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Abstract

We argue that common features of non-parametric estimation appear in para-
metric cases as well if there is a deviation from the classical regularity condition.
Namely, in many non-parametric estimation problems (as well as some parametric
cases) unbiased finite-variance estimators do not exist; neither estimator converges
locally uniformly with the optimal rate; there are no asymptotically unbiased with
the optimal rate estimators; etc..

We argue that these features naturally arise in particular parametric subfamilies
of non-parametric classes of distributions. We generalize the notion of regularity of
a family of distributions and present a general regularity condition, which leads to
the notions of the information index and the information function.

We argue that the typical structure of a continuity modulus explains why unbi-
ased finite-variance estimators cannot exist if the information index is larger than
two, while in typical non-parametric situations neither estimator converges locally
uniformly with the optimal rate. We present a new result on impossibility of locally
uniform convergence with the optimal rate.
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1 Introduction

It was observed by a number of authors that in many non-parametric estimation problems
the accuracy of estimation is worse than in the case of a regular parametric family of
distributions, estimators depend on extra tuning “parameters”, unbiased estimators are
not available, the weak convergence of normalized estimators to the limiting distribution
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is not uniform at the optimal rate, no estimator is uniformly consistent in the considered
class of distributions. These features have been observed, e.g., in the problems of non-
parametric density, regression curve, and tail index estimation (cf. [10], ch. 13, and
references therein).

Our aim in this paper is to develop a rigorous treatment of these features through a
generalization of the notion of regularity of a family of probability distributions. We argue
that features mentioned above (which might have been considered accidental drawbacks of
particular estimation procedures) in reality are inevitable consequences of the “richness”
of the non-parametric class of distributions under consideration.

We argue that the degree of “richness” of the class of distributions determines the
accuracy of estimation. The interplay between the degree of “richness” and the accuracy
of estimation can be revealed via the non-parametric lower bounds. In some situations the
lower bound to the accuracy of estimation is bounded away from zero, meaning consistent
estimation is impossible.

2 Regularity conditions and lower bounds

In a typical estimation problem one wants to estimate a quantity of interest aP from a
sample X1, ..., Xn of independent and identically distributed (i.i.d.) observations, where
the unknown distribution P = L(X1) belongs to a particular class P .

If there are reasons to assume that the unknown distribution belongs to a parametric
family P = {Pθ, θ∈Θ}, Θ ⊂ X , where X is IRm or a Hilbert space, then it is natural
to choose aPθ

= θ. Other examples include aP = fP , the density of P with respect to a
given measure µ (assuming every P ∈ P has a density with respect to µ), the tail index
of a distribution form the class of regularly varying distributions, etc.

Let
d
H
, dχ and d

TV

denote Hellinger, χ2 and the total variation distances, respectively.
In the case of a parametric family of probability distributions a typical regularity

condition states/implies that

d2
H
(Pθ;Pθ+h) ∼ ∥h∥2Iθ/8 or d2χ(Pθ;Pθ+h) ∼ ∥h∥2Iθ (1)

as h → 0, θ ∈ Θ, θ+h ∈ Θ, where Iθ is “Fisher’s information”. If one of regularity
conditions (1) holds, estimator θ̂ is unbiased, and function θ → IEθ∥θ̂−θ∥2 is continuous,
then

IEθ∥θ̂ − θ∥2 ≥ 1/nIθ (∀θ∈Θ). (2)

This is the celebrated Fréchet–Rao–Cramér inequality. Thus, if an unbiased estimator
with a finite second moments exists, then the optimal unbiased estimator is the one that
turns lower bound (2) into equality.
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However, the assumption of existence of unbiased estimators may be unrealistic even
in parametric estimation problems. For instance, Barankin [1] gives an example of a
parametric estimation problem where an unbiased estimator with a finite second moment
does not exist.

Below we suggest a generalisation of the regularity condition for a family of proba-
bility distributions, and introduce the notion of an information index. We then present
a non-parametric generalisation of the Fréchet–Rao–Cramér inequality. We give reasons
why in typical non-parametric estimation problems (as well as in certain parametric ones)
unbiased estimators with a finite second moment do not exist.

Notation. Below an ∼ bn means an = bn(1+o(1)) as n→ ∞. We write

an >
∼ bn (∗)

if an ≥ bn(1+o(1)) as n→ ∞.

Recall the definitions of the Hellinger distance d
H

and the χ2 -distance dχ . If the
distributions P1 and P2 have densities f1 and f2 with respect to a measure µ, then

d2
H
(P1;P2) =

1

2

∫ (
f
1/2
1 − f

1/2
2

)2
dµ = 1−

∫ √
f1f2 dµ ,

d2χ(P1;P2) =
∫
(f2/f1 − 1)2 dP1 ,

In the definition of dχ we presume that suppP1 ⊇ suppP2.

Definition 1. We say the parametric family P = {Pθ, θ∈Θ}, Θ⊂X , obeys the regularity
condition (Rt,H) if there exist ν>0 and It,H>0 such that

d2
H
(Pt;Pt+h) ∼ It,H∥h∥ν (Rt,H)

as h→ 0, t∈Θ, t+h∈Θ.
Family P obeys the regularity condition (R

H
) if there exist ν>0 and function I·,H>0

such that (Rt,H) holds for every t∈Θ.

Definition 2. We say family P obeys the regularity condition (Rt,χ) if there exist ν>0
and It,χ>0 such that

d2
χ
(Pt;Pt+h) ∼ It,χ∥h∥ν (Rt,χ)

as h→ 0, t∈Θ, t+h∈Θ.
Family P obeys the regularity condition (Rχ) if there exist ν>0 and function I·,χ>0

such that (Rt,χ) holds for every t∈Θ.

Definitions 1 and 2 extend the notion of regularity of a parametric family of distribu-
tions.
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A variant of these definitions has ∼ replaced with ≤ .
We are not aware of natural examples where dependence of d2

H
(Pt;Pt+h) or d2

χ
(Pt;Pt+h)

on h is more complex. However, if such examples appear, then (Rt,H) and (Rt,χ) can be
generalised by replacing ∥h∥ν in the right-hand sides with ψ(h) for a certain function
ψ.

Definition 3. If (R
H
) or (Rχ) holds, then we call ν the “information index” and I·,H

and/or I·,χ the “information functions”.

It is known (see, e.g., [13] or [10], ch. 14) that

d2
H
≤ d

TV
≤

√
2d

H
≤ dχ. (3)

If both (R
H
) and (Rχ) are in force, then inequality 2d2

H
≤ d2

χ
entails

2It,H ≤ It,χ .

In Example 1 below It,χ = 2It,H . In the case of a family {Pt = N (t; 1), t∈ IR} of normal
random variables (r.v.s) one has

d2
H
(P0;Pt) = 1− e−t2/8 , d2χ(P0;Pt) = et

2 − 1,

hence It,χ = 8It,H (cf. [10], ch. 14.4).

Information index ν indicates how “rich” or “poor” the class P is. In the case of a
regular parametric family of distributions (i.e., a family obeying (1)) one has

ν = 2.

“Irregular” parametric families of distributions may obey (R
H
) and (Rχ) with ν < 2 (cf.

Example 1 and [10], ch. 13).

Example 1. Let P = {Pt, t>0}, where Pt = U[0; t] is the uniform distribution on [0; t].
Then

d2
H
(Pt+h;Pt) = 1− (1+|h|/t)−1/2 ∼ h/2t (t≥h↘0),

d2
χ
(Pt+h;Pt) = h/t, d

TV
(Pt+h;Pt) = h/(t+h) (t≥h>0).

Hence family P is not regular in the traditional sense (cf. (1)). Yet (R
H
) and (Rχ) hold

with
ν = 1 , It,H = 1/2t , It,χ = 1/t .

The optimal estimator t∗n = max{X1, ..., Xn}(n+1)/n is unbiased, and

IEt(t
∗
n − t)2 = t2/n(n+2).
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Parametric subfamilies of non-parametric classes typically obey (R
H
) and (Rχ) with

ν > 2 (cf. Example 3 and [10], ch. 13).

We present now lower bounds to the accuracy of estimation when (R
H
) or (Rχ) holds.

Theorem 1 below indicates that the accuracy of estimation is determined by the informa-
tion index and the information function.

Definition 4. We say that set Θ obeys property (Aε) if for every t ∈ Θ there exists
t′∈Θ such that ∥t′ − t∥ = ε. Property (A) holds if (Aε) is in force for all small enough
ε> 0.

We say that estimator θ̂ with a finite first moment has “regular” bias if for every
t∈Θ there exists ct>0 such that

∥IEt+hθ̂ − IEtθ̂∥ ∼ ct∥h∥ (h→ 0). (4)

An unbiased estimator obeys (4) with ct ≡ 1. If Θ is an interval, then (A) trivially
holds.

Theorem 1 [10] Assume property (A), and suppose that estimator t̂n obeys (4).
If (Rχ) holds with ν∈(0; 2), then, as n→ ∞,

sup
t∈Θ

(nIt,χ)
2/νIEt∥t̂n − t∥2/c2t >

∼ y
2/ν
ν / (eyν−1) , (5)

where yν is the positive root of the equation 2(1−e−y) = νy.
If the function t→ IEt∥t̂− t∥2 is continuous, then, as n→ ∞,

(nIt,χ)
2/νIEt∥t̂n − t∥2/c2t >

∼ y
2/ν
ν / (eyν−1) (∀t∈Θ). (5∗)

If (Rχ) holds with ν>2, then IEt∥t̂n∥2 = ∞ (∃t∈Θ).
The result holds with (Rχ) replaced by (R

H
) if It,χ is replaced with It,H and the right-

hand side of (5) is replaced with (ln 4/3)2/ν/4 .

According to (5), the rate of the accuracy of estimation for estimators with regular
bias cannot be better than n−1/ν . Moreover, (5) establishes that the natural normalizing
sequence for t̂n − t depends in a specific way on n, ν, and the information function.

Theorem 1 supplements the Fréchet–Rao–Cramér inequality that deals with the case
ν=2. Note that (5∗) formally extends to the case ν=2 with y2 := 0 and the right-hand
side of (5∗) treated as limy→0 y/ (e

y−1) = 1.
According to Theorem 1, an estimator t̂n cannot be unbiased or have a regular bias

if (Rχ) or (RH
) holds with ν>2 and IEt∥t̂n∥2 <∞ for every t∈Θ.

Lower bounds involving continuity moduli are presented in the next section.
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3 Lower bounds based on continuity moduli

We consider now a general situation where one cannot expect regularity conditions to
hold (cf. Example 3).

Let P be an arbitrary class of probability distributions, and let the quantity of interest
aP be an element of a metric space (X , d). Given ε > 0, we denote by

P
H
(P, ε) = {Q∈P : d

H
(P ;Q) ≤ ε}

the neighborhood of distribution P ∈P . We call

w
H
(P, ε) = sup

Q∈PH(P,ε)

d(aQ; aP )/2 and w
H
(ε) = sup

P∈P
w

H
(P, ε)

the moduli of continuity.
For instance, if P = {Pt, t∈Θ}, aPt = t and d(x; y) = |x− y|, then

2w
H
(Pt, ε) = sup{|h| : d

H
(Pt;Pt+h) ≤ ε}

and w
H
(ε) = suptwH

(Pt, ε).
Similarly we define Pχ(P, ε), P

TV
(P, ε), wχ(·) and w

TV
(·) using the χ2 -distance dχ

and the total variation distance d
TV

. For instance, if aP ∈ IR and d(x; y) = |x− y|, then

w
TV
(P, ε) = sup

Q∈P
TV

(P,ε)
|aQ − aP |/2.

The notion of continuity moduli has been available in the literature on non-parametric
estimation for a while (cf. Donoho & Liu [3] and Pfanzagl [11, 12]). It helps to quantify
the interplay between the degree of “richness” of class P and the accuracy of estimation.

Lemma 2 [10] For any estimator â and every P0 ∈ P ,

sup
P∈PH(P0,ε)

P (d(ân; aP ) ≥ w
H
(P0, ε)) ≥ (1−ε2)2n/4, (6)

sup
P∈Pχ(P0,ε)

P (d(ân; aP ) ≥ wχ(P0, ε)) ≥ [1+(1+ε2)n/2]−2 . (7)

Let R be a loss function. Lemma 2 and Chebyshev’s inequality yield a lower bound
to supP∈PH(P0,ε) IEP

R(d(ân; aP )). For example, (6) with R(x) = x2 yields

sup
P∈PH(P0,ε)

IE1/2
P
d2(ân; aP ) ≥ w

H
(P0, ε)(1− ε2)n/2 . (8)

An (8)-type result for asymptotically unbiased estimators has been presented by Pfanzagl
[12]. Note that Lemma 2 does not impose any extra assumptions.

6



The best possible rate of estimation can be found by maximizing the right-hand side
of (8) in ε. For instance, if

w
H
(P, ε) >

∼ JH,P
ε2r (ε→0) (9)

for some J
H,P

>0, then the rate of the accuracy of estimation cannot be better than n−r .
If (R

H
) and/or (Rχ) hold for a parametric subfamily of P , then

2w
H
(Pt, ε) ∼ (ε2/It,H)

1/ν and/or 2wχ(Pt, ε) ∼ (ε2/It,χ)
1/ν , (10)

yielding (9) with r = 1/ν . Hence the best possible rate of the accuracy of estimation is
n−1/ν .

The drawback of this approach is the difficulty of calculating the continuity moduli.

Example 2. Consider the parametric family P of distributions Pθ with densities

fθ(x) = φ(x−θ)/2 + φ(x+θ)/2 (θ∈ IR),

where φ is the standard normal density. Set

aPθ
= θ, d(θ1; θ2) = |θ1 − θ2|.

Then
d
H
(Po;Ph) ∼ h2/4 .

Thus, (R
0,H
) holds with

ν = 4, Io,H = 1/16,

w
H
(Po, ε) ∼

√
ε as ε → 0; there is no asymptotically unbiased with the optimal rate

finite-variance estimator; the rate of the accuracy of estimation in a neighborhood of the
standard normal distribution Po cannot be better than n−1/4 (cf. Liu and Brown [6]).
An application of (13.8) in [10] yields

sup
0≤θ≤ε

IEPθ
|θ̂n − θ|2 >

∼ 1/2
√
en (n→ ∞) (11)

for an arbitrary estimator θ̂n and any ε > 0.

Put ε2 = c2/n in (8). Then

sup
P∈PH(Po,ε)

IE
1/2
P d(ân; aP )

2 >
∼ e

−c2w
H
(Po, c/

√
n )/2 . (8∗)

Thus, the rate of the accuracy of estimation of aP in a neighborhood of Po cannot be
better than that of

w
H
(Po, 1/

√
n )
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(cf. Donoho & Liu [3]). More specifically, if (9) holds, then

sup
P∈PH(Po,ε)

IE
1/2
P d2(ân; aP ) >

∼ e
−c2J

H,Po
c2rn−r/2 . (12)

If J
H,· is uniformly continuous on P , then (12) with c2 = r yields the non-uniform lower

bound
sup
P∈P

J−1
H,P

IE
1/2
P d2(ân; aP ) >

∼ (r/e)rn−r/2 . (13)

Lower bound (13) is non-uniform because of the presence of the term depending on
P in the left-hand side of (13). Note that the traditional approach would be to deal
with supP∈P IEP d

2(ân; aP ) (cf. [13]); the latter can in some cases be meaningless while
supP∈P J

−1
H,P

IEP d
2(ân; aP ) is finite (cf. (14)).

Example 1 (continued). Let aPt = t, d(t; s) = |t− s|. Then

w
H
(Pt, ε) = tε2(1− ε2/2)/(1− ε2)2 ≥ tε2 ,

and (9) holds with r = 1, J
H,Pt

= t. According to (8) with ε2 = 1/n,

sup
Ps∈PH(Pt,ε)

IE1/2
s |t̂n − s|2 ≥ t/2en

for any estimator t̂n . Hence supt>0 IEt|t̂n − t|2 = ∞, while the non-uniform bound is

sup
t>0

IE
1/2
t |t̂n/t− 1|2 ≥ 1/2en (1+2/n) . (14)

Remark. In typical non-parametric situations the rate of the accuracy of estimation is
worse than n−1/2 . However, an interesting fact is that if we choose aP = P and d = d

H
,

then w
H
(P, ε) = ε/2 for all P , (9) holds with r=1/2, J

H,P
= 1/2, hence

sup
P∈P

IEP d
2
H
(ân; aP ) >

∼ 1/32en. (15)

4 On unbiased estimation

It is not difficult to notice that in most estimation problems concerning non-parametric
classes of distributions the available estimators are biased. The topic was studied by
a number of authors (see Pfanzagl [12] and references therein). Examples include non-
parametric density, regression curve, hazard function (failure rate) and tail index estima-
tion.

We notice in [7] that the sample autocorrelation is a non-negatively biased estimator
of the autocorrelation function (the bias is positive unless the distribution of the sample
elements is symmetric).
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Theorem 1 suggests a way of showing that there are no unbiased finite-variance esti-
mators for a given class P of distributions if the class contains a parametric family of
distributions obeying the regularity condition (R

H
) or (Rχ) with ν>2.

Example 3. Let Pb, where b>0, be the class of distributions P such that

sup
0<x≤1

∣∣∣x−α
P P (X<x)− 1

∣∣∣x−bα
P <∞ (∃α

P
>0)

(the Hall class). Note that F (x) ≡ P (X < x) = xα(1+O(xbα)) as x → 0 if P ∈ Pb .
We consider the problem of estimating index α ≡ α

P
from a sample of independent

observations when the unknown distribution belongs to Pb .
Let Pα,0 and Pα,γ be the distributions with distribution functions (d.f.s)

Fα,0(y) = yα1I{0 < y ≤ 1},
Fα,γ(y) = δ−γyα+γ1I{0<y≤δ}+ yα1I{δ<y≤1},

where δ = γ1/bα , γ∈(0; 1). One can check that

d2
H
(Pα,0;Pα,γ) = γ1/b

[
1−

√
1+γ/α

/
(1+γ/2α)

]
≤ γ1/r/8α2 , (16)

d2
χ
(Pα,0;Pα,γ) = γ1/rα−2(1 + γ/2α)−1 ≤ γ1/r/α2 , (17)

where r = b/(1 + 2b). Thus, (Rt,H) and (Rt,χ) hold with ν=2+1/b.
According to Theorem 1, there are no unbiased finite-variance estimators of index α.
Note that

d2
H
(Pα,0;Pα,h) ∼ h2+1/b/8α2 (h→ 0)

for the parametric family {Pα,h, 0≤h<1} ⊂ Pb , while

d2
H
(Pα,0;Pα+h,0) ∼ h2/8α2 (h→ 0)

for the parametric family {Pα+h,0, 0≤h<1} ⊂ Pb (cf. [10], p. 293).

The next theorem shows that in typical non-parametric situations there are no asymp-
totically unbiased with the rate estimators.

Let {Pn, n≥1} be a non-increasing sequence of neighborhoods of a particular distri-
bution P0 , and let {zn} be a sequence of positive numbers. Pfanzagl [12] calls estimator
{ân} asymptotically unbiased uniformly in Pn with the rate {zn} if

lim sup
u→∞

lim sup
n→∞

sup
P∈Pn

|IEPKu((ân − aP )/zn)| = 0,

where Ku(x) = x1I{|x|≤u}.
Denote Pn,ε = Pχ(P0, ε/

√
n ), where ε>0.
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Theorem 3 [12] Suppose that

lim sup
ε→0

ε−1 lim inf
n→∞

wχ(P0, ε/
√
n)/zn = ∞, (18)

lim
u→∞

lim inf
n→∞

P0(|ân − aP0|/zn ≤ u) > 0, (19)

lim
u→∞

lim inf
n→∞

IEP0K
2
u((ân − aP0)/zn) <∞. (20)

Then estimator {ân} cannot be asymptotically unbiased with the rate {zn} uniformly in
Pn,ε for some ε>0.

Pfanzagl [12] showed that in a number of particular non-parametric estimation prob-
lems

inf
ε>0

ε−c lim inf
n→∞

wχ(P0, ε/
√
n )/zn > 0 (∃ c∈(0; 1)) (21)

(cf. (10)). Note that (21) entails (18).

5 On consistent estimation

The rate of the accuracy of estimation can be poor if the class P of distributions is “rich”.
In utmost cases the lower bound is bounded away from zero meaning neither estimator is
consistent uniformly in P . We present below few such examples.

Example 4. Let F be a class of distributions with absolutely continuous distribution
functions on IR such that

∫
|f(x+y)− f(x)|dx ≤ |y|. Ibragimov & Khasminskiy [5] have

shown that
sup
f∈F

IEf

∫
|f̂n − f | ≥ 2−9 (n ≥ 1)

for any estimator f̂n of density f (see Devroye [2] for a related result).

Example 5. Consider the problem of non-parametric regression curve estimation. Given
a sample of i.i.d. pairs (X1, Y1), ..., (Xn, Yn), one wants to estimate the regression function

ψ(x) = IE{Y |X=x}.

There is no uniformly consistent estimator if the only assumption about L(X,Y ) is that
function ψ is continuous.

Let P be a class of distributions of random pairs (X,Y ) taking values in IR2 such
that function ψ(·) = IE{Y |X = ·} is continuous. Set

f0(x, y) = 1I{|x|∨|y| ≤ 1/2} , f1(x, y) = f0(x, y) + hg(xh−c)g(y) ,

where c> 0, h∈ (0; 1) and g(x) = sin(2πx)1I{|x|≤ 1/2}. These are the densities of two
distributions of a random pair (X,Y ).
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Let ψk , k∈{0; 1}, denote the corresponding regression curves. Then

ψ0 ≡ 0 , ψ1(x) = 2π−2h sin(2πh−cx)1I{|x|≤hc/2} .
Hence ∥ψ0 − ψ1∥ = 2π−2h.

Note that d2
χ
(f0; f1) ≤ h2+c/4. Applying Lemma 13.1 [10], we derive

max
i∈{0,1}

IPi

(
∥ψ̂n − ψ∥ ≥ h/π2

)
≥ (1+d2

χ
)−n/4 ≥ exp(−nh2+c/4)/4

for any regression curve estimator ψ̂n. With c = n−2 and h = n−1/n, we get

sup
P∈P

IP
(
∥ψ̂n − ψ∥ ≥ 1/9

)
≥ 1/4e1/4 . (22)

Hence no estimator is consistent uniformly in P .

Example 6. Consider the problem of non-parametric estimation of the distribution
function of the sample maximum. No uniformly consistent estimator exists in a general
situation. Indeed, it is shown in [8, 9] that for any estimator {F̂n} of the distribution
function of the sample maximum there exist a d.f. F such that

lim sup
n→∞

IPF

(
∥F̂n − F n∥ ≥ 1/9

)
≥ 1/3 .

Moreover, one can construct d.f.s F0 and F1 such that

max
i∈{0;1}

IPFi

(
∥F̂n − F n

i ∥ ≥ 1/4
)
≥ 1/4 (n≥1),

where F0 is uniform on [0; 1] and F1 ≡ F1,n → F0 everywhere as n→ ∞.
An estimator ãn(·) ≡ ãn(·, X1, ..., Xn) is called shift-invariant if

ãn(x,X1, ..., Xn) = ãn(x+c,X1+c, ..., Xn+c)

for every x∈ IR, c∈ IR. An estimator ãn(·) is called scale-invariant if

ãn(x, x1, ..., xn) = ãn(cx, cx1, ..., cxn) (∀c>0)

for all x, x1, ..., xn.
Examples of shift- and scale-invariant estimators of F n include F n

n , where Fn is the
empirical distribution function, and the “blocks” estimator

F̃n=
( [n/r]∑

i=1

1I{Mi,r<x}/[n/r]
)n
,

where Mi,r = max{X(i−1)r+1, ..., Xir} (1≤r≤n).
For any shift- or scale-invariant estimator {F̃n} of the distribution function of the

sample maximum there holds

IPF0

(
∥F̃n − F n

0 ∥≥1/4
)
≥ 1/4 (n≥1). (23)

Thus, consistent estimation of the distribution function of the sample maximum is only
possible under certain assumptions on the class of unknown distributions.
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6 On uniform convergence

We saw that the rate of the accuracy of estimation cannot be better than w
H
(P, 1/

√
n ).

According to Donoho & Liu [3], if aP is linear and class P of distributions is convex,
then there exists an estimator ân attaining this rate.

We show now that in typical non-parametric situations neither estimator converges
locally uniformly with the optimal rate.

Definition 5. Let P ′ be a subclass of P . We say that estimator ân converges to aP
with the rate zn uniformly in P ′ if there exists a non-defective distribution P ∗ such that

lim
n→∞

sup
P∈P ′

|P ((ân − aP )/zn ∈ A)− P ∗(A)| = 0 (24)

for every measurable set A with P ∗(∂A) = 0.

Note that for every P ∈ P ′ (24) yields the weak convergence (ân − aP )/vn ⇒ P ∗ .
The following result on impossibility of locally uniform convergence with the optimal

rate is due to Pfanzagl [11]. It involves a continuity modulus based on the total variation
distance.

Let X = IR . Denote P(n)
TV

(P0, ε) = {P ∈P : d
TV
(P n;P n

0 ) ≤ ε}, and recall that

w(n)
TV

(P0, ε) = sup
P∈P(n)

TV (P0,ε)

|aP − aP0|/2.

Theorem 4 [11] Suppose that

lim
ε↓0

ε−1 lim sup
n→∞

w(n)
TV

(P0, ε)/zn = ∞. (25)

Then neither estimator can converge to aP with the rate zn uniformly in P(n)
TV

(P0, ε) for
some ε∈(0; 1).

Example 7. Let P+
b , where b>0, be the non-parametric class of distributions on (0; 1]

with densities
f(x) = Cα,bx

α−1(1+r(x)),

where sup0<x≤1 |r(x)|x−αb <∞. We consider the problem of estimating index α.
Denote r = b/(1+2b) . Pfanzagl [11] showed that

ε−2r lim inf
n→∞

nrw(n)
TV

(P0, ε) > 0 (∀ε∈(0; 1)). (26)

12



Since r < 1/2, (25) and (26) entail that neither estimator of index α can converge to α
uniformly in P(n)

TV
(P0, ε) with the rate zn = n−b/(1+2b).

The next theorem presents a result on impossibility of locally uniform convergence
with the optimal rate involving the modulus of continuity w

H
based on the Hellinger

distance. The Hellinger distance may be preferable to the total variation distance in
identifying the optimal rate of the accuracy of estimation as there are cases where

d
TV
(P0;P1) ≫ d2

H
(P0;P1)

for “close” distributions P0 and P1. For instance, consider family P = {Pα,γ}γ≥0 , where
distributions {Pα,γ} have been defined in Example 3. Then

d
TV
(Pα,o;Pα,γ) ∼

γ1/r−1

αe
≫ d2

H
(Pα,o;Pα,γ) ∼

γ1/r

8α2
(γ → 0).

Theorem 5 If (9) holds for a particular P ∈ P with r < 1/2, then neither estimator
converges to aP with the rate n−r uniformly in P

H
(P, 1/

√
n ).

Theorem 5 generalises Theorem 13.9 in [10] by relaxing the assumption that there
exists a positive continuous derivative of distribution P ∗ with respect to the Lebesgue
measure.

Acknowledgments. The author is grateful to the anonymous reviewer for helpful
comments.
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