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Abstract Wireless Sensor Networks have seen a tremendous growth in various ap-
plication areas despite prominent performance and availability challenges. One of the
common configurations to prolong the lifetime and deal with the path loss phenomena
is having a multi-hop set-up with clusters and cluster heads to relay the information.
Although researchers continue to address these challenges, the type of distributions
for arrivals at the cluster head and intermediary routing nodes is still an interesting
area of investigation. The general practice in published works is to compare an em-
pirical exponential arrival distribution of wireless sensor networks with a theoretical
exponential distribution in a Q-Q plot diagram. In this paper, we show that such com-
parisons based on simple eye checks are not sufficient since, in many cases, incorrect
conclusions may be drawn from such plots. After estimating the Maximum Like-
lihood parameters of empirical distributions, we generate theoretical distributions
based on the estimated parameters. By conducting Kolmogorov-Smirnov test statis-
tics for each generated inter-arrival time distributions, we find out, if it is possible to
represent the traffic into the cluster head by using theoretical distribution. Empirical
exponential arrival distribution assumption of wireless sensor networks holds only
for a few cases. There are both theoretically known such as Gamma, Log-normal
and Mixed Log-Normal of arrival distributions and theoretically unknown such as
non-Exponential and Mixed cases of arrival in wireless sensor networks. The work is
further extended to understand the effect of delay on inter-arrival time distributions
based on the type of medium access control used in wireless sensor networks.
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1 Introduction

Wireless Sensor Networks (WSNs) rely on cooperative effort of the densely deployed
sensor nodes to gather information from the habitat [1–3] typically to achieve either
environmental monitoring or target tracking and sensing. Depending on the area of
application, information monitoring and reporting may further be classified as con-
tinuous, periodic, or event-based (driven) [1, 4]. An example may be temperature
monitoring where the first case involves reading and reporting periodically irrespec-
tive of the changes involved, the second scenario may be where only variations from
previous readings are reported and finally, the case where a report is sent only when
a specific temperature is reached. In all these cases, data arrival delay is clearly de-
termined by the nature of application and the chosen monitoring scheme.

Apart from the common challenges of WSNs including energy consumption, net-
work connectivity, data aggregation, computation power, limited sensor node mem-
ory, the end to end delay of transmitted packets remains a serious concern in relation
to Quality of Service (QoS) provision [3, 5]. In [4], cross layer analysis of the end
to end delay distribution in WSNs was studied and the results show that inter-arrival
time (time between two consecutive arrivals) mostly follow exponential distribution
except for low periodic traffic. There are many studies which consider exponential ar-
rivals to sensor nodes [6–10]. However, in other quarters there has been mixed opin-
ions on the appropriate distribution for modelling inter arrival delay of WSN data
packets [2, 4, 11]. In other works, there has been mixed opinions on the appropriate
distribution for modelling inter-arrival time of WSN data packets [2]. This strongly
indicates the the need for a study to identify acceptable types of distributions for
inter-arrival times used in modelling WSNs.

Characterization of the end-to-end delay distribution is fundamental for real-time
communication applications with probabilistic QoS guarantees. Indeed, the cumu-
lative distribution function (CDF) of the delay for a given deadline can be used as a
probabilistic metric for reliability and timeliness [4]. Researchers have also continued
to develop algorithms and protocols to address some of the challenges like balancing
cluster energy consumption in clustered WSNs as well as path loss effects [12, 13].

In this paper, an investigation is carried out to establish the most appropriate dis-
tribution for the inter-arrival times at Cluster Heads (CH) and relay nodes. The pro-
cess is started by identifying and characterizing various applications and determining
suitable data delivery models depending on application requirements. Simulation re-
sults are presented and analysed in detail to characterize end to end delay between
arriving data packets. The effects caused by medium access control (MAC) proto-
col properties are also analysed by experimenting with well known MAC protocols.
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Most existing WSN simulators assume that exponential distribution is valid for char-
acterising arrivals of data packets at nodes within the WSN. To the best of the our
knowledge, this is the first work that provides statistical substantiation of the results
along with probabilistic analysis of arrival distributions at the CH or relay nodes in
WSNs.

Kolmogorov-Smirnov (K-S) test statistics are used to decide whether a certain
type of distribution function assumption is appropriate for inter-arrival time distribu-
tion. The rest of the paper is organised as follows: Related work in this area is summa-
rized in Section 2. Section 3 discusses the data delivery models that are characterised
based on the application requirement along with the related performance aspects. A
detailed description of the communication paradigm considered in this work is pre-
sented in Section 4, followed by the system’s detailed discussions on inter-arrival
distributions along with various aspects of the case studies like the effects of MAC,
data rates and application types are provided in Section 5. Simulation results for
inter-arrival distributions at the CH are presented along with their equivalence using
statistical studies and further probabilistic analysis are presented in Section 6. Finally,
Section 7 concludes the paper with detailed explanation about various distributions
in Appendices A and B.

2 Literature Survey

Performance modelling and analysis continues to be of great importance in support-
ing research as well as in the design, development and optimization of WSN and their
applications. The current trend towards the use of WSNs for sensing and control now
has the potential for significant advances, not only in science and engineering, but
also, on a broad range of applications. This brings the need for performance mod-
elling for the optimization of deployment of WSNs. However, the special design,
characteristics of sensors and their applications separate them from the traditional
networks. These characteristics pose great challenges for the architecture, protocol
design, performance modelling and their implementation. It is essential to consider
energy efficiency of WSNs because of their limited energy sources (most of the times
batteries). In order to minimise the energy consumption, one of the effective tech-
niques is to place sensors in sleep mode during the idle period [14]. In [15–17], a
wake-up scheduling scheme at the MAC layer is proposed, which wakes up the sleep-
ing nodes when there is a need to transmit or receive, thus avoiding a degradation in
network connectivity or quality of service provisioning.

Characterising delay in distributed systems has been considered in various con-
texts. However, it can be observed that accurately characterizing end-to-end delay
at the CH is still an open problem. Considerable amount of research on sensor net-
works reported recently has been ranging from network capacity and signal process-
ing techniques, to topology management, algorithms for traffic routing and channel
access control. The model presented in [2] is used to investigate system performance
in terms of energy consumption, network capacity, delay in data delivery along with
the trade-off’s that exist between performance metrics and sensor dynamics in ac-
tive/sleep modes. A Markov model is presented for WSNs, where the nodes may
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enter into sleep mode. Through standard Markovian techniques, a system model rep-
resenting the behaviour of a single sensor has been constructed along with the dynam-
ics of the entire network, and the channel contention among interfering sensors. The
proposed solution of the system model is then obtained by means of a Fixed Point
Approximation (FPA) procedure, and the model has been validated via simulation.

Due to hardware constraints for energy efficiency, optimizing node packet buffer
and maximizing the performance is necessary to improve the Quality of Service(QoS)
for transmission in WSNs. In [18], a packet buffer evaluation method using queuing
network models is proposed where, the blocking probabilities and system perfor-
mance indicators of each node are calculated using an approximate iterative algo-
rithm. The model considered focuses on a single server model in WSNs and the
method used to calculate packet buffer capacity for nodes also indicate that the sink
node requires higher performance, when compared to the other nodes in the network.
The Markov model of the sensor sleep/active dynamics is presented in [19], that pre-
dicts the sensor energy consumption by acquiring this information for each sensor,
while a central controller constructs the network energy map representing the energy
reserves available in various parts of the system. Only a single node is represented by
a Markov chain, while the network energy status is derived with the help of simula-
tion studies.

With regard to analytical studies, results on the capacity of large stationary ad-hoc
networks are presented in [20]. Two network scenarios were considered; one includ-
ing arbitrarily located nodes and traffic patterns, while the other one with randomly
located nodes and traffic patterns. An analytical approach on network coverage and
connectivity of sensor grids is presented in [21]. The sensors are considered unre-
liable and fail with a certain probability leading to random grid networks. Results
on coverage and connectivity are derived as functions of key parameters such as the
number of nodes and their transmission radius.

Several approaches based on simulations and experiments, have been proposed
for performance evaluation of IEEE 802.15.4 networks [22]. In [23], an analytical
framework based on a Markov chain characterization of the MAC protocol is pro-
posed for IEEE 802.11 networks in saturation conditions. Based on this pioneering
work, several approaches have been proposed for the characterization of the MAC
performance in IEEE 802.15.4 networks with a star topology. In this work, a scenario
with acknowledgement (ACK) messages is considered and an evaluation of the net-
work performance in both saturation and non-saturation regimes is presented, while
trying to characterize the conditions under which the network enters the saturation
region [24]. A simple Markov chain theoretical model to characterize the sensors as
well as the channel status is proposed in [25]. The models shows good agreement with
ns-2 based simulations. This model allows to investigate throughput and energy con-
sumption metrics within WSNs. In [26], an extended framework of the one proposed
by [25] is presented for a 2-hop network scenario, i.e., networks where sensors com-
municate with the coordinator through an intermediate relay node, which forwards
data packets from the sources (the sensors) towards the destination (the coordina-
tor). Similar works have been presented in [27, 28], emphasising the use of a relay
for interconnecting two different clusters in IEEE 802.15.4 networks and analysing
the performance through a queueing theoretical analysis. However, the proposed sce-
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nario models the (simpler) cases where the relay does not content the medium access
to the sensors. Hence, it is observed that accurately characterizing arrivals at the clus-
ter head in WSNs is still an open problem. Although it is quite difficult to analyse
each possible application in WSNs, it is sufficient to analyse each class of applica-
tion classified by data delivery models, as most of these applications in each class
have common requirements on the network [29]. A well established simulation tool
Castalia which provides realistic node behaviour, wireless channel and radio models,
and enables to mimic and analyse the real life scenarios for various types of applica-
tions is employed in this study.

3 Characterising Data Delivery Models

From the point of view of network QoS, the network is concerned with how to trans-
mit the sensed data from the sensor field to the sink node, fulfilling the corresponding
required QoS. The factors that characterize the application requirement are presented
in Table 1. The practical realization of the current WSN applications depends on the
energy-efficient, real-time and reliable communication capabilities of WSN. WSNs
have distinct traffic characteristics. The primary traffic is generally a many to one type
communication, i.e., from the sensor nodes to the base station, in the upstream direc-
tion. Upstream traffic delivery can be classified as: continuous, event driven, query
driven and hybrid-based data delivery models. Depending on their specific applica-
tions, these data delivery models have different QoS and reliability requirements [30].
These data delivery models greatly influence the protocol design and affects the per-
formance of WSNs. The four models and their related performance aspects are dis-
cussed below:

Table 1: Application Requirements of Data-Delivery Models

Factor Event-Driven Query-Driven Continuous Hybrid

Interactivity 3 3 7 3

End-to-End Performance 7 7 7 7

Delay Tolerance 7 Query-specific 3 7

Criticality 3 3 3 3

Event-driven Delivery Model - most event-driven applications in WSNs are inter-
active, delay intolerant (real-time), mission critical and non-end-to-end applications.
When an event occurs, the sensor node begins to report the event, and possibly an
associated value, to the sink. The application needs to receive the desired data reli-
ably and as quickly as possible. The query-driven data delivery model is very similar
to the event-driven model, except that the data are pulled by the sink where as in
event-driven models, the data are pushed to the sink. The application in most of the
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cases may not be an end to end one, i.e., one end of the application is the sink, where
as in the other end, a group of sensor nodes within the area that are influenced by
the event. Also, the traffic generated by a single sensor node may be of very low in-
tensity, however, more random and unforeseeable bursty traffic may be generated by
a set of sensors due to the occurring event. Therefore, the routing efficiency for this
delivery model is heavily dependent on the frequency of occurrence of the events.
CSMA medium access arbitration is a good fit for event-based data delivery models
since the data are generated sporadically.

Query-driven Delivery Model - similar to event-driven applications, most query-
driven applications in WSNs are also interactive, mission critical, query-specific, de-
lay tolerant and non-end-to-end applications. Based on the application considered,
queries can be sent on demand in order to save energy. Sometimes, the base station
may be interested in a specific piece of information that has already been collected by
the sensor nodes. The sensor only reports the observed data in response to an explicit
request from the user. In this delivery model, the sink broadcasts the query message,
a path is constructed automatically when the query arrives at the sensor nodes, and
the sensor nodes report their findings according to the request in the query message.
Query-driven systems store gathered information locally and communicate it on re-
quest. This type of sensor network can be useful in logistics or home applications,
but is not very common in applications of environmental monitoring.

Continuous Delivery Model - each sensor reports regularly, perhaps continuously
or periodically to the sink at a specified rate. Some networks apply a hybrid model
using a combination of continuous, event-driven and query-driven data delivery. Time
based medium access control protocols can be used to achieve significant energy
savings in case of continuous data delivery models.

Hybrid Delivery Model - some networks apply a hybrid model using a combi-
nation of continuous, event-driven and/or query-driven data delivery, as the types of
sensors and the data they sense may be very diverse. For example, data may be re-
ported continuously by some nodes, and the sink may need to query information from
other sensor nodes.

4 System Communication Paradigm

A system of Wireless Sensor Network with identical sensor nodes deployed in a clus-
ter tree topology is considered. The sensor nodes used are assumed to self-configure
during initial deployment and remain stationary thereafter. All the nodes in a cluster
and adjacent CHs are considered directly connected to the CH. The primary focus
is to study the inter-arrival distribution of packets at the CH. The total arriving data
packets at the CH at any given time is therefore equal to the sum of all the inde-
pendent arrivals from the cluster nodes and arrivals from adjacent CHs forwarding
their data to the sink. For this case continuous monitoring of event driven systems are
considered.

In this set up all nodes are considered to be equipped with an omnidirectional
antenna and they also have a common maximum radio range r within which they are
able sense event occurrences and also transmit information to the CH based on the
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802.15.4 standards. The topology of interest is shown in Figure 1. For simplicity, all
sensor nodes are shown connected directly to the CH0 in Figure 1. CH0 can forward
data to the sink either through CH1 or CH4, whereas CH2 and CH3 forwards their
packets to the sink passing through CH0. It is also shown that nodes N1 to N8 are
directly connected to the CH0.

CH0

CH2
CH3

CH4CH1

Sink

N1 N8

N6

N5

N3

N4

N2

Fig. 1: Network topology of the reference scenario

Each sensor node is able to independently monitor its habitat and organise the
information sensed into fixed data units storable at the sensor buffer before finally
forwarding to the CH. The buffers, both at the sensor nodes and at the CH are assumed
to have infinite capacity and are follows First in First out (FIFO) queuing discipline.
The Cluster Head is only able to receive or transmit at one go within the assigned
time slots of unit duration. Once Information sensed and aggregated at the nodes are
forwarded to the CH, it finalizes cluster aggregation and transmits all the information
to the sink either directly or through other intermediary CHs. It is assumed that at
least one path always exists towards the sink [2].

In this study continuous monitoring applications where the nodes periodically
(deterministic) sense and transmit information are considered for various MAC pro-
tocols, in order to see the effects of MAC protocols on the distribution of arrival
process for the CHs. Castalia simulation environment is employed in order to analyse
the inter-arrival distribution at the CH. For each experiment, packet arrival rate and
number of nodes is set at desired values. Desired MAC properties; TMAC, CSMA,
and no MAC(no MAC protocol is applied) are then considered for each experiment.
The generated inter-arrival distribution time results are then further analysed using
statistical tools to identify the actual distribution pattern.
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5 Detailed Analysis of Case study and Simulations

5.1 Inter-Arrival Distributions

Providing QoS guarantees in terms of delay, jitter, and throughput has been the main
focus of researchers, as the connectivity between different domains improves, also
improving the overall performance of the network. End-to-end QoS guarantees are
complicated by the inherent differences in the nature of the wireless media. There-
fore, providing QoS guarantees in a network, in general, requires sophisticated traf-
fic management and admission control procedures. This requirement is even more
important in networks of low-power, low-data-rate sensor nodes, where network re-
sources are scarce and dynamic. Considering the non-deterministic nature of com-
munication due to wireless channel errors and traffic characteristics, probabilistic
analysis of network performance is crucial to provide QoS guarantees.

One of the most important metric of QoS is the probability distribution of inter-
arrival times of packets in WSNs. In order to characterise the distribution of packet
inter-arrival times, the number of arrivals are considered from the numerical results
provided by Castalia. In a typical cluster network, the inter-arrival time is charac-
terised by the following: the resulting job arrivals at the CHs is a collection of jobs
from locally generated packets and relay packets from other neighbouring CHs. Lo-
cally generated packets consists of the sensed information by the CH itself and from
other cluster nodes in the clusters. We carry out investigation to establish the most
appropriate distributions suitable for modelling the inter-arrival distributions of these
packets at the CH. The inter-arrival time of the packets received by the CH depends
on the application requirements, with which the sensor data are generated. The gen-
erated traffic mainly depends on the physical phenomenon of interest and the type of
application, while the relay traffic depends on the network parameters. For evalua-
tion purposes, a clustered network is considered where the inter-arrival distribution is
found for the CH under the contention from the cluster nodes. The distribution of the
inter-arrival time of the packets is recorded at the CH. Each of the nodes are inter-
related according to the traffic constraints. Each cluster node transmits its generated
packets to the corresponding CH, where the CH aggregates the packets received from
its cluster nodes, along with its own generated packets and relay packets from other
neighbouring CHs and forwards them to the next CH on route or directly to the sink.
In other words, the sum of the incoming relay traffic rate at each CH is equal to the
transmitted traffic rate from each of the cluster node.

5.2 Event-driven and Continuous-monitoring Applications

The arrival time of the generated packets from each sensor node sent to the CH de-
pends on the application requirements, from which the sensor data are accordingly
generated. Depending on the type of application, i.e., in case of event-based applica-
tions, the sensor node begins to report the event and possibly an associated value to
the CH or to the sink (if the node is a CH itself), when an event occurs. In such cases,
the data generated are often sporadic. Considering such physical events, e.g., fire
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alarm system, temperature sensing systems etc., the event being monitored do not
occur very frequently, i.e., occurring at irregular intervals in time. Extensive work
has been already carried out in estimating the distribution of inter-arrival time of
the packets at each node, considering physical events that do not occur very often.
In [4], it was shown that the probability of any event occurring at any time is gov-
erned by a Poisson’s process, and the inter-arrival times are exponentially distributed.
Query-driven applications are also very similar to event-driven applications in terms
of arrival time of the generated packets from each sensor node to the CH. This is
because they also depend on the application requirements.

In applications involving the source sensors sending their sensed data continu-
ously to the sink, for example, in a temperature-sensing systems, the sensors send
their data to the cluster head/sink in a continuous manner throughout the time, at a
specified rate. The deployment at Great Duck Island [31] is an example of a con-
tinuous monitoring network, where the nodes are capturing the movement of Petrels
once every 5 to 10 minutes. The class of continuous data delivery model can be fur-
ther classified, depending on the data rate of operation. Although, WSNs are usually
considered as very low data rate networks, there is a great potential to utilize the
benefits of WSNs for high data rate and low delay demanding applications, such as
media streaming and critical control. Examples of low data rate sensors include tem-
perature, humidity, and peak strain captured passively whereas, examples of high data
rate sensors include strain, acceleration, and vibration sensors.

5.3 Effects of MAC

Channel contention plays an important role in causing additional delay, queuing de-
lay and wireless channel errors at the CH due to the job arrivals from cluster nodes
and forwarded data from other CHs. The MAC layer is responsible for scheduling
and allocation of the shared wireless channel which eventually determines the link
level QoS parameters, namely MAC delay. MAC protocols provide the greatest in-
fluence over communication mechanisms and provide the most direct influence over
utilization of the transceiver, as transceiver that constantly senses the channel will
quickly deplete the sensor node energy resources and shorten the network lifetime
to unacceptable levels. The main design goal of a typical MAC protocols is to pro-
vide high throughput and QoS. On the other hand, wireless sensor MAC protocol
gives higher priority to minimize the energy consumption rather than the QoS re-
quirements. Hence, characterization of inter-arrival distribution is fundamental and
can be used as a probabilistic metric to estimate the QoS in WSNs. Channel con-
tention is a serious problem in WSNs resulting in collisions, re-transmissions, energy
depletion, and ultimately loss of event reports. MAC protocols employ a back-off al-
gorithm to resolve contention among nodes to acquire channel access. Most common
contention-based MAC protocols can be employed such as CSMA or T-MAC for
transmissions to keep the energy consumption low, reducing the amount of energy
wasted on idle listening, in which nodes wait for potentially incoming messages,
while still maintaining a reasonable throughput [32].
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Majority of the WSN MAC protocols are contention-based, wherein the con-
tention window size setting involves an important trade-off between the collision
probability and idle listening durations in contentions where both are aimed to be
lowered for efficient network operation. Sensor network MAC protocols often trade
performance characteristics, such as throughput and latency, for a decrease in energy
consumption to lengthen a sensor node’s lifetime. The key challenge of supporting
real-time data transmission in CSMA-based model is the non-deterministic nature
of delay for a successful transmission of a data packet. CSMA/CA is a contention-
based technique where the node needs to sense whether the channel is idle before it
can transmit a packet. If the channel is not idle at that time, the node needs to wait for
a certain period of time before it can sense the channel again. This scheme makes the
delay time for a successful transmission non-deterministic. If there is a duty cycle in
place (for example, like in TMAC) then whenever the node back-off’s, it also goes to
sleep. When it is time to wake up there is an extra delay before the node can sense
the channel. The nodes (excluding the sink) turn off their radio periodically to save
energy. When any node has a packet to send, it starts to repeatedly transmit request
to send (RTS) beacon packets based on CSMA/CA manner, i.e. through carrier sense
and random back-off manner, and therefore causing delays. This extra delay slightly
increases the probability of collisions, but on the other hand, a node can save consid-
erable energy (especially in heavy traffic where it is backing off often) [32]. Some
parts of the delay can be governed by equations, such as the transmission time of a
packet by the radio which obviously depends on the data rate of the radio and the
size of the packet. But most of the delay happens because of the MAC protocol. An
example could be that the MAC layer is waiting for the channel to be clear or wait-
ing for the active period to commence. Since retransmissions involve the MAC each
time, then most of the delay of a retransmission packet will be due to the MAC as
well. Hence, buffering the packet for retransmission, will cause unnecessary delay,
affecting the performance of the network. The delay distribution models presented
in the literature do not consider the uncertainties due to random back-off’s because
of the MAC protocols. Therefore, it is quite an important task to characterise the
inter-arrival distributions at the CH especially when considering the affects of MAC
protocols, causing delays.

5.4 Case Study and Simulation Parameters

Most of the applications in WSNs have common requirements on the network. There-
fore, in order to analyse possible applications a typical clustered network scenario
where nodes transmit sensed data to the CH is considered. Importantly, in order to
characterise the distribution of inter-arrival time of packets, case studies based on
typical scenarios are considered. The real contribution here is to provide statistical
substantiation of the results along with probabilistic analysis of statistical distribu-
tions of the arrival distributions at the CH and relay nodes in WSNs.

Simulation results are obtained with simulation package Castalia, the WSN
framework of OMNET++. It is mainly used for initial testing of protocols and/or
algorithms with realistic node behaviour, wireless channel and radio models. The
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OMNET++ platform is an extensible, modular, component-based C++ simulation li-
brary and framework, primarily for building network simulators. Castalia is highly
tunable, features an accurate radio model based on the work of the authors in [33].
It also features physical process model, considering clock drift, sensor energy con-
sumption, CPU energy consumption, sensor bias etc. Specific details related to un-
predictability of the wireless channel, energy spent in transmission/receiving packets,
performance degradation experienced by duty cycles, collisions are well established
in Castalia [34].

In order to characterise the distribution of packet inter-arrival times at the CH, a
typical scenario in WSN applications considering constant transmissions from nodes
to CH, having cluster networks of various sizes (from 10 nodes to 40 nodes) are
considered. The following parameters are used throughout the simulations, unless
otherwise stated. A CC2420 chip, compatible with 802.15.4, is used to provide wire-
less communication, operating at 2.4 GHz and providing a data rate of 250 kbps. For
TMAC and CSMA, the internal MAC buffer size in packets is 32. The packet size is
considered to be 105 bytes [35]. The simulation scenarios are chosen from the exam-
ples of prototyped applications for WSNs presented in the literature [36]. Although
it is quite difficult to analyse each possible application in WSNs, it is sufficient to
analyse each class of application classified by data delivery models, as most of these
applications have common requirements [29]. R software environment for statistical
computing and graphics is used for K-S test and statistical evaluation.

6 Numerical Results and Discussions

In table 14 below, we report the results of finding theoretical distributions to the
empirical arrival distributions of simulated data series at the CH and the intermediary
routing nodes. The first column presents the number of observations in the simulated
series. The second column displays estimated Maximum Likelihood parameters of
empirical distributions 1.

The well-known theoretical distributions corresponding properly to the empirical
distributions of the simulated data series are Exponential, Gamma, Log-Normal and
Mixed Log-Normal distributions. The detailed information about these distributions
can be found in Appendix A.

Columns three and four report the K-S Test Statistics and their P -Values. Al-
though we display Q-Q plots to compare empirical distribution to theoretical dis-
tributions whether these two population distributions are exactly the same, we also

1 When the joint density for a set of variables is viewed as a function of the parameters alone, that
function is called a Likelihood function. Hence the Likelihood function, L(θ), is defined as L(θ) = fθ(x).
Here log fθ(x) is a scalar function of a k-dimensional variable θ and x = (x1, x2, . . . , xn). A value of
the parameter θ that maximizes L(θ) is called a maximum likelihood estimator (MLE), and is denoted by
θML. It is often easier to maximize the log-likelihood function, logL(θ), and since the (natural) logarith-
mic function is monotonically increasing in θ, the same value of θML maximizes bothL(θ) and logL(θ).
Under quite general conditions, MLEs have a number of favourable properties. Consistency: Under mild
conditions, MLEs converge to the true parameter value as the sample size increases. Asymptotic Normal-
ity: As the sample size increases, the distribution of the MLE approaches that of a (potentially) Multivariate
Normal variables.
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conduct a statistical test to prove it. Checking by eye, the quantiles for the first dis-
tribution versus the quantiles for the second distribution will fall on the 0 – 1 line
of the Q-Q plots can be insufficient. It can be both difficult and subjective to decide
how differences between distributions will yield various kinds of deviations from a
straight line. Appendix B presents details about the probability plots or Q-Q plots.

K-S Test Statistics belong to the goodness of fit tests which indicate whether or
not it is reasonable to assume that a random sample comes from a specific distribu-
tion. They are a form of hypothesis testing where the null and alternative hypotheses
are:

– H0: the data follow a specified distribution
– HA: the data do not follow the specified distribution

The K-S test is used to decide if a sample comes from a population with a specific
distribution. It can be applied both for discrete (count) data and continuous binned
and both for continuous variables. It is based on a comparison between the empirical
distribution function (ECDF) and the theoretical one that is the upper extreme among
absolute value differences between ECDF and the theoretical CDF.

The hypothesis regarding the distributional form is rejected if the K-S Test Statis-
tic, KSTS, is greater than the critical value obtained from a table, or, which is the
same, if the P -value is lower than the significance level.

For example in Table 2 for 10 nodes and employing no MAC protocol, the K-S
Test Statistic, KSTS = 0.09, P -value = 0.13 alternative hypothesis is two sided.
Also, wta represents the waiting time of arrivals, while wtf represents waiting time
of first part of arrivals and wts represent waiting time of the second part of arrivals.
These values are obtained as means of KSTS values and P -values of 87 runs starting
from the Lower Confidence Level value of the estimated rate parameter of Exponen-
tial distribution to the Upper Confidence Values. It means that we cannot reject null
hypothesis that the data follow an Exponential distribution because the P -value is
enough higher than significance levels usually referred in statistical literature.

Table 2: Distribution of Inter-Arrival times, for 10 nodes with no MAC protocol applied, sending 1 packet
every 5 minutes; corresponding Figures 2, 3, 4, 5

Number of
observation in the
simulated series

ML Estimates of
the parameters of

empirical
distribution

Kolmogorov-
Smirnov Test

statistics
P-values

Corresponding
theoretical

distribution for the
empirical one

All:246
Used:214

Exponential
rate = 16.11
LCL = 14.03
UCL = 18.03

Average of 87 runs
(from LCL to

UCL):0.09

Average of 87 runs
(from LCL to

UCL):0.13
Exponential
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Table 3: Distribution of Inter-Arrival times, for 10 nodes with TMAC, sending 1 packet every 5 minutes;
corresponding Figures 6, 7, 8, 9, 10, 11

Number of
observation in the
simulated series

ML Estimates of
the parameters of

empirical
distribution

Kolmogorov-
Smirnov Test

statistics
P-values

Corresponding
theoretical

distribution for the
empirical one

All:279
Used:249

First part: 224
Second part: 23

Mixed Log-Normal
Meanlog1 = -5.14

Sdlog1 = 0.23
Meanlog2 = -0.52

Sdlog2 = 0.02
Mixing proportion:

0.09

Average of 100
runs :0.11

Average of 100
runs :0.15 Mixed Log-Normal
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Fig. 11: Empirical and Theoretical
Mixed Log-Normal CDF
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Table 4: Distribution of Inter-Arrival times, for 10 nodes with CSMA, sending 1 packet/10 minutes; cor-
responding Figures 12, 13, 14, 15

Number of
observation in the
simulated series

ML Estimates of
the parameters of

empirical
distribution

Kolmogorov-
Smirnov Test

statistics
P-values

Corresponding
theoretical

distribution for the
empirical one

All:255
Used:255

Exponential Rate =
20.86

LCL = 18.38
UCL = 23.50

Average of 141
runs :0.04

Average of 141
runs :0.45 Exponential
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Table 5: Distribution of Inter-Arrival times, 20 nodes without MAC, sending 1 packet every 5 minutes;
corresponding Figures 16, 17, 18, 19

Number of
observation in the
simulated series

ML Estimates of
the parameters of

empirical
distribution

Kolmogorov-
Smirnov Test

statistics
P-values

Corresponding
theoretical

distribution for the
empirical one

All:443
Used:411

Gamma
shape = 1.49

scale = 0.03

Average of 100
runs :0.08

Average of 100
runs :0.24 Gamma

Table 6: Distribution of Inter-Arrival times for 20 nodes, with TMAC, sending 1 packet every 5 minutes;
corresponding Figures 20, 21, 22, 23, 24, 25, 26

Number of
observation in the
simulated series

ML Estimates of
the parameters of

empirical
distribution

Kolmogorov-
Smirnov Test

statistics
P-values

Corresponding
theoretical

distribution for the
empirical one

All:574
Used:542

First part: 508
Second part: 34

Mixed Log-Normal
Meanlog1 = -5.18

Sdlog1 = 0.25
Meanlog2 = -0.58

Sdlog2 = 0.04
Mixing proportion:

0.06

Average of 100
runs :0.16

Average of 100
runs : 7.66 ∗ e−06

An unknown
Mixed distribution
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Fig. 18: Empirical and Theoretical
Gamma PDF

0.00 0.05 0.10 0.15 0.20 0.25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 Emprical and Theoretical

Gamma CDFs 

x

 

Fig. 19: Empirical and Theoretical
Gamma CDF
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Fig. 25: Empirical and Theoretical
Mixed Log-Normal Densities
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Table 7: Distribution of Inter-Arrival times, for 10 nodes with CSMA, sending 1 packet every 5 seconds;
corresponding Figures 27, 28, 29, 30, 31, 32, 33, 34

Number of
observation in the
simulated series

ML Estimates of
the parameters of

empirical
distribution

Kolmogorov-
Smirnov Test

statistics
P-values

Corresponding
theoretical

distribution for the
empirical one

All:596
Used:596

First part: 578
Second part: 18

Mixed Log-Normal
Meanlog1 = -3.78

Sdlog1 = 1.07
Meanlog2 = 1.59
Sdlog2 = 0.008

Mixing proportion:
0.03

Average of 100
runs :0.09

Average of 100
runs : 0.035

Mixed Log-Normal
at p-values 3.5% or
less. It is not Mixed

Log-Normal at
traditional 5 or

10%
significance levels
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Fig. 33: Empirical and Theoretical
Mixed Log-Normal Densities
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Fig. 34: Empirical and Theoretical
Mixed Log-Normal CDF

Table 8: Distribution of Inter-Arrival times, for 20 nodes with CSMA, sending 1 packet every 1 second;
corresponding Figures 35, 36, 37, 38

Number of
observation in the
simulated series

ML Estimates of
the parameters of

empirical
distribution

Kolmogorov-
Smirnov Test

statistics
P-values

Corresponding
theoretical

distribution for the
empirical one

All:1889
Used:1889

Exponential
rate = 16.91
LCL = 16.91
UCL = 17.69

Average of 153
runs (from LCL to

UCL):0.06

Average of 153
runs (from LCL to

UCL):4.60∗ e−05

An unknown
non-Exponential

distribution
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Table 9: Distribution of Inter-Arrival times for 20 nodes, with CSMA, sending 1 packet every 5 seconds;
corresponding Figures 39, 40, 41, 42, 43, 44, 45

Number of
observation in the
simulated series

ML Estimates of
the parameters of

empirical
distribution

Kolmogorov-
Smirnov Test

statistics
P-values

Corresponding
theoretical

distribution for the
empirical one

All:2010
Used:2010

First part: 1990
Second part: 20

Mixed Log-Normal
Meanlog1 = -2.94

Sdlog1 = 1.05
Meanlog2 = -0.10

Sdlog2 =
0.2 ∗ e−04

Mixing proportion:
0.001

Average of 100
runs :0.06

Average of 100
runs : 2.62 ∗ e−03

An unknown
Mixed distribution

Table 10: Distribution of Inter-Arrival times, for 35 nodes with no MAC, sending 1 packet every 5 minutes;
corresponding Figures 46, 47, 48, 49

Number of
observation in the
simulated series

ML Estimates of
the parameters of

empirical
distribution

Kolmogorov-
Smirnov Test

statistics
P-values

Corresponding
theoretical

distribution for the
empirical one

All:644
Used:612

Log-Normal
Meanlog = -3.59

Sdlog=0.93
LCL = -3.66
UCL = -3.52

Average of 148
runs (from LCL to

UCL):0.08

Average of 148
runs (from LCL to

UCL):0.13
Log-Normal

Table 11: Distribution of Inter-Arrival times for 35 nodes, with TMAC, sending 1 packet every 5 minutes;
corresponding Figures 50, 51, 52, 53, 54, 55, 56

Number of
observation in the
simulated series

ML Estimates of
the parameters of

empirical
distribution

Kolmogorov-
Smirnov Test

statistics
P-values

Corresponding
theoretical

distribution for the
empirical one

All:990
Used:958

First part: 914
Second part: 44

Mixed Log-Normal
Meanlog1 = -5.23

Sdlog1 = 0.23
Meanlog2 = -0.62

Sdlog2 = 0.09
Mixing proportion:

0.05

Average of 100
runs :0.19

Average of 100
runs : 3.18 ∗ e−14

An unknown
Mixed distribution

Table 12: Distribution of Inter-Arrival times, for 40 nodes with no MAC, sending 1 packet every 5 minutes;
corresponding Figures 57, 58, 59, 60

Number of
observation in the
simulated series

ML Estimates of
the parameters of

empirical
distribution

Kolmogorov-
Smirnov Test

statistics
P-values

Corresponding
theoretical

distribution for the
empirical one

All:751
Used:720

Log-Normal
Meanlog = -3.77

Sdlog=0.90
LCL = -3.84
UCL = -3.71

Average of 100
runs (from LCL to

UCL):0.08

Average of 100
runs (from LCL to

UCL):0.07

Log-Normal at
p-values 6% or

less. it is not
Log-Normal at
traditional 10%

significance level
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Fig. 37: Empirical and Theoretical
Exponential PDF
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Fig. 38: Empirical and Theoretical
Exponential CDF
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Fig. 43: QQ-plot of Mixed Log-
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Fig. 44: Empirical and Theoretical
Mixed Log-Normal Densities
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Fig. 45: Empirical and Theoretical
Mixed Log-Normal CDF



Does the Assumption of Exponential Arrival Distributions in Wireless Sensor Networks Hold? 19

Histogram of wts

wts

D
en

si
ty

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0
5

10

Fig. 46: Histogram of Inter arrival
times

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.
0

0.
2

0.
4

QQ−plot Log−Normal Distribution

wts

w
tln
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Fig. 48: Empirical and Theoretical
Log-Normal PDF
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Fig. 49: Empirical and Theoretical
Log-Normal CDF
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times
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Fig. 53: Histogram of log-normal
distribution
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Fig. 54: QQ-plot of Mixed Log-
Normal Distribution
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Fig. 55: Empirical and Theoretical
Mixed Log-Normal Densities
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Fig. 56: Empirical and Theoretical
Mixed Log-Normal CDF
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Fig. 57: Histogram of Inter arrival
times
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Fig. 59: Empirical and Theoretical
Log-Normal PDF
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Fig. 60: Empirical and Theoretical
Log-Normal CDF

Table 13: Distribution of Inter-Arrival times for 40 nodes, with TMAC, sending 1 packet every 5 minutes;
corresponding Figures 61, 62, 63, 64, 65, 66

Number of
observation in the
simulated series

ML Estimates of
the parameters of

empirical
distribution

Kolmogorov-
Smirnov Test

statistics
P-values

Corresponding
theoretical

distribution for the
empirical one

All:1138
Used:1106

First part:1064
Second part: 38

Mixed Log-Normal
Meanlog1 = -5.26

Sdlog1 = 0.22
Meanlog2 = -0.62

Sdlog2 = 0.10
Mixing proportion:

0.04

Average of 100
runs :0.22

Average of 100
runs : 0.0

An unknown
Mixed distribution

Histogram of wta

wta

D
en

si
ty

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
5

15
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Fig. 63: Empirical and Theoretical
Mixed Log-Normal CDF
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Fig. 64: Histogram of log-normal
distribution
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Fig. 65: QQ-plot of Mixed Log-
Normal Distribution
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Fig. 66: Empirical and Theoretical
Mixed Log-Normal Densities
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As we see from the tables presented, the empirical exponential arrival distribu-
tion assumption of wireless sensor networks holds only for two cases: 10 nodes, one
packet every 5 minutes without MAC and 10 nodes, one packet every 10 minutes
with CSMA. There are both theoretically known such as Gamma, Log-normal and
Mixed Log-Normal of arrival distributions and theoretically unknown such as non-
Exponential and Mixed arrival distributions in WSNs. It seems by increasing the
number of nodes, the modes of empirical distributions are getting lower values. At
the same time, the right tails of the distributions are getting higher values. In other
words, the empirical distributions are squeezed and pushed to the right having tails
from Exponential to Gamma and then to Log-Normal distributions. If there are dis-
continuities of the empirical distributions then mixed theoretical distributions look
more proper such as Mixed Log-Normal distribution of 10 nodes, one packet ev-
ery 5 minutes with TMAC and 10 nodes, one packet every 5 seconds with CSMA.
However, finite mixture models are often over-parametrized, leading to identification
issues such as in 20, 35 and 40 nodes with TMAC and 20 nodes, one packet every 5
seconds of CSMA where the distributions are mixed but theoretically unknown.

When CSMA/CA is employed as the MAC protocol, for low data rates and lower
number of nodes (10 nodes sending 1 packet every 10 minutes), the corresponding
theoretical distribution for the empirical one is exponential (Table 4). This is due
to the exponential back-off. As the number of nodes increases and as the data rate
increases to 1 packet every 1 second, characterization of the arrival distributions at
the CH becomes arduous due to the delay caused while the nodes try to repeatedly
transmit the RTS beacon packets. Maximum Likelihood parameters of empirical dis-
tributions are estimated, theoretical distributions based on the estimated parameters
are then generated. K-S Test Statistics for each generated data series are conducted in
order to verify if it is possible to have a corresponding theoretical distribution. Due
to the effects of CSMS/CA, arrivals at the CH follow theoretically unknown mixed
distributions (Tables 7, 8, 9).

For the cases where TMAC is employed as MAC protocol, though the energy con-
sumption is low by reducing the amount of energy wasted on idle listening by placing
an adaptive duty cycle, there is extra delay incurred as the node takes an extra amount
of time to wake up. Hence, characterizing arrival distribution at the cluster head accu-
rately becomes complex. When any node has a packet to send, it starts to repeatedly
transmit RTS beacon packets based on CSMA manner, i.e. through carrier sense and
random back-off manner, making sure the channel is idle before it can transmit a
packet, therefore causing delays. Although this can save considerable amounts of en-
ergy, this extra delay slightly increases the probability of collision. From the results
presented in Tables 3, 6, 11, 13 and their corresponding figures, it is evident that the
effects of TMAC on the arrival distributions are clear. Except for the case where the
number of nodes is relatively smaller, where the corresponding distribution follows
Mixed Log-Normal, in all the other cases the corresponding theoretical distribution
for the empirical one follows an unknown mixed distribution.
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7 Conclusion

To the best of our knowledge, this is the first work that provides statistical proof for
finding theoretical distributions of arrivals at the CH and relay nodes in WSNs. A
clustered model is considered characterised by its sending rate, inter-arrival distribu-
tion and the service process. The empirical distributions of inter-arrival times of the
packets considering such physical events that do not occur frequently are generally
assumed by Poisson processes, and the inter-arrival times by exponential distribu-
tions. The general practice in published works is thus to compare empirical exponen-
tial arrival distributions of wireless sensor networks with theoretical exponential dis-
tributions in Q-Q plot diagrams. In this paper, we show that such comparisons based
on simple eye checks are not sufficient since in many cases incorrect conclusions
may be drawn from such plots. After estimating Maximum Likelihood parameters of
empirical distributions, we generate theoretical distributions based on the estimated
parameters. By conducting Kolmogorov-Smirnov Test Statistics for each generated
data series, we find out, if it is possible, a corresponding theoretical distribution. Em-
pirical exponential arrival distribution assumption of wireless sensor networks holds
only for a few cases. There are both theoretically known such as Gamma, Log-normal
and Mixed Log-Normal of arrival distributions and theoretically unknown such as
non-Exponential and Mixed arrival distributions in wireless sensor networks. The ef-
fects caused by MAC properties are also analysed by experimenting with well known
MAC protocols and the summary of the inter arrival time distributions after extensive
tests are presented for various application categories in 14. Therefore, these results
confirm that the assumption of exponential inter-arrival distributions does not hold in
all the cases. Exponential arrival distribution assumption of wireless sensor networks
holds only when a fewer nodes (10-15), sending packet every 5-10 minutes with no
MAC properties, as-well as when CSMA properties are considered.
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A Some Probability Distributions

A.1 Exponential Distribution

This is a distribution of the time to an event when the probability of the event occurring in the next small
time interval does not vary through time. It is also the distribution of the time between events when the
number of events in any time interval has a Poisson distribution. The exponential distribution is character-
ized as follows:

Definition Let X be an absolutely continuous random variable. Let its support be the set of positive
real numbers:

RX = [0,∞) (1)

Let λ ∈ R++. We say that X has an exponential distribution with parameter λ (rate parameter) if its
probability density function is:

fX(x) =

{
λexp(−λx) if x ∈ RX
0 if x /∈ RX

A.2 Gamma Distribution

The gamma distribution includes the chi-squared, Erlang, and exponential distributions as special cases,
but the shape parameter of the gamma is not confined to integer values. The gamma distribution starts at
the origin and has a flexible shape.

A.3 Log-normal Distribution

In probability theory, a log-normal distribution is a probability distribution of a random variable whose log-
arithm is normally distributed. If Y is a random variable with a normal distribution, thenX = exp(Y )has a
log-normal distribution; likewise, ifX is log-normally distributed, then Y = log(X)is normally distributed.
The log-normal distribution is applicable to random variables that are constrained by zero but have a few
very large values. The resulting distribution is asymmetrical and positively skewed.

A.4 Mixture Distributions

A mixture distribution has a distribution function with a representation as a convex combination of other
specific probability distribution functions. A mixture may be comprised of a finite number of base ele-
ments, where usually a relatively small number of individual distributions are combined together, or an
infinite number of base elements. Often an individual base distribution is thought of as representing a
unique sub population within the larger (sampled) population. In both the finite and infinite case, the prob-
ability of an outcome may be thought of as a weighted average of the conditional probabilities of that
outcome given each base distribution, where the relevant mixture weight describes the relative likelihood
of a draw from that distribution being obtained.

A.4.1 Finite Mixture

A finite mixture of two distributions having cdfs F1(x) and F2(x), respectively, has cdf Fx = ηF1(x) +
(1− η)F2(x), as long as 0 <η <1. Extending this notion to a finite mixture ofK distributions (sometimes
referred to as a finite K-mixture) involves using a convex combination of distinct distribution functions.
As the combination is convex, each of the mixture weights η1, η2, . . . ,ηk are between zero and one, and
sum to unity.
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Due to their ability to combine very different distributional structures, finite mixture distributions are
well suited to cater for a large range of empirical distributions in practice. However, finite mixture models
are often over-parametrized, leading to identification issues.

B Probability Plots or Quantile-Quantile Plots

A probability plot or quantile-quantile (Q-Q) plot is a graphical display invented by Wilk and Gnanade-
sikan [42], to compare a data set to a particular probability distribution or to compare it to another data set.
The idea is that if two population distributions are exactly the same, then they have the same quantiles (per-
centiles), so a plot of the quantiles for the first distribution versus the quantiles for the second distribution
will fall on the 0 – 1 line (i.e., the straight line y = x with intercept 0 and slope 1). If the two distributions
have the same shape and spread but different locations, then the plot of the quantiles will fall on the line
y = a + x (parallel to the 0 – 1 line) where a denotes the difference in locations. If the distributions have
different locations and differ by a multiplicative constant b, then the plot of the quantiles will fall on the
line y = a + bx [43, 44]. Various kinds of differences between distributions will yield various kinds of
deviations from a straight line.
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