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Rate control plays an essential role in video coding and transmission to provide the best

video quality at the receiver’s end given the constraint of certain network conditions. In17
this paper, a rate control algorithm using the Quality Factor (QF ) optimization method
is proposed for the wavelet-based video codec and implemented on an open source Dirac19
video encoder. A mathematical model which we call Rate-QF (R−QF ) model is derived
to generate the optimum QF for the current coding frame according to the target bitrate.21
The proposed algorithm is a complete one pass process and does not require complex
mathematical calculation. The process of calculating the QF is quite simple and further23
calculation is not required for each coded frame. The experimental results show that
the proposed algorithm can control the bitrate precisely (within 1% of target bitrate in25
average). Moreover, the variation of bitrate over each Group of Pictures (GOPs) is lower
than that of H.264. This is an advantage in preventing the buffer overflow and underflow27
for real-time multimedia data streaming.
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1. Introduction31

In real-time visual communication, an efficient rate control algorithm at the encoder
is important to assure the successful transmission of the coded video data. Essen-33

tially, the rate control part of the encoder tries to regulate the varying bitrate char-
acteristics of the coded bitstream in order to produce high quality decoded frame35

at the receiver’s end for a given target bitrate so that the compressed bitstream
can be delivered through the available channel bandwidth without causing buffer37

overflow and underflow. In other words, without rate control, any video encoder
would be practically hard to use for real-time end-to-end video communication.39
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Nowadays, rate control has become one of the important research topics in the1

field of video compression and transmission. To achieve the constant bitrate, most
of the rate control algorithms dynamically adjust the encoder parameters in order3

to produce high quality decoded frames at a given target bitrate. In a novel rate
control algorithm for H.264,1 bit allocation is performed on both frame level and5

Macroblocks (MBs) level, and the Quantization Parameter (QP) is calculated from
the allocated number of bits. The algorithm gives the bitrate much closer to the7

target bitrate. The joint source-channel rate control strategy2 considers the end-
to-end distortion caused by source quantization and channel error. However, the9

consideration in Refs. 1 and 2 is only for the base line profile of H.264 which
consists of IPPP coding and there is no bits allocation procedure for the B frames.11

In mathematical model based rate control scheme for MPEG-2,3 the model enables
to predict the bits and the distortion generated from an encoded frame at a given13

quantization parameter and vice versa. Even though the scheme achieves 0.52–
1.84 dB PSNR gain over MPEG-2 Test Model 5 (TM5), the prediction error of15

generated bits and the distortion are still too high.
In the Rate Distortion Optimization (RDO) based rate control algorithm,4 a17

coding mode which minimizes the cost function is chosen and the corresponding QP
is used for actual encoding. Even though their proposed algorithm achieves a maxi-19

mum gain of 0.48 dB over H.264 current rate control scheme, the algorithm requires
two pass RDO process in finding the optimum QP , which introduces unnecessary21

coding delay and complexity to the encoder. Some research has considered the cod-
ing rate, R and distortion, D as the percentage of ρ which is the percentage of zeros23

among the quantized transformed coefficients for low bitrate applications especially
for H.263.5–7 In some paper, derivation of Rate-Quantization model from the Rate-25

Distortion function based upon the distribution of source data to be quantized is
considered.8,9 It is assumed that the data to be quantized has Laplacian distribution27

in Ref. 8 and Generalized Gaussian Distribution in Ref. 9. However neither of these
distributions is likely to occur in all types of video sequences and transformed meth-29

ods. All the rate control techniques mentioned so far are mainly for the Discrete
Cosine Transform (DCT) based encoder. There are also numerous research carrying31

out the rate control work on the Discrete Wavelet Transform (DWT) based video
encoders in the literature. Among them, rate control via bit allocation for each33

sub-band is proposed in Ref. 10 for baseline coder. Even though bit allocation is
one of the fundamental approaches in controlling bit rate, distributing the bit bud-35

get among the sub-bands can be very complex and the complexity increases with
the level of wavelet transform. So, an accurate and less computationally complex37

rate control algorithm which works on either DCT or DWT based encoder, on any
video format (QCIF to HD) and any type of GOP structure becomes necessary.39

The main objective of this research is to propose a simple and efficient rate con-
trol algorithm which meets all the above mentioned requirements and to be able41

to apply on any type of video encoder which uses RDO Motion Estimation and
Quantization.43
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In this paper, a rate control algorithm is proposed by deriving the Rate-QF1

(R−QF ) model, where the QF which is inversely related to Lagrangian Multiplier
of RDO process, control the quality of the encoded video sequence. In most type of3

video encoder, the constant quality coding is achieved by setting QF to a constant
value leaving the encoded bit rate to be an arbitrary. The algorithm presented in5

this paper exploits this idea by considering QF as a varying parameter in order
to achieve constant bitrate. It has the advantage of giving stable quality while7

delivering the desired constant bitrate. The proposed idea is implemented on the
wavelet-based Dirac video encoder11 where QF is already integrated to the encoder9

as the user control parameter for constant quality coding.
The organization of this paper is as follows. Section 2 provides a brief introduc-11

tion to Dirac video codec. Section 3 presents the detailed procedure of the proposed
rate control algorithm. The results and discussions followed by conclusions are pre-13

sented in Secs. 4 and 5, respectively.

2. DIRAC Video Codec15

Dirac is an open source wavelet-based video codec aimed at resolutions from QCIF
(176 × 144) to HDTV (1920 × 1080) progressive or interlaced, initially developed17

by BBC.11 It aims to be competitive with the other state-of-the-art standard video
codecs and its performance is very much better than MPEG-2 and slightly less than19

H.264 even in the alpha development stage. However, the performance was not the
only factor driving its design. Dirac is intended to be simple, powerful and modular.21

The codec can support any frame dimensions and common chroma formats (luma
only, 4:4:4, 4:2:2, 4:2:0) by means of frame padding. The padding ensures that the23

wavelet transform can be applied properly. Frame padding also allows for any size
blocks to be used for motion estimation, even if they do not evenly fit into the25

picture dimensions.
Dirac uses hierarchical motion estimation for faster motion estimation and Over-27

lapped Block-based Motion Compensation (OBMC) to avoid block-edge artifacts.
First the motion compensated residual frames are wavelet-transformed using sepa-29

rable wavelet filters and divided into subbands. Then, they are quantized using RDO
quantizers. Finally, the quantized data is entropy coded using an arithmetic encoder.31

The Discrete Wavelet Transform (DWT) is now extremely well known and is
described in numerous references. In Dirac, it plays the same role of the DCT33

in MPEG-2 in de-correlating data in a roughly frequency sensitive way, whilst
having the advantage of preserving fine details better. The choice of wavelet filters35

has an impact on compression performance, filters having to have both compact
impulse response in order to reduce ringing artefacts and other properties in order37

to represent smooth areas compactly. The filters currently used in Dirac are the
Daubechies (9, 7) filter set.39

In Dirac, motion estimation mode decision is carried out by using RDO Motion
Estimation Matrix. The metric consists of a basic block matching metric plus some41
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constant multiplied by a measure of the local motion vector smoothness. The basic1

block matching metric used by Dirac is the Sum of Absolute Difference (SAD).
The smoothness measure is based on the difference between the candidate motion3

vector and the median of the neighboring previously computed motion vectors. The
total metric is a combination of these two metrics. Given a vector V which maps5

the current frame block P to a block R = V (P ) in the reference frame, the metric
is given by:7

SAD(P, R) + λ × max(|Vx − Mx| + |Vy − My|, 48). (2.1)

where λ is called the Lagrangian multiplier. Dirac uses a parameter called QF to9

control the quality of the encoded frames. QF plays an important role since it is
involved in the RDO processes of motion estimation and quantization as an indirect11

representation of the Lagrangian multiplier. QF is inversely related to λ and their
relation is as below.13

λ =
(10(10−QF)/2.5)

16
. (2.2)

In RDO Quantization as well, subband quantization is carried out by picking the15

best quantizer which minimize the Lagrangian combination of rate (R) and distor-
tion (D) for a given value of λ as expressed below.17

D(QP) + λ.R(QP) (2.3)

where QP is the quantization parameter. Rate is estimated via an adaptively-19

corrected zeroth-order entropy measure, (Ent(QP)) of the quantized symbols result-
ing from applying the quantization factor, calculated as a value of bits/pixel.21

Distortion is measured in terms of the perceptually weighted fourth-power error,
(E(QP , 4)) resulting from the difference between the original and the quantized23

coefficients. The perceptual weighting ensures the RDO quantization process to gen-
erate a larger weighting factor for the higher subband frequencies and vice versa.25

The fourth-power error, (E(QP , 4)) is given by:

E(QP , 4) =


∑

ij

|Pij − Qij |4



1
4

2.5 (2.4)
27

and the total measure becomes,

E(QP , 4)2

w
+ λ × C × Ent(QP) (2.5)29

where w is the perceptual weight associated with the subband and C is a correction
factor.31

Since the QF controls the quality of the encoded video sequence by involving in
the RDO processes of motion estimation mode decision and quantization, the accu-33

racy of the motion estimation can be greatly reduced especially for the lower QF
encoding mode, which affects the subjective quality of the decoded video. So, the35
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value of QF in Dirac should be set to at least 5 for low quality encoding, even1

though Dirac allows the value of QF to range from 1 to 10.
Dirac defines three frame types. Intra frames (I frames) are coded independently3

without reference to other frames in the sequence. Level 1 frames (L1 frames) and
Level 2 frames (L2 frames) are both inter frames, which are coded with reference5

to other previously (and/or future) coded frames. The definition of the L1 and
L2 frames are the same with P and B frames in H.264. The encoder operates with7

standard Group of Picture (GOP) modes whereby the number of L1 frames between
I frames, and the separation between L1 frames, can be specified depending on the9

application. The detail explanation of the Dirac’s GOP and intra frames prediction
structure can be found in Ref. 12.11

3. Proposed Rate Control Algorithm

As mentioned in Sec. 1, the current Dirac architecture is controlling constant qual-13

ity rather than bitrate by using a user defined parameter, QF as quality indicator to
maintain the desired quality. The proposed algorithm exploits this idea by consid-15

ering QF as a varying parameter in order to achieve constant bitrate. Since the QF
plays an important role in controlling the quality of the encoded video sequence or17

the number of bits generated in the encoding process of Dirac video codec, finding
the optimum QF for a given set of target bitrates and video test sequences could19

lead to an algorithm which controls the output bitrate of the encoder.
As a consequence of the random nature of the video sequences, the complexity21

of each frame in the sequence could be changing all the time. So, it is practically
impossible to use the constant QF to encode the entire video sequence to achieve23

the constant bitrate over a GOP because optimum QF for a previous frame would
be no longer optimum for the current and the following frames. However, bitrate25

controlling over a GOP could be possible by adaptively changing the QF of each
frame according to a certain type of algorithm before encoding. Based upon this27

idea, a relationship between the bitrate, R and the QF , which can be used to
estimate the QF for a given target bitrate, is derived. This model is known as29

Rate-QF (R − QF ) model.
Figure 1 shows the overall block diagram of Dirac encoder showing proposed31

rate control idea with the blue color. Using the generated number of bits required to
encode a frame as the feedback parameter (bit rate, R), R−QF model adaptively33

calculates the optimum QF to encode the following frames in order to achieve the
target bitrate. Given the value of QF , λ is calculated using Eq. (2.2) in the next35

block, λ(QF). Both λ and λME which is the scaled version of λ, are used in the
RDO process of motion estimation and quantization as Lagrangian multiplier. In the37

DWT base video encoder, instead of allocating the total bit budget among the sub-
bands like the rate control approach in Ref. 10, the propose technique calculates only39

the optimum QF and let the existing encoding architecture to decide the optimum
QP according to the chosen value of QF , yielding lower QP for higher value of41
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Fig. 1. The block diagram of Dirac encoder showing the proposed rate control idea using R-QF
model in blue color.

QF and vice versa. Again, the optimum QP for each subbands is obtained by1

utilizing the perceptual weighting concept resulting smaller QP for lower frequency
subband and vice versa for a given value of QF . But in DCT based video encoder,3

calculating the optimum QF (or λ) for a frame being encoded gives the optimum
QP for the entire frame if the RDO is enabled, reducing the computational load5

from calculating the QP of each subband like in DWT based encoder.
The target bitrate is considered as the average bitrate over a GOP and the7

optimum bitrates contributed from the different types of individual frame (i.e. I,
L1 and L2) in order to meet the target bitrate still need to be calculated. In order9

to do this, we used a modified version of test model version 5, (TM5) bit allocation
procedure for MPEG-2,13 so that calculation of bitrate contributed from different11

types of individual frames becomes possible by using the allocated bits to each
frame type and the overall frame rate.13

Finally, we employed our proposed rate control algorithm in order to achieve the
bitrate close to the target bitrate for both types of frame coding available in Dirac15

which are I frame only coding, where there is only intra frame type and normal
coding which is IL2L2L1 or IBBP coding.17

3.1. The rate-QF (R − QF) model

This section presents the derivation of the relation between rate and QF in the19

R − QF model. Since R and D are inversely proportional to each other as below:

R ∝ 1
D21
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R =
K

D1

where, K is constant.

D = KR−1.3

The differentiation of D with respect to R gives the slope of the Rate vs. Distortion
curve that is expressed as:5

∂D

∂R
= λ = −KR−2

∴ λ =
K

R2
(3.1)7

where, the negative sign is neglected and λ is the slope of the rate vs. distortion
curve or the Lagrangian parameter of RDO processes for the motion estimation
mode decision and optimum QP selection processes in the Dirac encoder.11 By
substituting the value of λ from Eqs. (2.2) to (3.1), we obtain:

10(10−QF)/2.5

16
=

K

R2
,

2
5
(10 − QF ) = log10

(
16K

R2

)
, (3.2)

QF = 10 − 5
2

log10

(
16K

R2

)
.

The accuracy of the calculated QF can be verified by the practical value cap-
tured from the encoding of the canal vertical pan street sequence11 in CIF as shown9

in the rate and QF relation curve in Fig. 2. It can be seen that the proposed R−QF
model given in Eq. (3.2) has a very accurate approximation to the practical results.11

The K value can be calculated by substituting a set of rate and QF in Eq. (3.2)
from the practical data. In Fig. 2, it is calculated from the practical encoding of13

canal sequence with QF = 7 and its corresponding rate in kpbs.

3.2. The bit allocation procedure15

The bit allocation that we used is the modification of TM5 from MPEG-2.13 The
complexity of each frame types is initialized as follows:

17
XI =Number of bits generated from the first I frame coding,

XL1 =Number of bits generated from the first L1 frame coding,
XL2 =Avg. num. of bit generated from the first two L2 frames coding,

where XI , XL1 and XL2 are the complexities of I, L1 and L2, respectively.19

The number of frames in a GOP can be calculated as follows:

GOPLen = (NL1 + 1) × L1Sep21
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Fig. 2. The approximation of the rate and QF relation with the proposed R − QF model.

where NL1 is the number of L1 frames and L1Sep is the L1 frame separation. Fur-1

thermore, the number of bits allocated to a GOP is calculated as:

B =
RT × GOPLen

FrameRate3

where, RT is the target bitrate in bits per second.

3.2.1. I frame bit allocation5

The number of bits allocated for the first I frame can be calculated as:

BI =
B

1 + NL1XL1
XI

+ NL2XL2
XI

(3.3)
7

where the complexity of I, XI is the actual number of bits required to encode I

frame. The parameters are updated as follows:9

(i) Total number of bits left, B = B − BI ,
(ii) Number of frames left, NI = NI − 1 = 0, NL1, NL2 .11

3.2.2. L1 frame bit allocation

The number of bits allocated for the first L1 frame can be calculated as:13

BL1 =
B

NL1 + NL2XL2
XL1

(3.4)
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where the complexity of L1, XL1 is the actual number of bits required to encode1

L1 frame. The parameters are updated as follows:

(i) Total number of bits left, B = B − BL1 ,3

(ii) Number of frames left, NI = 0, NL1 = NL1 − 1, NL2.

3.2.3. L2 frame bit allocation5

The number of bits allocated for the first L2 frame can be calculated as:

BL2 =
B

NL2 + NL1XL1
XL2

(3.5)
7

where the complexity of L2, XL2 is the average of the actual number of bits required
to encode two L2 frames. The parameters are updated as follows:9

(i) Total number of bits left, B = B − BL2 ,
(ii) Number of frames left, NI = 0, NL1 , NL2 = NL2 − 1,11

(iii) The number of bits allocated for second L2 frame is calculated using Eq. (3.5)
and again update B and NL2 .13

3.3. The operation of R − QF model based rate control

3.3.1. I frame only coding15

In Fig. 3, the first I frame is encoded by using the initial QF which is set to 7
(medium quality). R1 is calculated by using the number of bits required to encode17
the first I frame, frame rate and GOP length. The resulting bitrate associated to
the first GOP which has n number of I frames is equal to19

R1st GOP = R1 + R2 + · · · + Rn. (3.6)

K1 is calculated by substituting QF Initial and R1 in Eq. (3.2). After that, the bit21
allocation process generates the optimum number of bits required to encode the
first I frame to achieve the target bitrates by using Eq. (3.3). The target bitrate23

Fig. 3. Rate control procedure for I frame only coding.
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for a GOP which has n number of I frames is the combination of target bitrate of1
each frame and can be expressed as follows:

RT = RT1 + RT2 + · · · + RTn . (3.7)3

From K1 and RT1 , the optimum QF for the first I frame, which will be
used to encode the next successive I frame as QF 2 can be generated by using5

Eq. (3.2).

3.3.2. Normal (IL2L2L1 frame) coding7

In Fig. 4, the first sub-group which consist of I, L1, L2, L2 frames are encoded by
using the initial QF which is set to 7 (medium quality). R1 is calculated by using9
the number of bits required to encode the L1 and two L2 frames without including
I, frame rate and GOP length. K1 is calculated by substituting QF Initial and R111
in Eq. (3.2). The corresponding complexities of the frames, XI , XL1 and XL2 are
initialized with the actual number of bits required to encode these frames but the13
complexity of L2 frame is the average value since there are two L2 frames. After
that, the bit allocation process generates the optimum number of bits required to15
encode first sub-group frames (without including I) to achieve the target bitrates by
using Eqs. (3.4) and (3.5), and calculates RT1 . From K1 and RT1 , the optimum QF17
for the first sub-group, which will be used to encode the next successive sub-group
(i.e. L1, L2, L2) as QF 2 can be generated by using Eq. (3.2).19

The same procedure continues until the end of first GOP. The complexities of
the L1 and L2 frames, XL1 and XL2 are updated following the encoding of each sub-21
group. The QF of next I frame, which belongs to the second GOP and is denoted
as QFn in the Fig. 4, is the average of QF of I frame in the previous GOP and23
the QF of previous sub-group, which is QFn−1. The overall rate control algorithm
which includes I frame only and normal frame coding is illustrated in the Appendix25
as the flow chart.

Fig. 4. Rate Control Procedure for IL2L2L1 frame coding.
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4. Results and Discussions1

In order to evaluate the performance of the proposed algorithm, several test
sequences in QCIF, CIF and HD formats were used. As for the test platform, Dirac3

version 0.611 and H.264/AVC JM11 reference software14 have been employed. The
proposed rate control algorithm is applied to both inter frame and intra frame-only5

coding in Dirac. The rate control in H.264 JM1115 is used only for the verification
and justification of our work since there is no previous work in Dirac as far as the7

rate control mechanism is concerned. Unfortunately, performance comparison with
H.264 for intra frame-only coding cannot be done since current rate control algo-9

rithm of H.264 does not support this mode even though the codec supports intra
frame-only coding in their high profile. The GOP length is set to 36 which means11

the number of L1 frames is 11 and L1 frame separations is 3, for both Dirac and
H.264 in normal coding. The GOP length is set to 10 for I frame only coding which13

is applicable only to Dirac. The parameters in configuration file of H.264 were care-
fully chosen in order to have fair comparison with Dirac for normal coding. Table 115

shows the list of configuration parameters used in H.264 encoding.

4.1. PSNR performance17

4.1.1. I frame only coding

Figure 5 shows the PSNR performance of Canal sequence in CIF format with I19
frame only coding for the different bitrates. The proposed algorithm tries to adjust
its parameters in order to get the proper QF and becomes stable after encoding 3021
frames or 3 GOP durations. The PSNR deep fading, which occurred in the 256kbps
target rate coding, is the result of the initial QF setting which is too high for that23
particular target bitrate. The problem could be solved by setting the proper initial
QF approximated from the coding mode whether using I frame only or normal,25
target bitrate and frame rate, instead of setting constant initial value which is set
to 7 currently.27

Figure 6 shows the average PSNR results for the target bitrates over the range
from 256 to 2048kbps. The average PSNR increases gradually with the target29
bitrate and the maximum value corresponds to 2048kbps is 36.73dB.

Table 1. H.264 configuration file parameters.

Parameter description Set value

Profile Main
Frame Rate 10(QCIF), 15(CIF), 24(HD)
Intra Period 12
Number of Reference 2
Inter Search Block Sizes 16×16, 8×8, 4×4
Number of B frames 2
CABAC Mode Disabled
Rate Control Enabled
Use of FastME 3(EPZS)
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Fig. 5. PSNR performance of the Canal sequence with different bitrates for I frame only coding.

Fig. 6. Average PSNR performance of the Canal sequence with different bitrates for I frame
only coding.
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Fig. 7. PSNR performance comparison of the Bus sequence with different bitrates for normal
coding.

4.1.2. Normal (IL2L2L1 frame) coding1

Figure 7 shows the PSNR performance of the bus sequence in CIF format with
normal coding for different bitrates. From the figure, we can clearly see that the3

stability of the algorithm is achieved after encoding the first GOP in all target
bitrates.5

Figure 8 shows the average PSNR results of bus sequence in CIF format with
different bitrates for both Dirac and H.264 codecs. Even though Dirac has lower7

average PSNR performance, both codecs provide quite similar PSNR response to
different bit rates. Moreover, there is no loss in terms of PSNR performance upon9

employing the proposed rate control algorithm. As shown in Fig. 8, the two curves
of Dirac with and without using rate control give the PSNR performances which11

are almost the same. The average PSNR curve without rate control is generated by
encoding with the constant QF for the whole sequence. The value of QF used here13

are 5, 6, 7, 8 and 9 which correspond to the rate 218.95, 333.32, 516.23, 779.88 and
1173.03kbps, respectively.15

Figure 9 shows the PSNR performance comparison of two codecs with the Bus
sequence in CIF format for the target bitrate 1024kbps. Average PSNR-Y of the17

Dirac is 36.19 dB which is 1.47 dB lower than that of H.264. Even though Dirac
suffers 1.47 dB loss in average, the PSNR value of I frame in Dirac is even higher19

than that of H.264 in Fig. 9. However, the PSNR difference between I frames and
L1 frames is much larger than that of H.264 and the same problem applies to the21

frames between L1 and L2, which gives the lower average PSNR value in Dirac.
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Fig. 8. Avg. PSNR performance of the Bus sequence with different bitrates for normal coding.

Fig. 9. PSNR performance comparison of H.264 and Dirac, the Bus sequence with target bitrates

1024 kbps.

From Table 2, we can clearly see that the maximum deviation error of the rate1

control technique15 in JM11 reference software of H.264 is higher than that of the
proposed technique with Dirac in all cases. Having better bitrate regulation is one3

of the important factors in real-time transmission since it can help to prevent buffer
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Table 2. Comparison of rate control results for Dirac and H.264.

Avg. Rate Max. Dev. Error Avg. Dev. Error PSNR-Y
(kbps) (%) (%) (dB)

Sequence Dirac H.264 Dirac H.264 Dirac H.264 Dirac H.264

QCIF, 10Hz, 32 kbps
Carphone 32.28 32.02 5.70 5.75 0.87 0.07 29.27 34.54
Highway 32.10 32.03 5.60 7.28 0.31 0.10 33.37 37.89

QCIF, 10Hz, 64 kbps
Carphone 64.22 64.03 4.04 5.59 0.34 0.04 34.46 37.97
Highway 64.10 64.08 2.06 5.34 0.16 0.13 36.98 39.95

QCIF, 10Hz, 128 kbps
Carphone 127.94 128.13 3.00 4.09 0.044 0.10 38.56 41.57
Highway 128.17 128.12 1.20 5.38 0.13 0.09 39.42 41.75

CIF, 15Hz, 256 kbps
Bus 255.64 256.17 1.24 3.00 0.14 0.06 27.19 30.20
Foreman 257.66 257.40 2.56 6.70 0.65 0.55 34.83 36.89

CIF, 15Hz, 512 kbps
Bus 511.32 511.95 1.00 3.32 0.133 0.01 31.64 33.73
Foreman 515.59 515.18 1.87 5.18 0.70 0.62 38.23 39.89

CIF, 15Hz, 1024 kbps
Bus 1023.14 1023.90 1.24 3.76 0.084 0.01 36.19 37.66
Foreman 1029.38 1031.50 2.30 5.06 0.525 0.73 41.21 42.90

HD720P, 24 Hz, 2Mbps
Knight Shields 1999.87 2002.17 0.79 4.30 0.0065 0.1086 35.58 36.25

HD1080P, 24Hz, 2Mbps
Pedestrian Area 2001.55 2002.2 1.44 3.62 0.077 0.11 35.998 36.5

overflow and underflow. Even though average deviation error from the target bitrate1

of the proposed technique with Dirac is higher than H.264 in most of the cases,
especially for lower target bitrates, the percentage of the average deviation error3

is always within 1%. However, the average deviation error becomes comparable or
even lower than that of H.264 when the target bitrate is higher especially at 128kbps5

for QCIF format and 1024kbps for CIF format coding. In terms of PSNR, Dirac
suffers lower PSNR values for all types of components because of the higher PSNR7

difference between I, L1 and L2 frames. The encoder still needs to be developed
further in order to achieve better or at least comparable PSNR performance with9

H.264. However, more importantly, Dirac was designed to maximize the subjective
quality16 instead of PSNR and so it is less likely to obtain better PSNR than H.26411

in future versions of the Dirac.

4.2. Deviation error from the target bitrate13

4.2.1. I frame only coding

Figure 10 shows the percentage of deviation error from the target bitrate for Canal15

sequences in CIF format with the target bitrates 256 kbps. The proposed algorithm
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Fig. 10. Percentage of bitrate error from the target bitrate, 256 kbps, the Canal sequence in CIF
format.

for I frame only coding performs very well and the precision is within 1% of the1

target bitrates.

4.2.2. Normal (IL2L2L1 frame) coding3

Figure 11 shows the percentage of deviation error from the target bitrate for Bus
sequence in CIF format with the target bitrates 1024kbps. The proposed algorithm5

performs very well and the precision is around 1% of target bitrates. Moreover,
Dirac’s rate control algorithm offers better bitrate regulation over each GOP than7

H.264. According to the Table 2, the maximum deviation error from the target
bitrate of Dirac is only 1.24% which is much smaller compared with 3.76% for9

H.264.

5. Conclusion11

This paper has presented the rate control algorithm which is efficient and simple to
implement. Even though the algorithm is implemented and tested in Dirac, it can13

also be used in other types of video codec, e.g. H.264 by incorporating a parameter
which controls the quality of the encoded video sequence. Experimental results have15

shown that the proposed algorithm can control the bitrate within 1% of the target
bitrate in average and it has better bitrate regulation over each GOPs than rate con-17

trol algorithm of H.264. It is an advantage which is crucial in real-time multimedia
data streaming in preventing buffer overflow or underflow. Moreover, the proposed19
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Fig. 11. Percentage of bitrate error for the target bitrate 1024 kbps, the Bus sequence.

algorithm is a complete one pass process and it is not required to iterate the calcu-1

lation for finding the optimum QF value. The calculation of QF is based upon the
simple mathematical equation and it does not even need to calculate the QF for3

each frame in normal coding mode. The algorithm is also capable of controlling large
range of bitrates from a few to several thousand kbps and so it is practically appli-5

cable for all types of video frame sizes. It is obvious that the rate control process in
wavelet based video encoder becomes a lot easier with the proposed idea of QF opti-7

mization since the requirement of bit allocation for each subband can be scrapped
completely. In term of application, it is interesting to find that the proposed rate9

control algorithm can also be combined with the idea of progressive image transmis-
sion for wavelet based image coder,17,18 in order to achieve secure and high quality11

video transmission through bandwidth limited wireless channel. More importantly,
the proposed method can also be applied on any type of video encoders; either13

wavelet or non-wavelet based (e.g. H.264) as long as the encoder employs RDO
encoding.15
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Appendix. The Flow Chart of Overall Rate Control Algorithm1

Fig. A. Complete operation of the proposed rate control algorithm.
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