
Investigating Airplane Safety and Security against Insider Threats Using Logical
Modeling

Florian Kammüller
Department of Computer Science

Middlesex University London
f.kammueller@mdx.ac.uk

Manfred Kerber
School of Computer Science
University of Birmingham
M.Kerber@cs.bham.ac.uk

Abstract—In this paper we consider the limits of formal
modeling of infrastructures and the application of social
explanation for the analysis of insider threats in security and
safety critical areas. As an area of study for the analysis we
take examples from aviation, firstly since incidents are typically
well-documented and secondly since it is an important area per
se. In March 2015, a Germanwings flight crashed in the French
Alps in what is quite firmly believed to have been intentionally
caused by the copilot who locked the pilot out of the cockpit and
programmed the autopilot on constant descent. We investigate
the security controls and policies in airplanes against insider
threats using logical modeling in Isabelle.

I. INTRODUCTION AND OVERVIEW

In this paper, we take a critical look at logical methods to
model and analyze safety and security critical systems. In
particular, we address recent advances in applying formal
verification techniques, e.g. [1], in the context of severe
incidents like the tragic crash of a Germanwings flight: “On
March 24, 2015 Germanwings Flight 9525, a scheduled
flight from Barcelona to Düsseldorf was hijacked by the
co-pilot. 30 minutes after takeoff Andreas Lubitz locked
himself in [the] cockpit when [the] captain went out for
a rest. Then the co-pilot started to descend. [The] captain
... tried to communicate with Lubitz, but he didn’t reply.
After 8 minutes of falling the airplane crashed in the Alps
near the French village Prads-Haute-Blone. There were 144
passengers and 6 crew members on board. None of them
survived the crash.” [2]

In this paper, we first summarize the development of
airplane security (Section II) before we model and analyse
the specific settings in passenger transport airplanes using
the Isabelle Insider framework (Section III) leading to a
discussion and conclusions (Section IV).

It should be noted that with insider attacks there are
two fundamentally different approaches. The first is based
on probabilistic reasoning and cost analysis. For instance,
if in a company there is a leakage in low-cost pens –
since employees take them home – then the company must
consider whether imposing a strict control regime involving
CCTV cameras is cost effective in eliminating the problem.
The company may conclude that cheaper measures minimize

the overall cost of lost pens and of measures to lose only
few.

The second approach is based on Boolean reasoning in
which it is investigated whether certain attacks are possible
or not. That is, a model of a real world situation is built and
then it is checked or proved that a particular situation can
occur or not, for instance, by checking whether a particular
state is reachable from an initial state or not. Such an
approach would be applied, for instance, if a particular
situation is unacceptable and has to be avoided at all cost. As
a consequence, for airplane safety this will be the method of
choice and is the approach taken in the following. Of course,
this does not mean that the approach gives 100% guarantees.
The main problem is that any model of a real world situation
is necessarily incomplete since it abstracts from (hopefully
only irrelevant) details. However, it is difficult to establish
that nothing essential has been overlooked.

A. Related Work

We consider here some main threads of work by others
while discussing the relationship of the contribution of this
paper to our own previous work in Section IV.

The Insider threat patterns provided by CERT [3] use the
System Dynamics models, which can express dependencies
between variables. The System Dynamics approach is also
successfully being applied in other approaches to Insider
threats, for example, in the modeling of unintentional insider
threats [4]. Axelrad et al. [5] have used Bayesian networks
for modelling Insider threats in particular the human dispo-
sition. In comparison, the model we rely on for modeling
the human disposition in the Isabelle Insider framework is
a simplified classification following the taxonomy provided
by [6]. In contrast to all these approaches, our work provides
an additional model of infrastructures and policies allowing
reasoning at the individual and organisational level.

In the domain of rigorous analysis of airplane systems,
work often follows for practical and economic reasons a
philosophy of using a mix of formal and systematic informal
methods. An example from airplane maintenance procedures
[7] uses a security evaluation methodology following the
Common Criteria and a formal model and verification with

the model checker AVISPA. In comparison, we use a more
expressive logical model in the Isabelle Insider framework
than their AVISPA specification. Also, we believe that our
work is the first to consider Insider threats within airplane
safety and security at least in a formal way.

On the formal side within the Insider threat community
in general, the work by Bishop et al. [8] is relevant to
the Isabelle Insider framework since it also uses a formal
model to analyse Insider threats. Bishop and colleagues
use the LITTLE-JIL process description language, a general
framework for Software Engineering. It allows the definition
of activities, artifacts, and agent specifications. For the
analysis, they use fault tree analysis and finite state veri-
fication. While resembling the Isabelle Insider framework
concepts, in comparison, the Isabelle framework provides
more support to express organisations’ infrastructures. The
ready made analysis procedures of LITTLE-JIL provide an
easier to use analysis approach while Isabelle is superior in
flexibility, expressiveness and thus generality when it comes
to properties.

II. DEVELOPMENT OF AIRPLANE SAFETY AND
SECURITY

On 2001-09-11, four terrorist attacks took place in the
USA, two on the two towers of the World Trade Center, one
on the Pentagon, and in a fourth attack the airplane crashed
when passengers tried to overcome the hijackers (a detailed
description of the events and a list of aircraft hijackings
can be found on Wikipedia [2], [9], including more than
300 further pointers). Before these attacks, aircraft hijacking
typically meant that the hijackers had some negotiable
demands. Because of the risk to life for the people on board
the aircraft, the standard approach was to enter negotiations
and to avoid a resolution by force while the aircraft was in
the air.

In particular, also there was no secured door between
the passenger compartment and the cockpit in airplanes,
actually the door was occasionally open, even allowing
passengers to get a glimpse of the cockpit during the flight.
In Western countries there were no airplane hijackings with
major loss of life between the 1970s and the 2001-09-11
attacks. This could be interpreted in the USA and other
countries as creating a false sense of security. In the wake
of the attacks a serious rethink of the security provision has
happened. In particular, the cockpit doors were reinforced
and made bullet-proof, making it nearly impossible to open
by intruders [10].

These (and other) changes seem to have had the wanted
effect, since in the 14 years after the introduction of secured
cockpit doors there were only 14 airplane hijackings1 (as
listed on [2]), all but one of them could be prevented from

1Note however that there were other attacks on flights which did not
originate from passengers, such as the Malaysia Airline Flight MH17 which
was brought down by a missile over Ukraine on 2014-07-17.

lock

t=s

t=s

PIN

ε

t=s
ε

unlock

PIN

unlock

lock

unlock

t<s+300
ε

t<s+300

N
t

Us

L
s

t+30<=s<=t+35

PIN

ε

t=s+300

Figure 1. A finite timed automaton to describe the locking mechanism of
the door

causing fatalities, and the one that did result in fatalities was
an insider attack. One nearly successful airplane hijacking
has been caused by the copilot who forced Ethiopian Air-
lines Flight 702 to land at Zurich airport in an attempt to
blackmail asylum for himself in Switzerland [2]. Also this
airplane hijacking can be characterized as an Insider attack
since the attacker was part of the crew.

The one major exception to the rule was Germanwings
Flight 9525 on 2015-03-24, which was on the way from
Barcelona to Düsseldorf. The aircraft was hijacked by the
copilot who locked out the captain who had left the cabin.
The pilot tried to regain access to the cockpit but did not
succeed. Subsequently, the copilot brought the aircraft to a
crash in which all 150 people on board died.

Let us now look more closely into the door and its release
mechanism.2 The door is operated by a switch from inside
the cockpit (with three positions: “unlock”, “norm”, “lock”)
and a keypad outside the cockpit. In order to gain access to
the cockpit normally a crew member would use the inter-
phone to contact a pilot in the cockpit to request access,
then presses the hash key on the keypad, which triggers a
buzzer in the cockpit, and the pilot releases the door using
the switch to open the door (by keeping it in the “unlock”
position). In case the pilot(s) is/are incapacitated the crew
member outside the cockpit can enter an emergency code to
open the door. After 30 seconds (during which the buzzer
sounds in the cockpit) of no reaction by the pilots the crew
member can open the door for five seconds.

Since this access method could be used by a hijacker
to force a crew member to open the door from outside
the cockpit, the pilots can, within the 30 seconds between
entering the emergency code and the release of the door,
lock the cockpit door by putting the toggle button into the
“lock” mode. In that case the keypad is disabled for five

2The information is extracted from a 5:32 film by Airbus [11].

minutes and the door can be opened during this time only
from inside the cockpit by putting the button in the position
“unlock”.

The mechanism can be described on different levels and
each level requires certain assumptions (e.g., that the door
itself will withstand any physical force that may be exerted
by an attacker). According to Occam’s Razor, we try to give
a representation that is as easy as possible and still describes
the situation in sufficient detail that the important aspects
are modelled. A first approximation can be given by the
timed finite state machine in Figure 1 with three states “U”,
“N” and “L” for “unlock”, “norm”, and “lock”, respectively.
While time plays a role and it makes a difference for
humans whether the door is locked for 300ms, 300s, of
300 minutes, we will abstract from this in the following
formalization. During the fatal flight, the copilot used this
locking mechanism to lock out the captain from the cockpit.
While the mechanism has been successful so far from
preventing any fatal attempt by an outsider to hijack an
aircraft, the same mechanism prevented the captain from
re-entering the cockpit and take action to rescue the aircraft
in this case.

In the investigation of the crash, it was found that the
copilot suffered from depression and was declared by a
doctor unfit to work for the day of the crash. However,
he did not forward the sick note to his employer and his
doctor was in no position to inform the employer of a
potential risk because of medical secrecy. The exact reasons
why the copilot killed himself and also why – assumed
he was determined to commit suicide – he did not choose
a method that did not involve others is unclear and open
to some speculation. A contributing factor may have been
that the status of his pilot license was conditional. As
the investigation found out later [12], a previous episode
of medical depression of the copilot not only led to an
interruption of his training, but also his license had a lock
flag that medical consultation had to be taken before any
extension. This required additional scrutiny may have led in
him to an increased fear of losing his job and livelihood and
may have been a contributing factor to the fatal decision he
took.

As a consequence of the events on this day, a number
of countries made the rule or recommendation that requires
two authorized personnel to be present in the cockpit of
large passenger aircrafts at all times [12]. Furthermore there
were discussions to loosen the rules of medical secrecy in
Germany. The two-person rule was implemented within days
by many major airlines worldwide (assumed they did not
have it already before the incident) without any discussion
of possible negative consequences. The status of loosening
medical secrecy is less clear. The argument for it is that if
a pilot is a danger then the airline should know that and be
able to take action. The counter-argument is that this may
lead to the situation that pilots who need help do not dare

collective
explanandum

social
situation

actor action

(a)

(b)

(c)

(d)

Figure 2. The ‘Grundmodell’ of sociological explanation [15]: a macro-
micro-macro-transition explains sociological phenomena by breaking down
the global facts from the macro level (a) onto a more refined local view
of individual actors at the micro-level (b). Finally those micro-steps are
generalized and lifted back onto the macro-level (c) to explain the global
phenomenon.

to seek help any longer since they must fear to lose their
jobs.

III. FORMAL MODEL AND ANALYSIS

In formal analysis of technical scenarios, the motivation
of actors and the resulting behaviour of humans is often
not considered. In this paper, we validate an approach to
model and analyse Insider attacks provided by an Insider
framework based on the interactive proof assistant Isabelle
on the airplane scenario. Isabelle sources are available [13].

A. Social Explanation in Isabelle

The Isabelle Insider framework [1] is based on a logical
process of sociological explanation [14] inspired by Weber’s
Grundmodell, depicted in Figure 2, to explain insider threats
by moving between societal level (macro) and individual
actor level (micro). The standard example to illustrate the
process of macro-micro-macro transitions in the spirit of
Max Weber is to explain the relationship between ‘protestant
ethic’ and ‘the spirit of capitalism’. Protestantism has lead
to changes in familial socialization, a ‘familial revolution’
(macro to micro-level). The change of educational style em-
ployed by protestant parents (micro-level) has equipped their
children with ‘strong internalized achievement drives’. This
has created the spirit of capitalism back on the collective,
the macro-level, and has lead to the spread of a new type of
actor, the entrepreneur.

In our application of the steps (a-c) of the logic of
explanation, we see the insider’s move over the ’tipping’
point as (a), the actual Insider attack as step (b) and the
damages caused by the attack as step (c) in Figure 2.

The interpretation into a logic of explanation is formalized
in Isabelle’s Higher Order Logic. This Isabelle formalization
constitutes a tool for proving security properties using the
assistance of the semi-automated theorem prover [1]. Is-
abelle/HOL is an interactive proof assistant based on Higher
Order Logic (HOL). Applications can be specified as so-
called object-logics in HOL providing reasoning capabilities

for examples but also for the analysis of the meta-theory.
Examples reach from pure mathematics [16] to software en-
gineering [17]. An object-logic contains new types, constants
and definitions. These items reside in a theory file, e.g.,
the file Insider.thy contains the object-logic for social
explanation of insider threats described in the following
paragraph. This Isabelle Insider framework is a conservative
extension of HOL. This means that our object logic does not
introduce new axioms and hence guarantees consistency.

B. Isabelle Insider Framework

In the Isabelle/HOL framework for Insiders, policies are
predicates using the basic actions get, move, eval, and put

serving for the specification of the capabilities of actors
within scenarios. Actions have no parameters which is a
fairly strong abstraction but provides generality.

datatype action = get | move | eval | put

As a representation of human factors we use an abstract
type actor with elements created by a function Actor over
identities which are again represented as strings, e.g., Actor
’’Bob’’ is the actor named Bob.

typedecl actor
type˙synonym identity = string
consts Actor :: string ⇒ actor

Policies define the conditions for actions to be permitted
to actors. A policy is thus a pair containing a predicate, the
selection of the actors, and a set of actions that are permitted
to the selected actors.

type_synonym policy = ((actor ⇒ bool) × action set)

The physical layout of the scenarios is represented as dis-
crete graphs, i.e., sets of pairs of nodes. In addition, actors
can reside at nodes within this graph, i.e., nodes have lists of
identities assigned to them representing the current location
of these actors.

datatype location = Location nat
datatype node = Node location "identity list"
datatype ’n graph = Graph (’n × ’n)set

We integrate policies and a graph representing the scenario
into the infrastructure where policies reside at locations and
actors and locations have additional predicates to express
specific properties like actors’ credentials or state compo-
nents at locations.

datatype infrastructure =
Infrastructure "node graph" "location ⇒ policy set"

"actor ⇒ bool" "location ⇒ bool"

Local policies provide a specification of the behaviour of
actors if they remain within the limits of the possible. The
following enables predicate specifies this concept. In the
infrastructure I, an actor a can perform an action a’ at
location l if:

• there is a local policy (p,e) stored at location l in the
infrastructure I’s policy accessible as delta I l,

• the action a’ is contained in the set of actions e, and
• the policy condition p for actor a is true under the

additional assumption of
– the actor’s a credentials tspace I a and
– the location features’ settings lspace I l.

enables I l a a’ ≡ ∃ (p,e) ∈ delta I l.
a’ ∈ e ∧ (tspace I a ∧ lspace I l) −→ p(a)

For the modelling of the micro-level, the individual’s
disposition, the Isabelle Insider framework relies on a char-
acterization of insider threats [6] that offers a taxonomy of
insider threats. This taxonomy is based on a thorough survey
on results from counterproductive workplace behaviour, e.g.,
[18], [19] and case studies from the CMU-CERT Insider
Threat Guide [3]. The Insider framework simply models
the taxonomy in HOL as datatypes, a concept of HOL that
resembles the concept of taxonomy classes. As an example,
consider the formal representation of Psychological State [6]
as a datatype.

datatype psy_states = happy | depressed | angry
| disgruntled | stressed

The element on the right hand side are the five injective
constructors of the new datatype psy_states. They are
simple constants, modeled as functions without arguments.
Another example is Motivation [6].3

datatype motivations = financial | political | fun
| power | competitive_advantage
| revenge | peer_recognition

A practical issue is the integration of causalities, quantifi-
cation or qualification into this basic model. For example,
if an employee is disgruntled this might give rise to a
motivation of revenge. In [6], these causalities are expressed
by drawing lines between boxes containing the classes of
the taxonomy. These dependencies resemble the relation
between variables in the System Dynamics model. Such
lines express dependencies, like ‘motivation for revenge may
be caused by anger’ but this is not a logical causality, i.e.,
anger ⇒ revenge – a logical causality expresses that anger
necessarily implies revenge motivation which might not be
the case for all actors.

The Precipitating Event or Catalyst has a separate role in
the characteristics given in the taxonomy. It can be any event
that has the potential to tip the insider over the edge into
becoming a threat to their employer. It has been called the
‘tipping point’ in the literature and can be formalized as a
predicate on actors. In order to carry over to the micro-level

3It is not clear that any of these adequately describes the motivation of
the co-pilot of the fatal Germanwings flight. Closest may come revenge,
however, in the context of possible depression it seems to be at best only
partially appropriate.

representation, it is useful to integrate this predicate with the
various characteristics about the actor in a combined state.

datatype actor_state = State motivation psy_state

Finally, the catalyst is encoded as a tipping point predicate
that describes the motivation of an actor to become an
insider.

definition tipping_point :: actor_state ⇒ bool
tipping_point a ≡ motivation a 6= {}

∧ happy 6= psy_state a

Attacks on security protocols, like the classical Needham-
Schroeder public key attack and other insider threat case
studies, show that a recurring scheme in insider attacks lies
in role identification as described in [20]. The Isabelle In-
sider framework uses this role identification in the definition
of the UasI predicate. It expresses that the insider plays a
loyal member of an organization while simultaneously acting
as an attacker.

UasI a b ≡ (Actor a = Actor b)

Insider attacks link the micro level insider characterization of
psychological disposition with the above insider behaviour
UasI. This is defined by the following rule Insider a C

for the attacker a. The parameter C is a set of identities
representing the members of an organisation that are to be
considered as safe.

Insider a C ≡
tipping_point (astate a) −→ (∀ b ∈ C. UasI a b)

Although the above Insider predicate is a rule, it is not
axiomatized. It is just an Isabelle definition i.e., it serves as
an abbreviation. To use it in an application, like the Airplane
scenario, we can use this rule as a local assumption (using
the assumes feature of locales [21]).

C. Airplane Scenario in Isabelle Insider Framework

In the Airplane scenario we use four identities: Bob,
Charly, Alice, and Eve. Bob is the pilot, Charly is the copilot,
Alice the flight attendant, and Eve is the malicious agent that
can act as the copilot. The actors that are legal participants of
the scenario are summarized in the following set of airplane
actors as a locale definition. The full Isabelle/HOL syntax for
a locale definition uses a fixes and defines keyword but
we drop this and the types for conciseness of the exposition
in subsequent definitions. The double quotes ’’s’’ create
a string in Isabelle/HOL.

fixes airplane_actors :: identity set
defines office_actors_def:

office_actors ≡ {’’Bob’’, ’’Charly’’, ’’Alice’’}

In a similarly simplified abstraction, we consider the air-
plane’s architecture as a simple graph having three locations:
cockpit, door, and cabin defined as locale definitions and
summarized in the set airplane_locations.

cockpit ≡ Location 2
door ≡ Location 1
cabin ≡ Location 0
airplane_locations ≡ { cabin, door, cockpit }

As the topology of the infrastructure, we define the following
graph where the actors Bob and Charly reside in the cockpit
and Alice in the cabin.

ex_graph ≡ Graph {
(Node cockpit [Actor ’’Bob’’, Actor ’’Charly’’],
Node door []),

(Node door [], Node cabin [Actor ’’Alice’’]) }

In an infrastructure, the actors can have credentials like PINs
or they can have roles. We define the assignment of the
credentials as predicates over actors. These predicates are
true for actors that have these credentials. For the Airplane
scenario, the credentials express that the airplane actors have
the intended roles and all possess the PIN for the door.4

ex_creds ≡ (λ x.
(if x = Actor ’’Bob’’
then role(x, ’’pilot’’) ∧ has (x,’’PIN’’)
else (if x = Actor ’’Charly’’

then role(x,’’copilot’’) ∧ has (x,’’PIN’’)
else (if x = Actor ’’Alice’’

then role(x, ’’flightattendant’’)
∧ has (x,’’PIN’’)

else True))))

Similarly, the locations can have features attached to them,
like locks. To describe the possible locking states of the door
we first define a datatype.

datatype doorstate = lock | norm | unlock

The predicate ex_locs is a predicate over locations and uses
another predicate isin_l that checks the value of a location
against values, here against the values of type doorstate.

ex_locs ≡ (λ x. if x = door then (isin_l x norm)
else (if x = cockpit

then (isin_l x air) else True))

Similar to the door, the flight status of the airplane is defined
as its position by a datatype which is used in the above
ex_locs predicate to set the position to “air” by isin_l

cockpit air.

datatype position = air | airport | ground

Changing the position of the airplane to ground, i.e., landing
it outside airports, like in emergencies or attacks, corre-
sponds to being able to perform a put action in the cockpit.

The global policy for the Airplane scenario is thus ‘no one
except airplane actors can perform put actions at location
cockpit’:

global_policy I a ≡ a /∈ airplane_actors −→

4Note that λ in the following is the usual lambda-operator of higher
order logic that describes functions. For instance, the square function can
be defined – without giving it a name – as λx.x ∗ x.

¬(enables I cockpit (Actor a) put)

To guarantee this global policy, local policies need to be
defined accordingly. These local policies are attached to
locations in the organization’s graph using a function that
maps each location to the set of the policies valid in this
location. The policies are again pairs: the first element of
these pairs are predicates over actors specifying necessary
conditions on actors; the second elements are sets of actions
that are authorized in this location for actors authenticated
by the predicates. In the following definition of local policies
for each node in the Airplane scenario, we additionally
include parameters G, ts and ls to refer to the graph, the
actors’ credentials, and the locations’ features. The predicate
@G checks whether an actor is at a given location in the
graph G.

local_policies G ts ls ≡
(λ y. if y = cockpit then
{(λ x. (∃ n. (n @G cockpit) ∧ Actor n = x), {put}),
(λ x. (∃ n. (n @G door) ∧ Actor n = x ∧

has (x, ’’PIN’’)∧
ls door = isin_l door norm), {move})

}
else (if y = door then {(λ x. True, {move})}

else (if y = cabin then {(λ x. True, {move})}
else {})))

This policy expresses that any actor can move to door and
cabin but places the following restrictions on cockpit.
put: to perform a put action, i.e., put the plane into a

new position or put the lock, an actor must be at
position cockpit, i.e., in the cockpit;

move: to perform a move action at location cockpit, i.e.,
move into it, an actor must be at the position door,
must be in possession of PIN, and door must be in
state norm.

Although this policy abstracts from the buzzer, the 30 sec
delay, and a few other technical details, it contains the
essential features of the cockpit door.

The graph, credentials, and features are plugged together
with the policy into the infrastructure Airplane_scenario.

Airplane_scenario ≡ Infrastructure ex_graph
(local_policies ex_graph ex_creds ex_locs)
ex_creds ex_locs

D. Analysis of Safety and Security Properties

Note, that all the above definitions have been implemented
as local definitions using the locale keywords fixes and
defines [21]. Thus they are accessible whenever the locale
airplane is invoked. But since definitions are essentially
abbreviations, they adhere to the principle of conservative
extension of HOL not endangering consistency. However,
we make also use of local assumptions within locales. This
is part of the reasoning process: the following formulas
are not axioms but are locally assumed to analyse the
infrastructure’s policies. The main assumption is that the

precipitating event has lead Eve to tipping point leading to
the second assumption that Eve is an Insider impersonating
Charly.

assumes Eve_precipitating_event:
tipping_point(astate ’’Eve’’)

assumes Insider_Eve : Insider ’’Eve’’ {’’Charly’’}

The above definitions and assumptions provide the model
for the Airplane attack. We can now state theorems about
the security of the model and interactively prove them in our
Isabelle/HOL framework. We first prove a sanity check on
the model by validating the infrastructure for the “normal”
case. For the pilot Bob as an airplane actor, everything
is fine: the global policy does hold. The following is an
Isabelle/HOL theorem ex_inv that can be proved automat-
ically followed by the proof script of its interactive proof.
The proof is achieved by locally unfolding the definitions of
the scenario, e.g., Airplane_scenario_def and applying
the simplifier:

lemma ex_inv:
global_policy Airplane_scenario ’’Bob’’

by (simp add: Airplane_scenario_def
global_policy_def airplane_actors_def)

We can also show that the same holds for the copilot
Charly.

global_policy Airplane_scenario ’’Charly’’

However, since Eve is an insider who can impersonate
Charly, she will ignore the global policy. This insider threat
can now be formalized as an invalidation of the global
company policy for ’’Eve’’ in the following “attack”
theorem named ex_inv2:

theorem ex_inv1:
¬ global_policy Airplane_scenario ’’Eve’’

The proof of this theorem consists of a few simple steps
largely supported by automated tactics. Thus Eve can get
access to the cockpit and put the position to ground – crash
the plane. The attack is proved above as an Isabelle/HOL
theorem.

This analysis follows closely the analysis of Insider attack
patterns, like the Entitled independent [1], and applications
to the Internet of Things (IoT) [22]. The formalization and
proofs are very similar.

For the current application to the Airplane scenario, the
analysis must go beyond the standard steps to provide a
better understanding of the risks and possible improvements
to the policies and the analysis techniques.

Considering the requirements on Safety and Security that
have evolved over the years as sketched in Section II, we can
distinguish in the current airplane policies two requirements,
one which we describe here as

Safety:if the actors in the cockpit are out of action, there
must be a possibility to get into the cockpit from
the cabin, and

Security: if the actors in the cockpit fear an attack from
the cabin, they can lock the door.

Based on the specification of the Airplane scenario, we can
express Safety quite concisely by stating that airplane actors
can move into the cockpit.

Safety I a ≡ a ∈ airplane_actors
−→ (enables I cockpit (Actor a) move)

Security can nearly as simply be defined as the property that
no Actor can move into the cockpit if the door is on lock.

Security I a ≡ (lspace I door = isin_l door lock)
−→ ¬(enables I cockpit (Actor a) move)

This simple formalization intuitively illustrates how comple-
mentary the properties Safety and Security are: the conclu-
sions are negations of each other.

Given the Airplane scenario as defined in the previous
section, Safety and Security can be proved. For example,
Safety holds for the actor Alice (but similarly also for any
other airplane actor). We prove the following lemma.

lemma Safety: Safety Airplane_scenario ’’Alice’’

Similarly, in a slightly more complex proof, we can show
Security for the pilot Bob (but which also holds for any
other actor).

lemma Security: Airplane_scenario ’’Bob’’

However, even though this simple and short formalization
and proof of the Safety and Security properties is feasible, it
is not satisfactory. Because of the inbuilt complementarity of
the two requirements, in this model, we have both properties
and – at the same time – as we could show, the insider
attack is still possible. We need to understand the situation
better and formalize the attack in more detail to check
improvements. We therefore consider the changed scenario
which corresponds to a more concrete attack scenario, i.e.,
the situation when the pilot has moved out of the cockpit. To
formalize and analyze this we consider next a re-definition
of the infrastructure including its architecture and policies.

E. Refined Attack Scenario

The scenario representing the airplane in danger, has a
graph in which the actor Bob, the pilot, is in the cabin rather
than the cockpit.

ex_graph’ ≡ Graph {
(Node cockpit [Actor ’’Charly’’], Node door []),
(Node door [],
Node cabin [Actor ’’Bob’’, Actor ’’Alice’’]) }

The credentials of the actors stay the same but the location
features’ settings now encode that the door is locked.

ex_locs’ ≡ (λ x. if x = door then (isin_l x lock)
else (if x = cockpit

then (isin_l x air) else True))

The local policies stay the same as before but we use the
updated graph and location settings when re-defining the
scenario.

Airplane_in_danger ≡ Infrastructure ex_graph’
(local_policies ex_graph’ ex_creds ex_locs’)
ex_creds ex_locs’

Analyzing this new scenario, we first can prove that – as
before – the insider attack by Eve is possible, i.e., the global
policy does not hold. This means that, fatally, the copilot can
move the plane to the ground although the pilot is not in the
cockpit.

¬ global_policy Airplane_in_danger ’’Eve’’

Can we express the improved version of airplane safety
and security relations as described in Section II which
requires two authorized personnel to be present at all times
in the cockpit? The following adapted set of local policies
encodes this. It imposes that in order to perform action put

at location cockpit the number of actors at that node in
the graph G should be at least 2. The predicate actors_at

selects the actors list that is part of every node in a graph and
the Isabelle inbuilt function length produces the number of
elements in a list.

local_pol_four_eyes G ts ls ≡
(λ y. if y = cockpit then
{(λ x. (2 ≤ length(actors_at G y)), {put}),
(λ x. (∃ n. (n @G door) ∧ Actor n = x ∧

has (x, ’’PIN’’)∧
ls door = isin_l door norm), {move})}

else (if y = door then {(λ x. True, {move})}
else (if y = cabin then {(λ x. True,{move})}

else {})))

With these extensions, we can define a scenario with the
door on lock and the pilot Bob outside.

Airplane_in_danger ≡ Infrastructure ex_graph’
(local_pol_four_eyes ex_graph’ ex_creds ex_locs’)
ex_creds ex_locs’

The new policy disables any actor in the cockpit to put the
position to ground.

global_policy Airplane_not_in_danger a

F. Extensions to Framework
At this point, we have seen that the Isabelle Insider

framework allows to model and analyze the Airplane sce-
nario by using the standard methodology adding a few
context specific Safety and Security properties. However,
we have also seen that a detailed analysis of the existing
and the changed policies necessitates to change to scenario
Airplane_in_danger. This is a scenario that we have
extracted from an actual insider attack. How can we ensure
that there are no other scenarios that would invalidate the
new policy?

The approach taken in the Isabelle Insider framework
explores the possible behaviours of actors by a logical

exploration of the enables predicate. This exploration starts
from one specific infrastructure. As we have seen in this
case study, we can model different scenarios by adapting
the infrastructure. In the remainder of this section, we want
to sketch an extension of the Isabelle Insider framework that
generalizes this approach.

We introduce a relation on infrastructures as an inductive
predicate state_transition and introduce the infix nota-
tion I→i I

′ to denote that infrastructures I and I’ are in
this relation.

inductive state_transition ::
[infrastructure, infrastructure] ⇒ bool ("_ →i _")

The definition of this inductive relation is given by a set of
rules. To give an impression of this definition, we show here
just the rule for the move action.

move: J G = graphI I; a @G l;
l nodes G; l’ ∈ nodes G;
a ∈ actors_graph(graphI I);
enables I l (Actor a) move;
I’ = Infrastructure (move_graph_a a l l’

(graphI I))(delta I)(tspace I)(lspace I)
K =⇒ I →i I’

IV. DISCUSSION AND CONCLUSIONS

In this paper, we have provided an overview of the
development of airplane Safety and Security leading to a
model and analysis of an insider attack on an airplane. We
have used the Isabelle Insider framework for the formal
modeling. The case study has shown that the framework
can be applied. It has been possible to express Safety and
Security properties in a simple fashion and explore changed
policies.

In comparison to previous work by the same authors also
in collaboration with others, we have started off investigating
Insider threats with the approach of invalidation of security
policies in connection with model checking [20], [23]. This
early approach also used infrastructure models of organiza-
tions, actors and policies but necessarily had to be simpler
since model checking does only support finite models. The
use of sociological explanation has been pioneered in [24]
already with first formal experiments in Isabelle. Finally,
the Isabelle Insider framework has been established [1] and
has been validated on two of the main three Insider patterns
the Entitled Independent and Ambitious Leader. Recently an
application to Internet of Things (IoT) Insiders [22] has con-
solidated the applicability of the Isabelle Insider framework
but also illustrated an extension of the framework to attack
trees. Attack trees have been added to the Isabelle Insider
framework [25] to provide the possibility to refine attacks
once they have been identified. This refinement is formalized
together with the notion of attack trees. Another extension
towards probabilistic modeling using Bayes networks and
Markov decision processes has been explored in [26] not

yet within the Isabelle framework but using Matlab and the
Prism model checker.

Beyond the current state of the Isabelle Insider framework,
the application presented in this paper has shown that a more
thorough Insider analysis might be achieved by generalizing
the approach of considering different infrastructures by
defining an inductive relation on them. We have intentionally
named this relation ‘state transition’ to refer to the idea
of model checking that has initially inspired the logical
approach. In fact, a possible avenue to further explore
this extension might lead to an embedding of a reasoning
principle to the concepts of model checking. On top of
the induction relation, a notion of validity of formulas in
a (Kripke)-structure possibly in combination with temporal
or other modalities is a possible avenue of future research.
Isabelle/HOL supports such extensions, see for example
[27]. Additionally we consider game theoretic extensions
to the framework following the technical advances made in
formalising auctions [28] and modeling [29].

Beyond the purely technical success of the application, a
word of caution has been given in the introduction and must
be repeated here: necessarily our model abstracts from many
details of the application and we can only rely on proved
results in as far as we trust that the abstraction only omits
irrelevant details. Consistency of proved results with respect
to this model is however guaranteed by the Isabelle theorem
prover.

In 321 BC, the Samnium general Gaius Pontius [30] set a
trap for the Roman army and the Romans had to surrender.
As the story goes, he sent for advice to his father what
to do. His father answered that he should let the Roman
army retreat in honour and make friends with Rome this
way. Gaius did not like the idea as it would let off the
Romans too lightly and he asked his father again. This time
his father answered he should slaughter the whole Roman
army of 50,000 soldiers since this would destroy the Roman
capability to retaliate for a very long time. Gaius did not like
this idea either since it would have meant a big bloodbath.
He asked his father a third time for advice and queried about
a middle way. His father advised him against this, but against
his father’s advice Gaius Pontius chose a middle way and
dismissed the Romans after publicly humiliating them. They
took revenge and Gaius Pontius lost later his life.

Today policy makers still face the dilemma of Gaius
Pontius between the two extremes of being fully trusting,
or trying to be in complete control. The middle way may
still lead to consequences that should be avoided under any
circumstance. For instance, if the copilot of the German-
wings flight had not to fear dismissal and in consequence
personal economic ruin he could have been more open
about his depression and it might not have come to the
tragedy. Likewise, if controls had been more stringent and
his depression had been communicated to the airline he
would probably not have been in control of the aircraft at

the time and again it might not have come to the tragedy.
This does not offer an answer to regulators or airlines how
to handle the dilemma, since a more lenient approach may
lead to a higher number of pilots with serious health issues
and a more stringent approach may lead to the situation that
pilots in need for help would hide their condition. It only
summarizes how complicated the matter is and that there
are no easy answers. Formalization may, however, help to
understand the possible consequences of policy decisions.

REFERENCES

[1] F. Kammüller and C. W. Probst, “Modeling and verification
of insider threats using logical analysis,” IEEE Systems
Journal, Special issue on Insider Threats to Information
Security, Digital Espionage, and Counter Intelligence,
2016, accepted for publication. [Online]. Available: http:
//dx.doi.org/10.1109/JSYST.2015.2453215

[2] Wikipedia, “List of aircraft hijackings,” accessed December
2015. [Online]. Available: https://en.wikipedia.org/wiki/List
of aircraft hijackings

[3] D. M. Cappelli, A. P. Moore, and R. F. Trzeciak, The
CERT Guide to Insider Threats: How to Prevent, Detect,
and Respond to Information Technology Crimes (Theft,
Sabotage, Fraud), 1st ed., ser. SEI Series in Software
Engineering. Addison-Wesley Professional, Feb. 2012.
[Online]. Available: http://www.amazon.com/exec/obidos/
redirect?tag=citeulike07-20\&path=ASIN/0321812573

[4] F. L. Greitzer, J. R. Strozer, S. Cohen, A. P. Moore,
D. Mundie, and J. Cowley, “Analysis of unintentional insider
threats deriving from social engineering exploits,” in Pro-
ceedings of the third IEEE Workshop on Research in Insider
Threats, WRIT’14. IEEE, 2014.

[5] E. T. Axelrad, P. J. Sticha, O. Brdiczka, and J. Shen, “A
bayesian network model for predicting insider threats,” in
2013 IEEE Security and Privacy Workshops. Los Alamitos,
CA, USA: IEEE Computer Society, 2013, pp. 82–89.

[6] J. R. C. Nurse, O. Buckley, P. A. Legg, M. Goldsmith,
S. Creese, G. R. T. Wright, and M. Whitty, “Understanding
Insider Threat: A Framework for Characterising Attacks,” in
IEEE Security and Privacy Workshops (SPW). IEEE, 2014.

[7] D. v. Oheimb, M. Maidl, and R. Robinson, “Security architec-
ture and formal analysis of an airplane software distribution
system,” in 26th Congress of the International Council of the
Aeronautical Sciences (ICAS), AIAA, Ed. Proceedings on
CD-ROM available from secr.exec@icas.org, 2008, pp. 1–12,
http://ddvo.net/papers/ICAS08.html.

[8] M. Bishop, H. M. Conboy, H. Phan, B. I. Simidchieva, G. S.
Avrunin, L. A. Clarke, L. J. Osterweil, and S. Peisert, “Insider
threat identification by process analysis,” in Proceedings of
the third IEEE Workshop on Research in Insider Threats,
WRIT’14. IEEE, 2014.

[9] Wikipedia, “September 11 attacks,” accessed January 2016.
[Online]. Available: https://en.wikipedia.org/wiki/September
11 attacks

[10] The Star, “Jet cockpit doors nearly impossible to
open by intruders,” accessed January 2016. [Online].
Available: http://www.thestar.com/news/world/2015/03/26/
jet-cockpit-doors-nearly-impossible-to-open-by-intruders.
html

[11] “Reinforced cockpit door – description & procedures,”
September 2002, an Airbus film directed by Bertrand
Sirven. Accessed January 2016. [Online]. Available: https:
//www.youtube.com/watch?v=ixEHV7c3VXs

[12] Wikipedia, “Germanwings flight 9525,” accessed January
2016. [Online]. Available: https://en.wikipedia.org/wiki/
Germanwings Flight 9525

[13] F. Kammüller, “Isabelle formalisation of an insider threat
framework with examples entitled independent, ambitious
leader including attack trees and examples iot and air-
plane,” 2016, available from https://www.dropbox.com/sh/
rx8d09pf31cv8bd/AAALKtaP8HMX642fi04Og4NLa?dl=0.

[14] C. G. Hempel and P. Oppenheim, “Studies in the logic of
explanation,” Philosophy of Science, vol. 15, pp. 135–175,
April 1948.

[15] H. Esser, Soziologie – Allgemeine Grundlagen. Campus,
1993.

[16] F. Kammüller and L. C. Paulson, “A formal proof of sylow’s
theorem,” Journal of Automated Reasoning, vol. 23, no. 3,
pp. 235–264, 1999.

[17] L. Henrio, F. Kammüller, and M. Rivera, “An asynchronous
distributed component model and its semantics,” in Formal
Methods for Components and Objects, ser. LNCS, vol. 5751.
Springer, 2009, pp. 159–179.

[18] M. J. Martinko, M. J. Grundlach, and S. C. Douglas, “Toward
an integrative theory of counterproductive workplace be-
haviour,” International Journal of Selection and Assessment,
vol. 10, no. 1–2, pp. 36–50, 2002.

[19] B. Marcu and H. Schuler, “Antecedents of counterproductive
behaviour at work: a general perspective,” Journal of Applied
Psychology, vol. 89, no. 4, p. 647, 2004.

[20] F. Kammüller and C. W. Probst, “Combining generated data
models with formal invalidation for insider threat analysis,” in
IEEE Security and Privacy Workshops (SPW). IEEE, 2014.

[21] F. Kammüller, M. Wenzel, and L. C. Paulson, “Locales
- a sectioning concept for isabelle,” in Theorem Prov-
ing in Higher Order Logics, 12th International Con-
ference, TPHOLs’99, ser. LNCS, Y. Bertot, G. Dowek,
A. Hirschowitz, C. Paulin, , and L. Thery, Eds., vol. 1690.
Springer, 1999.

[22] F. Kammüller, J. R. C. Nurse, and C. W. Probst, “Attack
tree analysis for insider threats on the iot using isabelle,” in
Human Aspects of Information Security, Privacy, and Trust
- Fourth International Conference, HAS 2015, Held as Part
of HCI International 2016, Toronto, ser. Lecture Notes in
Computer Science. Springer, 2016, invited paper.

[23] F. Kammüller and C. W. Probst, “Invalidating policies using
structural information,” in WRIT’13. IEEE, 2013.

[24] J. Boender, M. G. Ivanova, F. Kammüller, and G. Primiero,
“Modeling human behaviour with higher order logic: Insider
threats,” in STAST’14. IEEE, 2014, co-located with CSF’14
in the Vienna Summer of Logic.

[25] C. W. Probst, F. Kammüller, and R. R. Hansen, “Formal mod-
elling and analysis of socio-technical systems,” in Nielsens
Festschrift, ser. LNCS. Springer, 2016, in print.

[26] T. Chen, F. Kammüller, I. Nemli, and C. W. Probst,
“A probabilistic analysis framework for malicious insider
threats,” in Human Aspects of Information Security, Privacy,
and Trust - Third International Conference, HAS 2015,
Held as Part of HCI International 2015, Los Angeles, CA,
USA, August 2-7, 2015. Proceedings, ser. Lecture Notes
in Computer Science, T. Tryfonas and I. G. Askoxylakis,
Eds., vol. 9190. Springer, 2015, pp. 178–189. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-20376-8 16

[27] S. Helke and F. Kammüller, “Verification of statecharts using
data abstraction,” International Journal of Advanced Com-
puter Science and Applications, 2016, to appear.

[28] D. Liu, X. Wang, and J. Camp, “Game-theoretic modeling and
analysis of insider threats,” International Journal of Critical
Infrastructure Protection, vol. 1, pp. 75–80, 2008.

[29] M. B. Caminati, M. Kerber, C. Lange, and C. Rowat, “Sound
auction specification and implementation.” ACM, 2015.

[30] “Gaius Pontius, Sabine leader,” 2015, accessed Janary 2016.
[Online]. Available: http://www.unrv.com/bio/gaius-pontius.
php

[31] Proceedings of the third IEEE Workshop on Research in
Insider Threats, WRIT’14. IEEE, 2014.

