
Attack Trees in Isabelle extended with Probabilities for
Quantum Cryptography

Florian Kammüller

Middlesex University London and Technische Universität Berlin

Abstract

In this paper, we present a proof calculus for Attack Trees and how its applica-
tion to Quantum Cryptography is made possible by extending the framework to
probabilistic reasoning on attacks. Attack trees are a well established and useful
model for the construction of attacks on systems since they allow a stepwise ex-
ploration of high level attacks in application scenarios. Using the expressiveness
of Higher Order Logic in Isabelle, we succeed in developing a generic theory of
attack trees with a state-based semantics based on Kripke structures and CTL.
The resulting framework allows mechanically supported logic analysis of the
meta-theory of the proof calculus of attack trees and at the same time the de-
veloped proof theory enables application to case studies. A central correctness
and completeness result proved in Isabelle establishes a connection between the
notion of attack tree validity and CTL.

Furthermore in this paper, we illustrate the application of Attack Trees to
security protocols on the example of the Quantum Key Distribution (QKD)
algorithm. The application motivates the extension of the Attack Tree proof
calculus by probabilities. We therefore introduce probabilities to quantify finite
event sequences and show how this extension can be used to extend CTL to its
probabilistic version PCTL. We show on the example of QKD how probabilistic
reasoning with PCTL enables proof of quantitative security properties.

Keywords: Attack trees, Formal methods, Verification, Probability, Quantum
Cryptography

1. Introduction

Attack trees are an intuitive and practical formal method to analyse and
quantify attacks on security and privacy. They are very useful to identify the
steps an attacker takes through a system when approaching the attack goal.
In this paper, we provide a proof calculus to analyse concrete attacks using a
notion of attack validity. We define a state based semantics with Kripke models

Email address: f.kammueller@mdx.ac.uk (Florian Kammüller)

Preprint submitted to Elsevier June 15, 2019

and the temporal logic CTL in the proof assistant Isabelle [1] using its Higher
Order Logic (HOL)1. We prove the correctness and completeness (adequacy) of
attack trees in Isabelle with respect to the model. This generic Kripke model
enriched with CTL does not use an action based model contrary to the main
stream. Instead, our model of attack trees leaves the choice of the actor and
action model to the application. Nevertheless, using the genericity of Isabelle,
proofs and concepts of attack trees carry over to the application.

There are many approaches to provide a mathematical and formal semantics
as well as constructing verification tools for attack trees but we pioneer the use
of a Higher Order Logic (HOL) tool like Isabelle that allows proof of meta-theory
– like adequacy of the semantics – and verification of applications – while being
ensured that the formalism is correct.

Attack trees have been investigated on a theoretical level quite intensively;
various extensions exist, e.g., to attack-defence trees and probabilistic or timed
attack trees. This paper uses preliminary work towards an Isabelle proof calcu-
lus for attack trees presented at a workshop [2] but accomplishes the theoretical
foundation by defining a formal semantics and providing the proof of correctness
and completeness with respect to a state transition model. This proof of ade-
quacy guarantees not only consistency of attack trees for given systems but also
provides a practical tool for application verification since it allows to transform
results about attacks into temporal logic statements. The novelty of this proof
theoretic approach to attack tree verification is to take a logical approach from
the very beginning by imposing the rigorous expressive Isabelle framework as
the technical and semantic spine. This approach brings about a decisive advan-
tage which is beneficial for a successful application of the attack tree formalism
and consequently also characterizes our contribution: meta-theory and applica-
tion verification are possible simultaneously. Since Higher Order Logic allows
expressing concepts like attack trees within the logic, it enables reasoning about
objects like attack trees, Kripke structures, or the temporal logic CTL in the
logic (meta-theory) while at the same time applying these formalised concepts
to applications like infrastructures with actors and policies (object-logics).

To show the versatility of the Attack Tree proof calculus, we present here
a radically different example from the existing applications to IoT and GDPR
[3]. We venture into the world of security protocols: we present a first step
towards a formalisation of the Quantum Key Distribution (QKD) algorithm in
Isabelle. We focus on the formalisation of the main probabilistic argument why
Bob cannot be certain about the key bit sent by Alice before he has a chance to
compare the chosen polarization scheme. This means that any adversary Eve
is in the same position as Bob and cannot be certain about the transmitted
keybits. While Attack Trees can be used to show that an interception attack
is possible, the real interest is to prove how likely is the attack to succeed. We
additionally need probabilistic statements about attacks.

This paper presents the following contributions on attack trees.

1In the following, we refer to Isabelle/HOL simply as Isabelle.

2

• We provide a proof calculus for attack trees that entails a notion of refine-
ment of attack trees and a notion of valid attack trees.

• Validity of attack trees can be characterized by a recursive function in
Isabelle which enables evaluation and permits code generation.

• The main theorems show the correctness and completeness of attack tree
validity with respect to the state transition semantics based on Kripke
structures and CTL. These meta-theorems not only provide a proof for
the concepts but are part of the proof calculus for applications.

Apart from details on the code generation, these contributions were already
presented at a conference [3].

Further contributions of this paper on the application to Quantum Cryptog-
raphy subsume the earlier results and exceed them largely by

• constructing an application model for security protocols within the Is-
abelle framework illustrating it on the Quantum Key Distribution (QKD)
algorithm,

• introducing probabilities,

• formalising the probabilistic extension PCTL of CTL,

• and illustrating how it can be applied to enable quantitative proofs for
QKD.

In this paper, we first introduce the Isabelle Infrastructure framework and its
formalisation of Kripke structures and the temporal logic CTL (Section 2).
In this section, we pay particular attention to explaining the added value of
the conservative extension for Attack Trees with respect to earlier preliminary
and related work to that end (Section 2.2). Next, we present attack trees and
their notion of refinement (Section 3). The notion of validity is given by the
proof calculus in Section 4 followed by the central theorem of correctness and
completeness (adequacy) of attacks in Section 5 including a high level description
of the proof. We next present the novel application to Quantum Cryptography
in Section 6 first introducing the QKD protocol in Section 6.1, then showing
how protocols and in particular QKD are formalised in our framework (Section
6.2) before illustrating attack tree analysis by refinement on the interception
attack (Section 6.3). The case study motivates the extension to probabilities in
Section 7. We first provide some basic probability theory in Section 7.1 before
introducing the formalisation of Probabilistic CTL (Section 7.2) and showing
the probabilistic model of QKD (Section 7.3) that then enables the probabilistic
attack analysis (Section 7.4). We then discuss, consider related work, and draw
conclusions (Section 8). All Isabelle sources are available online [4] including
the generated Scala code for the attack tree checking function.

3

τ

&%
'$

Pσ

σ
�

ε

Figure 1: Conservative extension: new type σ defined as a copy of subset Pσ of existing type
τ thereby making all properties over σ derivable and hence consistent with foundation τ .

2. Isabelle Infrastructure Framework, Kripke Structures, and CTL

Isabelle is a generic Higher Order Logic (HOL) proof assistant. Its generic
aspect allows the embedding of so-called object-logics as new theories on top of
HOL. Object-logics, when added to Isabelle using constant and type definitions,
constitute a so-called conservative extension. This means that no inconsistency
can be introduced; conceptually, new types σ are defined as nonempty subsets
Pσ of existing types and properties over σ are proved from properties of the
existing type using a one-to-one relationship ε between σ and Pσ (see Figure 1).

There are sophisticated proof tactics available to support reasoning: simplifi-
cation, first-order resolution, and special macros to support arithmetic amongst
others. The use of HOL has the advantage that it enables expressing even the
most complex application scenarios, conditions, and logical requirements and
HOL simultaneously enables the analysis of the meta-theory.

2.1. Isabelle Infrastructure Overview

Isabelle supports modular reasoning, that is, we can prove theorems in an
object logic but also about it. This allows the building of telescope-like structures
in which a meta-theory at a lower level embeds a more concrete “application”
at a higher level. Properties are proved at each level. Interactive proof is used
to prove these properties but the meta-theory can be applied to immediately
produce results. Figure 2 gives an overview of the Isabelle Infrastructure frame-
work with its layers of object-logics – each level below embeds the one above.
The layered structure of the framework enables that the reasoning about the
meta-theory at one level can be done independently and once-for all for all levels
above. For example, properties relating to the definition of temporal logic oper-
ators can be performed at the lowest level but these meta-theoretical properties
can then be used at all higher levels to show other results. This not only sup-
ports consistency and clarity but also the possibility to enable collaboration of
experts at different levels of expertise. An Isabelle expert can continue the de-
velopment and improvement of the lower levels, for example, adding properties
for CTL and attack tree reasoning, thereby enhancing automated tactics, while
a security domain expert can work at the higher levels on application examples,
for example, testing and refining protocol definitions.

Yet, the framework stays extensible: the layer we added in this extended
paper contains probability theory and the probabilistic temporal logic PCTL.

4

Kripke structures & CTL

Attack trees

Probability & PCTL

Quantum Key
Distribution
Protocol

Figure 2: Generic framework for infrastructures embeds applications.

Those two theory extensions are added on top of Attack Trees but are concep-
tually generic framework extensions.

Moreover, Isabelle provides the possibility to generate code from executable
parts of the formal models. For our infrastructure framework, we generate code
in the programming language Scala for the central predicate of the attack tree
proof theory (see online resources [4]). In a practical workflow, this generated
code could be used to automatically check an attack tree for validity while being
sure that this check is correct based on the underlying formal proofs provided
in this paper. While constructing Isabelle definitions and proofs requires expert
knowledge, these efforts are made once and for all to guarantee powerful meta-
theoretic results – like the adequacy of the proof theory provided in this paper
– and to generate code that can then be used on examples.

In this work, we make additional use of the class concept of Isabelle that
allows an abstract specification of a set of types and properties to be instantiated
later. We use it to abstract from states and state transition in order to create a
generic framework for Kripke structures, CTL, and attack trees. Using classes,
the framework can then be applied to arbitrary object-logics that have a notion
of state and state transition by instantiation. Isabelle attack trees have been
designed as a generic framework meaning that the formalised theories can be
applied to various applications.

2.2. Relation to Earlier Formalisations

The Isabelle Infrastructure framework has been created initially for the mod-
eling and analysis of Insider threats [5]. Its use has been validated on the most
well-known insider threat patterns identified by the CERT-Guide to Insider

5

threats [6]. More recently, this Isabelle framework has been successfully applied
to realistic case studies of insider attacks in airplane safety [7] and on auction
protocols [8]. These larger case studies as well as complementary work on the
analysis of Insider attacks on IoT infrastructures, e.g. [9], have motivated the
extension of the original framework by Kripke structures and temporal logic as
well as a formalisation of attack trees [3]. Recently, GDPR compliance verifica-
tion has been demonstrated [10].

In the course of this extension, the Isabelle framework has been restructured
such that it is now a general framework for the state-based security analysis of
infrastructures with policies and actors. Temporal logic and Kripke structure
build the foundation. Meta-theoretical results have been established to show
equivalence between attack trees and CTL statements. This foundation provides
a generic notion of state transition on which attack trees and temporal logic can
be used to express properties.

An earlier workshop paper [2] already presented the idea of a a tentative
proof calculus for Attack Trees in Isabelle. In comparison, the current proof
calculus for attack trees provides a full formal semantics of Attack Trees in
the branching time temporal logic CTL. This enables proving the Correctness
and Completeness theorems presented in the current paper and thus guaran-
tees soundness of any attacks proved in the present framework. This soundness
is based on the embedding of CTL as a conservative extension of Higher Or-
der Logic combined with the meta-theorems of Correctness and Completeness.
The difference to the earlier tentative paper is apparent when considering the
actual proof calculus [2, p.8]. Where in the present paper the core predicate
is attack tree (see Section 4) is defined on top of the CTL validity `, a notion
of logical validity had to be introduced in the workshop paper and its seman-
tics defined axiomatically by assuming rules ([Table 3, p.8][2]). While reasoning
with these rules is possible, no properties relating to a system and its behaviour
is possible. This only becomes possible by a relation to a notion of system
behaviour and a corresponding logic, as has been now provided by the formal
semantics of Attack Trees with Kripke structures and CTL. Also in this for-
mally founded Attack Tree proof calculus in the present paper, all rules are now
proved within Isabelle by virtue of conservative extension and the Correctness
and Completeness meta-theorems whose proofs are new mathematical theorems
that are additionally performed fully within Isabelle.

2.3. Kripke Structures and CTL

We apply Kripke structures and CTL to model state based systems and
analyse properties under dynamic state changes. Snapshots of systems are the
states on which we define a state transition. Temporal logic is then employed
to express security and privacy properties.

In Isabelle, the system states and their transition relation are defined as
a class called state containing an abstract constant state transition. It
introduces the syntactic infix notation I → I’ to denote that system state I

and I’ are in this relation over an arbitrary (polymorphic) type σ.

6

class state =

fixes state_transition :: [σ :: type, σ] ⇒ bool ("_ → _")

The above class definition lifts Kripke structures and CTL to a general level.
The definition of the inductive relation is given by a set of specific rules which
are, however, part of an application like quantum key distribution (Section 6.2).
Branching time temporal logic CTL is defined in general over Kripke structures
with arbitrary state transitions and can later be applied to suitable theories,
like security protocols.

Based on the generic state transition → of the type class state, the CTL-
operators EX and AX express that property f holds in some or all next states,
respectively. The CTL formula AG f means that on all paths branching from a
state s the formula f is always true (G stands for ‘globally’). It can be defined
using the Tarski fixpoint theory by applying the greatest fixpoint operator. In a
similar way, the other CTL operators are defined. The formal Isabelle definition
of what it means that formula f holds in a Kripke structure M can be stated as:
the initial states of the Kripke structure init M need to be contained in the set
of all states states M that imply f .

M ` f ≡ init M ⊆ { s ∈ states M. s ∈ f }

In an application, the set of states of the Kripke structure will be defined as the
set of states reachable by the infrastructure state transition from some initial
state, say example scenario.

example states ≡ { I. example scenario →^* I }

The relation →^* is the reflexive transitive closure – an operator supplied by
the Isabelle theory library – applied to the relation →.

The Kripke constructor combines the constituents initial state, state set and
state transition relation →.

example_Kripke ≡ Kripke example_states {example_scenario} →

In Isabelle, the concept of sets and predicates coincide2. Thus a property is
a predicate over states which is equivalent to a set of states. For example, we
can then try to prove that there is a path (E) to a state in which the property
eventually holds (in the Future) by starting the following proof in Isabelle.

example_Kripke ` EF property

Since property is a set of states, and the temporal operators are predicate
transformers, that is, transform sets of states to sets of states, the resulting EF
property is also a set of states – and hence again a property.

2In general, this is often referred to as predicate transformer semantics.

7

3. Attack Trees and Refinement

Attack Trees [11] are a graphical language for the analysis and quantification
of attacks. If the root represents an attack, its children represent the sub-
attacks. Leaf nodes are the basic attacks; other nodes of attack trees represent
sub-attacks. Sub-attacks can be alternatives for reaching the goal (disjunctive
node) or they must all be completed to reach the goal (conjunctive node). Figure
3 is an example of an attack tree taken from a textbook [11] illustrating the
attack of opening a safe. Nodes can be adorned with attributes, for example

Figure 3: Attack tree example illustrating disjunctive nodes for alternative attacks refining
the attack “open safe”. Near the leaves there is also a conjunctive node “eavesdrop”.

costs of attacks or probabilities which allows quantification of attacks (not used
in the example).

3.1. Attack Tree Datatype in Isabelle

The following datatype definition attree defines attack trees. Isabelle allows
recursive datatype definitions similar to the programming languages Haskell or
ML. A datatype is given by a “|” separated sequence of possible cases each of
which consists of a constructor name, the types of inputs to this constructor, and
optionally a pretty printing syntax definition. The simplest case of an attack
tree is a base attack. The principal idea is that base attacks are defined by a
pair of state sets representing the initial states and the attack property – a set
of states characterized by the fact that this property holds for them. Attacks
can also be combined as the conjunction or disjunction of other attacks. The
operator ⊕∨ creates or-trees and ⊕∧ creates and-trees. And-attack trees l⊕s∧
and or-attack trees l⊕s∨ consist of a list of sub-attacks – again attack trees.

datatype (σ :: state)attree =

BaseAttack (σ set)×(σ set) ("N (_)")

| AndAttack (σ attree)list (σ set)×(σ set) ("_ ⊕()
∧ ")

| OrAttack (σ attree)list (σ set)×(σ set) ("_ ⊕()
∨ ")

8

A’’A’

(s1,s2) A’’’

B C

A’’A’

A’’’

A

A

Figure 4: Attack tree example illustrating refinement of an and-subtree.

The attack goal is given by the pair of state sets on the right of the operator N,
⊕∨ or ⊕∧, respectively. A corresponding projection operator is defined as the
function attack.

primrec attack :: (σ::state)attree ⇒ (σ set)×(σ set)

where
attack (BaseAttack b) = b

| attack (AndAttack as s) = s

| attack (OrAttack as s) = s

Functions over datatypes can be given with primrec which enables defining an
operator, here attack, by listing the possible cases and describing the semantics
using simple equations and pattern matching on the left side.

3.2. Attack Tree Refinement

When we develop an attack tree, we proceed from an abstract attack, given
by an attack goal, by breaking it down into a series of sub-attacks. This pro-
ceeding corresponds to a process of refinement. Therefore, as part of the attack
tree calculus, we provide a notion of attack tree refinement. This can be done
elegantly by defining an infix operator v. The intuition of developing an at-
tack tree from the root to the leaves is illustrated in Figure 4. The example
attack tree on the left side has a leaf that is expanded by the refinement into an
and-attack with two steps. Formally, we define the semantics of the refinement
operator by the following inductive definition for the operator refines to with
infix syntax v. The inductive definition is given by the smallest predicate closed
under the set of specified rules, here refI, ref or, ref trans and ref refl.

inductive refines_to :: [(σ :: state) attree, σ attree] ⇒ bool ("_ v _")

where
refI: J A = (l @ [N(s1,s2)] @ l’’)⊕(s0,s3)

∧ ; A’ = l’ ⊕(s1,s2)
∧ ;

A’’ = l @ l’ @ l’’ ⊕(s0,s3)
∧ K =⇒ A v A’’

| ref_or: J as 6= []; ∀ A’ ∈ set(as). A v A’ ∧ attack A = s

K =⇒ A v as ⊕∨s
| ref_trans: J A v A’; A’ v A’’ K =⇒ A v A’’

| ref_refl : A v A

9

The rule refI captures the intuition expressed in Figure 4: a sequence of leaves
in an and-subtree can be refined by replacing a single leaf by a new subsequence
(the @ is the list append in Isabelle). Rule ref or describes or-attack refinement.
To refine a node into an or-attack, all sub-trees in the or-attack list need to refine
the parent node. The remaining rules define v as a pre-order on sub-trees of an
attack tree: it is reflexive and transitive.

Refinement of attack trees defines the stepwise process of expanding abstract
attacks into more elaborate attacks only syntactically. There is no guarantee
that the refined attack is possible if the abstract one is, nor vice-versa. We
need to provide a semantics for attacks in order to judge whether such syntac-
tic refinements represent possible attacks. To this end, we now formalise the
semantics of attack trees by a proof theory.

4. Proof Calculus

A valid attack, intuitively, is one which is fully refined into fine-grained
attacks that are feasible in a model. The general model we provide is a Kripke
structure, i.e., a set of states and a generic state transition. Thus, feasible steps
in the model are single steps of the state transition. We call them valid base
attacks. The composition of sequences of valid base attacks into and-attacks
yields again valid attacks if the base attacks line up with respect to the states
in the state transition. If there are different valid attacks for the same attack
goal starting from the same initial state set, these can be summarized in an
or-attack.

fun is_attack_tree :: [(σ :: state) attree] ⇒ bool ("`_")
where
att_base: ` Ns = ∀ x ∈ fst s. ∃ y ∈ snd s. x → y

| att_and: ` (As :: (σ::state attree list)) ⊕s∧ =

case As of

[] ⇒ (fst s ⊆ snd s)

| [a] ⇒ ` a ∧ attack a = s

| a # l ⇒ ` a ∧ fst(attack a) = fst s

∧ ` l ⊕(snd(attack a),snd(s))
∧

| att_or: ` (As :: (σ::state attree list)) ⊕s∨ =

case As of

[] ⇒ (fst s ⊆ snd s)

| [a] ⇒ ` a ∧ fst(attack a) ⊇ fst s ∧ snd(attack a) ⊆ snd s

| a # l ⇒ ` a ∧ fst(attack a) ⊆ fst s ∧ snd(attack a) ⊆ snd s

∧ ` l ⊕(fst s - fst(attack a),snd s)
∨

More precisely, the different cases of the validity predicate are distinguished by
pattern matching over the attack tree structure.

• A base attack N(s0,s1) is valid if from all states in the pre-state set s0

we can get with a single step of the state transition relation to a state in
the post-state set s1. Note, that it is sufficient for a post-state to exist
for each pre-state. After all, we are aiming to validate attacks, that is,
possible attack paths to some state that fulfills the attack property.

10

• An and-attack As ⊕(s0,s1)
∧ is a valid attack if either of the following cases

holds:

– empty attack sequence As: in this case all pre-states in s0 must
already be attack states in s1, i.e., s0 ⊆ s1;

– attack sequence As is singleton: in this case, the singleton element
attack a in [a], must be a valid attack and it must be an attack with
pre-state s0 and post-state s1;

– otherwise, As must be a list matching a # l for some attack a and
tail of attack list l such that a is a valid attack with pre-state identical
to the overall pre-state s0 and the goal of the tail l is s1 the goal
of the overall attack. The pre-state of the attack represented by l is
snd(attack a) since this is the post-state set of the first step a.

• An or-attack As ⊕(s0,s1)
∨ is a valid attack if either of the following cases

holds:

– the empty attack case is identical to the and-attack above: s0 ⊆ s1;

– attack sequence As is singleton: in this case, the singleton element
attack a must be a valid attack and its pre-state must include the
overall attack pre-state set s0 (since a is singleton in the or) while
the post-state of a needs to be included in the global attack goal s1;

– otherwise, As must be a list a # l for an attack a and a list l of
alternative attacks. The pre-states can be just a subset of s0 (since
there are other attacks in l that can cover the rest) and the goal
states snd(attack a) need to lie all in the overall goal state set s1.
The other or-attacks in l need to cover only the pre-states fst s -

fst(attack a) (where - is set difference) and have the same goal
snd s.

The proof calculus is thus completely described by one recursive function.
This is a major improvement and a necessary finalisation to the inductive defi-
nition provided in the preliminary workshop paper [2] that inspired this paper.
Our notion of attack tree validity here is now fully rooted on the syntactic def-
inition of attacks using only basic logical operators and lists to define the truth
value of a `-formula. This allows to infer properties essential for proofs and also
for linking in the notion of attack tree refinement as we will see shortly. Consis-
tency is now provided because any other important or useful algebraic property
can be derived from the recursive function definition. Note, that preliminary
experiments on a proof calculus for attack trees in Isabelle [2] used an inductive
definition that had a larger number of rules than the three cases we have in our
recursive function definition is attack tree. The earlier inductive definition
integrated ad hoc properties of attack validity as inductive rules. While induc-
tive definitions cannot introduce inconsistencies into the logic, they may well be
inconsistent in themselves. Any attack tree validity properties are now proved
from the three cases of is attack tree definition.

11

It might appear that Kripke semantics interprets conjunction as sequential
(ordered) conjunction instead of parallel (unordered) conjunction. However,
this is not the case: the ordering of events or actions is implicit in the states.
Therefore, any kind of interleaving (or true parallelism) of state changing actions
is possible. This is inserted as part of the application – for example in the
definition of the state transition for security protocols in Section 6.2. There the
order of actions between states depends on the pre-states and post-states only.

Given the proof calculus, the notion of validity of an attack tree can be used
to identify valid refinements already at a more abstract level. The notion vV
denotes that the refinement of the attack tree on the left side is to a valid attack
tree on the right side.

A vV A’ ≡ (A v A’ ∧ ` A’)

Taking this one step further, we can say that an abstract attack tree is valid if
there is a valid attack tree it refines to.

`V A ≡ (∃ A’. A vV A’)

Thereby, we have achieved what we initially wanted: to state that an abstract
attack tree A is actually a valid attack tree, we can conjecture `V A. This results
in the proof obligation of finding a valid attack tree `A’ such that A v A’. For
practical purposes, the following lemma implements this method.

lemma ref_valI: A v A’ =⇒ ` A’ =⇒ `V A

We are going to use this method on the case study in Section 6.3 for the attack
tree analysis.

5. Correctness and Completeness of Attack Trees

The novel contribution of this paper is to equip attack trees with a Kripke
semantics. Thereby, a valid attack tree corresponds to an attack sequence. The
following correctness theorem provides this: if A is a valid attack on property s

starting from initial states described by I, then from all states in I there is a
path to the set of states fulfilling s in the corresponding Kripke structure.

theorem AT_EF: ` A :: (σ :: state) attree) =⇒ (I, s) = attack A

=⇒ Kripke {t . ∃ i ∈ I. i →^* t} I ` EF s

It is not only an academic exercise to prove this theorem. Since we use an
embedding of attack trees into Isabelle, this kind of proof about the embedded
notions of attack tree validity ` and CTL formulas like EF is possible. At the
same time, the established relationship between these notions can be applied
to case studies. Consequently, if we apply attack tree refinement to spell out
an abstract attack tree for attack s into a valid attack sequence, we can apply
theorem AT EF and can immediately infer that EF s holds.

Theorem AT EF also extends to validity of abstract attack trees. That is, if
an “abstract” attack tree A can be refined to a valid attack tree, correctness in
CTL given by AT EF applies also to the abstract tree.

12

theorem ATV_EF: `V A :: (σ :: state) attree) =⇒ (I, s) = attack A

=⇒ Kripke {t . ∃ i ∈ I. i →^* t} I ` EF s

The inverse direction of theorem AT EF is a completeness theorem: if states
described by predicate s can be reached from a finite nonempty set of initial
states I in a Kripke structure, then there exists a valid attack tree for the attack
(I,s).

theorem Completeness: I 6= {} =⇒ finite I =⇒
Kripke {t . ∃ i ∈ I. i →^* t} I ` EF s

=⇒ ∃ A :: (σ::state)attree. ` A ∧ (I, s) = attack A

Correctness and Completeness are proved in Isabelle within the theory AT.thy

[4]. The interactive proofs including auxiliary lemmas consist of nearly 1500
lines of proof commands. However, we have proved these theorems once for all.
Owing to the modular organisation of our framework they are meta-theoretic
theorems usable for any object logic that models an application.

6. Application Example: Quantum Key Distribution

As an application example for Attack Trees, we present a formalisation of
parts of the Quantum Key Distribution (QKD) algorithm in Isabelle. In this
section, we first briefly introduce the algorithm and then show how the basis for
modeling protocols can be built on top of the Attack Tree framework. We then
show how Attack Trees and Attack Tree refinement can be used to establish
that the attacker Eve can intercept the transmitted key. Clearly, in addition to
showing the possibility of the attack, we are interested in quantifying it. This
motivates the extension of the Attack Tree framework to probabilistic reasoning
and will be presented in the subsequent section.

6.1. Quantum Key Distribution Algorithm

Quantum Key Distribution (QKD) is a security protocol that can be used
to transmit a sequence of random bits (that can then be used as a shared
One-Time-Pad key giving 100% security)3. In each step of the algorithm Alice
invents a random bit and sends it to Bob as follows.

(1) Alice randomly selects a bit 0 or 1

(2) Alice randomly chooses diagonal (×) or rectilinear (+) polarisation schemes
to encode the bit as a photon before sending the bit

(3) Bob also randomly chooses schemes (×/+) before measuring the received
photon. According to quantum properties, if Alice and Bob chose the
same polarisation schemes the transmission is 100% correct – if they use
different ones the chances are 50/50.

3An introduction to this protocol for non-physicists that is also largely sufficient for the
context of this paper and very entertaining is the popular science book [12]; similar but deeper
is [13].

13

Alice randomly selects a key bit
Alice’s key bit 0 1 0 0 1 0 1 0 1 1
Alice’s polarisation scheme × + + × + × × + + +
Photon sent ↗ ↑ → ↗ ↑ ↗ ↖ → ↑ ↑

Bob (Eve) choses a polarisation scheme and measures
Bob(Eve)’s polarisation × + × + + + × + × ×
Bob(Eve) measures ↗ ↑ ↖ → ↑ ↑ ↖ → ↖ ↗
Received bit 0 1 1 0 1 1 1 0 1 0

They can use those bits where polarisation schemes coincide
Correctly transmitted 0 1 - - 1 - 1 0 - -

Figure 5: QKD examples for key bit selected by Alice, polarisation schemes chosen at send-
ing and receiving end, and which bits can finally be retained (after a final protocol step of
comparing the chosen polarisation schemes (omitted here).

Applying polarisation schemes to photons influences the orientation of the pho-
tons and has an effect on their measurement at the receiving end. A represen-
tative list of possible combinations is given in Figure 5.

Note, that we consider only one bit since the principle is the same in any
number of repetitions necessary to transmit a n-bit key. Also we only consider
for a start the first phase of the protocol.

6.2. Formalizing Security Protocols with Example QKD

In this section, we show how security protocols can be modeled in Isabelle in
a simple way by introducing the formalisation of QKD on top of the Attack Tree
framework. The basic idea is to define a set of sequences of events, for example,
messages being sent, polarisation schemes chosen, or bits received, representing
the state of ongoing communications. For simplicity of the model, these events
are introduced as a datatype enumerating Boolean constructors, for example,
“Alice sends bit 1” is encoded as AsOne True, “Bob choses diagonal polarisation
scheme” as BchX True, and “Eve measures 1” as EmOne True.

datatype event = AsOne bool | AchX bool | BchX bool | EchX bool |

BmOne bool | EmOne bool

We do not need to encode the events for 0 nor for chosing the rectilinear scheme:
for example, “Alice sends bit 0” simply corresponds to AsOne False and “B
choses the rectilinear scheme” to BchX False. The possibilities of the attacker
follow the classical model of Dolev-Yao [14] that makes strong assumptions on
the attacker: Eve can read all communications, can intercept and feed in new
messages based on what she has intercepted and could analyse from that. We
define a datatype for protocol states as sets of lists of events by the single
constructor Protocol that takes an element of type event list set as input.
We use the polymorphic Isabelle type constructors list and set which – applied
as postfix constructors to any type α (here event list set)– yield the type of
sets or lists over α, respectively.

14

datatype protocol = Protocol event list set

The protocol steps are then defined by the inductive definition of the state
transition where each step of the protocol is encoded in one rule of this inductive
definition.

The rules use the current state, in particular, the sequences of events evs

that have occurred up to this point, to define how evs evolves in one step. For
example, the first rule AsendsBitB only assumes that the empty set [] is in the
current state evs and allows to conclude that then the initial sequence “A has
sent key bit 1” is in the following state by inserting the one element sequence
[AsOne b] into the next state reachable by the state transition relation →Q

from the current state evs. Note, that the rule uses the variable b for some b ∈
{True, False} which allows two instances of this rule. The other rules follow
the same pattern but additionally use more structured assumptions on some
existing sequence l present in the current state evs. In doing so, they make use
of the list constructors a # l for putting the element a as first element into list
l and again hd l to return the first element and tl l to return the tail of list
l, respectively. We defined the function insertp to insert a new event list

into the protocol (which contains an event list set by definition).

inductive state_transition_qkd :: [protocol, protocol] ⇒ bool ("_ →Q _")

where
AsendsBitb: [] ∈ evs =⇒ evs →Q insertp [AsOne b] evs

AchosesPolX: l ∈ evs =⇒ hd l = AsOne b =⇒
evs →Q insertp (AchX b’ # l) evs

BchosesPolX: l ∈ evs =⇒ hd l = AchX b =⇒
evs →Q insertp (BchX b’ # l) evs

BmeasuresOK: l ∈ evs =⇒ hd l = BchX b =⇒ hd(tl l) = AchX b =⇒
hd(tl(tl l)) = AsOne b’ =⇒
evs →Q insertp (BmOne b’ # l) evs

BmeasureNOK: l ∈ evs =⇒ hd l = BchX b =⇒ hd(tl l)) = AchX b’ =⇒
b 6= b’ =⇒
evs →Q insertp (BmOne b’’ # l) evs

EchosesPolX: l ∈ evs =⇒ hd l = AchX b =⇒
evs →Q insertp (EchX b’ # l) evs

EintercptOK: l ∈ evs =⇒ hd l = Ech b =⇒ hd(tl l) = AchX b =⇒
hd(tl(tl l)) = AsOne b’ =⇒
evs →Q insertp (EmOne b’ # l) evs

EintrcptNOK: l ∈ evs =⇒ hd l = Ech b =⇒ hd(tl l)) = AchX b’ =⇒
b 6= b’ =⇒
evs →Q insertp (EmOne b’’ # l) evs

B_E_iterate: l ∈ evs =⇒ hd l = BmOne b ∨ hd l = EmOne b =⇒
evs →Q insertp (AsOne b # l) evs

Note that in the rule BmeasuresOK – and similar for EintercptOK – the same
variable b is used in BchX b and AchX b: thereby we presume that A and B

have chosen the same polarisation filter. We can conclude that then B measures
correctly. By contrast, in rule BmeasuresNOK – and similar for the corresponding
rule EintrcptNOK – this is not the case if b 6= b’: then one of them is True

15

and the other is False. This means A and B use different polarisation filters
and hence the measurement outcome is unclear. This is encoded in the rule by
a new variable b’’ which could be equal to either True or False.

The last rule B E iterate is very similar to AsendsBitb allowing the start
of a follow up run of the protocol (to send the next key bit). The inductive
definition defines the smallest state transition relation that is closed under ap-
plying those rules. In particular, this allows also states representing execution
of various parallel runs of the protocol. This is not relevant for QKD but in gen-
eral for the analysis of other protocols in particular to detect man-in-the-middle
attacks.

6.3. Attack Tree Analysis of QKD

We define the global policy as “Eve must not learn the key” where the key
is the transmitted bit. To this end, we first need to specify the set of event
sequences in which Alice sent a key bit and Eve measured this key bit correctly.
In other words, we need to characterize such event lists in which A sent bit b
and Eve measured the same bit b. The actual choices of the orientation of the
polarisation filters by Alice and Eve and whether they match does not matter
– even if the filter choices mismatch there could coincidentally be a matching
outcome (see column 4 of Figure 5). The two relevant cases are then negated
using ¬ since we do not want this to happen. Since the event sequences are
lists we apply the function set to transform them into finite sets so that
we can simply use the set operations ∈ to specify membership. The predicate
global policy specifies this for an arbitrary state e::event set. Note that we
can generalise the two relevant cases for True and False by ∀ b where b::bool.

global_policy e ≡ ∀ l ∈ e. ∀ b. ¬(AsOne b ∈ set l ∧ EmOne b ∈ set l)

How do we find attacks? The key is to use invalidation [15] of the security prop-
erty we want to achieve, here the global policy. Since we consider a predicate
transformer semantics, we use sets of states to represent properties. The attack
tree is given by starting from this invalidated global policy and apply attack
refinement from there. To define the attack property that represents the root of
the attack tree refinement, we need to logically characterize all states in which
the global policy is not valid. The attack property is given by the following set
negated policy.

negated_policy ≡ { e :: protocol. ¬ global_policy e }

We first define an initial state as the set of event lists only containing the empty
list which is the starting point for any protocol execution.

qkd scenario ≡ Protocol { ([]:: event list) }

Using this scenario to build a simple initial state set Iqkd ≡{qkd scenario},
we define a Kripke structure.

qkd Kripke ≡ Kripke { I. qkd_scenario →∗Q I } Iqkd

16

The attack we are interested in is to see whether the critical state negated policy

can be reached, i.e., is there a valid attack (Iqkd,negated policy)?
The states QKDi for i ∈ {1..3} are intermediate states of protocol executions

that we will use to establish the attack.

QKD1 ≡ insertp [AsOne True] qkd_scenario

QKD2 ≡ insertp [AchX True, AsOne True] QKD1

QKD3 ≡ insertp [EchX True, AchX True, AsOne True] QKD2

This sequence of states can be systematically derived using the attack tree
refinement. Step by step proof establishes that the intermediate steps QKDi
form the following refinement.

[N(Iqkd,negated_policy)]⊕(Iqkd,negated_policy)
∧

v
[N(Iqkd,QKD1),N(QKD1,QKD2),N(QKD3,negated_policy)]⊕(Iqkd,negate_policy)

∧

For the Kripke structure qkd Kripke, we can derive that the refined attack is a
valid and-attack using the attack tree proof calculus.

` [N(Iqkd,QKD1),N(QKD1,QKD2),N(QKD3,negated_policy)]⊕(Iqkd,negated_policy)
∧

Application of Theorem ref valI from Section 4 then immediately proves that
the (abstract) attack is valid.

`V [N(Iqkd,negated_policy)]⊕(Iqkd,negated_policy)
∧

We can now simply apply the Correctness theorem AT EF to immediately prove
the following CTL statement.

qkd_Kripke ` EF negated_policy

This application of the meta-theorem of Correctness of attack trees saves us
proving the CTL formula tediously by exploring the state space.

Note that the states QKDi, i ∈ {1..3} represent just one possible sequence of
protocol runs that lead to the attack property negated policy. One immedi-
ately obvious other candidate is the variation with False but also the following
sequence may lead into the attack property.

QKDa1 ≡ insertp [AsOne True] qkd_scenario

QKDa2 ≡ insertp [AchX False, AsOne True] QKDa1

QKDa3 ≡ insertp [EchX True, AchX False, AsOne True] QKDa2

Although Eve choses the wrong polarisation scheme, she might still be success-
ful. We can establish this by proving that this is a valid attack, i.e., may lead
to negated policy but it is not fully satisfactory. What we really want is to
understand the likelihood of even such seemingly unlikely attacks. This leads
on to a decisive extension of the framework to probabilistic attack analysis.

17

7. Probabilistic Attack Analysis

In this section, we introduce the necessary basic probability theory to lay
a foundation to extend the temporal logic CTL to Probabilistic CTL (PCTL).
We then use this extension to illustrate how it can be employed for probabilistic
attack analysis to prove quantitative properties of QKD relevant for security
analysis.

7.1. Brief Excursion into Probability

We develop and illustrate the probability reasoning on finite sets of outcomes
in Isabelle. The very brief introduction to basic probability theory is taken from
Koller and Friedmann [16] but vastly abbreviated. The reader is referred to this
excellent textbook for details.

Before defining events (S)4 we first assume a set Ω of possible outcomes.
Based on that we define a set of measurable events S ⊆ PΩ where P is the
power set, that is, the set of subsets of a set Ω. Any event A ∈ S may have
probabilities assigned to it. Probability theory, more precisely, measure theory
(see [17]), requires that the following conditions hold for the probability space
S:

• S contains the empty event ∅ and the trivial event Ω;

• S must be closed under union: A,B ∈ S⇒A ∪B ∈ S;

• S must be closed under complement: A ∈ S⇒Ω \A ∈ S.

The closure for the other Boolean operators intersection and set difference is
implied by the above conditions.

Definition 7.1 (Probability Distribution). A probability distribution P over
(Ω,S) is a function from events in S to real numbers satisfying the following
conditions.

1. ∀A ∈ S. P (A) ≥ 0.

2. P (Ω) = 1.

3. If A,B ∈ S and A ∩B = ∅ then P (A ∪B) = P (A) + P (B).

In Joe Hurd’s dissertation [17] these conditions are referred to as

(1) Positivity,

(2) Probability space ((2.27), page 33 [17]), and

(3) Additivity

4Note, that confusingly probability theory also uses the terminology “event” in a slightly
different way than it is common in security protocols as seen in the previous section.

18

in the general context of Measure spaces. The property of Monotonicity and
Countable Additivity [17] are not present in the introduction of Koller and
Friedman but at least Countable Additivity can be considered as implicit since
we are looking at finite spaces only.

The above definition can be directly translated into an Isabelle specification5.
We transform the textbook definition into a definition and a type definition: we
define first event spaces over finite types of outcomes and then we give a type
definition for probability distribution.

The possible outcomes can be provided as a type represented here by a type
variable Ω. This type is assumed to be finite implicitly by coercing the type
variable Ω into the type class finite using the type judgment with :: in the
following definition of probability space.

definition prob_space :: ((Ω :: finite) set) set) ⇒ bool

where prob_space S ≡ {} ∈ S ∧ (UNIV :: Ω set) ∈ S ∧
∀ A, B ∈ S. A ∪ B ∈ S ∧
∀ A ∈ S. (UNIV :: Ω set) - A ∈ S

In the above type definition, the Ω is an Isabelle type variable. The polymorphic
constructor UNIV is a standard constructor in Isabelle and represents the set of
all elements of a type, here all outcomes in Ω. We can now show that the power
set over a finite type is a probability space.

theorem Pow_prob_space: prob_space (Pow (UNIV :: (Ω :: finite) set))

A probability distribution is a function over a probability space. We use a type
definition for it.

typedef (Ω :: finite) prob_dist ≡ {p :: (Ω set ⇒ real).

∀ (A :: Ω set). p A ≥ 0 ∧ p(UNIV :: Ω set) = 1 ∧
∀ (A :: Ω set) B . A ∩ B = ∅ −→ p(A ∪ B) = p(A) + p(B) }

In the above type definition for probability distribution, we can see that the
three criteria from Definition 7.1 are almost one to one translated into Isabelle.
Type definitions are applied by imposing them on new constants or variables
which automatically leads to the invocation of the defining properties on these
elements: either by assuming them for constants defined over the new types or
by creating new proof obligations when existing terms are judged to be of these
types. We apply this when we define a probability distribution over the power
set of a finite type of outcomes for QKD in Section 7.3.

Hurd already writes “Measure theory defines what probability spaces are but
does little to help us find concrete distributions”[17]. He then uses Caratheodory’s
extension theorem to help out. For the simple case of finite sets of outcomes
that we consider here, we introduce a canonical construction that uses the power

5Even though measure theory à la Hurd is provided in the Isabelle theory library, we
prefer to provide a simpler ad hoc definition here for completeness – integration is possible
and planned for later stages.

19

set of outcomes as the event space and accordingly constructs the probability
distribution by summing up the probabilities for the individual outcomes of any
subset of Ω, i.e. an event ∈ S, which is possible since they are finite sets of
outcomes that are all distinct. For the definition of a generic operator for this
canonical construction, we use the fold operator available in Isabelle for defin-
ing simple recursive functions over finite sets. Intuitively, fold operates like
this:

fold f z {x1, . . . , xn} = f(x1 . . . (f xn z)) .

We define the canonical construction for probability distributions as a func-
tion pmap lifting a probability assignment ops for single outcomes ∈ Ω to any
set S of outcomes.

pmap (ops :: Ω ⇒ real) S = fold (λ x y. ops x + y) 0 S

Now, we can show that, for any finite type Ω :: finite with a probability
assignment ops, that is positive and additive to UNIV the canonical construction
pmap ops yields a probability distribution over the power set. We just need to
show that it is contained in the defining set of the type prob dist given by the
set prob dist def that defines the type.

theorem pmap_ops: ∀ x :: (Ω :: finite). 0 ≤ ops x =⇒
Σ ops (UNIV :: Ω set) = 1 =⇒
pmap ops ∈ prob_dist_def

Conditional probability, for example, P (A|B) signifies the probability for an
event A given an event B. It can be defined simply as follows.

Definition 7.2 (Conditional Probability). For an event space S and two events
A,B ∈ S the conditional probability of A given B is defined for a probability
distribution P as

P (A|B) ≡ P (A ∩B)/P (B) .

The corresponding Isabelle definition uses some syntactic sugaring to enable
a one-to-one notation of the conditional probability operator. Note, the actual
operator has three inputs: one probability distribution P and two events A, B.

definition cond_prob :: (Ω :: finite)prob_dist ⇒ Ω set ⇒ Ω set ⇒ real

("_(_|_)")

where P(A|B) ≡ (Rep_prob_dist P (A ∩ B)) / (Rep_prob_dist P B)

The above Isabelle definition uses the mixfix syntax after the type in quotation
marks to allow writing the same probability distribution as a function with
two arguments by a syntactic translation into the corresponding definition with
intersections of the event sets.

7.2. Probabilistic CTL

To extend the temporal logic CTL to a probabilistic version, we follow the
theoretical description in the texbook [18] but adapt it to the finite lists we
consider here for security protocols and QKD.

20

The main idea of our extension is to add a new operator to express the prob-
ability of sequences of state changes. In other word, we define a path quantifier
that selects a number of state transition sequences in a Kripke structure and
then uses the probability distribution to compute the probability for those paths
to occur. This will enable quantifying the likelihood of certain attack paths to
be reached. So, the outcomes that are quantified with probabilities by the
probability distribution will be paths leading into attack states. We introduce a
“finally” (F) path quantifier. This definition uses two operators from Isabelle’s
rich theory library on lists: the operator nth written as an infix ! returns the
“nth” list element, for example, [a,b,c] ! 2 = c; the operator last returns
the “last”, i.e., rightmost, element of a list, for example, last[1,2,3] = 3.

definition F :: (α :: state) set ⇒ α list set

where F s = { l. ∀ i < length l. l ! i → l ! (Suc i) ∧ last l ∈ s }

We usually want this path quantifier to be relative to a Kripke structure M

because we want the attack paths to start from initial states and be paths along
states within M. To this end, we define the following specialised version relative
to a Kripke model M (the operator hd yields the head (first element) of a list).

definition `F :: [(α :: state) Kripke, α set] ⇒ α list set

M `F s ≡ { l. set l ⊆ states M ∧ hd l ∈ init M } ∩ F s

Given the operator F to select a set of finite paths leading into a state, we
can now combine this with the probability notions of the previous section. For
example, to introduce the probability for a set of finite paths given an assignment
ops of probabilities to paths representing outcomes of protocol runs, then pmap

ops produces a probability distribution for this protocol. This can then be
applied to the previous path selection. That is, pmap ops (M `Fs) computes
the probability of the event that paths end in state s.

This probability computation leads finally into a logical operator by consid-
ering predicates J over real numbers. For example, J≡(λx.x = 1) is a predicate
that is only true for 1 and λx.0 < x ≤ 1/2 is true for all positive real values
less than one half. We also need to relate the path quantification with a Kripke
structure. This comes together in the logic PCTL.

Definition 7.3 (PCTL). PCTL extends CTL by a probabilistic operator PFJ
where φ is a set of finite paths and J is a predicate defining an interval of [0, 1].
Formally,

definition probF::[α Kripke, α list set ⇒ real,

real ⇒ bool, α set]⇒ bool ("_ _ `PF _")

M pdist `PFJ s ≡ J(pdist (M `F s))

The predicate J indicates a lower bound and/or upper bound on the prob-
ability. Since pmap ops (M `F s) yields the probability of paths ending in s,
the intuitive meaning of the formula PFJ is: the probability for the set of paths
satisfying the bounds given by J. The probabilistic operator can be considered
as the quantitative counterpart to the CTL path quantifiers A and E.

21

•AsOne

•AchX •AchX

•EchX •EchX •EchX •EchX

•EmOne •EmOne •EmOne •EmOne •EmOne •EmOne •EmOne •EmOne

1

8
0

1

16
1

16
1

16
1

16
1

8
0 0

1

8
1

16
1

16
1

16
1

16
0

1

8

True:1/2 False:1/2

True:1/2 False:1/2 True:1/2 False:1/2

True:1/2 False:1/2 True:1/2 False:1/2 True:1/2 False:1/2 True:1/2 False:1/2

T:1 F:0 T:1/2 F:1/2 T:1/2 F:1/2 T:1 F:0 T:0 F:1 T:1/2 F:1/2 T:1/2 F:1/2 T:0 F:1

Figure 6: Outcome tree for QKD: probabilities for each step at edges and outcome probabilities
as leaves.

7.3. QKD Probability Model

The tree depicted in Figure 7.3 is not an attack tree: it is a simple depiction
that shows the probabilities along the paths from root to leaves that correspond
to basic outcomes of protocol runs in which Eve intercepts.

The basic distribution on these 16 outcomes derived from Figure 7.3 is given
in the table in Figure 8. To facilitate the definition of the probability distribu-
tion, we define a finite type of outcomes specifying event lists of length four.

typedef outcome = { l :: event list. length l = 4 }

To define the basic outcome function qkd ops, we use a locale definition [19].

defines (qkd_ops :: outcome ⇒ real) =

λ x. case Rep_outcome x of

[EmOne False, EchX False, AchX False, AsOne False] ⇒ 1/8

| [EmOne True, EchX False, AchX False, AsOne False] ⇒ 0

| [EmOne False, EchX True, AchX False, AsOne False] ⇒ 1/16

| [EmOne True, EchX True, AchX False, AsOne False] ⇒ 1/16

| [EmOne False, EchX False, AchX True, AsOne False] ⇒ 1/16

| [EmOne True, EchX False, AchX True, AsOne False] ⇒ 1/16

| [EmOne False, EchX True, AchX True, AsOne False] ⇒ 1/8

| [EmOne True, EchX True, AchX True, AsOne False] ⇒ 0

| [EmOne False, EchX False, AchX False, AsOne True] ⇒ 0

| [EmOne True, EchX False, AchX False, AsOne True] ⇒ 1/8

| [EmOne False, EchX True, AchX False, AsOne True] ⇒ 1/16

| [EmOne True, EchX True, AchX False, AsOne True] ⇒ 1/16

| [EmOne False, EchX False, AchX True, AsOne True] ⇒ 1/16

| [EmOne True, EchX False, AchX True, AsOne True] ⇒ 1/16

| [EmOne False, EchX True, AchX True, AsOne True] ⇒ 0

| [EmOne True, EchX True, AchX True, AsOne True] ⇒ 1/8

| _ ⇒ 0

The probability distribution qkd ops can be input into the above defined func-
tion pmap producing automatically the canonical probability distribution for the
QKD protocol. We thus define a probability distribution being able to show that

22

AsOne AchX EchX EmOne P
False False False False 1/8
False False False True 0
False False True False 1/16
False False True True 1/16
False True False False 1/16
False True False True 1/16
False True True False 1/8
False True True True 0
True False False False 0
True False False True 1/8
True False True False 1/16
True False True True 1/16
True True False False 1/16
True True False True 1/16
True True True False 0
True True True True 1/8

Figure 7: Probability assignment for QKD outcomes

it is in fact one in the following lemma that shows that pmap maps the assign-
ment of outcomes to probabilities given by qkd ops into the set prob dist def

that defines probability distributions over finite types.

lemma qkd_prob_dist: pmap qkd_ops ∈ prob_dist_def

The proof of this lemma applies the general theorem pmap ops we proved earlier.
Based on this probability distribution we can calculate interesting probabilities
telling us – in a mathematical precise way – something about the security of the
protocol.

In order to do that, we first consider another useful probability law: the law
of total probability.

Theorem 1 (Law of total probability). Let Aj , j ≤ n for some n ∈ N be a set
of events partitioning the event space S, that is, ∀ i, j ≤ n. i 6= j⇒Ai ∩Aj = ∅
and

⋃
j Aj = Ω. Let further B ∈ S. We then have that

P (B) =
∑
j

P (B|Aj)P (Aj) .

Proof: Since we have a partition, that is, Ai ∩ Aj = ∅ for all i, j ≤ n with
i 6= j, we have also

(B ∩Ai) ∩ (B ∩Aj) = B ∩ (Ai ∩Aj) = B ∩∅ = ∅ (1)

23

Therefore

P (B) = P (B ∩ Ω) (Aj is partition of Ω)

= P (B ∩ (A1 ∪ · · · ∪An)) (set algebra)

= P ((B ∩A1) ∪ · · · ∪ (B ∩An)) ((1) and Definition 7.1 (3))

= P (B ∩A1) + · · ·+ P (B ∩An) (summation)

=
∑
j P (B ∩Aj) (Def. 7.2 Conditional Probability)

=
∑
j P (B|Aj) ∗ P (Aj) �

7.4. Probabilistic Attack Analysis

The first security argument of the attack analysis computes the probability
that E measures 1 applying the law of total probability. The partition A of Ω
used in the derivation is given as the following family of disjoint sets Aj with
A =

⋃
j∈{0..7}Aj = Ω = UNIV::outcome set.

A = {{s :: outcome. ∃e. s = [e, EchX True, AchX True, AsOne True]},
{s. ∃e. s = [e, EchX False, AchX True, AsOne True]},
{s. ∃e. s = [e, EchX True, AchX False, AsOne True]},
{s. ∃e. s = [e, EchX False, AchX False, AsOne True]},
{s. ∃e. s = [e, EchX True, AchX True, AsOne False]},
{s. ∃e. s = [e, EchX False, AchX True, AsOne False]},
{s. ∃e. s = [e, EchX True, AchX False, AsOne False]},
{s. ∃e. s = [e, EchX False, AchX False, AsOne False]},
}

For each Aj ∈ A, we have P (Aj) = 1/8: since P is a probability distribution,
we can use the third defining property of the type definition prob dest to sum
up the disjoint probabilities for each outcome. The outcome probabilities in
Figure 8 give for example for A0 (similar for the other Aj):

P ({s :: outcome. ∃e. s = [e, EchX True, AchX True, AsOne True]}) =

P ([EmOne True, EchX True, AchX True, AsOne True]) +

P ([EmOne False, EchX True, AchX True, AsOne True]) =

1/8 + 0 = 1/8

We are interested in calculating the probability of Eve being able to receive a
key bit, say, one which we define as the event EmOne’.

definition EmOne’ :: outcome set ≡
{ l. hd (Rep_outcome l) = ((EmOne True) :: event) }

24

With this we can compute that P (EmOne’) = 1/2.

P (EmOne’) =
∑
Aj∈A P (EmOne’|Aj) ∗ P (Aj) (Theorem 1)

= 1/8 ∗
∑
Aj∈A P (EmOne’|Aj) (P (Aj) = 1/8)

= 1/8 ∗
∑
Aj∈A P (EmOne’ ∩Aj)/P (Aj) (Definition 7.2)

=
∑
Aj∈A P (EmOne’ ∩Aj) (P (Aj) = 1/8)

= 1/2 (sum, see Table 8)

This probability cannot be interpreted as a security statement directly. It rather
says that on the whole Eve may receive 1s with 50% probability but not how this
relates to what A has actually sent. However, the above probability P (EmOne’)
is useful to calculate the conditional probability P (AsOne’|EmOne’): how likely
is it that A has actually sent a 1 given that E intercepted a 1? Similar to the
above event EmOne’, we define here event AsOne’ as {l.l!3 = AsOne True}.
For the sake of exposition, we abbreviate the outcomes, for example, we write
[F,F,T,T] for the outcome [EmOne False, EchX False, AchX True, AsOne

True].

P (AsOne’|EmOne’) = P (AsOne’ ∩ EmOne’)/P (EmOne’) (Def. 7.2)

= 2 ∗ (P (AsOne’ ∩ EmOne’)) (above)

= 2 ∗ (P ({[T,F,F,T], [T,T,F,T],
[T,F,T,T], [T,T,T,T]})) (Def. 7.1.3)

= 2 ∗ (P ([T,F,F,T]) + P ([T,T,F,T])+

P ([T,F,T,T]) + P ([T,T,T,T])) (Table 8)

= 2 ∗ (1/8 + 1/16 + 1/16 + 1/8) (arithmetic)

= 3/4

This shows that there is 25% chance of error for Eve to receive the wrong bit.
PCTL serves to represent this mathematical calculation as a logical state-

ment. From the above, we can directly prove the following PCTL statement.

lemma qkd_Eve_attack:

qkd_Kripke (pmap qkd_ops) `PFλ x. x = 3/4 negated_policy

Thereby, we have nicely wrapped up probability theory and temporal logic in
our Isabelle framework and showed that it enables quantifying temporal attack
properties.

Moreover, we can now additionally employ the completeness of attack trees.
Since we have shown the CTL statement (see Section 6.3)

qkd_Kripke ` EF negated_policy

we can apply Theorem Completeness (see Section 5) and thereby prove

∃ A :: ((event list set)::state)attree.

` A ∧ (I, s) = (Iqkd,negated_policy)

but now additionally quantifying this attack using PCTL by lemma qkd Eve attack

to have the probability 75%.

25

8. Conclusions

8.1. Summary

In this paper, we have presented a proof theory for attack trees in Isabelle’s
Higher Order Logic (HOL). We have shown the incremental and generic struc-
ture of this framework, presented correctness and completeness results equating
valid attacks to EF s formulas. Practical relevance is supported by a clear and
generic structure of the framework with classes for arbitrary instantiation and
generated code for automation of verification.

Extending this foundation of attack trees, already presented in [3], we have
first illustrated its application to security protocols focussing on the Quantum
Key Distribution protocol (QKD). We have shown how protocols can be sim-
ply expressed in the generic attack tree framework and how this can then be
used to formalise the QKD protocol. Attack tree refinement can be used to
establish the attack where Eve can get the secret key bit. However, the QKD
case study also shows the need for a quantitative analysis. We thus introduced
probabilities extending the Isabelle framework by basic concepts. We then used
this foundation to define Probabilistic CTL (PCTL) enabling proof of quantified
statements. We showed how this can finally be applied to provide probabilistic
statements for attacks illustrating it on the QKD protocol.

8.2. Related Work

There are excellent foundations for attack trees available based on graph
theory [20]. They provide a very good understanding of the formalism, various
extensions (like attack-defence trees [21]) and differentiations of the operators
(like sequential conjunction (SAND) versus parallel conjunction [22]) and are
amply documented in the literature. These theories for attack trees provide
a thorough foundation for the formalism and its semantics. The main prob-
lem that adds complexity to the semantic models is the abstractness of the
descriptions in the nodes. This leads to a variety of approaches to the seman-
tics, e.g. propositional semantics, multiset semantics, and equational semantics
for ADtrees [21]. The theoretical foundations allow comparison of different se-
mantics, and provide a theoretical framework to develop evaluation algorithms
for the quantification of attacks. Other verification approaches based on Mod-
elchecking, e.g. [23], focus on an action based-approach where the attack goals
are represented as labels of attack tree nodes which are actions that an attacker
has to execute to arrive at the goal.

However, all of these approaches represent attacks merely as action sequences
omitting other relevant information of system states, for example, data related
information. A notable exception that uses, like our approach, a state based
semantics for attack trees is the recent work [24]. However, this work is aiming
at assisted generation of attack trees from system models not on verification
of secure systems or protocols. The tool ATSyRA supports this process. The
paper [24] focuses on describing a precise semantics of attack tree in terms of
transition systems using “under-match”, “over-match”, and “match” to arrive
at a notion of correctness. In comparison, we use additionally CTL logic to

26

describe the correctness relation precisely. Also we use a fully formalised and
proven Isabelle model.

Surprisingly, the use of an automated proof assistant, like Isabelle, has not
been considered before despite its potential of providing a theory and analysis of
attacks simultaneously. The essential attack tree mechanism of disjunction and
conjunction in tree refinement is relatively simple. The complexity in the theo-
ries is caused by the attempt to incorporate semantics to the attack nodes and
relate the trees to actual scenarios. This is why we consider the formalisation of
a foundation of attack trees in the interactive prover Isabelle since it supports
logical modeling and definitions of datatypes very akin to algebraic specification
but directly supported by semi-automated analysis and proof tools.

Compared to other verification techniques, like Modelchecking, Isabelle re-
quires user interaction. However, Modelchecking is restricted to finite models
and first order logic. The relationship between Higher Order logic and Mod-
elchecking has been first explored by Kobayashi (see [25] for a paper subsuming
previous results). Modelchecking has been realized as well in Isabelle [26] but
we formalise the different logic of CTL [27] (instead of LTL) and extend it to
the probabilistic logic PCTL.

Isabelle enables the use of higher order quantification and induction nec-
essary for invariant proofs. Powerful concepts like recursive functions in HOL
and simplification and other proof tactics in Isabelle furthermore facilitate the
application. The principle of conservative extension is key to guaranteeing con-
sistency between the theoretical foundations (we referred to this as the meta-
theory) and the application logic (for example, protocols). Moreover, for exe-
cutable parts of the theory, code can be generated into programming languages
like Scala to outsource some of the proof obligations to external fully automated
processes – like the central validity checker for attacks (available on GitHub [4])
generated from our Isabelle definition.

Formalising Quantum Cryptography is only an application example illus-
trating the merits of the Attack Tree framework and motivating the extension
to PCTL yet it is worth considering related approaches. Using interactive theo-
rem proving to formalise Quantum Cryptography has been attempted in a deep
embedding of a mathematical model for quantum computation and measure-
ment in Coq [28] but without probabilities nor considering QKD. The way of
formalising protocols in the current paper is vaguely inspired by Paulson’s in-
ductive approach [29] but much simplified in the basics yet surpassing it in using
probabilities and addressing Quantum Cryptography and analysing QKD.

We have shown that Isabelle’s Higher Order Logic is capable of expressing
attack trees in a semantically founded way such that state transitions over pro-
tocol executions can be analysed using alternatively CTL or attack refinement.
The genericity of the attack tree formalisation presented here permitted the
extension of the CTL temporal logic to PCTL enabling probabilistic reasoning
which has been illustrated on the Quantum Key Distribution protocol.

27

References

[1] T. Nipkow, L. C. Paulson, M. Wenzel, Isabelle/HOL – A Proof Assistant
for Higher-Order Logic, Vol. 2283 of LNCS, Springer-Verlag, 2002.

[2] F. Kammüller, A proof calculus for attack trees, in: Data Privacy Manage-
ment, DPM’17, 12th Int. Workshop, Vol. 10436 of LNCS, Springer, 2017,
co-located with ESORICS’17.

[3] F. Kammüller, Attack trees in isabelle, in: 20th International Conference
on Information and Communications Security, ICICS2018, Vol. 11149 of
LNCS, Springer, 2018.

[4] F. Kammüller, Isabelle infrastructure framework with iot healthcare
s&p application, available at https://github.com/flokam/IsabelleAT.
(2018).

[5] F. Kammüller, C. W. Probst, Modeling and verification of insider threats
using logical analysis, IEEE Systems Journal, Special issue on Insider
Threats to Information Security, Digital Espionage, and Counter Intelli-
gence 11 (2) (2017) 534–545. doi:10.1109/JSYST.2015.2453215.
URL http://dx.doi.org/10.1109/JSYST.2015.2453215

[6] D. M. Cappelli, A. P. Moore, R. F. Trzeciak, The CERT Guide to Insider
Threats: How to Prevent, Detect, and Respond to Information Technology
Crimes (Theft, Sabotage, Fraud), 1st Edition, SEI Series in Software
Engineering, Addison-Wesley Professional, 2012.
URL http://www.amazon.com/exec/obidos/redirect?tag=

citeulike07-20&path=ASIN/0321812573

[7] F. Kammüller, M. Kerber, Investigating airplane safety and security against
insider threats using logical modeling, in: IEEE Security and Privacy Work-
shops, Workshop on Research in Insider Threats, WRIT’16, IEEE, 2016.

[8] F. Kammüller, M. Kerber, C. Probst, Towards formal analysis of insider
threats for auctions, in: 8th ACM CCS International Workshop on Man-
aging Insider Security Threats, MIST’16, ACM, 2016.

[9] F. Kammüller, J. R. C. Nurse, C. W. Probst, Attack tree analysis for in-
sider threats on the IoT using Isabelle, in: Human Aspects of Information
Security, Privacy, and Trust - Fourth International Conference, HAS 2015,
Held as Part of HCI International 2016, Toronto, Lecture Notes in Com-
puter Science, Springer, 2016, invited paper.

[10] F. Kammüller, Formal modeling and analysis of data protection for gdpr
compliance of iot healthcare systems, in: IEEE Systems, Man and Cyber-
netics, SMC2018, IEEE, 2018.

[11] B. Schneier, Secrets and Lies: Digital Security in a Networked World, John
Wiley & Sons, 2004.

28

https://github.com/flokam/IsabelleAT
http://dx.doi.org/10.1109/JSYST.2015.2453215
http://dx.doi.org/10.1109/JSYST.2015.2453215
https://doi.org/10.1109/JSYST.2015.2453215
http://dx.doi.org/10.1109/JSYST.2015.2453215
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0321812573
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0321812573
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0321812573
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0321812573
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0321812573

[12] S. Singh, The Code Book, 4th Edition, Fourth Estate, 1999.

[13] E. G. Rieffel, W. Polak, An introduction to quantum computing for non-
physicists, ACM Comput. Surv. 32 (3) (2000) 300–335.

[14] D. Dolev, A. C. Yao, On the security of public key protocols, in: 22nd
Annual Symposium on Foundations of Computer Science, SFCS ’81, IEEE,
1981.

[15] F. Kammüller, C. W. Probst, Combining generated data models with for-
mal invalidation for insider threat analysis, in: IEEE Security and Privacy
Workshops (SPW), IEEE, 2014.

[16] D. Koller, N. Friedman, Probabilistic Graphical Models – Principles and
Techniques, The MIT Press, 2009.

[17] J. Hurd, Formal verification of probabilistic algorithms, Tech. Rep. 566,
University of Cambridge (2001).

[18] C. Baier, J.-P. Katoen, Principles of Model Checking, The MIT Press, 2008.

[19] F. Kammüller, Modular reasoning in isabelle, in: D. MacAllester (Ed.),
17th International Conference on Automated Deduction, CADE-17, Vol.
1831 of LNAI, Springer, 2000.

[20] B. Kordy, L. Piètre-Cambacédés, P. Schweitzer, Dag-based attack and de-
fense modeling: Don’t miss the forest for the attack trees, Computer Science
Review 13–14 (2014) 1–38.

[21] B. Kordy, S. Mauw, S. Radomirovic, P. Schweitzer, Attack-defense trees,
Journal of Logic and Computation 24 (1) (2014) 55–87.

[22] R. Jhawar, B. Kordy, S. Mauw, S. Radomirovic, R. Trujillo-Rasua, Attack
trees with sequential conjunction, in: 30th IFIP TC 11 International Con-
ference on ICT Systems Security and Privacy Protection (IFIP SEC’15),
Vol. 455 of IFIP Advances in Information and Communication Technology,
Springer, 2015, pp. 339–353.

[23] Z. Aslanyan, F. Nielson, D. Parker, Quantitative verification and synthesis
of attack-defence scenarios, in: 29th IEEE Computer Security Foundations
Symposium, CSF’16, 2016.

[24] M. Audinot, S. Pinchinat, B. Kordy, Is my attack tree correct?, in: 22nd
European Symposium on Research in Computer Security, ESORICS’2017,
Vol. 10492 of LNCS, Springer, 2017, pp. 83–102.

[25] N. Kobayashi, Model checking higher-order programs, J. ACM 60 (3) (2013)
20:1–20:62. doi:10.1145/2487241.2487246.
URL https://doi.org/10.1145/2487241.2487246

29

https://doi.org/10.1145/2487241.2487246
https://doi.org/10.1145/2487241.2487246
https://doi.org/10.1145/2487241.2487246

[26] J. Esparza, P. Lammich, R. Neumann, T. Nipkow, A. Schimpf, J. Smaus,
A fully verified executable LTL model checker, in: N. Sharygina, H. Veith
(Eds.), Computer Aided Verification - 25th International Conference, CAV
2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings, Vol. 8044
of Lecture Notes in Computer Science, Springer, 2013, pp. 463–478. doi:

10.1007/978-3-642-39799-8_31.
URL https://doi.org/10.1007/978-3-642-39799-8_31

[27] F. Kammüller, Isabelle modelchecking for insider threats, in: Data Privacy
Management, DPM’16, 11th Int. Workshop, Vol. 9963 of LNCS, Springer,
2016, co-located with ESORICS’16.

[28] R. N. J. Boender, F. Kammüller, Formalization of quantum protocols using
coq, EPTCS 195.
URL http://dx.doi.org/10.4204/EPTCS.195

[29] L. C. Paulson, The inductive approach to verifying cryptographic protocols,
Journal of Computer Security 6 (1-2) (1998) 85–128.

30

https://doi.org/10.1007/978-3-642-39799-8_31
https://doi.org/10.1007/978-3-642-39799-8_31
https://doi.org/10.1007/978-3-642-39799-8_31
https://doi.org/10.1007/978-3-642-39799-8_31
http://dx.doi. org/10.4204/EPTCS.195
http://dx.doi. org/10.4204/EPTCS.195
http://dx.doi. org/10.4204/EPTCS.195

	Introduction
	Isabelle Infrastructure Framework, Kripke Structures, and CTL
	Isabelle Infrastructure Overview
	Relation to Earlier Formalisations
	Kripke Structures and CTL

	Attack Trees and Refinement
	Attack Tree Datatype in Isabelle
	Attack Tree Refinement

	Proof Calculus
	Correctness and Completeness of Attack Trees
	Application Example: Quantum Key Distribution
	Quantum Key Distribution Algorithm
	Formalizing Security Protocols with Example QKD
	Attack Tree Analysis of QKD

	Probabilistic Attack Analysis
	Brief Excursion into Probability
	Probabilistic CTL
	QKD Probability Model
	Probabilistic Attack Analysis

	Conclusions
	Summary
	Related Work

