April 2001 - Workshop on Language Descriptions, Tools and Applications - LDTA2001

The MMF Approach to Engineering Object-Oriented
Design Languages

Tony Clark?,
Andy Evans?,
Stuart Kent?,
Paul Sammut*

1: King’s College London
anclark@dcs.kcl.ac.uk

2: University of York
andye@cs.york.ac.uk

3: University of Kent at Canterbury
stuart@nclellankent.com

4: University of York
pauls@cs.york.ac.uk

Abstract

The Unified Modeling Language (UML) is a family of languages used to express features of
software systems. MMF is a framework designed to allow UML-like notations to be constructed
from modular language definitions each of which expresses models for concrete syntax, abstract
syntax and semantic domains. MMF counsists of a meta-modelling language (MML) and a tool
(MMT) that implements MML as a meta-programming language. MMF can be used to design
application specific UML profiles that facilitate model analysis or automatic implementation. This
paper provides an introduction to MMF through the development of a series of simple language
definitions.

1. Introduction

The Unified Modeling Language [12] is a standardized notation for expressing object-oriented software
systems. It is essentially a family of extensible modelling notations. The current UML definition lacks a
number of desirable features that are currently being addressed through a co-ordinated effort to define
a new version (UML 2.0 [18]). These features include enhancing the modularity and extensibility of
UML and addressing the notion of UML semantics.

Modularity is important for UML because it is a very large notation, currently organized as a loose
confederation of modelling languages. Each language addresses different aspects (some overlapping) of
a given system. Module composition and extension facilities are essential due to the large number of
modules involved. UML 1.3 provides modularity via packages which are name-spaces and containers.
The current definition of packages does not provide facilities for composing and extending packages.

Semantics is a key weakness of the current UML 1.3 definition. Semantics is necessary to clearly
answer questions relating to model ambiguity and to facilitate tool compatibility. The current
semantics definition is weak in that it uses a semi-formal notation (The Object Constraint Language
[16]) to define syntactic well-formedness conditions and uses natural language for the rest.

If we accept that UML is a family of languages then we can learn from the Computer Science
community that have been engineering languages for the last 40 years. Among the many possible

1

Clark, Evans, Kent & Sammut

concrete abstract semantic
syntax syntax domain

display semantic /
mappin mappin

Figure 1: The MMF Method

approaches to language engineering there is a common feature: define the symbols used for denoting
things, define the things to be denoted and define a mapping between them. We will refer to this style
of semantics as denotational semantics.

A denotational semantics for UML will provide the key to unambiguous analysis of UML models.
Such analysis is essential when verifying that implementations or refinements are correct and when
verifying that tools implement UML correctly. Such a semantics will allow the inter-relationships
between the different UML sub-languages to be analyzed; since the approach separates syntax and
semantics, it will be possible to replace or tailor the concrete syntax of a UML sub-language without
changing the essential meaning.

This paper describes the Meta-Modelling Facility (MMF) that consists of a denotational method
for defining OO modelling notations, a language (MML) for expressing modelling notations and a tool
(MMT) for implementing modelling notations. The development of MMF by the pUML group ([19])
is ongoing and has been supported by IBM.

The paper is structured as follows. Section 2 gives an overview of MMF. Section 3 gives an example
of how a simple OO design notation can be modelled and subsequently extended using MMF. Section
4 describes the current state of MMF and the directions for future work.

2. The Meta-Modelling Facility (MMF)

2.1. The Method

MMF aims to provide a modular and extensible method for developing object-oriented design
languages. Modularity is provided by packages that act as name-spaces and can be used to define
reusable patterns. Each component of a language definition is given as a separate package; the packages
are then combined to produce a complete definition.

The common language components are shown in figure 1. Each component is defined as a package.
The syntax domain is defined in terms of concrete syntax (a human-centric representation) and in
terms of abstract syntax (a computer-centric representation). The semantic domain is defined as a
separate model. The display mapping links the abstract syntax to the concrete syntax; this mapping
could be refined to produce a parsing algorithm or to produce well-formedness rules. The semantic
mapping links the abstract syntax to the semantic domain. The semantic mapping gives the modelling
language a meaning. Other mappings are possible, for example a mapping that provides a concrete
syntax for the semantic domain; whilst MMF supports these mappings we limit ourselves to those
shown for the purposes of this paper.

MMF Approach to Engineering OODLs

Extensibility is provided by the usual notion of class-based inheritance and a new notation for
extending packages based on that of Catalysis [7]. Package extension allows new language components
to be based on existing components, thereby allowing languages to be built incrementally. The
package extension mechanism also supports the development of meta-patterns that guide the language
developer in terms of common design issues and wvariation points whereby generic designs can be
tailored to suit particular modelling domains. Examples of package extension and patterns are given
in the next section.

2.2. The Language

MML is a language that supports the MMF method. MML is a static OO modelling language that
aims to be small, meta-circular and as consistent as possible with UML 1.3. MML achieves parsimony
by providing a small number of highly expressive orthogonal modelling features.

MML is sufficiently expressive that it describes itself. This feature is not sufficient to guarantee that
MML is unambiguous; however, it reduces the language to a handful of primitive semantic features
that can be precisely captured by an external formal system. The complete definition of MML is
beyond the scope of this paper; the reader is directed to [3] [6] for an overview of the MMF approach,
to [2] for the meta-circular definition of MML and to [4] and [5] for its formal definition.

2.2.1. Patterns

Figure 2 provides three examples of MML patterns that we will subsequently use in an example of
MMF language engineering. A pattern is a package whose contents can be specialized and renamed
when defining new packages. Since a pattern is just a package, patterns can be specialized or combined
to produce new patterns.

The container pattern describes the essential features of modelling elements that contain things.
A specialization of the container pattern may rename the classes Container and Contained and
may rename the attribute elements. The renamings must be consistent with the pattern so that the
source and target of the renamed attribute is the renamed container and contained classes respectively.

The inheritance pattern describes the essential features of modelling elements that can inherit
features. Examples of inherited features are attributes and methods of classes. The Inheriting class
has a number of parents and a number of features. The method allParents computes the transitive
closure of the parents relation. The method allFeatures is used to calculate the complete set of
inherited features for a class with inheritance. The attribute features and the method allFeatures
may be renamed more than once for each inheritable feature of a modelling element when the pattern
is specialized.

The inheritance pattern specializes the container pattern. This is shown by placing a
specialization arrow between the patterns. The child pattern specializes all (and therefore contains
all) of the contents of the parent pattern. A pattern specialization may be annotated with renamings.
A class, attribute or method in the pattern may be renamed. The resulting child component is a
specialization of the corresponding modelling element in the pattern. When an attribute is specialized,
its multiplicity may change, for example from * (zero or many) to 1 (exactly one).

In addition to graphical language features for packages, classes and attributes, MML provides the
Object Constraint Language (OCL). OCL is used to express constraints and queries on models. A
query is an operation that has no side effect, for example generating the set of all parents or the
inherited features of an inheriting modelling element:

inheritance.Inheriting::allParents() :Set (Inheriting)
self.parents->iterate(p ps = Set{} |
p.allParents()->including(p))

Clark, Evans, Kent & Sammut] containe%

*elements
Contained Container

Instantiable/Container

Inheriting/Container)]
Instantiable/Contained

Feature/Contained Instantiable.contents/elements

features/elements Instance/Container

Instance/Contained

inheritanc% instantiate Instance.contents/elements
*parents *contents
Inheriting Instantiable
allParents():Set(Inheriting) conformsTo(i:Instantiable):Boolean
allFeatures():Set(Feature) check(o:Instance):Boolean
of
*features
*instance

Feature *contents |

Instance
conformsTo(i:Instance):Boolean

Figure 2: MML Patterns

inheritance.Inheriting::allFeatures():Set(Feature)
self.allParents()->including(self)->iterate(i fs = Set{} |
fs->union(i.features))

The instantiate pattern describes the essential features of a modelling element that has instances.
This pattern is used to define the semantic mapping for MMF languages. Each Instantiable

modelling element has a number of instances.

Definition 1 FEach instance of an instantiable element must satisfy the check method of the
instantiable element:

instantiate.Instantiable inv:
self.instances->forAl11(i | self.check(i))

Instantiable elements contain sub-instantiable elements; this pattern is repeated for instances.
Definition 2 The instance relationship is monotonic with respect to the containment relationship:

instantiate.Instantiable inv:
self.instances->forAll(i |

MMF Approach to Engineering OODLs

i.contents->forAll(i’
self.allContents()—>exists(c
c.instances->includes(i’)))) and
self.allContents()->forAll(c
c.instances—->forAll(i
self.instances->exists (i’
i’.contents->contains(i))))

One instance is said to conform to another instance if it upholds the principle of substitutability. The
notion of substitutability depends on the type of instance and is defined on a case-by-case basis.

Definition 3 The definition of instance conformance is monotonic with respect to containment:

instantiate.Instance: :conformsTo(i:Instance) :Boolean
self.contents->forAl1(i’ |
i.contents->exists(i’’ |
i’ .conformsTo(i’’)))

One instantiable modelling element conforms to another when their respective instance sets are in the
conformance relationship:

instantiate.Instantiable::conformsTo(i:Instantiable) :Boolean
self.instances->forAll (instance |
i.instances->exists(instance’ |
instance.conformsTo(instance’))

2.2.2. Classifiers

A fundamental feature of MML models is the idea of a classifier. A classifier is a modelling element
that is associated with instances that it classifies using OCL constraints. For example, a class is a
classifier and is associated with its objects. In general a classifier contains a collection of features
that are used to determine its set of legal instances. A classifier has parent classifiers whose features
it inherits. A classifier is therefore both a container (of features) and a generalizable component
(inheritance).

Figure 3 shows a simplified definition of MML classifiers as an example of how packages and package
specialization support reusable patterns. The package classifier defines two classes ModelElement
and Classifier. A model element is simply a named component in a model.

2.3. The Tool

The MMF method and language is supported by a prototype tool called MMT. The tool provides
programmatic support for OO modelling language engineering. MMT is a small object-based virtual
machine implemented in Java. MML is translated to a very small kernel language that runs on the
machine. In addition to OCL, the kernel language can support object side-effects and can create new
objects. A new object is created when an expression of the following form is evaluated:

@ClassName
slotName = slotValue;
slotName = slotValue;
end

Clark, Evans, Kent & Sammut Cibestance

Classifier/Inheriting
contents/features

classifier

ModelElement
name:String

*
*contents parents

Classifier

Figure 3: Simple Classifiers

MMT supports packages, classes, attributes and methods. Currently, MMT supports package, class
and method specialization. Method specializations must have the same name and may refer to the
specialized definition using the special OCL extension super.run().

3. Engineering a Design Notation

This section gives an example of how MML can be used to precise define and subsequently extend
an OO design notation. A basic notation for expressing static properties of a system (a small sub-set
of UML class diagrams) is defined in section 3.1 using the MMF method. Section 3.2 shows how the
MMEF approach can be used to extend the basic modelling language to support states. Finally, the
language with states is extended with state transition machines in section 3.3 that place constraints
on the dynamic behaviour of objects in a system.

3.1. A Simple Modelling Language

This section defines a basic notation for modelling the static structure of a system. MMF requires
us to model the abstract syntax, the semantic domain and the concrete syntax for each modelling
language. These are defined in sections 3.1.1, 3.1.2 and 3.1.4 respectively. The mappings between
abstract syntax and the semantic domain and the concrete syntax and abstract syntax are defined in
sections 3.1.3 and 3.1.5 respectively.

3.1.1. Abstract Syntax

The essential features of a static modelling notation are defined by the meta-model in figure 4. A
package is a classifier that contains classes. A class is a classifier that contains attributes. An attribute
is a classifier that contains a single type.

[dlassifier | MMF Approach to Engineering OODLs

Class/Classifier
Attribute/Classifier attributes/contents

type/contents

Package/Classifier
abstractSynt;x classes/contents

*parents

I
Class attributes Attribute

name : String ype name : String

*classes

Package
name : String

Figure 4: Abstract Syntax

3.1.2. Semantic Domain

Figure 5 defines the semantic model used to give a meaning to the basic modelling notation in the
previous section. Objects have slots; each slot has a name and a value. Objects are grouped together
into package instances. The value of a slot can be found using the method slotValue:

semanticDomain.0Object: :slotValue(name:String) :Object
self.slots->select(s | s.name = name)->asSequence->first.value

3.1.3. Semantic Mapping

The meaning of the basic modelling language is given as a family of relations defined in figure 6. The
semantic mapping package is a specialization of the instantiate pattern which requires each type
of modelling component is associated with a semantic component that represents its instances. In
addition the instantiate pattern requires that the semantic mapping package provides appropriate
definitions for the check and conformsTo methods.

Definition 4 FEvery instance of an attribute is a slot whose name is the same as that of the attribute
and whose value is an instance of the type of the attribute.

semanticMapping.Attribute: :check(s:Slot) :Boolean
self.name = s.name and
self.type.check(s.value)

Every instance of a class must have slots that correspond to the class attributes.

7

Clark, Evans, Kent & Sammut m

Packagelnstance/ContainerObject/Container
slots/elements

Slot/Contained
Slot/Container
value/elements

objects/elements
Object/Contained

semanticDomaiﬂl

Packagelnstance

*objects
value
Object Slot
slotValue(s:String):Object *slots name:String

Figure 5: Semantic Domain

semanticMapping.Class: :check(o:0bject) :Boolean
self.allAttributes()->forAll(a |
o.slots->exists(s | a.check(o)))

Every instance of a package is a package instance that contains instances of the appropriate classes:

semanticMapping.Package: :check(p:Packagelnstance) :Boolean
self.allClasses()->exists(c |
c.check(0))

In addition to defining how to check instances, instantiate requires a definition of semantic
conformance for each specialization of Instance. A slot is specialized by specializing its value:

semanticMapping.Slot: :conformsTo(s:Slot) :Boolean
super.run() and
self .name = s.name and
self.value.conformsTo(s.value)

Theorem 1 Every instance of a class has slots corresponding to the attributes that the class and its
super-classes.

semanticMapping.Class inv:
self.instances->forAll(o |
o.slots->forAll(s
self.allAttributes()—>exists(a
a.name = s.name and
a.type.check(s.value))))

Proof

MMF Approach to Engineering OODLs

semanticDomai$
abstractSynta% semanticDomai%

Package/Instantiable
Attribute/InstantiablePackagelnstance/Instan
Slot/Instance

Class/Instantiable
Object/Instance

semanticMapping
*instances
Package Packagelnstange
of
*instances
Class Object
of
*instances,
Attribute Slot
of

Figure 6: The Semantics of the Basic Modelling Language

. We start with the constraint given in definition 2:

instance.Instantiable inv:
self.instances->forAl1(i
i.contents->forAll(i’
self.allContents()->exists(c
c.instances->includes(i’))))

. The renamings given in figure 6 gives the following:

semanticMapping.Class inv:
self.instances->forAl1(i
i.slots->forAll(s
self.allAttributes()—>exists(a |
a.instances->includes(s))))

. From definition 1 we get:

semanticMapping.Class inv:
self.instances->forA11(i |
i.slots->forAll(s |
self.allAttributes()—>exists(a |
a.check(s)

. Finally, from definition 4 we get:

semanticMapping.Class inv:
self.instances->forAl11(i |

Clark, Evans, Kent & Sammut

diagram
LabelledEdge src Node *nodes
label:String Edge label:String
. tgt T
@
Q.
«Q
— @
& < @
> 2 Text Container
o @]
S S zr
Arrow \ |
A Graph Box
ClosedArrow NoArrow OpenArrow
BorderedBo BoxNoBorder

Figure 7: Concrete Syntax

i.slots->forAll(s |
self.allAttributes()—>exists(a |
a.name = s.name and
a.type.check(s.value)

QED

3.1.4. Concrete Syntax

The concrete syntax of a static model is a graph where the nodes are nested boxes containing text and
where edges are either generalizations (unlabelled with a closed arrow at the target end) or attributes
(labelled and with an open arrow at the target end). Figure 7 defines a model for the concrete syntax
of our basic modelling notation.

3.1.5. Syntax Mapping

A package can generate its concrete syntax using the method draw defined by extending Package and
Class as shown in the figure 8. The result is a graph where the nodes are produced by requesting
each class to generate its concrete syntax and the edges are produced by generating the appropriate
generalization and attribute arrows.

A class draws itself as a box containing text fields. The uppermost text field contains the name of
the class. The attributes of the class whose types are basic (Integer, String, Boolean, etc.) are listed
in text fields below the name:

display.Class.draw() :BorderedBox
10

MMF Approach to Engineering OODLs

R .
agrartm ‘ dUbleleyllldX‘
display
Package Class

draw():Grap

=)

draw():Node

Figure 8: Basic Drawing

O@BorderedBox
label(_) = self.name;
nodes(_) = Seq{
@BorderedBox
label = "name";
nodes(_) = Seq{@Text label(_) = self.name end}
end,
@BorderedBox
label = "attributes";
nodes(_) =
self.attributes->select(a |
self .basicType(a.type))->collect(att |
@Text label = att.name+":"+att.type.name end)->asSequence
end}
end

A package is drawn as a complete graph:

display.Package: :draw() : Graph
Q@Graph
nodes(_) = self.classes->collect(c | c.draw());
edges(g) = self.gens(g.nodes)->union(self.atts(g.nodes));
end;

Generalization arrows are produced by creating an edge with a closed arrow for each super-class of
each class. The method findNode is used to index the appropriate node given a class name:

display.Package: :gens(nodes:Set(Node)) : Set (Edge)
self.classes->iterate(c edges = Set{} |
edges->union(c.supers->collect(c’
@Edge
src(_) = self.findNode(nodes,c.name);
tgt(_) = self.findNode(nodes,c’.name);
srcArrow = @NoArrow end;

11

Clark, Evans, Kent & Sammut

tgtArrow = @ClosedArrow end
end)));

Attribute arrows are produced by finding all the attributes of each class whose target type is non-basic
(i.e. not Integer, String, Boolean etc.) and creating a labelled edge with an open arrow at the target
end:

display.Package: :atts(nodes:Set(Node)) :Set (Edge)
self.classes->iterate(c edges = Set{} |
edges—>union(c.attributes->reject(a |
self .basicType(a.type))->collect(a |
@LabelledEdge
label = a.name;
src(_) = self.findNode(nodes,c.name);
tgt(_) = self.findNode(nodes,a.type.name);
srcArrow = @NoArrow end;
tgtArrow = @OpenArrow end
end)));

3.2. A Language with States

MMF allows new modelling languages to be defined as extensions of existing languages. The new
language must define the appropriate components: abstract syntax; concrete syntax; semantic domain;
and mappings. The components of the new language may extend corresponding components of existing
language definitions.

This section extends the basic static modelling language define in section 3.1 with states. Each
class defines a number of states. An instance of a class with states must be in one of the states.
Section 3.2.1 defines the abstract syntax; the semantic domain for the new language is the same as
that defined in section 3.1.2; the extended semantic relation is defined in section 3.2.2; the concrete
syntax domain is the same as defined in section 3.1.4; section 3.2.3 defines the relationship between
the extended abstract syntax and the concrete syntax.

3.2.1. Abstract Syntax

The states of a class are listed in the class definition as state names. States are inherited. The
extended abstract syntax model is shown in figure 9. States are classifiers and will therefore have
instances; however, states do not have any internal structure:

stateModel.State inv:
contents = Set{}

3.2.2. Semantic Mapping

The meaning of the extended modelling language is defined by a mapping to the semantic domain
defined in figure 3.1.2 i.e. no new semantic features are required. The semantic mapping is shown in
figure 10. The states defined by a class are the names of boolean values slots in instances of the class.
Since an instance must be in exactly one state at any given time, one of the state slots must be true
and all the other state slots must be false:

stateMapping.State: :check(s:Slot) :Boolean
s.name = self.name and
Boolean.check(s.value)

12

MMF Approach to Engineering OODLs

abstractSynta%

State/Classifier

states/contents
stateSyntax
State
*states
Class
name:String

Figure 9: Abstract Syntax Extended for States

stateSyntax

semanticMappin@

State/Instantiable

stateMapping

*instances

State

Slot

of

Figure 10: Extended Semantic Domain

13

Clark, Evans, Kent & Sammut

diagram state Synt&x

stateDispIaL/

Class

draw():BorderedBo

Figure 11: Concrete Syntax for the Language with States

It follows from the pattern classifier that classes with states have instances with state slots. This
constraint is specialized further in orfer to require exactly one of the slots to be true:

stateMapping.Class: :check(o:0bject) :Boolean
super.run() and
self.allStates()->iterate(s b = false |
o.slotValue(state.name) xor b)

3.2.3. Syntax Mapping

The concrete syntax domain for class diagrams containing state information is the same as that
defined in figure 7. The display mapping is defined in figure 11. The state information is displayed as
a sequence of state names in a state compartment of a class:

stateDisplay.Class: :draw() :BorderedBox

©@BorderedBox
label(_) = self.name;
nodes(_) = Seq{
super.run(),
@Text
label(_) = self.states->iterate(state s = "< " |
s + state + " ") + ">"
end}
end

3.3. A Language with Dynamic Features

This section extends the static language with states defined in section 3.2 with dynamic features.
A state transition machine is often used in modelling notations to place restrictions on the legal
sequence of states occurring in object life-cycles. Section 3.3.1 defines dynamic extensions to the
abstract syntax; section 3.3.2 defines dynamic extensions to the semantic domain; section 3.3.3 defines
dynamic extensions to the semantic mapping; finally, section 3.3.4 defines dynamic extensions to the
concrete mapping.

14

MMF Approach to Engineering OODLs

stateSyntax

Transition/Classifier
Class/Classifier, pre/contents

transitions/contents hosy/contents

dynamicDomajn

*transitions —
Class Transition

pre post

State

Figure 12: A Simple Dynamic Modelling Language

semanticDomain

Object/Container Step/Container
steps/elements pre/elements

post/elements
dynamicDomaiﬂ
*steps

Object Step

pre post

Slot

Figure 13: A Dynamic Semantic Domain

3.3.1. Abstract Syntax

Figure 12 defines the modelling components necessary to express simple constraints on the sequence
of states occurring in an object life-cycle. A class contains a collection of state transitions; each
transition corresponds to a legal state change that can occur in the life-cycle of an instance of the
class.

3.3.2. Semantic Domain

Figure 13 defines the dynamic semantic domain. Each object contains its life-cycle represented as a
collection of steps. Each step records a state change of the object. In order to be well formed, an
object’s life-cycle must start at the object’s current state and form a chain. We will assume that we
are dealing with finite life-cycles. This leads to the following invariant:

dynamicDomain.0Object inv:

15

Clark, Evans, Kent & Sammut

dynamicDomain dynamicMod%l stateMapping

Transition/Instantiable
Step/Instance

dynamicMapping

*instances
Transition Step
of

Figure 14: A Dynamic Semantics

self.steps->exists(first |
self.slotValue(first.pre.name) = true and
self.steps->forAll(s
s = first or
self.steps->exists(s’
s’.post = s.pre and s’ <> first))) and
self.steps->exists(last |
self.steps->forAll(s
s = last or
self.steps->exists(s’
s.post = s’.pre and s’ <> last)))

3.3.3. Semantic Mapping

Figure 14 shows the semantic mapping for the dynamic modelling language.

Theorem 2 The instances of transitions are steps where the pre- and post-states of the step are
instances of the corresponding pre- and post-condition of the transition.

dynamicMapping.Transition.check(s:Step) :Boolean
self .pre.check(s.pre) and
self.post.check(s.post)

Proof
The proof is indentical for both the pre and post states. The following is a proof for the pre-state:

1. From definition 2 we get:

instantiate.Instantiable inv:
self.instances->forAl1(i
i.contents->forAll(i’
self.allContents()->exists(c
c.instances->includes(i’))))

2. The renamings leading to figure 14 produces:

dynamicMapping.Transition inv:

16

MMF Approach to Engineering OODLs

self.instances->forAll(step |
step.pre->forAll(slot |
self.allPre()->exists(state |
state.instances->includes(slot))))

3. We know from the definition of Transition and Step that the multiplicity of pre-states and
pre-conditions are both 1, therefore by definition 1:

dynamicMapping.Transition inv:
self.instances->forAll(step |
step.pre.check(step.pre))

4. Finally, if the previous step holds for all instances then:

dynamicMapping.Transition.check(step:Step)
self.pre.check(step)

QED

Theorem 3 The life-cycles of class instances must be instances of the appropriate state transition
machine.

dynamicMapping.Class: :check(o:0bject) :Boolean
self.trans->forAll(t |
o.steps->exists(s |
t.check(s)))

Theorem 4 Two steps conform when the corresponding pre and post state instances conform.

dynamicMapping.Step: :conformsTo(s:Step) :Boolean
self.pre.conformsTo(s.pre) and
self .post.conformsTo(s.post)

Proof
We show just the pre side of the proof:

1. From definition 3 we get:

instantiate.Instance::conformsTo(i:Instance) :Boolean
self.contents—->forAl11(i’ |
i.contents->exists(i’’ |
i’ .conformsTo(i’’)))

2. The renaming leading to figure 14 produces:

dynamicMapping.Step: :conformsTo(s:Step) :Boolean
self.pre->forAll(slot |
s.pre->exists(slot’ |
slot.conformsTo(slot’)))

3. Since the multiplicity of pre is specialized to 1:

17

Clark, Evans, Kent & Sammut

stateDisplaL/ dynamicSyntab(

Class

draw():BorderedBo

Transition

draw(nodes:Set(Node)):Edge

State

draw():BorderedBo

Figure 15: Concrete Syntax for a Dynamic Language

dynamicMapping.Step: :conformsTo(s:Step) :Boolean
self.pre.conformsTo(s.pre)

QED
Theorem 5 Two objects conform when their slots, states and steps conform.

dynamicMapping.Qbject: :conformsTo(o:0bject) :Boolean
self.steps->forAll(s |
o.steps->exists(s’ |
s.conformsTo(s’)))

3.3.4. Syntax Mapping

Figure 15 shows a display mapping for the dynamic language. The state transition machine for a class
is displayed as a graph inside a new class compartment. The nodes of the graph are the names of the
states and the edges show the permissable state transitions.

dynamicDisplay.Class: :draw() :BorderedBox
©BorderedBox
label(_) = self.name;
nodes(_) = Seq{
super.run(),
©@BorderedBox
label() = ’transition machine’;
nodes(_) =
@Graph
nodes(_) = self.states->forAll(s | s.draw());
edges(_) = self.trans->forAll(t | t.draw(self.nodes))

18

MMF Approach to Engineering OODLs

end
end}
end

dynamicDrawing.Transition: :draw(nodes:Set (Node)) :Edge

CEdge
src(_) = findNode(self.pre.name,nodes);
tgt(_) = findNode(self.post.name,nodes);

srcArrow(_) = @NoArrow end;
tgtArrow(_) = Q@OpenArrow end
end

dynamicDrawing.State: :draw() :BorderedBox
@BorderedBox
label(_) = self.name;
nodes(_) @Text label(_) = self.name end
end

4. Conclusion

This paper has described the MMF approach to engineering Object-Oriented Modelling Languages.
The approach separates the issues of how to model syntax and semantics domains and allows languages
to be developed from modular units. The approach also supports reusable patterns for language
engineering. The paper has illustrated the approach with a very small modelling language which is
then extended in two different ways: a static extension and a dynamic extension. The examples have
shows how the approach supports precise analysis of the modelling languages by constructing proofs
of language properties.

The MMF approach to engineering OO modelling languages is proposed as an approach that can
support the UML 2.0 development process. As such it is consistent with the current definition of
UML 1.3 and is a development of the approach reported in [8] and [13]. The approach will support
extensions to both the syntax and semantics of UML, for example [9] and [11]. The MMF approach
does not use a formal mathematical language to express the semantics of the languages; however, it
is sufficiently expressive to support the infrastructure of these approaches and therefore can benefit
from many of the results such as [1] and [15]. The MMT tool [17] is still under development and has
its roots in OO meta-programming theory and systems such as Smalltalk, CLOS and the ObjVLisp
model; the consequence of this is that the tool is very flexible. Other tools exist, such as Argo and USE
[14] [10] that can be used to model languages; however these tools tend to have a fixed meta-model.

MML is currently being used as part of the UML 2.0 revision process. In addition it is being used
to develop application specific profiles. We plan to include implementation languages as part of the
profile library development, for example including profiles for Java. Since MMF can precisely support
and integrate a wide variety of different languages, a very interesting area for deployment is eBusiness,
where the choice of individual implementation mechanisms depends on key semantic features of the
models.

Bibliography

[1] Bottoni P., Koch M., Parisi-Presicce F., Taentzer G. (2000) Consistency Checking and
Visualization of OCL Constraints. In Evans A., Kent S.; Selic B. (eds) UML 2000 The Unified

19

Clark, Evans, Kent & Sammut

Modeling Language — Advancing the Standard. Third International Conference. York, UK 2000.
Proceedings volume 1939 LNCS, 278 — 293 , Springer-Verlag.

[2] Brodsky S., Clark A., Cook S., Evans A., Kent S. (2000) A feasibility Study in Rearchitecting
UML as a Family of Languages Using a Precise OO Meta-Modeling Approach. Available at
http://www.puml.org/mmt.zip.

[3] Clark A., Evans A., France R., Kent S., Rumpe B. (1999) Response to UML 2.0 Request for
Information. Available at http://www.puml.org/papers/RFIReponse.PDF.

[4] Clark A., Evans A., Kent S. (2000) The Specification of a Reference Implementation for UML.
Accepted for publication in a Special Issue of L’Objet in 2000.

[5] Clark A., Evans A., Kent S. (2000) The Meta-Modeling Language Calculus: Foundation
Semantics for UML. To be presented at the ETAPS FASE Conference 2001.

[6] Clark A., Evans A., Kent S. (2000) Profiles for Language Definition. Presented at the ECOOP
pUML Workshop, Nice.

[7] D’Souza D., Wills A. C. (1998) Object Components and Frameworks with UML — The Catalysis
Approach. Addison-Wesley.

[8] Evans A., Kent S. (1999) Core meta-modelling semantics of UML — The pUML approach. In
France R. & Rumpe B. (eds) UML ’99 The Unified Modeling Language — Beyond the Standard.
Second International Conference. Fort Collins CO, USA. 1999. Proceedings volume 1723 LNCS,
140 — 155, Springer-Verlag.

[9] Howse J., Molina F., Kent S., Taylor J. (1999) Reasoning with Spider Diagrams. Proceedings
of the IEEE Symposium on Visual Languages 99, 138 — 145. IEEE CS Press.

[10] Hussmann H., Demuth B., Finger F. (2000) Modular Architecture for a Toolset Supporting OCL
In Evans A., Kent S., Selic B. (eds) UML 2000 The Unified Modeling Language — Advancing
the Standard. Third International Conference. York, UK 2000. Proceedings volume 1939 LNCS,
278 — 293 , Springer-Verlag.

[11] Kent S. (1997) Constraint Diagrams: Visualizing Invariants in Object-Oriented Models. In
Proceedings of OOPSLA 97, 327 — 341.

[12] Object Management Group (1999) OMG Unified Modeling Language Specification, version 1.3.
Available at http://www.omg.org/uml.

[13] Richters M., Gogolla M. (1999) A metamodel for OCL. In France R. & Rumpe B. (eds) UML
99 The Unified Modeling Language — Beyond the Standard. Second International Conference.
Fort Collins CO, USA. 1999. Proceedings volume 1723 LNCS, 156 — 171, Springer-Verlag.

[14] Richters M., Gogolla M. (2000) Validating UML Models and OCL Constraints. In Evans A.,
Kent S., Selic B. (eds) UML 2000 The Unified Modeling Language — Advancing the Standard.
Third International Conference. York, UK 2000. Proceedings volume 1939 LNCS, 265 — 277,
Springer-Verlag.

[15] Richters M., Gogolla M. (2000) A Semantics for OCL pre and post conditions. Presented at the
OCL Workshop, UML 2000.

[16] Warmer J., Kleppe A. (1999) The Object Constraint Language: Precise Modeling with UML.
Addison-Wesley.

[17] The MMT Tool. Available at http://www.puml.org/mmt .zip.
20

MMF Approach to Engineering OODLs

[18] The UML 2.0 Working Group Home Page http://wuw.celigent.com/omg/adptf/wgs/uml2wg. htm.

[19] The pUML Home Page http://www.puml.org.

21

April 2001 - Workshop on Language Descriptions, Tools and Applications - LDTA2001

22

