16

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Node Overlap Removal by Growing a Tree

Lev Nachmanson® Arlind Nocaj? Sergey Bereg® Leishi Zhang*

Alexander Holroyd*

Microsoft Research, Redmond, USA
2University of Konstanz, Konstanz, Germany
3The University of Texas at Dallas, Richardson, USA
4Middlesex University, London, UK

Abstract

Node overlap removal is a necessary step in many scenarios including
laying out a graph, or visualizing a tag cloud. Our contribution is a new
overlap removal algorithm that iteratively builds a Minimum Spanning
Tree on a Delaunay triangulation of the node centers and removes the node
overlaps by “growing” the tree. The algorithm is simple to implement,
yet it produces high quality layouts. According to our experiments it runs
several times faster than the current state-of-the-art methods.

1 Introduction

In a drawing of a graph the nodes are typically rendered as shapes of specific
sizes. Some graph layout algorithms (such as Sugiyama’s scheme [25, 4]) respect
the node sizes, while others (such as Multidimensional Scaling [17] and many
versions of Force Directed layouts) disregard the node sizes and treat all nodes
as points. Algorithms of the later type produce drawings where nodes might
overlap and hide important visual attributes. To remedy the problem, an overlap
removal algorithm is necessary. The task of an overlap removal algorithm is to
remove the overlap while keeping the layout similar to the original one.

‘We propose a novel overlap removal algorithm which we call Growing Tree, or
GTree. The main idea of GTree is to resolve the overlap by “growing” a special
tree which is built on graph nodes. We compared GTree with PRISM [6], which
is considered to be the state-of-the-art overlap removal algorithm.

GTree is the default overlap removal algorithm in MSAGL', and PRISM is
the default in Graphviz 2. To make a fair comparison we implemented GTree in
Graphviz, and PRISM in MSAGL, and then we ran comparisons by using both
tools.

2 Related Work

In the extensive literature on overlap removal, apparently the first paper on the
problem (which the authors called layout adjustment) was by Misue et al. [22].

Thttps://github.com/Microsoft /automatic-graph-layout
2http:/ /www.graphviz.org/

https://github.com/Microsoft/automatic-graph-layout
http://www.graphviz.org/

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

They presented several algorithms including force scan where spring forces be-
tween nodes are applied in vertical and horizontal scans. The layout adjustment
algorithms in [22] aim to preserve the “mental map” of the layout.

A simple solution of the node overlap removal is to scale up the drawing with
a minimum scale factor, which works if no two node centers coincide. While the
shape of the layout is preserved in this method, it may produce huge drawings.

Marriott et al. [21] explored a scaling method with two scale factors, one
for z-coordinates and one for y-coordinates. The disadvantage of this method
is that it produces drawings with extreme aspect ratios.

Some force-directed methods [5] have been extended to take the node sizes
into account [19, 18, 26], but it is difficult to guarantee overlap-free layouts
without increasing the repulsive forces excessively. Dwyer et al. [2] show how
to avoid node overlaps with Stress Majorization [7]. This method can remove
node overlaps during the layout step, but it needs an initial state that is overlap
free; sometimes such a state is not available.

In Cluster Busting [20, 8] the nodes are iteratively moved towards the centers
of their Voronoi cells. The process has the disadvantage of distributing the nodes
uniformly in a given bounding box.

Imamichi et al. [15] approximate the node shapes by circles and minimize a
function penalizing the circle overlaps.

Starting from the center of a node, RWorldle [24] removes the overlaps by
discovering the free space around a node by using a spiral curve and then uti-
lizing this space. The approach requires a large number of intersection queries,
which are time consuming. This idea is extended by Strobelt et al. [23] to
discover available space by scanning the plane with a line or a circle.

Another set of algorithms focuses on the idea of defining pairwise node con-
straints and translating the nodes to satisfy the constraints [22, 11, 21, 13].
These methods consider horizontal and vertical problems separately, which of-
ten leads to a distorted aspect ratio [6]. A Force-transfer-algorithm is introduced
by Huang et al. [14]; horizontal and vertical scans of overlapped nodes create
forces moving nodes vertically and horizontally; the algorithm takes O(n?) steps,
where n is the number of the nodes. Gomez et al. [9] develop Mixed Integer
Optimization for Layout Arrangement to remove overlaps in a set of rectangles.
The paper discusses the quality of the layout, which seems to be high, but not
the effectiveness of the method, which relies on a mixed integer problem solver.

The ProjSnippet method [10] generates good quality layouts. The method
requires O(n?) amount of memory, at least if applied directly as described in
the paper, and the usage of a nonlinear problem solver.

In PRISM 6, 12], a Delaunay triangulation on the node centers is used as the
starting point of an iterative step. Then a stress model for node overlap removal
is built on the edges of the triangulation and the stress function (expressing the
energy of the spring system) of the model is minimized

> wi(lles — x| — dij)?, (1)

(i,J)EEP

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

where d;; = s45]|2) — 29|| is the ideal distance for the edge (4,), (xf,%)) is the
current position of the node 4, s;; is a scaling factor, w;; = 1/d;; is a weighting
factor, and Ep is the set of edges of the Delaunay triangulation or, in general,
a proximity graph (V, Ep).

Dwyer et al. [3] reduce the overlap removal to a quadratic problem and solve
it efficiently in O(nlogn) steps. According to Gansner and Hu [6], PRISM is
superior to this method in quality and speed.

In general, PRISM is considered the current state-of-the-art. We will com-
pare GTree with PRISM. Like PRISM, GTree also begins by building the De-
launay triangulation as PRISM, but then the algorithms diverge.

We remark that a somewhat similar tree-growing procedure appears in the
remarkable sampling algorithm for branched polymers of Kenyon and Winkler
[16].

We continue below with the description of GTree.

3 GTree Algorithm

Input to GTree is a set of nodes V', where each node i € V is represented by
an axis-aligned rectangle B; with the center p;. We assume that for different
i,7 € V the centers p;, p; are different too. If this is not the case, we randomly
shift the nodes by tiny offsets. We denote by D a Delaunay triangulation of the
set {p; : 1 € V}}, and let E be the set of edges of D.

On a high level, our method proceeds as follows. First we calculate the
triangulation D, then we define a cost function on F and build a minimum cost
spanning tree on D for this cost function. Finally, we let the tree “grow”. The
steps are repeated until there are no more overlaps. The last several steps are
slightly modified. Now we explain the algorithm in more detail.

First we define cost function ¢ on E, following the definition in PRISM.

Namely, let (i,7) be an edge of E. If rectangles B; and B; do not overlap
(their interiors do not intersect), then c(i,j) = dist(B;, B;), which is the min-
imum of distances between a point in B; and a point in B;. Otherwise, for a
real number ¢ let us denote by B;(t) the rectangle obtained from B, by shifting
it to the new center at p; + t(p; — p;). There is a unique t;; > 1 such that
the rectangles B; and Bj(t;;) touch each other. Let s = ||p; — p;||, where [|||
denotes the Euclidean norm. We set ¢(4,j) = —(t;; —1)s. One can see, that the
cost is negative for an edge connecting overlapped nodes. See Figure 1 for an
illustration.

Now we have a weighted Delaunay graph with cost function ¢, and we com-
pute a minimum spanning tree 7' on this graph. In our implementation we use
Prim’s algorithm to find T

In the next step, we create a rooted tree from T by selecting a root vertex
in T randomly. Then GTree proceeds by growing the rooted tree, similar to
the growth of a tree in nature. The tree growing procedure can be described as
follows. Let i be a vertex of the rooted tree. For each child j of i we compute
the new position of j. If the rectangles of nodes i and j do not overlap, we

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

B

J

D
52 /d/ d = tijs L dist(B;, B;)

Di ’ Cij =8 — d B; Cij = d’LSt(B“ Bj)

overlapping nodes non overlapping nodes

Figure 1: Cost function c;; for edges of the Delaunay triangulation. For over-
lapping nodes —c;; is equal to the minimal distance that is necessary to shift
the boxes along the edge direction so they touch each other.

keep the vector from i to j unchanged. Otherwise, we keep the direction of this
vector constant but increase its length, by moving j further away from ¢, until
the rectangles stop overlapping. Vertex ¢ is chosen by the depth-first search
algorithm starting from the root. This process is described in Algorithm 1.

Algorithm 1: Growing T’

Input: Current center positions p and root r
Output: New center positions p’
1 p.=p;
2 GrowAtNode (r)
3 function GrowAtNode (i)
4 foreach j € Children(i) do
p; = p; +tij(pj — pi)
GrowAtNode (j);

<23

The number ¢;; in line 5 of Algorithm 1 is the same as in the definition of
the cost of the edge (¢,7) when nodes B; and B; overlap, and is 1 otherwise.

The algorithm does not update all positions for the child sub-tree nodes
immediately, but updates only the root of the sub-tree. Using the initial posi-
tions of a parent and a child, and the new position of the parent, the algorithm
obtains the new position of the child in line 5. In total, Algorithm 1 works in
O(|V']) steps. The choice of the root of the tree does not matter. Different roots
produce the same results modulo a translation of the plane by a vector. Indeed
it can be shown that after applying the algorithm, for any ,j € V the vector
p; — pj is defined uniquely by the path from i to j in 7.

While an overlap along any edge of the triangulation exists, we iterate, start-
ing from finding a Delaunay triangulation, then building a minimum spanning
tree on it, and finally running Algorithm 1. See Figure 2 for an example.

When there are no overlaps on the edges of the triangulation, as noticed
by Gansner and Hu [6], overlaps are still possible. We follow the same idea as
PRISM and modify the iteration step. In addition to calculating the Delaunay
triangulation we run a sweep-line algorithm to find all overlapping node pairs
and augment the Delaunay graph D with each such a pair. As a consequence,
the resulting minimum spanning tree contains non-Delaunay edges catching the

144

145

146

147

148

149

(d) after iteration 3 (e) after iteration 4 (f) the final drawing

Figure 2: GTree iterations. The lines connecting the rectangle centers represent
E. The blue edges form tree T. The edges of T' connecting overlapped nodes
are thick. A few edges of T are in addition dashed: They correspond to new
created overlaps. In this run an edge representing overlap, such an edge is thick
and blue, is elongated by not more than 1.5 times. Surprisingly, the overlap is
removed in four iterations.

overlaps, and the rest of the overlaps are removed. This stage usually requires
much less time than the previous one.

()
et)

v‘

(a) initial state (b) iteration 1 (c) before iteration 2

Figure 3: In this configuration each pair of neighboring ellipses touch each
other, except of two that overlap. The solid straight lines display the minimum
spanning tree that is used by GTree. The ellipse with the dashed border plays
a role of the tree root. By unfortunate choosing the tree edges we can bring
the algorithm to cycle. As we see, after applying the algorithm at c) we again
arrive to a), the initial state. The cycling will be broken when at least one of
the edges edges adjacent to the centers of three bottom ellipses is left out of the
tree.

One can view our GTree algorithm as a minimization of the stress function
from Equation (1) when the proximity graph (V, E,) is a tree.

It is possible to create an example where the algorithm will not remove all
overlaps, see Figure 3. However, such examples are extremely rare and have

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

not been seen yet in practice of using MSAGL or in our experiments. MSAGL
applies random tiny changes to the initial layout which prevents GTree from
cycling.

In the following paragraphs we describe some situations when GTree prov-
ably converges.

Observe first that, if all nodes are boxes of the same size with centers be-
longing to the same straight line, then GTree removes the overlap using just one
iteration. Furthermore, in this situation GTree preserves the node order along
the line. Example 4 with nodes on two horizontal lines shows that one iteration
of GTree is not sufficient.

P1 p2 P3 P4
7777777 Hl-¢o—H—-——|+ 8 —|+ — — — — — —
7777777 -——f—&—1—@® — + — — — — — —

Figure 4: There could be more than one iteration of the algorithm GTree for a
layout in two lines. The rectangles Bs and Bj are shown using different heights
for clarity. The minimum spanning trees of GTree are shown in red.

We show that, for some layouts, GTree converges to overlap-free layouts
while preserving some properties of the initial layout.

Theorem 1 Suppose that

1. the centers of the nodes in V' are located on horizontal lines such that the
distance between any two lines is at least d, and

2. all nodes are closed rectangles B;,i = 1,...,n having the same width and
height, and height less than d.

Then GTree removes all node overlaps and finds an overlap-free layout of G in
at most n iterations, while keeping the node positions on the same horizontal
lines.

Proof:

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

We define a graph Fy for a given set of nodes V and their positions in the
plane as follows. The set of vertices of Fy is V. Two nodes i and j from V are
connected by an edge if and only if

(i) ¢ and j have their centers on the same horizontal line,

(ii) no other center on the same horizontal line lies between the centers of 4
and j,

(iii) and the rectangles of ¢ and j intersect each other; B; N B; # ().

It is straightforward to check that Fy, is a subgraph of a minimum spanning
tree produced by GTree. At each step the number of connected component in
Fy cannot increase. If it remains the same, then after the step there are no
overlaps. Since the initial number of components is at most n, this concludes
the proof. O

Corollary 2 The conclusion of Theorem 1 still holds if the widths of the rect-
angles on the same line are the same, and the projections to y-axis of any two
rectangles on different lines are disjoint.

4 Comparing PRISM and GTree by Measuring
Layout Similarity, Quality, and Run Time

Our data includes the same set of graphs that was used by the authors of
PRISM to compare it with other algorithms [6]. The set is available in the
Graphviz open source package®. We also used a small collection of random
graphs and a collection of about 10,000 files residing here*. For the experiments
we use a modified version of Dot, where we can invoke either GTree or Prism
for the overlap removal step, and we also used MSAGL, where we implemented
PRISM and GTree. MSAGL was used only to obtain the quality measures. We
ran the experiments on a PC with Linux, 64bit and an Intel Core i7-2600K
CPU@3.40GHz with 16GB RAM.

Some of resulting layouts can be seen in Figures 5,7,8. In Figure 5, we see
that the layouts of PRISM have less drawing area but the nodes are uniformly
condensed within this area. This tendency can be seen in almost all drawings
of PRISM. On the other hand, the layouts produced by GTree usually occupy
larger area but the “structure” of the initial layout is preserved better, helping to
maintain the “mental map”. It can be seen especially on drawings with clusters.
The main reason explaining this phenomenon is that the proximity graph in
PRISM includes all Delaunay edges. Some of these edges belong to the boundary
of the initial layout and, according to the stress function from Equation (1),
PRISM attempts to preserve their length and, therefore, the perimeter of the
layout. Also Delaunay triangulation may have long edges that do not correspond

Shttp://www.graphviz.org
4https://github.com/Microsoft /automatic-graph-layout/

http://www.graphviz.org/
https://github.com/Microsoft/automatic-graph-layout/blob/master/GraphLayout/Test/MSAGLTests/Resources/DotFiles/AndyFiles/andy.zip

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

to an overlap. PRISM again tries to preserve their length in the stress function
which constricts overlap removal for other edges. In contrast, the minimum
spanning tree used in GTree has fewer those kind of edges.

We consider the area of the final layout as one of the quality measures.
Usually PRISM produces a smaller area than GTree, see Table 1.

In addition to comparing the areas, we compare some other layout properties.
Following Gansner and Hu [6], we look at edge length dissimilarity, denoted as
Oedge- This measure reflects the relative change of the edge lengths of a Delaunay
Triangulation on the node centers of the original layout.

The other measure, which is denoted by ¢g;sp, is the Procrustean similar-
ity [1]. It shows how close the transformation of the original graph is to a
combination of a scale, a rotation, and a shift transformation. PRISM and
GTree perform similar in the last two measures as Table 1 shows.

To distinguish the methods further, we measure the change in the set of k
closest neighbors of the nodes. Namely, let pi,...,p, be the positions of the
node centers, and let k be an integer such that 0 < k <n. Let I = {1,...,n}
be the set of node indices. For each i € I we define Ny (i) C I\ {i}, such that
|Nk(p,i)| = k, and for every j € I\ Ni(p,i) and for every j' € Ni(p,i) holds
lp; — pill > llpjs — pill.- In other words, Ny (p,i) represents a set of k closest
neighbors of i, excluding . Let pj,...,p), be transformed node centers. To
see how much the layout is distorted nearby node 4, we intersect Ni(p,i) and
Ni(p',i). We measure the distortion as (k — m)?, where m is the number of
elements in the intersection. If a node preserves its k closest neighbors then the
distortion is zero.

Our experiments for k from 8 to 12 show that under this measure GTree
produced a smaller error, showing less distortion, on 8 graphs from 14, and on
the rest PRISM produced a better result, see Table 2. GTree produced smaller
error on all small random graphs.

Table 1: Similarity to the initial layout (left) and number of iterations for
different graph sizes and different initialization methods (right). PR stands for
PRISM (0edge and ogisp) and the final layout area.

Graph PR GTree PR GTree PR GTree init. layout: I L o
dpd 0.34 [0:28° 0.37 [0:36 0.82 0.84 Graph |V |E| PR GTree PR Glre
unix 022 019 024 020 238 238 dpd 36 08 47 3 6
rowe 029 026 023 024 0.68 0.73 unix 41 493 4 12
size 0.39 037 024 026 109 1.28 ve . 2% THN YN
ngkl04 030 030 027 030 0.00 0.00 et o e B
NaN 0.56 [0.44° 0.73 (051 4.03 4.34 ;gNi ‘7’6 191 s 01 BB
b124 0.55 053 097 083 552 6.22 a

b124 79 281 14 4 30 12
b143 0.67 070 112 093 3.62 3.88 ; : :
mode 0.54 (0507 0.59 0.53 153 2.29 bus 135 366 21 puuy 37 N

: . . . : : mode 213 269 37 8 11 6

b102 0.71 0.77 1.43 127 4.50 6.62

b102 302 611 60 24 113 19
XX 0.75 0.70 1.65 142 6.21 9.57

xx 302 611 83 18 50 19
root 109 119 289 245 34.58 9187 oot 1054 1083 os M o BB
badvoro 0.88 0.92 227 242 25.68 47.43 badvoro 1235 1616 20 NEN o BB
b100 0.84 098 3.08 3.4 20.64 37.38 bioo 1463 5806 so MEH 136 BB

We ran tests on the graphs from a subdirectory of MSAGL called Andy-

https://github.com/Microsoft/automatic-graph-layout/blob/master/GraphLayout/Test/MSAGLTests/Resources/DotFiles/AndyFiles/andy.zip
https://github.com/Microsoft/automatic-graph-layout/blob/master/GraphLayout/Test/MSAGLTests/Resources/DotFiles/AndyFiles/andy.zip
https://github.com/Microsoft/automatic-graph-layout/blob/master/GraphLayout/Test/MSAGLTests/Resources/DotFiles/AndyFiles/andy.zip

PRISM original layout GTree

Figure 5: Comparison between PRISM, original, and GTree layouts. In four
top rows the initial layouts were generated randomly. At the bottom are the
drawings of nodes of graph “root” which was initially laid out by the Multi
Dimensional Scaling algorithm of MSAGL. In our opinion, the initial structure
is more preserved in the right column, containing the results of GTree.

https://github.com/Microsoft/automatic-graph-layout/blob/master/GraphLayout/Test/MSAGLTests/Resources/DotFiles/AndyFiles/andy.zip
https://github.com/Microsoft/automatic-graph-layout/blob/master/GraphLayout/Test/MSAGLTests/Resources/DotFiles/AndyFiles/andy.zip

237

238

239

240

241

242

243

244

245

246

247

248

249

250

Table 2: k closest neighbors error, the Multi Dimensional Scaling algorithm of
MSAGL was used for the initial layout. PR stands for PRISM.

k=8 k=9 k=10 k=11 k=12
Graph PR GTree PR GTree PR GTree PR GTree PR GTree
dpd 7.75 0 6.06 9.61 7.36 9.5 8 10.14 85 997 T7.64
unix 856 ~ 7.05 10.51 8.8 10.95 10.02 11.66 10.54 13 11.41
rowe 628 8.09 7.09 995 749 1049 9.12 114 11.05 1251
size 4.68 6.09 547 6.47 6.28 7.57 6.89 813 826 10.02
ngkl04 6.76 74 752 926 828 11.38 10.72 13.74 11.92 14.66
NaN 11.83 895 14.46 11.5 17.32 13.88 19.88 16.37 22.17 19.7

b124 11.03 11.44 1322 13.56 14.76 15.54 15.91 17.32 18.23 20.04
b143 13.49 1239 16.31 14.99 19.49 17.93 23.11 21.04 26.53 24.43

mode 16.91 11.46 20.58 13.95 24.68 16.85 29.54 19.92 34.48 22.56
b102 15.99 14.62 19.61 18.78 23.38 | 22.77 27.28 26.77 32.15 31.45
XX 15.68 1 15.65 19.01 19.45 23.05 23.37 26.98 27.35 31.29 32.47
root 17.09 © 15.7 20.89 19.36 25.48 23.3 30.48 27.66 35.74 32.83
badvoro 16.18 15.15 20.16 | 18.98 24.37 23.28 29.18 28.03 34.29 33.29
b100 18 19.25 22.11 23.65 26.79 28.69 32.03 34.46 37.44 40.5

Files®. Let us call this set of graphs collection A. Each graph from A represents
the control flow of a method from a version of the .NET framework. A contains
10077 graphs. The graph sizes do not exceed several thousands. We used the
Multi Dimensional Scaling algorithms of MSAGL for the initial layout in this
test. The results of the run are summarized in Table 3.

Table 3: Statistics on collection A. Here k-cn stands for k-closest neighbors,
and “iters” stands for the number of iterations. Each cell contains the number
of graphs for the measure on which the method performed better. We can see
that PRISM produced a layout of smaller area than the one of GTree on 8498
graph, against 1579 graphs where GTree required less area. From the other
side, GTree gives better results on all other measures. The columns of k-cn and
“iters” do not sum to 10077, the number of graphs in A, because some of the
results were equal for PRISM and GTree.

Method k-cn Gedge Oaisp Area iters time
PRISM 3237 4741 4114 8498 46 7
GTree 4088 5336 5963 1579 9986 10070

Runtime Comparison

Both methods remove the overlap iteratively using the proximity graph. How-
ever, while PRISM needs O(|V|-+/]V]) time to solve the stress model, GTree
needs only O(|V|) time per iteration with the growing tree procedure. There-
fore, GTree is asymptotically faster in a single iteration. In addition, as Table 1
(right) shows, GTree usually needs fewer iterations than PRISM, especially on
larger graphs. The overall runtime can be seen in Figure 6.

In addition, we ran experiments on large random graphs. For n = 10000
and n = 100000 we created a set of n circles with a radius 66 and a random

Shttps://github.com/Microsoft /automatic-graph-layout/

10

https://github.com/Microsoft/automatic-graph-layout/blob/master/GraphLayout/Test/MSAGLTests/Resources/DotFiles/AndyFiles/andy.zip
https://github.com/Microsoft/automatic-graph-layout/blob/master/GraphLayout/Test/MSAGLTests/Resources/DotFiles/AndyFiles/andy.zip

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

Overlap Removal Method 4 PRISM « GTree

Graph V| [E| PRISM GTree A
dpd 36 108 0.01 0.00
unix 41 49 0.00 0.00
rowe 43 68 0.01 0.01
size 47 55 0.00 0.01
ngkl0_4 50 100 0.00 0.00
NaN 76 121 0.01 0.00
b124 79 281 0.01 0.01
b143 135 366 0.03 0.00

N
h

1%}
A
£ mode 213 269 008 0.02 ~
g b102 302 611 019 007
= XX 302 611 027 005 A
1. root 1054 1083 119 0.21
badvoro 1235 1616 058 0.26
b100 1463 5806 1.46 0.37
7
7y
A
0- ma b s °?
0 500 1000 1500

Graph size |V|

Figure 6: Running times for PRISM and GTree.

chosen center inside of a square with a side of length 1000. Then we removed
the overlaps by running PRISM and GTree and repeated this experiment 10
times. For n. = 10000 PRISM required from 50 to 65 iterations for, while GTree
required from 19 to 24. For n = 100000 PRISM required between 77 and 100,
while GTree required from 25 to 29 iterations. It shows that GTree outperforms
PRISM on larger graphs.

In Figure 7 we experiment with the way we expand the edges. Instead of
the formula p’, = p; +t;;(p; — pi), which resolves the overlap between the nodes
i and j immediately, we use the update p} = p; + min(t;;,1.5)(p; — pi). As a
result, the algorithm runs a little bit slower but produces layouts with smaller
area.

5 Conclusion & Future Work

We proposed a new overlap removal algorithm that uses the minimum spanning
tree. We compared the algorithm with PRISM, which is the current state-of-
the-art method of overlap removal. We found out that GTree is asymptotically
faster, and in general faster than PRISM. We applied four quality measures to
the results. GTree was better in every measure except one; GTree drawings
usually require more area. GTree is much simpler and easier to implement than
PRISM. We hope that GTree will be used widely.

Although we introduced our approach in the context of graph visualization,
one can notice that we never used the edges of the original graph. GTree can be

11

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

used for any other purpose where overlap needs to be resolved while maintaining
the initial layout.

Finding a measure of how well an overlap removal algorithm preserves clus-
ters of the initial layout seems to be an interesting challenge.

One of the directions for future work could be exploring other families of
proximity graphs (V, Ep) and analyze how they affect the final layout.

One issue concerns breaking ties between edges of equal cost when construct-
ing the spanning tree. In particular, the example in Figure 3 shows that if ties
are broken arbitrarily then the algorithm may not converge (at least in contrived
instances). To address this, we propose breaking ties at random: at each step,
any set of edges with equal costs are assigned a uniformly random order, which
is used to select edges for the spanning tree. With this method, it is straight-
forward to show that the example in Figure 3 converges in expected number of
steps O(|V|) (although we believe that typical instances converge much faster).

Conjecture 3 Suppose that, in choosing the spanning tree in the GTree algo-
rithm, we break ties between edges of equal cost uniformly at random. Then the
algorithm stops with probability one.

References

[1] I. Borg and P. Groenen. Modern multidimensional scaling: Theory and
applications. Springer, 2005.

[2] T. Dwyer, Y. Koren, and K. Marriott. Ipsep-cola: An incremental proce-
dure for separation constraint layout of graphs. IEEFE Trans. Vis. Comput.
Graph., 12(5):821-828, 2006.

[3] T. Dwyer, K. Marriott, and P. J. Stuckey. Fast node overlap removal. In
Graph Drawing, pages 153-164. Springer, 2006.

[4] C. Friedrich and F. Schreiber. Flexible layering in hierarchical drawings
with nodes of arbitrary size. In V. Estivill-Castro, editor, ACSC, volume 26
of CRPIT, pages 369-376. Australian Computer Society, 2004.

[5] T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-directed
placement. Software - Practice and Ezperience, 21(11):1129-1164, 1991.

[6] E. R. Gansner and Y. Hu. Efficient, proximity-preserving node overlap
removal. J. Graph Algorithms Appl., 14(1):53-74, 2010.

[7] E. R. Gansner, Y. Koren, and S. C. North. Graph drawing by stress ma-
jorization. In J. Pach, editor, Graph Drawing, volume 3383 of Lecture Notes
in Computer Science, pages 239-250. Springer, 2004.

[8] E. R. Gansner and S. C. North. Improved force-directed layouts. In
S. Whitesides, editor, Graph Drawing, volume 1547 of Lecture Notes in
Computer Science, pages 364-373. Springer, 1998.

12

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

[9]

[12]

[13]

[14]

E. Gomez-Nieto, W. Casaca, L. G. Nonato, and G. Taubin. Mixed integer
optimization for layout arrangement. In Graphics, Patterns and Images
(SIBGRAPI), 2013 26th SIBGRAPI-Conference on, pages 115-122. IEEE,
2013.

E. Gomez-Nieto, F. San Roman, P. Pagliosa, W. Casaca, E. Helou, M. Fer-
reira de Oliveira, and L. Nonato. Similarity preserving snippet-based visual-
ization of web search results. IEEE Trans. Vis. Comput. Graph., 20(3):457—
470, 2014.

K. Hayashi, M. Inoue, T. Masuzawa, and H. Fujiwara. A layout adjustment
problem for disjoint rectangles preserving orthogonal order. Systems and
Computers in Japan, 33(2):31-42, 2002.

Y. Hu. Visualizing graphs with node and edge labels. CoRR, abs/0911.0626,
2009.

X. Huang and W. Lai. Force-transfer: A new approach to removing overlap-
ping nodes in graph layout. In M. J. Oudshoorn, editor, ACSC, volume 16
of CRPIT, pages 349-358. Australian Computer Society, 2003.

X. Huang, W. Lai, A. Sajeev, and J. Gao. A new algorithm for re-
moving node overlapping in graph visualization. Information Sciences,
177(14):2821-2844, 2007.

T. Imamichi, Y. Arahori, J. Gim, S.-H. Hong, and H. Nagamochi. Remov-
ing node overlaps using multi-sphere scheme. In I. G. Tollis and M. Patrig-
nani, editors, Graph Drawing, volume 5417 of Lecture Notes in Computer
Science, pages 296—-301. Springer, 2008.

R. Kenyon and P. Winkler. Branched polymers. American Mathematical
Monthly, 116(7):612-628, 20009.

J. B. Kruskal. Multidimensional scaling by optimizing goodness of fit to a
nonmetric hypothesis. Psychometrika, 29(1):1-27, 1964.

W. Li, P. Eades, and N. S. Nikolov. Using spring algorithms to remove
node overlapping. In S.-H. Hong, editor, APVIS, volume 45 of CRPIT,
pages 131-140. Australian Computer Society, 2005.

C.-C. Lin, H.-C. Yen, and J.-H. Chuang. Drawing graphs with nonuniform
nodes using potential fields. J. Vis. Lang. Comput., 20(6):385-402, 2009.

K. A. Lyons, H. Meijer, and D. Rappaport. Algorithms for cluster busting
in anchored graph drawing. J. Graph Algorithms Appl., 2(1), 1998.

K. Marriott, P. J. Stuckey, V. Tam, and W. He. Removing node overlapping
in graph layout using constrained optimization. Constraints, 8(2):143-171,
2003.

13

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

[22]

[23]

K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout adjustment and the
mental map. J. Vis. Lang. Comput., 6(2):183-210, 1995.

H. Strobelt, M. Spicker, A. Stoffel, D. Keim, and O. Deussen. Rolled-out
wordles: A heuristic method for overlap removal of 2d data representatives.
In Computer Graphics Forum, volume 31, pages 1135-1144. Wiley Online
Library, 2012.

H. Strobelt, M. Spicker, A. Stoffel, D. A. Keim, and O. Deussen. Rolled-out
wordles: A heuristic method for overlap removal of 2d data representatives.
Comput. Graph. Forum, 31(3):1135-1144, 2012.

K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding
of hierarchical system structures. IEEE Transactions on Systems, Man,
and Cybernetics, 11(2):109-125, 1981.

X. Wang and I. Miyamoto. Generating customized layouts. In F.-J. Bran-
denburg, editor, Graph Drawing, volume 1027 of Lecture Notes in Computer
Science, pages 504—-515. Springer, 1995.

14

Figure 7: root graph with 1054 nodes and 1083 edges. (a) initial layout with
NEATO, (b) applying PRISM, (c) applying GTree.

15

===

==

original PRISM

GTree original PRISM

Figure 8: Results for GTree and PRISM initialized with SFDP. From top to
bottom and left to right: b100, b102, b124, b143, badvoro, dpd, mode, - NaN,
ngk10_4, root, rowe, size, unix, and xx. To make the original drawings more
readable they have been changed; In most cases the nodes were diminished and
the edges removed. The drawings were scaled differently.

16

	Introduction
	Related Work
	GTree Algorithm
	Comparing PRISM and GTree by Measuring Layout Similarity, Quality, and Run Time
	Conclusion & Future Work

