradient Boosting Decision Tree 
(XGBoost), NGBoost, DT with entropy, DT, LR, NB, and 
Stochastic Gradient Descent (SGD) ML techniques. The 
research approaches used correspond to a study by Dakota 
State University, as observed in [18]. This study considers 
three distinct data sets and three distinct methods of analysis 
pertaining to the classification of classes of the data sets for 
AR [18]. This classification includes Individual activities, 
which use the activities of the data sets as is, Group activities 
which group the activities into common categories (i.e., 
standing and sitting categorised as stationary activities, etc.), 
and Common activities, which only consider the mutual 
activities [18]. However, this segment only considers the 
dataset that exhibited the best performance, specifically the 
“Pamap2” dataset from the University of California and the 
“Individual activities” approach, as it resembles the 
methodology of this investigation [18]. Figure 5 indicates that 
most approaches based on [18] generate identical performance 
of over 99% across all assessed metrics (i.e., Accuracy, 
Precision, Recall, and F1-Score) when benchmarked against 
the RF approach in this investigation. The exception is the 
NGBoost, LR, NB, and SGD approaches, which generate 
between 90% and 94% on the performance metrics.  

Figure 3: Random Forest Model's Most Influential Features 



 

Figure 5: ML Performance for AR (State of the Art)  

Hence, in theory, ML has demonstrated theoretical feasibility 
within the field of AR. Interestingly, Section VI delves into 
the User Insights segment of investigation. This section 
presents the insight potential of the Data Collected in section 
III. The investigation is finally concluded in section VII.  

VI. USER INSIGHTS 

    This section is dedicated to establishing the potential for 

obtaining insights from the generated data and presenting it 

in a Visual format. The Python programming language was 

used for Data Visualisation, Data Manipulation and Analysis. 

This section considers insights relating to the user’s overall 

weekly Activity breakdown, Location breakdown, Motion 

breakdown and Energy Consumption. The insights 

correspond from Figures 6 to 9 respectively. To compute the 

overall weekly metrics the data had to be processed and 

quantified from weekday and weekend data. This means 

factoring and summing up the weekday data five times and 

the weekend data twice. Further, it is crucial to note that each 

instance within the data was assumed to have occurred in 1 

minute when it was 1 second. This was done to make the 

investigation more identical and closer to real life. Some 

insights derived from Figure 6 include but not limited to The 

Weekday contribution to the Weekly engagement is higher 

for all activities except Leisure for both users, highlights the 

overall time spent by each User in each location over a period 

of a Week. It provides insights, which include User 1 

spending more time in the Bedroom, Garden, and living 

room, while User 2 spends more time the Corridor, Kitchen, 

and Toilet.  as displayed in Figure 7. The time spent in the 

Kitchen and the Garden is approximately identical for both 

users. Figure 8 on the other hand displays User 1 is more 

active (i.e., moves more) than User 2, the data is obtained 

from the motion sensor data from the Smart Spaces Lab. 

Energy is defined as the overall amount of work created or 

generated, whereas power is the rate of energy transmission 

over time. Utilising the definitions and the power 

consumption values of the respective electrical appliances of 

the IE, the energy consumption for each instance 

corresponding to each specific electrical appliance was 

calculated. Figure 9 aims to determine the type of day (i.e., 

Weekday or Weekend) with the highest Energy consumption 

and associate it with a specific User. It can be observed that 

User 1 has a higher energy consumption on Weekdays and 

Weekends with a value of around 1200 Watt-hours and just 

over 1000 Watt-hours, respectively. However, User 2 has a 

higher energy consumption on the Weekends than the 

Weekdays, with a value of just over 1000 Watt-hours and 

around 900 Watt-hours. Further, it is also apparent that User 

1’s Energy consumption is higher than that of User 2, given 

that both of its curves are higher than that of User 2, This was 

considering the Lights, TV, Cooker, Kettle and the 

Microwave to have a power of 10, 100, 1500, 2000 and 1200 

Watts respectively, and considering the Energy in terms of 

Watts per minute.  

 
Figure 6: User Overall Activity Duration  

 
Figure 7: User Overall Location Duration 

 
Figure 8: Overall User Motion 

 

 
Figure 9: Cumulative Energy Consumption  

VII. CONCLUSIONS 

    To provide customised indoor services, it is imperative to 

address the multiuser challenge within Intelligent 

Environments, especially regarding indoor positioning 

systems. This research uses BLE beacons and a visual 

interface to track the real-time whereabouts of several users 

at Middlesex University London's Smart Spaces Lab. It 

creates user data, uses machine learning to forecast user 

activity, investigates indoor positioning research, compares 

Model Accuracy Precision  Recall F1-Score 

KNN  0.999 1 1 1 

SVM 0.999 1 1 1 

RF 0.999 1 1 1 

XGBoost 0.999 1 1 1 

NGBoost 0.936 0.93 0.93 0.93 

DT 0.999 1 1 1 

DT with entropy 0.999 1 1 1 

LR 0.92 0.92 0.92 0.92 

NB 0.901 0.91 0.90 0.90 

SGD 0.9 0.9 0.9 0.9 

RF  0.997 0.996 0.997 0.997 

 



to recent literature, identifies the study’s shortcomings, and 

makes recommendations for future work and is also backed 

up by video evidence. 

 

Evidently, the BLE Beacon placement plays a crucial role in 

the performance metrics of the approach within the scope of 

this investigation. Despite the strategic placement efforts 

such as region experimentation and increasing the number of 

beacons, the approach is limited in performance compared to 

the alternatives, as discussed in detail in the specific 

Evaluation segment. Hence, alternative efforts need to be 

taken to assess the feasibility of performance improvement, 

which is regarded as further work of this investigation. 

Unexplored strategies include incorporating ML, assessing 

the performance variation with other form factors of BLE-

compatible smart devices (i.e., wearables, etc.), and Securing 

the Beacons in such a way that is fixed in place/ immobile 

(i.e., static BLE enclosure). This preserves the performance 

consistency of the system. Since the current system uses a 

Velcro (i.e., Hook and loop) mechanism to attach the beacons 

each time a beacon is reattached (i.e., change of battery, etc.), 

the system’s homogeneity is altered slightly. Monitoring of 

the alternative technologies within the Smart Spaces Lab, 

User Identification in corridor regions, and the 

implementation of the visual interface as a standalone 

application that will be beneficial in Remote Patient 

Monitoring use cases (i.e., disease progression, etc.) are also 

considered as further work.  On the other hand, The AR 

segment performed on par with recent literature and the 

preceding section of the investigation showcased the 

capability of Insight generation both in terms of quality and 

variety. This elucidates that both sections depend on the 

quality of data collected. This data's primary implication and 

limitation is that it is Fictitious, albeit it has been generated 

through the reenactment of hypothetical scenarios in the 

Smart Spaces Lab. Collecting more data with real users over 

a long period (i.e., Months, Years, etc.) and presenting this on 

live dashboards where there is a summary of data over a 

configurable period (i.e., weeks, months, etc.) can be deemed 

as future work enabling realistic insights in real-time. 

However, this work is associated with the data collection 

implementation challenges, which are the main bottlenecks 

(i.e., Privacy concerns, etc.).  
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