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Abstract. Assume a fixed point v ∈ V G can be separated from zero by a

homogeneous invariant f ∈ k[V ]G of degree prd where p > 0 is the charac-

teristic of the ground field k and p, d are coprime. We show that then v can
also be separated from zero by an invariant of degree pr, which we obtain ex-

plicitly from f . It follows that the minimal degree of a homogeneous invariant

separating v from zero is a p-power.

1. Introduction

Let G be a linear algebraic group over an infinite field k of any characteristic and
let X be an algebraic variety over k on which G acts. Then G acts naturally on the
ring of functions k[X] by g(f) := f ◦ g−1 for f ∈ k[X] and g ∈ G. The ring of fixed
points of this action is denoted by k[X]G and we call this the ring of invariants. If
G acts linearly and rationally on a finite dimensional k-vector space V then we call
V a G-module, and k[V ] is the set of polynomial functions V → k. In that case
we have a natural grading k[V ] = ⊕∞d=0k[V ]d by total degree which is preserved
by the action of G, and we have k[V ] = S(V ∗), the symmetric algebra of the
dual of V . Determining whether the ring of invariants k[X]G is finitely generated
is one of the oldest and most difficult problems in invariant theory. Hilbert was
able to prove finite generation in the case where G = SLn or GLn and k a field
of characteristic zero. Hilbert’s argument can be extended to any group with the
following property: for every G-module V , and every nonzero fixed point v ∈ V G

there exists an invariant linear function f ∈ (V ∗)G such that f(v) 6= 0. Such groups
are called linearly reductive. Linear reductivity of G is equivalent to the condition
that all representations of G over k are completely reducible. Nagata made a
major breakthrough by considering a more general class of groups. We say that G
is geometrically reductive if the following property holds: for every G-module V and
every nonzero fixed point v ∈ V G there exists a homogeneous invariant function
f ∈ k[V ]G of positive degree such that f(v) 6= 0. Nagata [8] was able to prove that
if G is geometrically reductive then k[X]G is finitely generated for all X. Nagata
and Miyata [9] subsequently showed that a geometrically reductive group must be
reductive, a purely group-theoretic condition on G. It was conjectured by Mumford
[7] that all reductive groups are geometrically reductive, a fact finally proved by
Haboush [5] several years later. Now let G be a linear algebraic group over k and
let V be a G-module. Following [3] we define for any v ∈ V

ε(G, v) := inf{d ∈ N>0 | there exists f ∈ k[V ]Gd such that f(v) 6= 0},
where the infimum of an empty set is infinity. Thus, G is reductive if ε(G, v) is
finite for all nonzero v ∈ V G and linearly reductive if ε(G, v) = 1 for all nonzero
v ∈ V G. Nagata and Miyata [9, Proof of Theorem 1] also proved that if v ∈ V G
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and there exists f ∈ k[V ]Gd such that f(v) 6= 0 with d invertible in k, then there

exists f̃ ∈ k[V ]G1 such that f(v) 6= 0. Consequently for any nonzero v ∈ V G, ε(G, v)
is equal to one, divisible by p = char(k) or infinite. In particular, if char(k) = 0
then every (geometrically) reductive group over k is linearly reductive. A version of
their argument rephrased in language consistent with this note can be found in [3,
Proposition 2.1]. The main purpose of this article is to prove the following result
generalising the above in the case of positive characteristic:

Theorem 1.1. Let p = char(k) ≥ 0, r ≥ 0 an integer and d ≥ 1 an integer
invertible in k. Let v ∈ V G \ {0} be a nonzero fixed point and suppose there exists
a homogeneous invariant f of degree prd such that f(v) 6= 0. Then there exists a

homogeneous invariant f̃ of degree pr such that f̃(v) 6= 0. In particular, for any
v ∈ V G we have that ε(G, v) is either a power of p (including p0 = 1) or ∞.

One says that a pair of points v, w ∈ V can be separated if there exists an
invariant f ∈ k[V ]G such that f(v) 6= f(w). It has become quite popular recently
to investigate so called separating sets, which are subsets S of the invariant ring with
the following property: whenever two points can be separated, then they can be
separated by an element of S. This research topic was introduced by Derksen and
Kemper [1, Definition 2.3.8], and quite a number of papers have appeared which deal
with this topic. Remarkably, it turns out that even if the ring of invariants k[V ]G is
not finitely generated, it still contains a finite separating set, see [1, Theorem 2.3.15].
From the point of view of this research topic, we deal with separating a fixed point
v ∈ V G from the zero point w = 0. Recall that, for any G and V , Hilbert’s Nullcone
NG,V is defined to be the vanishing set of all homogeneous invariants of positive
degree. It is natural to consider the quantity

δ(G,V ) := sup
(
{ε(G, v) | v ∈ V G \ NG,V } ∪ {0}

)
.

Since a separating set must certainly contain an invariant separating a given point
outside the nullcone from zero, [1, Theorem 2.3.15] implies that δ(G,V ) is finite for
any G and V . If G is linearly reductive then δ(G,V ) ≤ 1 for all V . For this reason,
the number δ(G,V ) can be considered as a measure for the “degree of reductivity”
of the representation V . Further results on δ(G,V ) can be found in [2], [3] and [6].
Our main theorem implies immediately

Corollary 1.2. For any G-module V , we have that δ(G,V ) is zero, one, or a power
of p = char(k).

This article is organised as follows: in section two we prove Theorem 1.1. In
section three we give an example showing how the theorem may be used to compute
δ(G,V ) in cases where the ring of invariants is difficult to compute.

2. Separating fixed points from zero

Before we prove our main result, we want to reproduce the argument showing
that in positive characteristic p, given a reductive group G and a nonzero fixed
point v ∈ V G, there exists an invariant of p-power degree separating v from zero.
This is a consequence of the following standard result for reductive groups.

Theorem 2.1 (see [7, Lemma A1.2]). Let G be a reductive group over a field of
positive characteristic p and V,W be G-modules. If φ : k[V ]→ k[W ] is a surjective
G-equivariant algebra-homomorphism, then for any f ∈ k[W ]G there exists an r ≥ 0
such that fp

r ∈ φ(k[V ]G).

Now consider v ∈ V G \ {0}. We define W := kv and write k[W ] = k[x]. The
restriction map φ : k[V ]→ k[W ], f 7→ f |W is clearly surjective and G-equivariant,
and as x ∈ k[W ]G the theorem implies the existence of an invariant f ∈ k[V ]G such
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that f |W = xp
r

for some r ≥ 0. It follows that for h the degree pr-component of f ,
we also have h|W = xp

r

, and h is a homogeneous invariant of degree pr satisfying
h(v) = h|W (v) = xp

r

(v) = 1 6= 0.
Note that although this result implies that every nonzero fixed point v can be

separated from zero by an invariant of p-power degree, it does not imply that the
minimal possible degree of an invariant separating v from zero is also a p-power.
This is a consequence of Theorem 1.1 which we prove now. The proof is based on
similar ideas to those used by Nagata and Miyata; indeed, it specialises to their
proof in the case r = 0.

Proof of Theorem 1.1. We extend v0 := v to a basis {v0, v1, . . . , vn} of V and form
the corresponding dual basis {x0, x1, . . . , xn} of V ∗. Then f has the form f =∑prd

i=0 x
prd−i
0 ci, where ci ∈ k[x1, . . . , xn]i and f(v0) = c0 ∈ k \ {0}. Dividing by c0,

we may assume c0 = 1. We claim that

f̃ := xp
r

0 +
1

d

pr∑
i=1

xp
r−i

0 ci

has the properties we require. Clearly, f̃(v0) = 1 6= 0, and f̃ is homogeneous of

degree pr. It remains to show that f̃ is invariant. We will obtain f̃ as the image of
f under a G-equivariant map k[V ]prd → k[V ]pr . We have V ∗ = k[x1, . . . , xn]1⊕kx0
as vector spaces. Since v0 ∈ V G, we have that k[x1, . . . , xn]1 is a G-submodule of
V ∗. Consider the G-module k[x0, . . . , xn]prd and the subspace

T :=

prd⊕
i=pr+1

k[x0]prd−i ⊗ k[x1, . . . , xn]i,

i.e. the set of polynomials of k[x0, . . . , xn]prd which have total degree at least pr +1
in the variables x1, . . . , xn. As v0 ∈ V G we have, for any g ∈ G,

g(x0) = x0 + γ(g) for some γ(g) ∈ k[x1, . . . , xn]1.

It follows that T is in fact a G-submodule of k[x0, . . . , xn]prd. We next show that
the map

φ : k[x0, . . . , xn]prd/T 7→ k[x0, . . . , xn]pr

given by k-linear extension of

xp
rd

0 + T 7→ xp
r

0

xp
rd−k

0 bk + T 7→ 1
dx

pr−k
0 bk for bk ∈ k[x1, . . . , xn]k and k = 1, . . . , pr

is an isomorphism of G-modules. Clearly φ is an isomorphism of k-vector spaces,
so it remains to show that φ is G-equivariant, i.e. φ(g(m + T )) = g(φ(m + T ))
for every g ∈ G and m ∈ k[x0, . . . , xn]prd. By k-linearity, it is enough to consider

the cases m = xp
rd

0 and m = xp
rd−k

0 bk for bk ∈ k[x1, . . . , xn]k and k = 1, . . . , pr.

Assume m = xp
rd

0 first. We fix g ∈ G, set γ := γ(g) and compute

φ(g(xp
rd

0 + T )) = φ((x0 + γ)p
rd + T ) = φ((xp

r

0 + γp
r

)d + T )
(∗)
=

φ(xp
rd

0 + dx
pr(d−1)
0 γp

r

+ T ) = xp
r

0 + γp
r

= (x0 + γ)p
r

=

g(xp
r

0 ) = g(φ(xp
rd

0 + T )).

Note that in (*) we have used that x
pr(d−j)
0 γp

rj ∈ T for j ≥ 2. Secondly assume

m = xp
rd−k

0 bk with 1 ≤ k ≤ pr and bk ∈ k[x1, . . . , xn]k. We write b̃k := g(bk) ∈
k[x1, . . . , xn]k. In the following computation we will use that

(
prd−k

j

)
≡
(
pr−k

j

)
mod p for k = 1, . . . , pr and j = 0, . . . , pr − k, see Lemma 2.2 below. We obtain

φ(g(xp
rd−k

0 bk + T )) = φ((x0 + γ)p
rd−k b̃k + T ) =
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φ

prd−k∑
j=0

(
prd− k

j

)
xp

rd−k−j
0 γj b̃k + T

 .

Note that γj b̃k ∈ k[x1, . . . , xn]j+k. In particular, for j ≥ pr + 1 − k, we have

xp
rd−k−j

0 γj b̃k ∈ T , so in the sum above only summands for j = 0, . . . , pr − k have

to be taken into account. Also note that k ≥ 1, so each term of γj b̃k is of positive
degree. Now by the definition of φ we obtain

φ(g(xp
rd−k

0 bk + T )) = φ

pr−k∑
j=0

(
prd− k

j

)
xp

rd−k−j
0 γj b̃k + T

 =

pr−k∑
j=0

(
prd− k

j

)
1

d
xp

r−k−j
0 γj b̃k

Lemma 2.2
=

1

d

pr−k∑
j=0

(
pr − k
j

)
xp

r−k−j
0 γj b̃k =

1

d
(x0 + γ)p

r−k b̃k = g(
1

d
xp

r−k
0 bk) = g(φ(xp

rd−k
0 bk + T )).

This shows that φ is indeed G-equivariant. Now let

π : k[x0, . . . , xn]prd → k[x0, . . . , xn]prd/T

denote the canonical projection, which is G-equivariant as T is a G-submodule.
Then φ ◦ π : k[x0, . . . , xn]prd → k[x0, . . . , xn]pr is a G-equivariant map, and hence
it maps the invariant f to the invariant

φ(π(f)) = φ

(
π(

prd∑
i=0

xp
rd−i

0 ci)

)
= φ

(
prd∑
i=0

xp
rd−i

0 ci + T

)
.

As for i ≥ pr + 1 we have xp
rd−i

0 ci ∈ T , only the summands where i = 0, . . . , pr

need to be considered, so we obtain

φ(π(f)) = φ

(
pr∑
i=0

xp
rd−i

0 ci + T

)
= φ(xp

rd
0 + T ) +

pr∑
i=1

φ(xp
rd−i

0 ci + T ) =

xp
r

0 +
1

d

pr∑
i=1

xp
r−i

0 ci = f̃ .

Hence, f̃ is G-invariant. 2

We have used the following characteristic p-relation on binomial coefficients:

Lemma 2.2. Assume p is a prime and d ≥ 1. Then we have(
prd− k

j

)
≡
(
pr − k
j

)
mod p for k = 1, . . . , pr and j = 0, . . . , pr − k.

Proof. We first recall the well known Theorem of Lucas on binomial coefficients
modulo a prime (see [4] for a short proof): if a, b are integers with p-adic expansions
a =

∑∞
i=0 aip

i and b =
∑∞

i=0 bip
i, then(

a

b

)
≡
∞∏
i=0

(
ai
bi

)
mod p.

Of course, here almost all summands are zero and almost all factors are equal to 1,
as
(
m
0

)
= 1 for all m ≥ 0. We now consider the base-p-expansions j =

∑∞
i=0 jip

i,

prd − k =
∑∞

i=0 aip
i and pr − k =

∑∞
i=0 bip

i, where all ji, ai, bi are zero for large
enough i, and 0 ≤ ji, ai, bi < p for all i. As k ≥ 1 and j ≤ pr − k, we have that
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ji = 0 for i ≥ r. As prd−k = pr−k+(d−1)pr, it follows that ai = bi for 0 ≤ i < r.
We thus have by Lucas’ Theorem(

prd− k
j

)
≡
∞∏
i=0

(
ai
ji

)
≡

r−1∏
i=0

(
ai
ji

)
≡

r−1∏
i=0

(
bi
ji

)
≡
∞∏
i=0

(
bi
ji

)
≡
(
pr − k
j

)
mod p.

2

3. An example

Corollary 1.2 sometimes allows a determination of δ(G,V ) for a given represen-
tation V without knowledge of the invariant ring. The special case p = 2 of the
following example was treated in [6, Proposition 12].

Example 3.1. Consider a field of positive characteristic p, the cyclic group Zp of
order p, and the action of the group G = Zp × Zp = 〈g1, g2〉 on a G-module

V = 〈h1, . . . , hm, e1, . . . , em〉, m ≥ 2, where g1 acts by the matrix

(
Im 0
Im Im

)
,

and g2 acts by the matrix

(
Im 0

Jm(λ) Im

)
. Here, Im denotes the m×m identity

matrix, and Jm(λ) a lower triangular m ×m Jordan block with eigenvalue λ ∈ k.
Then em ∈ V G, and we want to show that ε(G, em) = p2. Note that, since for a finite
group we have δ(G,V ) ≤ |G| (see [2, Theorem 1.1]), this shows that δ(G,V ) = p2.

We write k[V ] = k[x1, . . . , xm, y1, . . . , ym]. We then have

gi(xj) = xj for i = 1, 2, j = 1, . . . ,m
g1(yj) = yj − xj for j = 1, . . . ,m
g2(y1) = y1 − x1
g2(yj) = yj − λxj − xj−1 for j = 2, . . . ,m.

It is easy to see that k[V ]G1 = 〈x1, . . . , xm〉, which shows ε(G, em) > 1. As ε(G, em)
is a p-power by Theorem 1.1, and bounded above by |G| = p2, it suffices to show
that ε(G, em) 6= p. To this end, we will demonstrate that ypm does not appear in
any invariant polynomial. Define

∆i,j : k[V ]→ k[V ], f 7→ gi1g
j
2(f)− f for i, j ∈ Z.

Then for an invariant polynomial f , ∆i,j(f) = 0 for all i, j. We will say that a
monomial r lies over a monomial s with respect to ∆i,j if s appears in ∆i,j(r).

As gi1g
j
2 acts by the matrix

(
Im −iIm − jJm(λ)T

0 Im

)
on V ∗, it follows that if a

monomial r lies over xpm with respect to ∆i,j for some i, j, then r is an element
of the set M := {ypm, xmyp−1m , x2my

p−2
m , . . . , xp−1m ym}. Let now f ∈ k[V ]G be an

invariant. Let h =
∑p

k=1 cky
k
mx

p−k
m , ck ∈ k, be the partial sum of terms of f with

monomials from M . Then for all i, j, the coefficients of xpm in ∆i,j(f) (which is
zero) and ∆i,j(h) respectively are equal. From

∆−i,−1(h) = ∆−i,−1

(
p∑

k=1

cky
k
mx

p−k
m

)

=

p∑
k=1

(ck(ym + (λ+ i)xm + xm−1)kxp−km − ckykmxp−km )

= . . .+

p∑
k=1

ck(λ+ i)kxpm + . . .

it follows that
∑p

k=1 ck(λ + i)k = 0 for i = 0, . . . , p − 1. Therefore all elements
of the set Z := {λ, λ + 1, . . . , λ + p − 1} of size p are roots of the polynomial
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q :=
∑p

k=1 ckX
k. Clearly, 0 is also a root of q. Assume first 0 6∈ Z. Then the

polynomial q of degree ≤ p has the elements of {0} ∪Z as p+ 1 different roots, i.e.
q = 0. In particular, cp = 0, which shows that ypm does not appear in f , which we
wanted to prove and we are done. Secondly assume 0 ∈ Z. It follows λ+ i0 = 0 for
some i0 ∈ {0, . . . , p− 1}, which implies Z = {0, 1, 2, . . . , p− 1}. As Z is also the set
of roots of Xp −X, it follows q = c(Xp −X) for some c ∈ k, i.e. cp = c, c1 = −c,
and the other ci’s are zero. Therefore we have h = c(ypm− xp−1m ym). As i0 + λ = 0,

g−i01 g−12 acts by the matrix

(
Im i0Im + Jm(λ)T

0 Im

)
=

(
Im Jm(0)T

0 Im

)
on V ∗.

From this it can be seen that xp−1m ym is the only monomial that lies over xp−1m xm−1
with respect to ∆−i0,−1. Therefore, the coefficients of xp−1m xm−1 in ∆−i0,−1(f)
(which is zero) and

∆−i0,−1(−cxp−1m ym) = −cxp−1m (ym + xm−1) + cxp−1m ym = −cxp−1m xm−1

are equal, hence 0 = c = cp. This shows that ypm does not appear in f as claimed.

Remark 3.2. In the above, it was easy to see that p2 ≥ ε(G, em) > 1, and we showed
ε(G, em) 6= p. Theorem 1.1 allowed us to conclude that ε(G, em) = p2. If p = 2 this
follows straight away from Nagata and Miyata’s result, but if p > 2 it is hard to
rule out the possibility that ε(G, em) = dp for some 1 < d < p without using our
theorem.
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