
The final publication is available at Springer via 
https://doi.org/10.1007/978-3-031-21488-2_3 

 

 

 

 

 

 

Supporting the Individuation, Analysis and Gamification 
of Software Components for Acceptance Requirements 

Fulfilment 
 

 

 

 

 

 

 

 

 

 

Recommended Citation: 

F. Calabrese, L. Piras, and P. Giorgini, “Supporting the Individuation, Analysis 
and Gamification of Software Components for Acceptance Requirements 
Fulfilment”, in 15th International Conference on the Practice of Enterprise 
Modeling (PoEM). Springer, 2022. 



Supporting the Individuation, Analysis and
Gamification of Software Components for

Acceptance Requirements Fulfilment

Federico Calabrese1, Luca Piras2 and Paolo Giorgini1

1 Department of Information Engineering and Computer Science,
University of Trento, Trento, Italy

federico.calabrese@alumni.unitn.it

paolo.giorgini@unitn.it
2 Department of Computer Science,

Middlesex University, London, United Kingdom
L.Piras@mdx.ac.uk

Abstract. In the last few years, Gamification has proved effective for
motivating users in using software systems. Gamification Engineering
has been proposed as a systematic way to gamify systems. Goal-Oriented
Requirements Engineering (GORE) techniques have been emerging for
supporting the gamification of a system from the initial stages. How-
ever, the gamification of a system itself proved not effective, unless
requirements engineers design the gamification solution being driven by
characterising users, the context, and considering factors and strategies
coming from Social Sciences (e.g., Psychology, Sociology, Human Be-
haviour, Organisational Behaviour). GORE Gamification Engineering
techniques have been enhanced for supporting such concepts, referred
to as Acceptance Requirements, and the Agon Framework, with its
systematic Acceptance Requirements Analysis Based on Gamification,
has been proven effective in different EU Projects. However, according
to engineers we interviewed in our projects, some GORE gamification
activities remain difficult and require further support. In this paper, our
contributions are: (i) individuating such activities and providing lessons
learned, (ii) considering a crucial activity, i.e. individuation of software
components to gamify and how to gamify them, and proposing a solution
for this. Our solution is called Supporting the individuation, analysis, and
GAMification (SiaGAM) algorithm. To evaluate SiaGAM, we considered
the gamification results of 5 EU projects, compared them with the re-
sults of applying SiaGAM, and we found that SiaGAM is effective in
supporting the engineer in individuating software functions to gamify.

Keywords: Requirements Engineering · Acceptance Requirements ·
Gamification · Goal Models · Goal Modeling Analysis · Software Engi-
neering



2 F. Calabrese et al.

1 Introduction

Gamification is becoming a crucial element to consider when designing software
systems to engage the user and to stimulate them to use the system [1,12,18].
Gamification has been defined by Deterding et al. as ‘‘the use of game design
elements in non-game contexts’’ [6]. Non-game contexts are environments whose
purpose is not to have fun but to induce a certain behaviour in the user [7].
This behaviour allows to fulfill the goals of the environment. A potential way to
encourage the user to embrace such behaviour is to use game design elements [6].
This means that it is possible to decorate system functions with game elements,
thus making software more attractive, interesting, and engaging for the user [5,25].

Accordingly, in the Software Engineering area, the important term and concept
of ‘‘Gamification Engineering’’ has been proposed recently and, as far as we know,
the first related definition comes from Piras et al. ‘‘Gamification Engineering is
the Software Engineering of Gamification’’ [17, 22]. Gamification Engineering
includes new languages, engines, models, frameworks, and tools [9, 17--19, 21--
23, 25] for making the gamification of software systems more systematic and
supported. In relation to Requirements Engineering, Goal-Oriented Requirements
Engineering (GORE) techniques emerged for supporting the gamification of a
system from the initial stages. However, the gamification of a system itself has
proved not effective unless requirements engineers design the gamification solution
being driven by user characterisation and considering factors and strategies
coming from Social Sciences (e.g., Psychology, Sociology, Human Behaviour,
Organisational Behaviour) [5,7, 16--19,25]. Consequently, GORE Gamification
Engineering techniques have been enhanced to support such concepts, referred
to as Acceptance Requirements. In parallel, the Agon Framework, with its
systematic Acceptance Requirements Analysis Based on Gamification, proved
effective in different EU Research Projects [11,17--19,23].

In this context, according to the perspective of requirements analysts, the
current GORE gamification engineering techniques are considered useful [11,
17--19, 23]. However, requirements analysts also identified that some GORE
gamification activities, although useful, remain difficult and require further
support or improvement [18]. Accordingly, we derived the following Research
Questions (RQs), which we address in this paper:

RQ1. What are the current gamification supporting phases that can be im-
proved or automated to better support the analyst in the gamification of
software systems?
RQ2. How can we support the analyst in the analysis and individuation of
software functionalities to gamify in a guided/supported/automated way?

To answer RQ1, we identified within our projects [11,17--19,23] the activities
that are still complex and difficult to carry on, and thus require support or im-
provement. We obtained such insights by observing analysts directly using GORE
gamification engineering techniques, and by interviewing them via questionnaires.

RQ2 concerns the investigation on how to further support analysts regarding
problematic activities found through RQ1. The most problematic activity,



Individuation and Gamification of Components for Software Acceptance 3

indicated by analysts as requiring more support [18], concerns the identification
of the subset of software components to gamify. This is a crucial aspect because
the gamification of the entire software system can be expensive and could not give
the expected outcome [5,25]. Thus, to minimise organisations’ effort and costs
related to gamification design activities, it is necessary to identify what subset of
system functionalities it is better to gamify [5, 25]. In this paper, the solution we
devised to address RQ2 is an algorithm that we call: Supporting the individuation,
analysis, and GAMification (SiaGAM) of software components. SiaGAM guides
and supports the analyst in a semi-automated way by: (i) representing the
software to be gamified as a goal model; (ii) characterising software functionalities
in relation to different qualities; (iii) guiding during functionalities annotation,
using the algorithm in a semi-automated way, to identify the set of functionalities
to consider to gamify according to criteria identified.

To evaluate SiaGAM, we considered the gamification results obtained in
5 case studies from EU projects [11, 17--19, 23]. We focused on the subsets of
functionalities that had to be gamified, and had been selected manually by the
researchers. We then applied SiaGAM to the same goal models and obtained
subsets of functionalities to consider to be gamified. Finally, we compared
our results with the previous ones, and we found that SiaGAM is effective in
supporting the analyst in identifying software functionalities to gamify, as it can
derive the same set of functionalities. It is important to note that the results of
the projects had been obtained manually: analysts highlighted this aspect as the
one needing further support [18]. An essential advantage of SiaGAM is that it
offers analogous results in a guiding, supporting, and semi-automated way.

The rest of the paper is organised as follows: section 2 addresses RQ1,
discussing lessons learned identifying which gamification activities require more
support and how to provide it. Section 2 also provides the basis and motivation
for RQ2, explaining the context in which our algorithm and approach are applied.
Section 3 addresses RQ2 describing our algorithm and approach. Section 4
addresses RQ2 by describing our case study and the evaluation of SiaGAM.
Section 5 discusses related work, while section 6 concludes this work.

2 Motivation and Lessons Learned

In this section we address RQ1. Specifically, in 2.1 we outline the Agon Frame-
work and its systematic Acceptance Requirements Analysis based on Gamification,
focusing on the phases relevant to our RQs. In 2.2, we summarise research projects
where Agon has been applied successfully, and address RQ1 by discussing Lessons
Learned (LL) we derived from such real-world experiences.

2.1 Agon Framework

Agon [17, 18, 21--23] is a framework for performing systematic Acceptance Re-
quirements analysis on software systems based on modeling, analysis and strate-
gies to fulfil such requirements using Gamification operationalisations. Agon



4 F. Calabrese et al.

allows to analyse and gamify any kind of software, as demonstrated in many
domains [17,18,21--23]. For instance, it has been applied successfully to a real
case study within the PACAS EU Project [17,23] to analyse Acceptance Require-
ments and gamify the PACAS platform in the context of architectural change
management for ATM (Air Traffic Management) systems.

Agon is composed of a multi-layer meta-model (Fig. 1), based on Goal
Modeling, extending the NFR framework [4, 13,15]. It has been designed with

Fig. 1: Simplified example of Agon Multi-Layer Meta-Model [17, 23], descriptions
of the example available at [17,21,22], and the Agon full models available at [20]

the next models [17, 23]: (i) Acceptance Meta-Model (AM) capturing user needs,
which the analyst can consider to determine aspects able to stimulate the target
user, to accept and use a software system; (ii) Tactical Meta-Model (TM), which
allows the analyst to identify tactical goals, as refinements for needs selected in
AM [21]; (iii) Gamification Meta-Model (GM), which provides the analyst with
ready-to-use, game design solutions operationalising tactical goals and (in turn)
needs selected in the higher-level models (AM and TM) [21]; (iv) Instance Model
(IM), produced by the analyst via a goal modeling language. This instantiates
GM by defining tasks, relations and lower-level gamification goals. The final
purpose of IM is to decorate software functions by instantiating and configuring
ready-to-use game-based elements (suggested by Agon and chosen also taking into
account the specific software domain) to stimulate the target user [17, 18, 21, 23].

The next 2 subsections briefly illustrate the first 2 phases of the Agon process,
to which we applied SiaGAM to further support the analyst addressing RQ2.
The third subsection summarises the other phases of the Agon process, which
are relevant for discussing our lessons learned (RQ1).
Phase 1: Base System Requirements Modelling (BSRM). This is the
first activity analysts performs with the Agon process. The aim is to analyse the



Individuation and Gamification of Components for Software Acceptance 5

software to gamify, for creating a Goal Model representing the system and its
functionalities [17,18]. Those will be potential functionalities to gamify through
analysis of acceptance requirements, tactics and game design strategies [17,18,23].
Phase 2: Acceptance Requirements Elicitation Analysis (AREA). In
this phase the BSRM goal model is analysed for identifying the subset of functions
to gamify. This is performed manually by the analyst and Agon just provides
recommendations. Specifically, the identification should aim at selecting functions
of the software that meet the following conditions: ‘‘(a) cannot be fulfilled auto-
matically by IT procedures; (b) needs human contribution; (c) has to stimulate
and engage the user to carry out the activity (e.g., the activity is boring, complex,
repetitive, etc.); (d) contributes positively to the achievement of critical purposes
of the system and depends on human contribution to be fulfilled. ’’ [17, 18].
Next Phases of the Agon Process. The other phases relevant to our lessons
learned (RQ1) are [17,18]: Phase 3, Context Characterization; Phase 4, Context-
Based Analysis of Acceptance Requirements; Phase 5, Acceptance Requirements
Refinement; Phase 6, Context-Based Operationalization via Gamification; Phase
7, Domain-Dependent Instantiation of Incentive Mechanisms.

2.2 Activities and Lessons Learned

The Agon Framework, with its systematic Acceptance Requirements Analysis
Based on Gamification, proved effective in different EU Research Projects [11,
17--19, 23]. Specifically, according to the perspective of requirements analysts,
the current GORE gamification engineering techniques, included in Agon and its
process, have been recognised as useful [11,17--19,23]. The case studies we consider
refer to the following 5 research projects1 [11,17--19,23]: (i) in the context of the
VisiOn EU project1 [18], a complex platform for Public Administration (PA) has
been delivered to support citizens in improving their awareness on privacy aspects
of their personal data and to support them and organisations in the management
of personal data. In this case study, a core tool of this platform, STS-Tool,
has been gamified to engage analysts in complex modeling-related scenarios
for the analysis of privacy and security requirements [2, 17,18]; (ii) within the
PACAS EU project1 [17, 23], a participatory system that supports collaborative
decision-making and related to Air Traffic Management (ATM) has been delivered
and gamified [17,23]. In this case, it was important to motivate heterogeneous
professionals to collaborate to improve complex ATM procedures. The aim was
to support the analysis and design of strategies and to improve the interest,
engagement and pro-activeness of the professionals involved [17, 23]; (iii) within
the SUPERSEDE EU project1 [17,19], the focus was the gamification of a system
to motivate analysts to contribute pro-actively to Collaborative Requirements
Prioritization activities [17,19]; (iv) the SUM project1 [11,17] gamified a system
providing a solution to encourage citizens to use Sustainable urban Mobility [11,
17]; (v) the MA4C project1 [11, 17] gamified a system to promote Mobility

1 VisiOn, PACAS, SUPERSEDE, SUM and MA4C Case Studies available at: https:
//pirasluca.wordpress.com/home/acceptance/case-studies/

https://pirasluca.wordpress.com/home/acceptance/case-studies/
https://pirasluca.wordpress.com/home/acceptance/case-studies/


6 F. Calabrese et al.

Assistance for Children to progressively support the child in autonomous growth
to avoid manifesting different problems as adults [11,17].

In total, we involved 32 participants as requirements analysts (5 junior in
a preliminary phase, then 21 junior and 4 senior) within case studies, using
semi-structured interviews, questionnaires and evaluation reports (full details
available at [17]). Even though requirements analysts found these activities useful,
they declared that some of them remained difficult and require further support
or improvement [18]. To identify the activities needing further development,
we observed the analysts while using GORE techniques and we interviewed
them using questionnaires. This allowed us to address RQ1, and in the next
subsections we will show the activities found and provide the lessons learned.
Analysis on Large Models and Concepts Interpretation. Among the
difficulties, analysts found problematic to interpret AM, the Goal Model provided
by Agon representing acceptance solutions (Fig. 1). Junior analysts have been
the most affected, having less knowledge and experience related to goal models,
and Social Sciences concepts, while senior analysts faced fewer difficulties [17,18].
In this context, a glossary2 of the concepts, and explanations from us, helped
with the interpretation. Similarly, further explanations were needed to mitigate
analysis issues regarding the Agon models structure. Furthermore, when the
analysis moved towards the Gamification Model (Fig. 1), which is an even larger
model, they started experiencing difficulties again. In this case, the issue was
not related to the interpretation of gamification concepts (also thanks to the
glossary), but more related to the dimension of the model. Again, the problem
was more evident in junior than in senior analysts [17,18].

In summary, analysts recognised the models and the overall systematic pro-
cess as useful; however, the approach still needs improvements. To mitigate the
interpretation problem, the glossary and explanations helped. For the size of
goal models, analysts suggested abstraction layers on goal models, or concepts
separated in different perspectives, and proposed at different times. Regarding
abstractions layers, analysts would like graphical visualisations able to show
simplified models, or alternative summarised graphical solutions. For the perspec-
tives, we could consider categorising parts of the models, and devising strategies
for proposing solutions and concepts at different stages, making users to focus
on a separate aspect at a time. However, such strategies should also consider
situations where separate parts are involved and contribute to the same solution.
Instantiation of Gamification Solutions. The last phase ‘‘Domain-Dependent
Instantiation of Incentive Mechanisms’’ [17] requires a huge effort from the analyst.
Indeed, since GM is already a large model, its instantiation (Fig. 1) can result
in a even larger model, and it is up to the analyst to instantiate it. At the
moment, this is a manual activity supported by a graphical editor. A potential
solution for further supporting the analyst can be to enhance the editor with
further functionalities suggesting typical instantiations of high-level gamification
solutions, according to the domain, as low-level patterns. Another solution could
be to enhance this phase with automatic code generation, or skeleton code, based

2 Agon Glossary: https://pirasluca.wordpress.com/home/acceptance/glossary/

https://pirasluca.wordpress.com/home/acceptance/glossary/


Individuation and Gamification of Components for Software Acceptance 7

on the analyst’s instantiation. In this way, the instantiation work could be merged
with the development phase. Moreover, the process can be iteratively refined.
Individuation of Software Components to Gamify. This lesson learned is
related to the first two phases, discussed above (BSRM and AREA phases), of the
systematic Acceptance Requirements Analysis Based on Gamification of the Agon
Framework. These are crucial phases where the analyst needs to select the subset
of system functionalities to gamify. Agon provides high-level guidelines for this,
but no further support. In the research projects considered [11,17--19,23], analysts
have generally recognised Agon and its process as useful and have been able to
properly identify the functionalities to gamify, designing effective gamification
solutions. However, they highlighted the need for further guided and automated
support concerning these crucial phases. Agon indicates specifically for this part
that the analyst should identify the functions that need to be gamified through
the analysis of BSRM. To support the identification, Agon provides guidelines
to select software functions satisfying certain conditions (see ‘‘Phase 2’’, section
2.1). In this paper, to address RQ2, we focus on such critical phases (BSRM and
AREA). Based on the feedback of the analysts and by following the high-level
guidelines of Agon, we have designed the SiaGAM algorithm. SiaGAM guides the
analyst (semi-automatically) in characterising system functionalities, identifying
qualities, and applying annotations for identifying functions to gamify.

3 SiaGAM Algorithm and Process

This section addresses RQ2 by describing the algorithm we implemented within
Agon, to further support the analyst in relation to Supporting the individuation,
analysis, and GAMification (SiaGAM) of software components. Agon is an
Acceptance Requirements and Gamification framework for gamifying software
systems by fulfilling User Acceptance. In this context, SiaGAM and our approach
improve a crucial part of the Agon process and tool: SiaGAM provides semi-
automatic support to BSRM and AREA phases of Agon (addressing the last lesson
learned, discussed above). BSRM and AREA are early phases of the Agon process.
These are crucial for building an effective gamification solution. Redesigning
such phases as semi-automatic can provide further support to analysts, both
reducing their effort and minimising errors occurrence. To make such phases
semi-automatic (RQ2), we devised modifications of BSRM and a redesign of
AREA to make it more goal modeling oriented. The idea was to change the
process by guiding the analyst to characterise and annotate a goal model of
the system (BSRM enhancement) with factors that SiaGAM can consider for
providing solutions as a filtered goal model based on choices made by the analyst
(redesign of AREA). The process can be reiterated to produce further refinements
of the solution. We designed the SiaGAM process in 2 phases, i.e. Annotation
Model and Algorithm Execution. These are illustrated in the following.
Annotation Model. This phase extends BSRM, and the outcome expected is
an annotated goal model. The analyst designs the goal model by representing
the system to gamify, and follows guidelines allowing to assign annotations to



8 F. Calabrese et al.

concepts of the model. This step is fundamental since the analyst, who has
a deep knowledge of the software, can find and annotate the most relevant
system functions. Annotations are expressed using human language (making the
assignment of annotations easier) and indicated/supported by SiaGAM (these
are extensible). Thus, annotations support the analyst in the system functions
characterisation. Below, we outline annotations and related guidelines to consider
for using our approach by applying annotations properly.

B: indicates Boring. This includes unattractive, tedious, monotonous or repet-
itive system functions. These are usually interesting from the gamification
perspective because they could require users to be motivated to use them.

HC: indicates High Complexity. These functions could demand high knowledge,
skills, or require engaging or collaborating with other people, which could
increase the difficulty. They could require also significant effort by the user.
These functions are the most complex of the software and could require
considerable stimuli to allow adequate user engagement.

LC: indicates Low Complexity. These functions could require a limited amount
of time to be completed, or indicate no need to collaborate with other
people, or can be simple actions (e.g., clicking a confirmation button). This
annotation identifies simple tasks that could require little attention, but
that could still need to be gamified to motivate the user to complete them.

A: indicates Automatic. This annotation is assigned to a system function that
does not require any effort/intervention by the user.

M: indicates Manual. This includes activities fully performed manually by the
user (the goal model represents both ‘‘Socio’’ and ‘‘Technical’’ activities) or
semi-automatically (i.e. where more than 50% is performed manually).

Accordingly, we specify an Annotations Set (AS) composed by {B, HC, LC,

A, M}. Furthermore, we designed SiaGAM to be flexible enough to enable the
analyst to extend AS, by adding new annotations, in case other characteristics
of particular software domains/contexts need to be considered. Another con-
cept we included in our approach is called Gamification Impact Probability

(GIP). This represents the probability of a function to receive a positive im-
pact if gamified, i.e. the higher the GIP, the more likely the related function
will be considered for gamification. However, the GIP that SiaGAM consid-
ers is calculated on a path, which we call GIPPath. The range considered is:
0 ≤ GIPPath ≤ 1. From our experience in gamifying software successfully in
different EU projects [11,17--19,23], and according to the feedback we received by
requirements analysts involved, we determined the default SiaGAM GIP values
as: B = 0.5; HC = 1; LC = 0.25; A = 0; M = 0.8. Such values, as well as AS, are
configurable based on specific domain/context characteristics, needs, constraints.

Another annotation is Current Engagement Probability (CEP). This rep-
resents the current probability of user engagement recorded by a particular
function. CEP is summed to GIPPath during its calculation and is expressed
negatively to decrease GIPPath: decreasing GIPPath indicates decreasing the
need of gamifying functions of that path. CEP is useful in case the organisation



Individuation and Gamification of Components for Software Acceptance 9

has already measured the user engagement per function. If this information is
not available, CEP value will be 0 and will not affect the GIPPath calculation.

A significant aspect of SiaGAM is its flexibility. In fact, the analyst can specify
if to consider the full AS, or subsets of it, via an expression, which is passed to
SiaGAM. This can be reiterated with different subsets, by specifying different
annotations until the analyst is satisfied with the analysis results. Hereafter, we
call the subset chosen by the analyst as Analyst Annotation Set (AAS).

Fig. 2 shows a simplified example of SiaGAM applied, within the VisiOn EU
Project, for the gamification of STS-Tool [3, 18].

PSRE

MTAV FAA
DSRD

DISN

FSA

RIV FRSV VCSR RAV

FWFA FTA

A

M

LC

HC, B

M

Goal

Task

Annotation

→ Composition

Fig. 2: Annotated Goal Model: applying SiaGAM for gamifying STS-Tool [3, 18]

The example shows how we improved the first phase of Agon process (BSRM):
now the analyst is guided and supported semi-automatically in applying the
annotations to the BSRM model during the definition of the Goal Model by
following the guidelines and aspects of SiaGAM discussed above. To achieve this,
an Annotation Goal Model (AGM) [3] is produced, which includes characteristics
of both the original BSRM and AREA models. In this phase, analysts can use the
default configuration of SiaGAM (determined from our experience in successfully
gamifying software in different EU projects [11, 17--19, 23], and according to
feedback received from analysts involved), reducing their effort, or configure it.
For instance, Fig. 2 shows that the analyst decided to annotate MTAV, i.e. ‘‘Model
The Authorization View’’ goal [3, 18], as High Complex and Boring (HC and B

annotations respectively) to be fulfilled.
Algorithm Execution. This phase regards the support provided to the analyst
by SiaGAM through the semi-automation of AREA. SiaGAM analyses AGM
and supports the analyst in identifying the most interesting paths related to
the functions where to apply gamification. Specifically, SiaGAM analyses AGM
with an adapted pre-order visit, considering annotations of the functionalities
for calculating GIPPath, and providing a final model with functionalities that,
according to annotations and criteria specified, are considered candidates to be
gamified. The next Figure shows the pseudo-code of the SiaGAM algorithm.
SiaGAM works on a Goal Model g, specified as g=(C,R), where the set of concepts
C represents functions of the system by using goals, sub-goals and tasks (Fig. 2).
R is the set of relations used to connect the concepts (e.g., composition). SiaGAM
takes in input a GoalModel g (the AGM model processed by the algorithm),



10 F. Calabrese et al.

Algorithm 1: SiaGAM(GoalModel g, Expression aasExp, Float minGIPPath)

1 if (g.root isNull) then
2 return g;
3 else if (g.root.annotations isEmpty) then
4 while ((GoalModel child = nextChild(g)) != null) do
5 SiaGAM(child, aasExp, minGIPPath);

6 delete(g.root);

7 else if (evaluate(g.root, g.root.annotations, aasExp, minGIPPath)) then
8 printModel(g.root, g.root.annotations, g.root.GIPPath);
9 else

10 delete(g.root);

11 return g;

aasExp (i.e. AAS, the Analyst Annotation Set expression discussed before), and
minGIPPath (the minimum GIPPath value a function should have to be selected
as a candidate function to gamify). Thus, aasExp variable represents AAS, the
satisfactory annotations the algorithm must verify. AAS can be specified by
the analyst and defined through aasExp. In this way, the analyst can perform
different simulations based on different expressions, with the possibility to perform
an accurate, iterative analysis by considering distinct aspects each time. For
instance, according to the example in Fig. 2, we can express the aim of knowing
which are the candidate functions satisfying minGIPPath ≥ 0.8, and AAS = {M,
HC, B} specified through aasExp. To achieve this, SiaGAM checks the root node
(Fig. 2): if the result is null, the algorithm stops; otherwise, the annotations set
of the current functionality (represented as a goal) must be checked to see if it is
empty. If the value is True, i.e. current element is not annotated, the algorithm
is recursively called for each of g children (from the left child to the latest to the
right side). Once on a node with annotations, the evaluate function checks if
there is a match among annotations of the current node and aasExp, it updates
GIPPath of the node accordingly, and checks if minGIPPath is satisfied for the
node. If evaluate returns True, the node is automatically kept, otherwise it is
deleted. This process is executed in AGM, and, at the end, the process returns the
filtered AGM with the functionalities to gamify according to criteria specified.
SiaGAM Example and Results. The example illustrated in Fig. 2, is an
extract, simplified, example from the VisiOn EU Project [3, 18], aiming at identi-
fying candidate functions to gamify for the STS-Tool, a tool used by analysts
for modeling privacy and security requirements via different views [3, 18]. In
the example we execute SiaGAM with g, representing the Goal Model of STS-
Tool functions (Fig. 2), minGIPPath ≥ 0.8, and aasExp = {M, HC, B}. SiaGAM
starts from the PSRE (i.e. performing ‘‘Privacy and Security Requirements
Engineering’’ via the STS-Tool) root goal, and, not being annotated, SiaGAM
recursively continues with the first, left, child: MTAV. MTAV is the ‘‘Model
The Authorization View’’ goal, and it is annotated with High Complex (HC) and
Boring (B). Thus, the evaluate function is called, it finds a match among such



Individuation and Gamification of Components for Software Acceptance 11

annotations and aasExp ones, and minGIPPath is satisfied, therefore MTAV is
kept becoming candidate function to be gamified. Then, SiaGAM recursively
visit the other children of PSRE. DSRD, being annotated as Automatic function,
is deleted. Continuing the recursion, FSA and FWFA, become candidate functions
due to their annotation (i.e. Manual), and FTA is discarded being annotated with
Low Complexity (LC). With this process, based on the filtered AGM processed
by SiaGAM, it is also possible to obtain a formula extracted by the AGM. For
instance, the following one has been obtained after the application of SiaGAM
for the gamification of STS-Tool (Fig. 2) [3, 18] (VisiOn EU Project).

Acceptance [{MTAV, FSA, FWFA}, Users] ≥ 80%

This formula represents an acceptance requirement, indicating that to achieve
(at least 80%) acceptance of our system by users, we need to consider gamifying
functions obtained using SiaGAM, i.e. {MTAV, FSA, FWFA} (Fig. 2) [3, 18].

4 Case Study and Evaluation

We evaluated SiaGAM by considering the successful results obtained from 5 case
studies within EU projects [11,17--19,23]. Analysts had manually selected various
subsets of functions to gamify. We started by reusing the original Goal Model
of the system (from each case study [11,17--19,23]) as designed in the original
BSRM phase. Models did not show decisions about what functions to gamify,
which were made in the original AREA phase. We used such models as input for
our enhanced BSRM phase (Annotation Model, section 3) and proceeded creating
a new AGM. The aim was to compare the 2 resulting models, by checking if
SiaGAM is able to support the analyst in finding a subset of functions to gamify
similar to the one of the original case study. We used the default configuration
of SiaGAM described in section 3. Our case study, including both original results
and our results for each of them, is available at [3]. The results of our analysis,
as shown in [3] and summarised in Table 1, are based on the comparison of the
Original Solution (OS) and the new solution, called SiaGAM Solution (SGS).

The 5 case studies from EU Research Projects we considered3 [11, 17--19, 23]
are indicated below (more details in section 2.2) and in Table 1 with the results of
our evaluation: (i) VisiOn Case Study on ‘‘Gamification for Privacy Requirements
Modelling ’’3 [18]; (ii) PACAS Case Study on ‘‘Gamification for Participatory
Architectural Change Management in ATM Systems ’’3 [17,23]; (iii) SUPERSEDE
Case Study on ‘‘Gamification for Collaborative Requirements Prioritization, the
DMGame Case’’3 [17,19]; (iv) SUM Case Study on ‘‘Sustainable Urban Mobility
(SUM)’’3 [11,17]; (v) MA4C Case Study on ‘‘Mobility Assistance for Children
(MA4C)’’3 [11, 17]. The results of our analysis show that SiaGAM is an effective
tool for supporting the analysts in this crucial phase: in fact, SiaGAM had been
able to derive sets very close to those obtained manually (Table 1). As the

3 VisiOn, PACAS, SUPERSEDE, SUM and MA4C original Case Studies available at:
https://pirasluca.wordpress.com/home/acceptance/case-studies/

https://pirasluca.wordpress.com/home/acceptance/case-studies/


12 F. Calabrese et al.

main issue found by the analysts was the manual aspect of the subset definition,
it is evident that SiaGAM offers valuable help with its semi-automatic guide.
According to Ghezzi [8], being our problem undecidable, we aimed at evaluating
if SiaGAM is a sound and complete algorithm by calculating its precision and
recall [8] in the cases considered. In fact, according to Ghezzi [8], our results
‘‘Oracles’’ stem from the results of the EU Projects considered, and we calculated
false positives, false negatives and true positives in relation to the application
of SiaGAM and its results. We defined such parameters as follows: (i) a True
Positive (TP) is obtained when SiaGAM selects a task that was selected in the
OS case study as well; (ii) a False Positive (FP) is obtained when SiaGAM
selects a task that was not selected in the OS case study; (iii) a False Negative
(FN) is obtained when SiaGAM discards a task that was selected in the OS case
study. In Table 1 we show such values calculated per case study.

Case
Studies

OS
Func.

SGS
Func.

FP FN TP Precision Recall

VisiOn3 [18] 7 7 0 0 7 1 1

PACAS3 [17, 23] 5 6 1 0 5 0.83 1

SUPERSEDE3 [17, 19] 2 2 0 0 2 1 1

SUM3 [11, 17] 4 4 0 1 3 1 0.75

MA4C3 [11, 17] 3 3 0 0 3 1 1

Table 1: Case studies with functions identified (‘‘OS Func.’’) considered as
Oracles [8], functions identified with SiaGAM (‘‘SGS Func.’’) and related False
Positives (FP), False Negatives (FN), True Positives, Precision and Recall.

In Table 1 we indicate also precision and recall calculated as [8]: Precision
= TP

(TP+FP) and Recall = TP
(TP+FN) . If precision is equal to 1, the algorithm is

sound; if recall is equal to 1, the algorithm is complete [8]. According to Table 1,
most cases show precision and recall equal to 1. However, we can see that for the
PACAS case study, the precision is slightly less than 1. This is because SiaGAM
selects one functionality that was not considered in the OS. Conversely, the
recall parameter shows a lower value only in the SUM case study: in this case,
SiaGAM selects a function that was not considered in the OS.

Overall, the results of the application of SiaGAM show that, according to
most of the cases considered (Table 1), the algorithm and our approach can
support semi-automatically the identification of the same acceptance requirements
and system functionalities to gamify, which had been identified by previous,
successful, manual analyses3 [11, 17--19,23]. Finally, it is important to compare
our approach, proposed in this paper, with previous approaches. The main
differences are summarised as follow: (i) with our approach, the analyst is
guided and supported during BSRM in analysing the goal model, representing
the system and its functions, characterising them with relevant annotations
(suggested and supported by SiaGAM), which can help identifying functions to
gamify. Previously, in this phase there was only the ‘‘pure’’ creation of the goal
model; (ii) with previous approaches, AREA offered only high-level guidelines
for identifying functions to gamify and specifying acceptance requirements, which



Individuation and Gamification of Components for Software Acceptance 13

meant the effort was entirely manual. Now, during AREA, the execution of
SiaGAM provides the analyst with semi-automatic, flexible and extensible support
for identifying functions to gamify; (iii) SiaGAM generates the AGM goal model,
within the new AREA phase, together with the generation of formal definition of
acceptance requirements obtained, including the subset of functions to gamify.

5 Related Work

Available contributions regarding Goal Modeling are various. The work by Jureta
et al. [10] proposes a Goal Argumentation Method (GAM) and is composed of
three roles. It defines the guidelines of the argumentation and justifications of
the choices, while through the reasoning of a goal model it is possible to detect
problematic argumentation and check if the information is contained in both
the argumentation itself and the model elements. The main difference with our
work is that SiaGAM provides guidelines and supporting annotations, which are
specific for characterising systems concerning the identification of components to
gamify, with the specific purpose of making a system more engaging. Moreover,
our approach is extensible and can be applied to different goal modeling contexts
and domains. Furthermore, our approach allows the analyst to iteratively use our
algorithm to consider different parts of the system to be gamified. The framework
PRACTIONIST proposed by Morreale et al. [14] aims at supporting programmers
for the definition of Belief-Desire-Intention (BDI) agents: it captures the purpose
of the software from the system goals and creates a Goal Model; then, relations
between goals are analysed to determine if goals can be achieved. SiaGAM is
not exclusively agent-oriented, it is oriented towards software characterisation
from the analyst perspective. User characterisation also plays an essential role for
the identification of functions to gamify. Furthermore, SiaGAM analyses goals
differently working with the definition of a probability value in the Annotation
Model and a list of annotations characterising the software and its usage.

The RationalGRL framework by Van Zee et al. [24] is structured in 4 separate
phases: an argumentation phase, which elicits requirements through the definition
of arguments; a translation phase, where arguments are translated into a Goal
Model; a goal modelling phase, in which stakeholders evaluate the model; a final
update phase for translating the model into GRL models, for comparison with
argumentation elements. Our approach differs under various aspects. Firstly, we
do not generate the goal model from argumentation. Instead, we support the
creation of a goal model of the system with a graphical editor, and support analysis
and annotations of the model for functionalities characterisation. Furthermore,
we also support the analyst with semi-automated analysis provided by SiaGAM.

6 Conclusion

Gamification has clearly proved an effective technique for motivating users to use
software systems. Systematic Goal-Oriented Requirements Engineering (GORE)
activities have been proposed for supporting engineers to gamify software systems,



14 F. Calabrese et al.

and have been recognised as effective and useful by requirements analysts in
different EU Research Projects. However, analysts have also indicated difficulty
in performing some of such activities, highlighting the need for further support.

In this paper we identified such activities, provided related lessons learned,
and proposed a solution for further supporting analysts in relation to one of these
activities: the identification of software components to gamify. This is a crucial
aspect as the gamification of a full software system can be expensive and could
give unexpected results. Therefore, to reduce efforts and costs for organisations,
the exact identification of functionalities to be gamified is necessary. The solution
we devised in this paper is the algorithm SiaGAM (Supporting the individuation,
analysis, and GAMification of software components), which guides and supports
the analyst semi-automatically concerning the next crucial aspects: (i) represen-
tation of the software to gamify as a Goal Model; (ii) characterisation of software
functions with the support of representative and decisive qualities; (iii) analy-
sis and suggestion of candidate system functions to gamify, based on decisive
criteria identified; (iv) extensible and iterative approach in terms of qualities
considered and criteria defined; (v) generation of Acceptance Requirements with
functionalities selected to be gamified. To evaluate SiaGAM, we applied it to
5 case studies from EU projects, where requirements analysts had successfully
identified system functions to gamify manually. Then we compared their results
with the ones we obtained using SiaGAM. We found that SiaGAM is effective
in supporting the analyst in semi-automatically identifying software functions
to gamify, as the functions to gamify derived by SiaGAM were in most cases
analogous to the ones selected manually by the analysts.

As future work, due to the flexibility and configurability of SiaGAM, we
will consider using it to support the identification of software components for
other GORE purposes. For instance, for the identification of set of functionalities
that are candidates to be secured, or to be made GDPR compliant. We will also
perform more advanced evaluation, by involving analysts, for considering also
further aspects (e.g., ease of use, annotations set adequacy). Furthermore, thanks
to the other contribution of this paper (activities and lessons learned), we will
consider providing further support to analysts by improving the other GORE
gamification activities which were found useful but requiring further support.

References

1. Bassanelli, S., Vasta, N., Bucchiarone, A., Marconi, A.: Gamification for Behavior
Change: A Scientometric Review. Elsevier Acta Psychologica Journal (2022)

2. Calabrese, F.: Gamification with the Agon Framework: a Case Study on Privacy
Requirements Modeling. Bachelor thesis, University of Trento, Italy (2018)

3. Calabrese, F., Piras, L., Giorgini, P.: Models and dataset related to Case Study
and Evaluation, respectively available at: https://data.mendeley.com/datasets/
6s4c87c494/4 and https://data.mendeley.com/datasets/rczj54927m/1

4. Chung, L., Nixon, B., Yu, E., Mylopoulos, J.: Non-Functional Requirements in
Software Engineering. Springer, New York (2012)

5. Deterding, S.: The Lens of Intrinsic Skill Atoms: A Method for Gameful Design.
Human-Computer Interaction Journal pp. 294--335 (2015)

https://data.mendeley.com/datasets/6s4c87c494/4
https://data.mendeley.com/datasets/6s4c87c494/4
https://data.mendeley.com/datasets/rczj54927m/1


Individuation and Gamification of Components for Software Acceptance 15

6. Deterding, S., Dixon, D., Khaled, R., Nacke, L.: From Game Design Elements to
Gamefulness: Defining ”Gamification”. In: Int. MindTrek Conference. ACM (2011)

7. Fernández, D., Legaki, N., Hamari, J.: Avatar Identities and Climate Change
Action in Video Games: Analysis of Mitigation and Adaptation Practices. In: CHI
Conference on Human Factors in Computing Systems. pp. 1--18 (2022)

8. Ghezzi, C.: Being a Researcher. Springer, New York (2020)
9. Herzig, P., Ameling, M., Schill, A.: A Generic Platform for Enterprise Gamification.

In: Europ. Conf. on Software Architecture. IEEE (2012)
10. Jureta, I.J., Faulkner, S., Schobbens, P.: Clear Justification of Modeling Decisions

for Goal-Oriented Requirements Engineering. Requirements Engineering (2008)
11. Kazhamiakin, R., Marconi, A., Perillo, M., Pistore, M., Valetto, G., Piras, L.,

Avesani, F., Perri, N.: Using Gamification to Incentivize Sustainable Urban Mobility.
In: 1st Intern. Smart Cities Conf. (ISC2). pp. 1--6. IEEE, New York (2015)

12. Koivisto, J., Hamari, J.: The Rise of Motivational Information Systems: A Review
of Gamification Research. Int. Journal of Information Management (2019)

13. Li, F.L., Horkoff, J., Mylopoulos, J., Guizzardi, R., Guizzardi, G., Borgida, A., Liu,
L.: Non-Functional Requirements as Qualities, with a Spice of Ontology. In: Int.
Requirements Engineering Conference (RE). pp. 293--302. IEEE, New York (2014)

14. Morreale, V., Bonura, S., Francaviglia, G., Centineo, F., Cossentino, M., Gaglio, S.:
Goal-Oriented Development of BDI Agents: the PRACTIONIST Approach. In: Int.
Conference on Intelligent Agent Technology. pp. 66--72. IEEE, New York (2006)

15. Mylopoulos, J., Chung, L., Nixon, B.: Representing and Using Nonfunctional
Requirements: A Process-Oriented Approach. Transac. on Software Engineer. (1992)

16. Peng, C., Xi, N., Hong, Z., Hamari, J.: Acceptance of Wearable Technology: A
Meta-Analysis. In: Hawaii Int. Conference on System Sciences (HICSS). (2022)

17. Piras, L.: Agon: a Gamification-Based Framework for Acceptance Requirements.
Ph.D. thesis, University of Trento, Italy (2018)

18. Piras, L., Calabrese, F., Giorgini, P.: Applying Acceptance Requirements to Re-
quirements Modeling Tools via Gamification: A Case Study on Privacy and Security.
In: Int. Conf. on Practice of Enterprise Modeling (PoEM). Springer (2020)

19. Piras, L., Dellagiacoma, D., Perini, A., Susi, A., Giorgini, P., Mylopoulos, J.: Design
Thinking and Acceptance Requirements for Designing Gamified Software. In: Intern.
Confer. on Research Challenges in Information Science (RCIS). IEEE (2019)

20. Piras, L., Giorgini, P., Mylopoulos, J.: Models, dataset, case studies, prototype and
glossary of Agon (an Acceptance Requirements Framework), https://pirasluca.
wordpress.com/home/acceptance/ and https://data.mendeley.com/datasets/

56w858dr9j/1
21. Piras, L., Giorgini, P., Mylopoulos, J.: Acceptance Requirements and their Gamifi-

cation Solutions. In: Int. Requirements Engineering Conf. (RE). IEEE (2016)
22. Piras, L., Paja, E., Cuel, R., Ponte, D., Giorgini, P., Mylopoulos, J.: Gamification

Solutions for Software Acceptance: A Comparative Study of Requirements Engineer-
ing and Organizational Behavior Techniques. In: IEEE International Conference
on Research Challenges in Information Science (RCIS). pp. 255--265. IEEE (2017)

23. Piras, L., Paja, E., Giorgini, P., Mylopoulos, J.: Goal Models for Acceptance
Requirements Analysis and Gamification Design. In: 36th International Conference
on Conceptual Modeling (ER). pp. 223--230. Springer, New York (2017)

24. Van Zee, M., Marosin, D., Bex, F., Ghanavati, S.: RationalGRL: A Framework for
Rationalizing Goal Models Using Argument Diagrams. In: International Conference
on Conceptual Modeling (ER). pp. 553--560. Springer Cham, New York (2016)

25. Zichermann, G., Cunningham, C.: Gamification by Design: Implementing Game
Mechanics in Web and Mobile Apps. O’Reilly Media, Inc. (2011)

https://pirasluca.wordpress.com/home/acceptance/
https://pirasluca.wordpress.com/home/acceptance/
https://data.mendeley.com/datasets/56w858dr9j/1
https://data.mendeley.com/datasets/56w858dr9j/1

