
ACCEPTED MANUSCRIPT

‘Using data analytics for collaboration patterns in distributed software team simulations: The role of
dashboards in visualizing global software development patterns’ 2016 IEEE 11th International
Conference on Global Software Engineering Workshops

Georgios A. Dafoulas (Comput. Sci. Dept., Middlesex Univ., London, UK); Fatma C. Serce (Dept. of Inf.
Syst. Eng., Atilim Univ., Ankara, Turkey); Kathleen Swigger (Dept. of Comput. Sci. & Eng., Univ. of
North Texas, Denton, TX, USA); Robert Brazile (Dept. of Comput. Sci. & Eng., Univ. of North Texas,
Denton, TX, USA); Ferda N. Alpaslan(Dept. of Comput. Eng., Middle East Tech. Univ., Ankara, Turkey);
Victor Lopez (Fac. de Ing. de Sist. Computacionales, Univ. Technologica de Panama, Panama City,
Panama); Allen Milewski (Dept. of Comput. Sci. & Software Eng., Monmouth Univ., West Long
Branch, NJ, USA)

SECTION I.

Introduction

The work presented in this paper is ongoing for more than six years based on an initial research
project funded by the US National Science Foundation with the participation of universities from US,
Turkey, Panama and the UK. The original project focused on the investigation of software
development teams working over different time zones. The project utilized student teams to
observe communication, collaboration and coordination patterns. The project used industrial
advisory roles to gain an understanding of the logistics involved in real GSD projects, as well as issues
relating to the way individuals participate in GSD teams and fulfill different roles. The project funding
completion did not disrupt the on going research, which involved further institution allowing the
researchers to investigate different team structures, cultural differences, software development
tasks and GSD coordination.

The research is predominantly based on the observation of pilots involving student groups organized
in GSD projects including time zone differences, multi-cultural teams and the use of computer-
supported cooperative work tools for communication, file sharing, data repository and collaborative
authoring. In this paper we will discuss two pilots involving six universities, three from Palestine and
three from Egypt. These institutions participated in a EU funded project developing a joint
postgraduate degree in software engineering and their students were trained in various aspects of
distributed teamwork and GSD.

At earlier stage of this work, emphasis was given on issues such as coding mechanisms for
communication in GSD, gamification and the role of culture in distributed software teams. During
the past couple of years, the research branched out towards the role of data analytics in GSD and

how data visualization would assist in understanding patterns of communication and collaboration in
GSD projects.

As we will discuss in the following pages, there are two main drivers for using data analytics in this
project, (i) obvious benefits for learning teams, as instructors are able to identify potential issues
with individual students or certain teams, (ii) evident benefits for facilitating performance
management of software development activities.

The work presented in this paper is in line with existing work on tools supporting offshore software
development focusing on the use of sociograms and the visualization of dependencies [5] [11]. Our
work from several pilot studies focuses on understanding the inter-team interactions in a way similar
to other works on awareness of inter-team development [17], human activities in software
development and group awareness enhancing collaboration [24].

SECTION II.

Background on GSD

Following several years of research in GSD simulations including pilot studies with the involvement
of several institutions, the authors had the opportunity to apply their findings as part of a knowledge
transfer project in software engineering education. The common theme was the ability to
comprehend the needs of a software engineering programme in terms of its design, deployment and
delivery. It was important to identify the necessary mechanisms for quality assurance that could be
implemented across all institutions, based on common practice in EU HEIs. In order to design the
software engineering curriculum, all partners reviewed the state of the art in similar programmes
across the world.

The ACM and IEEE guidelines for software engineering curricula were used as guidelines as well as
the relevant literature [1] [2] [3] [6] [13] [14]. As part of the identified curriculum, the importance of
GSD was identified early on. This led to the inclusion of virtual team topics (e.g. testing,
requirements elicitation, user centred design).

It was necessary for the consortium to appreciate the special characteristics of GSD instructions for
learning teams and in particular the student perspective [15]. This would allow educating students in
key discipline topics with an understanding how GSD issues may affect the way core discipline
practices may be applied. It was important to demonstrate the way information exchange and
virtual team knowledge sharing takes places in such team structures [18]. It was also critical for the
project to demonstrate how collaborative work should fit the needs of a GSD project [8]. This would
involve a transformation in communication between team members as GSD project communication,

seems to follow certain patterns [20] and assessing how task designs and the GSD scenario impact
team behavior and communication [22].

Previous work on investigations of communication and collaboration patterns in software
engineering learning teams [9] helped in identifying ways for collecting, filtering, analyzing and
representing data from GSD simulations. The GSD simulations used in the pilot studies of the
programme adapted the follow the sun development process model consisting of six sub-processes
as suggested by Kroll et al [19]. The workflow patterns provided for any identified tasks were also
designed in line with the proposed criteria for GSD workflow from the relevant literature [9].

SECTION III.

Investigating GSD Simulations

As mentioned earlier, this study is based on GSD simulations involving student teams, meaning that
at least two universities would be involved in each pilot. The partner institutions were dispersed in
such a way that time zone difference was a minimum of two hours and a maximum of eight. The
international nature of the project meant that participants had to resort on virtual learning
environments, wikis and video conferencing for all collaboration. Mainly communication was in the
form of asynchronous exchange of messages, but at times synchronous communication was deemed
necessary.

This research involved setting up more than twenty pilot studies over the past few years, at times
involving four to six institutions and quite often more than ten GSD teams working in parallel. On
occasions pilots reached or even exceeded 100 participants. As part of knowledge transfer initiative,
it was decided to offer GSD pilot studies to developing countries, during a EU funded project. The
scope of the project was to create a joint postgraduate degree delivered in parallel from six
institutions in two countries, with the support of Higher Education Institutions from four EU
countries. One of the primary objectives in the partner countries (i.e. Egypt and Palestine) was the
creation of sufficient volumes of highly skilled software developers who could be eligible for future
outsourcing and offshoring software development projects.

Therefore, the scope of the GSD pilot studies was to provide a suitable framework for setting up
virtual teams and train participants in the necessary skills. This meant that both participating
instructors and learners should gain an understanding of realistic virtual team projects. The
framework used for GSD simulations focused on the following: (i) training instructors in the
facilitation and coordination tasks required for GSD, (ii) providing realistic opportunities for virtual
teamwork to participating learners, (iii) specifying the necessary elements for the required
supporting infrastructure and (iv) designing a method for organizing virtual teamwork projects for
GSD scenarios.

The first concern for preparing a GSD simulation involved the selection of suitable activities that
would sufficiently cover certain aspects of the software engineering curriculum. For example the
collaborative creation of conceptual design models, coauthoring of code and testing of code listings
are such tasks. The next concern relates to the way participants would collaborate while undertaking
certain roles. Clear roles should be identified and a specific protocol for collaboration would be
required to control exchanges between individual members, but also the way teams would interact
and solve specific problems. Next, the way communication would take place should be agreed, in
terms of frequency, etiquette, timing, volume, nature of messages and tools used. The selection of
tools that would be provided in the virtual learning environment available to the members of the
GSD scenario should take under consideration the nature of the project, the collaboration needs, the
communication exchanges that should be supported and any constraints. Finally the way in which
work should be collated, presented and used for project reporting was an important aspect of each
simulation. This work focused on gamification and its results are published in previous papers.

SECTION IV.

Setting Up the GSD Pilot Studies

As mentioned earlier, this research has conducted several pilot studies in the past, leading to
sufficient experience in establishing a framework of good practice for setting up GSD simulations. As
part of this work, a number of key areas have been identified, as follows:

 Structure – focusing on team formation, it is essential to avoid too hierarchical structures and
ensure that all members are treated equally according to the roles they fulfill and their classification.

 Roles – focusing on the way tasks are assigned to individuals with emphasis on their prior
knowledge, experience and skillset.

 Instruction – focusing on the role of instructors and tutors which would range from facilitating
communication between those members who are collocated, monitoring progress, checking issues
relating to effective communication across sites, assessing performance indicators, ensuring interim
deliverables are exchanged and assisting with technical problems.

 Assessment – focusing on a number of issues relating to the method used for grading student
progress such as mapping project performance to specific assessment criteria.

 Mix – focusing on the way participants would be grouped together, addressing the need for
heterogeneous or homogeneous teams, aiming for certain time zone differences, blending skillsets,
and experience levels.

 Scenario – focusing on carefully putting together a range of tasks that could be achieved by all
participating institutions keeping in mind the curriculum taught, the timing of the pilot, any
institutional constraints, the level of study of each participant and the core subject area.

 Data – focusing on the information that can be generated for the GSD tasks and ways for
collecting, analyzing and displaying useful findings.

This paper is concerned with two pilot studies involving students from three Egyptian and three
Palestinian Higher Education institutions (HEIs). The first pilot involved 2 teams, each consisting of
12 members. The pilot scenario focused on the implementation of a database for computer software
installation and management. The tasks involved ERD modelling, database implementation and
testing such as identifying stakeholders, specifying requirements, identifying conceptual entities,
drawing the ER diagram, performing data normalization and developing the database schema.
Emphasis on the first pilot was to monitor how team formation would affect performance; therefore
the two teams were structured in different ways. Both teams consisted of six sub-teams, each
assigned a specific task that once fulfilled it generated output that was necessary for another sub-
team. The project was based on a sequential workflow, meaning that one team had to produce
interim deliverables for the next till all six sub-teams completed their assigned workload. Both teams
worked on the exact same task, while equivalent workload was assigned to all sub-teams. The key
difference between the two teams was in the way their sub-teams were constructed, as in the first
team each sub-team included two members from the same university, while in the second team sub-
teams were composed of students from different universities. This meant that the second team
involved sub-teams that required additional communication as students resided in different
countries (one in Egypt and one in Palestine).

The data collected for both pilots was primarily classified according to GSD collaboration (activity),
GSD communication (messages) and GSD interaction (patterns). The main patterns monitored
included (i) generic team interaction pattern, (ii) interaction spread of team members across project
timeline, (iii) user to team interaction by task, (iv) user to team interaction clustered by team and (v)
user to team interaction clustered by task. As shown in table 1, each task would last 2–3 days, and
required continuous communication from the members of each sub-team. The mode of
communication followed was similar to the pair programming technique, with each pair working
towards a set of clear tasks that should be completed by the interim deadline provided.

Table I. Task allocation and interim deliverable timings

Table I.

The first key finding related to the constraints provided from the timing of the first pilot, as it was
affected by the Christmas break, and weekend periods. This meant that the EU partners and the US
team that coordinated the Redmine VLE servers had to provide additional support. The language
barrier of some members meant that there were additional communication overheads for the sub-
teams with distributed members. It also meant that there was the need for a communication
etiquette that was introduced in the second pilot. The sequential nature of the scenario meant that
only two sub-teams communicated at any time. Although this is expected in realistic scenarios, it did
not maximize the exposure to virtual team communication for participants, leading to a different
task structure in the next pilot. The pilot was based on a sequence of single hand-overs between
sub-teams, significantly affecting the pattern of communication and collaboration nearer the interim
deadlines.

The classification of contributions according to project milestones, clearly demonstrates how certain
peak times gather the vast majority of entries to the platform. The main hand-over period
dominated log-ins and use of the chat and forum as well as the file sharing facility. The second busier
period was the kick-of date for the project.

The second pilot involved 4 teams, each consisting of 6 sub-teams. Each sub-team will be
representing a different PCI and all sub-teams would have to work together throughout the scenario.
In other words, all teams would have to communicate throughout the pilot's duration and there
would be no idle periods for any teams as in the first pilot. The same number of members was
assigned to each sub-team, meaning that there were identical human resources for each project.
The distributed nature of the development project shifted to the communication between sub-
teams. In order to address the communication barriers and coordination mix-ups of the first pilot, a
series of rules were used to help students directing their messages to the appropriate recipient(s).

It was decided that three milestones would be identified for the project (i) design of the ERD, (ii)
logical design and (iii) database population. The students were required to, compile a list of tables,
specify a list of attributes per table, identify a list of relationships, create a list of constraints and
finalize the database. The different structure of the second pilot allowed local teams to introduce a
number of mechanisms for improving performance including (i) virtual groups, (ii) walk-talk pairs, (iii)
graded assessment and (iv) mentors.

The tools used for collaboration, included wiki, chat, and file sharing, in support of various software
development tasks. Furthermore, incentives included a detailed assessment schema based on the
following grading: 50% for completing the task: 50%, 30% for communication (only when the
Redmine platform was used and communication followed the specified protocol) and 20% for
submitting a final report and completing all questionnaires. All three of the above assessment
components were compulsory to achieve a pass grade.

SECTION V.

Using Data Analytics To Understand Collaboration Patterns

As mentioned earlier, our research focus has shifted over the past few years towards the
investigation of data analytics for understanding collaboration patterns in GSD simulations. In
particular, it was very interesting to observe the differences in communication and collaboration
when changing certain aspects of GSD simulations, as we did in the two pilots discussed in the
previous section. The main differences between the two pilots, included (i) the composition of sub-
teams, (ii) the duration of sub-team involvement, (iii) the number of hand-overs and (iv) the
introduction of a communication protocol.

We have used NodeXL for providing visual representations of GSD communication, collaboration and
coordination. The scope of this paper is to share of the authors' views on the importance of such
visualizations and the need for introducing a framework for using certain data analytics methods as
the means for forecasting and also supporting decision making in the management of remote
software development resources. It is important to state that such visual assistance was helpful for
our instructors during the assessment of individual and team effort but could not provide a definite
answer in relation to the quality of contributions. This is an issue that we were concerned in earlier
phases of our project and we have published our views on message codification in GSD [20].

Figure 1 shows a generic team interaction pattern representing students as nodes of different size
based on their interaction with other members. Each black node is a message, showing the number
of messages that have been exchanged between team members as well as those that have remained
unanswered. More work is needed to identify the reasons why certain messages do not have an
answer. From the graphs there is no pattern emerging with regards to the messages without

answers belonging to participants with high or low contribution. Parsing through the discussion logs,
it appears that most messages can be classified either as ending messages to a thread (useful) or
messages with confusing, or irrelevant content (useless).

Figure 1

Figure 1.

Generic team interaction pattern.

View All

Figure 1 shows how team members interact and can easily identify members who are more active
than others. After manually eliminating noise (irrelevant messages) with a codification scheme, we
can then use such visualizations during monitoring stages in order to assess leading individuals in
GSD simulations. The size of each node demonstrates the volume of messages sent by each member,
as well as communication between members of different teams during the hand-over tasks. What
would be even more important is the ability to appreciate individual contribution across a project's
duration. This can be seen in figure 3, showing the spread of individual interaction across a project's
timeline (i.e. how team members contribute to Project tasks)

Figure 2

Figure 2.

Interaction spread across project timeline.

View All

Figure 2 shows the interaction spread of team members across project timeline, a particularly useful
view of how each team member contributes at certain periods of the project. The angle of
contribution becomes bigger when members are involved in several tasks. The team formation and
role allocation of the two teams differed hence the wider spread of the blue team members.

Another interesting finding would be the contribution of each team member for specific tasks. This
can be seen in figure 3 that shows the user to team interaction clustered by task, focusing on the
demonstration of how certain tasks may affect the sub-teams responsible with respect to
communication volume. Furthermore, the codification of messages could facilitate assessing
whether the tasks affect the number of messages, or if this is a result of sub-team issues such as
conflicts.

Figure 3

Figure 3.

User to team interaction clustered by task.

View All

There is a plethora of such visualizations for our collection of pilot studies. Depending on the focus
of each GSD simulation, instructors could focus on assessing whether certain tasks are more complex
than others, investigating communication patterns between certain individuals or even evaluating
the collaboration in groups of certain structure or membership homogeneity. The next section
discusses the way a dashboard can assist in visualizing GSD patterns.

SECTION VI.

Introducing a Dashboard for GSD Visualisation

Using the Elasticsearch real-time search and analytics engine with the Kibana plugins, a proof of
concept dashboard is created, connected to the data of the GSD pilot studies. The custom dashboard
illustrated in figure 4 supports filtering communication activities that are stored according to time,
country, university, group, gender, project task, etc.

Figure 4

Figure 4.

Sample of a custom GSD dashboard

View All

The dashboard's panels are interactive, meaning that the visualization panels are dependent on each
other. Therefore, once a country is selected on the map, the remaining panels show data from the
specific location. An ‘Activities Over Time’ panel is used to show activities for certain time periods.
This is particular useful for filtering activities according to different pilot periods, but may be also
used for filtering according to pilot phases when we wish to focus on specific timestamps such as
hand-over periods, and interim deadlines.

The ‘Communication Activity’ panel can be used for displaying highly ranked projects, students and
universities for a range of activities (e.g. posts). Complex queries can be executed in order to display
the contributions from certain team members over a selected period and for a particular task.

A particularly useful feature is the filtering of ‘most used words’, which is based on using synonyms
analysis (i.e. WordNet engine) and can help assessing the most frequently used words from
members in different countries during certain tasks. This feature can help investigating the use of
selected keywords during key software development phases and at specific tasks such as
requirements elicitation, conceptual modeling and brainstorming over design concepts.

As the draft dashboard can be easily customized to fit the needs of different pilot studies, we can
select different panels to display the necessary features of a specific GSD simulation. This means that
we can provide a visual representation of each simulation and help participants in assessing specific
aspects of collaboration, communication and coordination (see figure 5).

The interaction patterns visualized through the dashboard (e.g. message types, degree of
contribution, frequency of keyword use) can help decision-making in GSD within an educational
context. An empirical validation would help assessing the usefulness of the proposed approach.
Therefore, further work involves another pilot involving the use of sensors to monitor stress levels of
individual members involved in GSD scenarios. Emphasis will be also on evaluating the coordination
of GSD resources during key GSD activities.

The dashboard can be used in a number of ways. Based on interaction data it is possible to provide
accurate rankings of universities, teams and individuals for one or several pilot studies. Projects can
be also ranked in terms of communication volume and frequency as well as the most active
individual members. It is also possible to assess the popularity of different communication tools,
types of interaction and communication activities over time.

Figure 5

Figure 5.

Customizing dashboard panels.

View All

The dashboard is focused on assessing team interactions across different projects, while other
dashboards focus on visualizing roles and emotions across tasks [23]. Dashboards are also used for
viewing the evolution of participant interaction over time and annotate key events that occur along
this timeline [4]. Previously, email graphs have been used for assessing the evolution of group
cohesion [16]. Web applications provide the means to demonstrate individual and group learning
analytics “showing conceptual and social network patterns, which we propose as indicators of
meaningful learning” [10]. Further work in the field is focused on using social network analysis to
understand patterns of collaboration and coordination in global software teams [12].

SECTION VII.

Conclusion

This paper emphasized the importance of using data analytics for collaboration patterns in
distributed software team simulations and focused on the role of dashboards in visualizing global
software development patterns, by using real time data from pilot studies. The work contributes on
the provision of mechanisms and tools for learning teams, as instructors are able to identify
potential issues with individual students or certain teams. The provided method for using data
analytics in measuring key performance indicators and success criteria in distributed software teams
can provide the means for facilitating performance management of software development activities.

References

[1] ACM Council, ACM Code of Ethics and Professional Conduct, October 1992,
http://www.acm.org/constitution/code.html

[2] ACM/IEEE-CS Joint Task Force on Computing Curricula, Software Engineering 2004: Curriculum
Guidelines for Undergraduate Degree Programs in Software Engineering, August 2004,
http://www.acm.org/education/curricula-recommendations

[3] ACM/IEEE-CS Joint Task Force on Software Engineering Ethics and Professional Practices,
Software Engineering Code of Ethics and Professional Practice, Version 5.2, 1999,
http://www.acm.org/about/se-code/

[4] Bakharia, A. and Dawson, S. 2011. SNAPP: A Bird'S-eye View of Temporal Participant Interaction,
Proceedings of the 1st International Conference on Learning Analytics and Knowledge, pp. 168-173.

[5] Borici, A., Blincoe, K., et al. ProxiScientia, 2012. Toward real-time visualization of task and
developer dependencies in collaborating software development teams’. Fifth Int. Workshop on
Cooperative and Human Aspects of Software Engineering.

[6] British Computer Society, Code of Conduct & Code of Good Practice, 2004 and 2006,
http://www.bcs.org/server.php?show=nav.10967

[7] Carmel, E., Espinosa, J.A.,Dubinsky, Y. 2010. “Follow the Sun” workflow in a global software
development. Journal of Management Information Systems, 27, 2010, pp. 17-37.

http://www.acm.org/constitution/code.html
http://www.acm.org/education/curricula-recommendations
http://www.acm.org/about/se-code/
http://www.bcs.org/server.php?show=nav.10967

[8] Dafoulas, G., Swigger, K., Brazile, R., Alpaslan, F.N., Lopez, V., Serce, F.C. Futuristic models of
collaborative work for today’s software development industry, IEEE, Proceedings of the 42nd
Hawaii International Conference on Systems Sciences, January 5-8, Hawaii, USA, s. 1-10, 2009.

[9] Dafoulas, G. 2014. Investigating virtual teams: patterns of communication and collaboration in
software engineering learning teams. In: ICERI 2014 : 7th International Conference of Education,
Research and Innovation. Seville, November 17-19.

[10] De Liddo, A. Shum, S.B., Quinto, I., Bachler, M. and Cannavacciuolo, L. Discourse-centric
Learning Analytics, Proceedings of the 1st International Conference on Learning Analytics and
Knowledge, pp. 23-33

[11] De Souza, C.R.B., Hildenbrand, T., and Redmiles, D. 2007. Toward visualization and analysis of
traceability relationships in distributed and offshore software development projects. 1st
International Conference on Software Engineering Approaches for Offshore and Outsourced
Development.

[12] Ehrlich, K., Valetto, G. and Helander, M. 2007. Seeing inside: Using social network analysis to
understand patterns of collaboration and coordination in global software teams. International
Conference on Global Software Engineering (ICGSE 2007), Munich, 2007, pp. 297-298.

[13] IEEE STD 610.12-1990, IEEE Standard Glossary of Software Engineering Terminology, IEEE
Computer Society, 1990.

[14] Integrated Software & Systems Engineering Curriculum (iSSEc) project, Graduate Software
Engineering 2009 (GSwE2009), Curriculum Guidelines for Graduate Degree Programs in Software
Engineering, Verion 1.0, Stevens Institute of Technology.

[15] Filipovikj, P., Feljan, J. and Crnkovic, I. “Ten tips to succeed in global software engineering
education: What do the students say?” in Collaborative Teaching of Globally Distributed Software
Development (CTGDSD), 2013 3rd International Workshop on, 2013, pp. 20–24.

[16] Reffay, C. and Chanier, T. 2002. Social Network Analysis Used for Modelling Collaboration in
Distance Learning Groups, Proceedings of the 6th International Conference on Intelligent Tutoring
Systems, pp. 31-40.

[17] Sarma, A., Van Der Hoek, A. 2006. Towards awareness in the large. Int. Conf. on
Global Software Engineering.

[18] Sole, D.L., and Applegate, L.M. Beyond Knowledge Transfer: A Typology of Knowledge Sharing
Behavior in Virtual Teams. Proceedings of the European Conference on Organizational Knowledge,
Learning and Capabilities. 2010.

[19] Kroll, J., Richardson, I., Audy, J.L.N. 2014. A Software Process Model for Follow the Sun
Development: Preliminary Results. Global Software Engineeering Workshops (ICGSEW), 2014 IEEE
International Conference on. Shangai. August 18-20.

[20] Serçe, F.C., Swigger, K.M., Alpaslan, F.N., Brazile, R.P., Dafoulas, G.A., Lopez Cabrera, V.
Exploring the communication behaviour among global software development learners. IJCAT 40(3):
203-215 (2011).

[21] Storey, M.-A.D., Cubranic, D., Germán, D.M. 2005. On the use of visualization to support
awareness of human activities in software development: a survey and a framework. SOFTVIS 2005,
pp. 193–
202

[22] Swigger, K., Serçe, F.C., K., Alpaslan, F.N., Brazile, R., Dafoulas, G., Lopez, V. 2010. The Effects of
Task Type on the Patterns of Communication Behaviors among Global Software Student Teams,
International Engineering Education Conference, November 4-6, Antalya, Turkey (MEUK2010).

[23] Vivian, R., Tarmazdi, H., Falkner, K., Falkner, N. and Szabo, C. 2015. The Development of a
Dashboard Tool for Visualising Online Teamwork Discussions, 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, Florence, 2015, pp. 380-388.

[24] Ye, E., Lev, A., D. Hiep, Q., Chang, L. 2009. SecondWATCH: a workspace awareness tool based on
a 3-d virtual world. 31st Int. Conf. on Software Engineering, Vancouver, Canada, May 16–24, 2009,
pp. 291–294

	Introduction

