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ABSTRACT

The objective of this thesis is to develop statistical models for multivari-
ate road accident data. Two directions of research are followed: graphical
modelling lor contingency tables cross-classified by accident characteristics,
and hierarchical Bayesian models for multiple accident frequencies of different
types modelled jointly.

Multi-dimensional tables are analysed and it is shown how to use collapsi-
bility to reduce the dimensionality of the analysis without the problems of
Stmpson’s paradox. It is revealed that accident severity and the number of
casualties are associated, and that these variables are mainly influenced by
the number of vehicles and speed limit. Graphical chain models allow causal
hypotheses Lo be formulated and it is shown how they are valuable tools for
empirical research about road accident characteristics.

The hierarchical Bayesian models developed combine generalized linear
nmodels with random effects. The novelty of these models consists in the joint
modelling of multiple response variables. The models account for overdisper-
sion and they are used for accident prediction and for ranking hazardous sites.
All models are fully Bayesian and are fitted using Markov Chain Monte Carlo
methods. 1t is shown that multiple response variables models are superior to
separate univariate response models.

Some theoretical problems are examined regarding the maximum likelihood
estirnation process for the two parameters negative binomial distribution. A

condition is given that is eguivalent with unique maximum likelihood estima-



v
tors.

The two directions of research are connected by using graphs to describe the
models. In addition, a new Bayesian model selection procedure for contingency
tables is proposed. This is based on Gibbs sampling and avoids problems
associated with asymptotic tests.

The conclusions revealed here can help practitioners to design better safety

policies and to spend money more wisely on sites that really are dangerous.
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Chapter 1

Introduction

1.1 Background

The cost to society ol road aecidents is very high. According to The Institution
of Civil Engineers it was estimated in 1996 as being between £14 billion and
£19 billion per annum in the UK, although it is unmeasurable in terms of
human lives (Carruthers, Bulpitt, Gray, Holmes, MacKinven, Moore, Quinn,
Zealley and Huxford, 1996). Since road accidents are random events, their
occurrence cannot be predicted. Various factors are thought to contribute to
the realisation ol road accidents. Valuable information can be extracted from
large and complex data sets with the help of statistical m.ethodr;. Although
the exact number of future aceidents cannot be calculated, it is possible to
predict or estimale this number and to identify some important contributing
factors that can be measured and influenced if necessary. What makes all

these possihle is statistical modelling.
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After the second world war the number of accidents increased dramatically
but so did the number of vehicles. Governments all over the world were fac-
ing a serious problem that needed major attention. Statistical methods were
soon starting to be applied n this area of research too. However, the major
turning point mn the advance of scientific methodologies for analysing road
accidents has been the development of the theory of generalized linear models
(McCullagh and Nelder, 1989). This new class of models is flexible enough to
allow modelling of the accident frequencies with a Poisson error. There are sta-
tistical methods for measuring the safety effect of engineering treatment and
for taking into account the regression-to-mean effect (Hauer, 1980; Hauer,
Ng and Lovell, 1989; Hauer, 1997, Wright, Abbess and Jarrett, 1988), and
for relating the number of accidents at a site to road network characteristics
(Maycock and Hall, 1984; Maher and Surﬁmersgill, 1996; Mountain, Fawaz and
Jarrett, 1996; Amis, 1996). Comparatively little statistical work has been done
on the relationships between accident characteristics such as severity, number
of vehicles, pedestrian involvement, time of day and so on. The aim of this
research is to contribute to the statistical modelling of large and complex road

accident data using and developing appropriate multivariate techniques.

1.1.1 Possible forms of analysis

The statistical investigation of road accident data is a non-randomized study,
a kind of observational study in which there is no direct control by the inves-

tigator. The analyst just observes what is happening, making it very difficult
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to establish causal relationships. The nature of this type of data makes im-
posstble any controlled randomization that would help in designing the study.
This 15 true for data collected for accident characteristics and summarised
in coutingency tables and it is also true for data collected for regression-like
analyses. For the former case, the analyst takes into account the fact that the
accidents already occurred so a retrospective view is appropriate. In the latter
case, the situation is sornehow reversed, the task of the analysis being to pre-
dict future numbers of accidents using a statistical model that fits the current
set of data, again an observational study. A practitioner aims to understand
why accidents occur on a road network and what can be done to reduce the
nur-nber of accidents to a minimum. There are two ways of extracting valuable
statistical information from road accident data and these perspectives divide
the thesis into two parts.

First, various characteristics are recorded for all accidents which occur in
a given period of tirﬁe. At a national level this is done in UK each year in a
database like STATS 19. Then the practitioners might attempt to understand
the associations between these characteristics that will help them to design
better safety policies. Primarily, they are interested in identifving the causes
of accidents. However, they cannot analyse each accident individually so they
rely on a statistical analysis to identify factors contributing to a large num-
ber of accidents. Then the local authorities design and implement the safety
policies thought to manipulate the identified factors in such a way to reduce

the future number of accidents. It has to be remarked that in statistics the
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word *causal” is very often avoided in favour of a less powerful term, that
1s “association”. Nevertheless, studies [rom other areas of research and some
external information may help to identify causes and effects. Maycock {1985)
studied 20 variables as road accident factors. Writing about future possible

research he said :

“Everyone knows that correlation is not the same thing as cau-
sation but the existence of correlations demand explavations and
attempting to obtain explanations would lead into different sorts
of behavioural studies, but studies which were targeted towards
explanations of established accident facts.

Moreover, establishing and following up statistical associations
in this way could provide fairly direct clues to the design of re-
medial measures for those involved in safety legislation, education
and training and the design and administration of driving test

standards.”

For the analysis of accident characteristics the observational units are the
accidents themselves. The variables are the characteristics of the accidents
together with other more general variables like road network characteristics,
time specifications and so on. They are analysed in this thesis as categorical,
any continuous variables being categorised, and data is summarised in con-
tingency tables. This type of data is most of the time recorded by police and
it is possible to have miscategorization of some observations due to human

error. As highlighted above, for this type of data, one purpose is to find a
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model which explains how the categorical variables are interrelated. For three
variables A, B and C, if the model suggests that only the pairs A, B and B,C
are related, this is formulated statistically as a conditional independence be-
tween A and O given the values of B. In common language, knowing the
values of vanable B may provide some information about possible values of
C, and moreover, finding out any information abont A would be irrelevant for
discovering more tnformation about €' other than it is already known from B.

For the first kind of data, the approach proposed in this thesis is based on
graphical modelling and its derivative, graphical chain modelling. With 6 or
more road accident characteristics under study, the contingency table can be
expected to be sparse. Due to the nature of the data it is a finite population
in a fixed period of time. This particularity creates specific problems that are
discussed in this thesis. On a real-world example, it is shown that relying on
asymptotic inference gives different results than exact conditional inference
and the latter should always be used in such instances.

The second type of data is analysed by dividing the road network into small
units, called sites, and then trying to relate the observed number of accidents
to site characteristics, either environmental or socio-economical or geometric.
Depending on the results of the statistical analysis, treatment policies are
implemented to reduce the nurnber of accidents. The units of the analysis are
the sites and the variables are both discrete {e.g. accident {requencies) and

continuous (e.g. traffic flow).

This second direction of research aims at modelling the accident counts as
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numerical random variables. The units of the statistical investigation are the
sites of the road network. The models proposed in this thesis can be used for
prediction of future numbers of accidents, for describing possible correlation
structures between accident frequencies of different type and for ranking the
sites according to different criteria. Practical applications described here show
the usefulness of the joint modelling of multiple accident counts.

Analysing multivariate counts by statistical methods has been very difficult
because of the lack of well-defined parametric distributions that can explain
complex correlation structures. This problem is solved .in this thesis using
hierarchical Poisson multivariate models. The whole methodology used for
generalized linear modelling (McCullagh and Nelder, 1989) 1s incorporated and
models with random effects and regression siructures are easily and naturally
included. However, the complexity of such models makes analytical methods
unfeasible. In the modelling process integrals of dimension of hundreds have to
be calculated and even numerical methods are not helpful because they are not
feasible for dimensions greater than 20. This major difficulty is overcome in
this thesis using Markov Chain Monte Carlo (MCMC) methods, in particular
(ibbs sampling.

The class of hierarchical Bayesian models proposed here is new to ap-
plied statistical modelling of road accident data because multiple responses
are jointly modelled, the models are fully Bayesian in specification and they
can be used to answer different questions based on the same statistical MCMC

output. Although hierarchical Bayesian models have been developed for re-
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peated measurements data in other areas ol research, the hievarchical models
developed in this thesis are tailored for road accident data. The multiple re-
sponses studied in this thesis represent counts of different type of accidents, so
the possible correlation structure of the responses is not caused by studying
the same model over time, like in longitudinal studies. The novel multiplica-
tive equations describing the models can be used by practitioners to predict
changes in accident type as well as frequency if treatment policies are imple-
mented.

1t is somehow regretable that the term “hierarchical™ has different mean-
ings in the two parts of the thesis. In connection with a log-lincar model for
contingency tables, hierarchical means an imposed rule of model specification,
very important for the interpretability of the models. Regarding a predictive
accident model, hierarchical is again about model specification but in a totally
different manner. The observed data is combined with a prior distribution for
the model patameters; the prior also depends on some unknown parameters
which follow a hyper-prior and the specification may continue like that on
several stages. The hierarchy is ended at some stage where all the parameters

are known.

1.1.2 Graphical representation

The two directions of research are related by the basic method of represent-
ing hierarchies, which 1s a graph. In the discussion of the articles given by

Wermuth and Lauritzen (1990} and Edwards (1990), A.P. Dawid strongly sup-
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Figure 1.1: Graphical association model

ported the use of graphs for communicating statistical modelling ideas. In this
thesis, two types of graphical models, therefore of graphs, are used. The first
type, like the one illustrated in Figure 1.1, has vertices associated with ob-
served categorical variables representing accident characteristics. The graph
synthesizes the conditional independencics revealed by the graphical model
fitting the data. Similar graphs with a mixture of undirected and directed
edges will be encountered in the first part of this thesis. Regardless of the
nature of the edges, these graphs are built using observed variables.

The second type of graphs are used in this thesis again for model spec-
ification, more exactly for expressing conditional independencics. There are
only directed edges due to the hierarchical structure of the models. The dif-
fercnce relative to the first type consists in having verlices for observed and
unobserved quantities. A simple example is given in Figure 1.2, The program
WinBUGS uses such a graphical model for simulation.

In addition, there are some other links between the two main parts of

the thesis. The analysis of the characteristics of accidents in Bedfordshire
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for{k N 1 : N)

Figure 1.2: Directed graphical model for Bayesian model specification in Win-
BUGS

and Hampshire data sets reveals that the accident severity and the number
of vehicles involved in the accident are directly related. This suggests that
developing separate regression models for these two variables may give unreli-
able results. The research carried out in the second part of the thesis confirms
this hypothesis and provides a [easible methodological solution. Regarding the
model selection procedutes for (hierarchical) graphical models, a new method
is proposed 1 a Bayesian framework, employing sinilar Markov Chain Monte
Carlo ideas as those used for the multiple response variables rmodels. This

method provides another link between the two paris of the thesis.

1.1.3 Data sets used

Two separate sources ol data were used in this thesis. The first was the STATS

19 database [or 1995, obtained from UK ESRC Data Archive by the Trans-
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port Management Research Centre at Middlesex University. The two subsets
of data extracted from STATS 19 and the subset of variables analysed were
the author’s choice. Some of the variables, like accident severity, were used as
rccorded in the database but others were recategorised to have a small num-
ber of levels. or example, the number of vehicles involved and the number
of casualties were considered with only three levels (one, two, three or more),
road surface conditions with only three (dry, wet-damp, snow-ice-frost-flood).
Other temporal variables were also categorised as it will be seen in later chap-
ters.
The set of data analysed in the second part of the thesis contains the accident
frequencics on 156 single-carriageway link sites between 1984 and 1991 in Kent.
The data had been provided by Kent County Council to Middlesex Univer-
sity’s Transport Management Research Centre for a previous resecarch projgct
(Mountain, Jarrett and Fawaz, 1995; Mountain, Jarrett and Wright, 1994).
The accident counts are known at a disaggregated level; four separate cate-
gorises were investigated. The disaggregation was made by the author linking
the original set ol data with the STATS 19 database. Covariate information,
such as estimated traffic flow, speed limit and link length, was also available
and used in the modelling process. Speed limit was considered as a binary vari-
able having only two levels: urban meaning 40 mph or less and rural meaning
50 mph or 60 mph.

It is well known that not all road accidents are recorded in STATS 19 data-

base (Department of Transport, 1996). The number of unreported accidents
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is not known and the analysts try to make the best of what i1s available. In this

thesis the sets of data are used without trying to account for missing records.

1.2 Aims of the thesis

The overall aim of this thesis is to contribute to the development of sound
statistical techniques that can be applied to road accident data. The intention
is to develop statistical methods which improve the extraction of relevant
information contained in the data, information that can be used subsequently
by various orgamsations and traffic engineers to design safety measnres. If the
wrong sites are selected for treatment due to bad ranking methods, or policy
measures are designed to improve irrelevant (from the safety point of view)
characteristics of road accidents, the loss is very high in terms of money and
human life.

Graphical models and graphical chain models are described as an ex-
ploratory multivariate technique that can be applied to large sets of road
accident data. It is intented to find ont which variables, “environmental”,
“road user”, and so on, are associated with variables representing very impor-
tant accident characteristics, snch as accident severity, the number of vehicles
involved and the number of casnalties.

More specifically, the first part of the thesis has the following objectives

1. To investigate the associations and conditional independencies between

several road accident characteristics for two fairly large datasets, corre-
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sponding to the counties of Bedfordshire and Hampshire, separately and

pooled together.

2. To investigate methods of reducing the analysis of large contingency ta-
bles to the analysis of a sinaller dimensional subtables defined by subsets

of variables of particular interest.

3. To investigate various model selection procedures that can be used in

practice for selecting a graphical model; to discuss their advantages and

limitations.

4. To investigate the application of graphical chain models when substan-
tive research hypotheses are formulated prior to the statistical modelling

process and to identify posible causal implications of such hypotheses.

The research carried out in the first part of the thesis will use only categor-
ical variables, but continuous variables such as traffic flow are also important
iu the study of road accidents. The problemn is that the theory of graphical
models is less well developed for a mixture of discrete and continuous variables.
Partly for this reason, the research continues in the second part of the thesis
by separating out the individual accidents according to location, in order to
relate the accidents to the road network.

In the second part of the thesis the author’s aim is to propose a new class
of models for different type of accidents jointly modelled. Models including
covariate information as well as models based only on parametric specification

are developed. It is shown how computational problems in developing such



CHAPTER 1. INTRODUCTION 13

complex models can be solved using MCMC. It is important to relate the
observed number of accidents to environmental characteristics, such as speed
limit, link length and estimated traffic flow and this aim will play a major
role in this thesis in developing the hierarchical models for multiple accident

frequencies. The objectives in the second part of the thesis ate therefore
1. To develop hierarchical Bayesian models for multiple accident counts.

2. To discuss the problem of ranking the sites according to different criteria

and considering multiple response variables.
3. To discuss estimation problems for compound Poisson distributions.

This research will benefit authorities in designing new measures for traf-
fic safety control and new methods for collecting data. At the same time it
will provide some clues and starting points for future studies. The hierar-
chical Bayesian models will provide a new and deeper statistical modelling

methodology for road accident data.

1.3 Overview of the thesis

This introduction is followed by a statistical literature review, Chapter 2,
where some of the statistical problems related to the ideas developed in the
thesis are defined and the solutions known so far are illustrated. Although
the applications, for which the statistical techniques are developed, concern

road accidents, the same models can be adapted for other count data. The
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originality of this thesis consists in taking a multivariate approach for statisti-
cal modelling, where “mu]tivariz—imte” means scveral responses modelled jointly.
Nevertheless the univariate case is also important and is better known in the
literature. The role of the Chapter 2 is to review the most up to date statisti-
cal modelling for the univariate case and to identify potential problems worth
discussing in the multivariate setting.

Chapter 3 is concernea with graphical modelling. [t provides a motivation
for applying graphical modelling to road accident data, describes the graph
theory concepts used in the thesis, together with a short account of conditional
independence, and gives a detailed description of various Markov properties
necessary to develop graphical models ;':Lnd graphical chain models. The theory
is almost everywhere accompanied by examples using road accident data.

The inference process is described in Chapter 4. The starting point of dis-
cussion 18 the class of log-linear models, a particular case of generalized linear
models. When the researcher is interested in identifying conditional inde-
pendence relationships between the variables {or between groups of variables)
under study, graphical models are proposed as one of the best solutions. The
theoretical framework and the most important results are described. More-
over, since it 1s known that any log-linear model can be nested into a graphical
model, it seems to be always useful to find out a graphical model fitting the
data well and simply enough to assist interpretation. Various model selection
procedures for log-linear models and graphical models are reviewed and exem-

plified. The theorctical aspects of graphical chain models are also developed.
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The data subsequently analysed in Chapter 5 are subsets of data extracted
from the national road accident database for Great Britain, STATS 19. It is
expected that the contingency table summarising such data will be sparse.
This particular aspect makes the contingency tables more difficult to analyse.
The classical tests based on asymptotic methods are not reliable so exact
conditional tests, using Monte Carlo methods to overcome the computational
difficulties, are described in the context of graphical models. Graphical mod-
els and graphical chain models for very large sets of data are proposed and
important conditional independencies between road accident characteristics
are identified. A comparison of asymptotic and exact conditional methods is
investigated in relation to graphical chain modelling, for a large subset of data
regarding accidents with pedestrian casualties in Bedfordshire in 1995.

Methods of reducing the dimensionality of the analysis are extremely use-
ful. Collapsibility is a concept developed in the context of log-linear modelling
that proves extremely helpful in reducing the amount of work necessary to ex-
tract reliable information from data. This is done in an applied manner in
Chapter 6.

Probably the most theoretical chapter of this thesis is Chapter 7 where esti-
mation problems for compound Poisson distributions are studied. Two major
cases, the Poisson-gamma and Poisson-log normal distributions, are discussed
in greater detail. This chapter has a special importance since many practition-
ers seem not to be aware of the difficulties presented by these two compound

distributions and compound Poisson distributions in general. Chapter 7 con-
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tinues the discussion started in Chapter 2 about empirical Bayesian modelling
but goes beyond that and opens the door to more complex and realistic models.

Chapter 8 is dedicated to hierarchical Bayesian models for counts. Bayesian
methods combining hierarchical models and regression techniques are devel-
oped to extract information from a set of road accident data. In the first
section the general methodology is explained n the confext of univanate mod-
els, thus making a straighforward connection with the second chapter of the
thesis. MCMC miethods are used to solve computational problems related to
hierarchical models and are illustrated using two standard models. In the sec-
oud part of Chapter 8 several complex hierarchical models are developed. At
the same time, an attempt is made to model multiple response count mod-
els, based solely on the observed frequencies, nsing distributions such as the
multivariate log-normal distribution, hierarchically specified.

A new Bayesian model selection procedure is proposed for log-linear models
for contingency tables. The computational side of the new method is solved
again by applying MCMC techniques and this is the main reason why this
section is included in this chapter.

Given the applied character of this thesis, there is a companion Chapter 9
to Chapter 8 in which a complex set of accident data is investigated at a mul-
tiple response level. The set of data concerns accidents on 156 links in Kent
between 1984 and 1991. The models analysed are fully Bayesian and range
from simple log-linear regression models to mixed Poisson regression models

with random effects. First, it is shown how to select a small subset of represen-
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tative models (3 models are identified), and then, these models are examined
in greater detail. The sites can be ranked according to different criteria using
a single MCMC output, and the results are described and discussed towards
the end of the chapter.

The last chapter sumrnarises the conclusions of this thesis, from both theo-
retical and applied points of view. It also contains a section proposing further

research that would follow quite naturally from the results of this thesis.



Chapter 2

Statistical modelling of road

accident data

2.1 Introduction

The purpose of this chapter is to present the framework of the thesis in terms
of the assurnptions made and the problems that will be tackled, and also to
review critically the contingent literature to these problems.

Road accidents are among the more visible consequences of an enormous
number of failures in the daily volume of interaction between the people who
use the road networks and the environment in which they travel. An accident
that is predictable is a contradiction in terms. [n other words, when we are
talking about an individual accident, no matter how much knowledge we have
about the possible generating mechanisms, we are unable to predict exactly

where, when and to whom the next individual accident will occur. The best

18
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that can be done is to predict their approximate number. This is simply
because, although an individual accident is impossible to predict, the total
number of accideuts of some kind may behave with an almost constant overall
frequency in the long run.

As defined in Hauver et al. {1989) and Hauer (1997) safety is the property
of some specific entity, most commonly a site of the road network. The prop-
erty of safety {or more exactly the non-safety) for a site is quantified as the
number of accidents expected to occur per unit of time and their adverse con-
sequences. The important term is “expected” which makes a straightforward
connection with the statistical approach. If all conditions that affect safety
(traffic, weather, and so on) are frozen, expected means the “average” in the
long run.

‘One aim of collecting and investigating road accident data is to identify
significant clusters of accidents having common causal factors and to asses
the expected numbers of road accidents. The list of problems includes the
evaluation of safety treatments, the ranking and identification of hazardous
locations, predicting the numbers of futures accidents and investigating the
associations between characteristics of road accidents. The statistical mod-
els proposed for solving these problems can be divided into three categories:
models for accident frequencies, models for type of accidents and models for
both accident frequencies and type of accidents. The first category has been

well investigated at univariate level and it is reviewed next.
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2.2 Models for accident frequencies

The following methodological framework is followed for studying accidents
counts on a road network over a fixed period of time. The network is first
divided into units, usually called sites, like junctions or stretches of the road.
The statistical unit is the road network element and the response variables are

accident counts.

2.2.1 The pure Poisson Maodel

The main probability distribution used in modelling accident data is the Pois-
son distribution. Accidents occur in time. Consider a fixed site for which ac-
cidents are recorded in a fixed period of time I'. Partitioning the time penod
into n intervals of duration T'/n, let ¥;,; be the number of accidents recorded
in the i-ih time interval, let P,; = Pr(Y,; = 1) and let e,; = Pr(¥,,; > 2).

The following assumptions are made
1. The random variables Y, ;,(: = 1,2,...,n) are independent over 1
2. i P — A e (0,00) as n — oo,
3. maxy<icn Poi — 0 as n — o0,
4, i en; — 0 a3 n — 0.

Then it is shown in Durrett (1991, Theorem 6.1) that

Yoo+ Y4+ . 4+ VYan A Pois(A)
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where d means that the convergence is in distribution. This justifies using the
Poisson distribution for modelling road accidents. This derivation is concep-
tually different from the one based on a homogeneous Poisson process and the
Poisson distribution that characterizes it. The assumption of a homogeneous
Poisson process is not valid for road accidents since it is natural to expect
great variation of accidents by time patterns.

The Poisson distrihution is defined mathemiatically and whether a series of
events is in agreement with it 1s an empirical fact. Denote by Yi; the number
of accidents at site & during an observed time period Ty. The first assumption

made in modelling accident frequencies (Nicholson, 1983) is thal

Yk I M “2-('1 Pois(mk = )\ka)

where & = 1,2,..., N and ) is the mean accident frequency per unit time
at site £, The expected number of accidents, my, can then be linked with
a covariate vector Xy = (Xg1, Xi2, ..., Xko)', representing for instance traffic
flows and the geometric characteristics of the site. The connection is made via
a multiplicative equation which can be transformed into a linear equation on
the logarithmic scale. The unknown coefficients are estimated by fitting the
model to data and these will be used for statistical inference. The fitting
process, under this generalized linear statistical modelling framework, can
be done in GLIM or GENSTAT, where maxirnum likelihood estimates are

obtained using an iterative weighted least squared (WLS) procedure. The
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most common goodness-of-fit measures used are

k=N

G* = 2 [‘yk log (%}L) — (ks — ﬁik)] (2.1)
k=1 g
X (g — M)
; = (2.2)
where yi(k = 1,2,...,N) are the observed number of accidents and 7, are

the estimated means under the fitted model. The above notation for the
Poisson modei will be used without any index accounting for different sites
when the theoretical niodel in itself is the same for each site and the model is
self-explanatory.

Regarding the accident frequencies observed on a fixed number of sites,

there are two broad types of statistical investigations:

1. before-after studies; and

2. regression models regarding the prediction of future number of accidents.

2.2.2 Before-after studies

A safety treatment of a site of a road network aims to reduce the number of
accidents at that site. The usual way of assessing the effectiveness of a safety
treatment is to compare the accident frequency before the treatment has been
implemented with that after treatment.

A reduction in accidents at the treated sites does not necessarily imply

that the treatent has been successfitl. Three reasons may be responsible for

this.
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¢ The number of accidents af a site may change in a random manner,
increasing or decreasing, whether or not there has been any change at the

site. Statistical methods are necessary to consider this random variation.

e The mean number of accidents may decrease without any connection
with the treatment. In order to study these systematic factors it is
important to compare treated sites with a control group of untreated
sites. The confounding effects, such as time, can be overcome by selecting
a control group of sites and observe the number of accidents at these
sites over the same period as the treated sites. This design is called the

belore-after study and it uses a 2 x 2 contingency table

Control Treatment

Before 11 10

Alter 21 N2

defined by the time dichotomy, before-after, and the control-treatment

dichotomy.

e The third problem, is the regression-to-mean effect, which means that
for the many sites with a “low” accident frequency belore treatment
there will be a slight rise after treatment, for the few sites with a “high”

frequency a greater [all; while for all sites together, no change, (Haner,

1980).

The first two problems can be solved by standard methods (Haner, 1986;

Hauer, 1980; Hauer, 1997). In terms ol improvement due to the statistical
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analysis, the third problem is viewed as one of the most important. The
regression-to-mean bilas inadvertently results from the fact that only locations
with a large number of accidents are generally selected for treatment, which
may lead to biased conclusions. The standard solution to this problem is to
use empirical Bayes (EB)} models as developed in Abbess, Jarrett and Wright
(1981), Jarrett, Abbess and Wright (1982), Brude and Larsson (1988), Mor-
ris, Christiansen and Pendleton (1991). Hauer (1997) is a general reference
explaining empirical Bayes methods for practitioners.

The empirical Bayes (EB) method for estimation provides a general frame-
work where different distributions can be studied in order to improve the qual-

ity of the estimators. The componnd model

Y | my % Pois(my) (2.3)

me M OG) kefl.2,...,N}

lead to estimates of the individual parameters my using information from all
sites under study. In studies using EB methods the variation of my {rom site
to site is regarded as purely random. Then the Y} are marginally independent.
If the unknown distribution G(-) has probability density ¢ then the marginal
density is

polyr) = fPois(y;Jmk)g(mk)dmk
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and the posterior density of my is

Pois(yi|ms)g{m
P(mk|yhy2=---:y:\') = (yk| K)g( k)
pe(yr)

(2.4)

If ¢ is known, meaning that its parameters are given and do not have to be
estimated, then the model is called fnlly Bayesian; if the parameters of ¢ have
to be estimated from data then this approach is called an empirical Bayes
(EB) method.

One of the first important empirical Bayes ideas for modelling counts was
advocated by Robbins (1955) in a nonparametric form. For the compound
Poisson-G model described in (2.3), suppose that G is totally unknown. Under

squared error loss (SEL), the Bayes estimator is the posterior mean

m? = E(mly) (2.5)
(y + Upcly + 1)
bly) (29)

The MLE of m is Y so m% is biased. However, m? is preferred because of
lower MSE. When G is known, the estimation is straightforward. For the
case when G is unknown Robbins {1955) suggested to estimate pe{y) by the

number of values Y in the sample ¥, Y,,..., Yy that are equal with Y, so

j'fiv I{J =y+1}
m” = (y +1) J_'=N =
2521 I{y]:'y}

where /¢y Is the indicator function. Therefore, the Bayes estimate m¥ takes
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information from other sites as well. Although this procedure has some good
asymptotic properties, it was shown that, even when the sample size is large,
this method does not perform very well and a parametric approach is more
suitable {(Carlin and Louis; 1996).

The prior distribution g(m) is usually assumed to be of gamma form,
because the gamma distribution 1s the conjugate distribution for the Poisson

distribution {George, Makov and Smith, 1993). Thus

m ~ gammal(a, b) = gamma %; ;—2] . (2.7)

a . . . .
where gamma(z | ¢, b) = Fiza)rc“‘le‘”b and the second paraineterisation is in

terms of the mean § and variance . Then it follows from the Bayes formula

in equation (2.4) that the posterior distribution of m is

| b+1 “y aty—1i ,— m
p(m | y) = (—f‘((::}.)T)m +y—1 = (b+1)m (2.8)

The marginal distribution of ¥ is then

CTla+y) s 1N b\
ply) = y'T(a) (1+b) (1+b) ’ (29)

which is a negative binomial distribution NB(-I%E, a). As described by Mortis in

discussion of Hauer et al. (1989), the whole patametric modelling methodology
for accident counts can be expressed in terms of a descriptive model and an

inferential model Both describe the distribution for the observed data and the
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distribution of the wnobserved parameters. The descriptive model is given by

e observed data
Y ~ Pois(m) (2.10)
e unobserved parameters
a a
m|a,b ~ gamma(a,b) = gamma {3‘ 55] (2.11)

The inferential model is then

¢ observed data

¢ unobserved parameters

at+y a+ty
: . 2.1
b+l’(b+l)2] ( 3)

m |y ~ gammmala + y, b+ 1) = gamma [

The Bayes estimate of wn for the subpopulation of those sites at which y

accidents occurred is

a—+t+y

B{m y) =4

(2.14)

The regression effect can then be defined by E(m | y) — y. An alternative
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definition is the expected percentage change in the number of accidents

E —
B [M_y]xmo
)
_ [atwr
= [b+ly l}xlﬂﬂ.

In order to calculate the regression effect R the values of parameters a
and b need to be estimated. The values of these parameters can be estimated
by fitting the negative binomial distribution, equation {2.9), to the observed
data. This can be done in GLIM using macros or more directly in GENSTAT.
Some examples of such analyses are in Persaud (1991), Jarrett et al. (1982),
Hauer (1997).

B

The Bayes estimate m” 1s a convex combination of the overall expected

accident frequency u and the observed frequency y

a+y
b+1

m° = E(m|y)= (2.15)

m

N

= apt(l-a)y (2.16)

%, p=¥E{m|a,b) =% Itis worth pointing out that o depends

where a =
on var(m) in the population of sites.

Another way of modelling the effect of a safety measure implemented at a

site is to define a coefficient & such that

Mapt = f T pef
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where the two m values represent the expected number of accidents, before
and after the implementation. If the remedial treatment has no effect then
f = 1. The difference from this value can be interpreted as an increase ot
decrease by the same percentage in the expected number of accidents. The
value of @ is estimated as shown in Kulmala (1994).

There are other methods for dealing with the regression-to-mean effect,
though they are more difficult to apply in practice (Wright et al., 1988).
However, only the EB methods are rimportant for the development of the
models considered in the second part of the thesis. Wright et al. (1988)
describe four main problems about the assumptions made for all methods

that need to be carefully considered.

1. The first problem is about the definition of the term “site”. For treated
sites this 1s done by local authorities and this may influence the estimate
of the true accident rate for that site in future vears. However, for the
regression models considered in the next subsection and later chaplers,

the road network is usually divided into nodes (junctions) and links.

2. The second problem is about defining the population. For a given site,
do “all” the sites in the study area define the population or only “those”
with similar physical characteristics as the treated site? The regression
models allow the parameters of the gamma distribution to depend on
site charactenstics, so the ‘population’ consists of all sites with the same

characteristics.
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3. The third problem concerns the “gamma assumption”. Following Abbess
et al. (1981), this means that the distribution of the true mean accident
rates 1s garnma. This 1s very convenient from the mathematical poiut
of view but it is a strong assumption. It would be very ‘interestiug o
know how sensitive the results are to this assumption and whether other
distributions such as log normal give satisfactory solutions. Some new

approaches are described in this thesis in Chapters 7 and 9.

4. The remedial sites are choseu for treatment because they have a large
number of accidents which appear to have causal factors in common. The
fourth problem is whether the regression-to-mean effect can be studied
in terms of the overall accident frequency at each site. A simultane-
ous analysis of accident frequencies of various type would certaiuly be
more beneficial. Statistical models for doing this kind of analysis after

disaggregation are developed in Chapters 8 and 9.

2.2.3 Regression models for accident frequencies

Very often, a better prediction of future number of accidents is posssible when
the covariate information available is liuked to the observed number of acc-
deuts. This will help in establishing a straightforward method for prediction.
Linear regression models using a normal distribution for the error term are
not appropriate. Generalized linear modelling gives better modelling flexi-
bility and the predictive accident models developed in the last two decades

are included in this general framework. This allows reteution of the Pos-
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son assumption. Therefore, Poisson log-linear mnodelling is often used for the

regression models for road accident data.

A generalized linear model, McCullagh and Nelder (1989), is specified by

Yo~ f(6,4) (2.17)
EY) = m (2.18)
him) = X'f. (2.19)

In this, X is a vector of explanatory variables. The relationship between the
mean m and the linear predictor X’ is modelled by the so called link function
h. This is possible as long as there is a function A. such that § = h.(X'8).
When the error distribution f(0, ¢) is Poisson with mean m the canonical link

0 = log (m) = X'P leads to the standard log-linear Poisson-regression model.

Regression models

In the literature there are studied several classes of regression models. A

Poisson class of models (Miaou and Lum, 1993) assumes that

Y ~ Pois(m) (2.20)

m=E(Y) = vlexp(X'D)] (2.21)

where r is an exposure factor, like time for instance. The rate function is

A = exp (X'B) which is very convenient being nonnegative. A modified Poisson
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regression model, Maycock and Hall (1984), is described by

Y~  Pois(m)

m= B(Y) =v"[exp(X'f)]

where the unknown constant 8y needs to be estimated. If v is a good exposure
measure then the estimated B;, should be close to 1.

As pointed out in Miaou and Lum (1993), the Poisson distribution is very
useful not only becanse tests and confidence sets for the estimated regression
coefficients can be calculated, but probabilistic statements can be made about
Y. This is an important point in favour of using the Poisson distribution, which
15 discrete. There is no need to look for some other continuous distributions,
like the normal that is still used, quite inappropriately, in some investigations,
for example Amis (1996).

For predictive accident models traflic low plays a major role, and should
also be considered in before-after studies. Changes in traffic flows influence
changes in accident counts between the “before” and “after” periods, and
this should be accounted for before making any claims about the effectiveness
of any treatment. Traffic flow is also important for estimating the expected
accident numbers, and is usually included amongst the explanatory variahles
X. Quite often accident rates like accidents/vehicle kilometer are used to
account for changes in traffic flow as a measure of exposure. This would be

correct if the expected accident frequencies like accidents/year were directly
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proportional to traflic flow. This common belief is seldom true; the coefficient
of flow is significantly different from I.

A further problem is that the exact values for traffic flows are not known
and they are replaced by estimates. This may cause further problems if there
ate random errors in these estimates. If @) is the traffic flow count and =z is
the true annual average daily traffic (AADT) flow, they can be modelled at

the same time using the following model

Y ~ Pois(m = \T) (2.22)
@ ~ Pois(zt) (2.23)
m = Texp[X'8+log(z)7] (2.24)

An iterative procedure described in Maher and Summersgill (1996), can be

used to calculate the estimates of the unknown parameters (43, 7).

The Overdispersion problem

Orne limitation of the Poisson-regression modelling, well documented in the
literature, is that the error variance has to be equal to the mean E(Y) in
equation (2.18), see Cox (1983) and Dean and Lawless (1989). However, in
practice count data very often shows overdispersion: the error variance is
greater than the mean. Ignoring this phenomenon can be very troublesome.
Although the maximum likelihood estimators of the regression coefficients are

still consistent, the variances of the estimated coefficients tend to be underes-
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timated, which means that the significance levels of the estimated coefficients
can be misleading. The phenomenon of overdispersion is well-known in many
areas of statistics. There are several methods to overcome this difficulty but
there is much research under progress searching for better solutions. Some pos-
sible reasons for overdispersion in predictive accident models are commented
in Maher and Summersgill {1996).

Overdispersion occurs quite often in modelling count data under a Poisson
assumption, so the first attempts to solve this problem were based on making
more complex distributional assumptions. One solution proposed by Wed-
derburn (1974) to correct for overdispersion is a quasi-Poisson model (QP).
The difference from the classical Poisson model is that var(¥) = 7m, with
the parameter 7 accounting for overdispersion. This parameter can then be
estimated by any of G*/(N — p), X*/(N - p), or G?*/E(G?), whete N is the
number of observations and p is the number of parameters estimated. Sim-
ulation studies (Maher and Summersgill, 1996) have shown that the second
performs better. For the estimates of the regression parameters 8 there is no
difference compared to the pure Poisson model, but their standard errors are
inflated by a factor of /7. The asymptotic ¢-statistic for the coefficient of
regression can be improved (Agresti, 1990) by multiplying the value for the
initial ¢-statistic, obtained from the Poisson regression model, by 7=2. One
may obtain the correct adjusted asymptotic standard errors by multiplying

the values given by traditional generalized linear modelling software by the

scaling factor /7 = /X?/(N — p}. The inference is then performed in the
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classical manner using these adjusted asymptotic standard errors. It can be
immediately seen that, when 7 > |, i.e. there is overdispersion, the confidence
intervals obtained after adjusting are larger than the unadjusted confidence
intervals. Thus, the inferential process is improved by using the correct as-
ymptotic standard errors.

An alternative is to use another discrete distribution instead of the Poisson
distribution. Following a Bayesian approach as described above, it seems that
the negative binomial distribution (NB) is more suitable, as it allows the
variance to be greater than the mean. A third more general solution is to use
a more general {amily of negative binomial distributions for which (QP) and
(NB) models are just {wo special cases (Cameron and Trivedi, 1986). This

general model is given by the following assumptions

Vi ~ Pois(M\T;), forall & (2.25)
Ay~ gamma(n, b) = gamma [,u, %] (2.26)
n = ag (2.27)

where « is a constant factor and the overall mean u is estimated from the

data. From the model specification it follows that

b
Vi | b) = NB g 2.2
p(Ye | . b) l (b+.’&'") (2.28)
T,
E(Yi | 1,0) = ”T":m (2.29)

, b+ T, T
var(Ye | 1,b) = B(Ye | ) +b L (1+-5f) (2.30)
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Using equation (2.27) it follows that b = ap’~!, and this means that

p TR

var(Yi | p, 0) = pTk +

as mentioned in Maher and Summersgill (1996). Thus, 7 = 0 implies that
7 = « and this is the classical NB model used. If 7 = 1 it follows that n = ap
50 the shape of the gamma distribution is not constant and it depends on its
mean. In this case

T
var( Yy | g, b) = puTy (1 + Zk)

and if Tx = T then this model becomes a (QP) model with 7 =1+ L.

This methodology can be extended to incorporate covariate information;
the parameter g is then a function of the covariate vector X. In this family of
models, for the TRL studies, like the TRL 4-arm roundabout study (Maycock
and Hall, 1984), it seems that the (NB) model is more adequate than the (QP)

model.

2.3 Selecting sites for treatment

2.3.1 Introduction

The main job of traffic safety engineers is to correct hazardous sites. First,
they have to identify the risky locations, then to determine remedial schemes
and in the end to implement the best feasible treatment. Choosing the wrong

sites is damaging in two ways: firstly, some hazardous sites may be left un-
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treated and secondly, large arnounts of public money are wasted. ldeally, sites
should be ranked by the values of their true means m. These are unknown,
but because of random variation, observed numbers of accidents are not en-
tirely reliable. Statistical modelling is often used to improve the methodology.
Similar problems are addressed in medicine (Morris and Christianseu, 1996),
where profiling hospitals has become very important in recent years, and in
education (Laird and Louis, 1989), where ranking schools based on pupil per-
formance data is required for public information and for implementation of
better education policies.

Ranking and selection are related to either a “relative” given set of statisti-
cal units, in our case sites, and then the units are just compared to each other,
or to an “absolute” standard like a given threshold and the purpose is then
to identify those units that exceed the threshold. Ranking can be successfully
used to indicate good or bad performance. Ranks should contain statistical
information that avoid misrepresentation of the precision of estimation. If
regression methods can be used to explain the whole between-sites variation
there is no basis for ranking.

Generally, sites are ranked according to some safety measure such as acci-
dent count or rate. Higle and Witkowski (1988) were the first to propose (EB)
methods for ranking locations. The (EB) methods were used to give greater
weight to those sites having greater exposure. They were not used because of
selection bias, which is not of concern here. The site estimates are different

in their reliability. For example, if a large number of accidents y, is observed
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at a site with a high exposure, then there is more confidence that y; is close
to 1ts true mean value than for a large number y9 accidents observed at a site
with low exposure.

Ranking the sites by their empirical accident [requency, without consid-
ering the uncertainty of each estimate, may not correctly identily the worst
locations. Nothing can be said about the probability that the worst sites have
been selected or about the extent to which the selected sites are really haz-
ardous compared with the non-selected ones. Bayesian and empirical Bayes
methods have been used to overcome some of these difficulties, see Hauer
(1980), Higle and Witkowski (1988), Davies (1990), Christiansen, Morris and
Pendleton (1992). A recent study, proposing hierarchical Bayesian models as
a general solution to all the problems highlighted above, is given in Schluter,
Deely and Nicholson (1997).

Ranking and selection are based on solving one or more of the following
problems (Morris and Christiansen, 1996), here translated for road accident

sites.

1. Estimate the maximum or minimum of all means or even find the dis-

tribution of this quantity.

2. Determine the site or family of sites that are likely to be the best (or

worst).
3. Find the sites that are likely to exceed a given threshold.

4. Obtain the predictive distribution for each of the IV sites and calculate
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the probability that, for a fixed future period, each site will have the

maximum (or minimum) number of accidents

Methods for solving these problems can be based on a Bayesian framework.
Given a tolerance level 6, Higle and Witkowski (1988) called a site & ha:z-
ardous when the probability that A, the expected accident frequency per unit
time, is greater than a specified upper limit A (a possible acceptable underlying
accident mean) exceeds §. In another study (Davies, 1990) sites were classified
hy the ratio p between the accident mean at each site and the pooled acci-
dent means at the remaining sites. For each site under scrutiny, the posterior

distribution of p is used to obtain the similarity measure

a:Pr(P< 1 |y1:"'JyN)'

When « is small the corresponding site has a higher underlying accident mean
than the other sites pooled together and it is therefore selected.

Christiansen et al. (1992) developed a hierarchical Bayesian model for
estimation and for ranking the accident sites. The posterior accident mean es-
timates, adjusted for costs and future traffic volume, are ranked in a decreasing

order and sites are selected until a fixed budget constraint is met.

2.3.2 Statistical modelling methodology

Suppose there are IV sites labelled & = 1,2,..., N, and at site &k there is a

total of Y} accidents over a period of time Ty. The counts Y; are assumed
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independent with means Ay, where Az > 0.

The hierarchical models are developed in several stages. First of all, the
mean per unit time A 1s considered a random variable with prior distribution
f(- | B,v). Then the hierarchical Bayesian method considers a hyper-prior
distribution A on the parameters 8 and v, in a second stage. Under the

assumption of exchangeability the prior distribution of A = (A,..., An) is
] f H £\ | B, v)A(8, v)dBdw. (2.31)
The hyper-prior A(3, v) can be factorised as
W(B,v) = ha(B)ha(v | B) (2.32)

using prior inforrnation about the nature of parameters g and v. The posterior

distribution of the parameter of direct interest A, given the observed data

¥y = (¥1,..-,¥n), can be written as
e e f(Ay, Bv) .
OO y) = /0 /0 p(y) f09,8:v) yg, (2.33)
e 18 )
ity = [ [ o T | B (B)dBdv (2.34)
where

= [ [ 0w | .0)halv | B)a(8)dBd (2.35)
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is the marginal distribution of the observed data y. Because the Bayesian
calculus involves only the expectation of the posterior distribution or other
measutes such as mean or mode, the exact form of the posterior distribution
is not a matter of specific concern. However, it has to be remarked that
under the gamma assumption, p(y | 8,v) is a product of negative binomial
distributions. The specification of the hyper-prior distribution A(3, ) is not
easy. Schluter et al. (1997) provide an interesting discussion in connection
with the ranking problem.

Based on the previous methodology, Schluter et al. (1997) proposcd three

criteria for ranking. These will be explained in turn.

Ranking using the posterior probability that a site is the worst site

For a given type of accident or the total number of accidents, if Ag is the
accident mean at the site &, then the posterior probability that the site & 1s

the worst one can be calculated as
pe(v) = Pr(Ap > v A, forall j#£&|y)

where v € [0,00). If v = 1 then py(v) is the probability that the site £ is
the worst site. Only for this value of v the surn of pi(v) equals 1, so they
are true probabilities. The practitioners specify v a priori. Then either the
first r largest values pi(v) or the smallest group of sites with summed values
p(v) greater than some threshold value Px, are selected. If the results are not

satisfactory, for instance only two or three sites are selected, then the value of
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v can be lowered and the ranking process repeated. This criterion is designed
for long term projects and calculates a measure of uncertainty, based on a

pre-specified distance quantity v,

Ranking using the predictive probability of future accidents

For a given threshold number ng, if f’k is the future number of accidents in

the next period at site k, then

pde(no) = Pr(Fi > noly) = /{ Py | A y)fOh | y)dA

up2no}

is the Bayesiau predictive probability that the future number of accidents will
exceed an important future target accideut number. Again, the selection 1s
made by taking either the first r largest pd,(ng) values or all the sites having
pdg(ng) > Fo, where Fy is fixed. This criterion is designed for short term
objectives because 1t uses the probability of future numbers of accidents in

the next period.

Ranking using the posterior mean

The posterior mean

E(v f9) = [ Z SO | 9)dA

1s the most commonly used measure. Selection is made either by taking the r

largest E(Ax | ¥) or by retaining all sites for which E(Ay | y) 2 eo, where eg is
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a given threshold value. This measure is probably the most easily calculated
of all three. It is an estimate of the underlying mean and it can be used for
long term forecasts.

However, as pointed out by Laird and Louis (1989) and Morris and Chris-
tiansen (1996), this approach can be misleading. A more reliable method is to
estimate the actual ranks of the parameters of interest corresponding to the
observational units, which 1u this thesis will be the means A; of the Poisson
distributions. The beauty of the Bayesian methodology coupled with MCMC
methods is that the entire posterior distribution of ranks caun be estimaied.

It would be very useful if the above methodology could be further devel-
oped and hierarchical models for multiple counts considered to rank the sites
according to differeut criteria. Nothing has been done appareutly about rank-
ing hazardous locations when multiple accident counts are joiutly investigated.
Practitioners prefer to use data at an aggregated level, mainly because of lack
of statistical models that can he used for multiple counts. For the same period
of observation, if one site has a total of 30 accidents, out of which 6 are KSI,
and another site has a total of 15, out of which 10 are KSI, then, looking ouly
at the totals, the first site seems more hazardous than the second oue. But if
only the number of KSI accidents is cousidered then the second site i1s more
hazardous than the first one. Therefore developing models for ranking multi-
ple accident counts would provide a much beiter analysis. Three hierarchical
Bayesian models are iuvestigated for ranking 156 link sites in Chapter 9.

Another hierarchical model used for ranks was proposed by Maher aud
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Mountain {1988). The model is specified in three stages

Y ~ Pois(Ag) (2.36)
Ap o~ ga,mrna,(af7

) (2.37)
) (2.38)

2% 20

S~ gamma.(ﬁ.,

and the difference A, — é;, represents the quantity by which the mean accident
frequency at the site & exceeds the average mean for a site with fixed char-
acteristics of that type. Maher and Mountain (1988) ranked the sites by the
potential accident reduction criterion (PAR), that is by y; — &, where & is
an estimate. It was shown that this criterion is better than ranking based on
annual accident totals, provided that the estimation of é 1s accurate enough.
This model is an improvement becanse it is not based only on the observed
total accident counts at each site and because covariates can be easily in-
cluded. Although (PAR) shows great promise there are several drawbacks
for using this model in this form. One major criticism is that the estimated
average means & and the ohserved counts y are assumed to be sufficient for
calculating the ranks. The environment may experience dynamic changes in
many unobserved ways with results in increasing or decreasing the number of
accidents. The plain observed counts are unreliable for ranking purposes, but
fully Bayesian or B methods combine the data from other sites and therefore
are more reliable, especially if random effects are emploved. for estimating

E(A; | ) or for ranking the sites. In addition, nothing has been said, re-
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garding the (PAR) criterion, about the uncertainty associated with the ranks.
Even when two sites have different ranks, if their uncertainty intervals are
quite overlapped then the difference may be due to the particular estimation
procedure chosen. A solution to all these problems is sketched in Chapters 8
and 9, using hierarchical models combining regression with random effects in

a Bayesian framework.

2.4 Models for type of accidents

The first category of studies described in Section 2.2 focused on statistical
modelling of accident frequencies as random variables. A second category
of applications is looking at the characteristics of the accidents which have
occurred, such as the severity of injury, the date (day, month, year), location,
speed limit, road classification and so on. The unit of the statistical analysis is
different from that in the previous category of studies. Each accident is a unit
of the sample and the random variables are the characteristics of the accident,
given that the accident has occurred.

There will typically be a large nuinber of variables. There is an obvious
interest in identifying the assoctalion or independence relationships among
the variables. An example is in Salminen and Heiskanen (1997), where the
correlations between accidents in traffic, at work, at home and during sports
and leisure time were investigated. The product moment correlation was used

as the main tool. Even after logarithmic transformations, the correlations
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were unchanged and still low. The study used data for 3 years 1980, 1988 and
19893, the matrix of correlation changing over time.

Another study of which declared purpose was to investigate the charac-
teristics of pedal cycle accidents at T-junctions is Henson (1992). A number
of ten variables representing varions accident factors were analysed using log-
linear models for data summarised in contingency tables. The analysis was
conducted on several marginal two dimensional and three dimensional tables
and it was inconclnsive. Henson (1992) required a larger database to get bet-
ter results. The data was indeed sparse, comprising only 272 reported injury
accidents, but the statistical IIlethodolégy used, analysing several marginal ta-
bles, is potentially misleading. However, there are better techniques available
for studying associations between variables that will be described and applied
in this thesis in Chapters 3, 4 and 3. It will be shown in this thesis how to
conduct an exploratory analysis on a single large table cross-classified by all
variables under study. It will also be shown how to avoid model selection
problems for sparse tables by using exact conditional tests.

Studies of accident characteristics are observational in the same sense as
studies regarding accident frequencies at individual sites. A retrospective view
1s taken, conditioning on the fact that accidents have ocenrred, so only char-
acteristics of observed accidents are recorded. In this thesis we will call by
“road accident characteristics™ features of accidents such as accident severity,
the number of casualties, the number of vehices involved in the accident; char-

acteristics of the road network such as road class, speed limit; environmental
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conditions such as road surface conditions, hazardous objects on the road;
temporal characteristics such as day of the week, hour of the day and so on.
The report book, that was used by Thames Valley Police to collect data about
contributory factors of accidents, contains a total of 33 variables of this kind.

There are some studies about road accident characteristics {Taylor and
Barker, 1994-1995; Maycock, 1985), but the approach is more descriptive
rather than trying a statistical inferential approach. Generally there is a lack
of exploratory studies of large data sets in this area. Several applications will
be given in this thesis in Chapters 5 and 6 continuing the work described in
Tunaru and Jarrett (19985) and Tunaru and Jarrett (1998a).

For tables of small dimension cross-classified by accident characteristics
the class of log-linear models has been used (Fienberg, 1980) successfully for
statistical modelling. A subset of data of this type extracted from Kihlberg,
Narragon and Campbell (1964) has been analysed in textbooks, see Fienberg
(1980) and Christensen (1990). This small table is used in Chapters 3, 4, 6
and 8 as a general example to illustrate the theoretical concepts involved. An-
other example of a log-linear analysis is described 1n Agresti (1996), examining
the characteristics of passengers in cars and light trucks invelved in accidents.
The 4-dimensional contingency table contains data on 68,694 passengers in
the state of Maine in 1991 and the analysis revealed that, even for a large
sample size, asymptotic significance tests can be unreliable. This conclusion

will be reconfirmed by the results obtained in Chapter 5.
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2.5 Models for accident frequencies and type

of accidents

The previous two categories of variables are sometimes studied jointly, devel-
oping models for relating road environment factors to both accident frequency
and the type of accident. The models falling into this category try to relate
the total nunber of accidents at a junction or along a length of road to a
number of explanatory road environment variables, and also to investigate
which variables are associated with the type of accident (Amis, 1996; Moun-
tain et al., 1996). In Amis (1996), an exploratory stepwise multiple regression
approach was proposed in the first stage in order to determine which covari-
ates should be retained for further regression modeiling. If the square root is

taken to normalise the Poisson variable, the model proposed first is

\/E=(Y+X};ﬁ+€

where Y} is the numnber of accidents at the site &£, £ is a vector of parameters,
X 1s a vector of covariates and ¢ is an error term having the standard normal
distribution. In the second stage generalized linear models are fitled either for
accident frequencies or for accident type. For example, if the site is defined as
a junction, then the generalized linear model for accident frequencies proposed
in Amis (1996) is

Yi ~ Pois (M), x (exp(a + X.3)))
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where M} is either the time period or the link length. A logistic model is
discussed 1n the same paper for aceident type.

Stepwise multiple regression applied in an automated way can easily lead
to misleading results. A particular covariate can be evaluated as significant as
well as non-significant, depending on what explanatory terms are included in
regression. This model selection procedure should be used with great eaution.
In addition, instead of attempting to normalise the Poisson variable, it wonld
be better to use a Poisson or NB regression model. However, the idea as a
whole i1s very interesting and further research could usefully be done in this
area. This may require a multivariate approach and a general framework is
proposed now.,

Suppose that there are Y}; accidents of type i, at site k, that are Poisson
distribnted with mean Ay, wherez = 1,2,..., M, k=1,2,...,N. Given the
means Ag;, the accident frequencies Y}, are assumed independent from site to
site, but accident frequencies of different types are not assumed independent.
From the properties of Poisson distribution, the total number of accidents of
type i is Y,; ~ Pois(Ay;). Conditioning on the total number of accidents over

all sites Yy, it follows (Santner and Dufly, 1989) thal

(Vi Yiao oy Vi) [ {Y4q = n} ~ Multi(n, p;)

where the probabilities p; = %ﬁ Making a strong assumption that the mean

number of accidents can be calculated multiplicatively as a product of a site
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effect and an accident type effect, Ay, = ppb;, it follows that Ay, = p 6, and
therefore p; = ;1 . The next step is to consider a log-linear model for the vector
of probabilities (p;)i=1.2,..ar. Therefore, this is a log-linear analysis of accident
characteristics. Thus, conditioning on the fact that the accidents have oc-
curred and knowing various information about the characteristics of accidents
and road network, the relationships between these categorical variables can
be investigated and the conclusion can be drawn about accidents as a whole
on that road network. Since there are many variables of interest regarding
accident characteristics, the log-linear modelling, in this context, should be
able to deal with large probability vectors in an efficient manner. A statistical
technique that does just that is graphical modelling which will be the subject

of the following four chapters.

2.6 Summary

In this chapter a number of different statistical models for road accidents have
been reviewed. Statistical modelling for road accident data was greatly im-
proved by applying generalized linear models. Accident data can be viewed as
an example of count data in general and therefore models for counts developed
in other areas of research can be also applied here. Nevertheless, accident data
has some specific characteristics that makes it more difficult to analyse. Data
come from observational studies and it is almost always sparse, that is many

counts are zero or very small. This means that classical techniques applied
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in other areas cannot be always applied here and various changes need to be
made.

More powerful statistical methods are required to handle large and complex
road accident datasets. Graphical modelling offers a solution to study the
relationships between the variables under study, usually a large number, and
multiple response variables models would give accident prediction modelling
a new di.mension.

Predictive accident models were developed mainly at an univariate level.
The lack of models for joint types of accident gives the statistician an op-
portunity to research a vast area. The benefits would be a better and more
structured information for local authorities that could in return spend the

money morc wisely and help reducing the number of accidents further.



Chapter 3

Graphical log-linear models

3.1 Introduction

In the last decade graphical modelling has become an important teel in applied
statistical modelling. A graphical model is usually identified with a pictorial
representation of a statistical model, thus making a straightforward connection
with graph theory. Graphical models are mainly used to represent conditional
independencies and they cover exploratory studies, where all variables are
treated as response variables, and more causal approaches where the variables
are divided into response and explanatory blocks. The potential of applications
includes biostatistics, genetics, sociology, education studies- see the examples
in Edwards (1995) and Mohamed, Diamond and Smith (1998), and credit
scoring in finance {Hand, McConway and Stanghellini, 1997, Stanghellini,
McConway and Hand, 1999) among others. These models can be also ap-

plied to econometrics (Lyngaard and Walther, 1993) and theoretical statistics
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(Stanghellini, 1997). A directed graph representing an econometric model for
traffic fatalities has been illustrated in Roh, Bessler and Gilbert (1999).

in addition, the concept of graphical model 1s fundamental in the devel-
opment of Markov Chain Monte Carlo strategies for applied Bayestan statis-
tics. It is also used as a tool for communicating complex statistical models
analysed in the computer program WinBUGS: see Spiegelhalter, Thomas and
Best (1998).

In this chapter, the theoretical elements on which graphical modelling is
based are reviewed, and some terminology from graph theory, used in the
subsequent chaplers, is inlroduced. A 4-dimensional contingency table is used
throughout to illustrate various concepts related to graphical modelling.

In Section 3.2 the motivation for applying graphical modelling for analysing
large contingency tables is given. Section 3.3 contains a short revision of con-
ditional independence and a list of various concepts of graph theory used later
on. Then, in Section 3.4, the Markov properties defining the graphical mod-
els and the methodological skeleton for practical applications are outlined.
Chain graphical modelling is a generalisation of graphical modelling for situ-
ations when variables are ordered by some causal a priori assumption. The
corresponding Markov properties and other results are summarised in Sec-
tion 3.4.2. Various model selection procedures are discussed in Chapter 4 and
a new battery of Bayesian model selection procedures that can be applied for
contingency tables is proposed in Chapter 8, Section 8.4.

Chapters 5 and 6 are complementary to this one, discussing some practical
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applications to large and sparse contingency table summarising road accident
data. and methods of reducing the dimensionality of the statistical analysis

with the help of a collapsibility concept and corresponding theoretical results

as given in Asmussen and Edwards (1983).

3.2 The need for graphical modelling

A national road accident database will contain a large number of variables rep-
resenting characteristics of the recorded road accidents. Animportant problem
is then to identify the associations, or in a-complementary way, the conditional
independence relationships between the variables under study. For statistical
analysis, the data can be summarised in a multi-dimensional contingency ta-
ble cross-classified by the variables under study. Because of the Yule-Simpson
paradox (Sinpson, 1951), the analysis of marginal tables, involving only two
or three variables at a time, can be very misleading.

Consider, for instance, a subset of data reported in Kihlberg et al. (1964).

The variables are

o A = Driver ejected (No / Yes)
¢ B = Car type (Small / Standard)

o C = Injury type (Not severe / Severe).
and the data is shown in Table 3.1.

The statistical analysis of contingency tables like this, where all variables

are viewed as response variables, is based on the class of log-linear models,
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Table 8.1: A 3-way contingency table of road accidents

Driver  Car Injury type
Fjected type Not Severe Severe
No Small 410 262
Standard 2026 1426
yes Small 45 103
Standard 133 426

Source: Kihlberg et al. (1964).

which is perhaps the most nseful class for contingency tables (Haberman, 1974,
Bishop, Iienberg and Holland, 1975; Christensen, 1990). Log-linear models
express the logarithms of the cell probabilities as sums of main effects and
interaction terms, by analogy with analysis of variance (ANOVA) models for
continuous data. The parameter p;;; represents the probability of the cell at
the intersection of level ¢ of A, level 7 of B and level k of C'. The saturated log-
linear model for a three dimensional contingency table can be parameterised

as

log pise = v + (s + uagy + usry + tizg) + sy T vasiey + wi23gie

where, for instance, the term 1,5 represents the interaction between vari-
ables A and B. The terms uyy(;5), ta(ik), taagjr) are called fwo-way nterac-
tion terms and u)a(isr) 18 called a  three-way interaction term. The mutual

independence model, that is the model which specifies that all variables cross-
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classifying the table are independent, is

lOg Pijk = U -+ ‘t.!l].(t') + 'U,g(j) + uS(k)?

and the all two-way 1nteraction model is

log pijr = u + wygy + uagy + Uaey + Uaggs) + Uiagk) T uzaE)

Since there are more parameters on the right side of the equation than on the
left side, the representations are overparameterised. Thus, in order to have a
unique representation, sone ANOVA-like constraints are imposed. The main
effects are always kept in the model because it is very hard to interpret a
model having a higher-order relative term of a main effect not present in the
rnodel.

Since there are only three variables involved in this example, it is possible
to test the fit of all possible models. The results are shown in Table 3.2. In
this table, the model formula is expressed using only the terms of highest in-
teraction. Thus, for example, [A]{B][C] denotes a log-linear model containing
the main effects of the factors A, B and C, while [AB][BC] is an abbreviation
for A+ B+ C+ A B+ B.C, a model containing all the main effects and
the interactions between factors A and B and respectively, between B and C.
The scaled deviance (McCullagh and Nelder, 1989) is the statistic employed
to test the model. The saturated model [ABC)| fits the data perfectly and has

deviance 0. In general, the scaled deviance is the generalised log-likelihood
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ratio statistic for comparing each model with the saturated model. Under the
null hypothesis that a particular model is correct, the scaled deviance is as-
ymptotically distributed as chi-squared with the indicated number of degrees
of freedom (denoted by df). This distribution is used to calculate the P-value,

the probability of obtaining the observed or a larger deviance. There are two

Table 3.2: Models fitted to the collision-rollover data

Model Formula Scaled deviance df P-value
T [AIB][C] 20860 4 0.000
2 [AB][C] 289.89 3 0.000
3 [AC][B] 12.69 3 0.005
4 [BC|[A] 29793 3 0.000
5 [AB][BC] 289.13 2 0.000
6 [AB][AC)] 3.80 2 0.143
7 [BC|[AC] 11.93 2 0.003
8 [AB][BC|[AC] 1.15 1 0.284
9 [ABC] 0.00 0 1.000

models that fit the data well, models [AB][BC][AC] and [AB]|[AC]. The sec-
ond model is nested within the first one so it is preferred because it has fewer
parameters and is easier to interpret in terms of conditional independencies.
The model informs us that car type, B, and injury type, C, are independent
given driver ejected, A. This means that, knowing whether the driver has
been ¢jected or not in an accident, finding out the type of the car will not
help in any way to predict the type of injury in that accident. Therefore, B 1s
irrelevant to C when A is known, or in other words it is only A which is associ-

ated with C. This conditional independence relationship is denoted, following
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Dawid (1980), by B 1L C' | A. A similar notation will be used throughtout
the thesis for the conditional independence of sets of random variables.

The problem here is that there is more information available and there is a
fourth variable D = Accident Type (Collision / Rollover) so the Table 3.1 can
he further cross-classified. Even if the interest is focused on the relationship
between type of injury, type of car and driver being ejected it is not wise to
take out of the analysis the variable D, the accident type. The full data is

shown 1n the 4-dimensional Table 3.3.

Table 3.3: j-way contingency table of road accidents

A B C
Driver  Car Accident Injury type
Fjected type type D Not Severe Severe
No Small Collision 350 150
Rollover 60 112
Standard Collision 1878 1022
Rollover 148 404
yes Small Collision 26 23
Rollover 19 80
Standard Collision 111 161
Rollover 22 265

Source: Kihlberg et al. (1964).

One of the models that fits Table 3.3 well i1s [ACD][BCD]. The impor-
tance of this model will be better described in the context of various model
selection procedures compared in Chapter 4. This model can be again inter-
preted in terms of conditional independence such as A 1L B | {C, D}, which

means that driver ejected is independent of car type given accident type and
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injury type. In addition, B and C are not conditionally independent which
seems to contradict the analysis of the 3-dimensional table. Moreover, the
conditional independence between A and B is in contradiction with the previ-
ous conclusion. This phenomenon, where a relationship between two variables
is changing to the opposite when more (or less variables) are considered, is
called Yule-Simpson paradox or just Simpson’s paradox and it highlights the
importance of taking a multivariate approach, by involving all relevant vari-
ables under study. Therefore a powerful technique is needed to analyse large
tables in an efficient manner without losing important information or arriving
at misleading conclusions.

This looks like a problem without any solution. On the one hand all the
variables under study should be considered in order to avoid Simpson’s para-
dox, and on the other hand there is a natural tendency to simplify the picture
to have more reasonable interpretations. This is where graphical modelling
comes in as a very useful exploratory technique for describing the conditional

independencies between the varables.

3.3 Preliminaries and terminology

3.3.1 Background

The seminal ideas of graphical modelling can be found in several areas of

sclence where statistics plays an important role:
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1. in statistical physics, Gibbs (1902) studied a large system of particles of
a gas or a solid where, for a subgroup of particles, only the interactions
between the particles in the subgronp and the neighbour particles are

considered significant.

2. in genetics, path analysis (Wright, 1934) was proposed for studying heri-
table properties of natural species using graphs with arrows from parents
to children. These ideas were later taken np in economics and social sci-
ences for developing causal models (Wold, 1954; Wold, 1960; Blalock,

1971).

3. in theoretical statistics, Bartlett (1935) used interactions for contingency
tables in a similar way to their use in statistical physics. The counts in
a group of cells of the table were independent of the counts in the rest

of the table | given the counts in the boundary of the group.

Graphical models have been developed for categorical variables as a subclass
of hierarchical log-linear models (Darroch, Lauritzen and Speed, 1980; Lau-
ritzen, 1996; Whittaker, 1990; Wermuth and Lauritzen, 1990; Edwards, 1995),
for continuous Gaussian variables, better known as covariance selection mod-
els (Wermuth, 1976; Whittaker, 1990; Lauritzen, 1996), and for a mixture
of continuous Gaussian and categorical variables (Lauritzen, 1989; Edwards,
1990; Edwards, 1995). In the first part of the thesis only graphical models for
categorical variables and graphical chain models are considered. Other forms

of graphical models, like directed graphical models or graphical chain models
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with categorical, discrete and continuous (not necessarily normal) variables,
are used implicitly in conjunction with Markov Chain Monte Carlo methods

applied in the second part of the thesis.

3.3.2 Graph theory concepts

The account of the elements of graph theory in this subsection follows Lau-
ritzen (1996). Formally, a graph is a pair G = (V, E) where V is a finite set of
vertices (which in this thesis correspond to the variables under examination)
and £ is the set of edges, which is a subset of the set of ordered pairs of dis-
tinct elements of V. The number of vertices in V' is denoted by |V|. All the
graphs in this thesis are assumed to be simple, that is no muitiple edges or
loops ate allqwed. [f (a,8) € I but (b,a) & E. then the edge is called directed
and 1s represented by an arrow from ¢ pointing towards b; it is said that « is
a parent of b and b1s a child of a. denoted by @ — b. The set of parents of b is
denoted by pa{b) and the set of children of a as ch(a}. If both (a,b) € F and
(b,e) € E then the edge 15 undirected and represented by a line joining a to &;
the vertices are then called adjacent or neighbours, denoted by a ~ b. The set
of neighbours of a vertex ¢ is denoted by ne(a). For a subset of vertices A, the
notations pa(A),ch(4) and ne(A} denote the collection of parents, children
and neighbours respectively of vertices in A that are not themselves elements
of A. For example, in the graph in Figure 3.1, § and N are both parents of A
whereas {5,7T, L} is the parental set of the set {A, N}. In the same time, R

has only one neighbour £ and & has none. In spite of the fact that N has no
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L

Figure 3.1: A simple graph, neither directed nor undirected

neighbours, this node has parents and children so the concept of boundary of
a set of vertices A, defined as bd(A) = pa(A)Une(.A4), is just a natural exten-
sion of the set of neighbours for situations where there is a mixture of directed
and uoadirected edges. Auother useful concept from graph theory that will be
used later is the closure of a set of vertices A, defined as cl(.A) = AU bd(A).
A graph with only undirected edges is called an undirected graph, and if all
edges are directed the graph is called directed. The undirected graph obtained
from G by replacing arrows with lines 1s called the undirected version G™ of
G. A set of vertices that has all possible pairs adjacent is called complete.
A subset A C V is a cligue if it is complete and there is not other subset
B, AC B CYV that is also complete.

A path of length n from « to b is a sequence a = ag, .. ., ay = b of distinct
vertices such that (ai_1,a;) € Efor all i = 1,2,...,n. An n-cycle is a path

of length n with @ = b. The cycle is called directed if one or more of its



CHAPTER 3. GRAPHICAL LOG-LINEAR MODELS 63

edges are arrows. If there i1s a path from a to b, denoted by a — b, and if in
addition 6 — e, 1t is said that a and b are connected. This is an equivalence
relationship and the equivalence classes are called connectivity components. A
subset S C V is said to be an (e, b) separator if all paths from a to b intersect
S. The subset § Is said to separate A from B if it is an (a, b} separator for
every a € A,b € B. For the graph in Figure 3.1, {5, N} separates {A} and
{R.T,L}. The vertex ¢ such that a — b and b v+ a is called an ancestor of
b, and the vertex b is called a descendant of a. The set of ancestors of all
vertices from the subset b is denoted by an(d) and the set of descendants of
all vertices from a subset a is denoted by de(a). The set of non-descendants
of 4 1s denoted by nd(a). For the graph in Figure 3.1, the ancestors of A are
£, LT, 5 N and A has no descendants.

If bd(a) C A for all ¢ € A then A is said to be an ancestral set. fn an
undirected graph, the ancestral sets are unions of connectivity components.
The intersection of a collection of ancestral sets is again ancestral, so there
is a smallest ancestral set containing A4 which is denoted by An(A). For
example. in the graph of Figure 3.1, An({R.L,N,5,T}) = {R,L,N,5.T}
whereas AJ'J({A,L,N}) ={AN,S5 L, T, R}.

Chain graphs are graphs where the vertex set V can be partitioned into
nurmbered blocks, forming a so-called dependence chain V = V(1)U --UV(T),
such that all edges between vertices in the same block are undirected and all
edges between different blocks are directed, pointing from the blocks with lower

numbers to the blocks with higher numbers. These graphs are characterised
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Figure 3.2: Chain graph with dependence chain {A, B} U {C, D} U{F}

by having no directed cycles. The connectivity components indicate the block
partitioning of the chain graph. A graph G is a chain graph if and only if iis
connectivity components induce undirected subgraphs. It is easy to identify
the chain components simply by removing all directed edges before taking
connectivity components. The graph in Figure 3.2 illustrates the definitions
given above. The boxes are not part of the graph, but are used to indicate
the partition into blocks of the chain graph. The connectivity components
are easy to determine: they are {4, B},{C,D} and {£} and these are the
blocks. If there had been an arrow from C to A, the graph could not have
been a chain graph, even after determining the new connectivity components,
which would have been {A, B, C, D} and {£}. The reason is that there would
be a directed cycle A - B — C — A and this is not allowed by definition
because it will create problems regarding interpretability of the model and
model specification.

The moral graph G™ of a chain graph ¢ is the undirected graph with the

sarne vertex set V' but with « ~ & in ¢™ if and only if either ¢ — bor b — «



CHAPTER 3. GRAPHICAL LOG-LINEAR MODELS 65

or if there are §,,d,, connected in the same block, such that ¢ — & and
b — &é3. For a directed acyclic graph. that is a directed graph with no cycles,
the moral graph 1s obtained from the original graph by “marrying parents”
with a commeon child and subsequently deleting directions on all arrows.

A triangulated graph is an undirected graph with the property that every
cycle of length n > 4 has a chord, that is two non-consecutive vertices that

are neighbours. This type of graph is sometimes also called chordal.

3.3.3 Conditional independence

Suppose that Xv = (Xi,...,X4) i1s the entire set of random variables of
interest (cften denoted by the index V), where each variable X, takes values
in a set 0,. Then Xy takes values in @ = Qv = [T,ev Q. f A C V let
Q4 = [Toes £ and the elements of 4 will be denoted by 4 : (z4)vea and
the corresponding vectors will be denoted as X4 = (X, )uea.

In this thesis, f {or sometimes p) is used as a generic symbol for the
probability density of the random variables involved. The random vectors X
and Y are called conditionally independent given the random vector Z if and

only if

fleyl2)=Hzl2)f(y | 2)

for all triples (z,y,2) for which f(z] > 0. Given the applied character of
the thesis, only variables having a positive density probability function, for

continuous variables, or a positive mass probability function, for discrete vari-
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ables, are taken into account. This will ensure that all conditional densities
are defined.

Several equivalent definitions of conditional independence are

ey z) = flz,2)fy,2)/f(2),
f(:cly,z) = f($|3)= and

flz,y,2) = h{z,2)k(y,z), for some h,k.

It is very easy to prove the following properties (Lauritzen, 1996), where A

denotes an arbitrary measurable function on the sample space 2y

(C): X 1LY |ZthenY UL X|Z (Symmetry)

(C2): it X WV |Zand U =A(X) thenU L Y | Z {Reduction)

(C3):f X LY |Z and U = A(X) then X L Y | (Z,/) (Redundance)

(C4): X LY | Zand X L W |(Y.Z) then X 1L (Y, W) | Z

(Contraction)

(C5): f X LY |Zand X WL Z]Y then X 1L (Y,Z). (Strong contraction)
It should be noted that the assumption of the positive densities or mass

functions is needed to prove (C5).

Axioms of irrelevance for rocad aceident characteristics

As pointed out in Lauritzen (1996) the first four properties (C1)-(C4) can be
interpreted in & non-probabilistic language as general axioms of irrelevance. A

model of irrelevance is given by the graph separation property for undirected
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graphs. If A, B and C are subsets of the vertex set V of an undirected graph
G = (V, E) the separation of A and B by C is denoted by A j B | C. Then
it can be easily checked that
(C1) Symmetry: if A Jg_ B | C then B Jg_ AlC
(C2) Reduction: if A j B|Cand U C Athen U Jg_ B|C
(C3) Redundance: if A Jg_ B|Cand UC A then A iB | (CUU)
(C4) Contraction: if A L B|C and AL D | (BUC) then

AL (BUD)IC
If the subsets are disjoint then
(C5) Strong contraction: if A i B Cand A i C | B then A Jg_ (B,C) is also
true. This correspondence shows that graphs can be used to conceptualise
and communicate complex scientific ideas. The use of graphs in this way will
become particulary important in Chapters 8 and 9 where, in relation with
Bayesian graphical modelling, it gives a basis for computation as implemented

in WinBUGS (Spiegethalter, Thomas and Best, 1996).

3.4 Graphical models for contingency tables

3.4.1 Graphical Models

Let Xy = (X,)vev be a vector of d = |V| categorical random variables. The
categories are labelled by positive integers so that each variable X, takes values
in ), = I, = {1,2,...,r,}. Let Z = [[,ev /. denote the set of all possible

configurations of Xy. For any subset A C V, let T = [1,e4 {u. The cells of
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the contingency table resulting from cross-classification of Xy are indicated
by 2 € Z, and 14 € T4 denotes a cell {rom the marginal table of X 4. Suppose
that observational units are classified according to factors in V and the data
is summarised in contingency tables, by counts n = {n(:¢) : 7 € Z} where n(7)
is the number of units that fall in the zth cell. The table has dimension egnal
to the number of variables d. For A C V the counts on the A-marginal table
ng = {n(ia) : i4 € T4} are given by summation over all cells in Ty 4 so for

A = B it follows that

n(ip) =D _n(i) = n| = N,

€T
the total number of observations. Considering B C V' and a cell 15 € Tg, the
ig-slice of the table is obtained by classifying only those observations for a
fixed level of each variable in B. This means that the ig-slice has cells in Z4
where A = V' \ B, and counts n'8(i4) = n(is,ig) where the i, is variable and
1g 1s fixed.
I'or the purposes of this thesis only three different sampling schemes are

considered.

1. All cell counts and the total number of observations are random. This
situation appears when counting the number of events in fixed time pe-
riods (such as traffic accidents) and classifying them accordingly to type
of road, accident severity, day of the week etc. The sampling scheme

assumes that the cell counts {n(:)};e7 are independent and Poisson dis-
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tributed. The joint distribution of counts is

m{7)0) ‘
Pr[n(i).i € I] = [ (0! exp (—m(2))

=¥}

where E(n(2)) = m(z).

2. The total number of observations is fixed but cell counts are otherwise
random. This sampling scheme assumes that the observations are inde-
pendent and the probability that a given observation belongs to the cell

2 1s p(z) > 0, so the joint distribution is a multinomial distribution

Pr[n(z),2 € I] = Hter ( 11_[2? ()"

el

By conditioning upon the total number of observations N the Poisson

distribution becomes multinomal.

3. The number of observations n{ig) = ¥;,er, n'¥{(ia) in each ig-slice is
fixed for some B C V. The sampling scheme is based on the assumption
t'ha.t the counts in the slices are independent and multinomially distrib-
uted as in case 2, with cell probabilities in slice 15 equal to p(24]2g). The
joint distribution is product-multinomial (also called restricted multino-

mial)

o [ n(ig)!
Pr[n{i),i€ ) = 1] 11 »(iaiis)" Blia)
ig€lp HZAEIA n:B('LA T14€ET 4

= I _nls) II P14|%B”('}

ipelp |_1—I1AGIA (z) i€y
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This distribution can be also obtained froni the Poisson distribution by

conditioning, in addition to the condition shown for 2, o n(ig),ip € I5.

The log-linear models are based on expansions for either log(Np(i)) or
Jog p{z) {which is not much different since log V is a constant for the multino-

mial sampling) as a sum of main effects and interaction terms

log p(2) = Zu:(i),

subject to ANOVA-like constraints to make the expansion unique. The terms
uY are called |a|-order interaction terms. The first order interaction terms
are also called main effects and should usnally be included in the log-linear
models. If the u-terms are writien in the form uY, then the subscript (in
this case «) shows the subset of variables and the superscript (V in this case)
shows the set of variables for which the log-linear model is proposed. For
small dimensional tables a more straightforward notation, depernding on the
context, is used.

For a given log-linear mode!, denoted for convenience by £, a graph can
be associated, called the interaction graph, which is an undirected graph with
vertices corresponding to the variables in V', and an edge between two vertices
(variables) v and w if and only if there is an interaction term u‘{’;!w} in £.. The
properties of the interaction graph are studied in Darroch et al. (1980).

A hierarchical log-linear model L is specified by its associated generating

class. This i1s defined as the class of subsets « of V', maximal with respect to
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inclusion, such that u, # 0. The subsets a are called the generators of the log-
linear model and the model may be specified by enumerating the generators in
square hrackets. For instance, the log-linear model A4+ B+ C+A.B+ A.C will
be specified as [AB|{AC]. Different hierarchical models may have the same
interaction graph. The simplest example is given by the models [ABC} and
[AB][AC][BC).

The restriction L,, of a log-linear model L to a set @ C V), 1s a log-linear
model for the set of probabilities p,, whose generating class can be determined
from the generating class of L by removing all fla.ctors in ¢ = V \ a, the
variables in V' which are not in a, and then removing the redundant subsets.

Graphical models can be described as a sub-class of hierarchical log-linear
models with the maximal permissible higher-order interactions corresponding
to a given graph. More formally, a graphical model is a family of proba-
bility distributions Py which satisfies some Markov property over a graph G
(Whittaker, 1990; Lauritzen, 1996). Mcre details about the Markov proper-
ties of a family of probability distributions, over a graph, are given below.
The decomposable models are graphical models whose interaction graphs con-
tain no cycle of length greater than 3 without a chord (Lauritzen, Speed and
Vijayan, 1984). This class of log-linear models is better known in the lit-
erature (Haberman, 1974; Bishop et al.,, 1975; Christensen, 1990; Santner
and Duffy, 1989), one reason being that, for decomposable models, maximum

likelihood estimators hiave closed forms.

From the inference point of view, the three sampling distributions are
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related and without loss of generality, the main results can be illustrated
using only one distribution, like the multinomial distribution {Agresti, 1990).
The unknown quantities that are the subject of statistical modelling are the
probabilities p(%) of the cells 7 of the contingency table. The table of counts
1s a sufficient statistic for the parameters p = (p(2))icr (Whittaker, 1990).

In this thesis all log-linear models are assumed to be hierarchical so in
the model formula only the maximal terms need to be specified. A hierarchi-
cal model 1s based on the assumption that if a lower-order interaction term
i1s missing then all its higher level relatives interaction terms are out of the
model. So if any of w9, 1413, ugs is set to zero then w3 should be also set to
zero. GGraphical models require an extra condition in a somewhat opposite di-
rection. For a graphical model, if all interaction terms of some lower level are
included in the model then the higher relative interaction term should be also
included. For example, if uyy, uy14, uag are in the log-linear expansion then o4
should also be included. Graphical models are fully interpretable in terms of
conditional independencies. In addition, it is worth pointing out that, because
the saturated model is graphical, any log-linear model can he nested within a
graphical model. This suggests that for any log-linear modelling relative to a
contingency table, it may be useful to find first the simplest graphical model
ﬁttiﬁg the table and then try to refine the analysis.

Some graphical models have already been encountered in Section 3.2. Some
other simple models are described now to explain the difference between a

graphical and a hierarchical model. With only three variables A, B and C for
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simplicity, the saturated log-linear model (which is hierarchical and graphical)

18
log piji = u + wi(sy + Uagg) + Uagy T iz T Wiage) + Uairy) T Uiesgize)-
The log-linear model
log pijk = w + wiy -+ uagsy + uagr) + visr) -+ wasgir

is hierarchical, but

log pijr = u -+ uyy + uag) + Uaey T Uiy T Yas(r) + Ui

is not hierarchical. The hierarchical model of no three-way interaction
log pijk = v + w15) + Uags) + Uaky -+ Uazg) T Waair) + U2k

is not graphical because the inclusion of uyy, %13 and w23 would require the
inclusion of w43 too.

The interaction graph of a graphical model for categorical variables, is
equivalent to the conditional independence graph, which is the main tool in
graphical modelling (Whittaker, 1990). The conditional independence graph
(for short the independence graph) is an undirected graph G = (V, E) where

the set of vertices V. = {1,2,...,d} is corresponding to the set of variables



CHAPTER 3. GRAPHICAL LOG-LINEAR MODELS 74

Figure 3.3: Undirected graph G = (V,E) where V = {A,B,C,D} and F =
{AB,AC,BC,BD}

under study Xv = {X1,..., Xy}, and where (z, 7) is not in the edge set £ if the
variables X; and X; are independent given the remaining variables Xy ;3.
Very often the random quantities are denoted with the labels of their nodes

in the graph.

Markov properties on undirected graphs

A probability measure P on §) has:
{P) the pairwise Markov property, relative to G, if for any pair of non-adjacent
vertices a % b,

all b|V\{a,b};

thus, in Figure 3.3 A is independent of D conditional on 8,C,

(L) the local Markouv property, relative to G, if for any vertex a € V,

a i (V\cl(a))]bd(a)

again on the graph in Figure 3.3, D is independent of A, C' given bd(D) = B;
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-]
it

A S B

Figure 3.4: The global Markov property

{G) the global Markov property, relative to G, if for any triple (A, B,S8) of

disjoint subsets of V such that & separates A from B in G,

AL B|S.

The global Markov properly can be understood as a separation property, see
Figure 3.4. TIf all paths connecting nodes from A to nodes from B intersect
at least one node from § then A 1L B | §. Because of the general regnlarity
assumptions made, it is teue that if A 1L B | CU D and A IL C | BUD then
AL (BUC)| D for any disjoint subsets of variables 4, 8,C, D. The main

result regarding these Markov properties is described next.

Theorem 3.1 If G is an undirected graph then the global Markov property

(G), the local Markov property (L) and the pairwise Markov property (P) are
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all equivalent.

For a proof, see Lauritzen (1996).

The most important property i1s the global Markov property because it
gives a general criterion for deciding when two groups ol variables A and B
are conditionally independent given a third group of variables S.

Under the assumption that the joint density f(V') is everywhere positive
the local Markov property is also equivalent to the following factorisation of
)

f(V) = 1] ¥elve)

cec
where C is the set of cliques of the graph ¢ (Lauritzen, 1996). Hence, for the

graph in Pigure 3.3 the joint density can be factorised as

f(V) = d)l(A: Ba O)@b?(D)

because the cliques of the graph are {A, B,C'} and {D}.

The process of building a graphical model, or equivalently its corresponding
conditional independence graph, can be illustrated using the collision-rollover
data in Table 3.3. The set of vertices of the graph corresponds to the variables
under study. In this case four vertices are needed, that can be denoted again
by A, B,C and 0. Then an edge is present for each two-way interaction
term in the model. This is the same thing as having no edge between two
vertices when they are conditionally independent given the remaining set of

variables. This pairwise Markov property is used for building the graph which
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Figure 3.5: Conditional independence graph for collision-rollover data; A is
Driver ejected, B is Car type, C is Injury and D is Accident type

is obviously an undirected graph. The independence graph corresponding to
the model [AC D|[BC D] has the following set of edges: AC, AD,CD,BC,BD
and is represented in Figure 3.5.

Because all Markov properties are equivalent, after constructing the condi-
tional independence graph, the independence relationships between the vari-
ables can be read directly from the graph, using the global Markov property.
The variables B and A are not directly connected on the graph but they are
linked via either the variable C or the variable D). This is telling us that B and
A are independent given {C, D}. Although in this case it does not look that
global Markov property is more helpful than the pairwise Markov property
used to build the graph, when a large number of variables is used, and the fi-
nal graphical model is proposed as a result of a selection algorithm, the global
Markov property (G} is a valuable tool to read the conditional independencies

correctly.
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3.4.2 Graphical Chain Models

Chain graphs are a combination of directed and undirected edges such that
there are no directed cycles in the graph (Section 3.3). They originated in
statistical modelling of substantive research hvpotheses in the social sciences
(Wermuth and Lauritzen, 1990; Cox and Wermuth, 1993). Quite often, the set
of the variables under study can be divided into blocks by some prior ordering
criterion. The partilioning imposed by the research hypotheses requires nat-
utally that variables in the same block are to be treated on an equal footing,
and variables from lower-numbered blocks influence the variables in the blocks
with higher order numbers. In a chain graph G, the veriex set V is partitioned
into disjoint blocks V = V(1)U - .- U V(T) such that the vertices within each
V(1) has undirected edges between vertices, and the arrows point from vertices
in blocks with lower number to those with higher number. Thus a directed
acyclic graph is a chain graph where each block contains only one vertex and
an undirected graph is a chain graph with only one block. For t < T, define
C(t)= V(1)U uV(e).
Given a particular chain graph G it is said that a probability P satisfies:

(PB) the pairwise block-recursive Markov property if for any pair a # & it 1s
true that

alt b|C(t")\ {a,b}

where ¢* is the smallest ¢ that has ¢, 8 € C(t);

(PC) the pairwise chain Markov property, if for any pair a % b with b a
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non-descendant of «,

a ll b|nd(a)\ {b};

{LC) the local chain Markov property, if for any vertex a € V,
a U nd(a) | bd(e);

(GC) the global chain Markov property if for any triple (A, B,S) of disjoint
subsets of V such that S separates A from B in (gAn(,AUBuS))m, the moral

graph of the smallest ancestral set containing AU B U S, it is true that
All B|S.

The same chain graph can have attached different dependence chains. The

property (PB) is relative to a particular dependence chain. It can be shown

(Lauritzen, 1996) that

Theorem 3.2 For a chain graph G, the global chain Markov property (GC),
the local chain Markov property (LC), the pairwise chain Markov property

(PC) and the pairwise block-recursive Markov property (PB) are all equivalent.

A useful practical result is that a chain graph G possesses the Markov prop-
erties of its associated moral graph G™ (Whittaker, 1990). Frydenberg (1990)

shown that (LC) 1s equivalent to a factorisation of the joint distribution as

JVy =TI Fv{) [ palV(8)]), (3.1)

[
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V(2)

.-
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i

3

Figure 3.6: Chain graph with the dependence chain {A} U {B,C}U {D}

where a € pa[V(t)] if there is a directed link from @ to a vertex of V(t). This
factorisation is similar to the case of a directed acyclic graph where each block
has been considered a single vertex in the directed graph. Moreover, each term

in the factorisation (3.1) can be further factorised into

FV() FpalV(t)]) = ]I #clve), (3.2)

CEeCy

where C; is the set of cliques of the undirected graph with the set of vertices
(V(t)Upa[V(t)]), edges consisting of the undirected links between the vertices
of V (1), the arrows between pa[V(!)] and V(¢) transformed into undirected
lines, and a complete set of lines belween the vertices of pa[V(¢)]. Thus for

the chain graph in Figure 3.6 the [ollowing factorisation takes place

(A, B,C, D)= f(D|B)f(B.C| A)F(A)

where

AD| B)=4.(B, D)
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Figure 3.7: Chain graph corresponding to graphical chain model for collision-
rollover data, with dependence chain {B, D} U {A} U {C}

and

HB,C | A) = (B, Cls(A, C).

The variables cross-classifying the collision-rollover data in Table 3.3 can
be divided into three blocks: first the car lype B and the accident type D,
then A driver-ejected and the third block is the injury type C. The chain
graph for this graphical chain model is described in Figure 3.7.

Although the research hypotheses are obvious from the chain partition-
ing, the conditional independencies should be read on the associated moral
graph in Figure 3.8. The moral graph is complete so there seemn to be no
conditional independencies. Apparently this contradicts the conditional inde-
pendence between car type B and driver ejected A revealed by the conditional
mdependence graph in Figure 3.5. However, the sampling schemes are differ-
ent. T'or simple graphical models all variables are treated as response variables
in a joint framework, so multinomial sampling is used, whereas for graphical

chain models some prior assumptions require the factorisation of the joint dis-



CHAPTER 3. GRAPHICAL LOG-LINEAR MODELS 82

V(1)
B

@ Ve

Figure 3.8: Moral graph for the chain graph corresponding to graphical chain
model for collision-rollover data, with dependence chain {B,D} U {4} U
{C}.The dependence chain is superimposed for comparison and clarification.
tribution into conditional distributions according to the block division. The
same data was used to exernphfy all situations but the modelling problems to
be solved are different. Moreover, during the modelling process which is car-
ried out sequentially, it can be noticed that, when just the first two blocks are
considered, the arrow from B to A is missing which means that B 1L A | D.
There is nothing wrong with this. If the question is whether B 1L A | D in the
final chain graph with all three blocks, then the moral graph of the smallest
ancestral subset covering {B, D, A} needs to be considered. The moral graph
U rn(Bupua) = YBupua and it is described in Figure 3.9. The conditional inde-
pendence between B and A given only D is obvious now. The lesson to learn
ts that the full moral graph can hide some independence relationships.

The graphical model illustrated in Figure 3.5 is different from the graph-
ical chain model with the chain graph in Figure 3.7 in terms of assumptions,
fitting process and conclusions implied. The graphical model 1s based on the

assurnption that all four variables A, B, C, D are response; the fitting process



CHAPTER 3. GRAPHICAL LOG-LINEAR MODELS 83

Figure 3.9: Moral subgraph of {A, B, D}

is based on multinomial sampling and the model fitted uses the factorisation

f(A, B,C,D) = [(A,C,D)(B,C,D). (3.3)

The graphical model is the family of probability multinomial distributions
satisfying equation (3.3).

On the contrary, the graphical chain model starts by assuming that B, D
are pure explanatory variables, A is an intermediate response and C is a
pure response. Because of this assumption the joint distrihution modelled is
not f(A,B,C, D) but f(C | A,B,D)f(A | B,D)f(B, D)), so the product-
multinomial distribution is employed. In this case each conditional distrib-
ution is fitted to the data separately. The graphical chain model selected is
given by

HC 1A B,D)f(A|D)f(B,D), (3.4)

so the data contains statistical evidence of a simplification of only the second

factor f(A | B,D). The graphical chain model is the family of product-
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multinomial distributions satisfving equation (3.4). 1f another partition of the
set variables is chosen, a different graphical chain model may be selected. This
highhights the importance of choosing approprate ordering of the variables in
practice. A graphical chain model where car type follows after injury type
does not make much sense although the inference process would fit the modei
to the data and would give sonie (meaningless) estimates.

More complicated graphical chain models will be investigated in Chap-
ter 5. The process of building the chain graph corresponding to a graphical
chain model will be described in detail on an example in Section 5.4. In addi-
tion, graphical chain models are mentioned in the context of response varnable

madels in Section 6.2.1.

3.5 Summary

This chapter contained a brief revision through examples of the main con-
cepts from graph theory and probability theory that are needed to under-
stand graphical modelling. T'he emphasis was on graphical models and graph-
ical chain models because these two classes of models will be applied in the
following chapters of this thesis.

Graphical modelling is uscful because of the need to analyse large contin-
gency tables. Graphical chain modelling is designed to be applied to situations
were somme external knowledge is available and the models then become more

sophisticated in interpretation.
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Although both classes of models are represented by graphs there is a major
distinction between them. Graphical chain models are built relative to depen-
dence chaius. Great care is needed when interpreting such models because the
dependence chain describing the partition plays a major role in extracting the

conclusion.



Chapter 4

Inference and model selection

4.1 Introduction

In this chapter the estimation and model selection processes are reviewed. The
first sectioﬁ highlights, from an applied perspective, the results on which the
whole inference process for graphical log-linear models is based. More details
can be found in the standard accounts of Whittaker (1990) and Lauritzen
(1996). The second section describes several model selection procedures that
can be applied for selecting graphical log-linear models. The problems are
explained with the help of the collision-rollover 4-dimensional table. For this
particular example, it will be shown that all log-linear models selected by
various methods can be nested into the same graphical model. This highlights
the idea that graphical modelling can be used to select a small number of
models that can be interpreted in terms of conditional independencies and

that are good initial models for further analysis.

86



CHAPTER 4. INFERENCE AND MODEL SELECTION 87

Estimation and testing procedures are hriefly described for graphical mod-
els and graphical chain models. Although these two classes are conceptually
different, the inferential process for the latter mimics sequentially the fitting
and testing process for the former class. The collision-rollover 4-dimensional
table used in this thesis as an omnibus example has beeu analysed in classical
textbooks (Feuberg, 1980; Christensen, 1990} in the context of log-linear mod-
els but the analysis output and the graphical chain approach presented here

are the author’s contribution. More complex tables are analysed in Chapter 5.

4.2 Inference

4.2.1 Graphical modelling

Statistical inference can be based on the (scaled) dewiance (McCullagh and
Nelder, 1989) which is a generalised log-likelihood ratio. Denotiug the current
model by M and the saturated model by M|, the deviance dev(M) is twice the
difference between the maximised log-likelihood function under the saturated
model M, and the maximised log-likelihood function under the model M:
p i
dev(M) = 2; n; log Wf(z)
This is the same quantity as G* giveu in equation (2.1) because it is easy to
show that ;(n; — NpM(4)) = 0 knowing that 3;n; = N. This statistic is

asymptotically distributed chi-squared with degrees of freedom equal to the
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number of free parameters. Thus the overall deviance can be used as a measure
of goodness-of-fit. For testing nested models My C M, the deviance difference
d = dev(Mo | M) = dev(Mp) ~ dev(M,) is appropriate: under the hypothesis
that Mo is true, d has an asymptotic chi-squared distribution with degrees of
freedomn equal to the difference in the number of free pararueters between My
and M,. The asymptotic test based on the deviance difference is more reliable
than that based on the overall deviance so it 1s always better to nse the former

for model selection. Another generally nsed measure of goodness-of-fit is the

Pearson chi-squared statistic

;= N"‘M’ 2
xr =y o N
i N;D.;
having the same asymptotic distribution as the deviance; again this may not

provide a reliable test. Both this and the deviance are special cases of the

power family of test statistics introduced by Read and Cressie (1988)

2 n; \*
N s ) 0t _
P st () -

which also covers other well known statistics such as Freeman-Tukey and Ney-
man; see Bishop et al. (1975). The Pearson X? is obtained for A = 1 and
the deviance is oblained for A = 0 by taking the limit of /* when A — 0. It
has been snggested (Read and Cressie, 1988) that I3 is more reliable than the
more common dev and X2, especially for sparse tables.

The derivation of the likelihood equations for the maximum likelihood
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estimators of the table of probabilities p, satisfying a graphical model given
by formula M = [Xy][ - }[Xa], 1s based on the fact that a set of minimal
sufficient statistics is given by the set of marginal tables n, corresponding to
the generators in the model, that is for all cliques @ = d;....,d.. Then the
maximum likelihood equations are formed by equating the minimal sufficient

statistics to their expected values under the model M

n, = NpM (4.1)

for all eliques ¢ = d;,...,d.. A proof of this result 1s given in Whittaker
(1990).

If the graphical model M is based on one single conditional independence
relationship

X, ILX, | X,

then there are exactly two cliques in the independence graph, « U ¢ and 86U ¢,

and the likelihood equations are

NﬁM(iac) = ?Z(iac) and jvﬁj\a((ibt:) = n(ibc)' (42)

The probabilities can then be calculated as

~M _ P (2ac)P™ (ise)
P (abe) = M (1,) (43)
_ oliuntin) (44

Nn(i.)
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Denoting by 75,73 and 7, the number of cells of the marginal tables given

by X., Xy and X, the deviance of the graphical model M : X, 1l X} | X, is

dev(M) = 2% n(ige) log %%
abc 2gc )72 2pc

and it has an asymptotic x? distribution with r.(r, — 1)(ry — 1) degrees of
freedom. As an immediate consequence, the deviance for testing the exclusion

of only one edge (v,w) in a general independence graph G is

. ; . n(iyv )n(t v,
o5, L X | X ) =25 i) o o)

Decomposable models

The first graphical models investigated were a subclass of log-linear models
for contingency tables that have closed-form maximurm likelihood estimates
(Darroch et al., 1980). Those models were called decomposable models because
the joint density function can be factorised into the product of marginal density
functions on cliques. Recalling the model with the independence graph in
Figure 3.5, specified by {ADC|[{BCD]), this is a decomposable model and its

joint density function can be calculated from

p(A, B,C, D) = p(A,C, D)p(B,C, D).

Decomposable models are characterised in terms of graph theory as those that

have triangulated (or chordal) independence graphs (Lauritzen et al., 1984).
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Being able to calculate maximum likelihood estiinators in closed-form is very
attractive but numerical methods can overcome this difficulty easily for non-
decomposable models. Other reasons why statisticians might restrict their
attention to this subclass of graphical models is that exact conditional tests
are available only for decomposable models (Lauritzen, 1996) and this is very

important for model selection in sparse tables {Kreiner, 1987).

4.2.2 Hypothesis testing

There is specialised software called MIM which was designed for graphical
modelling (Edwards, 1995). It includes several methods of model selection
and testing. The model selection procedures are discussed in greater detail in
Section 4.3 but for grasping a complete view of the graphical modellling from
the beginning to the end, MIM’s backward elimination procedure is briefly
described.

The procedure of backward elimination starts from the saturated model
and at each step it removes the edge for which the deviance difference test
for edge removal has the largest P-value greater than or equal to a specified
significance level @. The edges that are significant (with P-values smaller than
«) at one stage of the analysis are not tested again at further stages but always
retained in the graph. In the end, when no further edge can be deleted, the
corresponding model should fit the data well. Furthermore, the conditional
independencies can be read directly from the graph. The backward elimination

procedure is usually preferred to a forward inclusion procedure since it is passes
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through a sequence of models, all of which fit the data, and the models become

simpler at each step.

Exact testing

One aim of this thesis is to apply graphical modelling to large tables. In
Chapter 5 tables with 6, 9 and 10 variables are investigated. Even if the
sample size 1s very large, contingency tables summarising road accident data
can be expected to be sparse, with many very small cell frequencies. This is
due to the nature of road accident data in combination with a large number
of cells. T'or instance, when accident severity is one of the variables, the total
number of fatal accidents will be relatively sinall; when they are distribnted
across the cells resulting from the cross-classification of the levels of the other
(more than 5) variables, many cells are likely to have zero frequencies. This is
one important problem that shonld not be overlooked in modelling accident
tables.

The usual methodology employing asymptotic tests for the deviance are
then not very reliable. The asymptotic P-values in the case of large sparse
tables tend to undetestimate the real P-values. Exact tests are required
(Kreiner, 1987) to overcome this difficulty and MIM provides options for them.
Consider, for instance, a 3-dimensional table of counts. For testing the hy-
pothesis g : X; 1L X, | X3 exact tests are constructed by conditioning on the
marginal totals. Denote by U the sample space of all possible 3-dimensional

tables n = [n;;;] with the same fixed margins as the table of observed counts.
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Then the P-value for the test criterion 7 is

Pos = Pi(T 2 Tops | Ho) (4.5)

neV:7T{n)>Tohe

where

s T i
Pr(n l HU) — HH% nl+k‘ HJ n’+3k'

. 4.7
o k! T1 T nae! (4.7)

This approach is implemented only for decomposable models, so that closed
form estimates exist, and it is easily generalised to higher dimensional tables
(Whittaker, 1990; Lauritzen, 1996). The ezhaustive enumeration method, cal-
culating 7(n) and Pr(n | Hp) for each table n in ¥, is not always feasible.
‘The alternative is to use Monte Curlo sampling. Following the algorithm in
Patefield (1981), K random tables are sampled from ¥ such that the proba-
bility of sampling a table n is from the right distribution. For the table n,,

define z, to be 1 if 7(n,) > 7}, and to be 0 otherwise; then estimate Py, by

Ey

r=1 K *

Pobs =

4.2.3 Graphical chain modelling

[n Chapter 3 it was noted that chain graphs extended graphical modelling
to studies where substantive information is available, the variables V being
divided into blocks V(1) U ... U V(T), ordered by a prior causal assump-

tion. Great attention should be given to the meaning of the adjective causal
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(Cox, 1993). The meaning of the concept causal requires both the sense of
Suppes underlying Granger-Wiener causality in econometrics and the sense of
Rubin (Holland, 1986}, and also that there is a substantive process underlying
the dependence structure proposed. Subject matter knowledge and theories
indicate the type, direction and even the strength of the associations. These
hypotheses, describing actual properties of observational units, are called sub-
stantive research hypotheses or just research hypotheses (Wermuth and Lau-
ritzen, 1990). They are different from statistical null hypotheses which play
only the role that they should be rejected by the observed data.

Once again graphs are used to formulate research hypotheses. The speci-
fication considers two types of direct association: directional associations for
pairs of variables where one is a response variable and the other is explanatory;
and symmetric associations where variables are treated on an equal footing.
Changing the direction of some associations would result in changiug the re-
search hypotheses.

A graph can serve three purposes: to formulate research hypotheses, to
describe conditional independencies, and to characterise a statistical model.
In the first case, from subject knowledge, prior to the statistical analysis,
the variables under study are divided into several blocks indicated by hoxes
superimposed on the graph. The hoxes are in a one-to-one correspondence
with the blocks, of number T say, and they define a dependence chain with
T concurrent sets of variables. A dependence chain can be also defined as

an ordered partitioning of the set of vertices V' into chain elements such that
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edges within chain elements are undirected, and edges between chain elements
are directed in the same direction.

In the second case the graph is a mathematical object as used in graph
theory. Such a graph is called a chain graph if a dependence chain can be at-
tached to it. Different dependence chains can have the same chain graph which
means that they will describe the same con&itional independence structure. A
cautious approach should be taken when interpreting chain graphs.

The third case relates a chain graph to a statistical model called a graphical
chain model by specifying the joint distribution as a product of distributions
over the blocks of the dependence chain. Graphical chain models are multi-
variate response models for V(¢) given V(1)U ... V(¢ — 1). The joint density

f(z1, 22, ..., q) can be factorised as

FIVIO) V() | V). f(V(TY | V(T = DUV(T —2)...u V(L))

The chain graph pictures the conditional independence restrictions on the
joint distribution. The case of jusi two blocks is generic because the inference
process is based on fitting two blocks at a time. The first block V(1) is
considered a set of covariates Xy,..., X, and the second block V{2) a set of
response variables Y;,...,¥,. Il all p 4+ r variables were responses it can be
shown (Whittaker, 1990) that the number of possible models decreases from
20 o 23)+pr 4 23), which is an improvemernt.

To see that note that there are two types of conditional independence rela-
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tionships nsed to build the chain graph; (3) possible conditional independencies
between pairs of responses given the remaining responses and all covariates;
and pr possible response-covariate pairwise conditional independencies given
the remaining responses and remaining covariates. The response-response and
covariate-covariate edges are represented by lines, the covariate-response edges
by arrows and response-covariate edges are forbidden. For categorical vari-
ables, in the class of log-linear models, it was stated in Section 3.4.2 that all
chain Markov properties are equivalent and also equivalent with the factorisa-
tion of the joini density as given in Equation (3.1). This factorisation implies
that the fitting process can be done by focusing on only two blocks at a time
The conditional independence structure is then conveyed by combining all
T — 1 conditional independence graphs into a chain graph. The independence
relationships can be read using the global Markov property on the associ-
ated moral graph, obtained by replacing arrows with lines and by connecting
vertices that have connected children in the same block, see Sections 3.3.2
and 3.4.2. Considering just the case of two blocks, the conditional indepen-
dence graph for a model with the conditional distribution of V(2) | V(1) is
the same as the conditional independence graph for the model with the joint
distribntion of V(1) and V(2), having the subgraph corresponding to V(1)
complete. Moreover, the graph has the global Markov property with respect
to the conditienal distribution f(V{2)| V(1))

The modelling process can be carried out sequentially. At each step, the

current block of variables is considered as response variables and all the pre-
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vious blocks are considered explanatory. The conditional model can be fitted
in the joint framework making sure that the subgraph of the explanatory
variables is complete. The fitting process for a single graphical chain model
requires that only pa(V(¢)) to be complete, so not necessarily the entire set
of explanatory variables. However, for model selection purposes, when all
possible models are tested, it is iIndeed a necessary condition.

Fitting a conditional distribution in a joint distribution is not possible in
general but, for contingency tables under multinomial sampling, it 1s because
the multinomial distribution is closed under marginalisation and conditioning.
Another example when this is possible is for continuous Gaussian variables, the
normal distribution being again closed under marginalisation and condition-
ing. Thus all the methods of estimating and inference available for graphical
models can be used.

In general, two graphical chain models are equivalent if they have identical
joint distribution and identical conditional independence structures. A chain
graph determines {Frydenberg, 1990} the conditional independence structure
and the joint distribution of a graphical chain model. In the same time,
substantive research hypotheses based on different chain graphs may have
equivalent statistical models. In this case, specific research hypotheses cannot

be distinguished just by a statistical analysis of data.
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4.3 Model selection

In this section, some model selection procedures for log-linear models, that
are used for graphical models as well, are reviewed and compared. The overall
deviance can be used as a measure of goodness-of-fit for a given model M. For
nested models My C M, it is preferable to have tests on the deviance differ-
ence d = dev(Mp) — dev( M) because it has a better x? approximation and
the deviance differences are asymptotically .independently distributed when
they are components of a single sequence of nested models passing from the
maximal to model minimal (Whittaker, 1990). Apart from knowing its as-
ymptotic distribution there are some other advantages for using the deviance
as the main tool for statistic inference. Edwards’ specialised software MIM for
graplical modelling includes several methods of model selection and methods
for estimation and testing.

I'or any log-linear model there 1s a graphical model such that the log-
linear model 1s nested within the graphical model. Therefore, different model
selection procedures for log-linear models can be applied and several models
identified. Then, from this set of final models the graphical models can be
selected and interpreted in terms of conditional independencies.

The methodology of model selection used below generally follows the stages:

1. Identify some initial models; for example the saturated model i1s a conve-
nient starting model since 1t fits the data perfectly. Other initial models

can be the main effects model (zall variables mutually independent), the
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models proposed by Brown’s method (Brown, 1976; Christensen, 1990;
Whittaker, 1990), models proposed in connection with Aitkin’s method

(Aitkin, 1979; Christensen, 1990; Santner and Duffy, 1989).

2. From the starting model proposed above use a stepwise model selection
(backward, forward or combined) or other method (for example Aitkin’s
method, Whittaker's method, Edwards and Havranek method) to deter-
mine simplified models that fit the data well according to some criteria.
The stepwise methods do not necessarily give the best model based on
any overall criterion of model fit and they can be very sensitive to the
cutoff values used and to the initial model. Consequently, it i1s better to

use several variations and to propose scveral candidate models.

3. Compare the list of these final models using the Akaike information
criterion. This criterion is used for selecting models that maximizes
a type of information proposed by Akaike {1973), information that is
contained in the statistical model. Tor log-linear models, in practice this
means that the model with the minimum diference between the deviance

and twice the number of degrees of freedom is selected.

4. For final models study the residuals, the influential cells and the inter-

pretability of the models.

Cst

. Can a proposed mode! give some simple answers to some important

questions?

There is no doubt that it would be useful to identify a small set of graphical
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models, fitting the data well and that can be used for further research.

4.3.1 Aitkin’s method

This method is a backward selection procedure. It selects an all j interaction
terms model and then it searches all models between all j interaction terms
model and all 7 — 1 interaction model. This method .was designed to control
the overall rate for all tests performed using simultaneous festing.

Let M) denote the model with all possible maximal u-terms of jth order
interaction and let d; be its associated degrees of freedom. Examples for a

d-dimensional contingency table are

M. logp; = up + Z Us,
teV

the mutual independence model, and

M ogp =up+ Y w+ Y usu,
teV FkeV

the all 2-factor effects model.

The initial model for this procedure is the model M) that fits the data
well while the model MU~V does not fit the data. The cntoff points +; for
x*(1 — 7;,d;_1 — d;) should be chosen such that there is a probability no
greater than ~ € (0.25,0.5) of rejecting the main effects model when this

moadel is adequate. When complete independence is true the various tests for
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j-order interactions are asymptotically independent, so

1—v=1100—%)

Aitkin (1979) suggests using L — v; = (1 — a)(f) and choosing an « level

that yields a v € {0.25,0.5). For a 4-dimensional contingency table, choosing

Table 1.1: All j-factors models

all j- factors Model formula df deviance
4 [ABC D) 0 0
3 [ABC]|ABD]|ACD|[BC D] 1 0.67
2 [AB][AC])[AD|[BC|[BD)ICD] 5 7.33
1 [A][B][C]] D] 11 1193.10

vy = 0.05,7 = 0.185 and v, = 0.265, it is calculated that v = 0.431. For
the collision-rollover data in Table 3.3, Chapter 3, there are 4 model; to be
compared, which are described in Table 4.1. Based on calculations in Table 4.2

the model selected is model M), given by the largest value j such that

dev(MU) — dev(MYY > v2(1 — 5, dj-1 — d;).

Table {.2: Tests for Aitkin’s model selection procedure

lvs) den(MU=D) —dev(MY)  x*(1 —v;,djo1 — d;)
Jvsd 0.67 - 0 = 0.67 x*(.95, 1) = 3.841

2vs 3 7.33 - 0.67 = 6.66 ¥2(.815, 4) = 6.178
Lvs2 119310-7.33 =118577 x?(.735,6) = 7.638
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This overall criterion was criticised by D.R. Cox in the discussion of Aitkin’s
paper (Aitkin, 1979). Christensen (1990) tried to improve the method by

choosing

Following Christensen’s idea for a = 0.1 it results that v = 0.271 and the
model M is selected.

Aitkin’s model selection procedure continues by examining the models be-

tween M®) and M®). A model M will be rejected if

dev(M) — dev(M®) > y*(1 = vj,d;—y — d;) = x*(.815,4) = 6.178.

Using the concept of coherence as introduced by Gabriel (1969), the submodels
of a rejected model will be definitely rejected too and models which contain
an accepted model will be accepted too. This is of great help especially for
tables with a Jarge number of variables. The models selected by this procedure

are enumerated in Table 4.3. All these are non-graphical log-linear models. 1f

Table 4.3: Models selected by Aitkin’s procedure

Model formula dev(M; | M)  dE(M;) — dE(MP))
M, : [ABCYABDI[CD] 4.04 2
M, : [ABC][ACD)[BD] 4.86 2
M, : [ABC][BC D|[AD] 4.86 2
M, : {ABD||AC]|BC]|CD)] 4,51 3
M, : [AC D)[AB|[BC)[BD) 4.90 3
Ms : [BCD|[AB][AC][AD)] 4.99 3

only one miodel should be proposed then Akaike’s information criterion can be
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used, finding the model M; for which dev(M;) — df(M;) is minimum. Using

the decomposition of deviance (Whittaker, 1990)

dev(M;) = dev(M;| M) + dev(M®)

df(M;) df (M | M®) + df(M®),

it is easy to calculate the values of Akaike’s criterion in Table 4.4. The model

Table {.4: Akaike’s criterion values

Model formula dev(M;) dev(M;) — df( M)

M : [ABC|[ABD][CD}  4.04+6.66=10.70 10.70-2=8.70
M, [ABC|[ACD|[BD] 4.86+6.66=11.52 11.52-2=9.52
M; : [ABC|[BCD][AD}  4.86+6.66=11.52 11.52-2=9.52
M, : [ABD|[AC][BCI[CD} 4.5146.66=11.17 11.17-3=8.17
Ms  [ACDYABJ[BC|{BD] 4.90+6.66=11.56 11.56-3=8.56
Ms : [BCD][ABJ[AC][AD] 4.99+6.66=11.65 11.65-3=8.65

selected is My : [ABD|(AC|[BC][CD]. Because all the models should have
all two-way factors the simplest graphical model that contains this model
as a nested submodel is the saturated model, which is not very informative.
Therefore nothing can be said about the conditional independencies that might
be true.

However, considering the slight alternative proposed by Christensen, the
initial model M is selected. There is only one simpler model that fits the

data well and this is

M, : [AC){AD|[BC)|BD][CD)].
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This model also is not graphical because AC, AD and C' D are included in the
model hut ACD 1s not. However, it can be nested within a graphical model,
the simplest being Mg : {[ACD][BC D]. The conditional independence graph

of this graphical model is illustrated in Figure 3.5.

4.3.2 Brown’s method

This method can be used to determine an initial model. For each term in the
saturated model, marginal association and partial essociation (Brown, 1976)
"~ are tested. For a 3-dimensional table and interaction between variables A
and B, a marginal association test compares [A][B] with [AB] and a partial
association test compares [AC][BC] with [AC][BC][AB]. The extension to

larger tables is obvions. The models considered are built considering

1. either all terms for which either the marginal or the partial test is sig-

nificant
2. or all terms for which both the marginal and partial tests are significant.

The first method gives the largest model and is suitable for backward elimi-
nation and the second method gives the smallest model and can he used for
forward seclection. For collision-rollover data Brown's tests are described in

Table 4.5. The stepwise backward selection can start etther from

[AB][AC][AD](BC)|BD)[CD]
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Table 4.5: Marginal and partial association tests

Partial Marginal

Interaction Association dev P-value Association dev P-value
AB 1.69 0.19 8.79 0.00
AC 220.24 0.00 401.69 0.00
AD 114,84 0.00 285.99 0.00
BC 57.48 0.00 52.96 0.00
BD 15.58 0.00 0.38 0.00
CD 441.89 0.00 601.42 0.00
ABC 1.10 0.29 0.07 0.79
ABD 2.92 0.08 1.15 0.28
ACD 2.94 0.08 1.71 0.19
BCD 1.22 0.27 1.44 0.23

(at 0.05 significance level here), or from

[ABD|[ACD][BC)

with calculations made at 0.1 significance level. This procedure will select
the final models [AC D)[BC)[BD)] and [AD)AC]IBC){BD}){CD). None is a
graphical model but both are submodels of the graphical model [AC D][BDC].
Applying a forward selection {a = 0.05 or @ = 0.01) started from the initial
model {AC][AD][BD]|C D] leads to the final model [BC DJ[AD]{AC]. This is
again a non-graphical log-linear model which can be nested into the graphical

model [ACD][BDC].
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4.3.3 Edwards-Havranek model selection procedure

This is a fast model selection method with the potential to identify a set ol
simple models all fitting the data well. In this respect it is different from a
stepwise model selection which identifies one final model. This single model
1s most of the time used for any inferences, neglecting uncertainty about the
model itself, leading to underestimation of measures of uncertainty such as
standard errors. It is always good practice (Christensen, 1990) to look at sev-
eral well-fitting models and the method proposed by Edwards and Havranek
(1985) is perfect for this task. It can search through the class of graphical mod-
els between a maximal model and a minimal model that can be specified before
starting the search. The models are then classified as ‘accepted’, which means
that they fit the data well, or ‘rejected’. The coherence principle from Gabriel
(1969) is applied, submodels of rejected models being considered rejected and
models containing “accepted” models being accepted without further testing.
This principle improves the speed of the model selection procedure. At any
step, based on the asymptotic x? distribution of the deviance, a model M is
accepted if its corresponding P-value is higher than the significance level a.
More details are given in Edwards and Havranek (1985) and Edwards (1995).

For the collision-rollover data summarised in Table 3.3, using a 0.05 sig-
nificance level and searching between the saturated model [ABC D] and the
-complete independence model [A}[B][C][ D], the Edwards-Havranek procedure
identifies a unique minimal accepted model [ACD]|[BCD)]. This is the same

model as selected previously and being the only one gives greater confidence
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about the conditional independence implied by the model. Moreover, the
model has a deviance equal to 5.87 with 4 degrees of freedom providing a very
good fit, P = 0.21. This set of data is not very complex but the method can
be very useful for a higher dimensiounal contingency table, as illustrated in the
next chapter.

It seems that all mecthods lead to one graphical model [ACD][BCD].
Therefore, various relationships can be studied using this model. In Table 4.6
the deviance residuals = (2n;| log(n;/m;)|)"/? are given, where m; = [(n;) and

“." sign used when n; < m;. Overall, the fit scems to be good, although

Table 4.6: Deviance residuals for the model [AC D|[BC D)

Driver  Car Aceident Injury type
FEjected  type type Not Severe Severe
No Small Collision -.22 .04
Rollover -.75 -.29
Standard Collision 10 -.01
Rollover 50 15
yes Small Collision .88 -.1C
Rollover 1.55 35
Standard Collision -.40 .04
Rollover -1.18 -.19

simpler models might be more informative.

4.4 Summary

The estimation and model selection framework was highlighted in this chapter.

A graphical log-linear model is built in parallel with ils corresponding condi-
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tional indeperdence graph. Undirected independence graphs have a missing
edge for any pairwise independence of two variables conditioned on the rest.
This means setting to zero all two-way and higher-order interaction terms
contaiming that pair. Empirically, the interaction terms, u, are estimated by
maximizing the appropriate likelihood function, this being a well-developed
process for log-linear models that can be done in general in widely known
soltware like SPSS, SAS, S-Plus and GLIM.

Graphical chain models require the same inferential procedures as graphical
models. However, their interpretation is made in a different framework, where
the variables under study are partitioned by some partial order relationship
with possible causal reasoning. The conditional independencies in this case
should be read on the moral graph.

Road accident data 1s usually sparse and therefore asymptotic tests are
unrehable. For mode.l selection exact conditional tests should be used and
when an exhaustive enumeration is impossible, Monte Carlo sampling provides
a feasible solution.

There are many model selection algorithms that have been proposed for
the log-linear models and that can be used for graphical models as well. Ap-
plying various model selection procedures can be beneficial in providing a set
of good models. Idwards-Havranek procedure is very fast and can be nsed
to select more than one model. The collision-rollover data was used here for

exemplification but a better example with six variables is given in Chapter 5.



Chapter 5

Applications to road accident

data

5.1 Introduction

This chapter contains several applications for road accident characteristics,
following the methodology described in earlier chapters. lLarge tables are
investigated for two UK counties, Bedfordshire and Hampshire. These two
counties were chosen because they have a relatively small number of records
with missing information; both have a large sample size Hampshire having
almost four times more records than Bedfordshire, so some comparisons can
be made. Tlere are two aims in this chapter. To invesiigate the relationships
hetween a relatively large number of characteristics and to show, on a particu-

lar case, that asymptotic inference may lead to very different results compared

with exact conditional inference.

109
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For these two sets of data graphical models will be selected in an ex-
ploratory manner and graphical chain models will be proposed in relation

with a prior ordering of the variables given by the temporal order of variables

related to the accident.

5.2 Bedfordshire data

5.2.1 Graphical model with 6 variables

The data under study consists of all accidents in the STATS 19 database
for the county of Bedfordshire in 1995. The data can be summarised in a

contingency table cross-classified by the following variables:
e A = Accident severity (fatal, serious, slight),

e L = Light conditions (daylight, darkness),

N = Namber of vehicles involved in the accident (one, two, three or

more),

¢ R = Road surface conditions (dry, wet-damp, snow-ice-frost-flood),

T = Road Type (major roads, niinor roads, where major roads are rno-
torways and A roads, and minor roads are B, C and unclassified roads),

and

S = Speed Limit (< 40 mph, > 40 mph).
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The author believes these variables to be the six most important road accident
characteristics, but the choice of variables does not affect the principle of
graphical modelling. There are 1,951 accident records summarised in a 6-
dimensional contingency table of order 3 x 2 x 3 x 3 x 2 x 2. The variables are
all considered response variables. The conditional independence relationships
between the variables can be studied in an exploratory manner, with the
aim of finding an initial model that can be investigated further using more
sophisticated techniques. The analysis below follows the lines of Tunaru and
Jarrett (1998a).

‘The contingency table summarising the data is sparse. For instance, there
are 42 fatal accidents spread over 2 x 3 x 3 x 2 x 2 = 72 cells, giving an average
cell frequency of 0.58 in this part of the table. Model selection procedures
based on the asymptotic x? tests are thercfore unreliable (Kreiner, 1987). Ex-
act conditional tests using Monte Carlo simulation are implemented to over-
come this difficulty. This can be done in MIM (Edwards, 1995) which is an
easy and elegant computer platform for graphical modelling. In this case back-
ward elimination, under exact and asymptotic inferential procedures, leads to
the model represented in Figure 5.1. That both procedures lead to the same
model might be just a coincidence; for other sets of data, as will be shown
later, the differences are striking.

The graph of Figure 5.1 can be interpreted as follows. Grouping the vari-
ables as a = {A},b= {N,5} and ¢ = {L, R, T} it is easy to verify the con-

ditions relative to the global Markov property. Directly on the independence
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Figure 5.1: The final graphical model for Bedfordshire data with 6 variables;
A s accident severity (fatal, serious, slight), N 1is the number of vehicles
involved (1, 2, 3 or more), S is speed limit (< 40 mph, > 40 mph), L is
lighting conditions (day, night), T is road type (major, minor), and R is road
surface (dry, wet-damp, snow-ice)

graph it can be read that, given the number of vehicles N, and the speed limit
S, accident severity A is independent of light conditions L, road surface R, and
road type T'. This is not saying that those three variables are not important
regarding accident severity, but conditioning on the fact that an accident has
happened, the information provided by those three variables is important for
accident severity only as a way of influencing speed limit (which is regarded
here as a proxy for the actual speed of the vehicle) and the number of vehicles
involved. Thus the important variables for explaining accident severity seem
to be speed limit and the aumber of vehicles.

There are many variables involved in a study of road accident data. Col-

lapsibility (summing over a subset of variables to obtain the marginal table
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of the others) breaks large problems into small problems. Looking at the
graph in Fignre 5.1, let b = {L,T, R} and a = {A, S5, N}. The boundary of
bis {S,N}, which is complete, so the model can be collapsed over b, as is
proved later in Chapter 6, Section 6.2. This means that the conditional inde-
pendencies between A, S5, N are preserved in the independence graph of any
graphical model fitting the marginal table defined by A, S5 N. In addition,
since the multinomial distribution is closed under marginalisation, the proba-
bilities of this marginal table pasy can be estimated from the marginal model
of {A, S, N}. In other words, attention may be restricted to the marginal table
defined by the variables A, N and S instead of looking at the 6-dimensional
table, without introducing problems with Simpson’s paradox.

The graphical model presented above suggests that there is a three-way
interaction between accident severity, speed limit and the number of vehicles
involved, and that studying the marginal three-way table defined by these
variables will lead to the same result. This lower dimensional table (the re-
duction 1 dimension is from 216 to 18 cells) is more robust to asymptotic
tests and it is not sparse as it can be seen from Table 5.1. For this table,
the likelihood ratio tests for the three possible conditional independencies are
reliable. Therefore the analysis can he further continued on this particular
subtable.

The likelihood test for A LL S| ¥ is calculated as

3
deV(A L S | f\f) =2 Z Z Z Nasy log M

v=1l s=1 e=1 na+un+sv
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Table 5.1: 3-way marginal contingency table of road accidents

Accident  Speed Number of Vehicles

Severity  Limit 1 2 3>
1 L 5 2 1
2 13 12 9
2 1 T2 15
2 39 58 31
3 1 307 640 113
2 162 271 124

where, for clarity, v is used to index the levels of N; this is equal to

2 3

3
dev(A LS | IV) = Z {2 Z Z Nasy log _n“"n"""u} .

v=1 s=1a=1 RatuTtisy

1I the value of variable N is known, the quantity inside the brackets is the

Table 5.2: Partitioned deviance tests; the P-values are with 3 decimals

Variable Deviance df P-value

N=1 1041 2 0.005
N=12 2851 2 0.000
N=3] 936 2 0.009
Sum 4828 6 0.000
S=1 24.33 4 0.000
S =2 2.69 4 0.611
Sum 27.07 8 0.000
A=1 1.65 2 0.439
A=29 1543 2 0.000
A= 40.83 2 d.000
Sum 57.90 6 0.000
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deviance for testing independence between the variables A and § in the sub-
table given by ¥ = ». In this way the likelihood test can be calculated at
each level of the conditioning variable . Similar calculations and partitions
can be made for the other two possible conditional independence hypotheses
AN N|{Sand § L N | A, as summarised in Table 5.2. The unpartitioned
tests are named by the general word “Sum” and it can be remarked that the
surns of the partial deviances equal the total deviances and the same for the
degrees of freedom. Nevertheless, the situation is not quite the same for -
values, the quantities that are driving the inference process. The tests for
the number of vehicles N does not reveal anything new but for speed limit
S and accident severity A there are some noticeable exceptions. Although
A 1 N | {5 = 1} is strongly rejected by a P-value of 0.0001, the other
specified conditional independence hypothesis A 1L N | {§ = 2} cannot be
rejected at all and this is in spite of the rejection of the general hypothesis
A 1. N | S. In a similar manner § 1L N | {A = 1} cannot be rejected because
the corresponding P-value is 0.439, although overall 5 1L ¥V | A has a P-value
much smaller than the critical value 0.05.

Consequently, the conditional independence structure revealed by this set
of data is more appropriately described by the conditional indepencence graphs
in Figure 5.2. From these graphs it can be easily concluded that, for nrban
areas, accident severity and the number of vehicles are associated and for rural
areas they are not. In addition, for fatal accidents speed limit and the number

of vehicles are conditionally independent, the opposite being true for serious
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Figure 5.2: Conditional independence graphs revealing a more detailed associ-
alzon structure

or slight accidents.

Edwards-Havranek model selection

As stated in the previous chapter it is better to look at several models instead
of basing inference on a single model. The reason for this is that uncertainty
in the model may be overlooked and as a consequence parameters of interest
be underestimated. The approach proposed by Edwards and Havranek (1985)
seeks the simplest models fitting the data well. This searching procedure can
screen models between a maximal model known to fit the data well and a
minimal model known not to fit the data well; both models are specified in
the initialising stage. In MIM, by default the method searches between the

saturated model and the complete independence model so all possible graphical
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models are eligible for selection. The procedure is very fast. For the same
data studied above, at the 0.05 significance level, between the saturated model
[ALN RST] and the complete independence model | A][L]|V][R][S][T] only 288
models are tested out of 2'* = 32768 possible graphical models which is a great,
improvement. This happens because once a model M has been accepted all
models containing M as a submodel will automatically be accepted without
further testing and also, once a model M has been rejected all its submodels
are considered rejected too without further testing. This procedure splits the
set ol possible models in three sets: accepted models, rejected models and
non-tested models. The algorithm is testing marginal non-tested models until
this set 1s empty and the minimal accepted models are retained.

I'or Bedfordshire set of data, the minimal accepted models with the cor-
responding deviance tests and P-values are given in "lable 5.3. The model
selected by a stepwise backward elimination procedure using exact condi-
tional tests or approximate asymptotic x* tests, namely [RL]{ LT SN][ASN],
is not included in Table 5.3 because some of its submodels, like the last model
[R][ASN][LST|[LSN], are listed. If the analyst would like anyway to select a
unique model to work with, the Akalke information criterion (Akaike, 1973)
15 helplul. The idea i1s to penalise complex models with a large number
of parameters and to look for parsimony as recommended by Occam’s ra-
zor principle. The Akaike information criterion favours the model M with
minimum difference between the deviance dev(M) and the degrees of free-

dom df(M). The calculations are made in the last column of Table 5.3.



CHAPTER 5. APPLICATIONS TO ROAD ACCIDENT DATA 118

Table 5.3: Minimal accepted models by Fdwards-Havranek procedure

Model M dev(M) df(M) P-value dev(M)— di(M)
[ALR)[LRS)[LST][LSN] 211.22 180 0.055 31.22
[ALR)|ALT|[LST)[LSN] 210.34 180 0.060 30.34
[AL][AN][RSN][LST]STN] 205.21 180 0.095 15.21
[ALT][LRS)[LST)[LSN] 21548 184  0.056 31.48
[ALN|[LR][LST][LSN] 209.06 184 0.099 25.06
[AN]LST N)IRS] 213.97 182 0.052 31.97
[R][ALN][LSTN] 204.75 178 0.083 26.75
[AL][RS)[LSTN] 211.10 184 0.083 27.10
[AL|[AN][RSTI[LST)[STN] 216.64 184  0.050 32.64
[AL)[LRI[LSTN] 206.01 184  0.127 22,01
[AL[[ANVLRS|[LST)[STN]  211.21 184  0.082 27.21
[AS)[LR|[LST)[LSN] 209.81 192 0.180 17.81
[AS][LR][LST)[STN] 219.68 192 0.083 27.68
[RI[ALS][LST|[LSN] 214.95 190 0.103 24.95
[AS|[LST)[LS N]|[RS] 21490 192 0.123 22.90
[RI[ASTI[LST|[LSN) 922.81 190  0.052 32.81
(R)[AS][LSTN] 20550 186 0.156 19.50
[AL][RSN][LST)[LSN)] 216.29 184 0.052 32.29
[R][ASN][LSTI[ST NI 210.55 186 0.105 24.55
[AL][LRN)[LSTI[LSN] 21590 184  0.034 31.90
[ALN|[RS)[LST)[LSN] 214.15 184 0.063 30.15
[AS)LSTY{RS)STN) 22477 192 0.053 3277
[AS|[LST)LSN][RN] 218.76 190  0.075 98.76
[R][ASN|[LST|[LSN] 200.68 186  0.219 14.68

The last model [RI[ASNI[LST|[LSN] is choéen. This differs from the finat
model [RL][LTSN][ASN], chosen by other model selection procedures, by
having two missing edges RBL and T'N as can be seen on its independence
graph in Figure 5.3. However the main counditional independence relationship
A WL {R,T,L} | {S,N} is still valid and again the model can be ccllapsed
onto A, S, N. Regarding the variables A, S, N there are no differences com-

pared with the model given by the graph in Figure 5.1. The total independence
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Figure 5.8: Graphical model for Bedfordshire data, chosen by Akatke crite-
rion from the minimal accepted models by Edwards-Havranek model selection
procedure
of road surface conditions K as implied by the model in Figure 5.3 seems a
bit strong. A possible explanation is that the stepwise backward elimination
procedure used in MIM does not test again for removal of the edge £L 1f 1t 1s
found significant at one step of the procedure.

This model selection procedure can be used when the aim is to select a sub-
set of models in order to investigate the strength of some relationships between

the variables. One major concern is that the testing is done asymptotically.

However, decomposable models can be retested nsing exact conditional tests.

5.2.2 Graphical chain model with 6 variables

In this section, graphical chain modelling is applied to the same six variables

investigated in the previous section. This type of analysis has more causal
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implications and it will be expanded in the next section to ten variables.

‘The Bedfordshire data is considered again. The six variables are par-
titioned into three ordered blocks: V(1) = {L,R,5,T},V(2) = {N} and
V(3) = {A}. This partitioning was the author’s choice motivated by a tempo-
ral argument. Imagine a journey during which an accident happens. Accident
severity is decided after the accident takes place, sometimes few days past be-
fore an accident can be categorised as fatal or serious. The number of vehicles
is established right away at the place of accident and the variables in the first
block are known previons to the accident.

The first block contains the variables light conditions, road type, road
surface and speed limit and they are considered purely explanatory variables.
The independence graph for this block may or may not be of interest. However,
it was decided to investigate the conditional independence relationships among
the variables in this block. There are two edges missing, between R and T
and between £ and 5. This meauns that, given daylight conditions L, road
surface R is independent of road type T and speed limit §. The first step to
build the graphical chain model is to fit the conditional model for the first two
blocks. The subgraph defined by L, B, 5,T is assumed complete and there
1s only one missing arrow, between R and N. The next step is to consider
accident severity, A, the single variable of the third block, as a response and
to keep fixed the complete subgraph defined by all variables in the first two
blocks. There are three arrows missing, between R and A, between L and

A and between T' and A. The chain graph is described in Figure 5.4. The
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Figure 5.4: Graphical chain model for Bedfordshive data with the dependence
chain {R,L,T,S5} U {N}U{A}

sequential process of building a graphical chain model is described in greater
detail in Section 5.4.

This model has an obvious cansal interpretation. The speed limit, road
type and daylight conditions all influence directly the number of vehicles in-
volved in the accident. Road surface has no direct influence to the number
of vehicles but acts only through its association with daylight conditions. I'i-
nally, accident severity is influenced only by the speed limit and the nnm-
ber of vehicles. The conditional independence relationships can be read on
the moral graph of the chain graph in IFigure 5.4. The moral graph in this
case is obtained by replacing the directed edges with undirected edges. So
AU {L,R,T}|{N,S} which means that accident severity is independent of
daylight conditions, road type and road surface given the number of vehicles
and the speed limit. This is the same conclusion as before. Using these condi-

tional independencies, the model is given by the following factorisation of the
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joint density function

Flabmyms,t) = f(rs 05| Lrts)fa] Lt s )
fla,l,n,r,s,0) = f(l,r,s,t)f(n]lt,s)f(a]s,n)
fll.r)f(l,s,1)

fla,l,nyry8,t) = —T—f(n [ 1,t,8)f(a]s,n)

where the last factorisation is of less interest than the first two.

5.2.3 Graphical chain model with 10 variables

It is possible to consider a larger number of variables. The table will then be
more sparse and using exact conditional methods becomes essential. For the
same county Bedfordshire, another four variables, regarding time characteris-

tics, location characteristics and accident characteristics, are considered:

C' = Number of casualties in the accident (1, 2, 3 or more),

D = Day of the week ( Sunday, Monday-to-Thursday, Friday, Saturday),

¢ H = Hour of the accident (0-6, 7-9, 10-14, 15-18, 19-23),

P = Pedestrian crossing within 50m of the place of the accident (no,

yes).

It seems more appropriate not to consider all 10 variables in a symmetric
way. The possible history of the accident provides a clue about how the
variables can be partitioned into recursive blocks. Consider the first block

of variables {D, H,L, P, R,5 T}; the reason for choosing these variables is
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Figure §.5: Graphical chain model for Bedfordshire data with 10 variables, A
is accident severity, C 1s the number of casualties, N is the number of vehicles,
S is speed limit, H s hour of the day, D is day of the week, P is presence of
a pedestrian crossing, T is road type, L is daylight conditions and R 1is road
surface conditions

that their values related to a site of a road network are established well in
advance of the occurrence of the accident. The number of vehicles 1s the only
variable in the second block and the last block contains accident severity and
the number of casualties {A,C'}. The values of these last two variables can
be known only after the accident happens. Backward elimination, using exact
conditional tests leads to he chain graph of Figure 5.3. The graphical model

for the first block of variables may be of interest or not, but directly from the

graph it can be seen that

P I {D,H,L R} |{S, T}

{(S,7) 1L {R. D} | {#,L}.
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Modelling the number of vehicles, N, as a response variable, it can be seen

directly on the chain graph that

N AL {D,L,P,R} | {H,S,T}

and for the accident severity, A and the number of casualties, C,

{A,CYIL {P,R,TY|{D,H,L,N,S}

C WL {L,P,R,T} [{A,D,H,N,S}.

These relationships can help us understand what variables influence either
the accident severity or other related variables of interest such as the number
ol vehicles and the number of casualties in the accident. The number of
vehicles is independent of daylight conditions, day of the week, road surface
and presence of pedestrian Cfossing given hour of the day, speed limit and road
type. Accident severity and the number of casualties are influenced directly
ounly by day of the week, hour of the day, daylight conditions, the number
of vehicles and speed limit. The direct association between accident severity
and the number of casualties suggests that, when data is disaggregated by
these two variables, the analysis should consider modelling multiple accident
frequencies jointly. This idea is followed in the second part of the thesis in

Chapters 8§ and 9.
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5.3 Bedfordshire and Hampshire data

5.3.1 Graphical models for the Hampshire data and

comparisons

In this section several graphical models are investigated for the Hampshire
data and a comparison is made with the models obtained for the Bedfordshire
data.

After deleting 68 observations having missing variables, the data corre-
sponding to Hampshire for 1995 contains 7242 accident records, a much greater
nurnber than that for Bedfordshire. Starting with the same 6 variables sym-
metrically treated, the Edwards-Havranek model selection procedure search-
ing between the saturated model [ALN RST) and the complete independence
model [A][L][NV][R][S][T], tested just 24 models out of 2'® possible models.
This procedure was used because the 6-dimensional table is not so sparse, hav-
ing a cell frequency average of 2.76 for fatal accidents. It was aimed to select
some models for comparison purposes. Only two mintmal models, consistent
witﬁ the data, are proposed. The first one is [ASN][LST|[RSTN] having a
deviance equal to 182.06 with 164 degrees of freedom, which has the indepen-
dence graph in Figure 5.6. The second one is [ASN|[LST|[LSN]|[RST|{RSN]
having a deviance of 173.91 with 172 degrees of freedom. The independence
graph for the second model is showed in Figure 5.7. As opposed to the first
model, the second model is noi. decomposable because of the chordless 4-cycle

R—T— L — N. This means that the estimates have to be calculated by
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Figure 5.6: Graphical model for Hampshire data with 6 variables, where A is
acctdent severity (fatal, serious, slight), N is the number of vehicles involved
(1, 2, 3 or more), S is speed limit (< 40 mph, > 40 mph), L is lighting
conditions (day, night), T is road type (major, minor), and R is road surface
(dry, wet-damp, snow-ice)

iterative methods. Anyway, both models still support the main conditional
independence relationship identified in the case of Bedfordshire county, which

18

AL {R T, LY|{S, N} (5.1)

For both counties, ihe independence relationship (5.1) is true. 1% is worth
pointing out that this does not necessarily imply that this will be also true for
the pooled set of data, combining the accidents from Bedfordshire with the
accidents from Hampshire. It could be just another instance of Simpson’s para-
dox. The most general model under which the conditional independence (5.1)
can be tested is [ANS|{RTLNS]. For Bedfordshire and Hampshire combined,

the deviance of this model is 178.43 with 132 degrees of freedom, giving a P-
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value of 0.004. Therefore, after pooling data for Bedfordshire and Hampshire
into one table, it is not true anymore that accident severity is independent of
road surface conditions, road type and daylight conditions given the values of

speed limit and the number of vehicles involved.

Figure 5.7: A graphical non-decomposable model for Hampshire data with 6
variables, where A is accident severity (fatal, serious, slight), N is the number
of vehicles involved (1, 2, § or more), S is speed limit (< 40 mph, > 40 mph),
L is lighting conditions (day, night), T is road type (major, miner), and R is
road surface (dry, wet-damp, snow-ice)

‘This may happen because the two counties have different geographical
conditions, different socio-economic characteristics, different percentages of
roads of some type and so on. The two sets of data are observational studies

from different populations.



CHAPTER 5. APPLICATIONS TO ROAD ACCIDENT DATA 128

5.3.2 Graphical chain model with 10 variables

As revealed in the previous section, an interesting question is what happens
when more data is collected. It may be thought that there is no need for
exact conditional tests and Monte Carlo methods as there are data available
for other counties as well and by pooling the data, the consingency table will
cross-classily a larger and larger number of cases keeping fixed the number
of cells. However this is not the case. Considering the data from STATS
19 for 1995, for Bedfordshire and Hampshire, cross-classified by the same
10 variables as before, the resulting table is still sparse in spite of the large
sample size of 9193 accidents. This is due to the nature of the data and it has
nothing to do with the sampling method. The table is expected to have small
frequencies in the cells corresponding to fatal accidents and large numbers in
the cells corresponding to slight accidents, for example. Applying the same
methodology as before the chain graphical model in Figure 5.8 is obtained.

There are some interesting causal relationships revealed by the chain graph.
The presence of a pedestrian crossing, P, does not affect the nnmber of vehi-
cles, N, the accident severity, A, or the number of casualties, . The day of
the week, D, influences directly the number of vehicles, the accident severity
and the number of casualties. The accident severity and the numher of casu-
alties are directly connected, suggesting that a multivariate regression model
may be rore appropriate than ordinary regression models.

Following the modelling process step by step, it can be informative to

describe the conditional independence relationships. From the chain graph it
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Figure 5.8: Graphical chain model for Bedfordshire + Hampshire data

Is easy to see that

N 1 {P,T}|{D,H,L,R,S}

and secondly

C 1L {P,R}|{D,H,LN,ST)

{A,C} L P|{D,H,L,N,R,ST}.

These conditional independence relationships suggest that safety measures,
alming at a reduction in accident severity and the number of casualties, should
not consider primarily the presence of pedestrian crossings. The variables in

the conditioning set are those that should be targeted because they influence
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directly the variables of interest, accident severity and the number of casual-
ties. The above conditional independence relationships reveals that, knowing
that the accidents have occurred, we expect that the presence of pedestrian
crossing to be irrelevant regarding accident severity and the number of casu-
alties, from the statistical information point of view. This does not mean that
pedestrian crossings are useless. They are designed for reducing pedestrian
casualties. A more detalled analysis in the next section, only for accidents
with pedestrian casualties, reveals that the presence of pedestrian crossing is
dircctly influencing the number of casualties in such a,ccidenfs but not the
accident severity. Other road characteristics and accident characteristics con-

tribute to accident seventy.

5.4 Graphical chain modelling at a disaggre-

gated level

5.4.1 Accidents with pedestrian casualties

The accidents where there is a pedestrian casualty might have different con-
tributory factors from those with no pedestrian casualties. For this reason it
seenrs advisable to analyse separately the two classes of accidents. Table 5.4
and Tables B.1, B.2, B.3 in the Appendix B contain the results needed to
build the graphical chain models for Bedfordshire only and for Bedfordshire

and Hampshire pooled together, at critical levels & = 0.05 and « = 0.01. For
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comparison the results obtained using decomposable model selection, unre-
stricted model selection and exact Monte Carlo sampling model selection will
be given. Unrestricted models selection means that all graphical decompos-

able and non-decomposable models are searched. Before doing so, it is helpful

Table 5.4: Bedfordshire 1995 : a = 0.05

Variables Model formula Method

D, H,T (DHI[HT] Dec.
|DH][HT] Unres.

[T][DH] Exact.

LR, S|DHT [RS][DLST)[DHLT) Dec.
[RS|[HR||LS|[HL)[DHT][DS] Unres.

[RSI[HLST)|DHST) Exact.

P.N|L,RS D HT [NRS)[DHPRT)(DH LRST] Dec.
[NS||PST|[DHLRST) Unres.

[NS)[PRT)[DHLRST)] Exact

A,C|P,N,L,R,S,D.H,T [ADHNPRT|[ACHNPR|DHLNPRST]  Dec.
[AST)[CS)|[DHLNPRST] Unres.

[ART)[CHNP|[DELNPRST) Exact

to explain the building process of a chain graph using exact testing. The re-
sults in Table 5.4 contain all the necessary information. The choice of blocks
of variables was based on the same principles as before. However, the previ-
ous set of explanatory variables was further divided into a block of temporal
variables, day of the week, hour of the day together with road type, which are
some sort of fixed variables, and a block of environmental variables: daylight
conditions, road surface condilions and speed limit. Speed limit is included in

the second block because it may change from time to time. The third block
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v
D

EFigure 5.9: [nitial step of building the chain graph for accident data with
pedestrian casualties in Bedfordshire, 1995; D is day of the week, H is hour
of the week and T' is road type

includes presence of pedestrian crossing and the number of vehicles as fac-
tors that influence directly the number of casualties in the accident. Accident
severity and the number of casualites are known only after the accident takes
place.

First the initial set of variables {D, H, T} is investigated and conditional
independencies between these three variables, in the marginal table defined
by them, are revealed in the graph of Figure 5.9. This step is not really
necessary and can be skipped. The sequential process is modelling just two
sets of variables at a time, one explanatory and one response.

The next set of variables to be considered is {L, R, S}. The edges between
{D,H,T} are not relevant and they can be left out of the graph. The two
blocks are delimited in Figure 5.10 by dash boxes. As described in Chapter 3,
there arc arrows pointing towards the variables in the new block and undi-
rected lines between the variables inside this block. From Table 5.4 it can be

seen that there is only one line between R and S and 5 arrows, 3 pointing
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) Lve)
AU

Frgure 5.10: First step of building the chain graph for accident data with
pedestrian casualties in Bedfordshire, 1995; R is road surface, S is the speed
limit and L is lighting conditions

towards S (out of 3 possible) and 2 pointing towards L {out of 3 possible).

The second step consists in considering all the vamables in the first two
blocks as one single explanatory set, so therefore a single block, and the third
block, in order, of variables, that is {F, N}, takes the place of the response
variables block. Again there are two types of edges; arrows pointing towards
P or N and a possible line between P and N. The graph at this intermediary
stage 1s presented n Figure 5.11 and is based on the inferential results from
Table 5.4.

The last step, the third, brings the last set of variables {A,C} as the
response block and all the previously investigated variables are playing the
role of explanatory variables as in Figure 5.12. Irom Table 5.4, there is no
line between A and C and there are 5 arrows between I2, T ana A, and between
H,N,P and C.

The intermediary graphs look quite simple, revealing simple association

structures. Now the chain graph, with the associated dependence chain, can be
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Figure 5.11: Secand step of building the chain graph for accident data with
pedestrian casualties in Bedfordshire, 1995; P is the presence of pedestrian
erossing within 50 m and N is the number af vehicles invalved

Figure 5.12: Third step of building chain graph for accident data with pedes-
trian casualties in Bedfordshire, 1995; A is accident severity and C is the
number of casualties



CHAPTER 5. APPLICATIONS TO ROAD ACCIDENT DATA 135

V(1) V(). V(3 V(4)

Figure 5.13: Graphical chain model for Bedfordshire date; accidents with
pedestrian casualties only

drawn putting all the previous steps together. The graphical chain model has
the chain graph in Figure 5.13. Although this graph looks a bit complicated,
the actual sequential building process shows the opposite. However, great
care should be taken when reading the conditional independencies. The moral
graph has to be used, replacing arrows by lines and connecting vertices that
have common children. For example N and P should be connected by a line
in the moral graph because both have C' as their child. It can be seen from the
chain graph in Figure 5.13 that accident severity and the number of casualties
are not associated, that speed limit is a very important variable absorbing the
information from a group of other variables like day of the week, hour of the
day, road type, daylight conditions and road surface; that accident severity
is directly influenced only by speed limit and road type; that the number of

casualties 1s directly influenced only by the hour of the day, the number of
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vehicles involved and the presence of pedestrian crossing.

However, the conclusions are slightly different from a similar previous
analysis considering all accidents, with or without pedestrian casualties, pooled
together. From the author’s point of view, the resnlts found here do make
sense. The accident severity is affected by the speed limit and the type of the
road where accident occurred. Speed limit is also influenced by the type of the
road, as characteristics of accidents with pedestrian casualties, which again is
sensible, but speed limit is not enough to explain acctdent severity, otherwise
there would be no arrow from road type T to accident sevel-rity A.

It is evident from Table 5.4 that the resnlts are quite different for the other
methods, decomposable or unrestricted. This means that some false inference
can be made when asymptotic rather than exact conditional methods are
used. Since large accident tables are very often sparse it is better to base
the inference on exact conditional testing. A drawback of this method is that
the selected models are always decomposable so simpler non-decomposable
graphical models are not even tested with this approach. In the author’s

opinion it is better to have a reliable mode! rather than a simple unreliable

OI11€.

5.4.2 Accidents without pedestrian casualties

'This section contains the complementary analysis for accidents without pedes-
trian casualties. For this type of accidents, the.presence of pedestrian crossing

was considered to have no importance and it was removed. Although the de-
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pendence chain is very similar, it will not be surprising if the selected graphical
chain models will be different from those discussed earlier for accidents with

pedestrian casualties. One major change revealed here is that accident severity

and the number of casualties are directly associated.

Table 5.5: Bedfordshire 1995; o = 0.01

Variables Model formula Method

D HT [HT)|[DH] Dec.
[HT)|[DH)| Unres.

[HT)[DH] Exact.

L.R.S|D HT [LSTHLT|[HLR)DHT) Dec.
[LST)HLT)[HLR)DHT) Unres.

[LST)HLT||[HR]|DHT] Exact.

N|L,R,S D HT [DHNRST|[DHLRST)] Dec.
[HNST||[DHLRST] Unres.

[HNST||DHLRST Exact

AC|NL RS D HT [ACDHLNRST] Dec.
[AS|[CNS|[DHLNRST] Unres.

[ACNS|[ADHNS|IDHLNRST]  Exact

The Tables 5.5, and B.4, B.5 in the appendix B are for accidents without
pedestrian casualties. It can be easily seen that exact inferential methods
provide different results than asymptotic inferential methods. In addition,
there are differences between the graphical chain models for accidents with
pedestrian casualties and the graphical chain models for accidents without
pedestrian casualties. However this is not a surprise. The analysis at the
more disaggregated level is more fragile because of the sparse character of

the contingency tables. When there is a particular interest in one type of
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the accidents, like accidents with pedestrian casualties, this difficulty can be
overconie by collecting more data over a larger period of time or over a larger

spatial area.

5.5 Summary

Graphical chain models provide a useful exploratory techuique for disentan-
gling the potential factors which influence variables such as accident severity
or the number of casunalties. However, some care needs to be taken in the
choice of statistical test used to select a well fitting model. Using the same 10
variables, the graphical chain models for Bedfordshire, and for Bedfordshire
and Hampshire together, are different. This is not surprising since the sec-
ond mnodel was based on more data. [t was pointed out that for Bedfordshire
data alone, when just six variables are used, the graphical chain models ob-
tained using different methods of testing and model selection are the same.
For the 10-variables table, different final models are obtained if asymptotic
(chi-squared) methods of testing are used instead of the exact Monte-Carlo
method used here. As the contingency tables becomes larger and more sparse,
the classical tests are not reliable and the use of exact tests and Monte Carlo
simulation procedures hecome essential.

Graphical modelling and graphical chain modelling provide a sound alter-
native for investigating a large number of road accident characleristics at an

aggregated level and at a more specific level of aggregation. In addition, there
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is strong empirical evidence that, for large sparse tables, asymptotic methods
and exact conditional methods give very different results, the second type of

inference being more reliable.



Chapter 6

Collapsibility in contingency

tables

6.1 Introduction

This chapter aims to show how data analysis can be reduced in dimensional-
ity, in a reliable manner, and questions of particular interest can be answered
using other statistical tools following the results of graphical modelling. Col-
lapsibility was briefly used in Chapter 5 for continuing the analysis in a mar-
ginal table of interest. There are different concepts of collapsibility defined
in the literature (Bishop et al., 1975; Whittemore, 1978, Asmussen and Ed-
wards, 1983; Davis, 1986), and although there are some equivalence results
{(Davis, 1986), the collapsibility concept used here concerns the presence or
not of interactions terms in the log-linear expansion. This can be called model

collapsibility but being the only collapsibility type investigated in this thesis

140
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it will be simply called collapsibility.

For statistical modelling, the more parameters a log-linear model has the
better is the fit to the data. The saturated model has one parameter for
each data value, so it will fit the data perfectly. However, the saturated
model cannot be used for prediction because for another sample from the same
population the results will be different. The statistician is confronted with a
dillema. One tendency is to put mote parameters into the model to explain
the complexity of the data. The other is to have less parameters because
they are more efficiently estimated, Altham (1984), and the model is more
easily interpreted. The solution is collapsibility, which breaks large problems
down into small problems. It is very useful to know when lower dimensional

marginal tables can be analysed instead of very large high-dimensional tables.

6.1.1 Simpson’s Paradox

This phenomenon has been described in many classical textbooks like Bishop
et al. (1975), Edwards {1995), Whittaker (1990), which show that collapsing
tables can lead to misleading conclusions. This phenomenon is not just of
academic interest. A set of examples from the real world is presented by
Wagner (1982). An example of Simpson's paradox in the context of road
accident data was discussed in Sectton 3.2.

Simpson’s paradox is the result of collapsing a contingency table that
should not be collapsed. Possibly the confusion starts with the analogy be-

tween log-linear models and ANOVA models. For a three-factor ANOVA
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model, when there is no three-way factor interaction, all of the two-factor
interactions can be examined from the corresponding two-factor marginal ta-
ble. On the contrary, for tables of counts, for a log-linear model that has no
three-way interaction but all two-factor interactions, it is not correct to draw
conclusions about two-factor interactions from the two-factor marginal tables.

Simpson’s paradox appears when the complex analysis of large tables is
unwisely replaced by a secies of investigations of marginal sruall dimensional
tables. Sonte studies that can be criticised on this ground are Henson (1992)
and Taylor and Barker (1994-1995). In analysing large tables there is one
last obstacle that needs to be overcome. The tables may be sparse and the
asymptotic tests are unreliable. As it was shown in Chapters 4 and 5 exact

conditional tests with Monte Carlo sampling can be extremely helpful in such

situations.

6.2 Collapsibility

Asmussen and Edwards (1983) introduced a definition of collapsibility based
on the relationship between maximum likelihood estimators computed on the

joint and marginal tables of counts n.

Definition 6.1 The hierarchical log-linear model L is collapsible onto the sub-

set of variables a if one of the following equivalent conditions hold:
1. for all p(z) € L, it is true that p(i,) € L,

2. for all ia, P(ia) = Palia).
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The hat denotes the maximum likelihood estimator and p, is the vector of
probabilities under model L,. The next theorem and its corollary, proved by
Asmussen and Edwards (1983), are possibly the most important properties of

collapsibility for contingency tables:

Theorem 6.1 (Asmussen and Edwards) A hierarchical log-linear model
L is collapsible onto the subset of variables a if and only if the boundary of

every connected component of ¢° is contained in @ generator of L.

Corollary 6.1 If L is a graphical model, the condition in Theorem 6.1 means
that the boundary of every connected component of a® is complete and L is

said graphically collapsible onto a.

The collapsibility as presented above is based on the idea that, for log-linear
models, the presence or not of the interaction terms is important, and not the
exact values of the log-linear paraneters.

The graphical model, proposed for Bedfordshire data following Edwards-
Havranek model selection procedure and having the independence graph in
Figure 6.1, is not collapsible onto @ = {T', NV, A} because the connected com-

ponents of ¢ = {R, L, 5} are {R} and {5, L} and their boundaries are

bd{R} = {0} bd{L,S} = [T. N, A}

and although the empty boundary means that it is possible to coliapse, the
second boundary is properly incomplete and this means that the graphical

model is nof collapsible onto {I, NV, A}. More generally, il the variables nnder
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Figqure 6.1: Graphical model for Bedfordshirve data: A is accident severity, S is
speed limit, N is the number of vehicles involved, T is road type, L is lighting
conditions, R is road surface

study Xy are partitioned into (X,, X,), knowing the independence graph of
Xv, what can be said about the independence graph of X,7 This question
has an answer in the concept of graphical collapsibility as defined in Corol-
lary 6.1. The important result, (Whittaker, 1990}, is that, if Xy = (X,, X}) is
graphically collapsible onto X,, then the conditional independencies between
the variables of X,, in the independence graph of (X,, X3), are preserved in
the independence graph of X,. Again using the graphical model illustrated in
Figure 6.1, for the partition e = {A,S, N} and b = {R, L, T}, it can be seen
that bd(L,T) = {S, N} which is complete, and so the model is collapsible
onto a and the three-way interaction between accident severity, speed limit
and the number of vehicles is preserved in the model for the 3-dimensional

marginal contingency table defined by these three variables. This means that



CHAPTER 6. COLLAPSIBILITY IN CONTINGENCY TABLES 145

the only simpler hierarchical log-linear model that could fit this 3-way table is
the model of no three-way interaction [AS|[AN]{SN], which is not graphical.

Another question of interest concerning collapsibility is whether the pre-
dicted distribution, calculated by marginalising the fitted model of the joint
distribution, can be recovered by modelling the marginal data. This is a

Companison of urhan aod rural areas
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[igure 6.2: Probabilities that an accident on urban and rurel reads in Bed-
fordshire is fatal

question of commutativity of fitting and marginalisation, which means that
a model f:;, for the joint distribution f,; can be fitted first and then one can
marginalise the fitted model to E or marginalise first the joint distribution and
then fit the marginal distribution f, and get the same result Ta. Collapsibility
in this sense means that the fitted cell probabilities are the same 1rrespective
of the order of fitting and collapsing. A necessary and sufhicient condition
for the commutativity of the maximum likelihood estimates is graphical col-

lapsibility together with the closure under marginalisation of the parametric
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distribution. Then the estimated probabilities for X, are the same calculated
using the model [or X'y or the model for X,.

The model of no three way interaction [AN][AS){VS] is the only simpler
log-linear odel fitting the marginal 3-way table defined by A, N and 5. 1t
has a deviance equal to 7.29 with 4 degrees of frecdom which gives a P-value
of 0.12. For practitioners it might be of interest to compare the probability
to have a fatal or serious accident on urban areas and rural areas. From
Figures 6.2 and 6.3 it can be easily concluded that a fatal or serious accident
is more likely to occur on rural roads than on urban roads.

Comparison of whan and naral areas

17

Probability of KSI accident

Number of Velicks

Figure 6.3: Probabilities thal an accident on urban and rural roads in Bed-
fordshire is fatal or serious

Another example where graphical collapsibility can be applied is the model
with the independence graph in Figure 3.5, Chapler 3, Section 3.4.1, with
b= {B}, and a = {A,C, D}. The boundary of 6 = {B} is {C, D}, which is

complete, so the model can be collapsed graphically over B and the conditional
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independencies between A, C, I) are preserved in the independence graph of
X,. As our model is graphically collapsible over { B}, and it is well known that
the multinomial distribution is closed under marginalisation, the probabilities
of interest can be estimated from the marginal model of {A,C, D}. In other
words, the marginal table defined by the variables A, C and D is suflicient
for estimation and there is no need to look at the 4-dimensional table. At
the same time there are no problems with Simpson’s paradox. The same
argument is true for the subtable defined by B,C and ). The counts of the

two subtables are given in Table 6.1. For each subtable the model of no three-

Table 6.1: Qbserved counts for subtables BCD and ACD of collision-rollover
data

B A
C D 1 2|C D 1 2
I 1 376 1989 |1 1 2228 137
2 173 1183 2 1172 184

2 1 79 1702 1 208 41
192 669 9 516 345

N

way interaction {Bartlett’s model} fits the data well and it is the only one,

apart from the saturated model

dev[AC|[CDIAD] =171, df =1, P=0.19

dev[BCBD)[CD] = 1.4, df =1, P =0.23.

The estimates for the models {BC}[BD][C D] and [AC][AD][C D] are given
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Table 6.2: Estimates for subtables BCD and ACD of collision-rollover data

B A
C D 1 2/C D 1 2
1 1 382.35 198265 |1 1 2234.10 130.90
2 166.651 1189.33 2 1165.90 190.10
2 1 7265 1763512 1 20190 47.10
2 19835 662.65 2 522.097 338.90

in Table 6.2. Considering that the variables are standing for rows, columns
and layers, the model of no three-way interaction is equivalent to the model
of equal odds ratios for rows and columns given the layer. The interpretation
can be permuted by fixing either rows or columns. The Bartlett model can be
examined by looking at the estimated odds ratios and see if they are approx-
imately equal. This can be done nsing the unrestricted estimates of the p;;x
which are p;; = %}i The index for the AC D table is ¢ for C, j for D and
% is for A. Thus, using the counts of Table 6.1, the estimated odds ratios for

table AC D are

Piitiz2/Prizhian = 2.553 (6.1)

ﬁznﬁzzz/ﬁzlzﬁzn = 3.3919 (6-2)

Remember that the threshold value for the odds ratio is 1 and its distri-
bution is not symmetric. To overcome this small difficulty, log odds ratios
are considered. The hypothesis of interest is whether the two odds ratios are

equal. In other words whether the ratio of these odds ratios is 1 or, equiva-
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lently whether

lo (13\21111222/1’?\2122221) —0
P111p122/P112P121

A confidence interval can be easily calculated for this statistic, which has

the observed value 3.3919/2.553 = 1.3286. The standard deviation is

1
SE:\[—-%-...—}-L:O.TOTI.

11 1222

The Z variable is %240 = 0.4071. The confidence interval for the ratio of
odds ratios is (0.6045 , 2.9182) which includes the value 1. To conclude, for
both types of accident, the odds of having a severe injury are almost 3 times
larger if the driver i1s ejected than if the driver is not ejected and the odds
of having a not severe injury when the drivér has not been ejected are about
3 times larger than the odds of having a not severe injury when the driver
has been ejected. This shows that if the driver is ejected in an accident then
this substantially increases the probability of being severely injured. Similar
conclusions can be deduced by regrouping the variables.

For the table BC D the estimated odds ratios are

ﬁlllﬁ‘)?l/ﬁl?lﬁ?ll = 5.2822 (63)

PrizPare/Proebnz = 6.6164 (6.4)

Following the idea described above and fixing variable car type, the hypothesis

of interest is
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log (?,3\112?’3\222/312221212) ~0
P11133221/P121P211

The Z variable is 0'02_275[';‘;0 = 0.3185 and a confidence interval for this statis-
tic, which has the observed value 6.6164/5.2822 = 1.2526, can be constructed.
The confidence interval for the ratio of odds ratios is (0.6708 , 2.3382) which
includes 1. Thus, for both types of car, the odds of having a severe injury in

the case of a rollover accident are 5 or 6 times larger than the odds of having

a severe injury in the case of a collision accident.

6.2.1 Response variable models

Very often it is known a priori that the variables under study do not play a
symmetric role. Some of the variables; say @, are viewed as explanatory (ex-
ogenous, treatment-control, independent) for the rest of variables, say b, which
are considered response (endogenous, dependent). lIgnoring this type of infor-
mation can be misleading. Graphical chain models described in Chapters 3
and 4 are suitable for this framework. Ior categorical variables the modelling
process was done sequentially as explained in Section 5.4, using the classical
log-linear framework. This does not mean that there are no graphical chain
models that can be fitted outside the log-linear framework.

This section contains a discussion of collapsibility in relation to a class of

models introduced by Goodman (1973) for modelling explanatory and response
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variables together. Some connections with the class of graphical chain models
will be made and some useful results stated. Goodman’s models factorizes
the joint density of (a, ) into a product of the marginal density of a and the
conditional density of & | @ such as:

p’ (i) = pM(2)p% (iv | i) (6.5)

and then a log-linear model M is specified for p™(i,) and a log-linear model
C for p°(ip | 12). The model M is fitted in the marginal table of n, and C is
fitted as a model for the whole table and since the model is conditioned on a,
all the interactions between the variables in ¢ have to be included. The final

joint model J has the fitted values m calculated as

i’ (i) = mM (i) {MC (5) /n(in) }. (6.6)

Using the additivity property of the deviance (and the corresponding degrees
of freedom of the asymptotic x* distribution) inference for the marginal model
and conditional model can be performed separately. However, the class of log-
linear models does not coincide with the class of response variable models,
see Asmussen and Edwards (1983). In order to determine the intersection of
these classes some additional notation is necessary. Let £ be the set of log-
linear models for the table of counts n, M, be the set of log-linear models for
the marginal table of counts n,, C, the set of conditional models (having u®

fixed in the log-linear expansion) and J, the set of response variable models
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generated from M, and C,. The most important result regarding the response
variable models is given in the next theorem (Asmussen and Edwards, 1983).
What the author believes to be a more elementary proof is given in detail in

Appendix, Section A.

Theorem 6.2 If [, € L, then L € 7, if and only if L is collapsible onto a.

In that case M = L, and C = [a] U Ly, where b = cl(a®).

The reverse question, when a response variable model is a log-linear model,

has an answer 1n the following theorem, proved in Asmussen and Edwards

(1983)

Theorem 6.3 Let J = (M,C) € J. be a response variable model. Then
J € L if and only if the boundary of every connected component of a® is

contained in a generator of M. Moreover, L = M U Gy, where b= cl(a).

To summarise the results, the log-linear models are appropriate for con-
tingency tables with response and explanatory variables if and only if they
are collapsible onto the explanatory variables. For the graphical model in
Figure 3.3, Chapter 3, Section 3.4.1, considering car type and accident type,
{B,C}, the explanatory variables and driver ejected and injury type A, D as
response variables it is easy to see that bd{A, D} = {B,C}, which is complete
and so the graphical model is collapsible onto the explanatory variables. This
means that the graphical model with the independence graph in Figure 3.5 is
appropriate. On the contrary, considering just D as a response variable, the

same model is not appropriate because it cannot be collapsed onto the explana-
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tory variables {A, B,C} because bd{D} = {A, B,C} which is not complete.
In a similar manner, the model in Figure 5.1, Chapter 5, Section 5.2.1, with A
accident severity as the only response variable, is appropriate because it can be
collapsed onto the explanatory variables R, L,T, S, N since bd{A} = {5, N}
which is complete.

A generalisation of the class of response variable models is the class of
graphical chain models described in Chapter 3. [or these models, variables are
divided into blocks V(1)U V(2)...UV(T), by a partial ordering relationship,
given by time or any other possible causal prior sobstantive knowledge. Define
the sets do = V(1),ds = V(i + 1) Udi_y, for all i € {1,..., T —1}. Then the
class of graphical chain models is defined by the following factorisation of the
joint density which describes the log-linear models Cp, Cy,...,Cr_1 on the

corresponding marginal tables

T-1
p” = p®(do) T 2% (di | din).

=1

The collapsibility results for response variable models are generalised, As-

mussen and Edwards (1983), in the next theorem.

Theorem 6.4 A log-linear model L € L is a graphical chain model if and
only if it is collapsible onto d;, for all 1€ {0,1,...,7 —1}.

Conversely, a graphical chain model J = (Cy,C1,...,Cr_1) is log-linear if
and only if the boundary of each connected component of V(1 + 1) under C; is

contained in a generator of Ci_q, for allie {1.2,...,T —1}.
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Figure 6.4: Graphical chain model for Bedfordshive data with 6 variables

An example of a graphical chain model that is log-linear is the model in

Iigure 6.4. It is relatively easy to see that

db=V(1) = {RLTS}
d=V(@)Udo = {N,RL,T,S)

dg = V(3) L d1

{A,N,R,L,T,5}

and therefore

bd(V(2) | C1) =bd(N | Cy) = {S,T,L} C [STI]

i

bd(V(3) | C2) = bd(4 | Ca) = {S,N} C[SN]

An example of a graphical chain model which is not a log-linear model is the
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model with the chain graph in Figure 3.7. For that model
V(1) ={B8,D}, V(2)={A}, V(3)={C].

But

bd(A|Cy) = (P} C[BD]

bd(C'|C) = {A,B,D)
which is not included in any generator of C; defined by
p(A, 8, D) = p(A, D)p(D, B)

Conversely, there are log-linear models that are not graphical chain models.

For example, the log-linear niodel
Ly = [RL)TS][LSAINT[LN]

is not a graphical chain model for the dependence chain {T, R, L, S} U {N} U
{A}. This is because it shonld be collapsible onto dg = {T', R, L, S} and this
by definition means that bd(N) = {7, .} and bd(A) = {5, L} are complete,
which is not true for the first boundary. This model can be made a graphical

chain model if the interaction between I, and T is allowed in the model.
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Minimal collapsible set

Very often there is some particular interest in a subset b of variables of a larger
set of variables V. [t is not always possible to collapse outo b, so the problem
is then what is the minimal subset 4,6 C b C V. such that the log-linear
model I, can be collapsed onto 6,7 This problem has an answer when the
log-linear model is decomposable.

The results are based on the concept of simplicial vertex and a version of
Graham’s algorithm known as Selective Acyclic Hypergraph Reduction, pro-
posed by Tarjan and Yannakis (1984). A vertex is called simplicial if its
boundary is complete. The Selective Acyclic Hypergraph Reduction algo-

rithm, (SAHR), follows the steps:

l. draw up a list of cliques of the corresponding interaction graph;
2. remove a simplicial vertex which is not in &

3. delete from the list of cliques any redundant clique;

4. repeat the last two steps until neither is applicable.

The minimal collapsible set is given by the subset of vertices left. The main

result, Madigan and Mosurski (1990), is given by the following theorem.

Theorem 6.5 Let L be a decomposable log-linear model having the interaction
graph G = (V, E) and let b be a subset of variables of interest b C V. Then
the SAHR algorithm provides the minimal set by, b C b C V, such that L can

be collapsed onto by.
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(w11
-7

Let consider again the graphical model for Harmpshire data with the cor-
responding conditional independence graph in Figure 6.5. This model is not
collapsible onto {A,T} because bd{R, N,S,L} = {A,T'} is not complete on
the graph. However, suppose that therc is an interest in collapsing this 6-
dimensional table onto a smaller one containing A, 7. For the SAHR algo-
rithm let b= {A4,T} so & = {R, N, S5,C}. It is easy to verify that R and L
are simplicial, that 1s that their boundary is complete, and that N and S are

not simplicial. The algorithm starts with the cliques
[RNST)ASN][SLT)

and in the first step it removes the simplicial vertex R. Thus, the next set of
cliques is given by

(VST|[ASN)[SLT]

and in the second step of the algorithmn the vertex L is eliminated. In con-
clusion the minimal subset, containing the variables {A, T}, onto which the
model in Figure 6.5 can be collapsed is {A,T, S, N}. This can be checked by
seeing that

bd({A,T,S, N}*) = bd({R, L}) = {T, S, N}

which is a complete subset on the graph.
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Figure 6.5: Graphical model for Hampshire data

6.3 Summary

The concept of collapsibility relative to log-linear models for contingency ta-
bles are extremely important. Not taking into account whether collapsibility
equivalent conditions allow a multi-dimensional table to be collapsed and a
marginal small-dimensional table to be analysed instead, may lead to Simp-
son’s paradox.

Reducing safely the dimension of the analysis has important benefits, es-
pecially when the large table 1s sparse and asymptotic tests are unreliable.
This was shown on a particular example in this chapter. The analysis of a six
dimensional table was focused on a three dimensional marginal table defined
by accident severity, speed limit and the number of vehicles, doing also esti-
mation of some probabilities of interest. [t was alse shown how the analysis

of a 4-dimensional table can be safely decomposed into two separate analyses
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of 3-dimensional tables, the analysis being continued on some odds ratios of
interest.

Graphical chain modcls are helpful for situations where the set of variables
under study can be classified as response and explanatory. [t was described
in this section how to apply some collapsibility results agd decide whether a
log-linear model 1s a response variable model.

When the model cannot be collapsed onto a desired subset of variables
b it 1s still possible to find out a minimal subset of variables by, containing
the subset b, such that the model is collapsible onto &,. This can help once
more to reduce the complexity ol the model by analysing a reduced number

of variables.



Chapter 7

Problems for compound Poisson

distributions

7.1 Introduction

The analysts using likelihood or empirical Bayes methods “estimate” some
uuknown parameters describing the statistical model and then provide iufer-
ence as il the data has been generated by the model with those estimated
parameters. The estimation process is therefore crucial and bad estimation
can lead to false inference.

For count data, it is very common to use a compound Poisson-gamma
distribution for modelling since this distribution helps to overcome overdis-
persion. This implies that the marginal distribution of the observed data
follows a negative binomial distribution with two unkuown parameters.

In this chapter, an insight into the process of maximum likelihood esti-

160
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mation (MLE) for both parameters is given and a new proof of when there
is such an estimator is given. The new approach does not give an answer to
the question of whether this bivariate MLE estimator 1s unique but it does
provide a numerical equivalent condition that can be checked on the computer
for any set of data.

Because the first part of this chapter suggests that the inference process
may be sensitive to the choice of prior a numerical technique 1s developed
in the second part of the chapter for investigating the change in posterior
inference due to the change in prior distribution. An example based on road

accident data is also described.

7.2 Estimation problems for NB distribution

Let Y = (Y1,...,Y,) be a sample of size n from a negative binomial distribu-

tion

NB(= | p,r) = ("3) p*(1 ~ )" (7.1)

forzx =0,1,2,..., and where 0 < p < 1 and £ > 0. The combinatorial term
(*+=-1}, which is equal to ("ff_"]l), 1s generally used for x positive integer, but
when x is real it 1s equal to E;(!%J(’—;l This is equal to 1 when =z is zero.

When the parameter x is known, the negative binomial distribution is of
exponential type and the estimation process for p is simnple and straightfor-

ward. On the contrary, when x and p are both unknown then the negative

binomial distribution is no longer a ember of the exponential family and
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there are some unforeseen problems regarding the estimation of «.

This distribution arise often 1n a Bayesian context. It is not therefore
surprising that some parameters are estimated by biased but minimum vari-
ance estimnators. In the exponential family of distributions there is always a
complete sufficient statistic so minimum variance unbiased estimators can be
identified. However, this is not the case for the NB distribution with & un-
known. The next theorem, proved in Willson, Folks and Young (1986), 1s just

the tip of the iceberg.

Theorem 7.1 The order statistic Y1y, Y(a).. . - ; Y(n) 18 minimal sufficient but

not complete for the negative binomial family of distributions, when n > 3.

This means that given an unbiased estimator of (p,«) the well known Rao-
Blackwell theor‘em for determining an unique unbiased estimator, for the same
parameters, caunot be applied. Therefore, there may exist several unbiased
estimators, all functions of the minimal sufficient statistic, for which we cannot
compare their variances. This situation is due to having hoth parameters of
the negative binomial distribution unknown and it gives a hint that there may
be some problems regarding the MLE estimators for the NB distribution.
Willson et al. (1986) found that an uniformly minimum variance unbiased
estimator of k cannot be obtained in the usual manner. An explanation was

offered by Wang (1996) and it is described in the following theorem:
Theorem 7.2 There is no unbiased estimator of £ for NB(p, k).

Proof : Let T(Y},...,Ys) be an estimator of & for NB(p, x). This estimator is
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unbiased if and only if
E(T(Y)|x,p) =, forall x >0and pe (0,1).

Hence, using the density function given in (7.1), it T is unbiased then

Z [ﬁ (yi+:—-11):l Pmc(l - p)z?=1y$T(y) = K

=1

where ¥ = {y1,....¥») and the summation is taken over all n-uples of positive

integers. Rearranging the terms it follows that

T(0,...,00p™ + 3 [f[ (y"*,f_‘f)] Pl — p) i YT (y) = &

y#0n Li=1

For k = 1 and p — 1 we get that 7'(0,...,0) = 1 and taking x # 1 and p — 1
we get that T(0,...,0) = &, which is obviously a contradiction.O

This simple but powerful result is not altogether surprising from a Bayesian
point of view. In general, for a univariate parameter 4, the Bayes estimator
T(Y) = E(A|Y) is biased no matter what prior distribution n{f) is used.
The following theorem summarises some known results and provides at the
same time a motivation for using Bayesian estimators rather than classical

frequentist estimators.

Theorem 7.3 Consider a statistical model with observed datay = (y1,...,yn)
and an univariate parameter 8. Then, if T(Y) = E(0]Y) is the Bayes estima-

tor,
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1. for any prior distribution n(f), if var(T(Y'}) > 0 then T(Y') is biased.

2. T(Y) is an admissible estimator of § relative to squared error loss

MSEy = E((T(Y) - 0)*]0)

3. If the risk of T(Y') is finite, that is E(MSEs) < oo, then
E(MSEHT)) < E{MSEH(U))

Jor any other estimator U(Y) and the equality is obtained if and only if

T(Y) = U(Y) almest everywhere.

The fact that there is no unbiased estirnator for the parameter « of the negative
binomial distribution NB sugpgests that, in this case, estimators with good
properties are very likely to come from a Bayesian approach.

The negative of the corresponding log-likelihood function is, up to a con-

stant factor,

n n Y-l
flk,p) = (—Zyi) log(1 —p) —nrlogp— ) > log(r + J)

i=1 i=1 ;=0

where the last sum has a zero term contribution when y; = 0 and this will
be true for all the subsequent calculations. The trivial case when the sample

contains only zeros, that is y; = 0 for all = = 1,2,...,n, is not of interest in
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this thesis and it seerns hard to imagine an application where this sample is
meaningful. Therefore, the assumption that at least one element of the sample
is different than zero, is natural and such a sample will be called non-trivial.

The likelihood equations are

dfi(x,p) I & nK
—_ = L = - i — — = 7.2
O41(5.7) R
—— " = —nlogp— 7.3
Bx & Zl JZ% (n 15 (7.8)
From likelihood equation (7.2) the MLE of pis p = 5., wherem = % " Y

Replacing p in (7.3) the following likelihood equation is obtained

] o wTl
log( 1 + -~ 3

=1 j=0

- H (7.4)

It can be easily seen that there are no closed form solutions of this equation.
If §% = %Zi(y,- — m)?, Anscombe (1950) conjectured that there is only one
positive solution & when 5% > m and none otherwise. Johnson and Kotz
(1969) proved that there is at least one positive solution & when S* > m. Ross
and Preece (1985) described how to fit the NB for real data in the computer
program MLP. It is not known if the MLE of & is unique and it seems that it
has not been proved that there is no solution when S% < m. Aragon, Eberly
and Eberly (1992) claimed to have proved the existence and uniqueness of
the maximum likelihood estimator for the two-parameter negati\;e binomial

distribution but Wang (1996} showed that there is a mistake in their proof
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and moreover, he could not correct it.

The NB distribution is frequently used for fitting biological data and the
related statistical literature has grown considerably over the years. However
precise estimation of & has been elusive and other methods of estimation were
proposed and compared (Willson, Folks and Young, 1984; Willson et al., 1986)
and simulation and graphic tools like contours and 3-dimensional plots of the
log-hikelihood function provided to show that the possibilities about MLE of
x are not encouraging. The log-likelihood can be very flat instead of being
peaked and this means that the MLE of « could be sensitive to small changes
in sample values. A fully Bayesian approach may be more informative.

1t will be shown that there is at least a positive MLE of «, a different proof
being given in Willson et al. (1986), that there is no solution when §% < m,
and a sufficient condition will be identified when there 1s a unique solution %
of the MLE equations. A definite answer is not given, but this criterion can
be checked on computer for any set of data.

The profile function f(k} = fi(x, p(&}) is

n yi—l

f(&) = n[(k+m)log(s +m) - klogx —mlogm] — Z Z log(x + 3)

i=1 j=0
= n[xlog(k +m) — klog & + mlog(x + m) — mlogm]
n o pi—l

=5 log(x + 7).

=1 =0

The next step is to transform the parameter & by the one-to-one transforma-

tion (k) = x[log(x + m) — log«l, where 2 : (0,00) — (0,m). This is a
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strictly mionotone increasing concave function because

B'(s) = log{sx+m)—logx — " Tm >0
2
™m
d H — R
and §"(k) g ) <0

for any & > 0. Moareover limygf(k) = 0 and lims..o f(k) = m. The
transformation 3 is one-to-one and instead of studying whether the profile
log-likelihood function f = f(x) has a positive root, f can be studied as a

function of 3. To prepare the grounds a few preliminary resulis are proved

first.

Lema 7.1 For a non-triviel sample y = (y1,...,yn) from the NB(p, &) distri-

bution, the application f and parameter 3 introduced above, it is true that

df

g g5 = =
Proof: By the chain rule

¥ df lim df dx

~odE ~ ~odedf
_ df dg
~ Nodr! dx
o allog(ntm) —log ) - 8, T S
N log(x +m) — log k — 2

Denoting by 7 the number of non-zero y;, 2 = 1,...,n, and separating the
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terms in the double sum for which 7 = 0, it follows that

daf ~ nllog(k + m) —logk] — I — 30 SHot L

. 1=l £aj=1 x4 g
im = lim
N0 df N log(x + m) — log £ — P
mn T _ s y%-l 3
n 4 lim 222 & ic1 L ;H
s\0 log(ks +m) — log ks — i

and applying I'Hopital rule for the second term

. df I'Hopital . Tmnk+ g K+m T K(K’ + 7??.) i =1 ?‘ 1 (n+_7)'2
lirn — = n + lim
£N0 dﬁ sN0 —m?2 i
. 2 —n yi—1 1
TS (5 ) L GRAQDE = DY 7,
AN n\o —mik PN —m?2
= n 4+ lim ———— (k4 m)’
N0 —m?k
= —oo. O

Lema 7.2 Ifm and 5° = L ¥,(yi—m)? are the mean and the sample variance
of a non-trivial negative binomial sample y = (y1,...,yn), and f and B as

above, then it is true that

Proof : As before, using the chain rule followed by |'Hopital rule, we can

calculate
. df . df dp
"h—’n’}OEg B "11*00 dr’ ds

]"HOﬂ)i tal

o dif B
lim

oo dr? | di?
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-mn 1
= lim 2t + X X S =+1)2
R ;ﬁf :
— - w—-1l 1
_ e mn(k+m)+ &k +m)PEr, =0 Ty
A—CQ _m2
1 i [ma(s +m) — (s + i y‘z k+m)
= — i k+m)—(s+m)
e e =N CrYin
- —l—hm(n—l-m mn—zz E+m)
TR "R—oo priier (k+7)?
1 n wi—1 ( h 'I‘m))
= — lim(k +m —_—
m2 Koo L‘Zl JZO (k+7)?
_ L e Y e —m) £ )
m2 Reo 1=1 7=0 (K' + ])2
] n w1 '
= > 2. (27 —m)
i=1 j=
S )
= — —miy; — U
o 2wy
1 Tt n 1 1
= = (Z(y; ~m)*+ Y myi— > yi ~Zm?)
me\ix i=1 i=1 i=1
1
= 2(n52+mn—mn—mn)
m
= %(S2 - m).0

Therefore, because 3% is a continuous function and using the above lemmas it

is obvious that % = (0 has at least one positive solution when $? > m.

Theorem 7.4 For the negative binomial distribution NB(p,«), there is at
least one MLE of k. Moreover, the MLE is unique zf 4 s @ strict monotone

function. A sufficient condition to have a unique MLE is that Eé > 0.

Proof: If there are two roots @) and 5 of the equation % = 0 then, because

é’% 15 differentiable, there nwst be at least one solution 8* of the equation
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—B{- = 0, where §* is between §; and f,. It is easy to see that

df df
g dﬂ (dﬁ

The condition j%{ > 0, which will prove that there is unique MLE of &, means

that

RN
de?  dx dk?  dk

which is equivalent to

m
log(x +m) —log x — ﬁ:—%-m] >

(s Y ]

__—5;(:; - m)2 [n(log(n: + m — log fc ; FZO j}
m’n + k(& + m) [(n+m)10g(1+ ]iio K_E_J)z -
—mnrlog(l -+ T: zj: i:: ) >0 (7.5)

[t seems that this complicated formula cannot be further simplified or

proved. Therefore, a definitive answer is not known whether the MLE of x
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is unique. However, for a given set of data, it can be checked on a computer
whether the left side of equation {7.3) is stricily positive. It cannot be strictly
negative because ol the results in Lemmas 1 and 2.

The worst situation that may occur is that there are many solutions ol the
MLE equations and they are widely spread. If the likelihood of & is not peaked
around the mode but it has a very flat top, a small change in the sample may
result in large shifts in the MLE solutions and therefore the inference results
may change dramatically. Therefore, it would be exiremely useful to be able
to investigate a large range ol priors, or in other words a large range of the
mixing distributions G for the compound Poisson-G distributions. Another
advantage of being able to do this is that the so called “gamma assumption”,
discussed in Chapter 2, Section 2.2.2, can be challenged and other types of
rixing distributions can be investigated.

A numerical procedure that is doing just that is described in the next

section.

7.3 Sensitivity analysis of priors in compound

Poisson modelling

In this section, a method is proposed [or investigating the sensitivity of prior
choice in compound Poisson modelling. After a theoretical derivation, a prac-

tical example involving a road accident data set is described.
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7.3.1 Theoretical derivation

Most of the time, accident count data shows overdispersion. This is quite
natural because of the nnobserved changes in environmental eonditions, social
changes and so on that take place all the time and that are not reflected in
the data at the covariate level. The most used model to account for this

phenomenon is the compound Poisson-gamma model. This model can be

described by

Yi | Ax ~ Pois(A), forallk=1,2,... N

Ay | @b~ gamma(e,b).

Assuming that @ and b are known quantities, it is relatively straightforward

to calculate the posterior means

(s +a)

BE(Ax | y) = b1

(7.6)

for all sites K =1.2,..., N and where y = (y1,-...yn) and A = (A,..., ).
The gamma distribution is used as a mixing distribution mainly because of
computational simplicity. This prior distribution will be considered in the
following as a reference prior and will be denoted by p,.;. The distribution of
another prior investigated for comparison will be denoted by pney. Following

a result due to Kass, Ticrney and Kadane (1989), if Agx ~ prew then, the
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posterior expectations of Ay can be approximated by the formula

o~

ey
()

Brew (A | ¥) 2 Erer(Ae | y) (7.7)

Q-
o)

where b{(A) = p—:Z‘”(—\)l, A maximizes log[M\ep(y | N)pres(A)] and A maximizes the

reference log-likelihood log[p(y | A)pres(A)].

Taking prew = logN(g,o?), that is the log normal distribution, it can be

easily calculated that

BAs,- . hw) = baNiEjz&_ﬁN H( ~% exp [)\kb— L(log e — )D (7.8)

The only thing left is to calculate A and A. Since

N

108 p(y | A)pres(X) o< D _[(yx + @ — 1) log Ay — Ak(b+1))]
k=1

the optimising solutions are

~ Yyta—1

Ay = forall k. =1,2,.... N 7.
k b-{—}_ N or a P2 1 (9)

under the requirement that e > 1. It can be easily remarked that, for a = 1
and sites with y, = 0 observed accidents, the above formula is not convenient
because it 1mplies that A is zero. Therefore, either a reference gamma prior
with the shape parameter a greater than 1 is used or estimation of posterior

means is done separately for sites with zero observed accidents.
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Similarly, because

N

log[Mp(y | A)pres(M] o D [(yita—1)log Ai—Ai(b+1)]+{yx+a) log Ag—Ae(b+1)
ik

it can be easily shown that

A o= %, for all ¢ # & (7.10)
T Yo+ a

A = 7.11
5 a1 (7.11)

and again @ > 1 is required in order to have convenient solutions, otherwise
sites with zero accidents must be treated separately.

Plugging the solutions from Equations (7.8), (7.9}, (7.10) and (7.11) into
formula (7.7), for the compound Poisson-log normal distribution the posterior

means are approximately

wta—1 {%_#log yita [log(uk+ﬂ)(yk+ﬂ—1)_2u]}

ypte—1 (b+132
b+1

Encw()‘k | y) = (?12)

7.3.2 Application to road accident data in Kent

In Chapter 8 different compound Poisson models, fully Bayesian specified,
are fitted to the total numher of accidents between 1984 and 1991, on 156
single-carriageway link sites in Kent. The posterior Bayes estimates for the
gamma priot paramcters are ¢ = 0.58 and b = 0.02 and for the log normal prior

parameters are u = 2.44 and ¢ = 2.45. There are some weaknesses about these
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Emgirical means versus posierier means

PdissarHog Nomal mede

prtbarior maans

Figure 7.1: Approzimate posterior means, calculated from gamma(0.58,0.02),
against the posterior means of Poisson-log normal model with u = 2.44 and
o? = 2.45; sites with zero observed accidents are missing

two priors that shonld be acknowledged. I'rom table 7.1 it can be seen that
the variances of these two priors are very large. Thus, the value of the means
does not play any role. The variance of the log normal prior is 8 times higher
than the variance of the gamma distribution but in real terms both can be
understood as infinite. Due to this non-informative or largely diffuse character
of the priors used it follows that the data will dorinate the priors so it is not
surprising Lo see a very close agreement between the posterior estimates and
the ohservations. The elicitation of prior distributions is subject of intensive
research and it is known to be difficult. The priors used in this section play
a rather illustrative purpose regarding the method proposed for studying the
sensitivity of the priors in compound Poisson modelling. The research done by
Doss and Narasimhan (1994) can be also useful for investigating. for Poisson-

regression modelling, the effects on results of a large range of priors.
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Table 7.1: Means and variances of two prior distributions

prior distribution  mean variance

gamma(0.58, 0.02) 29 1450

logN(2.44,2.45)  38.86 11604

In this section the above approximation machinery is used to calculate the
posterior means of accidents for all 156 sites, with an unknown log normal
distribution as the new prior and gamma(0.58,0.02) as the reference distrib-
ution. Since the shape parameter of the Gamma prior is ¢ = 0.58 < 1 sites
with zero accidents do not have a solution. For comparison a parallel calcula-
tion i1s made, doubling the value of a to 1.172. [n this second situation, with
gamnma(1.17,0.02), approximate solutions are possible for all sites.

Emgirical means versus postedor means

Pdsscrog Nomnal mode

] [ m

Fosteior mems

Figure 7.2: Approzimate posterior means, calculated from gamma(1.17,0.02),
against the posterior means of Poisson-log normal model with p = 2.44 and
% = 2.45; all sites represented

Both sets of posterior means can then be compared with the posterior
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means under a fully Bayesian Poisson-log normal model, with the estimated
posterior parameters ;4 = 2.44 and ¢ = 2.45. The comparison is made by
plotting the approximated means, as calculated from Equation (7.12), against
the posterior means given by the fully Bayesian Poisson-log normal model
intvestigated later in Chapter 8. The plots are in Figures 7.1 and 7.2. The
fit seems to be very good, so the approximation method advocated in the
previous section can provide reliable and easy calculations.

This method can be used as a tool to investigatc the use of different pri-
ors, like the log normal already investigated here, or the inverse Gaussian, or
other more complicated distributions which are not implemented in standard

packages and whose usefulness has not been yet confirrned.

7.4 Summary

Great care should be taken in applying even the most known estimation meth-
ods relative to the two-parameter negative binomial distribution. The MLE
equations are non-linear and analytical solutions are not tra.cta,ble. With this
excuse, the majority of applied studies using negative binomial fitting for road
accident data employes the method of moments for estimation. This circum-
vent the estimation problems for the parameter « and the statistical inference
is obtained relative to a single estimate.

Another proof of some general inference results for the NB distribution

has been given in this chapter. A sufficient condition with the uniqueness
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of MLE estimators for NB(p, &), that can be verified for each set of data,
has been proposed. From the applied point of view, after finding by some
numerical procedures the MLe of p and &, the condition given by equation (7.5)
gives a straighforward answer to the qnestion whether there could be multiple
solutions to the likelihood equations. If there is a unique solution then the
conclusions can be bhased on this set of estimates; otherwise a more in depth
analysis 1s required.

Compound Poisson models are often proposed for modelling count data in
general and accident data in particular. The Poisson-gamma model is one of
the well-known instances. The choice of the prior distribution, or the com-
pound distribntion, is a relative matter and although the choice of gamma
distribution is motivated by the conjugacy with Poisson distribution, other
distribntions having a positive support may give a better fit to some sets of
data. A nomerical procedure for studying the sensitivity of prior choice has
been developed and applied for a set of accident counts. The advantage of
this procedure is that avoids complicated calculations and a wide range of

distributions can be investigated easily.



Chapter 8

Bayesian models for accident

counts

8.1 Introduction

Statistical science was developed in the 19** and 20" centuries by the fonnders
such as Francis Galton, Karl Pearson, Sir Ronald.A. Fisher, Jerzy Neyman
and Egon Pearson. Although at the beginning there was no clear distinc-
tion between the frequentist approach and the Bayesian approach, the former
was preferred in most of the 20th century because of the mathematical de-
velopments supporting the methodologies defining the frequentist school of
thought. Bayesian methods experienced a revolution in the last decade due
to the development of Markov Chain Monte Carlo methods and are getting
more and more enthusiasts attracted by the flexibility of this type of statistical

modelling. Paradoxically, the Bayesian approach is older, starting with the

179
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original 1763 paper by the Rev. Thomas Bayes. The controversy surrounding
the two approaches is not the subject of this thesis. One of the strongest
arguments against the use of Bayesian statistics was the lack of closed-form
mathematical results and what frequentist school called the lack of objectivity.
It 1s not the aim of this thesis to discuss the pros and cons of the Bayesian
methodology. We are more interested in the benefits of the Bayesian method-
ology for the applied work. Some of the problems analysed in this thesis, like
modelling multiple count response variables, seem to have a solution only in a
fully Bayesian framework. There is no free lunch, of course, and the choice of
prior distributions can be seen as a lack of objectivity. However, in this thesis
the majority of priors were largely spread, a non-informative approach being
used for the empirical work. Mathematical solutions could be developed only
for a limited range of probability distributions, such as the normal distribu-
tion. Multivariate problems in a Bayesian framework lead sooner or later to
the calculation of multi-dimensional integrals of very high order. For a while,
the inability to calculate such integrals hampered the development of these
methods. The computational problems related to hierarchical models concern
multi-dimensional integrals of order higher than 20, so a more sophisticated
approach is needed.

Helped by the advances in computer science, this major difficulty has been
overcome using numerical methods and simulation. For applied statisticians,
the real breakthrough was the paper by Geman and Geman (1984). Since

then, a new class of methods has emerged, generally called Markov Chain
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Monte Carlo methods (MCMC), which are designed to solve specific applied
Bayesian problems. For general introductions to Bayesian data analysis and
MCMC algorithms see Gelman, Carlin, Stern and Rubin (1995) or Carlin and
Louis (1996).

Bayesian methods have been used for statistical analysis of road accident
data in the last two decades. The approach was empirical, either nonparamet-
ric, making use of Robbins’ formula as described in Chapter 2 (Robbins, 1955)
or parametric, estimating the parameters from the marginal likelihood of those
parameters (Morris, [983; Maritz and Lwin, 198%; Carlin and Louis, 1996).
However, in this part of the thesis a [ully Bayesian approach i1s taken and the
application of MCMC methods seems to be the only computational solution
available. Generalized linear models with random effects are developed lor
road accident frequencies. The models are hierarchically specified in several
stages, assuming that the parameters of probability distributions are random
variables with some other probability distributions, up to the last level of
hierarchy where all parameters are known. These models can become quite
complicated and the level of complexity is substantially increased when mul-
tiple response models are considered. The estimalion process is in this case
very diflicult and computational problems are in abundance. MCMC meth-
ods, Gibbs sampling in particular, offer a good solution for computational
problems and ’(Lhey will be applied in Chapter 9. A good starting peint on
modelling based on a Gibbs sampling approach can be found in Zeger and

Karim (1991). Varions other hierarchical Bayesian examples are described in
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Gilks, Richardson and Spiegelhalter (1996).

This chapter focuses on models of counts with particular emphasis on prac-
tical applications regarding accident frequencies on road networks. There are
two problems investigated. Firstly, fully Bayesian models with univariate re-
sponse are investigated. These are models based on compound Poisson dis-
tributions and they are discussed in terms of theoretical improvements and
interpretability. The Markov Chain Monte Carlo methodology is explained
using a Poisson-gamma model and a Poisson-log normal model. A Poisson-
double exponential model is used as an unusual cornponnd Poisson model and
all three models are compared on a set of data by the Deviance lnformation
Criterion (Spiegelhalter, Best and Carlin, 1998).

Secondly, the hierarchical Bayesian modelling process is explained in the
context of developing two classes of models for multiple response counts:
hierarchical Poisson-regression models with random effects and multivariate
Poisson-log normal models. Both classes are multiple response models. They
are very complex and MCMC methods, employing Gibbs sampling and the
Metropolis-Hastings algorithm overcome computational difficulties. The De-
viance Information Complexity criterion (DIC) is used in Chapter 9 to compare

the fit of 11 models and to choose a small set of good fitting models.
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8.2 TUnivariate Hierarchical Models of Counts

Suppose that for N uuits (sites) accident counts Yi, with & = 1,2,..., N

are observed over a fixed time period. The modelling process starts with the

assumption that

Y, % Pois(\s) forall k=1,2,..., M.

This model is not very useful because it is saturated. To improve it, the
unobserved parameters A are modelled as random quantities from the same
distribution G,

i
A WG

The next step is to make some specific distributional assumptions about the

prior distribution .

8.2.1 Choice of the form of prior

Historically, the choice of a suitable parametric class was often governed by
mathematical convenieuce because, until software was widely available, statis-
ticians were restricted to closed aunalytical calculation. In a Bayesian context,
it was helpful to consider the density ¢ of &G to be a coujugate distribution of

the likelihood distribution.

Therefore, when Y; & Pois(A.), the gamma distribution with probahility
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distribution function

9‘(35 | a,ﬁ) = gamma(:c|a,,3) = _ﬂ_waq —Br

I'(«)

with @ > 0, 8 > 0, was very convenient. This yields the marginal distribution

of the observed counts as the negative binomial distribution

_ Daty) I N B8 \°
o o) = 222 (1+ ﬂ) (1+ ﬁ) (8.1)

with ¥ = 0,1,2, ... as already seen in equation (2.9} in Chapter 2. All that

needs to be done is to estimate somehow the hyper-parameters o and 5.

This procedure has become standard in modelling count frequencies in
the social sciences. Using a negative binomial model seems more appropriate
than nsing a simple Poisson model. The negative binomial distribution is here
the result of compounding the Poisson distribution with a gamma distribution.
Nevertheless, the parametric distribution (G can be any other distribution with
non-negative support.

A log normal distribution, for instance, is a possible alternative,

1 1
o) = logN(zl ") = —=—exp (~5—(logz — u)")

where p € R,0% > 0,z > 0.
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But now the marginal distribution of ¥ cannot be calculated in closed form

plylis0®) = [ Pois(y|A)logN(A|w, o)A (8.2)

Ae™h ] 1

x f AT exp (—)\ - 5113 [(log A)Z])d)\

where “” means equality up to a normalizing factor, a convention followed
everywhere in this thesis. The last integral cannot be expressed in closed form.
It 1s possible to estimate the parameters of this compound distribution either
by moment estimators or maximum likelihood estimators (Shaban, 1988). The
MLE estimates require numerical integration techniques. Not very much is
known about the properties of MLE estimators for the Poisson-log normal
distribution, whether they are unique or not or under what conditions. The
computational problems are further complicated when regression terms are

involved and where multiple response variables are investigated.

8.2.2 A fully Bayesian approach

However, Markov Chain Monte Carlo methods are designed specifically for
situations like this. Under a fully Bayesian framework, some further prior
distributions for the hyper-parameters i and o2 have to be set up. An initial
approach can be based on setting non-informative priors for the parameters,
or in other words, not very much is known a priori about these parameters.

Non-informative priors are usually very flat, close in a sense to an uniform
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distribution over a large range of values. For computational simplicity it is

common to assume that

pae) N(p]0,0.001) (8.3)

p(r) = gamma(r]0.001,0.001)

where r = 1/52.

The Poisson-log normal model is described by

Yilde % Pois(A), forallk=1,2,...,N (8.4)
Al % logN(p,7)
g~ N(0,0.001)

7 ~ gamma(0.001,0.001)

The paranieterisation of the normal distribution and of the log normal dis-
tribution is not in classical form, the second parameter is the inverse of the
variance, also called precision. Therefore a very small precision means a very
large variance. The actual value of the mean is not important when the vari-
ance is so large.

Bayes theorem provides the posterior distribution calculated as

(A, Tly) o ply|d, g T)p(A, g2, 7). (8.5)

where A and y represent vectors.
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lambda(k]

for{k IN 1 : N}

Figure 8.1: Directed graphical model for a mized Poisson-log normal model

The conditional independencies between the quantities involved, observed
data and unobserved parameters are very important. They are used for simpli-
fying the mathematical calculations and to represent mathematically scientific
assumptions made beforc the actual statistical modelling exercise. The best
way to communicate these relationships is via a directed graphical model. For
exafnple the Poisson-log normal model is based on the graphical model in Fig-
ure 8.1. This graph 1s similar to a directed acyclic graph. In order to be able to
define a joint distribution over this type of graph, the graph must be acyclic,
that is not containing directed cycles. By ana,logy with chain graphs described
i Chapter 3, a directed local Murkov property can be defined, stating that any
vertex v is independent of all vertices that are not descendants of v, given its
parents pafv] (Frydenberg, 1990). No positivity requirement is necessary to

prove that this property is equivalent to assuming that the joint distribution
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of all quantities V' factorizes as

p(V) = [] plv | palv]).

veV

It follows that, in order to specify the joint distribution p(V), only the parent-
child distributions need to be provided. In WinBUGS, there are two types
of arrows, a normal type corresponding to stochastic relationships and hol-
low type, corresponding to deterministic functions, that is logical nodes. For
reading the conditional independencies only the first type should be consid-
ered so the graphical model shonld be collapsed over all logical variables before
attempting to read any conditional independence between the stochastic vari-
ables.

The conditional independencies are easy to read directly on the graph

Yi AL 7| Ag, forall k=1,2,..., N

Yi I p|Ag, forall k=1,2,..., V.

The equation (8.5) can then be simplified as

p(A, . 7ly) o plyA)p( A, )Pk, 7) (8.6)

oo py|A)p(Alg, )p(p)p(T)
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This means that

N N

plA ., 7ly) o H Pois(yx|Ax) H logN{Aglu, 7) (8.7)
k=1 k=1

x N(1|0,0.001)gamma(7|0.001, 0.001)

N AVE o= N

< I ke' H%exp(_%(l_og)\k—#)g)

k=1 Yk k=1

_0.001 3 1 _
o= 23t u? 0.001-1,-0.0017

_ T% Lﬁ\’ Azk_le_:\ke_g(log.\k—g)z} %
k=1
XE-"-—‘;‘E“? 70-001-1 —0.0017
The joint posterior distribution of all parameters of interest cannot be sim-
plified further. Markov Chain Monte Carlo methods overcomes the lack of
closed form analytical methods by a simple and brilliant icdea. Denoting by ¢
all parameters of interest, taking values in a sample space ®, a Markov chain
is simulated with the space state ® and whose equilibrium distribution is ex-
actly p(ely), the target distribution. So when a sample from p(ip|y) cannot
be simulated directly it might be possible to simulate a Markov chain with
the properties just described and after a sufficient number of iterations, having
somne confidence that it has become stationary, any sample from the stationary
part of the Markov chain is a (dependent) sample from p(¢|y). Methods for
simulating a Markov chain with all these properties have been identified and
depend on the type of mode!l investigated. The most famous method of sam-
pling 1s G'ibbs sampling. This algorithm starts by calculating all conditional

distributions of separate parameters, or block of parameters where appropri-
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ate, conditioning on everything else. For the above model it follows easily

that
N k=N 2 0.001 2
Full -1 - -z - ALY -1 -
P(/\: W, T | y) o 2 ] | Ayk Ak 2(]03/\.;c ,u} e 7 K TD.OOI 1e 0.0011'.
k=1

The conditional densities of separate paranieters (possibly vectors) are calcu-
lated by retaining only those terrs in the above product that are necessary.
For example to calculate the conditional density p(Ay | v, ¢, 7) only the factors
containing A, are refained, everything else being considered as a part of the

normalizing constant, so for every site k

POlyspry7) oc AR wmf{(lo )] (8.8)
0.001 2_ N1 2 N .
puly D7) o e A=A T 8.9)
k=1
{7y, M) T$+o.00|fle—r[0.001+§Z:;l(log,\k—u)?] (3.10)

N 1 X
X gamma, (T | %—+ 0.001,0.001 + 3 Z(log Ap — ,u)g)

k=1

Starting from some arbitrary points (A®, (), 7(®)) the Gibbs sampler goes

through the following scheme

1. Draw MY ~ p(Okly, g, 7@, for all k= 1,2,..., N.

2. Draw g ~ p(ply, A, ()
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3. Il)fa.“’ T(]) ~ p('}"y )\(1]#(1])

If (AW, 18 78 | y is the Markov chain resulting from the Gibbs sampler
described above then it can be proved under appropriate regularity conditions
that (M8 8 7|y LN (A, 7|y ~ p(A g, 7ly) as t — oo. For a proof and
a general description of the conditions under which this theorem is true see
Besag (1974), Geman and Geman (1984), Roberts and Smith (1993).

The hierarchical specification of the Poisson-log normal model, equation (8.4),

can be followed for the Poisson-gamma model in a similar manner

Vel A 2 Pois(Ag) (8.11)
M la, % gamma(e, B)
a ~ logN(0,0.0001)

B ~ gamma(0.001,0.001)

The directed graphical model describing the conditional independencies is
given in Figure 8.2. This is a full Bayesian model as opposed to an empirical
Bayesian model which, instead of setting hyper-priors for the parameters o and
B, estimates them from the data. As above, in order to be able to simulate
from the joint posterior density p{}, , Bly), the conditional densities a,ré first

calculated. From the model assumptions it follows that

p(h e, B ly) o« ply| Mp(M| e, 8)pla)p(8)
N

o | [] Pois(ys | Ax)gamma(Ag | a, §)| logN(e | 0, 0.0001)
k=1
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<
s
<

for{k IN 1 : N}

Iigure 8.2: Directed graphical model for a mized Poisson-gamma model

xgamma( 4 | 0.001,0.001)

N a 1
_ o __0.0001 2 o
x Il /\ikc Ak /\: 16 BAg —e 7 (log ) BO.UUI le 0.001,6‘
k=1

B
I'(e) o

The conditional densities are calculated now by retaining only the relevant

tactors from the above product. Therefore

p(Mily, 0, ) o AgmkTemle M40 (8.12)

o gammalys + o, +1)

g et -1 { 0.0001 ,
plaly. A, B) « W([I—k]\;]_)‘k) a texp (— (log ) )(8.13)
pBly A @) o Bt e (—ﬁ(t/\k%—0.00l)) (8.14)

k=1

N
o gamma(Na + 0.001, Z Ax + 0.001)
k=1

Compound Poisson models are very useful but cannot provide a good solu-

tion for situations when there are several types of counts, possibly correlated.
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In Section 8.3 these models are expanded further to allow multiple response
counts to be analysed jointly. The computational problems will be more de-
manding but the same MCMC techniques will be used in a similar manner to
solve these problems.

Let see now how the inferential process is executed in practice.

8.2.3 Monitoring the convergence and inference

Markov Chain Monte Carlo methods can be prone to serious errors when the
convergence is very slow. If the simulated Markov chain has not converged to
the stationary distribution, the inference can be false. Many papers included
in Gilks et al. (1996) emphasize how dangerous MCMC methods can be when
the convergence is not monitored. The simulated Markov chain should “forget”
its starting point after a sufficient number of iterations and the starting point
should not influence the inference process.

Based on this simple idea, the following criterion for monitoring conver-
gence has been proposed (Gelman et al., 1995, Section 11.4). Several parallel
sequences started from different initial points are sinulated. H convergence is
attained then the empirical distribution of each sequence is almost identical to
the empirical distribution of the sequence obtained by mixing all the sequences
together. convergence is not reached, the variations within each sequence
are smaller than the variation within the mixed sequence. By analogy with
the analysis of variance, for each parameter of interest, the within-sequence

varlance W and the between-sequence variance B are calculated, and then
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used to estimate the variance of the parameter of interest in the stationary
distribution.

Suppose there ave m parallel sequences (simulated Markov chains) each
with n values, and denote the parameter of interest by ¢. Denote by @, the

sample mean and by 5?7 the sample variance of the ith sequence. If ¢ =

1 m

- Liey @; then the between-sequence variance is

and the within-sequence variance is

_ 1l
W_mgsi.

Under the assumption of stationarity of the simulated Markov chain,

n—1

: 1
\T&ﬁ(qﬁ) = W + EB

n

is an unbiased estimate of the variance of ¢. If the chain has not yet converged
then it overestimates the variance; then each sequence has less variability than
the mixed sequence, so W underestimates the variance of ¢. When stationarity

is reached both var(d) and W estimate var(¢). Gelman et al. (1995) proposed

- [ ,
\/_E = —W— (810)

known as the Gelman-Rubin statistic, as a tool to monitor convergence. When

using
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the simulated Markov chain converges to the stationary distribution then the
\[}% decreases to 1. In practice, a value of R less than 1.1 indicates convergence.

The program WinBUGS1.2 allows an easy simulation of several paral-
lel chains simultaneously so convergence can be also checked by looking at
the dynamic plots of the parameters monitored against iteration number.
The Gelman-Rubin convergence statistic as improved by Brooks and Gelman
(1998) is calculated in this program. It should be noted that no diagnostic
tool can be considered a “proof” of convergence of a MCMC algorithm be-
ca.L‘lse it is feasible to use only a finite sample of the chain. However, these
monitoring tools help avoiding cases where the mixing is slow and the con-
vergence is unconfirmed. Another recommended practical point (Carlin and
Louis, 1996; Gelman et al., 1995) is to simulate several chains starting from
dispersed initial points.

At this point, having a sample from the joint posterior distribution p(e|y),
any summary inferences (means, medians, quartiles, credible intervals, modes,

ranks, density estimation), or predictions of future observations, can be pro-

vided.

8.2.4 Residual examination

The particular choice of a model or of a list of models should be checked
by comparing the observed statistics with the expectations of these statis-
tics as given by the models. A simple way to check the fit of a model is to

consider the residuals ¥ — E(Y}) or even better, the standardised residuals
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(i1 — E(Y%))/+/var(Y%). Large residuals indicate observations that are unlikely
to be provided by the probabilistic model proposed. If ¥ ~ Pois(Ag) it fol-
lows that E{Yy) = var(¥y) = Az, Estimating the unobserved quantity A by
the posterior mean E(Ag | y), where y denctes all the data under study, the
standardised residual in this case is (y, — E(As | y))/\/m

Another equivalent way to look at the fit of the model is to plot the pre-
dicted values E(Ag | y) against the observed values y,. A good fit would have
the points evenly scattered around the line with a 45 degrees slope. This idea
will be exploited in Chapter 9 to compare the fit of twe hierarcbical Bayesian

models.

8.2.5 Deviance Information Criterion

Another method to check the fit of a model was proposed by Dempster (1974).
It 1s sirnilar to the use of the deviance measure in generalized linear modelling
(McCullagh and Nelcier, 1989) but, being in a Bayesian framework, it is the
posterior distribution of the log-likelihood of the ohserved data that is exam-

ined.
If the model is given by the data ¥ and parameters ¢ = (#,4), the joint

distribution can be generally factorised

ply. ) = plyl0)p(8le)p(3h).

T'he fit of the model is directly influenced by the parameters 8, because they



CHAPTER 8. BAYESIAN MODELS FOR ACCIDENT COUNTS 197

affect directly the observed data y. The models are compared using the pos-

tertor distribution of

D(8) = —2log p(y|#).

The quantity D(8) is called Bayesian deviance (Spiegelhalter, Best and Car-
lin, 1998). The posterior distribution of D{#) is calculated using p(f|y) o«

p(y|8)p(#) and the At of a model M is then measured by
D = Fy,[D] = [ D(6)p(6ly)do.

One aspect that should not be neglected, especially for hierarchical mod-
els, is the number of parameters used. Hierarchical models combined with
regression models provide a very good solution to fit sparse data. Typically,
hierarchical models have more parameters than data observations. However,
these models do not provide a perfect fit. This is because the parameters
are structured in several layers in a hierarchical structure and they are not
independent parameters like in the classical case. These models allow a better
description of the stochastic machinery that is assumed to generate the data.
The parameters are considered random variables. Thus, the parameters in
the second layer are used just to describe the probability distributions of the
parameters in the first layer.

Models with large number of parameters should be penalised in the same
way the Akaike information criterion (Akaike, 1973) does for regression or

log-linear models. The effective number of parameters pp is a measure of
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complexity of the model and is defined by

which means the posterior expectation of the Bayesian deviance minus the
Bayesian deviance calculated by replacing @ with their posterior expectations
[2

The Deviance Information Criterion puts these two measures together

DIC=D +pp

and this new measure z;llows the comparison of arbitrarily complex models.
DIC is a measure of fit together with a measure of the effective number of
parameters, based on the posterior distribution of the log-likelihood under
each model. It was shown, Spiegelhalter, Best and Carlin (1998), that this
criterion is a natural generalisation of Akaike's Inlormation Criterion.

Another advantage of using this tool is that D and pp are easy to compute
from a MCMC output analysis. Both the Bayesian deviance D(4) and para-
meters § are monitored during an MCMC and D equals the sample mean of
the simulated values ol D(#), while pp is D minus D(8#) calculated using the
sample means 8. The models with smaller DIC are preferred.

For a Poisson model, ¥, ~ Pois(A;), where the unknown parameters are
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the unobserved means Ay, the scaled deviance is

Ds(8) =25 [yk log 2 — (34 — %) (8.16)
k

where log Ay = 0;. The Baycsian deviance is obtained by retaining only those
terms that depend on @. The other terms depending only on data do not affect
the comparison of different models so they can be left out.

This criterion can be easily calculated in a MCMC analysis, no further
calculations being required outside the MCMC output. DIC will be used for
model comparison in Section 8.2.7 of this Chapter and in Chapter 9. It should
be noted that DIC is not recommended to select a unique model (Spiegelhalter,

Best and Carlin, 1998). A unique model should be selected using background

knowledge.

8.2.6 Global goodness-of-fit tests based on Bayesian p-

values

A compromise between Bayesian and frequentist model checking procedure
was introduced by Gelman et al. (1995) and it is described in this section.
The discrepancy between the model under scrutiny and the data is measnred
by a test quantity 7 (y.#), which is a scalar summary of parameters, jointly
denoted by 9, and data, joinily denoted by y. In classical statistics, € is
considered known or estimated, and the fit of the data can be measured by

the tail-area probability, called the P-value. Then the test statistic depends
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only on the observed data y and the P-value is calculated as

Pr(T (™"} 2 T(y) | 8)

where y™P is a replicated set of data, a hypothetical future value of y if the
conditions that produced data y are unchanged. Therefore, the probability in
calculating the P-value is taken over the distribution of y™P with 6 known.
An estiniate of € is used in general to calculate this probability.

In a Bayesian {ramework, point estimates of the parameters 8 are not
needed. Instead, the fit of the model is measured by comparing the observed
data y with the posterior predictive distribution. The test quantity 7 depends
on the data y and the parameters & as well, and it is calculated over a sample
fromn the posterior distribution of §. The P-value is called Bayesian P-value
and is defined as the probability that the replicated data y™P has a test 7

more extreme than the test calculated for the observed data y

pr=Pr(T(y™,6) 2 T(y,0) | y). (8.17)

A subtle difference is that a Bayesian P-value is conditioned over the data y
and not over the parameters 8.

For applications, for each value §;, of a sample of size ¢ from p(6 | y),
a value for y;* is simulated from the posterior predictive distribution. The
Bayesian P-value is easily calculated as the proportion of these ¢ draws for

which the T(y;®,0;) > T(y.9,), where j = 1,2,...9. A set of data with a
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very small or very large Bayesian P-value provides evidence against the model.
However, this does not mean that a single good value gualifies a model as being
very good. Other aspects of the models investigated, such as those discussed
in the previous two sections, may help in making better decisions regarding
model selection and criticism.

A discrepancy measure that will be used for hicrarchical muitiple response

models in Chapter 9 is the x? discrepancy

E(Yx | 0))*

(ys —
zk: var(Y; | 8) (8.18)

where the sum 1s taken over all ohservations.

8.2.7 A comparison between different compound Pois-

son models

For a given set of data, different distributional specifications for G may lead to
different results. Here a gamma distribution is used because analytical calcu-
lations are possible in this case. This does not mean that other distributions,
such as log normal or even the double exponential cannot be used. MCMC
methods can easily accommodate complicated calculations required by these
two distributions.

Consider road accident data, described in greater detail later at a disag-
gregated level in Chapter 9, concerning accidents between 1984 and 1991 on

156 single-carriageway link sites in Kent. Without considering any covariate
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information, the following three predictive models are compared

M;: Poisson-gamma model

Y| A ~
A la b~
W o~
b~

POiS()\k)
gamma(a, b)

Exp(1)

gamma(0.1,1)

where Exp(-) is the exponential distribution. This model is not exactly the

same as the Poisson-gamma model given by equation (8.11). It was chosen

because it can be shown (George et al., 1993) that this leads to a posterior

for & which is a gamma distribution but leads to a non-standard posterior for

a which requires the use of Gibbs sampling;

My: Poisson-log normal model

}/}c | Ak ~ POiS(z\k)

Ak | T lOgN(pﬂ T)

u ~ N(0,0.0001)

T ~ gamma(0.001,0.001)

Mj: Poisson-log double exponential model

Yi| A~ Dois()
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log(Ae) | v.7 ~ DE(v,7)
v~ N(0,0.0001)

7 ~ gamma(0.001,0.001)
where the double exponential probability density function is
flz |v,7)= %e—flx_"l.

The posterior summary for the quantities of interest of each model is given n
Table 8.1. The inference is based on a sample of 10000 values after a burn-in
period of 20000 iterations. The so called burn-in period is the part of the
Marckov chain simulated before the user is confident that the convergence has
been reached. This part of the chain is discarded and a sample is selected
from the next part of the chain. The actual modelling in WinBUGS took less
than 100 seconds for 10000 iterations on a Pentium I personal computer with
100 MHz. The three models can be compared in terms of fit to the data by
the Deviance Information Criterion, (D1C).

Before looking at the resnlts one might expect the Poisson-gamma and
Poisson-log normal models to be quite close in terms of fit because they have
similar shapes and they have been used in the applied statistical literature
as compound distribntions for the Poisson distribution. Nothing is known
from1 other studies about the Poisson-log double exponential, so we would not

be surprised if the third model did not fit the Kent data well. The quantities
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Table 8.1: Posterior caleulations for oll 3 models compared

Model M,

node mean sd  2.5% median 97.5%
@ 0.58 0.07 046 0.58 0.72
b 0.02 0.003 Q.02 0.02 0.03

deviance 151.9 17.57 119.7 151.4 188.6

Madel M,

node mean sd 2.5% median 97.5%
p 544 014 217 244 271
r 041 006 03 040 054

deviance 173.2 185 139.1 172.7 2117

Model M,

node mean sd 2.5% median 97.5%
v 276 012 2.3 2.76 3
T 0.73 0.70 0.62 0.75 0.90

deviance  159.9 18.04 126.7 158.9  197.3

required for calculating DIC are described in Table 8.2 and it can be easily seen
that, for this set of data, the gamma distribution is the most appropriate out
of the three compared. It ris also surprising that the log double exponential
distribution gives better results, for this set of data, than the log normal
distribution. One explanation for that might be the shape of the distribution.
Having some sites with zero counts, the histogram of the data suggests that
a gamma distribution with a shape parameter a € (0,1) is appropriate. This
is the case indeed and the log double exponential distribution is closer in

resambling a gamma distribution of this shape than a log normal distribution.
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Table 8.2: DIC calculations for all 3 models compared

Model D D@  pp DIC
M, 152 11.68 140.32 202.32

M, 173.2 22.96 150.24 323.44

M; 159.9 16.89 143.01 30291

Another way to measure the adequacy of the models is to compare the
Pearson residuals calculated as % for each site £ = 1,2,...,156. The
box plots of Pearson residuals for the three models are presented in Figure 8.3.
All three models fit the data very well. However, there are a few points worth
mentioning. The Poisson-gamma model tends to give higher estimates than
the observed numbers of accidents. The Poisson-log normal model would be
the best model if the extreme residuals about -1 were ignored. The sites giving
these residuals close to -1 are sites with zero accidents observed. The Poisson-
log normal model predicts a mean value around 1 for those sites whereas
the Poisson-gamma model predicts values around 0.5, closer to the observed
data. Therefore, taking out the sites with zero accidents, it is likely that
the Poisson-log normal model outperforms the Poisson-gamma model. The
Poisson-log double exponential is a good compromise between the previous
two, and according to the DIC criterion better than the Poisson-log normal
model, because its predictions for sites with zero accidents are better.

In conclusion, for any Bayesian model, the MCMC modelling process will

go through the following stages:
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Figure 8. 83: Boz plots for the models compared; RESPSGA denotes residuals
for Poisson-gamma model, RESPSDE denotes residuals for Poisson-log double
exponential model and RESPSLN denotes residuals for Poisson-log normal
model

1. Start sirnulating either a single long chain or several parallel chains that
will be considered in the end as a mixed chain; it is a good idea to start

from some initial values that are not very far from the region in which

likelihood is positive.

2. Monitor the convergence of the chain using the Gelman-Rubin conver-
gence tool and the dynamic plots of the values for some of the parameters

of interest, and make sure that the chain has become stable.

3. Using the Markov chain output, calculate the Bayesian P-values for one
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or more appropriate test criterta and make sure that the medel is not

rejected by the data, that is the Bayesian P-values are not too small.

4. If everything is fine, any inferential statistics can be calculated now on

the same MCMC output.

These four steps are used in MCMC analyses for all models investigated in

Chapter 9.

8.3 Multivariate Hierarchical Models of Counts

Techniques for modelling multiple counts jointly have not been extensively
developed in the statistical literature, mainly becanse of the lack of a multi-
variate discrete distribution that could support complex correlation structures.
Bayesian and EB rescarch related to multiple response variables has concen-
trated on longitudinal studies for clinical trials or biostatistical data (Breslow
and Clayton, 1993; Zeger and Karim, 1991; Gilks et al., 1996) and (Carlin
and Louis, 1996) or educational studies (Goldstein, 1979). In this section,
multiple response models for counts are developed. Several classes of models
based on mixing the Poisson distribution with other known distributions are
proposed. Some real-world applications invelving accident frequencies on the
road network are described in detail in Chapter 9. All the models are specified

hierarchically and are fully Bayesian.
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8.3.1 Hierarchical Poisson-regression models with ran-

dom effects

Suppose that there are N units of the analysis { for example the sites of a
road network). At each unit, M different counts ¥1,Ys,...,¥ar are recorded
(for example the numbers of accidents of different levels of severity in a finite
time period). Typically, the counts are modelled with a Poisson likelihood.
It is possible that the counts are correlated so multiple response models are
desirable. Depending on the information available, the statistical analysis can
be based entirely on the observed counts. Alternatively, covariate informa-
tion (for example environmental characteristics) can be linked to the observed

counts through some regression equations.

A framework mean-variance model

The proposed models offer solutions to, at least, two of the well-known prob-
lems in modelling counts: overdispersion, and possible correlation between the
M counts for each unit. The following mean-variance model can be used as a
framework. A similar niodel has been proposed (Loveday and Jarrett, 1992)
at an univariate level for spatially correlated accident frequencies.

For all k € {1,2,...,N}, 1€ {L,2,..., M} let Yi; be the count of type i

at unit k. Then the assumptions ol the model are

E(Yk, | /\ki) = VaI‘(Yki | /\ki) = )\ki (8[9)

and X = lﬂkiexp(){.{:iﬁi)‘
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Here Xi; denotes a vector of explanatory variables, each of which can be fixed
or random; f; denotes the vector of the regression coeflicients, and uy; is a
random quantity independent of the Xy;. In addition, the random variables

pri (for £ =1,2,...,N) are independently and identically distributed, with

E(pw) =1, cov(pw, pas) = 035

forall k € {1,2,...,N}, ¢,7 € {1,2,..., M}. The mean of the random effects
tki can be always taken equal to 1. If it is not 1 from the beginning then
¢ = p/E(g) has mean 1 and the factor 1/E(x) can always be included in the
regression component. The following proposition illustrates the value of this

approach.

Proposition 8.1 For the mean-variance model described above
1. var(Yig | X) > E(Ye | X)
2. cov(Yei, Yiy | X) = exp (X{uf: + Xi;85)04

Proof : Because of the independence assumption over units the index &k can
be dropped to simplify the notation. Moreover, the results can be proved a
bit more generally assuming a general positive covariate structure ©y; instead
of exp(X};5;) and this will be used below again for simplicity. Using the

properties of coanditional expectation it follows immediately that

E(Yi10) = Eu(E(Yi|0,u) (8.20)

= Bu(:0s)
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Similarly,

var(Y; 1 ©) = E,

= B

(var(Y: | X, p)) + var, (BE(Y: | ©, 1))

E, (11:0:) + var,(p:0;)

Eu(p)0: + var,(u:)0;

= Oyl +0;0]

> 0,

Finally,

cov(Y;, Y; | ©) =

Since the ©; are positive

|corr( Yy, Yi; | ©))]

B, (cov(Y;,Y; | ©, ) +
+eov, (B(Y; | ©, 1), B(Y; | ©,4))
cov . (1:0;, 1;9;)

e;@_jO’,‘j.

0,;0;lo4;|

\/ 1+ 0501+ 0550 ]

©,0;

lpi;]
V) @+ )

210

(8.21)
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@g@j

|pis
" \/7(1 + cre}@e) (1 + Ujjl(‘);‘)
< pijly/©:0;

TP

where pi; = N is the correlation coefficient of the random effects p; and
i 1t can also be seen that sgn(cov(Yi:, Yi; | ©)) = sgn(oy;).

Taking a more specific parametric approach, the following hierarchical
models, combining random effects with log-linear regression, are suitable for

disentangling the complex structure of multivariate discrete data.

A Poisson-regression model with gamma random effects

This is a hierarchical Bayesian model combined with fixed explanatory vari-
ables X, that is specified in three stages. I'or all sites £ =1,2,..., ¥V and all

types of accident ¢ = 1,2, ..., M

Vi | A % Pois(Aw), (8.23)

log M\ii = 0 = log pws + X355,
d 1
isi | 2~ gamma(a;, o) = gamma {1; —] ,

B; " N(0,0.001), and

d
a; ~ gammala,b),

where a, b are known values. The shape and scale parameters of the gamma
distribution of gy, are chosen to be equal in order to ensure that the random

effects are distributed with mean equal to 1. The hyperprior for the regression
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coeflicients { 8x;) 1s non-informative, and typically a and & are chosen to make
the hyperprior for the gamma precision parateters («;) non-informative also.
The random effects (j1;) account for missing information, uncollected data
or unobserved changes in data over the observed period of time. There 1s no
correlation structure for gy so this model is a simplification of the general
mean-variance model.

The directed graphical model encapsulating the conditional independen-
cies of the above model is illustrated in Figure 8.4. This graphical model is
different from the graphical models investigated in the first part of the thesis
in connection with road accident characteristics, because some vertices corre-
spond to unobserved quantities. I'or example the vertex denoted on the graph
by lambdalk,i] does not correspond to an observed variable. It is just a variable
used for model specification. The regression part of the model is concentrated
into the variable denoted on the graph by theta[k,i]. It can be easily seen that,
given the values of lambdalk,i], the variable ylk,i] is conditionally independent
of all the other variables in the model. This i1s in agreement with the hierarchi-
cal specification of the model given in (8.24). A similar graph was illustrated
in the Section 8.2 with a reduced numnber of vertices also representing observ-
able and unobservable variables. The graph illustrated here is more complex.
The joint posterior distribution of all parameters g, f and @ can be calculated

a.8:

plas B | y) o ply | g, B) p(pe | @) pla) p(B)
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betali]

D
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for{kIN 1: N) l
]

Figure 8./ Directed graphical model for Poisson-regression model with gamma
random effects

for(iIN 1 : M)

N M N M
o< JI TIPois(ysi | #,8) T] T sammal(pes: | e, o)
k=1 i{=1 k=1 i=1
M M
x [ gamma(e; | a.b) T TIN(B;; | 0, 0.001)
i=1 i=1
N M P o5
Uki vk X B = pgie ki & -1 —&mn}
o< Mg eTm e e ' M € X
kl;ll H{ 1 (os)"*
sl a—1 «—bo; al _Q_S.cﬂﬁl‘_
x [[ erte™ [T [f e " (8.24)
i=1 i=1 j

It dimf denotes the number of regression coefficients used then there are
MN + M + dim 8 parameters. The rmodel is very complex and it is not
possible to simulate directly a sample from p(g,3,a | y). Again the Gibbs
sampler is a simple, feasible solution, at the cost of computational effort. The
conditional distributions required are

’ .
’s‘ki+0'i—1e—!l.k:'{a£+exkf'6' )

p(#‘ki | y:ﬁ7a) O My
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= gamma(j | yui + o, @ + e mB) (8.25)

aNcr'

; N =1
. . i . - fﬂnk.’b a—
plag |y, 4, B8) (Tl (kl;lluk:) e~ Ty mitt) ga=1 (g 96)

Noj+a—1 i
Q; —ai{= S logukit Y r, paitb) -
X e k=1 TTeek=1 TR (8.27)
(T(e))™
p(ﬁfly,,u,a) x czkyki.’(;;ﬁie—zkuk.‘exp.’(;iﬁsc—%ﬁfﬁ; (8.28)

where we shall use block conditional distribution for all the regression para-
meters, that is a multivariate normal distribution instead of a set of separate

umvariate normal distributions will be used for updating the priors.

A Poisson-regression model with multivariate normal random effects

Starting from the previous model several alternative models are possible. For
example, instead of a gamma distribution with mean 1, a multivariate M-
dimensional normal distribution for the random effects i might be considered
as more appropiate. In addition, other hyper-priors are required. The model

is given hy

Yie | A ™ Pois(A) (8.29)
log i = pei + X
(idicro, T Npr(0as,T)
B, % N(0, 0.001)

T ~ Wishart(R,p)
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where Na(0y, T) 1s the M-dimensional multivariate normal distribution with
mean vector having all elements equal to 0 and with T the inverse of the co-
variance matrix, also called the precision matrix. The hyper-prior parameters
R and p > M are known, usually taking p = M for non-informative priors.

The Wishart probability density function, as used in this thesis, is

f(X | R,p) o |RIF|X|*5 e 7 (EX)

where X is an M x M symmetric and positive-definite matrix, p > M is the
degrees of freedom and R i1s a M x M symmetric and positive-definite (non-
singular) matrix. The Wishart prior is used for the inversc of the covariance
matrices of multivariate normal distributions and because E(X) = p(R)™!,
R™" is best interpreted as the expected prior precisions of the random ef-
fects 2. Small values of p correspond to vaguer prior distributions and it is
recommended (Spiegethalter, Thomas and Best, 1998) to take p = M.

This 1s a complicated version of the mixed Poisson-gamma model and the
differences can be seen easily on the graph in Figure 8.5. The Gibbs sampler
requires the knowledge of conditional distributions of the unknown quantities

of the target distribution, the posterior joint distribution

ple |y) =p(A 0, 8.7 | y)

in this case, and this requirement cannot always be satisfied. For these sit-

vations a more general MCMC method, called the Metropolis- Hastings algo-
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Xki]

lambdafk.i}

for(kIN 1 : N)

for(iIN 1 : M) ||"
|

Frigure 8.5: Directed graphical model for Poisson-regression model with multi-
variate normal random effects

rithm, offers a solution: see Carlin and Louis (1996) Section 5.4.3 and Gelman
et al. (1995) Section 11.2.. The simulation process moves around in the ¢-
space according to a candidate probability density g(y,y) from which a draw
©* 1s made. Then the jump from the current value to the candidate value ¢*

is made with probability r where

— min (1 P¥)ale | )
T (1’ p(e)q(e* | ¢) ) ' (8.50)

This is called the acceptance probability and is always equal to 1 for the
particular case of Gibbs sampling. The Metropolis-Hastings algorithm is used
by default in WinBUGS {or situations where Gibbs sampling is not possible.
The acceptance rate can be easily monitored and together with other measures
on the output it is an indication of the performance of the algorithm. The

Poisson-regression model with multivariate normal random effects requires the
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use of Metropolis-Hastings algorithm.
A simplified version of the Poisson-regression model with gamma random
effects is obtained by approximating the logarithm of the garnma distributed

randorn eftects pz; by a normally distributed quantity by;. Then

log Aei = b + Xiifi, (8.31)
bk,‘ wf N(O,T)

H

r ~ gamma(0.001,0.001).

Sometimes the random effects b;; can be separated into effects arising from

variation among the sites and from variation among accident types

by = w + v (8.32)
ue X N(0,7,)

Yi ~ N(0,7)

7o ~ gamma(0.001,0.001)

» ~ gamma(0.001,0.001)

All models described in this class are hierarchical and fclJr inference MCMC

methods are necessary. These models will be applied and further discussed in

Chapter 9.
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8.3.2 DBayesian models using the muitivariate Poisson-
log normal distribution

For multivariate continuous data the multivariate normal distribution provides
a sound base for statistical modelling. By contrast, for multivariate counts,
there is a lack of discrete multivariate distributions that could play the role
of Poisson distribution in the univariate case. A consequence is that some-
times inappropriate methods employing continuous multivariate distributions
are proposed in order to support a complex correlation structure. The stndy
of Amis (1996) is an example of a good applied statistical work that can be
[urther immproved by applying the hierarchical Bayesian methodology proposed
in the previous section. Because the aim of Amis’ paper was to investigate
accident counts and the associations between accident types and some envi-
ronmental variables, hierarchical models seem to be perfectly suitable for this.
The probability distribution described bellow can also irnprove another exam-
ple of applied work involving road accident, done by Salminen and Heiskanen
(1997).

In this section, a discrete multivariate distribution is described as a fea-
sible solution for discrete data modelling with multiple responses. The idea
is simple, (Aitchison and Ho, 1989), but powerful computational methods are
needed to put it into practice. For all & € {1,2,... ., N}, 1 € {1,2,...,M} we

write

Ykil)\kt’ if‘rf-'d POiS(/\k,'), (833)
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(log('\k] ): caeg log('xkﬂ/[))flﬂa T 1’1‘(’1 N.M(J[’L! T) (834)

where 7' = 37! is the precision matrix. The probability density function of

the M-dimensional log normal distribution is

u M ! 1
p(Alp. T) = %) T (JTA) T 7 exp (—i(log A—p@)YT(log A — ,u))

i=1

The multivariate Poisson-log normal distribution, that will be denoted by
PAM{(y,T). is the mixture of independent Poisson distributions with multi-
variate log normal distribution for the Poisson means. The probability density
function of PAM (1, T) is exactly the marginal density of ¥’s conditioned on

& and T only.

M
Py ymlp, T) = / o [T Pois(y:fd)p(Xilw, T)dAy -+ - dAn (8.35)
+ =1
where yy,...,ya = 0,1,.... The important moments of this distribution can

be easily calculated. If & = (oy;) then

E(Y) = E(E(YIA) = EO) (5.36)
_ exp(,u.--{-%oy-;)-fai

var(Y)) = E(var(Yi|A)) + var(E(¥i|A)) (8.37)
— E(M) + var(h)

= a;+ al(exp (oy) — 1)
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cov(Y.,Y;) = DE(cov(Y;, Y;|A)) 4 cov(E(X:|A), E(Y;05)) (8.38)

= cov(A, A;) = aia;(exp(oij) — 1)
Two immediate consequences are that, for each unit £ € {1,2,..., N},
var(Yi:) > E(Yi)
which means that there is overdispersion for the marginal distributions, and
lcorr(Ye:, Yi;)| < |corr(Agi, Aij)l

sgn(corr(Yi;, ¥i;)) = sgn(corr(Axi, Ax;))

which are special cases of the results of the mean-variance model. Altogether
M_(@ parameters are needed to specily the PAM(u, T) distribution. Nega-
tive and positive correlations are supported by this mixed distribution, which
gives it an advantage over other multivariate discrete distributions such as
multinomial or negative multinomial. However, the estimation of the pa-
rameters is not straightforward. For maximum likelihood estimation, a re-
parameterization and a mixture of Newton-Raphson and steepest ascent meth-
ods are helplul but computationally intensive, (see Attchison and Ho (1989)).

Here we shall use MCMC methods (Metropolis-Hastings algorithm) to
obtain inference summaries about the parameters g and and 7. In a fully

Bayesian context, further prior distributions, probably noan-informative, are
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far{kIN 1:N)

for{iIN 1 : M) —I

Figure 8.6: Directed graphical model for a multivariale Poisson-log normal
model

required for 1 and T'. The recommended parametric distributions are normal
for 1 and Wishart for T (Carlin and Louis, 1996; Gelman et al., 1995). Such
a model is described by the directed graph in Figure 8.6 and it can be easily
seen that it is a straightiorward generalisation of the directed graphical model
in Figure 8.1 that represented a univariate Poisson-log normal model.
Covariate information can be introduced easily in this model by regres-
sion components like ux; = X, ;. The information value of the explanatory
variables X;; can be examined by comparing models without regression with
models with regression. Many other variations on this model structure are
possible by making small changes, like considering that the regression coefh-
cients § do not depend on accident count type or reparametrising pe: = we+vs,
a site random effect and an accident type random effect. Models that have

more parameters tend to fit data better. In a Bayesian context, for hierarchi-
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cal and regression models, the number of parameters is usually very large but
not all are effective. This class of models will be added to the class of models
proposed in Section 8.3 and both will be applied and compared on a sct of

data in Chapter 9.

8.4 Bayesian model selection

In this section a new group of model selection procedure for hierarchical log-
lineatr models is proposed in a Bayesian framework. Other model selection
procedures were investigated in the first part of the thesis. The reason why
these methods are discussed here 1s that they employ Gibbs sarapling for solv-
ing the computational side. The objective of these model selection procedures
belong in the first part of the thesis but the solution belongs in this second
part.

Since graphical models are log-linear models this method can be used for
this subclass as well. The idea on which this model selection algorithm 1s
based is similar to a suggestion of Lindley (1969, Section 5.6) in connection
with a classical test of a point null hypothesis. It is a compromise between
Bayesian and classical statistics. The significance test at level « 1s conducted
using the credible set, which is roughly equal to the highest posterior region
(Carlin and Louis, 1996).

For hierarchical models only the maximal interaction u-terms (the genera-

tors of the model as they were described in Chapter 4) need to be specified and,
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as will be seen later, they effectively drive the techmque proposed here. For
log-linear models many selection algorithms have been proposed; see Chap-
ter 4. Some of these methods were applied to the collision-rollover data in
Chapter 4 and the Edwards-Havranek method was also applied to Bedford-
shire data in Chapter 5. Fach of these known methods has a different moti-
vation, but all share the same drawbacks: practical sensitivity to the choice
of stopping rule and of initial maodel; lack of information about the power of
different procedures; being able to apply standard distribution theory only
for a fixed model; and lack of information about the influence of the model
selection procedure on the sampling distribution of the model that is fitted.
In addition, some of these algorithms are based on asymptotic distributions
of deviance (G?) or Pearson chi-squared {X?), which are unreliable when the
data is sparse (Kreiner, 1987). Forward selection procedures starting from
the mutual independence model are dubious because this model rarely fits the
data, and the hypothesis testing of nested niodels involves models known to
fit the data badly.

The idea of this new approach in this section is to overcome these diffi-
culties by avoiding classical hypothesis testing and asymptotic methods. In-
stead, forward, backward and bidirectional procedures are proposed using fully
Bayesian inference for the maximal u-terms eligible for selection (inclusion or
elimination). These model selection algorithms can be used for data sum-
marised in contingency tables thus making a straightforward connection with

the first part of the thesis. However, the computational side of these algo-
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rithms is mainly based on Gibbs sampling, used in this second part of the
thests, motivating the inclusion of these model selection procedures here.

Each stage of the selection methods presented below is in correspondence
with an order of interaction and, in any stage, only the maximal u-terms
for that order of interaction are tested. The main effects ux, & € V, are
always kept in the models. Other terms might be included in the models
because of sampling design specification. For example, if the sampling scheme
is a product-multinomial, some interactions terms need to be included in the
model without any further testing. The procedures end when there are no
maximal eligible u-terms left. The final model is a hierarchical interaction
model. 1f the maximal u-terms correspond to the cliques of the interaction
graph then the final hierarchical model is graphical (Whittaker, 1990) and the
model is interpretable in terms of conditional independencies.

The idea driving the model selection methods proposed here is to consider
the maximal u-terms under scrutiny as random effects and all the other u-
terms in the model as fixed effects. For each interaction term u, (where a is
a subset of vertices from V) considered random effect, the following distribu-

tional assumptions are made

g ~ N(0,7,) (8.39)

T, = — ~ gamma(0.001,0.001)} {8.40)
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and all the other fixed terms have very flat normal priors

us ~ N(0,0.0001)

The posterior distribution of the random effects w, is p(u.|n(z) : ¢ € I), and
this distribution is used to calculate the equal tail credible set CS(u,) for
Uq, (see Carlin and Louis (1996, Section 2.3.2)}, simply taking the «/2 and
(1 — @)/2-quartiles of the posterior distribution p(us|n(z) : ¢ € T). The equal
tail credible set is not always equal to the highest posterior density credible
set (unless the posterior distribution is symimetric and unimodal) but being
just a bit wider it is more convenient for the applied statistician to work with

the former. If 0 € CS(u,) then 1, should not be eliminated from the model.

8.4.1 Bayesian forward selection

This procedure starts from the mutual independence model

MO log )\EO) =up+ 3w (8.41)

teV

In any stage SU) the inclusion of each maximal eligible j-order of interaction
terms u, is tested. If the final model selected at the end of stage SU—") is
MU= 1 log /\Ej_l) then, in the stage S, the posterior distributions of each

eligible w, 1s calculated from the model

log /\gM) = log AU 1 . (8.42)
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Therefore the credible sets are calculated independently for each u,. The ﬁnai
model of this stage, M%) is obtained by adding to MU~ all u, selected for
inclusion, that is all v, with 0 € CS(u,). In the following stages these terms
are considered fixed terms.

It is worth mentioning that, in a given stage, maybe not all maximal u-
terms are eligible for inclusion. For example, if 112 has been eliminated in a
previous stage then wpe, are automatically excluded becanse we require the

log-linear model to be hierarchical.

8.4.2 Bayesian backward elimination

The procedure starts with the saturated model

M3 doghi= 3 g (8.43)

ac2V

where the sum is over all subsets of V, including the empty set. In any stage
5 all the maximal (d — j)-order u-terms, without a higher order relative in
the final model of stage SU~1), are considered simultaneously random effects
and all the other terms fixed effects. As before, the final model selected at the
end of stage SV is denoted by MU=V : log ,\Sj—l]. The posterior distributions
of all eligible maximal interaction terms u,, a € A € 2, are calculated ac-
cording to the model MU=1) hut the status of the terms u,,a € A, is changing
from fixed effects (stage SU~Y) to random effects (stage S%).

The credible sets CS5(w,) are calculated for each of the u, and only those



CHAPTER 8. BAYESIAN MODELS FOR ACCIDENT COUNTS 227

terms whose credible sets do not overlap zero are kept in the model. The
difference between this procedure and the Bayesian forward selection proce-
dure is that, in a given stage, the credible sets for the eligible u-terms are
calculated based on the same log-linear model. Note that, at any given level
of interaction excluding trivial cases, there may be lower, higher or the same

order of interaction terms that are fixed terms and not eligible.

8.4.3 Bayesian bidirectional selection

A bidirectional procedure combining the above two procedures of Sections 8.4.1
and 8.4.2 can be easily developed. Starting from an initial model, such as the
mutual independence model of equation (8.41), a one-stage forward inclusion
is performed followed by a one-stage backward elimination. This combined
computation is made until all eligible terms are screened.

For any of these three model selection methods, at any stage, the u-terms
giving the model under consideration can be partitioned into random effects
g, a € A € 2Y, and fixed terms up, b € B € 2YV.  u = ((¢o)aea, (us)sep) and
T = (T.)ee are the corresponding preeision pararneters, the joint posterior

distribution of all parameters is

ple,7In) o T p(n(d)le) T] pluair)p(ra) I plws) (8.44)

1e7 a€A beB
o [] Pois(n(i)}u) 11 N(u.|0, 7)gamma(7,[0.001,0.001)
iel a€EA

s T N(w)0,0.0001)
belB
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For forward inclusion, A = {a} because the inference is done separately for
each maximal eligible u,. Replacing in (8.44) the known densities, the joint

posterior density of all quantities, observed and unobserved, is,

p(u, Tln) o H l\i(u)n[:')e—-.\.'(u) H (TG)O.OOi-%e—%uﬁe—o.omm H 6—0'0201 u§(8.45)
teT acA beB

and it is obvious that this expression cannot be manipulated analytically. For

example, the marginal posterior density of u, with a € A 1s

p{u, | n) x /p(u,r|n)d‘rdu,4\adu;3

which requires the calculation of a complicated multidimensional integral.
Such calculation is impossible to be done in closed form.

However, an advanced (ibbs sampling method can be used to overcome
this compntational problem (Gilks, 1992) and the analysis can be done in

WinBUGS, (see Spiegelhalter, Thomas and Best (1998)).

8.4.4 Applications to road accident tables

Collision-rollover data

[t was shown that the 4-dimensional table 3.3 in Chapter 3, summarising the
collision-rollover data from Kihlberg et al. (1964), can be safely decomposed
into two 3-dimensional subtables ACD and BC D without evoking problems

with Simpson's paradox. The model selection procednres used in log-linear
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modelling cannot identify a simpler graphical model and the only simpler log-
linear model fitting the data well is the no three-way interaction model, for
both subtables. In this subsection, forward and backward Bayesian model
selection are applied to each subtable. The results are presented in Tables 8.3

and 8.4. It can easily he seen that for the subtable AC'D the model of no

Table 8.3: Bayesian model selection for AC D subtable

Forward CS
Model u-term mean 2.5% 97.5%
[(AC] w1y 1.73  1.56 1.90
[CD] Ug3 1.45 1.27 1.63
[ACD) ws 015 012 0.59
Backward

{ACD] U123 0.15 -D.12 0.59

[AC)IAD][CD] w138 120  1.56
qa 1.60 1.44 1.76
Ugn 1.01 0.82 1.21

three-way interaction is selected both by the forward and backward bayesian
model selection criteria. For the second subtable BC D, by torward bayesian
selection the model [BC|[CD] is selected and by backward elimination the
model [BC|[BD][C D] is selected. This illustrates the point that forward and
backward Bayesian procedures do not necessarily select the same model.

A corner point parameterisation (Bishop et al., 1975) was used for the

log-linear expansion, that is all u-terms having at least one index equal to 1 1s
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Table 8./: Bayesian model selection for BC' D subtable

Forward CS
Model u-term mean 2.5% 97.5%
[BC] U2 -061 '078 -043
[BD] U3 004 -0.08 01?
{BCD| s 0.15 -0.12 0.59
Backward

(BCD] wiza 011 -0.14 045

[BC|[BD]{CD w074 -0.91  -0.56
wis 029 0.11 0.43
Uay ].83 ].67 200

set to 0, and because all the variables are binary the tested u;;-terms are all

%i;(2,2], the other values being constrained to zero.

Bedfordshire data 3-dimensional subtable

The collapsibility results discussed in Chapter 6 snggests that it may be
worthwhile to analyse the 3-dimensional subtable defined by three variables,
accident seventy, number of vehicles involved and spced limit. There is no
simpler graphical model than the saturated model for this subtable and it was
shown in Section 5.2.1, Chapter 5, that the conditional independence struc-
ture is worth further exploration. In this subsection, forward and backward
bayesian model selection procedures are applied to this small subtable, in an

attempt to understand whether a simpler log-linear model can be selected or
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Table 8.5: Bayesian forward selection for Bedfordshire data, ANS subtable

Forward CS
Model u-term mean 2.5% 97.5%
[AN] wal2.2] 012 036 0.78

TL12{2,3} -0.15  -0.69 -0].6
u12(3,2]  0.66 0.11 1.29
?1’.]2[3:3] 002 -0.40 038

[AS] w3(2,2] 131 -2.36  -0.45
wa[3,2) 171 -276  -0.90

(NS] uz3(2,2] -0.09 -0.30  0.06
u3(3,2] 085 056 114

[ANS]  wa2,2,2] 015 -0.54 095
wisl2,3,2] 020 -0.53  1.20
w(3,2,2] -0.37 -1.24  0.19
w123[3,3,2] -0.23 -1.30  0.39

not.

The results in Tables 8.5 and 8.6 show that inaeed the saturated model
cannot easily be simplified. In both approaches, forward or backward, there
are two problems. Consider the u,; term, where index 1 stands for accident
severity A and 2 stands for the number of vehicles N. This « term, which
accounts for the pairwise interaction between A and N, would be rejected from
the model if the corresponding CS for uq2(3, 2] overlapped zero. Unfortunately
this does not happen and therefore, the interaction between A and N can
ueither be included or excluded from the model. A similar situation occurs
with the a3 interaction term, for which 2 values, ug3[2, 2] and us3(3, 2], should
be tested. The three-way interaction term is rejected from the model by

the backward elimination procedure so the model [AS][SN][AN] remains a
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Table 8.6: Bayesian backward elimination for Bedfordshire data, ANS subtable

Backward CS
Model u-term  mean 2.5% 97.5%
wi23(2,3,2)  0.20 -0.53  1.20
wi2s(3,2,2] -0.37 -1.24  0.19
1L123[3,3,2] -023 -130 0.39
[AN)|AS)SN]  wigl2,2) 0.03 -046  0.57
: 1512[2,3] -0.14 -0.65 0.24
u12(3,2]  0.55  0.04 1.08
u2(3,3]  0.11 -0.26  0.60
wial2,2] -1.58 -2.53  -0.78
wsl3,2] -1.97 29 -1.21
1523[2,2] -0.06  -0.26 0.09
usl3,2]  0.86 057 114

candidate. This is not a graphical maodel se from the conditional independence

point of view it does not reveal any new information. However it can be used

tfor other purposes, like making inference about odds ratios.

The major drawhack of this procedure is that each model investigated

during the model selection process has to be fitted separately. There is no

program available that would make possible an automated implementation.

8.5 Summary

In this chapter two classes of hierarchical Bayesian models have been intro-

duced. The first class was based mainly on mixed Poisson-regression models

with random effects. They are all specified hierarchically in three stages and
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use the same regression part. The difference between them consists in the
distributional assumption for the random effects. A general mean-variance
framework model was introduced at the beginning of this chapter, which of-
fers a good solution for accounting for overdispersion and correlation between
observed frequencies,

All the models investigated were fully Bayesian and have computational
difficulties given by the lack of closed-form analytic inferential methods. The
main points of the methodology for applying MCMC techniques, in particular
the Gibbs sampler and the Metropolis-Hastings sampler, were pointed out and
some relatively simple applications were given. A simple case of three possible
compound Poisson distributions for the accident totals on 156 sites in Kent
was discussed, the same road accident data that will be investigated at a more
disaggregated level in the next chapter.

A new group of model selection procedures for hierarchical log-linear mod-
els for contingency tables has also been introduced. The novelty of these
procedures consists in being formulated entirely in a Bayesian framework and
avolding classical hypothesis testing.

The emphasis was more theoretical in this chapter, the applications being
discussed in greater detail in Chapter 9. The main 1dea of this chapter is that
hierarchical Bayesian models coupled with MCMC techniques offer a statistical
modelling solution to a wide range of problems related to analysing complex
datasets such as road accident data. Moreover, the multiple response models

proposed here open a new area of research and they can be easily adapted to
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count data sets from other areas of research.



Chapter 9

Multiple response models for

road accident data

9.1 Introduction

In this chapter the techniques introduced in Chapter 8 are applied to a set
of road accident data. Several models are fitted and the results are discussed
and compared. The ability to model joini responses provides another dimen-
sion to statistical modelling of road accidents. ft is shown that the ranking
of hazardous sites can be improved by looking at several types of accidents
sirnultaneously. The advantage of using MCMC techniques is that the same
model output can be used to provide iuference on several problems like model
selection, gooduness-of-fit, ranking the units of the analysis according to differ-
ent criteria, and so on. This type of analysis is believed to be the first of this

kind in the area of statistical modelling of road accident data.

235
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9.1.1 Data analysed

The units of the analysis are 156 single carriageway link sites in Kent and the
data includes all accidents between 1984 and 1991, The links are defined as
road sections between two major junctions, or between changes in carviageway
type (single or dual), or between changes in speed limits. Figure 9.1 shows a
map of the relevant part of the Kent road network. The nodes on the road
network defining the junctions and the carriageway types were taken from
digital maps supplied by Kent County Council and the speed limits were taken

from the STATS 19 records. The speed limit plays another important role as a

Thanet

Canierbury
Maidstone

<

Figure 9.1: Part of Kent road network

proxy for the actual speed. Speed is a variable that is known to have a major
impact on the number and severity of accidents (Taylor and Barker, 1994-

1995; Tunaru and Jarrett, 19984a; Baruya, Finch and Wells, 1999). The other
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explanatory variables used in this chapter are link length, in kilometers, and
estimated traffic flow (AADT x365), in millions of vehicles per year. These two
variables are continuous buf speed limit, as it was used here, is dichotomous
(40 nmiph or less, greater than 40 mph) so the interactions between speed
limit and the other two were also considered. The original set of data had
speed limit with several levels. It was the author’s choice to dichotomise this
explanatory variable. The traflic flows came from mostly manual counts with
some automatic counts. The manual counts can be sparse in both location
and time but simple linear regression was used to fill in the missing years and
account for some of the variation in individual counts. The estimated traflic
flow was averaged over all seven years.

This set of data was provided by the Transport Management Research
Centre at Middlesex University which took it from Kent county council for
a previous research project. The number of accidents at each site was disag-
gregated by accident severity, having two levels KSI = fatal or serious and S
= slight, and the number of vehicles involved, with two levels, 1 vehicle and
2 or more vehicles. Therefore, there are four accident counts for each site.
This further classification of the observed accidents was entirely the author’s
choice and it was motivated by the direct association between accident, sever-
ity and the number of vehicles revealed by the graphical models proposed in
Chapter 5.

The cross-classification of these two categorical variables gives four pos-

sibly correlated groups of observations and the log-linear Poisson regression
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equations for each group of accidents might be different. The ohserved number

Table 9.1: Total number of accidents for each category of accidents

Severity Number of Total number
vehicles involved  of accidents

fatal or serious 1 443
2 or more 852
shght 1 796
2 or more 2160

of accidents in each group 1s given in Table 9.1 and it is also worth pointing
out that there are sites with zero accidents for any type of accident and for

the total number of accidents as well,

9.2 Hierarchical Poisson-regression models for
multiple accidents

This section contains the applied statistical modelling results for the models
combining hierarchical Bayesian specification with covariate information. The
models reveal qualitative and quantitative relationships between the numbers
of road accidents on one side and spced limit, estimated traffic flow and link
length on the other. Some parts of this section have been published in Tunaru
(1999).

Three road characteristics, speed limit, link length and trafic flow, mea-
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sured for each site, are used in the regression equation. The traffic flow was
averaged over all years and denoted by . Speed limit S was coded —1 for
less than 40 mph and +1 for less than 60 mph, link length [ was transformed
on a logarithimic scale to log{, and the same for traffic flows to log ).

The multiple responses analysed in this paper correspond to the four types
of accidents according to severity and the number of vehicles involved. The
numbers of fatal or serious accidents with only one vehicle involved are de-
noted by Y;, the fatal or sericus accidents with two or more vehicles involved
are denoted by Y, the slight accidents with only one vehicle are denoted by
Y5 and the slight accidents with two or more vehicles by ¥;. A more detailed
analysis might consider multiple responses obtained by cross-classifying the
accidents according to more than two criteria. For example, pedestrian in-
volvement might be of interest in addition to the criteria used 1n this paper.
Moreover, other explanatory variables can be used in addition to those studied
here. The data as provided by the Transport Management Research Centre
contained dual carriageway sites as well so an explanatory variable with two
levels single-dual would be a natural candidate. However, there were very
few dual carriageway sites and a preliminary analysis revealed that it was not
worth including those sites.

The explanatory variables were standardised in order to improve the speed
with which the simulated Markov chain approach its stationary distribution, as
recommended in Spiegelhalter, Thomas and Best (1998). Therefore {* and @,

the standardised values of the logarithms of the link length and estimated link
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trafhic, were in place of log { and log (. This standardisation was calculated by
subtracting the sample mean from each value in the sample and then dividing
it by the sample standard deviation. The terms accounting for the interactions
“between speed limit S and link length or link traffic were transformed in a way
similar to that used for centring second order terms in polynomial regression.

Hence, these terms are given by

SLk = (Sk - ?)(log lk — T@) - (Sk — ?)(log lk — @)

—

= Silogl, — Slog! — (Si)log! — (log ;)5S + 25 Tog |

and

ST = (Sk—5)(logQx — log Q) — (Sk — 5)(log Qi — log Q)

= SilogQi — SlogQ — (S)log @ — (log Q1) S + 25 log Q

where the bar indicates the sample mean of the corresponding variable. This
transforrmation helped io reduce the antocorrelalion hetween successive sam-
pled values of the Markov chain. Otherwise the Gibbs sampling algorithm
wotld stay for too many iterations in a small region of the sample space, and
it would be necessary to simulate a much larger nwmber of values than usual

i order to cover the whole sample space.



CHAPTERY9. MULTIPLE RESPONSE MODELS FOR ROAD ACCIDENT DATA 241

9.2.1 A Poisson-regression model with gamma random

effects

The model given below in (9.1) will be called (P-ga) and it is a pariicular
case of the Poisson-regression model with gamma random effects defined in
Section 8.3. The explanatory variables are specific to the set of data analysed

in this chapter. For all sites £ = 1,2,...,156 and accident groups @ = 1,2,3,4

Yii | A~ Pois( M), (9.1)

where

log(Aes) = log(pw:) + Ba + Bali + BiaQy + BiaSk + BisSLi + BieSThk,

and

P | e gamma(a, o),

B % N(0.0,0.0001),

o; ~ gamma(3,1).

The precision parameter for the regression coefficients is very small so
the normal prior distribution is vague (quite flat). In practical terms this
means that we do not have any information about what the actual values of
regression coefficients might be. In other words, the regression coefficients

may take almost any real value. The gamma(3,1) prior for the a parameters
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is motivated by approximating the logarithm of a gamma random variable
with a normal variable. This particular choice of the parameters is explained
later in conjunction with a mixed Poisson-log normal model.

The directed graphical model associated with this particutar model is pre-
sented in Figure 9.2. The two plates correspond to the two different indices,

k for sites and 7 for accident type. Tor this model, the results were calculated

betati]

gnum:mp

Figure 9.2: Directed graphical model for the hierarchical Bayesian model with
gamma random effects

from a sample of 10000 values of a single long chain, with a burn-in period
of 45000 iterations, and from a mixed sample of 10000 of two parallel chains,
after a burn-in period of 10000 iterations. The Gelman-Rubin monitoring sta-

tistic was very good, less than 1.05 for all parameters of interest, and also the
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dynamic plots showed that the chain had attained convergence.

The Bayesian P values for the x? discrepancy, equation (8.18) in Sec-
tion 8.2.6, for each type of accident, are 0.72 for KSI accidents with one vehi-
cle, 0.62 for KSI with two or more vehicles, 0.51 for S with one vehicle, 0.53
for 5 with two or more vehicles. These values shows that the data does not

contradict the model so the inferences are reliable. The hyper-parameters {o;)

Table 9.2: Posterior means of regression coefficients for mized Poisson-gamma
model

Response 1 r @ S SL 8T

}/l 1811 512 /613 ﬂ14 ﬁlS 516

0.55 1.20 0.60 -0.29 0.04 -0.38

)/2 ,321 ﬁ?? ﬂ23 1824 1825 /626

08 149 0.72 -029 0.09 -0.01

1€ Bar B2 Paz P P B

1.09 1.28 057 -016 -0.10 -0.26

Y‘i ﬂcll ﬁ42 ;843 ﬁ44 ﬁ% ﬁ46

200 1.29 069 -0.35 -0.00 -0.08

can be estimated by the following posterior means @y = 4.5,a; = 6.0, a3 =
3.5, = 3.0. This shows tl}a.t the random effects for different types of acci-
dent have different gamma distributions. The parameters o are the precision
of the random effects u. The difference in values of o by different accident

types may be due to different missing information for each type ol accident.
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The largest precision @; = 6.0 is for killed or seriously injured accidents with
two or more vehicles involved and the lowest precision &j is for slightly injured
accidents with two or more vehicles. This means that for the latter type the

corresponding random effects yy are more volatile so there is more missing

information.
The posterior means of the regression coefficients are shown in Table 9.2,

other quantiles are described in Appendix G extracted from Tunaru (1999).

The [our regression equations are

log(Ax1) = log{prt) + 0.55 + 1.200% 4 0.60Q% — 0.295, + 0.04SLy

—0.385T

log(Ake) = log(pez) + 0.85 + 14975 + 0.72Q7 — 0.295; + 0.09SLy,

—0.015T,

log{Aka) = log(pss) + 1.09 + 1.281; 4 0.57Q; — 0.155; — 0.10SL

—0.265T

log(Axa) = log(pea) + 2.00 4+ 1.2907 4 0.690Q; — 0.355; — 0.0055L;

—0.085T

These estimated equations point to some interesting conclusions.

¢ The interaction SL between speed limit and link length is almost null

or very weak for all 4 regression equations. This can be easily seen
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looking at the posterior median, 2.5% and 97.5% percentiles given in
Appendix G. All credible intervals overlaps zero. This means that the
difference in number of accidents between a rural road of 10 km and an
urban road of 10 km is the same between a rural road of 5 km and an

urban road of 5 km.

e There is a non-negligible interaction between speed limit and link traffic
only for the regression equations corresponding to single vehicle acci-
dents. This means that, for accidents with ouly one vehicle, reducing
the traffic flow by a factor equal to 8, that is from @ to 6@, and keeping
all the other covariates the same, will result in a reduction of the number
of accidents depending on § and the speed limit S. It is shown bellow
that the percentage in accident reduction is (1 — §988-9385) for fatal or
serious accidents with ane vehicle and (1~ §%%6-0-%65) for slight accidents
with one vehicle. There would be no speed limit S in these formulae if

there were no interactions between speed limit and link traffic.

. ' For slight accidents the speed limit effect for accidents with two or more
cars 1s more than double in absolute value the speed limit effect for ac-
cidents with only one vehicle involved. A possible explanation might be
that, for this category of accidents, the interaction between speed limit
and the other two variables, link length and traffic flow, is very weak,
whereas for slight accidents with only one vehicle, there is considerable

interaction between speed limit and the other variables.
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¢ Speed limit has a negative effect in the linear regression equation given
above for all four types of accidents and the effects seem to be the same
for fatal or serious accidents with one vehicle and with two or more ve-
hicles, respectively. However, because of the definition of the interaction
terms, the effect of speed limit on the number of accidents can be better

understood from the multiplicative equations (9.3)-(9.6).

The log-linear regresion equations can be re-expressed in multiplicative

form as

Ak = i exp(B + )6:4»5'::)1;(;5:24-!3;55”Qiﬁ:ﬁﬁmsu- (9.2)

The new coeflicients marked with a star can be recalculated from the initial
Bri- The coefficient ], can be included in the constant factor but the above
form was preferred for symmetry. For (P-ga) model, the regression equations

can be rewritten as

Akl = exp(—0.50 + O.Ogsk)l‘(k0.89+0.04sk}QEO.BB—D.SSSJ‘) (9.3)

Mz = oz exp(—0.26 — 0.315 ) 09H0095k) (0.96-0.015) (9.4)

/\k3 = [ exp(015 + 0.1lSk)lI(CO.QS—D.IUSk)Qiﬂ.sl—o.zﬁsk) (9‘5)
Mea = praexp(0.94 — 0,275, (090700055 () (0.01-0.085,) (9.6)

where the posterior distribution of random effects can be inferred as

pr ~ gamma(4.5,4.5), ppe ~ gammal(6,6)

pra ~ gamma(3.5,3.5), ppa ~ gamma(3,3).
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The multiplicative equations have different forms, implying that a single
response model rather than a multiple response model would lead to unreliable
conclusions. For example, a single response model using a single regression
equation would have only one value for the regression coefficient corresponding
to the speed limit or to the interaction between speed limit and link length.
It can be easily seen from equations (9.3)—{9.6) that there is a lot of variation
across the four types of accidents for this coefficients. A single value cannot
synthesize the whole picture.

The regression equations developed as a major part of the hierarchical
Bayesian models proposed can be used by practitioners to understand the
behaviour of the mean number of accidents given the explanatory variables.
They can also be used to predict how the mean number of accidents at a given
site would change if some or all the explanatory variables were changed in
some way, and to predict future accident rates given that the conditions are
unchanged. If the local authority were to build a bypass around one of the
villages on the road network (and they have since 1991) they would want to
predict the effect on accidents. Most of the traffic that used to travel through
the village would use the bypass and the only traffic using the old road would
be traffic travelling to the village. The cost savings in accidents can then
be calculated. The novelty of this approach is that predictions can be made
simultaneously about the changes in accident type as well as the frequency. It
1s worth pointing out that many TRL studies investigated, at the univariate

level, the relationships between traffic flows and various types of accident such
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as lorries, trucks, bikes, accidents classified by manoeuvre and so on. The work
presented here 1s multivariate, looking at several correlated types of accident
at the same tinie.

We can see what happens when the traffic flow ¢} 1s changed to 6}, where
6 > 0. Momentarily we will drop the site index £. For all accident types,
from equations (9.3)-(9.6), it can be easily shown that there is a reduction in
the mean number of accidents A if and only if § < 1, that is if the traffic is

reduced. The reduction in the number of accidents can be calculated as

§

38
x 100% = (1 — -A—’) x 100%.

A — X
Ai

This formula is applied for each type of accident based on the multiplicative
equations (9.3)-(9.6) and the calculations can be finalised by specifying the
speed limit variable, urban § = -1 and rural S = 1.

For fatal or serious accidents with 1 vehicle

N .
(1 - A—l) x 100% = (1 — §>%7°%%) % 100%.

1

For fatal or serious accidents with 2+ vehicles

5

A .
(1 — /\—2) x 100% = (1 — 69970015 x 100%.
2
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For slight accidents with 1 vehicle

§
(1 - i—f‘) x 100% = (1 — 69819265y . 100%.
3

For shght accidents with 2+ vehicles

4

/\5
(1 - A—’*) x 100% = (1 — 6540085} . 100%.

The final results are presented in Table 9.3.

Table 9.3: Proportional reductions ta accidents when traffic flow is reduced, as
resulted from the Poisson-regression model with gamma random effects

Severity No of vehicles Speed limit Reduction

fatal or serious 1 urban (1 — §'%)
rural (1 — §%9)

2+ urban (1 — §°97)

rural (1 — §%9%)

slight 1 urban (1 — §7)
rural (1 — 6955)

2+ urban (1 — §1-0%)

rural (1 — §%%)

The conclusion of this analysis is that reducing the traffic flow by a factor

of § will reduce different, type of accidents in different ways. In a similar way
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the percentage increase in accidents can be calculated if the traffic is increased

by a multiplicative factor §.

9.2.2 Comparison with a simpler scenario

One may wonder why a multiple response approach would give better results
than fitting separate Poisson-regression models for accident counts of each

type. Therefore in this section the following model will be investigated

Yie | M ¥ Pois(A) (9.7)

log(Ai) = Ba+ falp + 8@y + BisSk + BisSLy + BiSTw

B * N(0.0,0.0001)

and the results will be compared with those given by the (P-ga) model. Fol-
lowing the usnal MCMC modelling steps, two chains were sirnulated in parallel
and after a burn-in period of 15000 iterations a sample of 10000 values was
retained for inference. The regression coefficients were estimated by their pos-
terior means given in Table 9.4. Comparing Table 9.2 with Table 9.4, the
only major differences are between the coeflicients of the interaction terms
between traffic low and speed limit. If this model was proposed for inference

the following multiplicative predictive equations would be used

Ma = exp(—0.50 4 0.258,)1> 57001 0880485 (9.8)
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Table 9.4: Posterior means of regression coefficients for Poisson-regression
model

Response 1 roQr S SL 8T

};1 ﬁll 612 ;BIB ,814 ﬁls ﬂls

056 117 0.58 -0.24 0.0l -048

YE /621 ﬁ?? .823 18‘24 1825 ﬁ?s

091 137 071 -0.21 0.09 -0.13

Y.:.‘; ﬁ.‘il 163‘2 1833 ﬁ34 1835 1636

1.12 1.20 0.59 -0.07 -0.12 -0.46

Yi Ba  Paz Baz Paa Bis Bas

200 128 074 -030 0.01 -0.24

Akz — CXp(—Ulg - O.OQSk)[£'1.00+0.095k)Q£0.97—0.135k) (99)
Az = exp(0.04 + 0.418,)i092-0-1254) (0 88-0.465) (9.10)
Ak4 — exp(o'Tg _ 0.05Sk)I}CO.QS“}‘U.OIS;;)Qil.oﬂlﬁo.?'ls;‘] (911)

Comparing these equation with equations (9.3)-(9.6) it is easy to see that the
values for traffic flow are different, and this will change predictions in model.

The percentages of reduction in accidents when the traffic low @ is re-
duced by a factor of § are different from before as can be seen from Table 9.5.
The simple Poisson-regression model overestimates the reductions in accidents
resulting from reducing the traffic for all urban areas, that is it gives higher

reduction percentages for § = —1, and underestimates the reductions in acci-
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Table 9.5: Reductions in accident percentages when traffic flow is reduced, as
resulted from the Poisson-regression model without random effects

Severity No of vehicles Speed limit Reduction

fatal or serious | 1 urban (1 — §'39)
raral (1 —6%1)

24+ urban (1 — 619)

rural (1 — §%84)

slight 1 urban (1 — §'39)
rural (1 — §%%%)

2+ urban (1 — §'%9)

rural (1 — §%9%9)

dents in rural areas, that is it gives smaller percentages for 5 = 1.

In conclusion fitting accident counts of different type at an univariate level
would result in different inferential results. In a Bayesian framework, it can be
easily seen that this simpler model is rejected by the data since the Bayesian
P-values for x? for each type of accident are respectively 0.013, 0.005, 0.000
and 0.000. These values are calculated as described in Section 8.2.6 by for-
mula (8.17) for the test statistic given by formula (8.18). The model is rejected
by the data if the Bayesian P-values are too small. It can be easily seen that,
for the first type of accident, it is just accepted at 0.01 level but for all the
other three the rejection is clear. Thus, the model without random effects

cannotl model the data well and therefore the inclusion of random effects seem
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to be necessary. This is not surprising since only three explanatory variables
are used as covariate information. The role of the random effects is to account
for missing explanatory variables.

This emphasizes that even after ensuring that the Markov chain has con-
verged and parameters are reliably estimated it is necessary to check the
goodness-of-fit of the model before applying the results. Hence the joint-

response model is superior to four separate univariate response models.

9.2.3 A Poisson-regression model with log normal ran-

dom effects

The logarithm of a gamma distributed random variable is approximately nor-
mal so it is worth considering a model where the random effect is normally
distributed. This assumption can be exploited to simplify computation since
all the parameters describing the regression equations are normally distrib-
uted. This model is also specified hierarchically in 3 stages and it will be

called (P-logN). For all sites £ =1,2,...,156 and 7 = 1,2,3,4

Yie | A % Pois( k), (9.12)

where

log{Aw:) = bi+ Ba + By + 8iaQr + PiaSk + BisSLi + BieSTs

and
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tid
b ‘ D N(O'OuT)a

B % N(0.0,0.0001),

T ~ gamma(3,1).

For the precision distribution 7 a prior gamma(3,1) was used. The reason

<
=1

S
&

for(i I 1 0 4)

forfk IN 1 : 156}
——

Figure 9.3: Directed graphical model for the hierarchical Bayesian model with
log normal random effects

for choosing a gamma(3,1) prior is based on an idea described in Smith,

Spiegelhalter and Thomas (1995). The model just described might support



CHAPTER 9. MULTIPLE RESPONSE MODELS FOR ROAD ACCIDENT DATA 255

the assumption that 95% of the sites having identical covariates

"Y.{ci = (l lzi Q:v Sku SLk: STk)s

will have a log(A) between —1.96//7 and 1.96/\/7. Assuming (from a sub-
jective point of view) that sites with the same covariates have expectations
varying within one order of magnitude log 10 = 2.3 but not over two orders of

magnitude log 100 = 4.6, the equation

2 x 1.96/+/7 % 2.3

implies that 7 & 2.9 is a good approximation for E(7). In addition, an ap-

proximation of a low value for 7 is obtained from

2 x 1.96/y/T ~ 4.6

and this lower limit equals 0.73. With the prior distribution gamma(3,1),
7 has the mean 3 and Pr(r > 0.73) = 0.96 which shows that this gamma
distribution is appropriate for our subjective assumption.

The jomnt distribution of the observed and uncohserved quantities, data
and parameters, factorises in a similar way to the previous model. Although
the graphical model in Figure 9.3, representing the conditional distributions
assumed by the model, is very similar to that describing the model (P-ga) in

Figure 9.2, it should be noted that different parametric distributions are used
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Table 9.6: Posterior means for mized Poisson-log normal regression coeffi-
crents

Response 1 - Q* S SL ST

le ﬂll ,612 ﬁlS ﬁlfl 1815 )6,16

041 125 060 -0.29 0.05 -0.34

};2 /6‘21 )622 ﬁ23 /824 ﬂZS !826

0.73 149 075 -029 0.12 0.04

Y:S )631 632 1633 ﬁ34 635 }636

0.97 128 059 -0.13 -0.10 -0.29

YZI 1841 )842 ﬁ43 /644 /645 . ﬁtlﬁ

1.82 139 0.78 -0.38 0.04 -0.06

for corresponding nodes of the graph, and different logical expressions for the
means lambdalk,i]. Furthermore, the precision parameter tau for the normal
random effects b[k], does not depend on the accident type or the site.

Two parallel chains were simulated and after a burn-in period of 15000 it-
erations a sample of 10000 iterations was selected for inference. The Gelman-
Rubin statistics were very good for all parameters of interest and the Bayesian
P-values for the four types of accidents were 0.58 for KSI with 1 vehicle, 0.53
for KSI with 2+ vehicles, 0.07 for S with 1 vehicle and 0.04 for S with 2+ vehi-
cles. The fit of this model seems to be good for the first two accident types and
not very good for the last two types. The variance of the random effects can be

estimated by its posterior mean 0.50. The results obtained for this model are
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shown in Table 9.6. They are very similar to those obtained using a gamma
random effect. However, the observed ranges of the standardised logarithmic
link length {; and the standardised logarithmic estimated traflic flow @} are
between -2.7 and 1.6, which is quite narrow. Therefore, small differences in the
estimated values of regression coeflicients may result in substantial differences
in the fit of the two models. This problem: will be investigated further in the

next subsection.

Model comparison

A simple way to check the fit of a model is to compare the posterior predicted
mean given by the model with the data values. A close linear re]ationslhip
would suggest a close fit. This can be done in parallel for the two models
(P-ga) and (P-logN). First, the observed pooled number of accidents at each
site is plotted against the sum of the predicted means of accidents at the same
site. It seems that model (P-logN) performs slightly better.

A Dbetter insight is plotting each type of accident separately and this is
done in Appendix C. There, the model (P-ga) seems to fit the data well for
all four types, and for each type better than the (P-logN) model. This can
be expected since it was shown in Chapter 8 that the log normal distribution
will not perform very well with the extreme cobserved values. In addition,
the random effects depend only on site so they can account only for missing
information about the site and not about the accident class. In summary, both

models fit the data well at an aggregated level, the second model appreciably
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Figure 9.4: Scatter plots of totals Figure 9.5: Scatter plots of totals
for model (P-ga) for model (P-logN)

better. But at a disaggregated level, clearly the first model fits the data
better than the second one. The aim of this analysis was to extract statistical
information at a disaggregated level so it is vital to have a good fit for each type
of accident. The difference in the form of random effects and the distribution

used 1s important.

9.2.4 Poisson-regression model with multivariate nor-

mal random effects

The (P-ga) and (P-logN) models studied above provide a good start for the
statistical modelling process but there is no correlation structure assumed for
the random effects ¢ and as a consequence these two models may overlook

an important aspect of the real data. The next model, that will be called
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(P-MNre), tries to overcome this difficult problem as well. It can be viewed as
an extension of the two previously studied models, the only difference being
in the distributional assumption for the random effects .

For all sites £ = 1,2,...,156 and accident groups : = 1,2,3,4

Yii | de % Pois(Aei), (9.13)

where

log(Aei) = i + B+ Piali + Bia@% + BiaSk + BisSLi + BisSTe,

and
(phidizr,.a | T g N4(0, T,

By 4 N(0.0,0.0001),

T ~ Wishart(R,4).

The covariance structure of the random effects is given by the covariance
matrix & = T}, so the paranieterisation is again based on the inverse of the
variance-covariance matrix. For computational simplicity, a Wishart hyper-
prior distribution is required for the matrix T' and the matrix (R)™! accounts
for our prior beliefs about the precisions between random effects p of different
types of accidents; the second parameter of the Wishart distribution is chosen

to be as small as possible {in this case 4) to reflect our ignorance about 7.
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For this model the inference process is based again on MCMC methods but
the Markov chain has to be generated using the Metropolis-Hastings algorithm
(see Gelman et al. (1995)), because the Gibbs sampler does not work in this
case. WinBUGS has both methods implemented so the models can be fitted
using the same software platform. To improve speed, an initial run can be
made using some arbitrary values for £, and then the posterior means of the
elements of £7! = T' are used for the R values.

The posterior distribution for the model (P-MNre), with multivariate nor-
mal random effects, gave the posterior means for the regression coefficients
in Table 9.7. A burn-in period of 30000 iterations was used before a sample
of 10000 was taken as representative for the posterior distribution of all pa-
rameters of the model. Very similar results were obtained when two parallel
chains were simulated. After a burn-in period of 15000 iterations a sample
of 10000 iterations was taken. The Gelman-Rubin convergence statistics were
all less than 1.05 for all parameters of interest 3,7, ¥ and also, the Bayesian
P-values indicated a good fit of this model. The values were 0.87, 0.80, 0.65
and 0.65 tor the four types of accident in order, showing a good fit to the
data. Apart from the intercept terrms fi;;, there are no major differences in
the signs and absolute values of the regression coeflicients as compared with
the Poisson model with gamma random effects, (P-ga). The matrix given in

(9.14) contains the posterior means of the elernents of T', the inverse of the
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Table 9.7: Posterior means of regression coefficients for the Poisson-regression
model with multivariate normal random effects

Response | * @ S SL ST

Y'l [311 [312 J613 BM 161'5 ﬁlﬁ

-0.65 1.27 063 -030 0.04 -0.34

YQ ﬁZI ﬁ22 ﬁ23 ﬂEd ﬂZ& ﬁ26

-0.31 1.5

(o1
ot
=
=T
co

-0.31  0.11  0.00

YE’: ﬂSl 4832 4833 ﬁ34 535 536

-0.14 1.35 060 -0.16 -0.08 -0.25

}/4 1841 ﬁtt‘Z 643 ﬁ44 4845 ﬁ46

0.73 136 0.77 -0.34 0.00 -0.06

covariance matrix.

465 175 —-1.5 —0.1

—~1.75 6.12 —0.86 —1.35
T — (9.14)

—-1.5 —-086 325 0.5

\ —0.1 -135 -~0.5 2.3)

Elements close to zero in the inverse covariance matrix I' indicate that the
corresponding random effects p are conditionally independent given the val-
ues of the random effects not in the pair. For instance, 714 = —0.1 indicates
conditional independence between the random effects for fatal or serious ac-

cidents with only one vehicle and slight accidents with two or more vehicles,
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which is not surprising. What is surprising is the weak association between
slight accidents with one vehicle and slight accidents with two or more vehicles,

T3.4 = —0.5.

9.3 Multivariate Poisson-log normal model

In the previous chapter, the mixture of a Poisson distribution with a multivari-
ate log normal distribution was described, equation (8.35), as a aiscrete mul-
tivariate distribution for modelling multiple counts. Starting from this mul-
tivariate Poisson-log normal distribution a hierarchical, fully Bayesian model,

that will be called (P-MN1), is proposed.

Yk;")\ki ifri'd PO.IS(AH) (9]5)

(log(Aki))izt,alee, T B Na(p, T)
w2 N(0,0.0001)

T ~ Wishart(R,4)

where the parameterisations are the same as used for the previous models. A

variant of this model, (P-MN2), would be to add another level to the hierarchy:

g ~ N(v,7) (9.16)
v~ N(0,0.001)

7o ~ gamma(0.001,0.001)
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and keeping everything else the same. This allows a comparison between
two nested models. The matrix parameter R for the Wishart distribution is
proposed by analogy with model (P-MNre).

The graphical model associated with model (P-MN1) is illustrated in Fig-
ure 8.6. The conditional independence structure is remarkably simnple. The
graphical model for model (P-MN2) would have an extra two vertices for v
and 7, as parents of the vertex y,.

The same strategy for simulation was used as for the model (P-ga). Thus
the inference results were based on either a sample of 10000 values, taken from
a single chain afler a burn-in period of 45000 iterations, or on a mixed sample
of 10000 faken from two parallel chains, after a burn-in of 20000 iterations.
The Gelman-Rubin convergence statistics, equation (8.15) in Section 8.2.3,
were very good, with values less than 1.1 for all parameters of interest.

The Bayesian P values for the x? discrepancy, equation (8.18), for each
type of accident, are 0.87 for KSI accidents with one vehicle, 0.77 for KSI
accidents with two or more, 0.71 for S accidents with one vehicle and 0.62
for S accidents with two or more vehicles. These values are a bit larger than
the corresponding Bayesian P-values for model (P-ga), but they are still good
and shows that the data does not contradict the model so the inferences are
reliable.

The posterior estimates ol the parameters of interest for the multivariate
Poisson-log normal model (P-MN1) is given in Table 9.8. The covariance

matrix ¥ = 77! is provided because it makes a straightforward link with
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possible covariance structure of the observed data.

Table 9.8: Posterior estimation of parameters of multivariate Poisson-log nor-
mal model

parameter mecan  sd  2.5% 97.5%

012 234 0.41 1.65 3.29
T14 225 0.38 1.62 3.11
093 248 045 1.78 3.54
24 2.78 045 2.04 3.79
031 2.10 0.39 1.48 3.00
T32 248 0.45 1.78 3.54
033 249 0.47 1.75 3.61
Ta 2.25 0.38 1.62 3.11
Ta2 278 045 2.04 3.79
a4 3.04 0.47 2.25 4.09
1 0.28 0.15 -0.034 0.56
Ha 0.67 0.16 0.3¢ 097
13 0.79 0.16 046  1.08
4 1.65 0.15 1.35 1.94

The matrix given in {9.17) contains the posterior means of the elements of

T, the inverse covariance matrix.

4.42 —1.55 —-1.63 -0.55

-1.55 3.16 —0.99 —1.52
T= (9.17)

-1.65 —0.99 3.18 -0.36

—0.55 —-1.52 -0.36 244

There are weak partial correlations between KSI accidents with 1 vehicle and
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slight accidents with 2+ vehicles, between K5I accidents with 2+ vehicles and
slight accidents with 1 vehicle and between slight accidents with 1 vehicle and

slight accidents with 2+ vehicles.

9.4 Model selection using DIC

Having so many models under study, some of them nested, some of them not,
it would be helpful to check the fit of the models and identify the besf ones
for further analysis. In a Bayesian context, this can be done using the poste-
rior distribution of the log-likelihood, as suggested by Dempster, but because
extremely complex models should be penalised for using a large number of
parameters, the deviance information criterion, DIC, offers a better solution.
For comparison, several simpler nested and non-nested models are inves-
tigated. The previously discussed models were denoted by (P-ga), (P-logN),
(P-MNre}, (P-MN1) and (P-MN2). The following models are considered as
well
(P-difreg): A Poisson-regression model without random effects but different

regression coeflicients for different accident types

Yie | A ™ Pois(A) (9.18)
log(Awi) = Ba + Bli + 0:3Q) + BisSk + BisSLk + BieS T

B % N{0.0,0.0001)

(P-ureg): A Poisson-regression model with random effects and with the same
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regression coefficients for all types of accidents

Yii | Awi
log(Aki)
pri | o

B;

oy

ind
o

ind
Tl
iid

iid

Pois( M) (9.19)
log(ui) + B1 + Baly + BaQi + BaSk + B55Le + B6STw
sammalcs, )

N(0.0,0.0001)

gamma(3, 1)

(P-classic): A Poisson-regression model with identical regression coefficients

for all types of accidents and without random effects

Yo | Awi
10g(Ak,‘)
Bi

ind

~  Pois(Ay) (9.20)
= b+ Bali + BaQr + BaSk + BsSLy + BeSTy
% N(0.0,0.0001)

(P-logN2): The same Poisson-log notmal regression model as before but with

different hyper-prior parameters, gamma(0.001, 0.001)

Yii | Awi

log()\;_.,-)

by | 7

Bi;

td

id
P~

Pois(Ae) (9.21)
bi + B + Bily + BisQf + BiaSi + PisSLi + BisSTy
N(0.0,7)

N(0.0,0.0001)

gamma(0.001,0.001)
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(P-add): An additive random effects model; there is no covariate information
and the effects are split into terms accounting for site variation and terms

trying to explain site by accident type variation

Yk,‘ I )‘ki ifrgi POiS(/\kg) (922)
10g(/\k:') = bk‘l'logﬂk:‘

b |7 % N(0.0,7)

i | i " gamma( ey, o)
o = gammal(3, 1)

T ~ gamma(3,1)

(P-add2): The same additive model as before with different hyper-prior para-

meters, gamma(0.001,0.001).

Y | A % Pois(Ag) (9.23)
log(Aki) = bk + log pw

belT ¥ N(0.0,7)
ind

ki | gamma(a;, ;)

a N gammnia(0.001,0.001)

7~ gamma(0.001,0.001)

In the table 9.9, DIC is calculated for all models using the method described

in Section 8.2.5. If the analysis had been based only on the posterior mean of
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Table 9.9: Deviance Information Criterion calculations

MODEL  random with different D D(6) PD DIC
effects  regression 4
(P-ga) / J 42750 25530 172.20  599.70
(P-difreg) J J/ 118040 579.35 601.05 1781.45
(P-ureg) Vi v 427.10 68.52  358.58  785.68
(P-classic) Vv 2621.80 1308.27 1313.53 3935.33
(P-MNre) y, J  383.32 12742  255.90  639.22
(P-logN) v v J 53040 21244 317.96 $48.36
(P-logN2)  +/ v J 53050 21335 317.15 847.65
(P-add) v 409.79 60.66 349.13  758.92
(P-add2) v 412.62 60.78 351.84 764.46
(P-MN1) 389.38  119.40 26998  659.36
(P-MN2) 389.65 60.00 329.65 T719.30

the Bayesian deviance, D, then the models (P-MNre), (P-MN1) and (P-MN?2)
would have been preferred. Taking into account the complexity of the models
using DIC as a yardstick, the model (P-ga) is preferred followed closely by
models (P-MNre) and (P-MN1).

In making this comparison, several points are worth noting. First the
simplest model (P-classic) has a very large DIC = 3935.33. Therelore the
improvement due to including random effects or allowing the regression coeffi-
cients to depend on accident type can be gauged relative to this basic model.
Just adding the random effects u, as in the model (P-ureg), results in a re-
duction of 3149.65 in DIC. Secoudly, nested models like some pairs in the first
five or the last two models in the table can be compared in terms of DIC. For
example, the model (P-MN2) and its submodel {P-MN1) perform equally well

in terms of the posterior mean of the deviance, but when we take into account
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the number of parameters the DIC clearly indicates that the model (P-MN1)
is better. Thirdly, the models retained, (P-ga), (P-MNre) and (P-MN1), are
very flexible and reveal various aspects of the data analysed. Notice that
model (P-MN1) does not use any regression structure, although to do that is
quite casy linking the mean of the multivariate log normal distribution with

explanatory variables.

9.5 Ranking the sites

ldentitying hazardous sites is the first important step for developing road en-
gineering measures. This problemn is vital since designing and implementing
remedial measures is based on the characteristics and factors related to those
sites. Moreover, engineering treatment is applied only to sites selected. Large
amounts of money can be wasted just because the right sites have not been
identified as dangerous. Several approaches proposing some solutions were
discussed in Chapter 2. All previous work was developed for univariate re-
sponse models, nothing apparently having been donc for multiple responses.
This section investigates ranking the 156 sites from Kent, with four types of
accidents.

The three hicrarchical multiple response models that have been selected
by the DIC criterion, that is (P-ga), (P-MNre) and (P-MN1), will be used.
Therefore, for each measure, the ranking calculations are made for threc mod-

els by four types of accident. Under a restricted budget, the analysis proposed
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here (using several critena of ranking) wonld help the practitioners to select
the hazardous locations, where “hazardous” has many facets. Modelling mul-
tiple counts jointly makes ranking just a bit more difficult but more rewarding
in the same time. A practitioner may compare the sites according to different

- point of views and hiddeu aspects might come to the surface in this way.

9.5.1 Ranking by the probability that a site is the worst

The posterior probability that the site & is worse than all the others by a factor

of v, for the accident type 2, is
Pki(v) = Pl‘()\ki > UAJ',' for all ] ?é kly)

where v > 0. For example, when v = 1 this is the probability that the site is
the worst one. The factor v should be established prior to the analysis by the
practitioner. The posterior probability that is used as a criferion for ranking
represents a reasure of how much worse one aceident site is compared with
all the others. In pra.lcticc arbitrarily selected v- values like v = 1,1.1,1.25 are
used. The practitioner then can see different lists and make an ad-hoc decision
accordingly. The point to bear in mind is that the list of selected sites should
not contain just a few sites or too many sites. The value v = 1 is always a

good start and depending on the results obtained, the practitioner can modify
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v accordingly. When v = 1 it is true that

Z})k;(l) =1

and this is convenient for checking that the calculations are correct.

Table 9.10: Ranking probabilities for KST accidents with I vehicle

model {P-ga)  model (P-MNre) model (P-MN1)

Site No Pr Site No Pr Site No Pr

11 0.0023 11 0.0020
12 0.0070

14 0.0257 14 0.0048 14 0.0076
23 ' 23 0.0002
38 38 0.0012 38 0.0002
41 0.1427 41 0.1244 41 0.1332
42 0.0003 42 42 0.0004
46 0.0330 46  0.0204 46 0.0280
50 0.0007

63 68 0.0004

76 0.0023 76 76 0.0004
77 0.0046 77 0.0028 77 0.0058
90 D.7573 90 0.3132 90 0.7934
91 91 0.0016 91 0.0004
95 95 0.0048 95 0.0058
118 118  0.0008
143 143 0.0264 143 0.0218

Only the sites with corresponding probabilities larger than 101 are pre-
sented in the tables summarising the results. The tables contain the probabil-
ities for the same type of accident, given by all three models for comparison.
The sites with the largest probabilities need to be treated. If fatal or seriously
injured accidents with only one vehicle involved are of particular interest, it

is obvious from Table 9.10 that the worst site is number 90, urgent measures
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Table 9.11: Rankiag probabilities for KSI accidents with 2+ vehicles

model (P-ga)  model (P-MNre) model (P-MN1)

Site No Pr Site No Pr Site No Pr

4 4 0.0004 4 0.0018
11 0.1200 11 0.1444 11 0.1252
12 0.2173 12 0.1900 12 0.11%4
14  0.3630 14 0.3144 14 0.2732
24 0.0023 24 0.0004 24 0.0018
41 41 0.0014
46 0.2061 46 0.2520 46 0.3228
76 0.0076 76 0.0060 76 0.0032
77 0.0007 77 77 0.0002
90 90 0.0004 90 0.0064
98 0.0596 98 0.0408 08 0.0348
102 0.0169 102  0.0040 102  0.0028
118  0.0062 118 0.0472 118 0.1070

being required; also sites 41, 46, 14 and possibly 143 should be investigated.
Site 90 is the worst site for accidents with slight injuries as well, see Tables 9.12
and 9.13, but, as can be seen from Table 9.11, it is not as bad regarding fa-
tal or seriously injured accidents with two or more vehicles. Therefore, the
statistical analysis at the disaggregated level provides practitioners with more

valuable information as what might be the problems at a specific site.
Table 9.12: Ranking probabilities for slight accidents with 1 vehicle

model (P-ga)  model (P-MNre) model (P-MN1)

Sile No Pr Site No Pr Site No Pr
14 14  0.0008 14 0.0008
41 0.0019 41 0.0004 41  0.0010
46 0.0062 46 0.0008 46  0.0036

90 0.9919 90 0.9980 90 0.9946
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The results are quite similar for all three models. By the measure studied
in this section, it seems that there are not many dangerous sites for slight
accidents with only one vehicle. One reason might be that site 90 is so bad
that almost the whole probability is concentrated on this site, and there is
not very much left to distinguish between the others. This site 1s particulary
interesting. It is the urban link that runs along the sea front at the resort
of Margate. Thus, there would be a high volume of holiday makers both
pedestrian and drivers. The high pedestrian flow distinguishes it from the

other links and special safety measures need to be implemented.

Table 9.13: Ranking probabilities for slight accidents with 2+ vehicles

model (P-ga)  model (P-MNre) model (P-MN1)

Site No Pr Site No Pr Site No Pr

11 11  0.0004
12 0.1200 12 0.0820 12 0.1054
14 0.0923 14 0.0512 14 0.0626
24  0.0185 24 0.0304 24 0.0220
41 0.2338 41  0.2368 41 0.2144
46 0.0035 46 0.0048 46 0.0036
76  0.0031 76 0.0028 76 0.0022
77 0.0007 77 0.0004

90 0.4869 90 0.5640 90 0.5688
98 0.0412 98  0.0276 98 (0.0206

9.5.2 Ranking by posterior distributions of ranks

The second criterion for ranking sites investigated here is based on the ranks
ri; of the mean parameters Ay; which are the site specific parameters. The

ranking process is made again for each type of accident ;. The posterior means
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E(Mei | ) are optimal estimates when the aim is to produce inference about
Ar;. However, if the ranks of A;; are of interest, the conditional expected ranks
(or a discretized version of them when they are not integers) are optimal. It is
known that ranking the observed data or even the posterior means can perform
poorly (Laird and Louis, 1989; Morris and Christiansen, 1996). Consequently,
this ranking method is developed using the posterior distribution of the ranks,
that is p(r | ¥), and not the posterior distribution p(A | y). This differs than
the approach proposed by Schluter et al. (1997).

Ranks are notoriously uncertain and it s useful to know the uncertainty
associated with them. The approach followed here easily calculates the corre-
sponding credible intervals of the estimated ranks. The ranks will be estimated
by the posterior medians, mainly because they are easier to calculaté. For each
model and each accident type, the posterior median ranks and the associated
2.5% —97.5% credible intervals are plotted together for comparison. Sites with
ranks to the far right are more dangerous and sites with ranks to the far left
are more safe.

The ranking process should be adjusted for including covariate information.
There are two ways for doing that. A weak adjustment is already implicit in a
Bayesian framework on the estimation process. For Poisson-regression models
like {P-ga) and (P-MNre), a stronger approach considers the ranks not of Ak
but of some quantities like random effects or regression-line intercepts or their
sum, after remnoving the covariate information. Note that if the covariates

included in the model are sufficient to explain all the variation between the
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sites then there is no reason for ranking. When no covariate information 1s
used, as in Schluter et al. {1997), obviously no adjustment of this type needs
to be done. Model {P-MN1) is specified without any covariates so the ranking
is based on the ranks of Ag;.

The plot in Figure 9.6 illustrates the estimated statistics of the ranks of
A relative to the model (P-ga), the Poisson-regression model with gamma
random effects. It can be remarked on the plot in Figure 9.6 that sites with
the lowest and. respectively highest, rank values, have quite small credible

intervals. The local authorities may decide to treat all the sites that are

KS| accidents with 1 vehicle

{P-ga) model

Site rumber

BHHH AR R

i

L —T — — T T T
o] im an

Figure 9.6: Ranks of means; Poisson-regression with gamma random effects
model

ranked after 120, for example, where 156 is the worst. The plots like the one

in Figure 9.6 can be used to draw a vertical line at the point rank 120 and
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select all the sites whose credible intervals are intersected by this threshold line
or to the right of this line. In this way it is accounted for the uncertainty in
the calculation of ranks. Although two sites may have ranks with a difference
of 20 between them, if their credible intervals overlap this means that it may
be possible that the situation to be not so different, so both should be selected.
This discussion applies to the other two models (P-MNre) and (P-MN1) and
all other types of accident, as well. All four plots of this type, corresponding
to the four type of accidents and also for the other two models (P-MNre) and
(P-MNT1) are given in the Appendix D.

The ranks and their credible intervals can be plotted ordering the sites
firstly by the rank, secondly by the 2.5% percentile and thirdly by the 97.5%
percentile. The pattern Qf the change in rank and associated credible interval
can then be seen. For ranking based on ranks of Ay, these ordered plots are
given in Appendix E, for all three models by accident type. All plots have a
leaf shape pattern suggesting that the models give more credible ranks in the
extremes, that is for sites with very low and very high ranks.

The advantage of using ranks of the residual terms after removing the
covariates, is that eprsure variables like traffic flow and link length is taken
into account. 1t can be argued that a site A having double the length of a
site B is “expected” to have a greater number of accidents if all the other
conditions are the same. A similar argument can be followed for traffic flow.
The idea is therefore to rank the “residual” information left after accounting

for the covariates.
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There are only two Poisson-regression models investigated. The residnal
terms are log(psi) + 57 as calculated from the multiplicative equations of the
type given in equation (9.2). The sites are presented as ordered by the ranks
and corresponding percentiles. For the Poisson-regression model with gamma
random effects, the four plots in Figures (9.7-9.10) show how uncertain the
ranks may be. The similar plols provided by the Poisson-regression model
with multivariate normal random effects, provided at the end of this chapter
i Figures 9.11-9.14, tell a similar story. It might be useful to compare to

ranks given by different models. This is done in the next section.

9.5.3 Comparison of ranks by three models

It 1s of course of interest to know how close the rankings are, as given by the
three models investigatcd. An easy way to do that is to plot the estirnated
ranks given by one model against the estimated ranks given by aﬁother model.
The comparison should be made for the same type of ranking. This means
that either the models are compared for ranks of mean parameters Ay, as
shown in Appendix F, or for the Poisson-regression models, the models are
compared for ranks of log(ux:) + /), as showa below. Overall it can be noticed
immediately, from Figures 9.15-9.18, that the two Poisson-regression models

provide similar rankings for all types of accident.
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9.6 Summary

This chapter is a continuation of Chapter 8, applving the theoretical ideas

emphasized there to some real data. A set of road accident data concerning

road accidents in Kent on 156 single-carriageway link sites has been analysed

for predictive purposes, for ranking the sites according to two criteria and

for understanding the relationship between four types of accident and covari-

ate information like link length, speed limit and estimated traffic low. The

main models investigated were (P-ga), (P-MNre), (P-MN1) and (P-logN). The

inference process was possible due to MCMC methods and the results were '
compared from several points of view.

The first three models have been selected by DIC from a set of 11 models.
Each models has its advantages and disadvantages and none should necessarily
be rejected in favour of the others. There is some evidence that the accident
nurnbers of different types are correlated and this could bias the analysis if
multiple response accident frequencies were modelled separately at the uni-
variate level.

This chapter provides an important tool for identifying hazardous locations
and for forecasting the reduction in accidents that would result if the traffic
could be reduced by a known factor. It was shown that the reduction is not
similar for all four types of accidents investigated and generally depends on
rural-urban areas.

The selection of hazardous sites followed some ideas reviewed in Chapter 2

for univariate niodels. The sites were categorised as dangerous according to
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cither the probability of a site to be the worst or the posterior distribution of
the rank of a parameter of interest of a site. The results were then compared

with the Poisson-regression with gamma random effects model as a base model.

Fatal or serious with 1 vehicle

Site

Rark ualues; (P-g2) model

Figure 9.7: Ordered posterior medians and credible intervals of ranks; model
(P-ga) for first type of accidents
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Fatal or serious with 2+ vehicles

S

Rank alues; (Pga) modet

Figure 9.8: Ovrdered posterior medians and credible intervals of ranks; model
(P-ga) for second type of accidents

Slight with 1 vehicle

St

5 o = o = w >
Rank vahies; (P-ga) medel

Figure 9.9: Ordered posterior medians and eredible intervals of ranks; model
(P-ga) for third type of accidents
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Slight with 2+ vehicles

Site

Rankwalues; (P-ga) model

Figure 9.10: Ordered posterior medians and credible intervals of ranks; model
(P-ga) for fourth type of accidents

Fatal or serfious with 1 vehicle

Se
L

Ranialues; (PUNre) model

Figure 9.11: Ordered posterior medians and credible intervals of ranks; model
(P-MNre) for the first type of accidents
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Fatal or serious with 2+ vehicles

Site

Rark values; (P-VNre) model

Figure 9.12: Ordered posterior medians and credible intervals of ranks; model
(P-MNre) for the second type of accidents

Slight with 1 vehicle

Sie

Rani values; (P-viNre) mode!

Figure 9.13: Ordered posterior medians and credible intervals of ranks; model
(P-MNre) for the third type of accidents
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Slight with 2+ vehicles
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Rank vatues; (P-VNre) mode!

Figure 9.14: Ordered posterior medians and credible intervals of ranks; model
(P-MNre) for the fourth type of uccidents
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Figure 9.15: Comparison of posterior medians of ranks of residual informa-
tion; fatal or serious accidenis with I vehicle, (P-MNre) against (P-ga)
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Fatal or serious with 1 vehicle
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Figure 9.16: Comparison of posterior medians of ranks of means; fatal or
serious accidents with 2-+ vehicles, (P-MNve) against (P-ga)
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Figure 9.17: Comparison of posterior medians of ranks of means; slight acci-
dents with [ vehicle, (P-MNre) against (P-ga)
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Slight with 2+ vehicles
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Figure 9.18: Comparison of posterior medians of ranks of means; slight acci-
dents with 2+ vehicles, (P-MNre) against (P-ga)



Chapter 10

Conclusion

10.1 Summary of the thesis

10.1.1 Multivariate modelling of road accident data

The development of computer technology and computational techniques allows
scientists to analyse more and more complex sets of data. Applied statisti-
cal modelling offers solutions for extracting valuable information from data.
Simpson’s paradox indicates that the modelling must be done at a multivariate
level. One arca of research which has not yet extensively exploited multivari-
ate statistical modelling is road accident analysis. This thesis aimed to make
a step forward and to develop statistical procedures that can be used in this
area of research and possibly in other similar areas of research.

The thesis had two main directions of research given by the type of variables
modelled, categorical variables representing characteristics of accidents in the

first part, and multiple response variables representing accident numbers of

286
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different type in the second part. The two parts were joined by using a similar
tool of modelling, a graphical model represented hy a graph. In the first part
of the thesis this tool was mainly used for interpretation purposes at the end
of the analysis, whereas in the second part of the thesis it was used to set up
a hierarchical model before the actual fitting process.

The difheunlty of analysing road accident data has several facets. Firstly,
data is collected as an observational study, no randomisation being possible.
Secondly, the data is bound to be sparse, either when it is summarised in a
contingency table or when it is modelled hy regression-like techniques bringing
covariate information. Therefore, inference based on classical asymptotic tests
is most of the time unreliable and other methods are needed. This has been
clearly demonstrated for graphical models with about 10 variables, during the
course of a comparative model selection in Chapler 5. This is also true for
modelling multiple accident frequencies simultancously, the task dealt with in
the second part of this thesis. The disaggregation by accident type was not
possible for a larger number of types because the data wounld have been so

sparse that a statistical analysis conld have not revealed reliable conclusions.

10.1.2 Graphical models

The complexity of road accident contingency tables requires multivariate sta-
tistical models and exact conditional testing. Graphical modelling is a useful
multivariate statistical technique for disentangling the potential factors which

influence important accident characteristics such as accident severity or the
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number of casualties.

It was shown in Chapters 3, 4 and 5 that graphical modelling offers a very
good solution for investigating road accident characteristics in an exploratory
manner, being useful for small and large contingency tables. It was shown
that speed limit, the number of vehicles involved and the number of casual-
ties are directly associated with accident severity, one characteristic of major
interest to road safety. Various other conditional independence relationships
were established.

With a help of a small table it was shown that most of the log-linear models
fitting the data could be nested into a graphical model. Therefore, even when
the objective is to find some specific type of log-linear model it would he
useful to identify first a graphical model fitting the data well and to refine the
analysis starting from this model. The advantage of using a graphical model
is that i1t is interpretable in terms of conditional independencies which can be
visualised on a graph.

The analysis of large contingency tables summarising road accident data
was further improved when substantive external knowledge was made avail-
able. This type of analysis had a causal flavour and the models, called graphi-
cal chain models, are a direct generalization of graphical models. The inference
process for this class of models is a sequential one, but at each step, it i1s the
same process as developed for graphical models. it was shown on an example
in Chapter 3 how this process should be developed. Graphical chain models

were developed for a set of data concerning the county of Bedfordshire, for a
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set of data with accidents from Bedfordshire and Hampshire pooled together,
and for two disaggregated sets of data for Bedfordshire. Reading conditional
independencies on chain graphs can be sometimes difficult. It was shown using
examples how to avoid traps by considering the moral graph of the smallest
ancestral set of the subset of variables investigated.

A class of precursor models to graphical chain models consists of the re-
sponse variable models introdnced by Goodman (1973). Generally speaking,
neither this class nor the class of graphical chain models coincides with the
class of log-linear models. A resnlt indicating when this equivalence is true,
proved in Asmussen and Edwards (1983) using collapsibility, was restated in
Chapter 6. Some examples and counterexamples using models encountered in
the thesis were also exemnplified in Chapter 6.

Collapsibility also helped in showing how the analysis of a 6-dimensional
table could be refined using a 3-dimensional marginal table without having
problems with Simpson’s paradox. ["urthermore, it was concluded that what
seemed a natural graphical chain model for the collision-rollover table was not
a log-linear model.

[t was also noticed that Simpson’s paradox can appear in a negligent analy-
sis of contingency tables sumniarising road accidents. In conjunction with the
need for analysing large tables this was one of the main motivations for ap-
plying graphical modelling to road accident tables. It was also shown how the
concept of collapsibility of maximum likelihood estimators could be used to

recduce safely the dimension of the analysis.
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10.1.3 Hierarchical joint-response models

The hierarchical modelling approach with multiple responses and random ef-
fects, developed in Chapters 8 and 9, give a solution to the problem of mod-
elling multiple response variables in a joint manner, that is a multivariate
approach on the left hand side of the equations of the models as well as on
the right hand side. The inference process can be done by employing MCMC
techniques. The model cutput contains all the ingredients to answer various
questions of interest, like predicting future values or ranking the observational
units according to different measures.

A framework model was proposed and it was proved that, under its as-
sumptions, this model offers a solution for modelling overdispersion and cor-
relation of the observed counts. This general model can be followed by other
researchers in developing other hierarchical models for other sets of road acci-
dent data and for other areas where modelling counts is of interest.

Using the models developed in this thesis, for the first time, practitioners
can predict changes in accident type as well as the frequency. The predicted
percentage reduction in accidents, if the traffic flow is reduced by a known fac-
tor 8, was calculated. The resulis were different for different types of accident
and this could provide valuable information to local authorities.

In Chapter 7 some theoretical aspects regarding the compound Poisson
distributions were re-examined, a new proof of when there is a maximum
likelihood estimator for the two parameters of a negative binomial distribution

was given, and a condition for this estimator to be unique was also identified.
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An approximation result was given that helps in studying the sensitivity of
changing priors in compound Poisson modelling.

MCMC techniques were successfully used for inferential purposes. One
advantage of MCMC methods is that the same output can be used for an-
swering many questions. The Gibbs sampler was also helpful in developing a
new group of selection procedures of log-linear models for contingency tables,
thus making a direct connection between the two parts of the thesis. It is
likely that many other complex models proposed [or road accident data will
have computational problems that could be easily solved by MCMC methods.

Another problem investigated in the context of multiple accident frequen-
cies was ranking the sites. The ability to rank the sites using multiple response
models gives another dimension to practical efforts in this area, selecting the
hazardous sites according to different criteria. The ranking process was done
for the four types of accidents investigated by three models selected by the
DIC criterion, that is (P-ga), (P-MNre) and (P-MN1). One ranking measure
used was the probability that a site is the worst one. Other ranking measures
used were the posterior distribution of the rank of the mean parameter Ay,
for all three models, and the posterior distribution of the rank of the resid-
ual terms after removing the covariates, that is log(ui) + 37, for (P-ga) and
(P-MNre). The posterior distribution was described by its median and 2.5%
and 97.5% percentiles. The rankings given by different models were compared

using some scatterplots and found to be similar.
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10.2 Conclusion

The main conclusion emerging from this research is that it is better to start
the analysis of accident data by a multivariate approach. For both types of
accident data, either contingency tables or accident frequencies at sites, it is
advisable and feasible to do this as shown in this thesis.

Sometimes, the graphical models proposed can be collapsed onto a smaller
subset of variables. Then the analysis can be continued with other statistical
techniques. An incorrect simplification of the analysis could lead to Simpson’s
paradox.

Graphical representations are an useful instrument for communicating re-
sults and models to a large audience, Graphs can help to extract conelusions
from the statistical analyses by, for example, teading conditional independen-
cies between subsets of variables on the conditional independence graph, or to
specify models, like the fully Bayesian models analysed in WinBUGS.

It was revealed that speed limit and the number of vehicles involved influ-
ence directly accident eharacteristics responsible for road safety, like accident
severity and the number of casnalties. Other variables like road class, road
surface conditions and the presence of a pedestrian crossing within 50m are
not directly associated. The conditional independencies emphasized for the
subset of STATS 19 data for Bedfordshire county, for Hampshire county and
for those two sets of data pooled together, show that it is wrong to extend
conclusions found at county level to a more aggregated level. The type ol con-

clusions revealed by graphical models and graphical chain models developed
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in the first part of the thesis can help local authorities in designing better poli-
ctes and in planning research. The results may also be useful in fundamental
research involving the conceptualisation of data structures of road accidents
as described in Lupton, Wing and Wright (1998).

Since MCMC methods help to overcome many computational problems,
almost any fully Bayesian model can be fitted and any arbitrary function of
the parameters of the model can be posteriori estimated. This suggests that
fully Bayesian models deserve more attention and more cormnplex questions can
be answered in this context.

A statistical approach that can be used for inference on any aspect of the
data, modelling multiple accident frequencies of different type, was shown in
the second part of the thesis. This is the first analysis of this type in this area
of research.

The predictive accident models developed here can be used for a wide
range of applications. The novelty of these models is that, for the first time in
this area, qualitative as well as quantitative conclusions can be drawn at the
same time. 1t was proved that a parallel approach, fitting several univariate
regression models, leads to unreliable inference and should be avoided.

Practitioners use either the observed accident frequencies or the posterior
mean of the expected number of accidents at a site, in an empirical Bayes
approach, to rank hazardous sites. Both are wrong and a better approach is
described and applied in this research. As emphasized in Chapter 9, rank-

ing the sites ought to be done by the posterior distributions of ranks of the
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expected accident rates, that is of the ranks ry; of Ay, The posterior distrib-
ution is then used for a point estimation of the ranks and for calculating the
associated credible intervals. This seems to be an almost impossible task for
traditional methods because it is not easy at all to provide estimates of ranks
of parameters. However, as it was shown in this thesis, under a fully Bayesian
framework, it 1s possible to find a whole sample from the posterior distribution
of any arbitrary functions of parameters, so for ranks as well. The ranks of
observational units, such as sites in this thesis, are notoriously uncertain and
a measure of uncertainty associated with rank estimates should be considered
in the final analysis. Credible intervals are a perfect solution to this problem
and there is no additional modelling effort for calculating them. Once we have
the MCMC output for the model investigated, any empirical summaries can
be calculated easily.

Another way of identifying the hazardous sites, presented in this thesis, is
to calculate the posterior probability that a site is worst. This second method
can be used for long term projects. Applying bad statistical technignes may
have extremely bad consequences for the public. If some really hazardous sites
are left out of the list of sites to be treated, then, not only will large amounts
of public money be wasted, but human lives could be lost as well.

It was also shown that all three explanatory variables used in the second
part of the thesis, that is speed limit, estimated traffic low and link length,
have a significant contribution in explaining accident frequencies. However,

the interactions between speed limit and the other two explanatory variables
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are not significant for all types of accident investigated. The predictive acci-
dent models developed in the second part imply that reducing the traffic flow
will reduce the number of accidents and it was calculated by how much.

The hierarchical Bayesian models developed here for multipie response
variables have been motivated by road accident data. However, they can be

adapted to other areas of research where the modelling of counts is of interest.

10.3 Limitations of the research

The research carried out in the first part of this thesis focused on only two
counties, Bedfordshire and Hampshire, due to time limitations and to the re-
search for the second part of the thesis. However, a more general investigation
would be very much appreciated from the practical point of view by local
autorities.

The data used for developing graphical models in the first part of the thesis
contained only accidents recorded in 1995. A larger set of data, containing road
accidents from several years, may lead to other useful results. Unfortunately,
this extension of the analysis to several scts of STATS 19 data was not possible
given the period of time of this research.

Another idea not exploited here is to consider all counties in Great Britain
with all accidents in the same period of time. Then an additional variable
can be defined for county and it would be interesting to see how this spatial

variable affects the conclusions revealed by graphical models. This would
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be a vast project in itself, involving a lot of data preparation and a lot of
computation.

Some categorical variables such as accident severity, the number of vehicles
involved and the number of casualties involved are ordinal. 1t would have been
ideal if it had been possible to take this information into account. There is
little or no theory of graphical models for variables of this type, only marginal
tests developed for log-linear models being implemented in MIM.

Moreover, the Bayesian model selection procedures proposed in this thesis
may be improved and a software program able to handle large tables would
be a big step forward.

There is no single package that can be used, in a user friendly manner, to
develop the type of modelling proposed in this thesis. However, graphical mod-
els can be quite easily investigated with the package MIM (Edwards, 1995),
and WinBUGS 1.2 (Spiegelhalter, Thomas and Best, 1998) is one of the most
advanced packages that can handle hierarchical Bayesian models. A list of
other packages having implemented various MCMC techniques for various sta-
tistical modelling methodologies is given in Carlin and Louis (1996).

An improved model sclection procedure using Akaike information criterion
1s available on a new version of MIM. However, this version was not available
when the research {or the relevant part of this thesis was carried out.

The problem whether the maximum likelihood estimators of the two para-
meters of a negative binomial distribution are unique is very important. If the

estimators are not unique then the results of the analysis should be carefully
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interpreted. Although the condition given by equation (7.5) can be checked for
any set of data, it would be useful tc know a definitive answer. A simulation
study can provide some hints.

There are some limitations concerning the elicitation of prior distributions.
For the hierarchical Bayesian models the priors used in this thesis followed
the general trend in the literature for modelling generalized linear models
with random effects (Zeger and Karim, 1991; Spiegelhalter, Thomas and Best,
1998; Gilks et al., 1996). Some researchers may prefer more informative
priors. The Bayesian methodology can be improved from this point of view
and this is an area of intensive research. For Poisson-regression models, Doss
and Narasimhan (1994) provided a computing environment within which one
can immediately see the changes in the posterior distribution, corresponding
to the changes in the prior distribution. Unfortunately, this program seems
to be available only for Unix workstations. Subject matter information may
help in developing better informative priors.

The specification of a covariance structure for the random effects g; in
Chapter 8 is not straightforward. A possible model is described in the nexi
section. The difficulty is due to the fact that the random effects account for
information not included in the explanatory variables. Thus, it is difficult teo

interpret the covariance between two random effects.
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10.4 Suggestions for further research

Graphical models for all counties

It was remarked in Section 10.3 that one limitation of this research was the
[ocus ou only two counties, Bedfordshire and Hampshire. As mentioned in
Chapter 5, for the same set of vanables, the data sets of different counties may
be fitted by different graphical models. Without relying on unique models for
each county, a question of interest would be what conditional independencies
are supported by the data across the counties. More specifically, is accident
severity independent of road type, daylight conditions and road surface con-
ditions given the speed limit and the number of vehicles involved?

Another interesting question is what happens when there are several sets
of data corresponding to several years for the same county, with the same
variables investigated. For example, if there are data for Bedfordshire for all
years between 1995 and 1998, relative to the six variables studied in Chapter 5,
can a graphical model] fit all these sets of data separately? Some theoretical

developments on this direction are described in Lyngaard and Walther (1993).

Error in flow estimates

The traffic flow count at a site is usually a rough estimate because measure-
ments are taken not over the entire period under study but over a limited
interval (or intervals) of time. The flows should be calculated as AADTs over
the entire time period for which the accident counts are taken. If Z; is the real

unknown AADT for site & in a multiplicative model, log Z, would be one of
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the explanatory variables. As Z; is usually not known, an estimate @y is used,
calcuhted over a period of time ¢, < Tj. A functional model in which just
one of the explanatory variables is flow, has been briefly described in Maher
and Summersgill (1996). The flow with the true AADT Z, is separated from

the other variables
E(Yx) = Ax = Trexp[B'X + vlog Zi]

and assuming that the estimated traffic flow @ is Poisson distributed with
mean Zity, the log-likelihood is partitioned into two parts, one modelling the
accidents and the other the flows. A fully Bayesian specification of this type

of modelling is given by

Ykl)‘k o~ POiS(}\k)
M = explf'X + ~vlog Z)

Qk|Zk,£j¢ ~ POiS(Zk'ﬁk)

8, ~ N(0,0.0001)

v ~ N(0,0.0001)

and it can easily be extended to multiple response models along the lines

described in Chapter 8.
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A more complex hierarchical Bayesian model
The Poisson-regression model with gamma random effects specified in (8.24)

does not 1mpose a covariance structure on the random effects g, The following

model suggests a possible structure. Forallk =1,2,...,Nandi=1,2,..., M

Yie | i % Pois(Ay) (10.1)
(log his) = 0 = log pi + X, 5;
fiki | briyai = b +oa

B, ¥ N(0,0.001)
b % gamma(w, §)
a=F+W aa=I1+V

az=Fy+ W ag = Fo+ V5

where F1, F3, V¥, Vo are mutually independent and all independent of by;. The
variables Fi, F; model missing information concerning accident severity and

the variables ¥, ¥, concerning number of vehicles. [t is also assumed that

Fy ~gamma(f,¢), F; ~ gamma(f,,$)

VI~ gamma(vy,6), Vo ~ gamma(v,,6)

which implies that

a ~ gamma(fi + v1,6)
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az ~ gamma(fi + vy, 8}
az ~ gamma(fy + v1,6)

ay ~ gamma(f, + vy, 6).

The condition that E{pk) =1for i =1,2,...,4 is equivalent to the following
system of linear equations, subject to the strict positivity restrictions for all

unknowns.

w+fdv = 6 (20.2)
(1) + fl -+ Vg = 6
w3t fotvr = 6

wit fotuve = 6

It must be checked first that this system has proper solutions. This system
of linear equations can be solved on computer, using for example MAPLE V.
The 1dea behind this model was described in Maher (1991) and it was later
followed in Loveday and Jarrett (1992).

The covariance structure of g can be easily calculated as

witf14+e il 21 0 \
52 5z 52
w+fitvs Q0 vz
52 52 )
cov(feri, fhi)ij = (10.3)

watfa 4oy L2

82 6

\ w4+122+vz

§
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and using the system of equations (10.2) this can be further simplified to

Lhow o
1 b
LY 0 v
§ 52
cov (fki, foks )ij = : (10.4)
L f
§ &2
1
5

It can be remarked that this model may be further refined by choosing the
scale parameter of the gamma distribntion of b to be different from §, the
calculations being adjusted accordingly. An immediate consequence will be
that the system of equations (10.2) is nonlinear and the covariance structure

becomes more complicated.

Multiple response empirical Bayes models

Many researchers are more interested 1in empirical Bayes models rather than
in a fully Bayesian approach. For univariate responses, these methods are
thoroughly investigated in textbooks (Carlin and Louis, 1996; Maritz and
Lwin, 1989) and applied on a large scale in modelling road accidents (Hauer,
1997; Mountain el al., 1996; Wright et al., 1988; Jarrett et al., 1982).
However, for multiple responses, empirical Bayes methods are less developed.
Taking either a nonparametric approach in Robbins’ style (Robbins, 1933) or
a parametric approach, the results of empirical Bayes models could usefully
be compared to the fully Bayesian results developed in this thesis. One of the

advantages of empirical Bayes methods is that they are not sensitive to prior
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elicitation. The models can be still specified hierarchically in several stages
but the parameters of the distribution at the penultimate level of the hierarchy

are estimated from data. The estimation process can be very difficult.

10.5 A final comment

Statistical modeiling is recognized as an art. All models are false, otherwise
they will explain the data entirely, but some are useful. Road accident data is
an example of large and complex data requiring advanced statistical techniques
for a good analysis.

The graphical modelling methodology emphasized in this thesis can be ap-
plied in the future to a large range of studies in this area of research. Similacly,
multiple response models as those proposed here can be adapted by other re-
searchers to investigé.tc other questions of interest rclated to traffic and safety

transport. All these contributions can make a difference to a better world.
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Proof of a collapsibility result

The following corollary of Theorem 6.1 shows how collapsibility helps in cal-
culating the maximum likelihood estimates for large tables using known max-
imum likelihood estimates for marginal tables, and it will be used to prove a

collapsibility result for response variable models in this appendix.

Corollary A.1 Let the log-linear model L be collapsible onto a. Then

p(e) = Palia) 1 [f’cl(b)(icub))/{n(‘ibd(b))/N}] (A1)

b
where the product is taken over all connected components b of a®.

The next result, given in Asmussen and Edwards (1983), can be proved in a

different, more explicit way as it is shown below.

Theorem A.1 If L € £, then [, € J, tf and only tf L is collapsible onto «.

In that case M = L, and C = [« U Ly, where b = cl{a%).
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Proof . If L € 7, then
?:u)PC(iaﬂ I 7';:1)
so it follows easily that

pt(ia) = ZPL(iFZ;pM(iu)pc(iacIiu)

= p(i.)
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(A.2)

If it can be shown that M C L, then it will follow that p%(z;) € pl=(i,)

and this is exactly the definition of collapsibility of L onto a.

Note that

pa is denoted here by ple. The inclusion can be shown using the log-linear

expansions, and this is the main difference compared to the constructive proof

given in Asmussen and Edwards (1983). It is obvious that

logp™ (i) = Y ul

fCo
s o _ aUa® E : ala®
logp ("’ﬂ‘ 'zu) - Z u’g; + ugzuﬂs
g1Ce* 92C0%,g3Ca

Therefore from equation (A.2) it follows that

log p“(i) = logp™(ia) + log p° (iae | ia)

= Uit X+ Y ugl,

fCa &1 Ca* 92Cac 93Ca
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and so

ogrt=(ie) = X

Now it is obvious that M = L,. To show that C' = [a] U L; it follows from

equation A.2 that

log p”(tac | 3a) = logp*(z) —log p™ (ia)

_ aUa® Z a
- Z Ugy Yys

g1Calac g2Ca

and it is known that there are interaction terms corresponding to all subsets

of a, that is a is a generator. Thus,

logpc(-iac | 2.) = Z uy + Z 'u‘;?l"”'c + Z ui';’j;.

5,Ca 52 Cat 53Ca

The first sum gives [a]; the second sum contains all u-terms from L that are
given by variables in a° and the third sum contains all u-terms from [ tha
are given by variables in a connected with variables from a° that is those
variables in bd({a®). Therefore, the last two sums give a log-linear expansion
of Lieubaqas) Which is Ly, with b = cl(a®).

Conversely, if L is collapsible onto a then let M = L,,C = [a] U L;, where
b= cl(a®). Then p¥(i,) = pLe(i,) = p¥(i.) by the definition of collapsibility

in Section 6.2. and it has to be proved that p%(i) = p”7(z), where J = (M, C).

Let a® = b U ... U b, be the connected components of a°. Using the global
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Markov property
P (fae | ta) = 7% (4oe | tbdgasy)

and using the independence of the subsets of variables corresponding to the

connected components

'}
P (tae | fvagary) = T[] 27 (45, | tvaes))-
k=1

It is obvious that

Cro Plioystha(ee))  Dlict(br)s Phd(as)
P (b, | tvages)) = === = (A.3)
(e P(%bd(aC)) P(?-bd(ac))

the last equality following because bUbd(a®) = cl(bx)Ubd(a%). Since bd(a®)N
cl(by) = bd(b) C a and « is a generator for C the following Lemma, proved
by Haberman (1974) the first part, and Lavritzen (1982) the second part, can -

be applied

Lema A.1 (Haberman-Lauritzen) [fa; and b are two subsets of variables

of the set of variables of interest X such that

1. aq U b] =X
2. ay and by are separated by a) N'b;

3. a1 N by C ey, where ¢y is a generator of the log-linear model I,

then

BUE) = i i o i) 20 andt (i) = (i)
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Taking a; = bd(e®) and &, = cl(by), it follows from equation (A.3) and

Haberman-Lauritzen lema that

P(Zc(by )+ Thd(acy)
Pivaqacy)
pbd(af)(zbd(a‘))pcl[bk)( Ll(bk])
Pibd(ae)) {72 (Fbager) )/ N }

5 (1, | tbagas)) =

which shows, putting all together that

57 (1) = Pa(s ﬁ [pcl{bk)(icl(bk))/{n(ibd(bk))/N}]

k=1

and using Corollary A.l that 5/ = p*. Hence L = J € J, as required.D



Appendix B

Tables for graphical chain

modelling

Table B.1: Accidents with pedestrian casuelties in Bedfordshire, 1995, a =
0.01

Variables Model formula Method
D.H,T [T1DH] Dec.
(T)(DH] Unres.

[T][DH] Exact.

L ,R,S| D HT [RI[LS||HL][DHT] Dec.
[RS|[HR)|LS|[HL][PHT|[DS] Unres.

| R)[LS)[H L) DHT) Exact.

P,N|L,R S, D,HT [PRT|NS|[DHLRST) Dec.
(NS\[PTY[DHLRST) Unres.

(NS|[PT)[DHLRST) Exact

A C|P,N.L,R. 5D . HT [AHRST|CS|DHLNPRST) Dec.
[ASI|CS\DHLNPRST] Unres.

[A][CN][DHLNPRST) Exact
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Table B.2: Accidents with pedestrian casualties in Bedfordshirve and Hamp-
shire, 1995; « = 0.03

Variables Model formula Method
D.HT [HT)[DH] Dec.
[HT)[DH] Unres.

[HT|[DH] Exact.

L,R,S|DHT [(HRT|LST)HLTDHT) Dec.
U ST)[HR)[H LS)[DHT) Unres.

(HST|[HR) HLS|DHT)] Exact.

PN|LR S DHT [DHLPRT||NS|[DHLRST) Dec.
[NS|[LPT)[DHLRST) Unres.

[NS|[DLPRT)DHLRST) Exact

A,C|P,N,L,R,S,D,H, T [ACDHPRST)[CDHNPRST)DHLNPRST) Dec.
[AST||[CNPS|[DHLNPRST) Unres.
[ACHST)|[CHNST)DHLNPRST] Exact

Table B.3: Accidents with pedestrian casualiies in Bedfordshire and Hamp-
shire, 1995, oo = 0.01

Variables Model formula Method
D,H,T [T\[DH] Dec.
[T[DH] Unres.

[T DH] Exact.

L.RS|DHT (HR)[LST)[HLT)||DHT} Dec.
(ST [HR|[HL)|LS|[DHT) Unres.

[HSTNHR)|HLS)|DHT) Exact.

PN|L RS D HT (DHLPRT|[NS)|DFLRST Dec.
[NPS|[LPST|[DHLRST) Unres.

(NS DLPT||DHLRST) Exact

A,C|P,N,L R.S,D HT [ACHP|[ADHPRST|[DHLNPRST]  Dec.
[AS)[CNP|[DHLNPRST) Unres.
[ACHS)|CHNS)|DHLN PRST] Exact
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Table B.4: Accidents without pedestrian casualties in Bedfordshire and Hamp-
shire, 1995; o = 0.05

Variables Model formula Method
D.HT [HT|[DH] Dec.
(HT)[DH)] Unres.

[HT)[DH)| Exact.

L,R,S|D HT (HLRST|[DHRST) Dec.
[HLRST||DHRT) Unres.

[HLRST|[DHRT) Exact.

N|L,R,S.D,H.T (DHLNRST] Dec.
[DHNRST|DHLRST] Unres.

[DHLNRST] Exact

AC|N,LRS D HT [ACDHLNRST) Dec.
[ALNS|[CHNRS|[DHLNRST) Unres.

[ACDHNS|[CDHLNST)[DHLNRST]  Exact

Tuble B.5: Accidents without pedestrian casualties in Bedfordshire and Hamp-
shire, 1995; a = 0.01

Variables Model formula Method
D.HT [HT|[DH] Dec.
[HT||DH] Unres.

[HT||DH] Exact.

L ,R,S|\D,HT [HLRST||DHRST) Dec.
[HLRST|[DHRT) Unres.

[(HLRST|DHRT] Exact.

N|L RS DHT [DHLN RST] Dec.
(DHNRST|[DHLRST) Unres.

([DHNRST|[DHLRST) Exact

A C|N, L. RS D HT [ACDHLNRST)] Dec.

[ALNS|[CHNRS)[DHLNRST)] Unres.
[ACHNS)CDHNST\[DHLNRST|  Exact
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Appendix C

Comparison of the (P-ga) and

(P-logN) models

The plots on the left correspond to model (P-ga) (model 1 here) given in
Chapter 9 by equations (9.1) and those plots on the right correpond to model

(P-logN) (model 2 here) given in Chapter 9 by equations (9.12). The fit is
better for model (P-ga) for each type of accident.
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Ranks with credible intervals
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Ordered ranks with credible
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Appendix F

Comparison of ranks

In the following scatterplots the posterior median of ranks, as given by (P-
MNre) and (P-MNI1), are compared to the posterior median of ranks as given
by (P-ga). The model (P-MNre) gives closer matchings of ranks with the
base model (P-ga) than the matchings of model (P-MN1). This is not very
surprising, (P-ga) and (P-MNre) having a similar model specification and using
the same covariate informatien. On the contrary, the modej {P-MN1) is based
on different “distributional” assumptions, more exactly on the multivariate
Poisson-log normal distribution, and it does not use any covariate information.
For fatal or serious accidents, the plots of (P-MN1) against (P-ga) are more
volatile but still close in the right extréme of the plot, where 1s the interest of
the practitioner. For slight accidents, the plots of (P-MN1) against (P-ga) are
improving; this suggests that the sparsity of the data may be the cause of the
difference in ranking. From the plot comparing ranks given by (P-MN1) with

those given by (P-ga), for fatal or serious accidents with 2+ wvehicles, it can be

329
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seen that there are more triangles above the diagonal line for the sites in the
middle of the ranks. This means that the (P-MN1) model gives larger right

ends of the credible intervals of the ranks than those given by model (P-ga).
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Ranks by P-/Nre mode
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Posterior statistics for

regression coefficients
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Table G.1: Estimates for mized Poisson-gamma regression model

1 ST(logl) ST(ogF) S SL ST

Statistic By Bz Bis Pu Pis Bis
mean 0.55 1.20 0.60 -0.29 0.04 -0.38
sd 0.09 0.11 0.09 010 0.08 0.4
25 % 0.36 1.00 0.41 -0.49 -0.13 -0.66
median 0.54 1.20 0.60 -0.29 0.04 -0.37
97.5%  0.72 1.43 0.79 -0.09 0.20 -0.10
Statistic By 822 Bas Baa Bas a6
mean 0.85 1.49 0.72 -029 0.09 -0.01
sd 0.08 0.09 0.08 0.08 0.07 0.11
25 % 0.70 1.30 0.56 -0.47 -0.06 -0.25
median  0.85 1.49 0.72 -0.29 0.09 -0.01
97.5 % 1.00 1.70 0.87 -0.12 024 0.20
Statistic By Faz Pa3 Faa Bas Bs6
mean 1.09 1.28 0.57 -0.16 -0.10 -0.26
sd 0.07 0.10 0.09 0.08 0.08 0.13
2.5 % 0.94 1.08 0.47 -0.34 -0.26 -0.52
median  1.09 1.28 0.57 -0.15 -0.10 -0.26
97.5 % 1.23 1.49 0.75 0.00 005 -0.02
Statistic  Ba Baz B4z Bag Bas Bas
mean 2.00 1.29 0.69 -0.35 -0.00 -0.08
sd 0.06 0.09 0.07 0.07 0.06 0.10
2.5 % 1.87 1.12 0.55 -0.48 -0.12 -0.28
median  2.00 1.30 0.69 -0.35 -0.00 -0.08

975 % 213 1.46 0.8 -0.21 013 0.12
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