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Abstract: In the modern era of digitization, the analysis in the Internet of Things (IoT) environment
demands a brisk amalgamation of domains such as high-dimension (images) data sensing technologies,
robust internet connection (4 G or 5 G) and dynamic (adaptive) deep learning approaches. This is
required for a broad range of indispensable intelligent applications, like intelligent healthcare systems.
Dynamic image classification is one of the major areas of concern for researchers, which may take
place during analysis under the IoT environment. Dynamic image classification is associated with
several temporal data perturbations (such as novel class arrival and class evolution issue) which cause
a massive classification deterioration in the deployed classification models and make them in-effective.
Therefore, this study addresses such temporal inconsistencies (novel class arrival and class evolution
issue) and proposes an adapted deep learning framework (ameliorated adaptive convolutional neural
network (CNN) ensemble framework), which handles novel class arrival and class evaluation issue
during dynamic image classification. The proposed framework is an improved version of previous
adaptive CNN ensemble with an additional online training (OT) and online classifier update (OCU)
modules. An OT module is a clustering-based approach which uses the Euclidean distance and
silhouette method to determine the potential new classes, whereas, the OCU updates the weights of
the existing instances of the ensemble with newly arrived samples. The proposed framework showed
the desirable classification improvement under non-stationary scenarios for the benchmark (CIFAR10)
and real (ISIC 2019: Skin disease) data streams. Also, the proposed framework outperformed against
state-of-art shallow learning and deep learning models. The results have shown the effectiveness and
proven the diversity of the proposed framework to adapt the new concept changes during dynamic
image classification. In future work, the authors of this study aim to develop an IoT-enabled adaptive
intelligent dermoscopy device (for dermatologists). Therefore, further improvements in classification
accuracy (for real dataset) is the future concern of this study.

Keywords: adaptive deep learning algorithm; dynamic image classification; Internet of Things (IoT);
concept drift; high dimensional stream analysis
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1. Introduction

The potential opportunities offered by the abundance of sensors, actuators and communications
in the Internet of Things (IoT) environment produces massive and non-stationary input (image)
data [1], which demands real-time, online and adaptive analysis approaches [2]. More specifically,
real-time and dynamic image classification has manifested as an imperative requirement for analyzing
the several critical applications [3]. However, the static nature of existing deep learning algorithms
(for image classification) are not appropriate for such a dynamic environment and requires adaptive
approaches to handle the changes (concept drift) during dynamic image classification tasks [4].
Such issues are particularly prominent in applications deployed over a non-stationary stream where
data is continuously provided to the system. Many studies [5–9] in the past decade have focused on
concept drift challenges when performing classification over a data stream. However, most of the
studies proposed solutions are for non-imaging data streams (which possess low dimensional data).
In previous studies [10,11], the authors of this study have highlighted the issue of concept drift for
high-dimensional (imagery) streams. More specifically, in a study [11] the authors have presented few
potential types of concept drift (novel class arrival and class evolution) issues, considering a stream of
images whose labels are predicted on-the-fly for automatic categorization. Similar problems have also
been addressed in the literature as a critical issue during online learning [12–15]. A recent study [12]
discussed the automatic organization of images occurring on social media websites or search engines
as a typical application. This study explains that traditional image classifier (trained on a known set of
classes) substantially decreases the performance and becomes obsolete over time. The possible reason
for this performance degradation is due to the change in image patterns or unknown image samples.
In the scenarios mentioned above, the streaming image input may differ from those used to train the
classifier, whereas this study only proposes the change detection mechanism for such changes.

Furthermore, some studies [14,15], also discussed the possible issue of concept drift during
imagery stream analysis, such as real-time social media application (SMA). SMA, by classifying
the registered user images, could recognize user faces in the future. The future images of the user
may change due to aging, a haircut or some other alteration that has occurred in the face of users
(virtual drift). The sample features may be as points, edges or objects. Therefore, in the case of
SMA, the features of the existing users may vary, or the new user class can be introduced (real drift),
or both conditions can take place at same step (hybrid drift). Because at the required training time,
machine learning models are trained through extracted features from the training dataset in the form of
feature vectors. A learner can also only classify the testing dataset (image), based on existing provided
features-based knowledge. However, in online SMA, the features offered at the time of training might
change at different timesteps, which will adversely affect the classification performance of the existing
models or may make them obsolete (not capable of handling new changes). In the existing studies,
streaming images differ from those used to train the classifier and mostly address the two challenges
typically relying on mechanisms, namely (1) detecting changes in a data stream and (2) adopting the
underlying modifications accordingly. However, it is essential to figure out the possible deterioration
of the model caused by high dimensional data stream, such as hyperspectral, multispectral and colour
imagery streams. In a study [13], authors have addressed such issue for complex multispectral image
analysis, where authors proposed a framework (adaptive CNN ensemble) to adapt the new spectral
bands arrival during multispectral image classification. However, the proposed framework was limited
only for the spectral band adaptation.

In summary, the current solutions for handling uncertainty in streaming data have mostly focused
on one aspect, like highlighting the importance of concept drift handling or providing a change
detection mechanism or proposing an adaptive approach or focusing on the specific type of concept
drift (not generic). Interestingly, most of the studies don’t provide a mechanism to perform on-the-fly
learning (learning while the model is already deployed) and perform offline learning (offload model
and retrain) which is not desirable. Hence, it is essential to provide a complete framework (a perfect
solution including detection, adaptation and online learning/on-the-fly learning), which is able to
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detect changes and adapt the changes after model deployment (on-the-fly) for a variety of concept
drifts in high-dimensional streams. Therefore, in this study, the authors present an improved version of
a previous framework called as ameliorated adaptive CNN ensemble framework. The improvements
in the current proposed framework make it generic enough to also tackle the novel class arrival and
class evolution issue during online image classification.

Contributions

The following are the key contributions of this study:

(1) To propose an ameliorated (improved) version of the adapted CNN ensemble framework to
handle novel class and class evolution issue during online imagery stream.

(2) To validate the classification performance (in terms of accuracy) of ameliorated framework after
novel class and class evolution using the benchmark and real dataset.

(3) To evaluate the performance of proposed ameliorated framework with state-of-the-art shallow
learning (ensemble SVM and random forest) and deep learning (ensemble CNN) models.

Section 2 of this study briefly surveys the related work and formulates theoretical foundation
of novel class arrival and class evolution issues. Section 3 proposes an ameliorated adaptive CNN
ensemble framework to handle the novel class and class evolution problem. Section 4 discusses the
experiments and obtained results in detail. More specifically, in Section 4, the proposed model was
evaluated and a comparative analysis with state-of-the-art image classification models is presented.
Finally, Section 5 presents the conclusions and future work.

2. Related Work and Theoretical Foundation

In the literature several studies have proposed unsupervised learning-based approaches to detect
the novel class arrival. An earlier study [16] suggested a cluster-based novel class detection technique
for stream data classification. This study only concentrated on the single class problem (it is assumed
that only one class is known, and the rest of the classes are novel). Furthermore, the provided
solution was only applicable to binary classification tasks. Later, numerous attempts have been
made to improve this approach further. For example, a study [17] proposed the novel class detection
technique if the total number of classes in streams are variable (not fixed) and has proven empirically
the effectiveness of this solution for multi-class classification. This study mainly used the K-means
clustering approach for novel class detection. This study proposed a q-NSC technique, which is outlier
detection from the dense clusters and density measure (intra-class and inter-class) in observed feature
space. A similar idea was adopted in the SAND framework [18] for novel class detection. SAND
detects the novel class arrival by analyzing the confidence in predicting instances from evolving data
streams. The SAND approach facilitates identifying the novel class and class evolution issues by
monitoring the class performance. Results showed that SAND is an effective solution despite the fact
it only uses a limited amount of labelled data. However, SAND is computationally expensive due
to exhaustive invocation of the change detection module. Later, to overcome the SAND deficiency,
an efficient framework was proposed by [19]. This framework was based on SAND approach, which
exploits the dynamic programming, and executes the change detection module selectively to reduce
the computational complexity.

Another existing study [20] presented the matrix sketches-based approach (SENCMaS) to overcome
the novel class detection issue. SENCMaS measures the distance that is far away from all various
directions in the global sketch. The core contribution of this study was to: (1) detect the emerging
new classes, (2) classify the trained classes and (3) update the model in the streams by maintaining
the low-dimensional matrix sketches (it continuously updates after further improvement). However,
the existing approaches have a strong assumption about intra-class cohesion and inter-class separation
property in the data and these approaches fail to hold the same approach in a high dimensionality
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scenario. Besides, these approaches also do not address the feature-wise changes (class evolution) in
sample data feature space.

Recently, several studies have applied neural network-based methods to handle the novel
class adaptation issue. More specifically, the state-of-art convolutional neural network (CNN)-based
approaches have been found very useful to handle high dimensionality datasets due to CNNs’ capability
to extract low (pixel) level features. A study [21] demonstrated a softmax prediction probability baseline
for error and outline detection to identify the newly arrived classes in data streams. The proposed
abnormality module provided a more reliable way to discriminate the existing classes and new classes
by performance degradation of the classifier. This study showed high confidence probabilities (+90%)
on Gaussian noise samples from the MNIST dataset. Besides, a few studies [22,23] proposed an
enhanced version of this approach using the temperature scaling mechanism and input preprocessing
to segregate the existing and newly arrived classes. The input data preprocessing mechanism is
achieved using slight perturbations on the direction of the input instances’ gradients. These studies
focused on the high dimensional datasets such as imagery datasets (MNIST and CIFAR-10), but yet
does not cover the adaptability or online training mechanism adequately. In 2018, a study [24] proposed
a semi-supervised stream classification framework that utilizes a CNN classifier called convolutional
open-world classifier. This framework was an adaptive solution to handle the novel class arrival issue
and mainly covered the imagery streams (greyscale, and RGB images) with an intrinsic high-quality
similarity metric, which is trained using multitask learning. However, this solution only focused on
novel class adaptation (not on class evolution or new sample arrival). Moreover, it did not cover the
online training aspect (which is the primary factor for adaptation). Mostly, in literature, the online
training is achieved for low dimensionality data using some incremental learning strategy. Typically,
incremental learning is applied in a scenario where new classes are evolved continuously. In the case
of novel class arrival, only a few classes are available in the beginning, and new classes emerge later.

Based on an intensive literature review on the relevant topic, this study concludes that the issue of
novel class and class evaluation has been highlighted as a critical problem during high-dimensionality
stream analysis. In existing studies, the provided solutions are mainly focused on the novel class
detection problem (to detect arrival of a new class) and ignore the adaptation part. Despite this fact,
the findings in the existing studies are advantageous for novel class detection modules. However,
the issue of novel class arrival and class evolution can only be resolved using a complete framework
which possesses the capability to: (1) detect novel classes and novel samples in existing classes (class
evolution), (2) train the detected feature on-the-fly, (3) update the classifier without offloading and
(4) be able to address this issue in high dimensionality feature space.

Problem Formulation

The statistical properties of input data may vary at different time-steps (additional features can
arrive), like when a new class appears in the stream (novel class arrival) or some new features appear in
the existing classes (class evolution) which never have been seen (trained) by the classifier. Therefore,
the classifier will misclassify the newly arrived samples or its performance will be degraded in samples
with additional features. In [11], this issue has been discussed as a potential concept drift in imagery
streams. However, the problem is that assuming the learner (M) at time t (Mt) trains with a given
training data D =

{
(x i , y i)

}m
t=1, where xi ∈ Rd is a sample instance x = (x1, x2, . . . . . . , xm) and yi

∈ associated class labels y = (y1, y2, . . . . . . , yc). Furthermore, the M is deployed for non-stationary
stream environment for classification, where streaming data S =

{
(x t , y t)

}∞
t=1, such as xt ∈ Rd and yt

∈ y′ = (y1, y2.., yc, yc + 1, . . . .., yc′): (c′> c). The goal is to detect and update the changes observed in
the stream such that M(xt)→y′. Note that for arbitrary classes Cm and Cn ∈ ′ (Cm , Cn) if

{
xi, xj

}
∈ Cm

and {xk} ∈ Cn, it is possible that ||x i− x k||2 <
∣∣∣∣∣∣x i− x j

∣∣∣∣∣∣
2. Similarly, in the case of class evolution, when

the sample instances x = (x1, x2, . . . . . . , xm) inside existing classes are changed it make the learner (M)
ineffective, for example, streaming data S =

{
(x t , y t)

}∞
t=1, where xt ∈ Rd and xt = (x1, x2.., xm + 1):

(c′> c) and yt ∈ y = (y1, y2, . . . . . . , yc). Based on this problem formulation, this study poses some
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relevant research questions (discussed in Table 1) and investigates their research objectives, which are
discussed in the relevant sections.

Table 1. The raised research questions (RQ’s), research objectives (RO’s) and relevant section.

Research Questions Research Objectives Section

RQ1: How to handle the issue of
novel class arrival and class

evolution in the non-stationary
high-dimensional stream?

RO1: To propose an ameliorate (improved) version
of adapted CNN ensemble (online training and

online classifier update) using optimized clustering
approach to handle novel class and class evolution

issue in online imagery stream.

Section 3

RQ2: How to ensure the
classification performance of the
model after noticing a novel class

and class evolution?

RO2: To validate the classification performance of
the proposed framework after novel class and class
evolution using the benchmark and real dataset (a

challenging dataset).
RO3: To evaluate the performance of the proposed

framework with state-of-art shallow learning
(Ensemble SVM and Random Forest) and deep

learning (Ensemble CNN).

Section 4

3. Ameliorate Adaptive Convolutional Neural Network (CNN) Ensemble Framework

This section elaborates the proposed ameliorate adaptive CNN ensemble framework, as shown
in Figure 1. The proposed ameliorated framework introduces significant improvements over
previous adaptive CNN ensemble frameworks [13] (limited to new spectral band adaptation in
online multispectral image classification) and handles the novel class and class evolution problems
during online color image classification. In the ameliorated adaptive CNN ensemble framework,
the authors used the diversity of the ensemble mechanism from a previous model (used to adapt new
spectral bands), which helps handle the possible arrival of the new classes and samples.

Algorithm 1: Dynamic Ensemble Classifier Module of Ameliorated Adaptive CNN Ensemble Framework

Input: The DEC module is an ensemble that possesses the instances I = (I1, I2, . . . ..In). DEC is trained on
training data contains classes such as, Cntrain: (cn1, cn2, . . . . . . .cni) and classifying the input sample from an
imagery data stream DS. Such that DS possess input sample image S = (s1,s2 . . . ..sn) may belongs to classes
Cn: (cn1, cn2, . . . . . . .cni„„„„,cni+j,) at time t+1. Whereas samples from cni+j are unknown image sample to
DEC module.
Initialization: Th = 50 (threshold value for performance)
1: Counter:1
2: While data source > null
//Valid input data source
3: Classify (S), via single instance optimized CNN classifier [13]
4: Activate performance feedback module to determine the misclassified images
5: Determine the ensemble accuracies using voting
6: if % accuracy for S >= Th //if sample does not misclassify
7: Repeat step 3, 4, 5
8: if % accuracy for S<=Th //if sample misclassify
9: Save the S //Save misclassified sample in training repository
//as potential new classes or new samples in existing classes
10: Counter++

11: Repeat step 3, 4, 5
12: if counter = 200 //number of misclassified instances reached to 200
13: determine the possible new classes by using Algorithm 2.
14: Repeat step 3
15: End while
Output: DEC module with (in+1) instances, and performing classification using Cni+j.
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More precisely, the proposed novel ensemble approach contributes the diversity to the ensemble
system in a simple yet effective manner. Also, the authors of this study have used the same single
instance optimized CNN model [13] (carefully designed and fine-tuned during many experiments)
as an instance of the ensemble. Further, they trained the instance using the CIFAR10 and ISIC 2019
(skin disease) datasets. The ameliorated adaptive CNN ensemble framework contains two core
contributions: (1) an online training (OT) module and (2) an online classifier updater (OCU) module
that majorly contribute to handle the novel class and class evolution problem. The authors of this study
also have tweaked the internal structure of the dynamic ensemble classifier (DEC) of the previous
framework, defined in Algorithm 1. The detailed steps of OT and OCU modules are presented in
Algorithms 2 and 3, respectively.

Algorithm 2: Online Training Module of Ameliorate Adaptive CNN Ensemble Framework

Assuming online image classification system has misclassified image samples, which are stored in the new
sample repository x1, x2, x3, . . . . . . xn belongs to classes y1, y2, . . . ..yn, which are unknown. Each x contains
the features f1, f2, f3 . . . . fn. Also, the number of possible clusters K > 0.
Initialization:
1: Determine the value of K,
2: Keep the centroids in the sample repository at random feature space
3: Let image samples clusters by k-means clustering into K cluster, where K > 0
4: Measure of well assigned the ith data point is to its cluster by below equation;
a(i) = 1

C(i)−1
∑

C(i), i , d(i, j)
//C(i): The clusters are assigned to the ith sample data point
//|C(i)|: The number of sample data points in the cluster are marked to the ith data point
5: Defined as the average dissimilarity to the closest cluster which is not it’s the cluster
b(i) = mini , j( 1

C( j)
∑

j €C( j) d(i, j)
6: Determine the Silhouette coefficient s(i) is given by

s(i) b(i)−a(i)
max(a(i), b(i))

//Determine the average Silhouette for each value of k, and the value of k that has the maximum value of
//s(i) is considered the optimal, number of clusters for the unsupervised learning algorithm.
7: K <- Max(s(i)) //K=maximum value of s(i)
8: Put K points randomly (as the initial centroids) from the image dataset
9: Calculate Euclidean distance of each point (image in the dataset) by below formula
//with the identified K points (cluster centroids).
//In general, for an n-dimensional space, the distance is
10: Rearrange the image data point to the closest centroid
//using the Euclidean distance
11: Update the centroid position
//by taking the average of the image data points in each cluster group
12: Repeat step 8, 9 and 10 till the centroids don’t upgrade
13: Segregate the obtained clusters image data into hypothetical classes, such as num. of
clusters = number of classes i.e., Cluster n <- Yn(x) <- (x1, x2, x3, . . . ..xi)
//such as if three (3) clusters then three hypothetical classes will be created
14: Create a new optimized CNN instance, where the number of instances = number of clusters
15: Train each new instances with each newly identified classes
16: Determine novel class or class evolution
If Yn <- Yoldn the update Yold <- Yn using Algorithm 3.
Else Add instance to the DEC module
17: End
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Algorithm 3: Online Classifier Update Module of Ameliorate Adaptive CNN Ensemble Framework

This algorithm outlines the Online Classifier Update module for existing instance updating on the new sample.
A new optimized CNN classification instance Inew, Such as Inew is trained on new obtained classes. Such that
streaming data S =

{
(x t , y t)

}∞
t=1, where xt ∈ Rd and xt = (x1, x2.., xm + 1): (c′> c) and yt ∈

y = (y1, y2, . . . . . . , yc). And Iold is old optimized CNN classification instance. Whereas Cn is the are new
classes obtained posses the dataset Dc = (d1, d2.., dm Hence, Updated existing optimized CNN instance
Iupdated, Such as Iupdated <- Iold + Inew

Input: A new optimized CNN classification instance Inew

Output: Updated existing optimized CNN instance Iupdated
1: Determine the Iold from the DEC module
//select the appropriate old instance to be updated,
2: Train Inew with Cn, such as Cn contains Dc = (d1, d2.., dm)
//train the new classification instance with the new obtained class
3: Compare the weight of Iold and Inew

//using the weight difference algorithm
4: Update the weight of Iold with Inew, such as Iupdated <- Iold + Inew

5: End

3.1. Online Training Module

Fundamentally, the online training (OT) module segregates the misclassified image samples into
the relevant classes. For that reason, this study has selected an unsupervised learning strategy to
identify the possible classes from the available sample images. This study uses K-means clustering
to determine the potential number of clusters (K) from the unknown data samples. However, to
determine the initial value of K, the authors have of this study have applied the elbow and silhouette
method and chosen the silhouette method due to its better performance. The silhouette is a measure of
how close each point in one cluster is to points in the neighboring clusters and thus determine a more
appropriate number of clusters. The coefficient varies between −1 and 1, which implies the nearest
distance of that data point (image) and determine its actual cluster (1 implies that the instance is close
to its cluster is a part of the right cluster, and −1 means that the value is assigned to the wrong cluster).
The authors of this study have observed that silhouette is more accurate than elbow method (makes the
decision regarding the optimal number of clusters more meaningful and clearer) but is computation
expensive (as the coefficient is calculated for every instance). After determining the optimized value of
K, they applied the K-means clustering algorithm and used the cosine and Euclidean distance method.

3.2. Online Classifier Update Module

The online classifier update (OCU) approach is inspired by the fine-tuning method of transfer learning.
The run-time learning in the classifiers mostly done by dynamic neuron addition and weight updates.
However, the proposed approaches are not validated on complex and high-dimensional data streams. In the
OCU module, the authors of this study have updated the weights of the existing instance classifier (trained
on old data) by replacing the classification part (layers which work on classification tasks).

The proposed approach is specially tuned for the high-dimensional data streams and works
effectively for sophisticated features. The aim is to update the existing classification weight into newly
obtained classification weight (obtained from Algorithm 1). The authors of this study have introduced
a copy instance which possesses the new weight of the classification instance (trained on new classes).
Also, they have used the weight difference techniques to determine that the newly trained instance is
for updating the existing instance (classifier in the ensemble) or for adding new instance (classifier)
in ensemble. The authors of this study found that for more complex classes the weight difference
techniques did not work satisfactorily, and they used some manual intervention to inform the system
either update the existing instance or add new instance in the ensemble. Algorithm 3 outlines the steps
to follow to perform classifier update task, as shown in Figure 2.
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Therefore, the authors used some manual intervention for sophisticated features. Finally, from
OCU module, the updated weights of the classification section are transferred to older instances
(respective classifier in the ensemble), using Algorithm 3. Furthermore, they found that Euclidean
distance method is more promising than the cosine distance matrix, hence Euclidean distance was
selected as the primary distance measure during clustering. This OT module process segregates the
misclassified image samples into the different relevant clusters. The obtained clusters are formed by
the image similarity index by measuring, improving the centroids and comparing (the data points)
using the Euclidean distance. Later, the segregated image samples for each cluster are separated with
a given hypothetical class name, such as X1, X2, . . . , Xn, as depicted in Figure 3. Then OT module
creates the new instances and train them for newly obtained classes (the number of new instances are
equal to obtained new classes). Algorithm 2 defines the detail steps of proposed OT module.
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4. Experimental Results

This section presents three (3) subsections to validate the effectiveness and performance of
the proposed ameliorated framework, which are: (1) Section 4.1 details the data preparation and
transformation of the datasets (2) Section 4.2 presents the experimental criteria and experimental setup;
and (3) Sections 4.3 and 4.4 displays the obtained results and performs the analysis and deduction.

4.1. Data Preparation and Transformation

To evaluate the performance of classification models, the common practice of researchers is to
examine the proposed solution on benchmark and real datasets. Therefore, to validate the proposed
framework, in this study, the authors have selected CIFAR10 and ISIC 2019: Skin disease (real dataset)
as benchmark. CIFAR10 dataset is considered as one of the primary benchmark datasets for image
classification task [25]. Furthermore, the primary intention to use ISIC 2019 is to verify the proposed
framework with a real and challenging dataset (ISIC skin disease dataset is considered one of the most
challenging due to its sophisticated features).

4.1.1. CIFAR 10 Stream Pipeline Preparation to Simulate Concept Drift (CD)

The CIFAR10 dataset contains the real object images of ten (10) different classes, such as aeroplane,
automobile, bird, cat, deer, dog, frog, horse, ship, and truck. Concretely, past studies have focused
on two essential challenges when performing classification over a data stream which are; (1) concept
drift [26] and (2) concept evolution [19,27]. Several studies have developed imagery stream pipelines
using the CIFAR10 dataset to simulate the possible concept drift condition. Therefore, this study
also adopted a similar strategy to demonstrate the novel class and class evolution issue, as shown in
Figure 4.
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4.1.2. Skin Disease Data Stream Pipeline Preparation to Simulate Concept Drift (CD)

In this study, the authors of this study have selected a challenging real skin disease dataset created
by the International Skin Imaging Collaboration (ISIC). ISIC released this dataset to the research and
professional communities for open competition (Skin Lesion Analysis Towards Melanoma Detection)
in 2019 (https://challenge2019.isic-archive.com/). The provided data is imbalanced across the classes
and contains several similar features, which make this dataset more challenging for classification tasks.
This dataset is an international repository of dermoscopic images for clinical testing and research

https://challenge2019.isic-archive.com/
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toward automated algorithmic analysis. In total, the dataset contains the 25,331 dermoscopy samples
divided into nine (9) classes, as shown in Figure 5.
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Figure 5. ISIC Skin Disease dataset. (a) Melanoma (MEL), (b) Melanocytic nevus class category (NV),
(c) Basal cell carcinoma (BCC), (d) Actinic keratosis (AK) (e) Benign keratosis (BKL) (f) Dermatofibroma
(DF) (g) Vascular lesion (VASC) (h) Squamous cell carcinoma (SSC) (i) Unknow Disease.

The maximum number of samples is 12,875 (for class 1), and the minimum number of samples
is 239 (for class 5), which represents the highly imbalanced classes. In addition, for each class the
available samples are 4522, 12,875, 3323, 867, 2624, 239, 253, 628 in classes 0, 1, 2, 3, 4, 5, 6, 7, respectively.
The class imbalance problem will cause overfitting issues (bias for the classes where the number of
samples is more). Therefore, to handle the overfitting issue, the authors of this study have used an
image augmentation technique which balances the number of classes in each class. The authors of this
study have adopted the image augmentation technique to balance the imbalanced classes. Also, they
have used the Python libraries with appropriate parameters to increase the image samples in each class
and make them balance. Here, they also normalized the intensity values of the pixels of the image
from 0 to 255 to 0 to 1 to reduce the computational complexity (normalization is important because
feature scaling makes all features contribute equally during the gradient descent procedure, making
optimization faster). Figure 6 presents the stream pipeline to simulate the concept drift scenarios.
The stream pipeline has nine different streams (a stream for each class of skin disease) whereas the
imagery stream controller module controls or manages the pipeline streams.
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4.2. Experimental Criteria and Performance Measures

To simulate the novel class arrival and class evolution scenarios (where the new classes participate,
or a class evolves in the systems), the authors of this study have separated the individual classes as
individual streams, as shown in Figures 4 and 6. Furthermore, it is necessary to report final accuracy
on unseen input data. Therefore, they used cross-validation and holdout method and divided the
dataset into training and testing with 3:1.

4.2.1. Environment and Libraries

The experiments were carried out on the Google Cloud Platform (GCP) and Google Colaboratory.
In the GCP server (us-west1-b region), authors of this study installed the Compute Engine Virtual
Machine with additional machine learning and deep learning libraries. To speed up the complex
computing jobs, authors of this used 16 vCPUs, 104 GB RAM with single NVIDIA GPU Tesla K80.
The experiments implemented using the Python 3 programming language and the libraries listed below:

Environment setup:

(1) Python version (Python 3.6.3), installing from PyPI.
(2) The virtual environment from Anaconda
(3) TensorFlow (1.13), Theano and Keras (as backend) for complex deep learning classification.

Libraries setup:

(1) Scikit-learn library to perform basic machine learning tasks
(2) OpenCV to perform image processing tasks
(3) NumPy and Pandas for data manipulation and processing
(4) Seaborn and Matplotlib for visualization of the results
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4.2.2. Hyper-Parameter Optimization and Performance Measures

To select hyper-parameters for training a model, the authors of this study used a manual search
strategy [28]. Through the manual search strategy, authors of this study acquired the optimized training
hyper-parameters after various tuning iterations, as shown in Table 2. Besides, they also followed
best practices referred by the research community—for example, selection of optimization function
(Adam) and selection of cross-entropy (one-hot encoded). The classification accuracy is considered the
most suitable metric to evaluate model performance in non-stationary environment [29]. In this study,
they also have used performance measures (accuracy, loss, f1 score, precision, recall and ROC curve),
which are recognized as primary classification performance indicators by the research community [30].

Table 2. Training hyper-parameters (Tuning values and optimized values).

Training Hyper-Parameters Tuning Values Optimized Values

Mini-Batch Size 16, 32, 64, 128, 256 120
Learning Rate 0.1, 0.01, 0.001 0.001

L1 regularization (Lambda Parameter) 0.001, 0.0003 0.0003
Number of EPOC 10–100 100

Optimization Function Adam Adam
Cross-Entropy One-hot encoded One-hot encoded

4.3. Experimental Results and Discussion

The details of the experimental results are discussed below. The authors of this study
have performed the three experiments to analyze the performance of proposed framework.
Firstly, experiment 1 evaluates the proposed framework performance for the novel class arrival issue.
Secondly, experiment 2 verifies the effectiveness of the framework for class evaluation issue, experiment
3 compares the classification performance of the proposed framework with the state-of-the-art shallow
learning and deep learning models, which are discussed below.

4.3.1. Experiment 1: Performance in Novel Class Arrival

Experiment 1 formulates three different test cases (case 1, case 2 and case 3). A variety of test
cases is essential to determine the effectiveness of the proposed framework under different stages
during the novel class arrival. Such as, case 1 represents that the model is tested on the already
trained dataset (no novel class arrival). Case 2 represents the arrival of new classes which were not
trained previously on the models. In this case, the model did not apply the adaptation process. Case 3
shows, new classes arrived, which were not previously trained on the models. In this case, the model
applied the adaptation process, as shown in Table 3. Moreover, two different models of the proposed
framework instances were initiated, such as model1_CF10 for CIFAR10 data and model2_SD for ISIC
skin disease data.

Case 1

Initially, the proposed framework is trained by the first five (5) classes of the CIFAR10 dataset
(dog, frog, horse, ship truck) in offline/batch mode. The primary intension of this experiment was to
evaluate the performance of the proposed framework under stable conditions. The obtained results
were promising, with a recorded classification accuracy of 95.6%, loss 2.50, and 0.95 precision and
recall. After arrival of novel class, the model (Model1_CF10) successfully adapt the new classes with
classification accuracy 89% with the obtained loss 3.5, precision and recall 0.90 and 0.91 respectively, as
shown in Tables 4 and 5. Later, the authors of this study analyzed the performance of the proposed
framework with a more challenging dataset (with the imbalance class samples and complex features)
such as the ISIC skin disease dataset. Here, the proposed framework is trained by the first four classes
of the skin disease dataset, which are dermatofibroma (DF), Vascular lesion (VASC), squamous cell



Sensors 2020, 20, 5811 14 of 25

carcinoma (SSC). Despite the complex features and class imbalance problem in skin disease dataset, the
performance of the model is satisfactory, even better than highlighted in the literature. The obtained
classification accuracy was 79% with the obtained loss, precision and recalled 0.40, 0.75 and 0.72,
respectively. However, after arrival of novel class, the model (Model2_SD) successfully adapt the new
classes with classification accuracy 70% with the obtained loss 0.92, precision and recall 0.67 and 0.64
respectively, as shown in Tables 4 and 5.

Table 3. Cases, scenarios and their description.

Cases Scenarios Description

Case 1 No novel class arrival

When the model is tested on the already trained
dataset (No novel class arrival).

In the case of CIFAR10, Classes 0–4 participated
In the case of Skin Disease, Classes 0–3 participated

Case 2 Novel class arrival but before
adaptation

When new classes (which were not already trained
on the models) are arrived. In this case, the model

did not apply the adaptation process.
In the case of CIFAR10, Classes 5–9 participated

In the case of Skin Disease Class, 4–7 participated

Case 3 Novel class arrival but before
adaptation

When new classes (which were not already trained
on the models) are arrived. In this case, the model

applied the adaptation process.
In the case of CIFAR10, Classes 5–9 participated

In the case of Skin Disease Class, 4–7 participated

Table 4. Accuracy and loss for the CIFAR10 and ISIC 2019 (Skin disease) streams under different cases.

Model
Configuration Classification Accuracy (%) Loss

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

Model1_CF10 95.60 63.50 89.00 2.50 1.29 3.50

Model2_SD 79.00 59.00 70.00 0.40 13.90 0.92

Table 5. Precision and recall for the CIFAR10 and ISIC skin disease data streams under different cases.

Model
Configuration Precision Recall

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

Model1_CF10 0.95 0.50 0.90 0.95 0.60 0.91

Model2_SD 0.75 0.14 0.67 0.72 0.25 0.64

Interestingly, the classification accuracy for the truck class (CIFAR 10) was reported as above 96%,
and a 85% classification accuracy was found for the dog class (minimum accuracy). In contrast, the
recorded classification accuracy of all other classes was above 93%, as shown in Figure 7a. Unlike the
better performance of individual classes in the CIFAR 10 dataset, skin disease individual classes did
not outperform and the maximum classification accuracy of 79% was reported for the dermatofibroma
(DF) class. Further, all other classes performance is not satisfactory, as shown in Figure 7b.
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Case 2

In case 2, to the proposed framework (model1_CF10) (which was trained on the first five classes,
correctly classifying the samples) five new classes have been introduced (which were not trained
on the proposed framework). These five (5) classes (aeroplane, automobile, bird, cat deer) cause a
performance degradation in the proposed (ameliorated) framework. In this case, the adaptive feature
of the proposed framework was deliberately kept off. It was essential to measure the performance
degradation in the proposed framework after observing the novel classes. The results have validated
the problem formulation, with a noticeable decrease in classification accuracy such as 63% (which was
95.6% in case 1). Similar is the case with precision and recall. A 30% to 40% decrease in precision
and recall is observed, such as 0.60 (0.95 reported in case 1) and 0.50 precision (0.95 reported in case
1). Similarly, to measure the performance degradation in the proposed framework (model2_SD), the
authors of this study have introduced four (4) new classes in the input stream, such as melanoma
(MEL), melanocytic nevus class category (NV), basal cell carcinoma (BCC), and actinic keratosis (AK).
In this scenario, the deployed framework found 59% classification accuracy after observing four (4)
new classes. Its classification accuracy decreased by up to 20% (reported 79% in case 1). Similar is the
case with loss, precision and recall, as shown in Tables 4 and 5.

Case 3

In case 3, five new classes (not trained on the proposed framework) have been introduced to the
proposed framework (model1_CF10) (which was trained on the first five classes, and correctly classified
the samples). These five (5) classes (aeroplane, automobile, bird, cat deer) caused a performance
degradation in the deployed proposed framework. Contrary to case 2, in this case, the adaptive feature
(the ability to adapt the novel class on-the-fly) of the proposed framework was on. The intuition behind
this experiment was to determine the adaptability feature effectiveness of the proposed framework.
It can be shown that the proposed framework outperformed and successfully achieved a gain in
classification accuracy of more than 25%. After adapting the new classes, the reported classification
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accuracy is 89% (63.5% in case 2). Also, an improvement in precision and recall is noticed. However,
the loss, in this case, is increased to 3.5, which was 2.5 and 1.29 in case 1 and case 2, respectively, since a
model training in offline mode will always be better than in the online mode. In the case of model2_SD,
the proposed framework performance did not increase substantially. Through the obtained results,
it can be noticed that only an 11% improvement in the model2_SD has been recorded after novel class
adaptation, although the results are also promising and show that the proposed framework is working
well (not outperforming) with complex features and under class imbalance situation. Further, unlike
model2_SD, the performance of individual classes in model1_CF10 is found to be better, such as for
the classes deer and automobile for which the reported individual classification accuracies are 97%
and 98%, respectively, which is even higher than the composite classification accuracy (89%). Besides,
all the individual classification accuracies are reported above 90% except the cat class, which has 89%
accuracy, as shown in Figure 7c. The individual classes in model1_SD does not outperform, and the
performance on other classes is not satisfactory, as shown in Figure 7d.

To demonstrate the tradeoff between sensitivity and specificity, the authors of this study also
drew receiver operating characteristic (ROC) curve plots to see the possible increase in sensitivity
accompanied by a decrease in specificity in the proposed framework before and after novel class arrival.
As depicted in Figure 8a,b, the ROC curve is closer to the left-hand border and then the top border
of the ROC space, which shows the true positive rate against the false-positive rate. In the case of
model1_CF10, the obtained ROC curve is desirable, as shown in Figure 8a,b. However, in the case of
model2_SD, the ROC curve comes to the 45-degree diagonal of the ROC space, which demonstrates
less accuracy of the test, as shown in Figure 8c,d.
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4.3.2. Experiment 2: Validate the Online Fine-Tuning Performance of the Proposed Framework When
New Samples Are Observed

In Experiment 2, the authors of this study have trained the model1_CF10 and model2_SD with
partial image samples of all the available classes of CIFAR10 and ISIC 2019 (Skin disease), respectively.
However, during initial training (offline) from each class 40% of image samples with some unique
characteristics were segregated separately and the models are trained on the other 60% of the sample
data available in each class. After model deployment (model1_CF10 and model2_SD), the stream
contains 100% of the dataset from the CIFAR10 and ISIC skin disease data stream. Here, the model
detected the newly arrived samples, determined the new feature spaces in the existing classes and
fine-tuned the existing classifier with newly arrived batch samples. Figure 9a, presents the correlation
of reported loss and EPOCs during offline training, and Figure 9b presents the correlation of reported
loss and EPOCs after online fine-tuning (using the online classifier update (OCU) module). It can
be shown that in online fine-tuning, a continuous decrease in loss is observed (which is desirable).
After six (6) EPOCs, the obtained loss for model1_CF10 is less than 0.11 approximately, which is better
than in offline learning. Interestingly, for the model2_SD, the offline training loss showed several
fluctuations after each EPOC, and the minimum loss in above 1, as shown in Figure 9c. Furthermore,
it can be noticed that the reported loss is not stable (also tried to train the model on higher EPOCs).
On the contrary, the online fine-tuning works well for model2_SD (better than offline) and its loss
continuously decreases after each EPOC. For example, the final loss is 0.65 approximately (minimum
loss reported in offline was 1), which is much better than offline learning) as shown in Figure 9d.
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Figure 9. Training loss and number of EPOCs: (a) Before new sample arrival for model1_CF10;
(b) After new sample arrival for model1_CF10; (c) Before new sample arrival for model2_SD;
(d) After new sample arrival for model2_SD.

4.3.3. Experiment 3: Comparative Analysis of Proposed Framework with State-of-the-Art Shallow
Learning and Deep Learning Models

This experiment compares the performance of the proposed framework with the state-of-art
shallow learning and deep learning models under the novel class arrival issue. The authors of this
study have compared proposed framework with ensemble convolutional neural network (CNN),
ensemble support vector machine (SVM) and random forest models. These models are widely used for
concept drift handling [31]. In this experiment, two experimental scenarios were simulated: (1) case 1,
when the model is testing with no novel class arrival issue and, (2) case 2 when five (5) new classes
participated in the stream to be classified. It can be seen from Table 6 that under stable conditions, the
performance of all the models was satisfactory and above 95% approximately. However, the random
forest classification accuracy was the highest among all models (which is 96.84%). On the contrary, when
the novel classes participated in the imagery streams (to be classified) the all state-of-art models badly
performed and their classification accuracy was drastically degraded by as much as 50% approximately,
whereas, the proposed framework outperformed under the novel class arrival conditions. The dynamic
and adaptability feature in proposed framework avoided the massive performance degradation in the
model, and its classification accuracy only decreased by 6.6%. Such as, after adaptation, the proposed
framework maintained its classification accuracy up to 89% with the obtained loss 3.50, and f1-score
0.90, as shown in Table 6. Interestingly, the other performance parameters of proposed framework,
such as loss and F1-score, are also found much satisfactory as compared to other state-of-the-art models,
as shown in Table 6.
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Table 6. Comparative analysis of the proposed framework and state-of-the-art models.

Accuracy (%) Loss F1-Score

Models Case 1 Case 2 Case 1 Case 2 Case 1 Case 2

Proposed Framework 95.60 89.00 2.50 3.50 0.95 0.90

Ensemble CNN 96.00 50.96 1.17 7.0 0.96 0.49

Ensemble SVM 96.68 50.72 1.14 5.34 0..96 0.52

Random Forest 96.84 43.13 0.20 5.9 0.97 0.55

Comparative Analysis before the Arrival of Novel Classes (Confusion Matrix and ROC Curve)

The confusion matrix analysis and ROC curve give more details about the performance of the
model. Figures 10 and 11 show the classification performance of the individual participating classes.

From Figure 10a–d it can be noticed that all state-of-the-art models outperformed for the
individual classes and their classification accuracy reached above 90%. However, in the case of
proposed framework, one class (truck) achieved around 85% of accuracy.
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of Random Forest.
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Also Figure 11a–d show that the random forest model classification is best among all the models
with a micro and macro average ROC value equal to 1. Also, the all ROC curves of all individual
classes (0,1,2,3 and 4) are higher than for all other models. For example, Figure 11d depicts the ROC
value of class 0,1,3,4 as 1 (which is maximum) and the class 2 ROC value is 0.98. On the contrary, the
proposed framework performance is the lowest among all models. Thus, from Figure 11a it can be
observed that the micro and macro average ROC value is equal to 0.97, and all individual classes are
higher than all other models. For example, Figure 11d depicts the ROC value of class 0, 1, 2, 3 and is
between the range of 0.90 to 0.98 (which is minimum as compared to other participating models).

Comparative Analysis after the Arrival of Novel Classes (Confusion Matrix and ROC Curve)

Figure 12 presents the confusion matrix for the participant’s models after the novel class arrival.
Figure 12 depicts the classification performance of the individual participating classes; the results
validate the effectiveness of proposed framework. For example, Figure 12a highlights the diagonal
areas of the proposed framework confusion matrix, which confirms that the model outperformed for
the individual classes. However, the classification performance of all other participating models is
severely degraded for individual classes. The scattered values in the confusion matrix demonstrate
the lousy performance of the ensemble CNN, ensemble SVM and random forest in Figure 12b–d,
respectively. Also, Figure 13a shows that the proposed framework is the best among all the models
with a micro and macro average ROC value is equal to 0.94. The ROC curve of all individual classes
(0,1,2,3 and 4) is higher than all other models and are in the range of 0.85 to 0.97. Conversely, all other
models of classification performance are worse. From Figure 13a–d it can be observed that the micro
and macro average ROC value of all the other models are equal to 0.44, 0.42 and 0.35 for ensemble
CNN, ensemble SVM and random forest, respectively.
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of Random Forest.
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4.4. Results Analysis and Deduction

Experiment 1: This experiment demonstrates the performance of the proposed framework under
novel class arrival conditions. The results showed a significant performance improvement after the
novel class adaptation for the benchmark datastream (CIFAR10) and real datastream (ISIC 2019).
The proposed framework increased the classification accuracy by more than 20% due to its effective
adaptation solution. Both the model1_CF10 and model2_SD outperformed and avoid the classification
performance degradation (in terms of accuracy) after observing and adapting novel classes. However,
the authors of this study have noticed that the model2_SD is not markable in stable condition due to
the sophisticated and similar features available in the ISIC 2019 (skin disease) dataset.

Experiment 2: This experiment validates the performance of the proposed online classifier update
module (of the proposed framework) to handle the class evolution problem. The results have shown
the effectiveness of the proposed approach for new sample adaptation on-the-fly. It can be observed
the performance of both models (model1_CF10 and model2_SD) continuously improved with the
decrease in learning loss. Furthermore, the model2_SD found several loss fluctuations during offline
learning. On the contrary, in online learning mode, the model2_SD reduction of loss is smooth and
significant after each new EPOC.

Experiment 3: The intuition behind Experiment 3 is to compare the performance of the proposed
framework with state-of-the-art deep learning and shallow learning models. The acquired results
provide some exciting findings. The performance of all the participated models is impressive under
stable conditions (when no novel class arrives) and under stable conditions, the classification accuracy
of the proposed framework is less than all other state-of-art models, especially random forest which
performance is the best among all. On the contrary, only the proposed framework showed a substantial
increase in performance (up to 89%) after novel class arrival and all the state-of-art models’ classification
accuracy is reported as 50–55% approximately.

5. Conclusions and Future Work

This study addressed two (2) non-stationary data assumptions and temporal inconsistencies,
(such as novel class and class evolution) for dynamic image classification. Also, this study proposed
an ameliorated adaptive convolutional neural network (CNN) ensemble framework as an attempt
to provide a generic approach for handling several kinds of temporal inconsistencies found in
high-dimensionality data streams.

Previously an adaptive CNN ensemble framework was proposed for new spectral band adaptation
during complex multispectral image classification. However, in this study, the authors have presented
an improved version of previously proposed framework with the additional online training (OT)
module and online classifier update (OCU) module to address the novel class arrival and class evolution
issue (new sample arrival in the existing classes). An OT module is a clustering-based approach
which uses the Euclidean distance and silhouette approach to determine the possible newly arrived
classes, whereas, the OCU updates the current weights of the ensemble classifiers with newly arrived
samples in existing classes. The proposed novel ensemble approach ensures the ensemble diversity
and adaptability in a simple yet effective manner. Specifically, in the proposed ensemble approach, the
single optimized CNN classifier (instance) handles the novel class arrival issue.

The proposed framework showed satisfactory performance under non-stationary scenarios using
the benchmark and real data streams and outperformed against state-of-art models. The results have
demonstrated the significant improvement (more than 20%) in proposed framework classification
accuracy after the novel class adaptation and class evolution issue were resolved. The authors of
this study also have tested proposed model (framework) using ISIC 2019 challenge skin disease
dataset. The authors of this study have noticed that the performance of the proposed framework is
not remarkable under stable conditions but much better than the performance of a state-of-the-art
model. Thus 70% to 79% classification accuracy was observed due to the sophisticated and similar
features available in the ISIC dataset. In future work, the authors aim to develop an Internet of
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Things (IoT)-enabled adaptive intelligent dermoscopy device (for dermatologists) which demands
more accurate classification accuracy (95–97%). Hence the improvement in the classification accuracy
for the similar and complex feature-based classes is the future concern of this study.
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