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ABSTRACT 

Electronic instrumentation was developed for the measurement of the 
oxygen partial pressure, P 1 ( in a sample gas using fully-sealed zirconia pump-
gauge oxygen sensors operated in an AC mode. These sensors, operated 
typically at 700°C, consisted of two dises of zirconia with porous platinum 
électrodes on each face separated by a gold seal and enclosing a small 
internai volume. One disc was operated as a pump enabling oxygen to be 
electrochemically transferred into and out of the enclosed volume; the other 
disc operated as a gauge, the Nernst EMF across the électrodes providing a 
measure of the ratio of the internai to the external oxygen partial pressure. 
By careful design of the circuitry it was possible to measure the oxygen 
partial pressure, Pj, without the need for a separate référence gas supply. 
Subsequently, a novel "tracking" mode of opération was proposed and 
implemented in which leakage effeets generally associated with sealed pump-
gauge devices were minimised: the sensor was operated in a feedback control-
loop in order to adjust automatically the mean internai référence oxygen 
partial pressure, P0, so as to maintain the ratio (Px/P0) close to unity. The 
signal-to-noise ratio was markedly improved by using gauge EMFs with high 
amplitudes which inevitably display a distorted sinusoid due to the 
logarithmic term in the Nernst équation. Surprisingly, mathematical analysis 
predicted that the linearity of the output of the instrument using phase-
sensitive detection should not be affected by the déviation from a sinusoid and 
this was confirmed experimentally: signal processing was practically 
implemented using simple analogue electronics. As anticipated there was a 
strong influence of sensor temperature on the output of the instrument: 
consequently, methods for temperature compensation were proposed and 
shown to be feasible with minimum hardware. 

The theory of Operation of leaky pump-gauge was also developed which 
indicated that a physical leak in the sensor should cause a phase shift and 
amplitude change in the sensor output. Expérimental results were, in general, 
in agreement with the theory demonstrating the influences of the geometry 
and dimensions of the leak and of the operating frequency. Importantly, the 
theory predicted that, when operated in the AC mode, devices with major 
leakage may stili be used for oxygen partial pressure measurement: again 
this was confirmed by experiment and the additional benefit of a concomitant 
substantiel simplification of the electronic circuitry also realised. Interestingly 
an unexpected but small influence of oxygen concentration on the phase shift 
was observed: this requires additional study. 
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CHAPTER 1 

INTRODUCTION TO 

OXYGEN GAS SENSING 

"I durst not laugh, for fear of opening my lips and 

receiving bad air" SHAKESPEARE, Julius Caesar (1599-

1600) 1.2.250. 
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1.1 BACKGROUND 

By the end of the 19* Century, science and technology had begun to transform 

the traditional agriculture-based way of Ufe into a fast growing industry-

based system. As a conséquence, the standard of Irving has risen steadily and 

the luxuries of yesterday have become today's necessities. This has caused the 

energy consumption to rise dramatically and also the level of pollution as a 

conséquence. Until recently, scientists argued that nature can cope with 

émissions of pollutant gases. However with the continuous and steady 

destruction of rain forests, évidence of pollution started to emerge. 

The last ten years have seen a growing public awareness and concera for this 

problem. As a conséquence, environmental pollution has become a politicai 

issue. This is reflected by the growth of "green" politicai parties throughout 

the industrialised world. New unilateral législations are being introduced in 

order to tackle this problem. Pollution has no borders, and it is now widely 

believed that this problem can only be solved through proper coordination and 

joint efforts between all countries. 

These new régulations will create the need to develop sensors to monitor and 

control emissione of pollutant gases and minimise energy consumption. The 

potential U.K. market (figure 1.1) for thèse devices is estimated to be £170 

million over the next five years; overseas markets could multiply this figure 

by a factor of five (Bogue 1990). 
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In general sensors are devices which convert physical quantities into 

electrical signais. The sensor is an interface between the physical quantity 

and the electronic instrument used to measure and/or control this quantity. 

Dietz et al (1977) defmed a gas sensor as "a device with which the 

concentration of certain gaseous components can be measured. In the broad 

sense of the term, it includes the electronic transducer, to which usually an 

electronic evaluating device is connected". 

Sensors are generally associated with electronic control Systems. However the 

advance made in electronics and computing was not matched by the 

development of accurate, reliable and cheap sensors. When associated with 

transducers, electronics and computer techniques can play an important rôle 

in correcting for the technological defects of the transducer. Thus sensor 

design and construction may be made easier. However, despite the enormous 

amount of literature published on gas sensors in the last 5-10 years, there is 

little évidence of wide coopération between electronics speciaüsts and 

physicists. 

1.2 NEED FOR GAS SENSORS 

The scope of applications of gas sensors is wide. They include the following. 

Hazard monitorine 

The early sensors were intended for use in the mining industry where the 

hazard of flammable gases is prévalent and potentially catastrophic. Sensors 

play an important role in detecting toxic gases in the working environment. 
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Thèse include CO, H 2S, NO, which can be fatai. Gas sensors may also be used 

to detect fires: when materials are heated or bum a wide range of gaseous 

products is evolved. The main toxic gas generated is generally CO. Jones 

(1989) also suggested the possible use of gas sensors in the detection of some 

explosives. 

Pollution monitorins and control 

Heavy industry, power generation and internai combustion engines have been 

identified as the main source of atmospheric pollution. The main pollutant 

gases include NO x and SO x which are responsible for acid rain. Other 

industriai pollutants are C0 2 , CO, HC1, NH 3 and various hydrocarbons, while 

in vehicle émission the interest is in CO, C 0 2 hydrocarbons and NO x . In many 

applications, such as internai combustion engines, the control of gaseous 

émissions is not only a benefit for the environment but can also improve 

energy efficiency. 

Process monitorins and control 

From laboratory to industriai applications, sensors can be widely used to 

monitor and control various gases. The scope for sensors in this area is great. 

Medicai applications 

Besides detection of harmful gases, sensors may be used in controlied 

environment areas. Gas sensors may also provide on-line analysis of exhaled 

breath to monitor the patient's condition or to aid diagnosis. 
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1.3 OXYGEN SENSORS 

The high chemical reactivity of oxygen and its role in supporting the 

dominant forms of life on this planet makes its monitoring, measurement and 

control highly desirable. 

1.3.1 Applications 

The main applications of oxygen sensors include the following. 

(i) Energy management: Control of combustión in boilers burning fossil 

fuel to maximise fuel efficiency and minimise the generation of CO (Fouletier 

1982/3, Williams and McGeehin 1984, Vitter et al 1983, Franx 1982, Bergman 

and Franx 1984). Use in *lean-burn' car engine systems which offer the 

a dvan ta ge of fuel economy combined with low emissions of CO, NO x and 

hydrocarbons (Kobayachi et al 1984). Control of car exhaust gases for 

protection of three-way catalyst systems (Young and Bode, 1979). 

(ii) Industrial processes: Gas purity monitoring and control. Monitoring 

and control of atmospheres in metallurgical heat treatment furnaces 

(Fairbank, 1977). Área monitoring and control (oil tankers, food storage, food 

packaging, fermentation, etc...). 

(iii) Laboratory studies: The control of oxygen partial pressure in 

laboratory applications (Agrawal et al 1974, Fouletier et al 1975). Use in 

glove boxes, sputtering machines ( William and Paul 1989) etc... 

(iv) Physiological applications: The control of aircraft atmosphere. Use 

in life support breathing systems (Calvert 1968, Joyce 1968, Joyce and Woods 

1975, Stein 1976). Use in medical applications. 
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1.3.2 Principles of oxygen sensing 

A wide range of oxygen sensors based on the physical, chemical and 

eiectrochemical properties of oxygen have been developed. The review by 

Kocache (1986) is particularly relevant. 

1.32.1 Methods based on chemical properties of oxygen 

The early methods for oxygen measurement were based on its chemical 

activity. This measurement may be achieved by using the chemical volumetrie 

technique (Haldane and Graham 1935): A known volume of sample gas is 

taken and the oxygen content is removed by absorbing it with a chemical 

reagent. The change in volume of the sample is equal to its oxygen content. 

1.3 JJ Methods based on the physical properties of oxygen 

Various methods based on the physical properties of oxygen have also been 

used. Most of thèse are based on magnetic principles. Other techniques 

include a method based on UV absorption of oxygen: oxygen has a much 

higher absorption coefficient than most of the other gases. This principle was 

utilised in a practical device by Kaplan et al (1971). The thermal conductivity 

of gases may also be used for the measurement of partial pressure of any gas 

provided the gaseous species are known (Wang et al 1989). 

1.3JJ Methods based on the eiectrochemical properties of oxygen 

Sensors with aaueous electrolvtes 

These sensors generally include an aqueous solution with mobile ion and two 
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electrodes. Various techniques may be used for the measurement of 0 2 

concentration/ partial pressure using such sensors. One such technique is 

called the Polarographie method: when an EMF is applied between the two 

electrodes which are in contact with the solution, redox reactions are induced. 

If a thin solid membrane (generally PTFE) is placed between the cathode and 

the sample gas, the rate of diffusion of oxygen (required in the redox reaction) 

may be limited by the barrier. If the applied voltage is sufficiently high, a 

limiting current is reached where the rate of 0 2 diffusion is limited only by 

the barrier (Bergman 1970, 1974). The limiting current is then proportional 

to the oxygen concentration in the sample gas. 

Sensors with solid electrolytes 

Zr0 2 forms solid solutions with ahovalent oxides including CaO, MgO, Y 2 0 3 . 

This may be achieved by mixing Zr0 2 and oxide powders, pressing and 

sintering at sufficiently high temperature to promote inter-diffusion of the 

cations. The added oxides are referred to as stabilisers and the solid solution 

as zirconi a. In zir conia, a fraction of Zr4* ions are replaced by lower valency 

ions such as Ca 2 +, Mg2* or Y3*. As a result oxygen vacancies are created in the 

solid solution and oxygen ions can move through the crystal. This mobility is 

a thermally activated process becoming significant for temperatures above 

300°C. Stabilised zirconia therefore behaves as an electrolyte with oxygen 

ions able to drift in an imposed electric field and may be used in oxygen 

generation/removal and oxygen sensing. 
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E = — In 
4F 

(1-2) 
P2 

where R,F and T are respectively the gas constant, the faraday and the 

operating temperature (in kelvin). The EMF in équation (1.2) is generated by 

the tendency of oxygen ions to diffuse from the high to low pressure side, 

which is counterbalanced by the resulting electrica! field. If P 2 is known 

(référence gas) then P, may be determined from a measurement of E (at a 

given T). Thus the celi may be used as a gauge for the measurement of 

unknown oxygen partial pressures. 

By applying a current (I) to the celi (1.1), oxygen may be electro-chemically 

transferred from the cathode side to the anode side of the cell. The électrode 

reaction is 

^ cathode ̂ 2 o 2 . ( 1 3 ) 

anode 

Through the oxidation-reduction of oxygen, the electronic current applied to 

A solid electrolyte cell may be represented as follows (Maskell and Steele 

1986): 

O a(P a) (M a/SEyM l fO a(Pi) (1.D 

where M1 and M^ are porous electronic conductors (e.g. Pt or Ag) in contact 

with the solid electrolyte SE. The latter must be physically impermeable to 

the gas (0 2 ) which is at partial pressures Pl and P2. Provided that the 

electronic conductivity of the ceramic is low, the cell (1.1) develops an EMF 

given by the Nernst équation: 
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1.32.4 Compatis on of the various methods 

The methods based on chemical properties of oxygen do not provide an output 

which can be automatically converted into an electrìcal quantity and therefore 

such sensore can not be interfaced with electronic instruments. The methods 

based on the physical properties of 0 2 generally require complicated hardware 

and therefore are not suited for smali size applications. The methods based 

on the electrochemical properties of oxygen combine the advantage of 

electrìcal output signais and the simplicity of construction. In general, solid-

state devices operating on electrochemical principles have many advantages 

over aqueous electrochemical sensora: 

i- Solid state electrolytes are non-volatile enabling opération in high 

the cell is transformée! into ionie current through the electrolyte. The number 

(n) of moles of 0 2 electrochemically "transferred" through the solid electrolyte 

is given by Faraday's law: 

dn = (1.4) 
AF 

where Q is the charge passed. The negative sign in eqn.fl.4) is due to the 

oxygen flux being in the opposite direction to the pumping current (see 

eqn.1.3). The amount of oxygen transferred is proportional to the charge 

passed through the electrolyte. The celi (1.1) can therefore act as an oxygen 

pump (Yuan and Kroger 1969). This technique has been used for the 

production of pure oxygen, or removal of oxygen from gases (Alcock and 

Zador, 1972). 
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temperature environments. 

ii- The elevated temperature required for the operation of solid-state 

sensors can facilitate the catalysis of reactive gases so that equilibrium gas 

concentrations may be measured where required. However the operation at 

high temperature can be a disadvantage if the device is used in potentially 

explosive mixtures of gases where a flame trap must be used to prevent 

ignition. 

iii- Solid state devices are highly selective where only one ion type is 

mobile; furthermore side reactions at the electrodes are normally 

unimportant. 

iv- Solid state devices have a faster response to changes in gas 

concentration. 

v- In solid state devices, complete separation of anode and cathode 

compartment is automatically achieved by the non-porous solid electrolyte 

itself. 

vi- When used for oxygen generation, solid state pumps produce highly 

pure and dry gas. 

1.3.3 EXISTING ZIRCONIA-BASED OXYGEN SENSORS 

Potentiometric sensors 

These consist of a zirconia wall separating the reference and sample 

atmospheres (cell 1.1). The output of such a sensor is given by eqn.(1.2). 

Various designs have been used in practical devices (Hickam 1967; Sayles 

1975; Cleary and Elikan 1975; Kocache and Holman 1978,1979; Maskell and 
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Steele 1986). The reference pressure in these devices is obtained from a 

supply of a stable reference gas (generally air). In order to avoid the problems 

associated with the piping of a reference gas, some authors (Déportes et al 

1977) have described sensors with the internal reference oxygen partial 

pressure obtained from a redox couple such as Pd/PdO. 

Amperometric sensors 

A schematic diagram of the limiting-current device (Dietz 1982) is shown in 

figure (1.2). If a sufficient voltage is applied to the pump of the device then 

oxygen is electrochemically pumped from the cathode to the anode reducing 

the oxygen partial pressure at the cathode to a value close to zero because the 

porous barrier fixed in front of the cathode restricts the transport of oxygen 

to the electrode. A limiting condition I l h n is then achieved and the pumping 

current is controlled by the rate of oxygen diffusion through the porous 

barrier according to Fick's first law. For a diffusion barrier consisting of a 

hole of cross-section S and length L, the limiting current is given by: 

where D is the diffusion coefficient of 0 2 and C 0 2 is the concentration of O z in 

the sample gas. Equation (1.5) shows that the limiting current is proportional 

to the gas concentration. 

The applications of thèse sensors require very simple electronics. However 

there are some problems associated with thèse devices: the magnitude of the 

(1.5) 
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Coulometric sensors 

The device used in this mode is similar in construction to the limiting-current 

type device. The principle of operation (Heyne 1976) of this mode can be 

explained as follows. Initially a constant current is applied to the pump to 

remove oxygen rapidly from the cavity much faster than its rate of leakage 

through the diffusion barrier. When almost all oxygen is removed from the 

internal volume the voltage on the pump rises sharply at which point the 

current is automatically discontinued. Oxygen is then allowed to leak into the 

cavity until the inner oxygen partial pressure approaches the external 

pressure. The pumping current is then re-applied and the cycle repeated. The 

oxygen partial pressure in the sample gas can then be calculated by 

invoking Faraday's law, 

P, = - ^ < ? (1.6) 

where Q is the charge passed, v is the internal volume and T is the operating 

temperature. If the current applied is constant (I) then Pj is given by 

pumping current is restricted by the ionic conductivity of the ceramic; this 

means that the ratio (S/L) must be small enough in order to reach the 

limiting condition even at high oxygen concentrations. Dietz (1982) described 

various forms of diffusion barriers to achieve this requirement. The second 

disadvantage of this type of sensors is that the device can not distinguish the 

rich and lean regions as there is no change in sign of the current on 

traversing stoichiometry (Maskell 1991a). 
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P. = ^ t (1.7) 
1 4Fv 

Equation (1.7) shows that P^ is directly proportional to the pumping time (t). 

Pump-gauge devices 

By combining oxygen pump and gauge cells, the effect of oxygen generation 

or extraction by the pump can be monitored by the gauge (Beekmans and 

Heyne 1970, Agrawal et al 1974). By using appropriate electronics the signal 

from the gauge may be used to control the pumping efiect in order to produce 

gases with controllable percentage of oxygen (Philips 1971). The combination 

of oxygen pump and gauge can be used for oxygen sensing without the need 

for reference gas. The device with an enclosed volume (v) consists of an 

oxygen pump and a gauge. The device can be hermetically sealed or may have 

a pore or porous material connecting the inner and outer regions. The 

esternai and internai oxygen partial pressures are represented as P( and P2 

respectively. A number of different modes of operation of such devices have 

been proposed. In ali these modes one half of the device is used to pump 

electrochemically oxygen into or out of the internai volume, and the other half 

is used to measure the Nernst EMF between Pl and P2. 

Coulometric 

This mode of operation was first reported by Haaland (1977), A number of 

related methods were then reported by Hetrick et al (1982) and by DeJong 

(1983). The pump-gauge device was placed in the sample gas of unknown 
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Amverometric without fixed référence 

In this mode of opération (Hetrick et al 1981) a device with diffusion hole 

was used. The pumping current was automatically adjusted to hold the gauge 

EMF at some predetermined value E„. At the steady state E=EB where E is 

given by eqn.(1.2). The pumping current I p, is given by 

/, = Fo(P,-P2) (1.9) 

where o is the leak conductance of the diffusion barrier. 

Thus 

Ip = FoP (1.10) 

oxygen partial pressure Oxygen was electrochemically pumped out of the 

internal volume (v) until the gauge EMF, E, reached a predetermined value 

E 7 corresponding to an internai oxygen partial pressure equal to Py. The 

current was then reversed and oxygen pumped into the device until E reached 

a predetermined value E £ corresponding to an internai oxygen partial 

pressure P£. The current was then reversed and the cycle repeated. Thus the 

internal oxygen partial pressure was pumped between P y and PE respectively. 

Under simplifying conditions (Maskell 1991a), the external oxygen partial 

pressure may be determined according to the foUowing équation 

P i = (XI)2 h (1.8) 
1 {4F) 2v(Ey-Ez) 

where I is the amplitude of the pumping current, y is the cycle time and v is 

the internal volume. 
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For a given E„ the current was proportional to the oxygen partial pressure 

in the sample gas. 

Amperometri with fixed référence 

This mode of opération was suggested by Dietz (1982). By providing a gas of 

fixed composition adjacent to the anode on a single two-electrode 

amperometric sensor, the two sides of stoichiometry may be distinguished. 

Soejima and Mase (1985) translated this idea into practical device using air 

as référence gas. 

Potentiometrie with monitored internai référence 

Maskell et al (1987) have described a novel mode of opération of a fully-sealed 

pump-gauge device. This mode of opération is explained in détails in the next 

section. The présent work was based on this mode of opération. 

1.4 OXYGEN PUMP-GAUGE OPERATING IN THE AC MODE 

Maskell et al (1987) suggested that by applying a sinusoidal current to the 

pump of the device, the internal oxygen partial pressure may be caused to 

oscillate at the same frequency. This should result in a pseudo-sinusoidal 

EMF on the gauge. By appropriate signal processing of the gauge EMF, the 

mean internai oxygen partial pressure may be determined and adjusted if 

required. Potentiometrie measurement of the oxygen partial pressure in the 

sample gas can then be made relative to the known mean internai référence 

pressure. The main advantage of this mode is the continuous rather than 
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A is the amplitude and co the angular frequency. From eqns. (1.13) and (1.14), 

intermittent measurement of oxygen partial pressure. 

1.4.1 Theory of Operation 

The theory of Operation of the fully sealed device operated in the AC mode 

has been developed by Maskell et al (1987). A schematic cross section of the 

pump-gauge used is shown in figure (1.3). The external and internal oxygen 

partial pressures are designated as Pj and P2 respectively. The ideal gas 

equation may be written for the internal volume. 

= (i.ii) 

dt v dt 

v is the internal volume and n the number of moles of 0 2 contained. By 

applying a current to the pump the number of moles of oxygen transferred 

through the solid electrolyte is given by Faraday's law (eqn. 1.4). Assuming 

ideality, i.e. no sorption on internal surfaces, no oxidation-reduction of the 

inner electrodes and negligible changes in stoichiometry of the ceramic, then 

the following equation may be written 

¥l = - * ! / (1-12) 
dt 4Fv 

and 

P2 = -KLfldt (1-13) 

If, in this mode of Operation, the applied current is sinusoidal, then 

l-A sinoir d-14) 



27 

RTA 

4FVG) 
COSG)/ + PQ 

(1.15) 

P0 is a Constant equal to the mean oxygen pressure inside the device, i.e. the 

average value of P2. 

It is shown in Appendix (D) that the internai volume of the device, being 

"charged" and "discharged" with an oxygen flux resulting from the pumping 

current, is equivalent to an ideal capacitor being charged and discharged 

using a pumping current. The oxygen partial pressure duTerence across the 

gauge is equivalent to the voltage across the capacitor. The phase difference 

between the pumping current and internai O a partial pressure is equal to 90°. 

The same phase shift is found between the "charging" current and voltage 

across the capacitor. 

Equation (1.15) may be written 

The internai oxygen partial pressure eqn.(1.16) cannot be negative. 

Physically, the limit is reached when ali oxygen contained in the enclosed 

volume is pumped out of the device. Therefore the following relation must not 

be violated in order to ensure proper functioning of the device: 

RTA 
4FV(Ù 

cosx + P0 
(1.16) 

where x=cot. ( 1 . 16a ) 

RTA 
<1 (1.17) 

4FvwP0 
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The gauge EMF, E, is given by eqn.(1.2) 

(1.2) 

Uniformity of 0 2 concentration within the internai volume may be estimated 

as follows. The time constant of the gas diffusion from the internai pump-

electrode to the gauge électrode is given by (Crank 1956) 

where G is the distance between the internai électrodes (i.e. thickness of the 

gold seal) and D is the gas diffusion coefficient. In the présent work, a 

mixture of oxygen and nitrogen was used to test the devices for which a value 

for D of 164mm2 s 1 at 700°C was calculated (Chapter 6): this together with 

G=0.05mm led to a T D value of 15us. On the other hand, the maximum 

operating frequency of the device employed in this work was 4Hz (refer to 

Chapter 3). Thus the time constant of oxygen diffusion inside the device was 

very small when compared to the minimum signal period (250ms) of the 

pumping current. Therefore under the operating conditions, the oxygen 

concentration may reasonably be assumed to be uniform throughout the 

internai volume. 

(1.18) 

Under the operating conditions, the internai gauge-electrode is assumed to 

respond rapidly to changes in P2. In gênerai, the response of the électrodes 

dépends (refer to section 6.3.5 in Chapter 6) on the partial pressure, operating 
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4F 
ln 

. RTA 
1+ cosx 

4Fv(ùPn 

(1.19) 

This is the gênerai theoretical équation for the variation of the gauge EMF 

resulting from the application of a sinusoidal current. 

If 
RTA 

4FvtùP„ 
<0A (1.20) 

then équation (1.19) may be simplified to 

4F 
I n f ^ RTA 

4FvuP„ 
cosx (1.21) 

Equation (1.21) shows that the EMF in its simplified form is the sum of DC 

and AC components. 

E - Ea - Bcosx (1.22) 

where 

and 

Eo - — ln 0 4F 

fP^ (1.22a) 

B -
R2T2A 

16F 2VCJP„ 
(1.22b) 

Clearly eqn.(1.21) predicts a phase shift of n/2 between the EMF and the 

pumping current. 

température and électrode composition (Fouletier et al 1974, Winnubst et al 

1985, Maskell and Steele 1986). Substituting for P 2 from eqn.(1.16) into 

eqn.(1.2) gives: 
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An increase in the term (RTA/4FvcoP0) is accompanied by an increase in E p p 

and a progressive déviation of the EMF from a sinusoidal shape. This 

déviation is caused by the logarithmic effect on the second term of eqn.(1.19). 

Figure (1.4) shows the calculated E p p at 700°C versus (RTA/4Fvo)P0). For low 

values of the latter theory predicts linearity becoming increasingly non-linear 

at high values. Note that the relation of eqn.(1.20) corresponds to an 

amplitude of the AC component less than 4.2mV peak-to-peak at 700°C. 

1.4.2 Results 

The above theory has been verified by Maskell et al (1987). Excellent 

agreement was found between theory and experiment. Figure (1.5) shows 

experimental results using a device with an internal volume v=lmm 3 

operated at 700°C in air. The two plots of the gauge EMF were obtained with 

two différent amplitudes of the pumping current (Aj=20 and A2=400uA): 

thèse correspond to the two values 0.045 and 0.86 of the term (RTA/4Fv<oP0) 

respectively. Distortion of the gauge EMF from a pure sinusoid is clearly 

evident in figure (1.5b). 

In the présent work, this theory of opération constitutes the basis of the 

development and testing of the electronics associated with pump-gauge 

devices operated in the AC mode. 

(1.23) 

The amplitude peak to peak (Ep p) of the AC component of the gauge EMF 

(eqn.1.19) dépends on the magnitude of the term (RTA/4FvcoP0). 
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1.4.3 Proposed signal processing 

The theory of Operation of sealed pump-gauge devices operated in the AC 

mode coiifìrmed by existing experimental data indicates that with an applied 

sinusoide! pumping current, the device produces a gauge EMF which is a 

function of both the external partial pressure (quantity to be measured) and 

the mean internai oxygen partial pressure. This gauge EMF is composed of 

two components: an AC component dependent upon the mean internai oxygen 

partial pressure and a DC component dependent upon both the mean 

internai and external partial pressures. 

The idea of separating the two terms (AC and DC) of the gauge EMF was 

first suggested by Maskell et al (1986). The mean internai oxygen partial 

pressure may be determined from a measurement of the amplitude (6) of the 

AC component. From eqn.(1.22b), 

Then the oxygen partial pressure in the sample gas (Pj) may be computed 

from the DC component and the calculated P 0 using eqn.(1.22a). Thus the 

mean internai oxygen partial pressure acts as reference for the measurement 

The possible signal processing options were further developed by Maskell 

(1986). The Operation of the device in a controlied loop system (figure 1.6) was 

RZT2A (1.24) 

of P.. 

(1.25) 
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suggested, where an appropriate bias signal may be used to adjust the 

frequency (<o), the amplitude of the current (A) or the mean internai oxygen 

partial pressure (P0) in order to keep the gauge EMF within the low signal 

condition [i.e. AC component purely sinusoïdal; see eqn.(1.17) and 

eqn.(1.22b)]. In addition, the feedback should ensure that the system does not 

saturate for instance through an offset in the sinusoidal pumping current. 

1.5 AIMS AND OBJECTIVES OF THE WORK 

In the présent work the objective was to develop instrumentation for the 

measurement of oxygen partial pressure based upon pump-gauge sensors 

operated in the AC mode. This included the following investigations. 

(i) Implementation of the signal processing options suggested by Maskell 

et al (1986) to fully sealed devices with additional refinements where 

appropriate. 

(ii) Implementation of an important modification with a fully sealed device 

in which the mean internai and external gas pressures are maintained equal. 

(iii) Development of the theory for leaky devices together with 

implementation and vérification. 

(iv) Considération and implementation of methods for temperature 

compensation with particular emphasis on minimisation of hardware. 

(v) Development of circuitry for maintaining the sensor at a predetermined 

temperature. 
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Figure (1.1): Potential U.K market for sensors over the next five years; 

values in £M. (Source: Bogue 1990) 
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Figure (1.2): Schematic diagram ofa limiting-current sensor. 

(Source: Dietz 1982) 
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Figure (1.3): Sealed pump-gauge device without heater. 
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Figure (1.4): Calculated amplitude of the gauge EMF as a function of 

its level ofdistortion (Le. deviation from a sinusoidi 
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Figure (1.5): Gauge EMF versus time at 800°C in air} at two différent 

pumping currents. (a): A=20uA (b): A=400pA. 

(source: Maskell et al 1987) 
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Figure (1.6):Meosurement of oxygen partial pressure using pump-gauge 

device operated in the AC mode; Simplified schematic 

diagram of the system. 
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CHAPTER 2 

EXPERIMENTAL 

"The great tragedy of science - the slaying of a beautiful 

hypothesis by an ugly fact " Thomas Henry Huxley. 

Biogenesis and Abiogenesis (1870). 
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2.1 INTRODUCTION 

In this section, the construction of the pump-gauge devices, used in the 

présent work, is described. The various pièces of equipment used in testing 

the sensors are also described. 

2.2 CONSTRUCTION OF FULLY SEALED DEVICES 

The zirconia ceramic used for making the device contained 6 mole % Y 2 0 3 in 

Zr0 2 and was so-called partially-stabilised zirconia (PSZ). Other types of 

zirconia solid solutions include fully-stabilised zirconia (FSZ), typically 

containing 9 mole % Y 2 O s in Zr0 2 . For a given application, the choice of 

ceramic type dépends upon the ionie conduetivity, electronic conduetivity, 

toughness and strength of the material required. The ionie conduetivity of 

PSZ is lower than that of FSZ (Butler et al 1984, Bonanos et al 1984), but the 

toughness/strength of PSZ is double that of FSZ (Subbarao 1981). The 

electronic conduetivity of both PSZ and FSZ are generally acceptable (Maskell 

1991a) over the range of normal opération (P 0 2 values IO'18 - IO6 Pa). 

2.2.1 Préparation of the componente 

2.2.1.1 Zirconia préparation 

The zirconia powder (6Y) was manufactured by TOYO SODA 

MANUFACTURING CO. Ltd. This powder was pressed in a punch and die 

followed by isostatic pressing (at 200MPa) into pellets. The pellets were then 

fired at 1550°C for 2 hours; the temperature was taken up and down at a rate 

of 5°C/minute. This resulted in pellets 28mm in diameter and 10mm thick 

with a density of 97% of theoretical. 
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2.2.1.2 Ceramic drilline and slicine 

Cylinders of zirconia were drilled from the pellets using a diamond-tipped 

hollow drill (from D.K Holdings, G.B.) fitted into a water chuck. The 

cylinders were then glued into alumina tubes with Lakeside cement and 

sliced on a Capco diamond saw to produce discs 7.8mm in diameter and 

900um thick. After cutting, the discs were cleaned with methanol. 

2.2.1.3 Grindine 

In order to achieve an hermetic seal between the zirconia discs and gold seal, 

the ceramic is normally ground fiat and then polished to a smooth finish. 

However, thiß process is lengthy and expensive. The method (Maskell 1991b) 

employed in the present work did not require the polishing treatment while 

still resulting in an hermetic seal. Using the normal grinding treatment 

ußually resulta in a surface with Scratches (grooves) traversing the seal; this 

resulta in pores connecting the internal volume of the device and external 

atmosphere with the result that oxygen may leak into or out of the internal 

volume. The method (Maskell 1991b) obviated this problem by ensuring that 

grooves did not traverse the seal. This was achieved by rotating the zirconia 

disc about an axis perpendicular to the fixed grinding surface (carborundum 

paper, grade 1000) and to the surface being prepared. By ensuring that the 

axis of rotation was close to the centre of the disc, grooves following Segments 

of concentric circles were obtained. This is illustrated in figure (2.1). This 

treatment enabled an hermetic seal to be achieved with the gold foil upon 

sensor assembly. 
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2.2.1.4 Sputtering and screen printing of the electrodes 

Both sides of each disc were masked and then sputtered with platinum using 

a Nordiko Sputtering Machine (model number NSM2000). The mask allowed 

a 5mm diameter electrode on each side of the disc. The sputtering time and 

the R.F. power used were 45min and 100W respectively. 

Platinum films were then screen printed over the sputtered electrodes using 

a non-fritted platinum ink (ESL 5542) from Electro-Science Laboratories, The 

printing was achieved using a thick film printing machine (type DEK 1202). 

After printing, the discs were dried and then fired at 1000°C for 15min. The 

thickness of the electrode, measured using an Alphastep, was 6-8um. 

2.2.1.5 Preparation of the spacers 

Rings were cut from alumina tube using the Capco machine. The thickness 

was 0.8mm and inner and outer diameters were 5 and 7.8mm respectively. 

2.2.1.6 Preparation of the sold seal and connections 

The gold seals were cut from strips of 50um thick gold foil (Engelhard) with 

prepunched 5mm diameter holes. The gold seal consisted of a ring (7.8mm 

o.d. and 5mm i.d.) with a protruding tab. The latter was used for electrical 

connections to the electrodes of the device. 
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2.2,1.7 Préparation of the heaters 

Thick film printed heaters have been developed by other workers in the 

Energy Technology Centre for opération at températures in excess of 600°C. 

The design of the heaters (Maskell 1988) allowed uniform temperature 

distribution on the substrate. Nine heaters were screen printed on a 650mm2, 

0.7mm thick alumina substrate. Individuai heaters were then laser-cut by 

Laser Mitronic Ltd. The eut heaters (figure 2.2) were 8mm in diameter with 

a hole, 1mm in diameter in the middle of the disc. This hole ensured that 

after assembly, the outer électrodes were exposed to the ambient gas. 

Electrical connections to the heaters were ma de with platinum wire, 0.1mm 

in diameter using platinum ink (ESL 5544). This resulted in good electrical 

and mechanical connection after firing at 1000°C for 15min. 

2.2.2 Assembly of the sensor 

The pump-gauges were assembled as shown in figure (2.3). Each device 

consisted of 2 zirconia dises, 2 alumina spacers (i.e. rings) 2 gold connections 

and 1 gold seal. The components were then pressed together with a force of 

50N in a jig (figure 2.4) designed for the purpose by other workers in the 

Energy Technology Centre. The sensor was then fired in the jig in air for 16h 

at 1025°C (ie. temperature a little below the gold melting point of 1062°C) 

resulting in a good seal. The temperature was "ramped" up and down at a 

rate of 30°C/min. 
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The connections to the gold tabs were made using platinimi wire, 0,15mm in 

diameter. Silver-loaded glass of melting point 950°C was used to ensure 

strong connection between the wire and the gold tab. 

Each sensor consisted of a pump-gauge device and two heaters attached to 

the alumina spacers using paste containing powdered glass in an organic 

medium. The pump-gauge was sandwiched between the two heaters (figure 

2.5). The thick films were on the two exposed faces of the assembled device, 

this configuration improved the temperature distribution, thus minimising 

the errors introduced by temperature différence between the électrodes 

(Fouletier et al 1974) and reducing the risk of cracking. 

A type R thermocouple (Pt-Ptl3Rh) made with wires, 40um in diameter was 

attached to one of the heaters using glass allowing the temperature of the 

sensor to be monitored. The complete sensor was then fired at 1000°C for 

15min to allow the glass to melt and secure ali connections. 

2.2.3 Mounting of the sensor 

An 8 way transistor header was used to hold the sensor as shown in figure 

(2.6). The thermocouple was on the top side of the sensor. The upper half of 

the sensor was used as the gauge while the lower half was used as pump. A 

Email wad of ceramic fibre (TRITON Kaowool ceramic fibre) was used to 

create a support for the sensor. The platinum wires used for the electrical 

connections were wound around the header wires, the joints were then coated 
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with flux and permanent connections made by melting silver solder with a 

flame from a email hand-held gas torch. The sensor was finally mounted in 

a holder fitted with an 8-way socket compatible with the transistor header. 

2.3 CONSTRUCTION OF LEAKY DEVICES 

Thèse devices were constructed in a similar way to the fully sealed sensors. 

After the grinding treatment of the zirconia dises, holes were laser-drilled by 

Micrometrie Techniques Ltd in the centre of some of thèse dises. An 

additional mask was used for the sputtering and screen printing of the 

électrodes of the laser-drilled dises so that the holes were not covered with 

platinum. For each leaky device, a laser-drilled disc and a normal dise were 

used. Once the device had been assembled, the dise with hole(s) was used as 

the gauge. 

2.4 LABORATORY EQUIPMENT USED 

2.4.1 Gas mixing equipment 

A small brass chamber was made to fit the sensor holder so that the 

environment around a device could be controlied. Gas mixtures of air and 

oxygen-free nitrogen were used to test the devices. Mass flow valves of the 

type 5850TR and 5850E from Brooks Instrument were used to mix thèse 

gases (figure 2.7). Each valve allowed a maximum flow rate of lOOml/min. A 

controller/meter (from Brooks Instrument) was used in conjunction with thèse 

valves to provide accurate setting and digital reading (over 3 Vi digits) of the 

flow. This controller (model 5878) enabïed simultaneous control of four mass-
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flow valves. Regular checking of the calibration of this equipment was 

achieved using the burette-bubble technique. 

For the measurement of the response time of the devices a fast solenoid valve, 

with two inlets and one outlet, was used to switch from one premixed gas to 

another. As shown in figure (2.8), two bubblers were used at the inlets of the 

valve. This arrangement was adopted to avoid pressure build-up at the non-

selected channel (i.e. inlet). The solenoid valve used was of the type G3312-

24VDC from BP Pneumatics. This miniature valve (with a nominal power of 

0.65 watts) was operated from a 24V DC supply and had a response time of 

5ms. 

2.4.2 Barometer 

The ambient pressure was measured using a barometer from GRIFFIN & 

TATLOCK Ltd, serial number M766. 

2.4.3 Oscilloscope 

The digital Tektronix 2211 storage oscilloscope used incorporated important 

features including a CRT readout and cursor measurement display. It could 

be used for the measurement of voltage amplitude and phase shift. Associated 

software (Grabber) enabled the transfer (through a serial port) of captured 

screen traces from the scope to a microcomputer. These traces, stored in an 

HPGL-format file could be plotted or printed as required. 
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2.4.4 Functìon generator 

A Feedback-type functìon generator (type SFG606, serial number 606/7/CX) 

was used for the generation of the pumping sinewave and TTL clock. The 

frequency range of this generator was O.lmHz-lkHz. 

2.4.5 Timer/Counter 

A type PACAL-DANA 9900 (serial number: 9531), with a digitai display over 

6 digits Timer/Counter was used for accurate measurement of the time lapse 

between two consecutive edges of one or two square waves. The signs of the 

edges required for start ing and stopping count were selected extern al ly. 

Combination of positive and negative edges enabled measurement of signal 

perioda, phase shifts, mark-to-space ratio (MSR), etc.... 
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Figure (2.1): Typical pattern ofgrooves resulting front the grinding 

method used. (source: Maskell 1991b) 
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Figure (2.2): Thick film platinum heater on an alumina substrate. 
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Figure (2.3): Assembly ofthe pump-gauge device. 
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Figure (2.4): Jig used for assembling the device: The alumina rod was 

spring'loaded with a force of 50N; the device in the jig was 

then fired in air at 1025°C for 16h. 



Figure (2.6): Photograph of the complete sensor mounted on a transistor 
header. 
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Figure (2.7): Arrangement used for testìng the sensor. 

Figure (2.8): System used for evaluating the response time ofthe sensor. 
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CHAPTER 3 

OPERATION OF SEALED PUMP-GAUGES 

IN THE POTENTIOMETRIC MODE 

"All things are possible untü they are proued impossible -

and euen the impossible may only be so, as of now." 

Pearl S. Buck, A Bridge for Passing (1962),3. 
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3.1 INTRODUCTION 

The theory of opération in the AC mode of sealed pump-gauge devices has 

been developed by Maskell et al (1987). This theory, given in Chapter 1, 

predicted that under a sinusoidal pumping current, the device should produce 

a pseudo-sinusoidal EMF. Under simplifying condition, the AC component of 

the gauge EMF may be assumed sinusoidal. This AC component was 

dependent on Pn. The DC component of the gauge EMF on the other hand was 

dependent on both P 1 and P0. 

Maskell et al (1986) suggested that by appropriate signal processing the AC 

and DC componente of the gauge EMF may be separated. From the AC 

component, the mean internai oxygen partial pressure P0 may be determined, 

then from the DC component Potentiometrie measurement of P t may be made 

relative to the known P 0 and hence in the présent work this mode of 

opération has been termed the "Potentiometrie Mode". 

In this chapter various methods suggested by Maskell (1986) for the practica] 

implementation of this mode of opération are discussed. A number of practical 

refinements have been added to ensure high performance. 

3.2 SEPARATION OF THE AC AND DC COMPONENTS 

Phase Sensitive Detection (PSD) is a powerful technique which may be used 

for the measurement of the mean amplitude of AC signais, often obscured by 

noise. 
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PSD is normally used in applications where the signal results from the 

application of an AC stimulus to a system under test (Blair and Sydenham, 

1975). In order for PSD to operate it requires a reference signal coherent with 

the signal of interest. This reference is in general obtained from the AC 

stimulus. The PSD can be viewed as a synchronously driven full-wave 

rectifier. The coherent input signal gives a DC output after filtering, the 

value of which depends on both amplitude and phase of the input signal. The 

non-coherent signal accompanying the signal of interest is filtered out because 

of the zero average value of the rectified output. The PSD can be highly 

selective making it widely used in instrumentation including the use as a 

power factor meter (Babu and Wong, 1989), in modulated Wheatstone bridge 

circuits (Jones and Richards 1973, Stacey et al 1969, Bach et al 1970, Pardy 

1969, Williams 1965, Mukhopadhyay and Raychaudhuri 1986), in various 

auto-ranging component meters (Evans and Skyes 1989, Riggs and Evans 

1981, Oliver and Cage 1971) and many more applications in instrumentation 

(Huang et al 1988, Tay and Murti 1984, Miramontes and Castro 1990). 

In the present application PSD may be used for the measurement of the 

amplitude of the AC component of the gauge EMF. The DC component of the 

EMF may be easily measured using a sample and hold circuit as described 

below. 
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3.3 THEORY OF OPERATION 

Under the low amplitude condition (eqn.1.20), 

STA 
4FvwP, 

<0.1 (1.20) 

the AC component of the EMF (E) may be assumed sinusoidal. From 

eqn.(1.22) 

E - — In 
4F 

PA R2T2A 

16F2vwP, cos* (1.22c) 

The amplitude (B) of the AC component (eqn.l.22b) is inversely proportional 

to P0. From a measurement of B, P 0 may be calculated: 

p - R Z t 2 à 1 (1.24) 
16F2vu B 

The DC component (E0) of the EMF is given by eqn.(1.22a). The external 

oxygen partial pressure may then be determined from the known P 0 and a 

measurement of E 0 . 

p< '- P°"P(S£°) ( 3 1 ) 

3.3.1 Measurement of P 0 

The measurement of B may be achieved using PSD with a square wave as 

référence signal as shown in figure (3.1). The PSD is then a synchronised 

rectifier followed by an averaging low pass filter. The output of the PSD, V , 

is given by 
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1 N*N- (3.2) 

Under the simplifying condition (eqn.1.20), the gauge EMF (E) is given by 

eqn.(1.22c) and it can readily be shown that 

y , m - - 1 B (3.3) 

This result is valid only under the low gauge-amplitude condition (eqn.1.20) 

equivalent to an AC component less than 4.2mV peak-to-peak at 700°C. 

The disadvantage of the application of this theory is the restriction imposed 

on the amplitude of the AC component of the gauge EMF and consequent low 

signal-to-noise ratio as well as offset problems. It is shown below, however, 

that the method is applicable using AC signals with much larger amplitude 

without introducing significant errors in the computation of Px and P0; thus 

the signal-to-noise ratio may be improved without penalty. The general 

expression of the EMF is given by eqn.(1.19) 

4F 
In 1 f, RTA s 

- In! 1 + cos* 
4FvwPn 

(1.19) 

Using eqn.(3.2) the output of the PSD, V p, was numerically calculated for an 

EMF, E, given by eqn.(1.19). As shown in figure (3.2), numerical integration 

indicated that 

for 
RTA 

4FvuPr 

sO.35 (3.4) 
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R2T2A 
(3.5) 

8TIF 2VWP 0 

The linearity between V p and (1/P<>) suggests that the method for 

measurement of P 0 may be used with signais with large distortion (slarge 

amplitude). The condition of eqn.(3.4) is équivalent to an AC component less 

than 15.3mV peak-to-peak at 700°C. 

Maskell et al (1986) Buggested the opération of the sensor in a closed loop 

system in which the condition represented by eqn.(1.20) may be satisfied by 

applying a bias signal in order to adjust A,co or P 0. The same principle may 

be applied for signais with high distortion in order to satisfy eqn.(3.4). 

3.3.2 Computation of P , 

The component E 0 of the gauge EMF (eqn. 1.22a) may be determined by 

measuring the value of the gauge EMF (eqn. 1.19) at x=(7c/2)+n7t, (n=l,2,3 ). 

Pi may then be determined using eqn.(3.1). From eqn.(3.1) and eqn.(3.5) the 

following équation may be written 

(3.6) 

This équation is used later to compare theory with observation. 

the following relation may be written with a mnvimiim error of only 2% 
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3.4 CONTROL OF THE AMPLITUDE OF THE AC COMPONENT 

The methods suggested by Maskell (1986) were based on adjusting one of the 

variables (<ù, A, P0) in order to keep the amplitude of the AC component 

within a certain range. 

3.4.1 Control of co 

This method (figure 3.3) was based on the use of a voltage controlied 

oscillator. The bias signal necessary for Controlling the frequency of the 

pumping current was obtained from a me a sûrement of the amplitude of the 

AC component. 

In practice, there are serious complications for the practical implementation 

of this method. In addition to the fact that the range of operating frequency 

is limited by the sensor response, the practical implementation would require 

the use of filters with variable characteristics in order to match the variable 

operating frequency. This is extremely difBcult to achieve especially at the 

operating frequency range of the sensor (up to 5Hz). The computation of P, 

would require the use of three variables (Vp, E 0 and co). 

3.4.2 Control of A 

This solution was based on adjusting the amplitude of the current using a 

four quadrant multiplier (figure 3.4). This method should not require 

complicated hardware. However, care must be taken to ensure that the 

TTvQTriTTiiìTTi pumping current does not require high voltage aerosa the pump 
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which may induce electronic conductivity. The computation of Pi would 

require the use of three parameters (V , E 0 and A). 

3.4.3 Control of P 0 

This solution (figure 3.5) was based upon adjusting the mean internai oxygen 

partial pressure. This pressure may be easily controlied by applying a bias 

current to the pump of the device. Similar Systems were used by Meas (1978), 

Alesksakov and Godin (1982) and Agrawal et al (1974) to control oxygen 

partial pressure inside the sealed chamber using air as référence gas. In other 

modes of opération Dietz (1982) and Hetrick (1981) have used bias signais to 

control the ratio between the external and internai pressures in pump-gauge 

de vi ces. The computation of Pl would require the measurement of two 

parameters only (V p and Ey. Ideally, P 0 could be kept constant by keeping V p 

constant and the computation of P t would become easier. This method does 

not require complicated hardware and therefore was adopted in the présent 

work. 

3.5 PRACTICAL IMPLEMENTATION 

Figure (3.6) shows the schematic diagram of the circuit used for testing this 

mode of opération. The output V p of the PSD was compared to a référence 

voltage V r to produce the bias signal required for the control of P 0. The circuit 

was constructed using analogue electronics, although a combinati on of 

analogue and digitai electronics could be used but would not offer any 

significant advantage at this stage. If, however, the sensor were part of a 



58 

complete system used to measure and control oxygen partial pressure, then 

a microprocessor could be used to process the gauge EMF, convert it into 

measurement of Pj and simultaneously to take appropriate action in order, 

for instance, to maintain the oxygen partial pressure equal to a preset value. 

The detailed circuit diagram of the electronics is given in figure (G.10) in 

Appendix (G). In the following the various blocks of the diagram of figure 

(3.6) are discussed separately. 

3.5.1 Sinewave generator 

Earlier work (Maskell et al 1987) indicated that the upper limiting operating 

frequency of the sensor was in the region of 1Hz. However in the present 

work it was found that the sensor worked satisfactorily at frequencies up to 

5-6Hz. The operating frequency is limited by a number of factors (Fouletier 

et al 1974) including the operating temperature, the internai partial pressure, 

the ceramic type, and the electrode composition and preparation procedure. 

Unless otherwise specified the operating fi*equency used was 4Hz. The choice 

of this frequency was a compromise taking into account the easy practical 

iraplementation of the electronics and lower sensor sensitivity to leakage (see 

Chapter 6) at higher frequencies and the ideal behaviour of the perfectly 

sealed sensor at lower frequencies. In the present work, the sinewave 

generator used was adopted from Jung (1974). 
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3.5.2 Voltage to current converter 

Bipolar voltage controlied current sources have large scale application in 

instrumentation. A number of authors (Hart and Barker 1975, Haslett and 

Rao 1980) have described a variety of schemes; most of thèse rely on accurate 

transistor-based current mirrors for the purpose of transfer of current to the 

output. To avoid the problems associated with the requirement for précision 

mirrors, some authors (Graeme et al 1971, Huijsing 1990, Patranabis et al 

1986, Patranabis et al 1988, Kahler 1979, Morgan et al 1986) have described 

circuits using a combination of monolithic and discrete components. However 

the number of constraints put on the passive components in most of thèse 

schemes makes the implementation very difîicult. The converter used was 

adopted from Froelicher et al (1980). It was easy to implement and required 

one operational amplifier only. This was capable of delivering the maximum 

pumping current (1mA) used in the present work. 

3.5.3 Amplifier and voltage limiter 

To have fast response of the control loop and to minimise errors at steady 

state, a simple proportional type controller was found to give satisfactory 

résulte. In most feedback controlied Systems, voltage limiters are used for the 

bias signal ( Meas 1978, Agrawal et al 1974) to avoid high distortion of the 

stimulus, i.e. sinewave in the present work. The voltage limiter should not 

affect the performance of the system at steady state where the bias signal 

should be very low. 
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3.5.4 Instrumentation amplifier 

Any device connected to the gauge must have high input impédance to avoid 

stray current that may electrochemically transfer oxygen into or out of the 

internai volume (Heyne 1974). To minimise such currents a high input 

impédance, low drift instrumentation amplifier was used. 

3.5.5 Measurement of the amplitude of the AC component 

Many authors have described practical réalisations for the PSD, namely 

Clayton (1973), Jones and Richards (1973), Marzetta (1971), and Williams 

(1965). In the présent work, the PSD was built around an FET transistor and 

two operational amplifiers. 

3.5.6 Computation of the externat oxygen partial pressure 

The measurement of E 0 was obtained using a sample and hold circuit which 

was synchronised with the pumping sinewave. The sample and hold circuit 

used was the LF398. The trigger input of this circuit was obtained from the 

pumping sinewave using a combination of comparator and differentiator 

circuits. 

3.5.7 Circuit modification 

As shown in figure (3.7) additional éléments had to be added to the circuit to 

ensure proper functioning of the System. 

When switching on the electronics the output of the PSD was initially low 

because of the time constant of its internai low pass filter. This was 
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interpreted by the control loop as a very high mean internai oxygen partial 

pressure P0. The amplified bias signal, obtained from the différence between 

the référence voltage V r and the output of the PSD, was high and produced 

a positive current which pumped oxygen out of the device. This led to a fast 

rise of the DC component causing saturation of the instrumentation amplifier. 

The PSD then did not detect any AC component and the bias signal remained 

high: the system never recovered. To solve this problem, the référence voltage 

was increased slowly from zero when switching on, thus allowing a soft start 

of the loop. This was achieved by the inclusion of a low pass filter in the 

circuit generating the référence voltage (see figure G.10 in Appendix G). 

To achieve good accuracy, high amplification of the EMF was required. This 

arose because of the restriction imposed on the amplitude of the AC 

component. If P, changed to a value out-of-range, the DC component of the 

EMF became very high and caused saturation of the instrumentation 

amplifier. The system saturateci for the same reasons explained above. The 

loop could not recover even if P, went back to within the working range. To 

solve this problem, a second loop was added in the circuit (Fig.3.7). A window 

comparator (Graeme 1973) produced a signal to keep the DC component 

within a certain range far from saturation levels of the instrumentation 

amplifier. A similar system has been used by Filanovsky and Stromsmoe 

(1986) to control the amplitude of an RC oscillato-. When used in the présent 

application an auto-ranging system may be achieved by using the signal from 

the window comparato. The latter may be used to indicate whether to switch 
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to a higher or lower range to bring the system to steady state. The various 

ranges may be obtaìned by using a variable amplitude for the pumping 

current. 

3.6 EXPERIMENTAL 

The device (with approximately 0.98mm3 internai volume) was tested in the 

excess-air région by mixing air and nitrogen at the atmospheric pressure 

using mass flow controllers as described in Chapter (2). The system was 

primarily destined for use in domestic boilers (Patterson and Dann 1985, 

Franx 1982, Bergman and Franx 1984) working nominally at 20% excess air 

(i.e. 5% oxygen in the exhaust). Therefore, tests were made at the ambient 

barometric pressure (O.IMPa) in the oxygen partial pressure range l-10kPa. 

However the system may be operated in any range by appropriate choice of 

the référence voltage V r and/or the amplitude of the pumping current (i.e. for 

a constant temperature and frequency). The device was operated at 700°C 

and temperature was controlied to ±5°C (Benammar and Maskell 1989). The 

amplitude of the pumping current was 1mA and the référence voltage V r was 

chosen to keep the amplitude of the AC component less than 12mV peak-to-

peak. 

3.7 RESULTS AND DISCUSSION 

The séparation of the AC and DC components is shown in figure (3.8). The 

AC component was obtained from the output E 0 of the sample and hold circuit 

and the gauge E MF, E, using an adder. 
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Figure (3.9a) shows the amplitude of the AC and DC components for the 

oxygen partial pressure range 1-lOkPa. The variation of the amplitude of the 

AC component indicates that the control loop was unable to hold F 0 constant 

within the whole range of P r This can be explained by the présence of 

physical and electrochemical leakage (refer to Chapter 6) of oxygen into and 

out of the internal volume. Within the range 1-lOkPa, E 0 was negative 

(Figure 3.9a). This indicates that the mean internal oxygen partial pressure 

(P0) was higher than Pi (see eqn. 3.1); for Pi varying between 1 and lOkPa, 

calculation (using eqn. 3.1) suggested that P 0 varied between 5.3 and 12.7kPa. 

Therefore under the operating conditions, oxygen was effectively leaking out 

of the device. 

The results shown in figure (3.9b) were obtained using data from figure 

(3.9a). The straight line obtained indicates good agreement with the theory 

(eqn.3.6). The slope of the straight line was equal to 0.98 which was in good 

agreement with the theoretical slope (i.e. equal to 1.00). From the intercept 

of the straight line in figure (3.9b), the internal volume may be determined. 

This intercept was equal to -2.47 and led to vs0.94mm 3 which was in good 

agreement with the value determined from the dimensions of the seal 

(0.98mm3). 

3.8 CONCLUSION 

By using appropriate signal processing, oxygen partial pressure measurement 

over a wide range was achieved using pump-gauge devices operating in the 
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AC mode. Good agreement between the theory and experimental results was 

demonstrated. However, because it was not possible to maintain the mean 

internal oxygen partial pressure constant, the computation of the oxygen 

partial pressure of the sample gas required the measurement of two signals. 

This is a disadvantage which could be ameliorated if the device used were 

replaced by one with substantially lower leakage, in which case one of the two 

measured signals (Vp) could readily be maintained constant. Future work will 

be aimed at improving the quality of the seal which should make the practical 

implementation of the electronics for this mode simpler. 
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Figure (3.1); Measurement of the amplitude of the AC component using 

PSD technique. 

(RTA/4FvwP0) 

Figure (3.2): Calculation ofthe output (VJ of the PSD using eqn.(3.2l 
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adjusting the frequency of the pumping current 
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Figure (3.4): Control of the amplitude (B) of the AC component by 

adjusting the amplitude of the pumping current. 
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Figure (3.5): Control of the amplitude (B) of the AC component by 

adjusting the mean internal oxygen partial pressure. 
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Figure (3.6): Schematic diagram ofthe circuit adopted for implementing 

the Potentiometrie Mode of Operation ofsealed pump-gauge 

devices. 
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Figure (3.7): Modifiée version ofthe circuit of figure (3.6) to solve the 

problem of saturation of the instrumentation amplifier. 



Figure (3.8): Results obtained by operating a sealed device in the Potentiometrie Mode: Separation 
oftheAC and DC components ofthe EMF. TheAC component was reconstrueted from 
the DC component and the gauge EMF using an adder. 
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Figure (3.9a): Typical results obtained by operating a device with 

an internal volume of 0.98mm3 in the Potentiometrie 

Mode. The plotted data does not include an 

amplification factor. T=700°C, A=lmA, f=4Hz. 
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Figure (3.9b): Plot of the component E0 of the gauge EMF versus 

IntPjVJ using the data of figure (3.9a). 
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CHAPTER 4 

OPERATION OF FULLY SEALED PUMP-GAUGES 

IN THE TRACKING MODE 

"The whole science is nothing more than a refinement of 

everyday thinking" EINSTEIN, Out of my later years 

(1950), 13.1. 



75 

4.1 INTRODUCTION 

The Potentiometrie Mode of opération of the pump-gauge described in the last 

chapter was successfully implemented and tested. It was found however that 

the practica! analogue implementation required relatively complicated 

hardware to overcome various problems. 

In this chapter a novel and simple mode of Operation of the pump-gauge 

device is described. This method was based on the theory of opération of fully 

sealed devices in the AC mode. 

4.2 PRINCIPILE 

The device was operated in a closed loop system. A bias current obtained from 

a measurement of the DC component of the EMF, was used to control the 

mean internai oxygen partial pressure P0. By adjusting the P0, the control 

loop ensured that, at steady state, a well defined relation between P0 and P1 

was maintained. Thus P 0 followed (or tracked) the variations of the external 

0 2 pressure and hence the désignation Tracking Mode. 

It is shown that in the Tracking Mode the amplitude of the AC oscillation of 

the EMF was directly related to the external oxygen partial pressure. On the 

other hand the amplitude of the EMF was shown to be related to its level of 

distortion caused by the logarithmic effect on the cosine (Chapter 1, figure 

1.4). The analysis of this mode was therefore done using the originai équation 

for the EMF (eqn.1.19). This study enabled the device to be used with large 
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Note that when compared to the case of the Potentiometrie Mode, the roles 

of the AC and DC components of the EMF were reversed. In the 

Potentiometrie Mode the amplitude of the AC component was used in the 

control loop and the DC component was used in the Output reading of the 

oxygen pressure. In the Tracking Mode, the AC and DC components 

exchanged roles. 

4.3 THEORY 

With an applied sinusoidal pumping current 

/ = A sin* (1.14) 

where x=tot, the gauge EMF is given by 

4F 
In 1 1 . In 1 PTA 

4Fvo>P„ 
cos(x) (1.19) 

In the Tracking Mode the mean internal oxygen partial pressure P0 is 

continuously adjusted to follow P t. In the following, two methods are 

described for implementing this idea. 

AC Signals making it possible to cover a wide ränge of oxygen partial 

pressures. It also improved the signal-to-noise ratio and minimised the effects 

of offsets. 
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0 1 4P, 
STA (A.23) 
4Fvu 

In the présent implementa tion of the Tracking Mode of opération, the control 

loop continuously adjusted the mean internai oxygen partial pressure in order 

to satisfy équation (A.23). It is shown (Appendix A) that the general 

expression for the EMF, obtained by substituting for P 0 in eqn.(1.19), is then 

given by 

E= -^ ln ( l + «
2

+ 2ucosx ) (A.21) 
4F 

where 

u = - Ä - (A.22) 
8Fvw Pj 

Equation (A.21) and (A.22) show that in the Tracking Mode the gauge EMF 

4.3.1 Method 1: Constant mean value of the gauge EMF 

4.3.1.1 Control of the mean internai oxygen pressure 

In this mode of opération, the DC component (i.e. mean value) of the gauge 

EMF Ì8 minimised via a feedback loop aiming to maintain the DC component 

Constant and equal to zero. The following équation may be written: 

- f*£<fe = 0 (4.1) 

where E is the gauge EMF given by eqn.(1.19). Note that E is symmetrical 

with respect to X==TC, therefore analysis was done for the interval [0,n] only. By 

solving (Appendix A) the integrai in eqn.(4.1), a well defined relation between 

the mean internal and externa! oxygen partial pressures was found. 
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R T A <1 (1.17) 
4FVÜ>P0 

In practice the situation u=l corresponds to the pumping out of ail the 

oxygen présent from the internai volume at a point during the cycle. The 

condition u>l causes distortion of the EMF and the sensor déviâtes from ideal 

behaviour. In theory, the amplitude of the positive peak of the gauge EMF 

tends to infinity when uitl. This situation may be detected by measuring the 

amplitude E.p of the negative peak of the gauge EMF. 

E = ln(l + M
2

 + 2«) = - — ln(Wu) (4.2) 
-p 4F 2F 

For u £ l , E.p^-(RT/2F)ln2. Therefore knowing the operating temperature and 

by measuring E.p, the situation where uäl may be avoided by automatically 

switching to a lower pumping current for example (i.e. switching to a lower 

scale of oxygen partial pressure). As an example if the device used had an 

internai volume of 1mm3, an operating temperature of 800°C and frequency 

of opération of 4Hz, then the minimum oxygen partial pressure that the 

device could measure may be calculated for a given amplitude of the pumping 

current using eqn.(1.17). For A=lmA, the minimum measurable P t is 456Pa. 

This limit corresponds to E.p=-32.05mV. 

is a function of the extemal oxygen partial pressure P, only. It is shown in 

Appendix (A) that eqn.(A.21) is valid for u<l. This condition is équivalent to 

the necessary condition (eqn.1.17) for proper opération of pump-gauge devices 

in the AC mode. 
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4.3.1.2 Computation of the external oxygen partial pressure 

In the following several methods are described for the conversion of the gauge 

EMF (eqn.A.21) into a measure of Vv 

4.3.1.2.1 RMS converter 

The DC output of this converter is given by 

V0. = ±r\E\dx (4-3) 

where E is given in eqn.(A.21). An analytical solution of the intégral of 

eqn.(4.3) has not been found. However numerical analysis (Appendix B) 

indicated that to a close approximation 

f R2T2A " 1 

8 7 t F 2 v o ) t 

(4.4) 
P, î 

regardless of the level of distortion of the gauge EMF. Thus, high signal-to-

noise ratio may be achieved by using a gauge EMF highly distorted from a 

sinusoid (i.e. high amplitude). Equation (4.4) suggests that the system may 

require one or two measurements only to calibrate it for a wide range of 

Note that the mean value of the gauge EMF is maintained constant and equal 

to zero. It is shown however in Chapter (5) that by expressing this mean 

value as a function of the temperature (measured with a thermocouple) it is 

possible to achieve analogue temperature compensation with minimum 

hardware. 
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Equation (4.4) suggests that the DC voltage V 0 1 is directly proportional to the 

square of température. It is shown in Chapter (5) that analogue température 

compensation may then be readily achieved with minimum hardware. 

4.3.1.2.2 Phase Sensitive Detector 

By using a PSD with a cosine as multiplier, the gauge EMF (eqn.A.21) may 

be converted into a DC voltage given by: 

VM - — rE.cosxdx (4.5) 

where E is given in eqn.(A.21). The analytical solution of the integral of 

eqn.(4.5) has been given by Gradshteyn and Ryzhic (1980) as 

Vm = — u (4.6) 

Substituting for u, from eqn.(A.22), in eqn.(4.6) it follows that 

{ R2T2A 1 
{32F2vv>) 

L (4.7) 
P, 

oxygen partial pressure. It is particularly an advantage if the system is used 

as an oxygen pressure meter where the computation of the pressure P, can 

easily be done even with an analogue implementation. Of course if a 

microprocessor is used with the sensor, the signal processing and computation 

of the external oxygen partial pressure may also be readily performed. Even 

a very non-linear output may be linearised easily by using the look-up 

technique (Brignell and Dorey 1983, Regtien and Trimp 1990). 
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Using this AC-DC converter, the output voltage V 0 2 should be, in theory, 

perfectly linear with the inverse of the oxygen partial pressure in the sample 

gas. This should be true regardless of the level of distortion from a pure 

sinusoid of the gauge EMF making it possible to cover wide range of 0 2 

pressures and to work at high signal-to-noise ratios. 

4.3,1.2.3 Sample and Hold 

The two converters described above for the AC-DC conversion have the 

disadvantage of slow response to changes in oxygen concentration because 

they incorporate averaging low pass filters with relatively large time constant 

(i.e. at least five times the period of the pumping current). 

In many applications these sensors are used in controlled loop feedback 

systems. In these systems the sensor monitors oxygen activity downstream 

and its output signal is fed back to the controller to adjust the appropriate 

parameters in order to optimise the combustion conditions. As an example the 

reading of the sensor may be used to control the amount of air required for 

optimum combustion in domestic boilers (Patterson and Dann 1985, Bergman 

and Franx 1984) which may be achieved by adjusting the speed of the air fan 

(Vitter et al 1983, Franx 1982). In such applications the inherent speed of 

response of the sensor and associated circuitry to variations in oxygen 

concentration may therefore be extremely important if the controlled loop 

feedback system is to work effectively. While some allowance for delayed 

sensor response can be built into the controller, major problems arise if the 
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response rate of the sensor is slower than that required by the process 

Controller (Badwal et al 1988). 

Fast AC-DC transformation has been of special interest in fast amplitude 

control of sinusoidal oscillatore, automatic line voltage régulation (Jou et al 

1988), and uninterruptible power supplies (Chauprade 1977), Many authors 

(Mikhael and Tu 1984, Meyer-Ebrecht 1972, Vannerson and Smith 1974, 

Wojtyana 1989, Jou et al 1991, Richman and Walker 1971, Karybakas and 

MichoHtis 1980, Mahmood et al 1985) have described practical designs for 

such Converters. However thèse Systems were designed for purely sinusoidal 

signais. In the présent application, using thèse techniques would restrict the 

amplitude of the EMF to low values in order to approximate it to a sinusoid. 

Fast AC-DC conversion may also be carried out by employing a sample and 

hold technique (Mikhael and Tu 1984, Filanovsky and Fortier 1985). This 

technique does not dépend on the shape of the signal of interest and may be 

used to produce DC Outputs with fast response time. The sample and hold 

circuit may be used to measure the positive peak of the gauge EMF (i.e. 

maximum amplitude). If the sample and hold circuit is triggered at x=(2n+l)7i 

[n=0,l,2..J then from eqn.(A.21), the output (V 0 3) of the sample and hold 

circuit should be: 

Vm = -*Iln(l+K 2-2u) (4.8) 
0 3 4F V 
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î.e. 
(4.9) 

Substituting for u in eqn.(4.9) reveals 

Vm = ln 
m 2F 

1 -
RTA ) 

8Fvo>P, 
(4.10) 

Rearranging eqn.(4.10) enables the following expression to be written for P,. 

RTA 
8Fvo> l + e x p l — K 

RT 03 
(4.11) 

4.3.2 Method 2: Constant mark-to-space ratio 

In the previous implementation (4.3.1), a relation between P, and P 0 was 

established (eqn. A.23). The ratio (P,/P0) varies with the amplitude of the 

gauge EMF. It is shown in Appendix (B) that this ratio (figure B.2) varies 

between 1 and Vfc. An alternative mode may be proposed where this ratio is 

kept constant and equal to 1; then leakage effects resulting from the 

différence between the internai and extern al oxygen partial pressures will be 

small (Kaneko et al 1987). It is shown in the following that the principle of 

tracking may be implemented in another way which should, in theory, 

guarantee a ratio (Pj/Po) constant and equal to 1. 

Using a zero-crossing detector, the gauge EMF ( eqn. 1.19) may be 

transformed into a square wave. It can be shown that by controlling the 

mark-to-space ratio (MSR) of the resulting square wave, the relation (P1=P0) 
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p \ - , RTA 
1+ cos* 

P0 4FvuP0 

(4.12) 

It follows that 

(4.13) 

The zero-crossing of the gauge EMF occurs at two angles x^^ and ^ in every 

single period. From eqn.(4.13) 

xl = cos -1 4Fvco 

RTA C V o > 

and 
x2 - 2TT -Xj 

(4 .14) 

(4.15) 

The mark-to-space ratio (MSR) is given by: 

MSR = 2 1 

iTZ-iX^X^) 

It follows that 

(4.16) 

MSR - 7T 

cos -1 4Fvu) 
-1 

RTA 

(4.17) 

Equation (4.17) suggests that by keeping MSR=1, the relation (P,=P0) may be 

achieved. 

If the relation p!=P 0 is satisfied, from eqn.(1.19) the gauge EMF may be 

may be achieved. From eqn. (1.19), for E=0 the following relation may be 

written: 
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written 

E --lnü + 
4F 

RTA 
4FvuP. -cos* (4.18) 

and the computation of p! may easily be achieved for instance by measuring 

the positive peak V m of the gauge EMF. 

4F 
1- RTA 

4Fv(i)P, 
(4.19) 

Pj is then given by 

P, ~ RTA 1 
4Fvw (-4F-, 1-expl V. 

RT m 

(4.20) 

Note that the necessary condition of eqn.(1.17) for proper opération may be 

constantly checked by measuring the négative peak of the gauge EMF as in 

(4.3.1). 

4.4 PRACTICAL IMPLEMENTATION 

4.4.1 Method 1: Constant mean value of the gauge EMF 

The simplified schematic diagram of this method is shown in figure (4.1); the 

detailed electronic circuit is given in figure (G.ll) in Appendix (G). 

4.4.2.1 Control of the mean internai oxygen pressure 

A sinusoidal oscillator adopted from Jung (1974) was used to produce two 

sinusoidal signais in quadrature. The voltage-current converter, the 

instrumentation amplifier and the voltage limiter have been discussed in 
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Chapter (3). The DC component of the EMF was obtained from a low pass 

filter and produced the bias signal at the input of the voltage limiter. 

4.4.1J2 Computation of the exte mal oxygen partial pressure 

4.4. 1.2.1 RMS converter 

This converter was based on a rectifier followed by an averaging low pass 

filter. The time Constant of the low pass filter was 2s. 

4.4.1.2.2 Phase Sensitive Detector 

A Phase Sensitive Detector (PSD) was used as AC-DC converter. In this 

Implementation the PSD consisted of a multiplier followed by an averaging 

low pass filter with a time Constant of 2s. The PSD had a multiplying signal 

(cos x) readily available from the sinusoidal oscillator. 

4.1.2.3 Sample and Hold 

The sample and hold chip used was the LF398. Its trigger input (i.e. positive 

pulse) was obtained from the pumping sinewave using a combination of 

comparator and differentiator. 

4.4.2 Method 2: Constant mark-to-space ratio 

The detailed electronic circuit used for testing this method is given in figure 

(G.12) in Appendix (G). Figure (4.2) shows the simplifìed schematic diagram 

of this circuit. The gauge EMF was transformed into a Square wave. An 

average value of the square wave was obtained using a low-pass filter. The 
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output of the filter was related to the MSR. For a MSR=1 the output of the 

filter was equal to zero. However if MSR deviated frorn 1, then the output of 

the filter swung to a positive or negative value depending on whether E 0 was 

positive (i.e. P Q ^ ) or negative (i.e. Po>P,) respectively. The output of the 

filter was used to produce a bias signal in order to maintain MSR=1 which 

corresponds to E o=0 (i.e. P0=Pj). A similar system was used by Cox (1973) in 

a phasemeter that may be used for the measurement of phase shift between 

sinusoidal signais containing DC offsets [refer to chapter (6) for more détails]. 

The measurement of V m was achieved using a sample and hold circuit as in 

(4.4.1.2.3). 

4.5 EXPERIMENTAL 

Unless otherwise specified the sensor was operated under the following 

conditions 

- Barometric pressure« O.lMPa. 

- Operating temperature T=700°C. 

- Pumping current as indicated on the figures. 

- Operating frequency f=4Hz. 

Tests were made in gas mixtures of oxygen and nitrogen using the gas mixing 

equipment described in Chapter (2). The range of oxygen partial pressure 

considered was 1-lOkPa. This choice was made because the device was 

primarily destined for use in domestic boilers where the range of oxygen 

partial pressure is typically 2-5kPa. For the response time measurement, a 
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fast solenoid valve was used (refer to Chapter 2) to switch from one premixed 

gas to another. Note that the measurement of response time of the Systems 

was intended for comparison purpose only. This is because a true 

measurement of the response time would require a zero dead volume around 

the sensor. 

4.6 RESULTS AND DISCUSSION 

4.6.1 Method 1: Constant mean value of the gauge EMF 

4.6.1.1 Control of the mean internai oxygen pressure 

The measured response time of the circuit dépends on the gas flow rate and 

the speed of response of the control loop. The latter dépends on the sensor 

response, the total gain of the bias signal and the time constant of the low 

pass filter used to separate the DC component. The lower trace in figure (4.3) 

shows a typical response of the system to a step change in oxygen partial 

pressure from 2.5kPa to 8kPa. The system reached a steady state in 3-4 

periods of the pumping current. This is a relatively fast response (~ls) and 

the response of the complete system including the AC-DC converter should 

be determined by the response of the converter only. 

4.6.1.2 Computation of the externa! oxygen pressure 

4.6.1.2.1 RMS converter 

Figure (4.4) shows the output V 0 l versus 1/Pl for the range 1-lOkPa oxygen 

partial pressure. The amplification factor in V 0 1 was unknown, but the 

linearity was excellent showing good agreement with the theory (eqn.4.4). 
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This linearity, as theoretically predicted, was not affected by the distortion 

of the gauge EMF. This is illustrated in figure (4.4) where the peak-to-peak 

amplitude of the EMF was as high as 21mV. 

The time constant of the low pass filter of the RMS converter was chosen 

large enough (3s) in order to minimise the ripples in the output voltage V 0 1 

without restricting the speed of response to changes in O z partial pressures. 

The upper trace in figure (4.3) shows the transient response of V 0 1 to a step 

change of oxygen concentration. The response time of the system to 90% of 

the steady state was 5s. 

4.6.1.2.2 Phase Sensitive Detector 

Figure (4.5) shows the output versus 1/Pl for the range l-10kPa oxygen 

partial pressure. The linearity was excellent demonstrating that large AC 

signais may be used without introducing errors in the computation of Pi using 

eqn.(4.7). The response of the system to a step change of 0 2 concentration was 

identical to that of RMS converter since both Systems incorporated low pass 

filters with the same time constants. 

The analogue implementation of this converter was more difficult and 

required more hardware than that of the RMS converter with no 

improvement in performance. 
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4.6J.2.3 Sample and Hold 

Figure (4.6) shows the results at steady state for the range 1-lOkPa of oxygen 

partial pressure. The slope of the straight line in figure (4.6) provides the 

internal volume of the device (eqn.4.11). This value (1.10mm3) of the internal 

volume was within 10% of the theoretical value calculated from the 

dimensions of the seal (v=0.98mm3). As expected, the response of this 

converter to a step change in oxygen partial pressure (shown in figure 4.7) 

was rapid (ls). 

4.6.2 Method 2: constant mark-to-space ratio 

Figure (4.8) shows the steady state results obtained at 700°C. Again the 

straight line obtained in figure (4.8) suggests good agreement with the theory 

(eqn.4.20). The slope of the best fit line provides the internal volume of the 

device. The determined value (1.00mm3) was in good agreement with the one 

determined from the dimensions of the seal (0.98mm3). 

The measured transient response of the system dépends on the speed of 

response of the control loop and on the gas flow rate. The dependence on the 

flow rate is illustrated in figure (4.9a) [recorded at lOOml/min flow rate] and 

figure (4.9b) [at 40ml/min] where oxygen partial pressure was switched from 

1 to 4kPa. The response time of the system was 1.5s at 40ml/min and ls at 

lOOml/min. However the improvement of the time response at higher gas flow 

rate was accompanied by small oscillations in the output voltage. 
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4 . 7 CONCLUSION 

A novel method for the signal processing of sealed pump-gauges operated in 

the AC mode was suggested. This method, implemented in two ways, had 

excellent performance at steady state and transient; it allowed the 

measurement of oxygen partial pressure over a wide range with high 

tolérance to leakage. An important advantage of this method is that highly 

distorted gauge EMFs (s= with high amplitude) may be used, enabling 

opération with high signal-to-noise ratio. An interesting finding related to the 

linearity of the output of the system when using signais with high amplitude 

was theoretically predicted and experimentally tested. This linearity was 

almost independent of the level of distortion of the gauge EMF. 
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Figure (4.1): Schematic diagram of the circuit used for operating 

sealed pump-gauges in the Tracking Mode, 

method 1: the circuit maintains the DC component 

ofthe EMF Constant and equal to zero. 
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Figure (4.2): Schematic diagram of the circuit used for operating 

sealed pump-gauges in the Tracking Mode, 

method 2: the circuit maintains the ratio (PJ/PQ) 

equa! to 1. 



Figure (4.3): Transient response of the circuit of figure (4.1) to a "step" change in oxygen 

partial pressure from 2.5kPa to 8kPa. 
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Figure (4.4): Typical results obtained using a device with an 

internal volume of 0.98mm3 operated at 700°C, 

f=4Hz, A=0.87mA. Measurement of the output of the 

RMS converter (circuit of figure 4.1). 
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Figure (4.5): Resulto obtained using a device with art internai 

volume of 0.98mm3 operated at 700°C, f=4Hz, 

A=0.87mA. Measurement of the output of the PSD 

(circuii of figure 4.1). 
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P Ł / kPa 

Figure (4.6): Results obtained using a device with an internal 

volume of 0.98mm3 operated at 700°C> f=4Hz, 

A=0.87mA. Measurement of the output of the Sample 

and Hold, (circuit of figure 4.1). 



Figure (4.7): Transient response of the Sample and Hold circuit 

(figure 4.1) to a "step" change in oxygen partial 

pressure 2.5 - 8 - 2.5kPa. 
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Figure (4.8): Steady state results obtained using the circuit of 

figure(4.2). The device with 0.98mm3 internal volume 

was operated at 700°C, A=lmA, f=4Hz. 
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Figure (4.9); Transient response of tke circuit of figure (4.2) to a 
"step" change in P^ from 1 to 4kPa using two 
different gas flow rates. (a): 100ml I min, 
(b): 40ml I min. 
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CHAPTER 5 

TEMPERATURE COMPENSATION 

OF THE SENSOR 

"Science is the knowledge of conséquences, and dependence 

ofone fact upon another." THOMAS HOBBES, Leviathan 

(1651)> 1.5. 
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5.1 INTRODUCTION 

Différent approaches may be adopted to minimise errors introduced by 

temperature variation. By imposing severe constraints on the temperature 

controller, the temperature of the sensor can be precisely controlled. T can 

then be taken as a constant. In the présent work, the temperature control of 

the sensor was based on the control of the résistance of the platinum heaters 

using a Wheatstone bridge arrangement (Benammar and Maskell 1989). It 

was found, however, that the résistance of these heaters showed some long 

term drift (Ioannou and Maskell 1991). As a result the temperature of the 

sensor showed long term drift too, and consequently temperature 

compensation of the sensor output was investigated. Temperature 

compensation often offers more simplicity and requires less hardware than 

temperature control. Compensation may be achieved by measuring the 

temperature and including it in the signal processing (Agrawal et al 1974). 

For solid state zirconia oxygen sensorst the operating temperature is 

generally above 600°C. Therefore accurate temperature measurement may 

best be done using a thermocouple. To avoid the problems associated with 

using a thermocouple (cold junction, complexity of design of miniature 

Ben sors) temperature compensation without a temperature sensing élément 

would be preferred. Franx (1985) suggested a tailored solution for the 

temperature compensation of coulometric pump-gauge devices (Haaland 1977, 

Franx 1982 and 1984). This solution did not require the use of a thermocouple 

but did require the use of a microprocessor to handle the amount of 
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processing required. On the other hand, Rohr (1983) developed a solution for 

the temperature compensation of conventional Potentiometrie cells using 

simple signal processing. However the compensated system required the use 

of a référence gas and two Potentiometrie cells. 

Analogue-implemented temperature compensation (with thermocouple) of the 

device, operated in the Tracking Mode, is described in this chapter. 

Simplification of the hardware used is also discussed. 

5.2 THEORY 

In the previous Chapter (4), two methods were presented for the practical 

implementation of the Tracking Mode. The method of interest here is the one 

hased on adjusting the mean internai oxygen partial pressure in order to keep 

the mean value of the EMF constant and equal to zero (i.e. Method 1 in 

chapter 4). It is shown in this chapter that by expressing this mean value as 

a hinction of temperature, temperature compensation of the DC output of the 

electronics may be achieved using minimum hardware. 

Let the mean value of the gauge EMF be equal to a référence voltage Vr, 

where E is given by eqn.(1.19). It is shown in Appendix (A) that the relation 

between the mean internai and external oxygen partial pressures is then 

given by: 

(5.1) 



/>„ = — S - A 

f 4 F K ï 4P, exp 
[RT r 
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RTA 

4Fvo> e X p | l î K ' J (A.25) 

Under thèse conditions, the expression of the AC component of the gauge 

EMF (i.e. différence between the EMF, E, and its mean value Vr) is given by: 

E-V = - — ln(l +«
2

+2Mcosx) (A. 18) 
4F 

where 
RTA 

u = exp 
8Fvo)P M 

g K l (A.24) 
1 

This AC component may be converted into a DC output from which the 

extemal oxygen partial pressure Pj may be calculated. The converter of 

concern in this chapter is the RMS converter (refer to 4.3.1.2.1). It is shown 

in Appendix (B) that the output of this converter is given by: 

T . R2TZA (4F,A 1 M Q . 

The output of the RMS converter was dépendent on T and T2. In the 

following, two methods are presented for température compensation of the 

output V 0 Î . Thèse methods were based on the use of a type R thermocouple. 

Température compensation was investigated under two operating conditions: 

référence voltage equal to zéro and variable référence voltage. 
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5.2.1 Référence voltage equal to zero 

By using a zero référence voltage, the output becomes: 

v0l = — (4.4) 
0 1 S i roco P1 

Temperature compensation can be achieved by dividing the output voltage by 

T 2 to produce an output independent of temperature within the operating 

range. The thermocouple EMF (e), measured with a 20°C cold junction, is to 

be converted into T2. The straightforward solution is to use a thermocouple 

linéariser (Bentley 1984, Shubba and Ramesh 1986, Shepherd and Sandberg 

1984) to convert the thermocouple EMF into temperature (T) and a squarer 

to obtain T 2. However, as figure (5.1) indicates, within the relatively small 

range (600-800°C) of operating temperature of the sensor , the linearity 

between (T) and (e) was excellent and the linéariser was not required. 

Furthermore, figure (5.1) suggests equally good linearity between T 2 and (e) 

making it possible to convert the thermocouple EMF into temperature square 

without the use of linéariser and squarer. This is an advantage in analogue 

implementation where non-linear circuits are often avoided for simplicity and 

cost reasons. The foUowing équations may be written: 

T s a ^ b j (5.2) 

T 2=a 2e+b 2 (5.3) 

where a,, bj, a2 and b 2 are constants. The values for the constants were 

calculated using linear régression : 

a,=8.45xl0-2 K uV 1 ; b,=412 K 

^=164.5 K 2 pV 1 ; b2=-141.5xl03 K 2 
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5.2.2 Variable référence voltage 

The output of the electronics given in eqn.(B.3> may be written: 

K o 4 = (5.4) 
8TÏF2VW PX 

where 

Y(T) = T2exp 
4FK/ (5.5) 
RT J 

The idea of température compensation was based on automatically adjusting 

the référence voltage V r in order to keep Y(T)=constant (Y(T)=C) within the 

operating température range. The output of the electronics (eqn.5.4) would 

then be independent of température. 

VM = R 2 A — (5.6) 
W 8TÏF2VG> P, 

In the case where the référence voltage is equal to zéro the constant C is 

equal to T 2 [compare eqn.(4.4) and eqn.(5.6)]. A choice of C=10 6 is équivalent 

to a température T=1000K. From eqn.(5.5): 

17 R T i V„ - — ln 
r 4F 

£ 1 (5.7) 
T2) 

The expression of V t as a function of température is complicated. However by 

plotting V r versus the thermocouple EMF (e) for the range 600-800°C and 

Theoretical calculation showed similarity between the theoretical errors 

introduced in the compensated output voltage by the approximations of 

eqn.(5.2) and eqn.(5.3). Maximum errors of 0.4% were calculated in the 

température range 600-800°C. 
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C=10 , figure (5.2) shows that the required V r for füll température 

compensation may be expressed as a linear function of the thermocouple 

where a3 and b 3 are constants. 

If e and V r are in uV, the values for the constants were calculated using 

linear régression: 

It can be shown that the maximum error introduced by the approximation of 

eqn.(5.8) is 0.52% (déviation of Y(T) from a constant). This is an important 

finding because temperature compensation is shown to be possible without 

using non-linear éléments ( analogue divider, squarer) making the electronics 

simple to implement. 

The opération of the sensor in this mode caused a différence between the 

mean internai and external oxygen partial pressures. It has been shown in 

section (4.3.2) that the opération with a référence voltage equal to zero caused 

the ratio (P/P0) to vary between 1 and V2. For a given référence voltage V r, 

the analysis in Appendix (B) shows that the ratio (Pj/P0) is given by: 

Figure (5.3) shows the calculated exponential term in eqn.(B.6) for the 

temperature range 600-800°C. This term varied between 0.85 and 1.3. On the 

EMF. 

V r=a 3e+b 3 (5.8) 

a3=-3.54 ; b a=24.56xl0 3 

(B.6) 
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other hand the second terna of eqn.(B.6) was dépendent on the degree of 

distortion from a sinusoid of the gauge EMF. This second term, shown in 

figure (B.2b) in Appendix (B), varied between V2 and 1. As a resuit the ratio 

in eqn.(B.6) should vary between 0.425 and 1.3. Thus the introduction of a DC 

component in the gauge EMF increased the ratio between the mean internai 

and external oxygen partial pressures; this was expected because a part of 

the DC component, given by eqn.(1.22a), is dépendent on the ratio (P/P0). 

5.3 PRACTICALIMPLEMENTATION 

The thermocouple EMF was amplifìed (xlOOO) using an instrumentation 

amplifier. The errors introduced by the variation of the cold junction 

temperature are assumed to be small. Therefore automatic cold junction 

compensation was thought to be unnecessary. 

5.3 .1 Référence voltage equal to zero 

The block diagram of the circuit used to test this mode of temperature 

compensation is shown in figure (5.4). The circuit producing the DC output 

(V 0 1) was identical to the one used for opération in the Tracking Mode 

(Chapter 4). The squarer was adopted from Shubba and Ramesh (1986) and 

the divider was built around an analog multiplier ( Clayton 1971). The switch 

was used to select the parameter T 2 from the approximation of eqn.(5.2) or 

that of eqn.(5.3). The detailed circuit diagram is given in Fig.(G.13), 

Appendix(G). 
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5.3.2 Variable référence voltage 

The block diagram of the circuit used to test this mode of température 

compensation is shown in figure (5.5). Using a simple adder, the amplified 

thermocouple EMF was converted to produce the référence voltage V r 

required for the température compensation. The DC component of the gauge 

EMF, obtained from a low pass fïlter, was compared to the référence VT and 

produced a bias signal in order to adjust P0. At steady state the mean value 

of the gauge EMF should be equal to V r. The detailed electronic circuit used 

for implementing this method is given in figure (G.14) in Appendix (G). 

5.4 EXPERIMENTAL 

The device used to test thèse methods for température compensation was 

constructed as described in Chapter (2). The température was measured with 

a type R thermocouple attached to the sensor close to the gauge as 

recommended by Fouletier (1976). The température range considered was 

650-800°C. The oxygen partial pressure was set to 4kPa using a mixture of 

air and nitrogen as described in Chapter (2). The frequency and amplitude of 

the pumping current were 4Hz and 0.8mA respectively. 

5.5 RESULTS AND DISCUSSION 

5.5.1 Référence voltage equal to zéro 

Figure (5.6) shows the output of the electronics for the range 650-800°C. The 

température compensation with and without the squarer was excellent: while 

the non-compensated output varied by 31.5%, the compensated outputs varied 
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by 1.2%. The agreement between the results obtained using the 

approximation of eqn.(5.2) and eqn.(5.3) confirms that compensation can be 

achieved without the need for a squarer. 

5.5.2 Variable référence voltage 

Figure (5.7) shows the results obtained with and without compensation: 

within the range 650-800°C, the compensated output varied by 4.2% while the 

non-compensated output varied by 31.5%. The déviation from an ideal 

compensation could be caused by the différence between the DC component 

and the référence voltage, i.e. the bias signal was low but was not equal to 

zero. The compensation could be improved by some fine tuning of the 

constants aa and b 3. 

5.6 CONCLUSION 

Pump-gauge devices operated in the AC mode have strong temperature 

dependence. Techniques for temperature compensation, requiring simple 

hardware, were suggested and successfiilly tested; full temperature 

compensation was achieved over the whole range of operating temperature 

(i.e. 650-800°C) of the device. The simplicity and good performance of thèse 

Sys tems suggests that temperature compensation could be used as an 

alternative for the usually cumbersome temperature control. 
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Figure (5.1): Characteristics of a type R thermocouple at 20°C cold 

junction. 
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Figure (5.2): Température compensation with variable référence voltage 

V r Plot of the required Vr for full compensation. 



113 

1.35 

0.85 - H — i 1 1 1 1 1 1 1 j — h 
600 640 680 720 760 800 

Operating temperature / °c 

Figure (5.3): Température compensation with variable Vr Effects on the 

ratio (Pj/Po). 
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Figure (SA): Schematic diagram of a temperature-compensated system 

for Pas measurement 
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Figure (5.5); Température compensation by varying the DC co\ 
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compensation, x ; 
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CHAPTER 6 

OPERATION OF LEAKY 

DEVICES IN THE AC MODE 

"In order to try whether a vessel be leaky, we first prove it 

with water before we trust it with wine" CHARLES CALEB 

COLTON, Lacon (1825), 1.46. 
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6.1 INTRODUCTION 

Leakage can, in some instances, be a problem with fully sealed devices. This 

problem is compounded by the use of email pumping currents and small 

internai volumes which are usually associated with the miniaturisation trend 

in sensor making. Kaneko et al (1987) have studied the leakage mechanism 

in the type of fully sealed devices used in the présent work. Indirect methods 

have been used to evaluate leakage current under various conditions. Three 

modes of leakage have been identifïed, physical leakage, semipermeability of 

the ceramic and electrochemical leakage via the gold seal. Under the 

operating conditions, the electrochemical leakage was found to be the 

dominant leakage mechanism. 

In this chapter the effects of physical leakage on pump-gauge devices 

operating in the AC mode are discussed at length. Leakage of ostensibly fully-

sealed sensore results from pores Connecting the external atmosphère and 

internai volume which might resuit from flaws in the ceramic-metal seal or 

porosity in the ceramic. The leakage rate may increase with sensor aging. 

6.2 ADMS AND OBJECTIVES 

This study was done using a device caused to leak by the inclusion of one or 

more laser-drilled pores. The behaviour of such devices operated in the AC 

mode has been analyzed. This work has particular relevance to thick film 

sensors. Such devices can be mass produced at low cost making them 

important candidates for future gas sensors. However the production of low 
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porosity ceramic film necessary for the opération of thèse devices in the 

hmiting-current mode can be difficult to achieve. The construction of fully 

sealed devices using this technique is even more difficult. 

6.3 THEORY 

In the présent analysis, the following assumptions are made. 

- The oxygen partial pressure is uniform within the internal volume; 

- The concentration profile is linear within the diffusion pore; 

- The current applied to the pump is ali translated into oxygen transfer; and 

- The gauge électrodes respond to changes in oxygen partial pressure very 

rapidly compared with the period of one AC cycle. 

These are reasonable assumptions if the frequency of opération is not greater 

than 10Hz. Let the cross-sectional area and the length of the pore be S and 

L respectively. The internai volume of the device retains its notation (v). Let 

the external, mean internal and internai oxygen partial pressures be P,, P 0 

and P 2 respectively. The convention adopted is that a positive current pumps 

oxygen out of the internai volume. Likewise, a positive oxygen diffusive flux 

represents oxygen transfer out of the internai volume. 

When a current I is applied to the pump, oxygen may be electrochemically 

pumped into or out of the enclosed volume. Let n,. be the number of moles 

transferred by electrochemical pumping via the electrolyte. The resulting 

oxygen flux is then given by: 
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^curr 
idn. 
[dtj 

-L (6.1) 
4F 

so that a positive current results in a positive flux. Simultaneously, there will 

be oxygen leaking through the diffusion hole given by: 

V = — ~ (6-2) 

where dx is an elementary distance along the diffusion pore, P is the oxygen 

partial pressure inside the hole, D is the oxygen diffusion coefficient , and S 

is the cross-sectional area of the leak. R and T have their usual significance. 

The concentration gradient within the pore of length L was assumed linear 

for the following reason. The time constant for oxygen diffusion ( Crank 1956) 

through the hole is given by: 

= — (6.3) 
D D 

In the présent work, the length of the pore was L=0.7mm and the oxygen gas 

diffusion coefficient, calculated in (6.5.2.1), D=164mm2/s at the operating 

température (700°C). This led to a time constant TD=3ms. The maximum 

operating frequency of the device was f=4Hz. Therefore the time constant T D 

was very s mail compared to the minimum signal period (250ms). As a resuit 

the electrochemical pumping of oxygen should not affect the linearity of the 

oxygen concentration within the pore. Eqn.(6.2) may then be written: 

J r ™-(P2-P.) (6.4) 
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By combining eqn.(6.1) and eqn.(6.4), the total effective oxygen flux into or 

out of the internai volume of the device may be written: 

J = J * (6.5) 

± + ™L(P p ) (6.6) 
4F RTL 2 1 

= (6.7) 
dx 

where n is the effective total number of moles of oxygen transferred. 

For the internai gas the idéal gas équation may be written: 

^1 = ELàn ( L 1 1 ) 

dt v dt 

EUminating dn/dt between eqn.(l.ll), (6.6) and (6.7) gives 

^1 .IL / _ » t p P , (6.8) 
dt 4Fv vL 2 1 

Equation (6.8) is the gênerai differential équation relating the internai and 

external oxygen partial pressure of a leaky device under a pumping current 

where P x and P 2 are the external and internai oxygen partial pressures 

respectively. The sign in eqn.(6.4) can be verified as follows. Suppose P 2>Pi, 

then there will be diffusion of 0 2 out of the internai volume which by 

convention must be a positive flux. 
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p = J*ZfÜ_cosY cos(o)r+T) + P0 (6.11) 
4Fvu> 

where 

T = tan' 1 
f D S 1 (6.11a) 

P0, the mean value of P2, is given by 

p - p R T U ° (6.11b) 
0 1 4FDS 

Equation (6.11) shows that applying a sinusoidal current to the pump of a 

"leaky" sensor results in a sinusoidal oscillation of its internai oxygen partial 

pressure P3. When compared to a fully sealed device, "leaky" sensors are 

The AC mode of opération is based upon applying a sinusoidal current to the 

pump. An ideal sinusoidal signal is impossible to generate as there is 

normally a superimposed DC component. Let the general expression of the 

current applied to the pump be 

l - A sinur + / (6.9) 
o 

where A and co are, respectively, the amplitude and the angular frequency of 

the sinusoidal component of the current. IQ représenta the DC offset in the 

pumping current. In the following expressions for the internal partial 

pressure P2 and the gauge EMF are derived for a pumping current given by 

eqn.(6.9). Substituting for I in eqn.(6.8) gives: 

lui + £1 ( p P ) = . ^ ( , 4 rinur./) (6.10) 
dt vL 2 1 4rV ' 

The solution of the differential équation (eqn. 6.10) is given by (Appendix C) 
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An expression for the gauge EMF may now be derived. Assuming that the 

internal gauge électrode responds rapidly to the oscillations of P2, then the 

sinusoidal variation in the pressure P 2 translates into a variation in the 

gauge EMF given by eqn.(1.2). 

r R T 1 E - — In 
4F 

\ 2 / 

(1-2) 

Note that the case where the electrode response is not sufficiently fast is 

treated in section (6.3.5). Substituting for P 2 frorn eqn.(6.11) in eqn.(1.2) gives 

4F 
1+ R T Ä cos(T) cos(*+Y) 

4FvoP-
(6.12) 

4F 

where x=cot. (1.16a) 

When compared to the fully sealed device (compare eqn. 6.12 and eqn. 1.19), 

"leaky" devices produce an EMF with a phase shift *P and an amplitude 

decrease represented by the ter m cos(lP). 

The theoretical équation predicts a phase shift dépendent on the gas diffusion 

coefficient D (see équation 6.11a). On the other hand the molecular theory of 

gases indicates an inverse proportionality of D on the absolute pressure (see 

équation 6.22). Therefore if the dimensions of the device, the operating 

température, the operating frequency and the gas composition are known, 

then a measurement of the phase shift should provide a reading of the 

barometric pressure. 

expected to exhibit a phase shift and amplitude change of the internal 0 2 

partial pressure [compare eqn.(6.11) and eqn.(1.16)]. 
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In the following, expressions for the gauge EMF are derived for various 

modes of Operation of the leaky device. 

6.3.1 AC+DC mode 

In this mode a sinusoidal current, given by eqn.(6.9), is applied to the pump. 

The term I 0 in the expression for the current represents the DC offset. The 

expression of P 2 ) the internal oxygen partial pressure, is given by eqn.(6.11). 

Substituting for P 2 in eqn.(1.2) gives: 

E - — In 
4F PTA 

4Fvu 
cos(Y) cos(x + Y) + Pr 

(6.13) 

Substituting for P 0 given by eqn.(6.11b) gives: 

E = In 
4F 

1 _ ..RJZI° +

 R T Ä cos(Y) cos(x+Y) (6.14) 
4FDSPl 4FvuPl 

Equation (6.14) indicates that the DC offset in the pumping current should 

Equations (6.11) and (6.11a) indicate that the dimensionless quantity 

(DS/vL<o) should determine how the device will behave. As expected, leakage 

effects should increase with an increase in difrusion hole size (S) and the 

oxygen diffusion Constant (D). Larger internal volumes (v), higher frequencies 

(co) and longer holes (L) should have the opposite effect. It has been explained 

in Chapter (1) that a perfectly sealed device behaves like an ideal capacitor. 

It is shown in Appendix (D) that a leaky device is then equivalent to an ideal 

capacitor with a leakage resistor in parallel. 
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The amplitude of the gauge EMF [eqn.(6.14)] at X=TI , 3n, 5rc... is given by: 

E= to 
4F 

1-
*TUQ RTA 

cos2(Y) 4FDSPi 4FvwPj 

Equation (6.15) may be rearranged as follows: 

(6.15) 

4FP, 

RT 
i i 4 F r l = f-LV - — (6.16) 

VG) 

This équation is used later to compare theory and experiment. 

6.3.2 DC mode 

In this mode of opération a purely DC current is applied to the pump of the 

device. The expression for the gauge EMF (E.) may then be deduced from 

resuit in an offset in the gauge EMF, the System reaching a steady state 

where the oxygen pumped electrochemically by the offset in the current is 

counterbalanced by oxygen leaking through the pore. Prom the practical point 

of view, this tolérance to small offsets is important because the associated 

electronics may be greatly simpliiied. The DC offset in simple sinusoidal 

current generators is generally inévitable. It may be caused by the non-

symmetry in the two halves of the pumping sinewave (Paull and Evans 1974) 

or by offsets in the voltage to current converter. If an analogue sinewave 

generator is used, the distortion of the sinewave is generally caused by the 

shaping network used to convert the triangular wave into an approximate 

sinewave. This distortion can be minimised if an oscillator or digital generator 

(Huehne 1972) is used. 
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RTU0 1 
(6.17) 

4FDSP. 

where 1$ is the amplitude of the applied DC current. 

From eqn.(6.17) the following relation may be written: 

D5 4FI 
L RT\ 

(6.18) 
P 

Note that this mode of opération of the leaky device is similar to the one 

described by Hetrick et al (1981) [refer to section (1.3.3.1)]. 

6.3 .3 A C m o d e 

For a purely sinusoide! current (1^=0), the expression of the gauge E MF may 

be deduced from eqn.(6.14). 

4FvwP, 
RTA cos(Y)cos(x+Y) (6.19) 

The value for the gauge EMF at x=7C,37C,57i... is given by: 

E, = In l -
4F 4FvwP, 

RTA cos2(T) (6.20) 

Equation (6.20) may be rearranged as follows: 

(6.21) 

This équation is used later to compare theory and experiment. 
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j 0 -3 r I 7 5 
1/2 

MAMB (6.22) 

where T is in kelvin, P in atmosphères, and is in cm2/s. M A and M B are 

the molecular weights of gases A and B respectively. (Sv)A and (Xv)B are the 

atomic diffusion volumes for the gases A and B. 

This mode of opération of the leaky device is similar to the Tracking Mode of 

opération of fully sealed devices [section (4.3.2)]. In the second 

implementation (i.e. based on keeping the MSR constant and equal to 1) of 

the Tracking Mode the mean internai oxygen partial pressure P 0 is caused to 

follow the exteraal 0 2 pressure Ti by applying an appropriate bias current 

through a feedback loop; at steady state P ^ P Q . The diffusion hole in leaky 

devices plays the rôle of the feedback loop since it should tend to maintain 

Pi-Po-

6.3.4 Calculation of the O s gas diffusion coefficient 

The diffusion coefficient for a species in a gas mixture is, in general, a 

fonction of temperature and pressure. Many simplified theoretical models 

have been given for the gas diffusion coefficient (Chapman and Cowling 1952; 

Fuller and Giddings 1965; Fuller et al 1966). In the présent work this 

coefficient was calculated using the Fuller, Schettler, and Giddings (Perry's 

Chemical Engineer's Handbook) relation for a binary mixture of gases A and 

B. 
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E(t) - — I n 
4 F 

Pfi) 

PJt-X) 
(6.23) 

where X represents the time delay between the change in P2 and its sensing 

by the internal gauge electrode, and should be dépendent on the electrode 

composition, operating température and 0 2 partial pressure (Fouletier et al 

1974, Winnubst et al 1985). Assuming that Pt(t) is constant and equal to P l t 

then substituting for P2(t-X) derived from eqn.(6.11) in eqn.(6.23) gives 

E(t) = ^ l n 
4F 

RT, 
In 

4F 

UTA 
1+ c o s Y COS(ü ) f+Y -G )X) 

4Fv(oP„ 

(6.24) 

Equation (6.24) predicts that a slow response of the electrode is translated 

into a phase shift (taû) between the pumping current and gauge EMF. This 

phase shift is strongly dépendent on the frequency of opération as anticipated; 

at high frequencies the phase shift is expected to become significant. It is 

important to note also that the phase shift (-Xco) caused by the slow response 

of the electrode should be of opposite sign to that caused by the leak (40 

because X and Y are both positive; the phase shift (*P) should tend to bring 

the gauge EMF and pumping current into phase, while the phase shift (Xco) 

should tend to cause a phase shift towards 180°. 

6.3 .5 Effects of slow response of the gauge electrode 

In a simple model where the internal gauge electrode does not respond 

rapidly to changes in P2, the measured gauge EMF, E(t), at a given time t 

may be given by 
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6.4 LEAKAGE TESTING OF FULLY-SEALED DEVICES 

It has been shown that physical leakage would be expected to cause a phase 

shift in the output of a pump-gauge operated in the AC mode, this phase shift 

depending on the operating frequency. Equation (6.11a) suggests that when 

the device is operated at very low frequency this phase shift may be very 

large even for small leakage. The novel method of leakage testing presented 

is based on the measurement of the phase shift ¥ of the gauge EMF at low 

frequencies, the larger the phase shift the higher the leakage. Not that it 

should be possible to compensate for the effects of leakage by measuring the 

phase shift and introducing a correction factor (proportional to cos *F) in the 

amplitude of the EMF for full compensation. This compensation could be 

achieved using digital techniques. 

6.5 EXPERIMENTAL 

6.5.1 Détails of the devices 

6.5.1.1 Leaky devices 

Five leaky devices with various leak rates were constructed to test the theory 

of opération developed in the previous section. The devices were constructed 

as explained in section (2.2). The five devices included 1,2,4,9, and 16 holes 

respectively. In the following thèse devices are referred to by the number of 

holes they include, for instance sensor 4 represents the device with 4 holes. 

The holes (seen under the microscope) were of approximately conical shape 

and it was necessary to estimate therefore an average hole diameter from the 
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SENSOR 16 9 4 2 1 

Average 4>roin/pm 63 100 63 63 100 

Average •„ M /um 100 150 100 100 150 

Effective <]> /um 79 122 79 79 122 

Total S / 1 0 W 78 105 19 10 12 

Table (6.1): Details of the five devices used. The first row gives the number 

of holes in a given device. 

6.5.1 J "Fully-sealed" devices 

In order to test the seal quality, two fully-sealed devices with différent 

characteristics were constructed. The first device was fabricated using 

maximum and minimum diameters of each hole. It is shown in Appendix (E) 

that if the holes were perfectly conica!, the effective hole diameter ($) would 

be given by the geometrie mean of the minimum and maximum diameters. 

V mm max 

The measurement of the various hole sizes was carried out using a calibrated 

microscope. Details of the five devices are given in Table (6.1). The length L 

of the holes (i.e. thickness of the disc) was measured using an electronic 

micrometer as 0.70mm. The internal volume calculated frora the dimensions 

of the gold seal was v=0.98mm3. 



132 

abraded zirconia dises as described in Chapter (2). The surface préparation 

was done using fine carborundum paper (Maskell 1991b). Expérience 

indie a te d that good adhésion between the gold seal and the dise would be 

expected. The second device was fabricated using identical dises but without 

the grinding treatment; the roughness of the surface, caused by the diamond 

saw cutting, was expected to cause leakage at the gold seal-electrolyte 

interface. 

6.5.2 Testing procedure 

The theory of opération of leaky devices predicted a phase shift and 

amplitude decrease of the gauge EMF. This theory was investigated by 

operating the devices under a variety of conditions. The devices were tested 

in mixtures of nitrogen and air using the gas mixing equipment described in 

Chapter (2). All experiments were carried out at ambient atmospheric 

pressure; during the experiments this pressure was O.IMPa. Unless otherwise 

specifîed the operating temperature was 700°C. This choice was made in 

order to minimise the phase shift that may be introduced by slow response 

of the électrodes at low températures. 

6.52.1 Gas diffusion coefficient 

The molecular weights (MA and M B) for oxygen and nitrogen are 32 and 28 

respectively. The values for Ev the atomic diffusion volumes are 16.6 and 

17.9 for oxygen and nitrogen respectively (Perry's Chemical Engineer's 

Handbook). Under the operating conditions, the oxygen gas diffusion 
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coefficient was D=164mm2/s at 700°C. Fate et al (1981) reported a value of 

I92mm2/s at 800°C (corrected to 700°C, the latter is D=162mm2/s). Other 

workers (Tedmon et al 1969) have used a value of 250mm2/s at 900°C 

(corrected to 700°C, this is D=180mm2/s). 

6.52.2 Schematic diagram of the electronics 

The schematic diagram of the circuit used for testing the devices is given in 

Fig.(6.1). The detailed circuit diagram of the electronics is given in figure 

(G. 15) in Appendix (G). The devices were operated in the three modes 

described above using the circuit of Fig.(6.1). A rotary switch was used to 

sélect the desired mode, the three positions were: 

1: Opération in the AC mode. 

2: Opération in the AC+DC mode. 

3: Opération in the amperometric (DC) mode. 

6.52.3 Measurement of the phase shift 

Despite the existence of algorithms ( Micheletti 1991) for the measurement 

of phase shift between periodic signais, the most common and practical 

methods used in instrumentation are stili based upon combination of 

analogue and digital electronics. In general the measurement of phase shift 

between two periodic signais (I) and (E) of the same frequency is achieved by 

converting the two signais of interest into square waves I and E using zero 

crossing detectors. If (I) and (E) are free from offsets then the duty cycles of 

I and E would be 50%. A rectangular waveform may also be obtained from 
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the two square waves as shown in figure (F.l) in Appendix (F). The duty cycle 

of the rectangular waveform is then proportional to the phase shift between 

the two signals of interest. However in the presence of offsets in the signals 

of interest (I) and (E), the duty cycles of Ï and Ë deviate from 50% and as a 

result large errors may be introduced in the measurement of the phase shift. 

In the present application, the two signals of interest are the pumping 

sinewave and gauge EMF. Small offsets in the gauge EMF are inevitable. 

These may be caused by offsets in the electronics or by non-symmetry 

between the two halves of the pumping current. In order to minimise non-

symmetry in the sinewave, a high quality digital function generator was built 

and this produced a sinewave with good symmetry. This generator, shown in 

figure (G.4) in Appendix (G), was of the ROM-read out type ( Jeng 1988, 

Bervas 1985, Galbright 1982, Pichler and Bavuza 1988, Huehne 1972). The 

offsets in the various stages of the electronic circuit were minimised by 

careful adjustment of the offsets of the operational amplifiers. 

Various techniques may be used for the measurement of the phase shift 

between signals containing DC offsets: 

One solution for reducing the problem of offsets is to use a high-pass filter 

in order to block the DC components in the signals of interest. This solution 

has two major disadvantages: first the high-pass filters attenuate very low-

frequency signals. Secondly, this method may be applied only for symmetrical 

signals (i.e. where the signals of interest have a mean value equal to zero). 
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(F.10) 

This solution for the measurement of 4* was adopted in the présent work. The 

measurement of the duration of the two phase shift *FF and ^ B was carried 

out using a Counter/Timer. Combination of the positive and negative edges 

of the two signais were used to start and stop the counter. The phase shift (HO 

was computed according to équation (F.10). 

In the présent application the operating frequency is low (<10Hz) and the 

gauge EMF has a mean value différent from zero. This solution was therefore 

not relevant in the présent work. 

The solution suggested by Cox (1973) was based on the use of a bias 

signal in order to guarantee a unity mark to space ratio of the square waves 

(figure 6.2). This was achieved by measuring the duty cycle of each signal and 

using a control loop, a bias DC current being added to the signal of interest 

in order to force a 50% duty cycle. This solution required complicated 

hardware. Moreover it was unsatisfactory at very low frequency because of 

the use of an averaging low-pass filter in the control loop. 

However the solution suggested by Barnes and Williams (1973) and 

refined by Wagdy and Lucas (1987) was very simple to implement and may 

be used even for ultra low frequency. This solution may be explained by 

referring to figure (F.l) in Appendix (F). By measuring the phase shift 

between the falling and rising edges (¥ F and of the square waves I and 

E, the phase shift (¥) may be measured independently of the offset. It is 

shown in Appendix (F) that 



136 

6.52 A Measurement of the amplitude of the gauge EMF 

The values of the gauge EMF at x=ïc,3rc,5Jt... were measured using a sample 

and hold circuit as shown in figure (6.1). 

6 .6 RESULTS AND DISCUSSION 

6.6.1 Testing of "leaky" devices 

Figure (6.3) shows a plot of the pumping current and output gauge EMF of 

sensor 16 operated at 2 Hz. The phase shift caused by the leak is indicated by 

the two Unes parallel to the current axis. 

6.6.1.1 Opération in the AC+DC mode 

Phase shift measurement 

Figure (6.4) shows that by applying a pumping current containing a DC 

offset, the computation of the phase shift *F from a measurement of Y F and 

*¥R using eqn.(F.lO) was possible as theoretically predicted. The phase shift 

*P was constant within 2% for a wide range of DC offset. Clearly in figure 

(6.4), for I 0=0, ^P^^FR which indicates the présence of DC offset in the voltage 

to current converter and/or the instrumentation amplifier. 

Amplitude measurement 

The results of figure (6.5) were obtained using sensor 4. The amplitude of the 

AC component of the current and the operating temperature were maintained 

constant. The DC offset (Io) was varied and the voltage EB measured using 

a sample and hold circuit. The straight line obtained shows good agreement 
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with the theory (eqn. 6.16). From the slope and intercept of the straight line 

the terms (DS/L) and (v) were determined. These results are shown in Table 

(6.2), in the AC+DC Mode column. 

6.6 J J Operation in the DC mode 

The devices were operated under various conditions. 

6.6.1.2.1 Variable pumping current (Id 

The oxygen partial pressure (Pj) and operating temperature (T) were 

maintained constant. Figure (6.6) shows the results obtained with the five 

leaky devices. The straight lines in figure (6.6) show excellent agreement with 

the theory (eqn.6.18). again from the slopes of the best fit lines in figure (6.6), 

the term (DS/L) was determined for each device. The results are shown in 

Table (6.2), column (DC Mode / variable:I0). 

The straight lines in figure (6.6) suggest that under the operating conditions, 

physical leakage through the pores was the dominant mode of leakage. 

However deviation from straight line may occur in the presence of strong 

electrochemical leakage via the seal (Kaneko et al 1987, Maskell and Steele 

1988). This can be seen in figure (6.7), where a high pumping current was 

used. The deviation from a straight line for high pumping current suggests 

that the high ratio (P /P2) between the external and internal oxygen partial 

pressures induced electrochemical leakage evidenced by the fact that the 

gauge EMF did not increase at the theoretical rate. From figure (6.7), it is 



138 

deduced that the electrochemical leakage was induced for a ratio (P1/P2)>40 

(i.e. for E£80mV). 

6.6.1.2.2 Variable O» pardal pressure (P¡) 

In this mode the pumping current (I0) and operating temperature were 

maintained constant. Figure (6.8) shows the results obtained by varying Pj 

and measuring E. Again there was good agreement with the theory (eqn.6.18). 

From the slopes of the best-fit lines, the term (DS/L) was determined for each 

device. The results are shown in Table (6.2), column (DC Mode / variable: Px). 

6.6.1.2.3 Variable operatins temperature (T) 

From the slope of the Arrhenius plot of the gas diffusion coefficient (D), the 

activation energy for diffusion (EA) may be determined. Tests were made 

using sensor 4. The amplitude ( V of the pumping current and oxygen partial 

pressure (P t) were maintained constant. The valúes for (DS/L) were then 

determined from a measurement of the gauge EMF using eqn.(6.18). The 

results obtained are shown in figure (6.9a). The slope of the straight line 

should be equal to (-EA/R) and this yielded the valué EA=13.7 kJ mol1. 

Figure (6.9b) shows the dependence of the diffusion coefficient on 

temperature; the observed T 1 6 7 dependence is comparable to the T 1 7 5 variation 

according to the theoretical equation (6.22). It is important to note here that 

the temperature range used in this test was small and consequently high 

accuracy was not possible. 
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6.6.1.3 Opération in the AC mode 

6.6.1.3.1 Variable frequency (<Ù) 

Phase shift measurement 

Figure (6.10) shows the phase shift caused by the leak for the five devices for 

the frequency range 0.3-4Hz at a Constant oxygen partial pressure (P|=4kPa). 

Figure (6.11) shows the tangent of the phase angle for the same data: there 

is linearity between the tangent and the signal period which is in good 

agreement with the theory (see équation 6.11a). The slopes of figure (6.11) 

provide the term (DS/vL) for each device. The results obtained are shown in 

Table (6.2), column (AC Mode / variable: co). 

Amplitude measurement 

The results obtained by measuring the amplitude of the gauge EMF are 

shown in figure (6.12). The linearity of these results was good, showing good 

agreement with the theory (eqn. 6.21). From the slopes of the best-fit lines, 

the internai volume may be calculated. The results obtained are presented in 

Table (6.2), column (AC Mode / variable: CD). 

6.6.1.3.2 Variable current amplitude (A) 

Phase shift measurement 

Figure (6.13) shows the phase shift measured at various amplitude (A) of 

the pumping current. The trend, as theoretically expected, shows that the 

phase shift was not dépendent on (A). 
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Amplitude measurement 

The results obtained from a measurement of the amplitude of the gauge EMF 

are shown in figure (6.14). The linearity shows good agreement with the 

theory (eqn.6.21). From the slopes of the best-fit Unes, the internal volume of 

each device may be calculated. The results obtained are given in Table (6.2), 

column (AC Mode / variable: A). 

6.6.1.3.3 Variable 0„ partial pressure (PJ 

Phase shift measurement 

The theory predicted that the phase shift should be independent of the oxygen 

concentration (C 0 2). However as shown in figure (6.15), there was clear 

dependence of *P on C^. Possible explanations for this behaviour include 

errors in the measurement of *f\ slow response of the électrodes, 

simplification in the theoretical model and dependence of the gas diffusion 

coefficient on the oxygen concentration: thèse are investigated in section 

(6.6.3). 

Amplitude measurement 

Figure (6.16) shows the results obtained by operating the devices at 700°C 

and varying Pv The déviations from a straight line (refer to eqn.6.21) seem 

likely to be related to the variation of the phase shift with the oxygen 

concentration. From the slopes of best-fit lines, the internai volume of each 

device may be determined. The results are shown in Table (6.2), column (AC 

Mode / variable: Pj). 
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Despite the minor deviation from the predicted theory, the results in figure 

(6.17) show that, with appropriate calibration, devices with considerable leak 

(operated in the AC mode) may still be used for the measurement of oxygen 

partial pressure. Furthermore the electronic circuit could be made very simple 

as shown in figure (G.16) in Appendix (G). 

6.6.1.4 Summary of Results 

The valúes determined from the various experimental results are compared 

to those determined from the dimensions of the seal (v), length (L) and cross-

sectional área (S) of the diffusion pore in Table 6.2. 

For each device, the valúes for the term (DS/L) determined experimentally 

are similar in the AC, DC and AC+DC modes and comparable to the 

calculated ones. Interestingly, the valúes for the internal volume determined 

experimentally are 40 to 80% higher than the ones calculated from the 

dimensions of the seal. Two important points may be raised. Firstly, for each 

device, the experimental results are closely grouped. Secondly the determined 

valúes for all devices may be divided into two groups, one group of volumes 

40% and the other 80% higher than calculated. These two groups do not 

depend on the number or size of the holes (refer to Table 6.1). Moreover the 

high 40-80% difference could not be accounted for even by adding the volume 

of the diffusion pore to that of the internal volume, in other words assuming 

that the hole forms part of the internal volume. From Table (6.1), the 

máximum volume of the diffusion pore is that of sensor 9; this volume is 

given by (LS) and calculation showed that this volume could only account for 

a difference of 7.4%. Since all the measurements of the internal volumes (v) 

were determined by operating the devices in the AC or AC+DC modes, the 

large valúes obtained for (v) may be linked to the deviation from theory 

described below in section (6.6.3). 
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V<J> 

VARIABLE \ ^ 

" 1̂ 
P l \ 

i-i V — 1.82 1.80 0.98 

0¡ o 
co 

(DS/L) — 18.6 19.6 20.9 * — — 18.3 A 

w 

co (DS/vL) — — — 11.56 — — — 

Oh V — — — — 1.78 1.84 0.98 

c¿ 
O 
CQ 
E 

(DS/L) — 20.0 20.1 21.3 * — — 24.6 4 

U 
CQ 

(DS/vL) — — — 11.82 — — — 

S
E
N
S
O
R
 
4
 V 1.24 — — 1.43 1.39 1.47 0.98 

S
E
N
S
O
R
 
4
 

(DS/L) 5.22 5.28 5.31 5.12 * — — 4.45 * 

S
E
N
S
O
R
 
4
 

(DS/vL) — — — 3.56 — — — 

S
E
N
S
O
R
 
2
 V — — — 1.53 1.48 1.53 0.98 

S
E
N
S
O
R
 
2
 

(DS/L) — 2.19 2.16 2.31 * — — 2.34 * 

S
E
N
S
O
R
 
2
 

(DS/vL) — — — 1.51 — — — 

S
E
N
S
O
R
 
1
 V — — — 1.85 1.81 1.75 0.98 

S
E
N
S
O
R
 
1
 

(DS/L) — 3.23 3.23 3.20 * — — 2.81 * 

S
E
N
S
O
R
 
1
 

(DS/vL) — — — 1.73 — — — 

Table (6.2): Summary of the resulte obtained. v in mm3, (DS/L) in mm3 s1, 

(DS/vL) in s1. 

t : calculated from v and (DS/ vL). 

4 ; calculated from D,S and L from Table (6.1). 
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6.6.2 Testing of "fully-sealed" devices 

Figure (6.18) shows the phase shift of the two devices without drilled hole for 

the frequency range 0.03-0.4Hz. The trend of the phase shift versus signal 

period was identical to that of the leaky devices (compare to figure 6.10). At 

very low operating frequency the sealed devices showed substantial phase 

shifts indicating the présence of leakage. Figure (6.19) shows the tangent of 

the phase shift angle versus signal period. 

The phase shift of the device with unground surfaces was higher than that 

with ground surfaces. At the normal operating frequency (4Hz) used in the 

présent work (Chapter 3, 4 and 5) both devices showed very little dependence 

on leak. The effect of leak may be reduced further by operating the sealed 

devices in the Tracking Mode (chapter 4). Therefore the time consuming 

grinding treatment of the zirconia dises may be eliminated without causing 

the device to leak excessively and would have little effect on the opération of 

the sensor. 

The effects of the slow response of the électrodes were investigated by 

operating the device with unground surface at various températures, 

frequencies and oxygen partial pressures. Figure (6.20) shows the results 

obtained by operating the device at a constant P, by varying the frequency of 

the pumping current. A positive phase shift indicates dominance of physical 

leakage and a negative one indicates dominance of slow response of the 

électrodes. For high frequencies (>lHz), the phase shift caused by the leak 
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was small (eqn. 6.11a), but the électrode was expected to introduce large 

phase shift (hù). This is illustrated in figure (6.20) by a negative phase shift. 

However, for low frequencies, the phase shift introduced by the leak was high 

whereas the électrode response was fast by comparison with the operating 

frequency which resulted in a positive phase shift. The effect of varying the 

operating temperature may also be seen in figure (6.20). At low temperature, 

the response of the électrodes became very slow as expected. The dependence 

of the phase shift on the oxygen concentration is shown in figure (6.21) at 

four différent températures. The results obtained show some évidence of 

phase shift dependence on oxygen concentration. 

6.6 .3 Investigation of the déviation from the predicted behaviour 

The expérimental results showed general agreement with the developed 

theory of opération of leaky devices in the AC and DC modes. In the 

amperometri mode of opération (i.e. DC mode), this agreement was excellent. 

However, in the AC mode expérimental results showed minor déviation from 

the theory. This déviation concemed the dependence of the measured phase 

shift on the oxygen concentration (6.6.1.3.3) which was not predicted by the 

theory. Possible causes of this déviation are discussed below. 

Errors in the measurement of ¥ 

Variation of the oxygen concentration resulted in variation of the amplitude 

of the gauge EMF. Hence errors in the zero-crosBing detectors (figure F.l) 

as a possible cause of some errors in the measurement of the phase shift need 
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to be considered. Such errors seem unlikely because the déviations of *P, 

shown in figure (6.15), are not random. Moreover, the method used for the 

measurement of ¥ from an average of two phase shifts (eqn. F. 10) should be 

fairly insensitive to uncertainty in the zero-crossing especially because the 

results were obtained by averaging multiple readings. This has been 

experimentally verified by operating the device with a constant amplitude of 

the sinusoidal current and by measuring for various values of P v Then a 

similar experiment was carried out but this time varying the amphtude of the 

pumping current in order to keep the amplitude peak-to-peak of the gauge 

EMF constant in the whole range of P r The results obtained are shown in 

figure (6.22) and indicate excellent agreement between the two sets of results. 

In fact, this test showed that the method of phase shift measurement 

employed was very precise. 

Response time of the électrodes 

The response of the internal électrodes to changes in oxygen partial pressure 

is dépendent on the temperature and oxygen partial pressure as has been 

shown in section (6.6.2). However, in the developed theory, rapid response of 

the électrodes was assumed. The results of figure (6.15) were obtained by 

operating the devices at 700°C. This operating temperature was thought to 

be high enough to minimise errors introduced by slow response of the 

électrodes. In order to investigate the effect of operating temperature, tests 

were made using sensor 9 in the temperature range 700-850°C. The results 

obtained are shown in figure (6.23). The trend of each of thèse results is 
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similar to that of the results in figure (6.15), i.e. there was not a trend 

towards independence of oxygen concentration with increasing temperature 

as might have been anticipated if slow response of the électrodes were 

responsable for the déviation from theory. 

Further work should include testing devices with same leak rate (S/L) but 

with différent électrode material which, because of the response time 

dependence on the électrode composition, may behave differently. 

Over-Simvlification of the theoretical model 

In the theoretical analysis, oxygen concentration within the internai volume 

was assumed uniform, and the oxygen concentration gradient within the 

diffusion pore was assumed linear. While these assumptions may be true at 

very low frequencies (and of course the amperometric (DC) mode represents 

opération at zero frequency), errors may be introduced at higher frequencies. 

In the DC mode (6.6.1.2), measurements were made at steady state. This 

means that the slow response of the électrodes and simplification in the 

theoretical model should not affect the trend of the results. Indeed, the 

results obtained showed good agreement with the theory. However, when 

operated in the AC mode (i.e. with sinusoidal current), the system is a 

dynamic one: there are continuous oscillations of P : within the internai 

volume and diffusion pore. It is possible that, as a result, there may be 

signifìcant radial concentration différences within the internai volume 

between the région in the vicinity of the diffusion hole and that towards the 
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6 .7 CONCLUSION 

The theory of opération of leaky pump-gauge devices in the AC mode has 

been developed. This theory indicates that behaviour should be similar to that 

of fully-sealed devices: with application of a sinusoidal current to the pump, 

theoretical analysis indicates that a pseudo-sinusoidal EMF should appear at 

the gauge, with a phase shift and amplitude changes, compared with the 

fully-sealed sensor. Furthermore these phase shift and amplitude changes 

should be dépendent on the leak size, internai volume, operating frequency, 

and oxygen diffusion coefficient. The theory predicts also that devices with 

gold seal. In other words, the phase shift and amplitude change (caused by 

the leak) at various points of the electrode might be different. The gauge EMF 

measured somehow represents an "average" reading of all EMFs at different 

points radially along the gauge. with the possible result of some deviation 

from the predicted theory. This could not directly explain the dependence of 

*F on the oxygen concentration. However, this behaviour may be further 

investigated by making devices with various pore sizes (S) and lengths (L). 

Informative results may be found by operating devices with different 

combinations of (S) and (L) but with the same ratio (S/L). This may elucidate 

any effect of non-Ünearity of the oxygen concentration gradient within the 

pore, i.e. for high valúes of L, L2/D may become comparable to the signal 

period. The effect on phase shift dependence of the position of the gauge 

electrode with respect to the diffusion pore may also be investigated by 

making and testing devices with different electrode position. 
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considerable leak may stili be used for oxygen partial pressure measurement. 

This theory was tested using devices designed for the purpose with well-

defìned leakage. Good agreement between theory and experiment was found 

in almost ali respects. A minor deviation was found and concerned the 

dependence of phase shift with oxygen concentration which was not predicted 

by the theory. The reasons for this are not clear and suggestions are made for 

further investigations of this deviation. 
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Figure (6.1): Schematic diagram of the electronics used for testing the 

theory of opération ofleaky deviees in the AC, AC+DC and 

DC modes. 
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Figure (6.2); Schematic diagram of the circuit used by Cox (1973) for 

eliminating errors in the measurement of phase shift when 

employing the zero-crossing technique. 

P h a s e s h i f t : 4 5 d e g . 

0 . I s 

Figure (6.3): Sensor 9 operated in the AC mode at 700°C. Plot of the 

pumping current and gauge EMF showing the phase shift 

C¥) caused by the leak. 
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Offset ( I 0 ) in the pumping current / mA 

Figure (6.4): Sensor 4 operated in the AC+DC mode: measurement of the 

phase shift was not influenced by DC offsets. T=z700°C, 

Pi=4kPa, A=0.43mA, f=0.38Hz. 0:% x : 90°-Vft 

A : 90°-^ 
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Offset (I0) in the pumping cuzient / mA 

Figure (€.5): Sensor 4 operated in theAC+DC mode: measurement of the 

amplitude of the gauge EMF. T=700°Ct Pj=4kPa, 

A=0.43mA f=0.38Hz. 
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ure (6.6): Operation in the DC mode: measurement of the amplitude 

of the gauge EMFat 700°Cfor a variable pumping current 

m : sensor 16, Pj=lkPa. 

X sensor 9, Pf^lkPa. 

D ; sensor 4, Pj=2kPa. 

• ; sensor 2, P¡=2kPa. 

+ ; sensor 1, P^2kPa. 



Figure (6.7): Sensor 4 operated in the DC mode: test showing 

electrochemical leakage effects occurring at high pumping 

current. (T=700°C, Pj=1.5kPa) 
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Figure (6.8): Operation in the DC mode: measurement of the amplitude 
of the gauge EMF at 700°C. (variable oxygen partial 
pressure) 

m : sensor 16,10=0.44mA. 
2 : sensor 9,10=0.44mA. 
• .-sensor 4, 1^0.13 mA. 
A : sensor 2, I^O.OßmA. 
+ : sensor 1, I0=0.09mA. 

Note that on the graph, x and m are superimposed. 
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Figure (6.9a): Sensor 4 operated in the DC mode: Arrhenius plot of the 

oxygen diffusion coefficient. The computation of (DS ¡L) 

was achieved from a measurement of the amplitude of the 

gauge EMF. 
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Figure (6.9b): Sensor 4 operated in the DC mode: dependence of D on 

temperature. The data of figure (6.9a) was used. 
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Figure (6.10): Operation in the AC mode: measurement of the phase 

shift for a variable frequency of the pumping current. 

T=700°C, A=0.77mA, PfAkPa. 

• .-sensorio*, X : sensor 9. O : sensor 4, 

A : sensor 2f + : sensor 1. 
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Signal period / s 

Figure (6.11): Plot oftanC¥) versus signal period using the data of 

figure (6.10). 
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Ol 1 1 1 1 1 r 
0 1 2 3 

Signal period / s 

Figure (6.12): Operation in the AC mode: measurement of the amplitude 

of the gauge EMF. T=7O0°C, A=0.77mA, P^ékPa. 

• ; sensor 4, • ; sensor 2, + : sensor 1. 
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Figure (6.13): Operation in the AC mode: measurement of the phase 

shift for a variable pumping current. T=700°C. 

m : sensor 16, f=4Hz, P,=>lkPa. 

X : sensor 9, f=4Hz, P,=lkPa. 

a : sensor 4, f=0.SHz, P,=4kPa. 

A : sensor 2, f=0.SHz, P,=5kPa. 

+ : sensor 1, f=0.5Hz, P,=4kPa. 
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ure (6*14); Opération in theAC mode: measurement ofthe amplitude 

of the gauge EMF. Markers and conditions as in 

Fig.(6.13). 
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Figure (6*15): Operation in the AC mode: measurement of the phase 

shift for a variable oxygen concentration. T-700°C. 

M : sensor 16, f=4Hz, A=0.76mA. 

X : sensor 9, f=2.9Hz, A=0.76mA. 

• .-sensor 4, f=0.5Hz, A=0.76mA. 

k : sensor 2, f=0.5Hz, A=0.62mA. 

+ : sensor 1, f=0.5Hz, A=0.76mA. 
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Figure (€.16): Operation in the AC mode: measurement of the amplitude 

of the gauge EMF. T=700°C. 

• : sensor 16, f=4Hz, A=0.76mA. 

X : sensor 9, f=4Hz, A=0.76mA. 

• .sensor 4, f=0.5Hz, A=0.76mA. 

• ; sensor 2, f=0.5Hz, A=0.62mA. 

+ : sensor 1, f^O.SHz, A=0.76mA. 
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Figure (6.17): Opération in theAC mode: measured amplitude ofthe 

gouge EMF versus oxygen partial pressure. Markers and 

conditions as in figure (6.16). 
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Figure (6.18): Measurement of phase shift in "fully" sealed devices. 

T=700°C, A=0.5mA, P¡=21kPa. A : device with ground 

surface, • : device with unground surface. 
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Figure (6.19): TanÇV) versus signal period using the data ofFig.(6.18). 
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Figure (6.20): Meosurement of phase shift using the device with 

unground surface operated ai P^SkPa, A=0.63mA. Test 

at various températures showing the slow response ofthe 

électrodes manifested by the négative phase shift. 

+ : 575°C, A : 600°C, • .* 640°C, m : 680°C, x : 720°C. 
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Figure (6.21): Phase shift measurement using the device with rough 

surface operated at various temperatures and oxygen 

partial pressures. A-0.63mA. 

+ : lkPa, k : 5kPa, D : lOkPa. 
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% Oxygen 

Figure (6.22): Sensor 9 operated in the AC mode: measurement of the 

phase shift at T=850°C, f=0.6Hz under two conditions. 

D : constant amplitude ofthepumping currentA=0.47mA, 

+ : constant amplitude peàk*to-peak of the gauge EMF 

(E=18.6mV). 
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% Oxygen 

Figure (6.23): Sensor 9 operated in the AC mode: phase shift 

measurement at various températures in the oxygen 

concentration range 1-7% (a) and 1-21% (b). f=2.9Hz, 

A=0.7mA. + : 700°C, x ; 735°C,*: 775°C, L: 815°C, 

D ; 850°C. 
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CHAPTER 7 

CONCLUSIONS AND 

FURTHER WORK 

"The world is round and the place which may seem like 

end may also be only the beginning. " 

IVY BAKER PRIEST, Parade, Feb.lS, 1958. 
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1+ c o s x 

4Fv<ùPn 

(1.19) 

Maskell et al (1986) suggested that by appropriate processing of the gauge 

EMF, the mean internai (P0) and external (P,) oxygen partial pressures may 

be measured simultaneously. 

The device used normally opérâtes in the temperature range 650-800°C. 

Previous work (Maskell et al 1987) indicated that maximum operating 

frequency of the pumping current to be around 0.1Hz, however experiments 

carried out in the présent work showed that the device operated properly for 

frequençies up to 5~6Hz which made the practical Implementation of the 

signal processing easier; the adopted frequency was 4Hz. Care was taken to 

ensure that the pumping current did not resuit in the imposition of a high 

voltage (~ above 2V) across the pump which might introduce electronic 

conductivity; in the présent work a mavimnm current of ImA was used. 

7.1 CONCLUSIONS 

7.1.1 Fully-sealed devices 

Zirconia-based fully sealed pump-gauge oxygen sensors and associated 

electronic circuitry were assembled for the measurement of oxygen partial 

pressure. Theory predicts that with a sinusoidal pumping current, the 

internai oxygen partial pressure may be caused to oscillate at the same 

frequency and should resuit in a pseudo-sinusoidal EMF to appear on the 

gauge, 
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RTA 
<0.1 (1.20) 

4Fvo)P0 

theory prediets this amplitude to be inversely proportional to P0; the above 

condition (eqn.1.20) is équivalent to an amplitude of the AC component less 

than 4.2mV at 700°C. The reason for this limitation is that the AC component 

of the EMF déviâtes from a pure sinusoid as its amplitude becomes higher 

(eqn.1.19). The measurement of the external oxygen partial pressure (PJ was 

then made relative to the known internai reference P0 using the DC 

component of the EMF, which is proportional to ln(P/P0). The pressure P0 

was adjusted by applying a bias current to the pump in order to satisfy 

eqn.Cl.20), and ideally this pressure is best maintained constant in which case 

the computation of Pj requires the measurement of the DC component only. 

In the présent work, various modifications were made to the -Miginally 

suggested circuit diagram to achieve successful practical implempntation. 

These modifications permitted substantial improvement of the signa I -( o-noise 

ratio: numerical integration of the theoretical équation (1.19) suggested that 

by using a PSD (with a square wave reference) for the measurement of the 

amplitude of the AC component, it should be possible to use AC components 

Two techniques for the signal processing were developed: Potentiometrie 

Mode and Tracking Mode. The Potentiometrie Mode was originally suggested 

by Maskell et al (1986) and was based on the Separation of the AC and DC 

componente of the EMF: P0, the mean internai (reference) oxygen partial 

pressure, was determined from a measurement of the amplitude of the AC 

component; for 

http://eqn.Cl.20
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with amplitude of up to 17mV without significant loss of the required inverse-

proportionality between the output of the PSD and P0; the maximum error 

introduced was calculated to be 2%. Tests were made in the oxygen partial 

pressure range 1-lOkPa, and the results obtained showed excellent agreement 

with the theory. It was not possible to maintain the mean oxygen partial 

pressure inside the device constant due to the practical limitations of physical 

and electrochemical leakage through the seal. Therefore the computation of 

P, required simultaneous measurement of the output of the PSD (i.e. for the 

computation of P0) and the DC component of the EMF. This disadvantage 

could be avoided by developing a device with lower leakage: this may be 

achievable by using a glass rather than a gold seal. 

The Tracking Mode was proposed, in the present work, as an improvement 

of the Potentiometrie Mode. This system was primarily designed for minimum 

interference of leakage. The idea was based on maintaining the ratio (Pt/Po) 

close to unity in order to minimise leakage effects. Moreover it was predicted 

that keeping the ratio (P,/P0) close to unity should result in a small DC 

component of the EMF [i.e. depending mainly on the log of the ratio (P/P 0)]. 

Consequently high amplification of the gauge EMF was possible without the 

risk of saturation of the electronics, thus improving the performance of the 

system This Tracking Mode was implemented in two ways. 

The first implementation of this mode was based on applying a bias 

current to the pump in order to keep the mean value of the gauge EMF equal 

to zero. Theoretical analysis indicated that such a constraint should result in 
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P0 satisfying the équation 

4P, 
RTA 

4FVG> 
(A.23) 

According to this relationship V2<(P1/P0)<1 depending on the amplitude of the 

gauge EMF. This analysis also indicated that, at steady state, the gauge EMF 

should be given by 

E = In 
4F 

1 + 
R2T2A2 RTA 

64F2v2o)2P2 4Fvo>P, -cos* iA.21a) 

Note that this mode of opération should be independent of the amplitude of 

the EMF (i.e. distortion from a sinusoid) allowing opération with large signal-

to-noise ratio. By converting this EMF into DC output, Pj may easily be 

determined: three AC-DC converters were suggested and theoretical 

simulation of their outputs as a function of the degree of distortion ( from a 

sinusoid) of the EMF revealed interesting results. By using a simple RMS 

converter consisting of a rectifier followed by an averaging low pass filter, its 

output may be written 

4.3) 

No analytical solution was found for the above intégral; however munerical 

integration indicated that to a close approximation 

R2T2A2\ 1 (4.4) 
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ET *7\ 
E --In 

4F 

t RTA 

1+ cosx 
4Fvo)P1 

(4.18) 

and the computation of P, may easily be achieved, for example, from a 

measurement of the amplitude of the positive peak (Vm) of the EMF, 

p _ RTA 1 
1 4fvw , (-4F„ \ ( 4 2 0 > 

The two described implementations with the various AC-DC Converters were 

tested in the range 1-lOkPa, and the results obtained showed excellent 

agreement with the theory; fast response (<1.5s) to changes in oxygei» partial 

pressure were obtained. Unlike the Potentiometrie Mode, the computation of 

Pj was achieved by measuring a single DC output. Moreover, the electronics 

used were relatively simple and the opération with highly di storteci gauge 

EMFs (i.e. with high amplitude) improved the signal-to-noise ratio and 

minimised offset problems. 

regardless of the distortion of the gauge EMF. This inverse-proportionahty 

between the output of the RMS converter and Pì should make the 

computation of Tx easy even when using analog electronics. 

The second implementation was based on keeping the ratio (P/P 0)=l. 

Experimentally this was achieved by Converting the gauge EMF into a square 

wave using a zero-crossing detector and keeping the mark-to-space ratio of 

the resulting square wave equal to 1 by applying a bias current to the pump 

in order to maintain (Pj=:P0). The expression of the gauge EMF is then 

reduced to 
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The sensor normally opérâtes in the temperature range 650-800°C. Theory 

predicted and expérimental results confirmed large temperature dependence 

of the sensor output. Consequently, temperature compensation of the sensor-

electronics output was investigated. Temperature compensation of the output 

of the RMS converter used in the Tracking Mode (eqn.4.4) was suggested and 

shown to be feasible using simple electronics. It was shown that by using a 

thermocouple, this compensation may be achieved in two ways: The first 

method was based on dividing the output of the converter (eqn.4.4) by T 2; 

where 1^ may be obtained from a linear approximation of the thermocouple 

EMF (Pt-Ptl3Rh) within the operating temperature range of the sensor (650-

800°C). The second method did not require a divider and was based on 

adjusting the ratio (Pj/P0) in order to compensate for temperature variations. 

The system was optimised as to have a ratio (PJ/PQ) close to unity in order to 

minimise leakage effects; this led to 0.42<(P1/P0)<1.3. Expérimental results 

showed good agreement with the theory over the whole range of operating 

temperature of the sensor: the first method showed a compensation with 

better than 1.2% error over the temperature range 650-800°C while the 

compensation using the second method was within 4.2% of ideal within the 

same range of temperature. 

7.1.2 Leaky devices 

Leakage is an effect normally observed with supposedly fully-sealed devices. 

This effect may become a problem as the internai volume of the device is 

decreased. Consequently, the behaviour of non-hermetically sealed devices in 
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E = In 
4F 

1 + ^ cos (Y) cos (x+ T) 
4Fv<ùPÌ 

where 

T = mi-™} 
\v>vL) 

(6.19) 

(6.11a) 

This theory suggested similar behaviour to that of fully-sealed devices, with 

a différence manifested by the présence of a phase shift and amplitude 

change in the gauge EMF of leaky devices. Theory predicts that this phase 

shift (¥) and amplitude change (by a factor cos¥) should dépend on the 

geometry and dimensions of the leak, the oxygen diffusion coefficient and the 

operating frequency of the AC current. Interestingly, eqn.(6.19) indicates that 

the diffusion pore should maintain the ratio (P/P 0)=l without the need for a 

control loop. Theory suggests also that, besides measuring the oxygen partial 

pressure, a measurement of the phase shift should provide a reading of the 

absolute pressure since, according to the molecular theory of gases, the 

oxygen diffusion coefficient should be inversely proportional to the absolute 

the AC mode has been considered. Theory of opération of leaky devices was 

developed by considering a device with a diffusion pore subject to a sinusoidal 

pumping current; in such a system oxygen is electrochemically transferred 

into and out of the device via the solid electrolyte while the pore allows a 

certain amount of oxygen to diffuse into and out of the internai volume. By 

combining the two efFects, the theory showed that the expression of the 

internai oxygen partial pressure may be determined by solving a single first 

degree differential équation. The expression of the gauge EMF was then 

developed for a sinusoidal current 
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pressure and independent of the oxygen concentration. Experiments under 

various conditions (i.e. hole size, frequency, oxygen partial pressure, 

amplitude of the pumping current and temperature) showed general 

agreement with the predicted theory with a minor déviation concerning the 

dependence of the phase shift on the oxygen concentration which was not 

predicted by the theory. Importantly, it has been shown that, when operated 

in the AC mode, devices with a substantial leak may stili be used for oxygen 

partial pressure measurement, with a concomitant substantial simplification 

of the electronics compared with the fùlly-sealed devices since, in the case of 

leaky devices, no feedback loop is required. Another application of this theory 

of opération of leaky devices is that the measurement of the phase shift may 

be used to check the integrity of the seal in fully-sealed devices. In fact a 

continuous measurement of the phase shift may be used to compensate for 

any amplitude change (of the gauge EMF) caused by leakage that might 

appear with sensor aging for example. This compensation may be achieved 

using digital techniques. 
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7.2 FURTHER WORK 

7.2.1 Response of the sensor 

The sensor used was based on zirconia electrolyte-platinum électrode 

combination and was operated at around 700°C. This high temperature was 

necessary in order to achieve acceptable response characteristics which are 

related to electrolyte conductivity and électrode kinetics. Substantial 

advantages may be gained by improving the devices to allow them to operate 

below 500°C. There would be réduction in the power required for heating the 

device and more importantly the life of the thick film printed heaters used 

(and the complete sensor as a conséquence) would increase substantially. 

Moreover, for the same operating temperature, an improvement of the 

response of the électrodes should enable the operating frequency of the AC 

current to be raised making the practical implementation of the electronics 

easier and the response of the whole system to changes in oxygen partial 

pressure faster. 

7.2.2 Leaky devices 

The minor déviation from the predicted theory of opération of leaky pump-

gauge devices developed in Chapter 6 should be investigated. Suggestions 

were made in section (6.6.3) and could form a basis for this investiga t i o n . The 

theoretical model used may be improved and could lead t.<» ;> better 

understanding of the behaviour of thèse devices in the AC mode. T h i s study 

could lead to a system where leaky devices may be used to measure the 

barometric pressure and oxygen partial pressure simultaneously. 



182 

7.2.3 Operation in the substoichiometric region 

The fully-sealed pump-gauge device offers the advantage of distinguishing the 

two sides of stoichiometry (Maskell 1991a). Experiments must be carried out 

to verify this prediction. The electronic systems for signal processing built 

throughout the present work are appropriate for this purpose. 
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In this section, the expression for the AC component of the gauge EMF is 

derived for a sealed pump-gauge operated in the Tracking Mode (Chapter 4 

and Chapter 5). The expressions of the AC gauge EMF were calculated under 

the following conditions: 

Chapter 4 

The gauge EMF is given by eqn.(1.19): 

E = — ln 
4F 

RT, + —ln 
4F 

, RTA 
1+ cosx 

4Fva>Pn 

where 
RTA 

4FvuP„ 
<1 

(1.19) 

(1.17) 

The tracking condition is given by eqn.(4.1): 

1 f"£dx = 0 
7t J<> 

(4.1) 

Chapter 5 

The gauge EMF is given by eqn.(1.19). The tracking condition is given by: 

I Edx = Vr (5.1) 

where V r is a DC référence voltage. 

APPENDDC A: DERIVATION OF THE EXPRESSION FOR THE 

AC COMPONENT IN THE TRACKING MODE 



196 

ANALYSIS 

In the following, the analysis relates to the general case. The relevant 

equations used in each chapter are given in the end of this Appendix. Let the 

general expression of the gauge EMF be: 

where 

and 

4F 

1 + —cos(z) 

W -
RTA 
4Fvo) 

(A.1) 

(A.la) 

(A.lb) 

The general expression of the mean value of the gauge EMF be: 

VR = l f " £ d x 
R TC J0 

(5.1) 

Equation (4.1) is the special case where V r=0. 

Substituting for E from eqn.(A.l) in eqn.(5.1) gives 

VR = K ' / V In - I f " to 1+ COSJC dx (A.2) 

The expression of the mean internal oxygen partial pressure P0 may be 

determined by developing eqn.(A.2). The solution of the integral in eqn.(A.2) 

is given by Brand (1962). 

f i n 
JO 

It follows that: 

i w 

1+ COS* dx - n ln 
1+ 1 -

<w\2 

[Poj 
(A.3) 
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top - In 

1+ 1-1+ 1-
^ 

2 

(A.4) 

The expression for the AC component as a function of the mean internai 0 3 

pressure P 0 may now be derived. From eqn.(A.l) and eqn.(A.4) 

E-VT -K In 

1+ 1- (w\2 

w 
2 

- In 1+—COSA: 
(A.5) 

In order to express the AC component in eqn.(A.5) as a function of P„ a well 

defined relation between P, and P 0 must be found. From eqn.(A.4) 

IP, 

P +P 1-
(A.6) 

Rearranging 

1 2 
1+ 1- (w\2 

1+ 1- — (A.7) 

It follows 

\2 2P, 

P0exp 

- 1 (A.8) 
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2 _ 

exp' 

Wo 

The expression for P0 may then be written 

(A.9) 

P 

exp 
(V\ 4P, k\Kl 

(A.10) 

Equation (A.10) may be written 

Pi W2 

0 Y 4P, 
(A.11) 

where 

Y - exp 

From eqn.(A-ll) it follows that 

(A.12) 

W W 

Pi w2 

—+—Y 
Y 4P, 

(A. 13) 

4P, m 

4P¡ + W7Y2 

(A. 14) 

And hence 

m 4P2+W2Y2+4P.YW cos* 
1 + —COS X = 

4 P Í + W A I R 2 

(A.15) 

Squaring both sides of eqn.(A.8) gives 
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and 

1 + 1 -

KP*J 

8P: 

4P2+W2.Y2 

Equation (A.5) may then be written: 

E-V=K ln 

/ 4P? ^ 
- ln 

-K ln 

4Pt*W2Y2 

4P2+W2Y2+4P1YW ces* 
2 , T7/2 V 2 4P;+W2Y 

^Pf+WW^YW cosx 

ln 1+ 
(WY) 

2 
( H T ' 

1+ 
2P. 

+2 
l 2 ^ ; 

COSJT 

Equation (A.17) may be written 

E~Vr = -tf ln (l+«2+2u cosx) 

(A.16) 

(A.17) 

(A.18) 

where u = 
WY 

2P, 

2P, 

(V. (A. 19) 

exp 

Equation (A.18) gives the gênerai expression for the AC component of the 

EMF for (W/P0)<1 [obtained from (1.17) and (A.lb)]. This condition may be 

expressed as a function of u. Substituting for Pj (given in eqn.(A.7)) in the 

expression of u gives: 

u -
W 

U 
{ N 

\2 (A.20) 
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E - ln(l+u 2

 + 2ucosx) (A.21) 
4F 

where 
u - R T A (A.22) 

BFv<ùPl 

The expression of the mean internal oxygen partial pressure is given by: 

RTA 

4FVG) 
(A.23) 

Chapter 5 

The expression for the AC component of the gauge EMF is given by eqn.( A. 18) 

where 

From eqn.(A.20) it can be seen that (W/P0)<1 [ from eqn.(1.17) and (A.lb)] is 

equivalent to u<l. Therefore eqn.(A.l8) is the general equation of the EMF 

and is valid for u<l. 

CONCLUSION 

In the following the expressions of the gauge EMF and P 0 are given for the 

various cases described in the beginning of the Appendix. 

Chapter 4 

The expression of the gauge EMF is given by: 
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1 R RTA ¥ (4F., 

4Fvco [RT (A.25) 

From (A.20) and (A.lb), u may also be expressed as a function 

o f R 

u -
RTA 

45vü>i> 
1-

' RTA 

4FvoJV 

\2 (A.26) 

The expression of P 0 is given by: 
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In this section, a simple Pascal program has been written to evaluate the 

following integral. 

voi - - r\'— ln(l+a2+2« cosx)\dx 
TI

 Jo 4F 
(B.l) 

where u is given in Appendix A by eqn.(A.24) 

u -
RTA ( 4F..) 

e x p — K , 
8 F v w \RT \ P, 

(A.24) 

The term (u) may also be expressed as a function of the mean internal 

pressure (P0). It is given in Appendix (A) by eqn.(A.26). 

u = 
RTA 

4FvwPr 

1 + 
RTA (A.26) 

4FVÜ)P„ 

The term (u) represents the level of distortion of the AC component (i.e. 

deviation from a sinusoid). It has been shown in Appendix (A) that u<l. 

V 0 1 represents a DC output of an R M S converter. This converter has been 

used to convert the AC component of the E M F into a reading of oxygen 

partial pressure (Pj) in the sample gas. The purpose of this numerical 

integration was to investigate the expression of V 0 ) for highly distorted 

Signals (i.e high values of u) which should enable Operation with high 

amplitudes of the gauge E M F . 

APPENDIX B: NUMERICAL INTEGRATION 
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P. 
(B.3) 

Note that in Chapter (4), the référence voltage (Vr) was equal to zero. 

However in Chapter (5), V r was non zero for the purpose of temperature 

compensation. Therefore analysis in this section was done for the general case 

(i.e. arbitrary V r). 

The computer program was written for the calculation of 

H - ~T |ln(l+u 2+2ucosx)\dx (B.2) 
4M JO 

using Simpson's approximation. The number of intervais used was (400). 

The results shown in Table (B.l) suggest that the term (H) may be assumed 

constant and equal to ( 1 ) within a wide range of u ( 0<u<0.87 ). The 

maximum déviation from unity for values of u up to 0.98 is 1% (figure B.l). 

The practica! implications for this finding are very significant. 

First the uniformity of the term (H) over a wide range of (u) predicts 

that the output of the RMS converter (V 0 1) should be proportional to (u). This 

means that V 0 1 should be inversely proportional to the external partial 

pressure (P,) over a very wide range of oxygen partial pressure. Since H-=l, 

from eqn.(A.24) and eqn.(B.2), 

f R2T2A {4FV\ Vn, - exp —Vr 
0 1 [8nF 2 v W [RT r) 

This inverse proportionality makes the computation of Pj easy even when 

using analogue techniques. The expression for P t may be written: 



204 

R2T2A (4F., 

8r tF 2 vG> VICr ' 
(B.4) 

Ol 

Secondly the possibility of using high values for the terna (u) offers the 

advantage of using high ampHtudes of the gauge EMF. It can be shown that 

the ampütude peak-to-peak (E^,) of the gauge EMF is given by: 

£ = In 
» 2F 1+K 

(B.5) 

Table (B.l) shows the calculated Epp at 700°C for the values of u ranging from 

0.05 to 0.87. It is clear that E^ increases dramatically (figure B.2a) for high 

values of u. For example Ep^lllmV at 700°C when u«0.87. In practical 

terms, using high amplitudes for the gauge EMF should improve the signal 

to noise ratio and minimise the effects of offset. 

The ratio between the external and mean internal pressures may be 

determined from eqn.(A.7) in Appendix (A) 

P « \RT r 

For V t=0j this ratio is 

1+ 1 -
f STA ? 

\ 4 F v w P 0 

(B.6) 

1 + i-
RTA 

\2 

AFvwP, (B.6a) 

As shown in figure (B.2b) for VT=0, the ratio (P,/P0) varied by a factor of twó 

within the wide ränge of (u). From eqn.(B.6a), 0<(RTA/4Fv<oP0)<l is 
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KTA u P A 
(V=0) 

E w / m V pp 
(at 700°C) 

H 
4FvuP0 

u P A 
(V=0) 

E w / m V pp 
(at 700°C) 

H 

0.1 0.0501 0.997 4.20 1.00003 

0.2 0.101 0.990 8.50 1.00015 

0.3 0.153 0.977 12.98 1.00033 

0.4 0.208 0.958 17.76 1.00061 

0.5 0.268 0.933 23.03 1.00100 

0.6 0.333 0.900 29.06 1.00155 

0.7 0.408 0.857 36.37 1.00235 

0.8 0.500 0.800 46.07 1.00354 

0.9 0.627 0.718 61.74 1.00561 

0.91 0.643 0.707 64.06 1.00592 

0.92 0.660 0.696 66.64 1.00625 

0.93 0.680 0.683 69.55 1.00664 

0.94 0.700 0.670 72.89 1.00707 

0.95 0.724 0.656 76.82 1.00755 

0.96 0.750 0.640 81.60 1.00812 

0.97 0.780 0.621 87.74 1.00882 

0.98 0.817 0.599 96.35 1.00973 

0.99 0-867 0.570 111.00 1.01103 

Table (B.l): Tracking Mode: calculated values for fP, /P^ and Epp and 
investigation of the linearity of the RMS converter output when 
using EMFs with increasingly high distortion. 

equivalent to 1<(P/P0)<0.5. This is not expected to cause any significant 

electrochemical leak at the normal operating frequency (4Hz). Chapter (6) 

gives further details about leakage mechanisms. 



2 0 6 

1.012 

(RTA/4FvtùP0) 

Figure (BA): Dependence of the calculated integral (H) on the level of 

distortion of the gauge EMF. 

Figure (B.2): Variation of the amplitude of the gauge EMF, E, and (P2IPJ 

as a function of the level of distortion ofE. 
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In the following the differential equation (eqn.6.10) is solved and a simple 

expression for P 2 is derived. Equation (6.10) may be written 

—+MP = N (Ol) 
dt 

where 
P-P2~Pi (Cla) 

M - — (Clb) 
vL 

N - (Asino*f/o) (Clc) 

K= (Cid) 
4Fv 

Equation ( C l ) may be solved using the Integration Factor method (Stroud 

1970). The Integration Factor (IF) is given by: 

IF = = e«' ( C 2 ) 

The foDowing equation may also be written: 

PJF - JN.IF dt <c-3> 

APPENDIX C: CALCULATION OF THE EXPRESSION OF THE 

INTERNAL PARTIAL PRESSURE FOR A LEAKY PUMP-GAUGE 
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VA Mi Kf 
P.eM< = [ M sin^j _ w c o s u / ] + + c (C.5) 

M 2

+ u 2 M 

where C is a Constant. It follows that 

P = ———[M sinu* - w cosut] + — + Ce"*' (0.6) 

Because M>0 (see eqn.(C.lb), the exponential in eqn.(C6) is a rapidly 

decaying term and therefore may be ignored at steady oscillatory state. 

Equation (C.6) may then be written: 

P = [M sinwf - o> cosuf] + —2 (C.7) 

Equation (C.7) may be simplified by writing 

^ [Af sinwf - w cosof] = A cos(o>f 4 Y) (C.8) 
Af 2+u 2 

By developing the second term of eqn.(C.8), the following equations may be 

written: 
K A M - -A sinT (C.9) 

M 2 + u 2 

-J^L = A COSY ( C I O ) 
M2+co2 

Substituting for IF in eqn.(C.3) gives 

P.eMt = Kf(A smut+IJeU'dt 

Kl r

 ( C - 4 ) 

M J 

The integrai in eqn.(C4) may be solved by integration by parts. Equation 

(C.4) may then be written: 
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Y = Arctani—) (C.ll) 

Squaring and adding eqn.(C.9) and eqn.(C.lO) gives 

A = — cos Y (C.12) 
G) 

Equation (C.7) may then be written 

KI 
P = A cos(o>r+Y) + (C.13) 

M 

The expression for the internal oxygen partial pressure may then be written 

using eqn.(C.la) and eqn.(C13). 

KI 
= A cos(ur+Y) + — - + P. ( C U ) 

2 M 

Thus 

P7 = -*ÏL C osY cos(«í+Y) Ï+P. (C-15) 
2 4FvG) 4FDS 1 

From eqn.(C.9) and eqn.(C.lO) the expressions of ¥ and A may be deduced. 

The ratio of eqn.(C9) and eqn.(C.lO) gives, 
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D. 1 Perfectlv sealed device 

It has been shown in Chapter (1) that if a current is applied to the pump of 

a fully sealed device, oxygen can be transferred into or out of the internal 

volume. This causes a Variation of the internal oxygen partial pressure. This 

process is governed by the following equation 

where P2 : internal oxygen partial pressure 

T : operating temperature 

v : internal volume 

I : applied current 

R,F: usual significance 

Assuming the external partial pressure (P,) is constant then eqn.(l-12) may 

be written 

where P=P2-P, : oxygen partial pressure difference across the gauge of the 

sensor. The described fully sealed device behaves like an ideal capacitor. 

When a charging current is appUed to an ideal capacitor, the potential 

difference (Ve) across it is given by the following equation 

(1.12) 

dP _ RT 
dt ~ ~ 4Fv 

(D.l) 

APPENDIX D: MODEL OF FULLY SEALED AND 

LEAKY PUMP-GAUGES 
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(D.2) 

When comparing eqn.(D.l) and eqn.(D.2), it can be seen that the internai 

volume of the device acte as a "capacitor" which is charged or discharged by 

an oxygen flux resulting from the applied current. The oxygen partial 

pressure différence across the gauge is then équivalent to the voltage 

différence across the capacitor. 

It has been shown in Chapter (1) that with an imposed sinusoidal pumping 

current, the pressure différence across the gauge oscillâtes at the same 

frequency with a 90° phase shift. An ideal capacitor subject to the same 

current develops a sinusoidal voltage with a 90°phase shift. 

D.2 Leakv device 

It has been demonstrated in Appendix (C) that (eqn.C.l) for a device with 

diffusion hole the following équation may be written 

& + £lp,-*Li (D.3) 
dt vL 4Fv 

where D: gas diffusion constant 

L: hole length (i.e. thickness of the electrolyte) 

S: cross-sectional area of the hole 

On the other hand a leaky capacitor may be represented by an ideal capacitor 

(C) with a leakage resistor ÇRj) across it. 

Under a charging current, such a capacitor develops a voltage given by the 
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following differential équation 

dVc V , 

dt RLC C 
(D.4) 

Comparing eqn.(D.3) and eqn.(D.4) it can be seen that the conductance (1/RL) 

is équivalent to (DS/L). These two terms are responsible for the leakage 

mechanism in the leaky capacitor and leaky sensor respectively. The leakage 

current in the resistor is proportional to the voltage across the capacitor; 

similarly the flux of oxygen leaking through the pore is proportional to the 

pressure différence (P^P^Pj) across the gauge. In both cases the system is 

more affected by leakage for lower values of the "charging" capacitor (C or v) 

and higher values for the terms responsible for leakage ( 1/RL or DS/L). 

CAPACITOR PUMP-GAUGE 

DEVICE 

capacitance (C) internal volume (v) 

voltage across C (V c) 0 2 pressure (P=P2-P1) 

leakage resistor (RL) (LUS) 

Table (D.l): Equivalence between capacitors and pump-gauge devices. 

It has been shown in Chapter (6) that for a sinusoïdal pumping current, leaky 

devices exhibit a phase shift and amplitude change of the oxygen partial 

pressure différence across the gauge of the device. This phase shift and 



2 1 3 

amplitude change dépend on the rate of gas leakage and operating frequency. 

It can be shown that a leaky capacitor would behave in the same way under 

an imposed sinusoidal charging current. From the behaviour of leaky devices 

with sinusoidal current a direct method was presented (Chapter 6 ) for 

leakage testing of fully sealed devices. This method can also be used for 

testing leakage of capacitors. The similarity between pump-gauge devices and 

capacitors can be further extended: perfectly sealed devices ( i.e. free from ail 

formes of leakage) just like idéal capacitors (i.e. free from leakage) are 

impossible to tnake. 
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It has been suggested in chapter (6) that the laser-drilled holes used for 

testing physical leakage were of a conica! shape. In the following an 

équivalent hole with constant cross-sectional radius will be determined. The 

analysis is hased on diffusion law. 

The laser drilled pore is assumed perfectly conica! as shown in figure (E.l). 

Let the radii of the two ends of the hole be r s and r2. Let the pore separate 

two gas concentrations ct and Cj. Let the radius of the circular élément AB be 

r. Let this élément separate concentrations c and c+Öc. If dx is an elementary 

distance within the pore, the gas flux J is given by Fick's first law 

The radius r of the element AB may be expressed as a function of x, TX and 

r2. It can be shown that 

J = -«Dr2 £ (E.l) 
dx 

If L is the total length of the pore, then 

at x=0 , r=r, 

x=L , r=r2. 

(E.2) 

DifTerentiating eqn.(E.2) we have 

(E.3) 

APPENDIX E: DIFFUSION ALONG A TAPERED HOLE 
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J = nDr: 
rrR2 de 

dr 
(E.4) 

At equilibrium the flux J is constant. Equation (E.4) may be written 

de = JL dr 
itD(r,-ra) r2 

Integrating the two terms of eqn.(E.5) 

This gives 

c2-c. = 
JL 

*D(rrr2) ri R2 

(E.5) 

(E.6) 

(E.7) 

The following equation may then be written: 

crC2 (E.8) 

Equation (E.8) gives the expression for the flux through a hole of conical 

shape. The flux in a cylindrical hole is given by eqn.(E.9). 

(E.9) 

When comparing eqn.(E.8) and eqn.(E.9), it can be seen that the tapered hole 

behaves like a straight hole with constant cross-sectional radius (r) given by 

the geometric mean of r5 and r2. 

Substituting into eqn.(E.l) from eqn.(E.3) 
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Figure (E.l): Diffusion along a tapered hole 

$mte are the minimum and maximum hole diameters of the tapered 

hole, then the hole behaves like a straight hole with a diameter given by: 
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In chapter (6), the opération of leaky pump-gauge devices in the AC mode has 

been investigated. The leak in thèse devices caused a phase shift between the 

pumping current and gauge EMF In the following the method adopted for the 

measurement of the phase shift (¥) is described. 

Let the gênerai expression for the pumping current be 

/ -A sinx + / 0 (6.9) 

where 1$ représenta a DC component in the pumping current. The resulting 

gauge EMF is given by equation (6.14) 

E = In 
4F 

RTUn RTA 
1 - + K i A cos Y cos(x+Y) 

4FDSP1 4FvuP 
(6.14) 

Assuming that the instrumentation amplifier has a DC offset e0, the gênerai 

equation of the gauge EMF would then be 

Em --In 
s 4F 

1- R T U ° * ^ cos? cos(s+Y) 
4FDSPi 4FvwPj 

(F.l) 

The method for the phase shift measurement was based on Converting the 

pumping current and gauge EMF into square waves using zero-crossing 

comparators. As shown in figure (F.l), in each cycle of thèse periodic signais, 

I and E g (or E) intersect zéro twice. Let the zéro crossing angles be (x t and x̂ ) 

for I; and (y, and y 3) for E g. The zero-crossing angles of the current are given 

by 

APPENDIX F: PHASE SHIFT MEASUREMENT 
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*, = sin-1 (F.2) 

and Xĵ ix-X! (F.3) 

On the other hand, the periodic zero-crossing of the EMF occurs when E_=0. 

Applying this condition to equation (F.l) 

(4F \ RTLL »TA 

[RT°) 4FDSP{ 4FvwPl 

Equation (F.4) is true for x=y t and x=y2 where 

y, = -Y+cos"1 
4FV<ÙP1 

RTA cos V 
-1+exp 

(4F \ RTUC 

RT 7 4FDSPi 

and 
y2 - 2 i t - 2 T - y j 

(F.4) 

(F.5) 

(F.6) 

By referring to figure (F.l) it may be seen that, for the falling edges of the 

square waves, E g (or E) lags I by an angle given by 

(F.7) 

For the rising edges of the square waves, E g (or E) lags I by an angle given 

by 
(F.8) 

From equation (F.3), (F.6) and (F.7) 

WF = n-2V-(yrxx) (F.9) 

It follows 

" 2 2 
(F.10) 
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Figure (F.l): Measurement of the phase shift between two signals containing 

DC offset (Adopted from Wagdy and Lucas 1987) 

The measurement of the two angles can be easily made by using a 

Timer/Counter as described in chapter (6). The falling and rising edges of the 

square waves may be used to start and stop the counter in order to measure 

the duration of the pulses x1y1 and x¿y2. This measurement may then be 

converted into a measure of the two angles *ifp and Thus by applying this 

method, the errors caused by the offsets in the various parts of the electronics 

may be minimised. 
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G.l INTRODUCTION 

In this section, the detailed electronic circuits built and used throughout this 

work are given. In the first part of this appendix, circuits used for particular 

functions axe described. In the second part, complete circuit diagrams are 

given for the various electronic circuits built for operation of the oxygen 

pump-gauge devices. 

G.2 GENERAL 

DC power supplies 

The electronics used in the present work required the use of a ±15V and +5V 

DC power supplies. Figure (G.l) gives the circuit diagram of the ±15V supply. 

The RC4195NB voltage regulator has a maximum output current of ±100mA, 

and is internally protected against overload. Figure (G.2) gives the circuit 

diagram of the +5v supply used. It is a classic circuit based on a 7805 voltage 

regulator with a maximum output current of 1A. 

Sinewave eenerators 

Two types of sinewave generators were used in the present work. Figure (G.3) 

shows the circuit diagram of the first generator which was an analogue 

sinusoidal oscillator adopted from Jung (1974) and may be used to produce 

two sinusoidal signals in quadrature. In the present application the 

advantage of having two signals in quadrature obviated the need for 90° 

APPENDIX G: ELECTRONIC CIRCUIT DIAGRAMS 
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RC^ = e (G.l) 
di 

RC^ = (G.2) 
dt 

The solution of thèse differential équations is represented by a sinusoidal 

oscillation of frequency 

/ = — ! — (G.3) 
InRC 

The signais e c and e, are in quadrature. 

In theory ail capacitors and ail resistors (except Rj) are equal. However, in 

practice Rj was made slightly larger than the other resistors to ensure 

sufficient positive feedback for oscillations. The zener diodes were used to 

stabilise the amplitude of the oscillations. The trimmer Tt, was used to set the 

amplitude of the signais to any value above the zener voltage of the diodes. 

The distortion of the signais obtained depended strongly on the choice of the 

components; with highly matching components, a total distortion of less than 

1% could be obtained (Jung 1974). Note that this oscillator is idéal only for 

applications where constant frequency is required. This is because the 

frequency can not be varied by adjusting the value for one component only. 

phase shifters. The circuit of figure (G.3) was based on two amplifiers, A! 

acted as a non-inverting integrator while A% was an inverting integrator. The 

two amplifiers were connected in cascade to form a feedback loop. The 

feedback loop was represented by two différentiel équations 
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Digital Storage of waveform samples provides a means whereby waveshapes 

can be programmed to suit the application. Simple digital-to-analogue 

conversion of a sequence of samples results in a zero-order reconstruction of 

the stored signal. The circuit of figure (G.4) was used to generate a sinusoidal 

signal with variable frequencv. The circuit consisted of an EPROM (2764) in 

which samples of the sinewave were stored, a binary counter (4040B) used as 

pointer to sequentially select the addresses of the stored samples and a 

digital-to-analogue (DAC) converter (ZN435) to convert the stored samples 

into staircase approximation of the sinewave. The TTL clock at the input of 

the counter sets the frequency of read-out of the samples and therefore of the 

frequency of the sinewave. 

The circuit of figure (G.4) was based on the use of 8 bit chips. Therefore in 

order to have reasonable approximation of the sinewave, ali bits were used 

to represent the amplitude of the signal; 256 samples were stored and 

represent the positive half of the sinewave. Hence, the output of the DAC was 

a rectified sinewave. The full sinewave was obtained using a multiplier 

built aro un d Aj and the transistor Q. The multiplier was controlied by the 

counter which synchronised the waveform generation (Huehne 1972). 

The frequency of the clock was 512 times higher than that of the sinewave. 

Since the T n n Y i r r m m frequency used in the present work was less than 10Hz, 

the n r i f l y i m i i T T > frequency of the clock required was less than 5kHz which could 

easily be obtained from any function generator or simply from a 
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Voltaee to current Converter 

In the present work two bipolar voltage-to-current Converter with grounded 

load were used. Figure (G.5) gives the circuit diagram of the first Converter; 

this was adopted from Froehcher et al (1980) and was based on the use of a 

Single amplifier. By referring to figure (G.5), the following equations may be 

written 

V -V 
1 - i n 1 

'in 
(G.4) 

(G.5) 

lL+ — (G.6) 

From eqn.(G.4) and eqn.(G.5) 

(G.7) 

multivibrator. However if Signals with much higher frequency are required, 

other techniques may be used to minirnise the number of stored samples 

without affecting the quality of generated signal. With added complexity, the 

principle of ROM read-out may be improved by using interpolation technique 

(Evans and Towers, 1980). This technique may be practically implemented 

(Towers, 1982) by using multiplying digital-to-analogue Converters (MDAC). 
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Substituting for V 0 in eqn.(G.6) gives 

(G.8) 

For a given input voltage, the current through the load is given by eqn.(G.8). 

In practice, care must be taken to ensure that the output (V0) of the amplifier 

does not saturate for the maximum current (IL) through the load, the choice 

of R2 must be made to ensure this. 

Figure (G.6) gives the circuit diagram of the second converter. This converter 

was adopted from Morgan et al (1986) and was built around three amplifiers. 

The circuit operated in such a way that the voltage across the resistor R 0 was 

maintained equal to the input voltage (V{). The following équations may be 

written 

(G.9) 

(G.10) 

From eqn.(G.9) and eqn.(G.lO) 

(G.ll) 

Equation (G.ll) indicates that the current through the load should be 

proportional to the input voltage. 
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Analoeue multiplier 

The multiplier used was of the type SG1495. The connection diagram of this 

multiplier is shown in figure (G.7). the various trimmers were used for offset 

and gain adjustment. 

Analoeue divider 

The analogue divider (Clayton 1971) used was built around an analogue 

multipher and an amplifìer as shown in figure (G.8). The current through the 

two resistors is given by 

V V V 
--111 (G.12) 

R R 

This ledto 

y. = - i i (G.13) 
0 V 

Hence the output of the amplifier should be equa! to the ratio of the two 

input voltages V1 and V 2. 

Instrumentation amplifier 

Three types différent instrumentation amplifîers were used. The first two 

were dedicated single chip amplifiera: INA110 and INA102. The gain in thèse 

amplifîers may be set to various values by shorting appropriate pins, other 

gain values may be obtained by adding a single resistor. The third 

instrumentation amplifier was a classic three operational ampUfiers 

configuration as shown in figure (G. 16). 
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Sauarer 

The equarer used (figure G.9) was adopted from Shubba and Ramesh (1986), 

and was based on logarithmic Converters. All log Converters are normally built 

around pn junctions and employ the V B E characteristic of Silicon planar 

transistor for V C B of OV. Jung (1974) gives an excellent tutorial on log 

Converters and their use to produce exponential, logarithmic, square, 

multiplication, square-root and raising to the power functions. 

O.fl nF.TAn.Tgp CIRCUITS USED WITH THE SENSORS 

This section is divided into sub-sections. In each sub-section the electronic 

circuits used in a particular chapter of the présent thesis are discussed. In 

the following, thèse sub-sections are referred to by the chapter they represent. 

G.3J Chapter 3 

Figure (G.10) gives the detailed electronic circuit used for implementing the 

Potentiometrie Mode of opération [i.e. described by the schematic diagram 

given in figure (3.7)]. The sine/cosine generator, of the type shown in figure 

(G.3), was built around Al and A .̂ The voltage-to-current Converter, of the 

type shown in figure (G.5), was built around A 4. The amplitude of the 

pumping current may be set by adjusting the amplitude of the pumping 

sinewave using the trimmer R^. The gauge EMF was amplified (x200) using 

an instrumentation amplifier (ICj). The phase sensitive detector (PSD) was 

of the type + 1 A 1 multiplier followed by a low pass filter and was built around 

Aj, A« and the FET transistor (Q). The square wave référence for this PSD 

http://nF.TAn.Tgp
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was obtained from a zero-crossing comparator built around A .̂ The 

component E 0 of the gauge EMF was measured using the sample and hold 

(ICj) triggered with positive puises obtained from the zero-crossing 

comparator (Ag) and the differentiator built around R^, R 3 2 and C 6. The 

window comparator (Graeme 1973) was built around A n , its input was equal 

to E 0 . The référence voltage was obtained from A 1 0 by appropriate adjustment 

of the trimmer Ra7. The low pass filter built around R 3 3 and C 7 was used to 

allow soft start of the loop (refer to chapter 3 for further détails). The bias 

signal used to adjust the mean internal oxygen partial pressure was obtained 

from the summer A 7 and the amplifier/limiter built around Ag. 

G.3.2 Chapter 4 

Two implementations were described for the Tracking Mode of opération. 

G.3.2.1 Method 1: Constant mean value of the gauge EMF 

Figure ( G l i ) gives the detailed electronic circuit used for implementing this 

mode described by the schematic diagram of figure (4.1). The sine/cosine 

generator of the type shown in figure (G.3) was built around A^ and A3. The 

voltage-to-current converter was built around A$. The instrumentation 

amplifier (IC2) was of the type INAI 10 with an amplification of (x500). The 

low pass filter and amplifier/limiter used to produce the bias signal for 

Controll ing P 0 were built around Ag. The RMS converter (producing the DC 

output V 0 1 ) was built around a full-wave rectifier (A^ and Ag) and a low pass 

filter (A 1 0). The PSD (producing the output V w ) was built around an analogue 
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multiplier (ICj and Aj) and a low pass fiiter (A„). The sample and hold circuit 

(ICa) used to produce the output V M was triggered with positive puises 

obtained from a zero-crossing comparator (A7) and a differentiator (built 

around Rg6, Rg 6 and CB). 

G.3.2.2 Method 2: Constant mark-to-space ratio 

Figure (G. 12) gives the detailed circuit diagram for implementing this mode 

of opération [described by the schematic diagram of figure (4.2)]. The 

sine/cosine generator used was of the type given in figure (G.3) and was built 

around A1 and A^ The voltage-to-current converter was built around A .̂ The 

instrumentation amplifier (IC,) used was of the type INAI 10 and was wired 

to provide an amplification of (x500). The amplified gauge EMF was converted 

into square wave using the zero-crossing comparator built around A*. The 

bias signal for controlling the mark-to-space ratio (MSR) was then obtained 

from the low pass filter/amplifier/limiter built around A .̂ The output of the 

circuit, from which esternai oxygen partial pressure was computed, was 

produced by the sample and hold (IC2). The triggering of the sample and hold 

was obtained using a combination of zero-crossing comparator (A7) and 

differentiator ( Rao, R ^ and C6). 
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G.3.3 Chapter 5 

Two modes of temperature compensation were described in chapter 5. 

G.3.3.1 Référence voltage equal to zero 

This mode of opération is represented by the schematic diagram of figure 

(5.4). Temperature compensation was shown to be possible by dividing the 

output of the RMS converter by T 2. The operating temperature was measured 

with a type R thermocouple. Within the range of operating temperature, it 

has been shown that the thermocouple EMF (e) may be converted into T 2 

using two methods. The first method consisted of expressing (T) as a linear 

function of (e); then T 2 was obtained using a squarer. The second method was 

based on expressing T 2 as a linear function of (e). 

The detailed electronic circuit for this mode of temperature compensation is 

shown in figure (G.13). The thermocouple EMF (e) was amplifìed (xlOOO) 

using an instrumentation amplifier (ICX). The amplifìed thermocouple EMF 

was then converted into T 2 using the two methods described. For the first 

method, the amplifìed e was converted into T using Av T 2 was then obtained 

using the squarer of figure (G.9) built around A 4 and A 6. The two amplifìers 

A-2 and \ were used for calibration purpose. The second method was 

implemented using the circuit built around A 3. The analogue divider [figure 

(G.8)] was built around AB and the multiplier (built around IC 2 and A 7). A 

switch (SW) was used to select T 2 from the first or second approximation. The 

input (V 0 1) of the divider was obtained from the RMS converter of figure 

(G.ll). 
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G.3.3.2 Variable référence voltage 

In this mode of opération the sensor was operated in a similar way to the 

Tracking Mode described in chapter (4). The différence, however, is that the 

PC component of the gauge EMF was expressed as a fonction of température. 

This was achieved by keeping the measured DC component of the gauge EMF 

to a référence voltage (expressed as a function of T) using a bias signal as 

shown in the schematic diagram of figure (5.5). 

The detailed electronic circuit used for testing this mode of température 

compensation is shown in figure (G.14). The sinusoïdal oscillator was built 

around A, and Ag. The voltage-to-current converter, of the type shown in 

figure (G.6), was built around Ag, A$ and A,. The gauge EMF was amplified 

(xlOOO) using an instrumentation amplifier (IC,). The DC component of the 

gauge EMF, as indicated in figure (G.14) was obtained from the low pass 

filter built around A .̂ The required référence voltage was obtained from the 

thermocouple EMF using an instrumentation amplifier (ÏC2) and the 

amplifiera A^ and A 1 0 . The bias signal, representing the différence between 

the DC component and référence voltage, was obtained from A n . The AC 

component of the gauge EMF was obtained from the amplified gauge EMF 

and its DC component using A 1 2 . This AC component was then converted into 

temperature-compensated DC output using the RMS converter built around 

the full wave rectifier (A 1 3 and A, 4) and the low pass filter (A 1 8). 
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G.SA Chapter 6 

In this section two circuits are described. The first was used for testing the 

theory of AC opération of leaky devices; while the second was a simple circuit 

for oxygen partial pressure measurement. 

G.3.4.1 Circuit 1 

Figure (6.1) représenta the schematic diagram of the electronics used for 

testing the theory of AC opération of leaky and "fully-sealed" devices. Figure 

(G.15) shows the full electronic circuit used. The testing of the devices was 

made in three modes. These modes required the generation of a pure 

sinusoide! current, a DC current and a sinusoidal current with DC offset. The 

sinewave generator used was of the type shown in figure (G.4), this required 

the use of a function generator to produce the TTL clock. The DC voltage was 

obtained from a stable power source. The voltage-to-current converter was 

built around A*. The gauge EMF was amplifìed (x500) using an 

instrumentation amplifier (IC2). The tests made consisted of measuring the 

amplitude and phase of the gauge EMF under various conditions. The 

measurement of the phase shift was achieved using a Timer/Counter (chapter 

2). The measurement of the amplitude of the gauge EMF was made using a 

sample and hold circuit (ICj). The trigger input of the sample and hold was 

obtained from the sinewave using a combination of zero-crossing comparator 

(Aj) and differentiator. 
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G.3.4.2 Circuit 2 

This circuit was designed for the measurement of oxygen partial pressure 

using devices with diffusion pore(s) operated in the AC mode. The principle 

of operation consisted of applying a sinusoidal current to the pump of the 

device and simply measuring the amplitude of the gauge EMF. Oxygen 

partial pressure in the sample gas may then be determined from the 

measured amplitude. 

As shown in figure (G.16), the proposed circuit may be built around ordinary 

components. Thus the cost may be kept to a m i n i m u m The sinusoidal 

oscillator was built around and A^. The voltage-to-current converter was 

built around A3. The instrumentation amplifier used to amplify the gauge 

EMF, was built around A4, Ag and \ . The measurement of the amplitude of 

the gauge EMF may be achieved by using a sample and hold circuit (IC,). 
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Figure (G.l): ±1SV I ±100mA power supplly. (Source: RS components 

catalogue) 

6VA 

220/5 V 

* + 5 

Figure (G.2): +5V / 1A power supply. 

Figure (G.3): Sinusoidal oscillator generating two signals (e, and ej in 

quadrature. (Source: Jung 1974) 
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Figure (G.4): ROM read-out type digital sinewave generator. The two 

amplifiers were powered from ±15V; the offset adjustment is not 

shown. 
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Figure (G.5): Voltage-to-current converter. /^-(V^/JR^. 

(Source: Froelicher et al 1980) 

Figure (G.6): Voltage-to-current converter with high input impédance. 

IL*=(VJRo). (Source: Morgan et al 1986) 
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Figure (G.7): Four quadrant analogue multiplier. 

(Source: RScomponents, data sheet N.5207) 

Figure (G.8): Basic analogue divider based on the use of an analogue 

multiplier. (Source: Clayton 1971) 



237 

Figure (G.9): Analogue squarer for positive input voltage 

(Source: Shubba and Ramesh 1986) 
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Figure (G.10): Electronic circuit used for the measurement ofoxygen partial 

pressure (Pj) using sealed pump-gauge device operated in the 

Potentiometrie Mode (chapter 3). Pj was computed from 

VP and E? 
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List of components in figure (G.10) 

The trimrners Ra,, Rg8 were of the 10 turn type. 
The circuit was powered from ±15V supply; bypass capacitors were used for 
each IC. 

ICj: INA110 (Ampl. x200). 
IC 2: LF398 (Sample/hold). 
Au 3240 (OPAMP) 
A 3 : ^ T L 0 7 4 (Quad OPAMP) 
A< : 3140 (OPAMP) 
Ae-Au: VA TL074 
Q :2N4092(FET) 
Dj - D 4 : 4.3V / V4W Zeners 
D B - D 6 : 1N4148 Signal diodes 
C t - C, : 0.1 uF 
C 4 : 2 u F 
C 6 : 0.1 uF 
C 6 : 4700pF 
C 7 : 2 u F 
R, : 363k 
Ra : 390k 
Ra : 363k 
R 4 : 390k 
Rb, Re : 10k 
R, : 3.3k 
R,, - R I 1 : 6.8k 
R12 " Ris : 10k 
Rie» R17 : 3.3k 
R l 8 : 10k 
R^, Rao : 1.8M 
R21 - R33 : 10k 
R^ : 180k 
R „ : 10k 
R „ : 1 8 k 
Ra,, Rj, : 10k 
Ra, :4.7k 
R30 : 18k 
Rai» R32 : 22k 
R ^ r l M 
R M : 6.8k 
Ras» R36 : 22k 
R 3 7 : l k 
R^rlOk 
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Figure (G.ll); Electronic circuit used for the measurement ofoxygen particd 

pressure (Pj) using sealed pump-gauge device operated in the 

Tracking Mode (Method 1 in chapter 4). Pj may be computed 

from Vop VK or V^. 
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List of components in figure (G.ll) 

IC 2 

IC, 
A , -
C , -
C 4 : 

C 6 : 
C e : 
C 7 : 
C 8 : 
Di. 
Da 
D. . 
D 6 

Ri 
R . 
Rs 
R« 
R, 
Rs 
R, 
Rio 
R » 

Ris 
Ri . 
R 1 6 

Rie 
Rn 
R * 
R22 
R23 
R24 

: SG1495 (Analogue multiplier) 
: INA110 (Instrum. Ampi. x500) 
: LF398 (Sample and hold) 
A 1 1 : VA TL074 (Quad OPAMP) 
C 3 : O.luF 
2.2uF 
4700pF 
O.luF 
10uF/25V 
2.2uF 

D 2 : 4.3V/ V4W Zeners 
: 1N4148 
D 6 : 4.3V/ VA Zeners 
: 1N4148 
• R3 : 3.3k 
8.2k 
27k 
39k 
1M 
33k 
15k 

: 12k 
: 15k 
:2.7k 
: 15k 
:2.7k 
:390k 
: 1.8M 
-1*20 : 10k 
: 363k 
:390k 
:363k 
: 390k 

Rj8 

Rai - R: 
R 
R 

•37 

'38 

'39 R 
R43 

10k 
12k 
10k 
3.3k 
R 3 2 : 6.8k 
R 3 6 : 22k 
1.8M 
330k 
R« : 10k 
220k 

R 

. 10k 
R„ : 22k 
: 10k 

The trimmers R^ - R 4 7 are of 10 turn type. 
The circuit was powered from ±15V supply; bypass capacitors were used for 
each IC. 



242 

ure (G.12): Electronic circuit used for the measurement of oxygen particd 

pressure (Pj) using sealed pump-gauge device operated in the 

Tracking Mode (Method 2 in chapter 4). Pj was computed 

from Vm. 
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List of components in figure (G.12) 

IC, : INA110 (Instrum. ampi. x500) 
IC 2 : LF398 (Sample and Hold) 
A, - A, : VA TL074 (Quad Opamp) 
CX - C 3 : O.luF 

2.2uF 
C 8 : 4700pF 
C 6 : O.luF 
R i : 363k 
R , : 390k 
R,: 363k 
R 4 : 390k 
R.. Re: 10k 
R , : 3.3k 
Rs -R,, : 6.8k 
R, 3 : 1.8M 
Ria : 12k 
Ru : 330k 
Ri» : 220k 
Rie - Rj! : 22k 
Raa : 10k 

The trimmer R ^ is of the 10 turn type. 
The circuit was powered from ±15V supply; bypass capacitors were used for 
each IC. 
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thermocûuple EMF K I O Q Q 

Figure (G.13): Electronic circuit used for température compensation of the 

Output V01 in Fig.(GJl). The thermocouple was used for the 

measurement ofthe température of the sensor. 
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List of components in figure (G.13) 

ICj : INA102 (lustrum. Amplifier xlOOO) 
IC 2 : SG1495 (Analogue multiplier) 
A x - Ae : VA TL074 (Quad opamp) 
C a :300pF 
Qi " Q 4 : ve CA3086 (Transistor array) 
Rj. Ra : 12k 
R3:47k 
R 4 : 27k 
RB : 22k 
R 6 : 100k 
R, :47k 
R 8 : 120k 
Re : 3.3k 
R,o : 12k 
R u , R 1 2 : 15k 
R 1 3 : 47k 
Rw : 120k 
R 1 6 : 22k 
R w : 22k 
R l 6 : 100k 
R 1 7 , RjB : 150k 
R w , Rao : 12k 
Ra, :47k 
Raa, Ka : 10k 
Ra 4:27k 
Ras : 8.2k 
Rae - RaB : 3.3k 
R^ : 39k 
R 3 0 : 33k 
R31 : 15k 
Ra* :12k 
R33 : 15k 
R„ :2.7k 
Ra,, R^ : 10k 
Ra7 : 3.3k 
Ra8 : 15k 
R,, : 2.7k 
R40' R41 • 12k 
R t ó : 10k 
R « : l k 
R « : l k 
R«» R« • 22k 

The trimmers R t í - were 10 turn type. 
The circuit was powered from ±15V supply. 
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Figure (G.14): Detailed diagram of the circuit used for the measurement 

oxygen partial pressure, un-influenced by temperature 

variations. 
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List of components in figure (G.14) 

Ci 
c < 

c f i 

c 6 

I>1 

Ri 
R2 
Rs 
R4 
R 6 

Re 
R9 

ICx, IC 2 : INA102 (Instrum. Amplifier xlOOO) 
A, - A 1 6 : V* TL074 (Quad opamp) 

C 3 : O.luF 
O.OOluF 
2uF 
30uF 
D 4 : 4.3V/ 0.25W 
1N4148 
363k 
390k 
363k 
390k 
12k 
Rg:22k 
4.7k 

R 1 0 - R 1 2 : 10k 
R 1 3 : 4.7k 
R, 4 : 10k 
R, 6 : 1.8M 
R 1 6 t R , 7 : 13.3k 
R » : 10k 
R w : 8.2k 
Rao : 3.3k 
Ra l f : 47k 
Ra3, Ra4 : 10k 
R 2 6 : 4 7 k 
Ra6 : 5.6k 
Ra7 : 18k 
Ra8 - R,! : 27k 
Raa - Ra4 : 10k 
R35: 180k 
R 3 6 : 2 k 
R 3 7 : 10k 

The trimmers R36, H31 were 10 turn. 
The circuit was powered from ±15V supply. 
All ICb had bypass capacitors (not shown). 
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DIGITAL 
SI NE WAVE 

GENERATOR 
(fig.G.4) 

clock 

Ri 
Ci D 

• O — 

11 
u 1 

8 ICi s 

7 6 3 

A ÏR 3 ÏRi 
IN 

, swilch RS 

Figure (G.15): Diagram of the circuit used for testing the theory of opération 

ofleaky devices in the AC and DC modes. The switch RS 

enabled the sélection of the mode of opération: 

AC mode: switch in position 1, 

AC+DC mode:. 2, 

DC mode: 5. 
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List of components in figure (G.15) 

The circuit was powered from ±15V. 
O.OluF bypass capacitors were used for each IC. 

IC, : LF398 (Sample and Hold) 
IC 2 : INA110 (Instrum. Amplifier) 
A t : W T L 0 7 4 
Aa, Ag : Yi 3240 
A * : VA T L 0 7 4 
Aj : 3140 
A * : VA T L 0 7 4 
C : 4700pF 
D : 1N4148 
Rj - R 4 : 22k 
Rs-R^ilOk 
R , 0 : 3.3k 
Rn : 4.7k 
Rj2 - R ] 6 : 6.8k 
R 1 6 - R 1 9 : 22k 

All ICs had O.OluF bypass capacitors (not shown). 
The digital sinewave generator was powered from +5V and ±15V. 

List of Components in figure (G.16) 

IC 3 : ŁF398 (Sample and Hold) 
C, - C a : O.luF 
C 4 : 4700pF 
C 6 : O.luF 
D„ D 2 : 4.3V/ 0.25W 
D 8 : 1N4148 
Rj : 390k 
Ra, Ra : 363k 
R 4 : 390k 
RB - Rg : 6.8k 
R»» R,o : 22k 
R n : 56R 
R 1 3 - R 1 6 : 10k 
R 1 6 - Ri, : 22k 




