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THE DEVELOPMENT OF A MATHEMATICAL PROGRAMMING TECHNIQUE AS 
A DESIGN TOOL FOR TRAFFIC MANAGEMENT. 

P. A. WACKRILL 

ABSTRACT 

In urban areas, competition for road space at junctions 
is one of the major causes of congestion and accidents. 
Routes chosen to avoid conflict at junctions have a 
mutually beneficial effect which should improve 
circulation and reduce accidents. A prototype design 
tool has been developed to provide for traffic management 
based on such routes. 

The mathematical model behind the design tool works 
with a given road network and a given O-D demand matrix to 
produce feasible routes for all drivers in such a way that 
the weighted sum of potential conflicts is minimised. The 
result is a route selection in which all journeys from 
origin i to destination j follow the same route. 

The method which works best splits the problem into 
single commodity problems and solves these repeatedly by 
the Out-of-Kilter algorithm. Good locally optimal 
solutions can be produced by this method, even though 
global optimality cannot be guaranteed. Software for a 
microcomputer presented here as part of the design tool is 
capable of solving problems on realistic networks in a 
reasonable time. 

This method is embedded in a suite of computer programs 
which makes the input and output straightforward. Used as 
a design tool in the early stages of network design it 
gives a network-wide view of the possibilities for 
reducing conflict and indicates a coherent set of traffic 
management measures. The ideal measure would be automatic 
route guidance, such as the pilot scheme currently being 
developed for London. Other measures include a set of 
one-way streets and banned turns. The resulting turning 
flows could be used as input to the signal optimiser 
TRANSYT to determine signal settings favouring the 
routeing pattern. 

The project was funded by the S. E. R. C. and carried out 
at Middlesex Polytechnic in collaboration with MVA 
Systematica. 
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CHAPTER 1 

INTRODUCTION 

"Where there is no vision the people perish. " 

Proverbs 29: 18. 

1.1 M VISION 

Through the centuries man has had visions of how 

he could improve the way he organized his life. Usually 

these visions have been concerned with increased 

efficiency in the use of scarce or expensive resources of 

energy or materials. Recently the emphasis has shifted to 

combine considerations of increased efficiency with 

limited damage to the environment. 

The particular vision which inspired this project 

concerns the improvement of traffic circulation in urban 

areas. Traffic is unable to circulate freely because the 

amount of road space available has not kept up with the 

demand for it. The aim of traffic management is to 

facilitate circulation while paying due attention to 

safety and environmental considerations. This aim can be 

achieved by several means. 

First, the capacity of the road network to 

accommodate the flow of traffic can be increased by 

building new roads. The capacity of existing roads where 

on-street parking occurs can be increased by restricting 

that parking. Bottlenecks often occur at junctions; 

traffic signals regulate the flow through a junction, so 
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that it can be used more efficiently. The signal settings 

can be optimised either for isolated junctions, or for a 

whole set of co-ordinated junctions, so that the green 

time allotted to each stream of traffic is used more 

efficiently. 

Second, demand can be curbed by the legal 

enforcement of traffic restrictions. Various methods have 

been tried; in Britain access is denied to heavy goods 

vehicles at certain times and places. One might expect 

congestion, which pushes up the cost of travel, to curb 

demand, but demand continues to grow. Road pricing can be 

used to deter drivers from using the network at the most 

congested times and places. A scheme to implement road 

pricing is at an advanced stage in the Netherlands 

(Stoelhorst and Zandbergen 1990). 

Third, the driver can be encouraged to satisfy his 

demand for a route to his destination in such a way that 

traffic circulates more efficiently. At present this is 

done both directly and indirectly, but in rather a 

piecemeal fashion. Direct guidance is given by signposts 

to bypasses and ring roads, and by one-way streets and 

restricted access. In this way the traffic manager 

succeeds in diverting some of the traffic away from 

congestion blackspots. The efficiency of the one-way 

gyratory system is, however, dependent on the distribution 

of traffic between the various routes through it. An 
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example, where efficiency was improved by reverting to 

two-way circulation is given by Wright and Semmens (1984). 

Indirect guidance is given by changed traffic conditions 

in parts of the network; it has been found that drivers 

respond to changes in signal settings which favour certain 

streams of traffic (Allsop and Charlesworth 1977), and to 

other changes affecting road capacity. The decisions to 

guide traffic in these ways are, however, made on an ad 

hoc basis, what one might call a 'bottom-up' approach to 

traffic management. 

The design tool developed in this project starts 

with the whole network and the demand for routes through 

it, and finds a coherent routeing pattern to facilitate 

circulation. It will be referred to as the CROWN design 

tool because the method used achieves 'Conflict Reduction 

Over a Wide Network'. The word crown is associated with 

the top; the CROWN design tool provides for a top-down 

approach to the design of traffic management measures. 

This is a new approach to facilitating circulation, by 

means of a more efficient routeing pattern. 

Circulation would be improved because, in the 

urban situation, the delays caused by streams of traffic 

competing for road space at junctions are the primary 

symptoms of congestion. A routeing pattern chosen for its 

relatively low level of conflict will therefore reduce 

that competition. If the engineer actually knows the 
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routeing pattern he wishes to encourage, he can design his 

local controlling measures to encourage that pattern. The 

CROWN design tool identifies one-way streets and banned 

turns consistent with the routeing pattern. It also shows 

the flows arising from that pattern; these flows could be 

used as input to a signal setting optimization program 

such as TRANSYT. If signals were set on this basis, road 

users would discover that green time was relatively longer 

for the manoeuvres favoured by the routeing pattern. 

Automatic route guidance (AUTOGUIDE) is being developed as 

a pilot project for the London area; the guidance is to be 

in the form of in-vehicle advice to the driver rather than 

physical guidance. AUTOGUIDE would provide the ideal 

means for encouraging the use of the routeing pattern 

devised by the CROWN design tool. The idea of routes 

chosen to minimize conflict is not new; its development is 

traced in the next section. 

1.2 VISION DEVELOPED 

When paths have to be laid out between fixed 

points, it may be desirable that these paths cross as 

little as possible. This was the case in Turan's brick 

factory, where the bricks were transported between various 

kilns and storage yards by rail. Where the rails crossed 

the trucks were likely to be derailed (Turan 1977). 
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Holroyd and Miller (1966) considered the 

desirability of finding routes through a town so that the 

number of path crossings was minimised. They analysed the 

statistical properties of the number of path crossings in 

idealised grid networks. They pointed out the contrast 

between the effects of choosing a route to minimise 

journey time and a route to minimise the number of path 

crossings encountered. In the first case, the total 

journey time for the group of drivers as a whole may 

actually be increased by the choice. In the second case, 

the total number of path crossings in the system will be 

reduced by the action of each driver avoiding such path 

crossings. They also developed methods for laying out 

paths so as to minimise crossings in simple regular 

networks. 

Wright (1978) took up this theme in his vision of 

alleviating congestion by imposing route choice on 

drivers. Wright, Appa and Jarrett (1989) explored ways of 

tracing paths through idealised networks to minimise the 

number of crossings. Further exploration was deemed to 

require a computer program to find such routes in any 

given network. Appa set the development of such a program 

as a student project in the final year of the Mathematics 

for Business degree course at Middlesex Polytechnic in 

1986. This thesis describes the project which grew 

directly out of that student project carried out by Large. 
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1.3 I VISION REFINED 

An algorithm for finding routes to minimise 

crossings will require some means of recognising path 

crossings. The road network has to be modelled so that 

one can tell whether the paths of the vehicles using a 

pair of routes have to cross or not. There are two 

separate cases to consider. The two paths may enter a 

junction by different approaches, cross each other and 

leave by different exits. This case is easy to detect. 

Alternatively the two paths may enter a junction by 

different approaches and leave by the same exit, staying 

together until they diverge at a subsequent junction. A 

very intricate model would be required to distinguish 

between such paths which diverged without actually 

crossing and those which did cross. Practical 

considerations come to the rescue here. 

It is the necessity for merging in order to leave 

the junction that is significant as far as competition for 

road space is concerned. Even if there are two lanes, the 

choice of lane will not be governed by whether the 

vehicles are following paths which must cross. Any lane 

changing necessary for the junction at which crossing, or 

indeed non-crossing, paths diverge depends on the driver's 

preferred lane, rather than his entry to it in the first 

place. 
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The vision is therefore refined to one in which 

the number of crossings and mergings at junctions is 

minimised. Paths which cross and use the same road 

between junctions will be counted in these mergings. 

Paths which merge on leaving a junction without actually 

having to cross will also be counted in these mergings. 

This refined vision is defended in the next section. 

1.4 THE VISION DEFENDED 

The criterion for route choice to be defended is 

that the number of crossings and mergings at junctions 

should be minimised. If one defines conflicting streams 

as those which cross or merge, this number will be the sum 

of the products of the flows in each pair of conflicting 

streams. It will be referred to as the amount of 

conflict. The product of flows features in the first 

order approximations of the calculations in queueing 

theory; the expected frequency with which two vehicles 

arrive at a junction so as to compete for road space is 

proportional to the product of flows in their streams. 

Reduction in the expected number of such competitions 

should be beneficial on three counts. 

Such a competition is usually resolved by one 

competitor giving way to the other. However the giving 

way is regulated, it is a cause of delay. This delay adds 

to the journey time; compared with the rural situation, 

it has a larger effect than the distance travelled. When 
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a particular stream features in several pairs of 

conflicting streams, realism may be served by weighting 

the different types of conflict to reflect the likely 

delay. If routes are chosen to minimise the amount of 

conflict, one should reap the benefit of a reduction in 

the total delay at junctions. 

Alternatively, the competition is not resolved and 

therefore results in an accident. This rare result is 

also likely to vary with the number of competitions. 

Reduction in this number should be beneficial in reducing 

the likelihood of accidents. Recent studies, made at the 

Transport and Road Research Laboratory, have resulted in 

the development of accident predictive relations in terms 

of products involving powers of the flows in conflicting 

streams (Summersgill 1988). The CROWN design tool could 

be fairly easily modified to incorporate these relations 

so as to reflect the potential for accidents more 

accurately (Wackrill 1990). 

The third beneficial effect concerns the 

environmental consideration of air and noise pollution. 

Bell (1990) asserts that the level of noise and air 

pollution would be reduced if the amount of conflict at 

junctions was reduced. 

This criterion also has merit in comparison to two 

others commonly used for route choice. The criteria with 
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which it will be compared are Wardrop's criteria (Wardrop 

1952). His first criterion, that the journey times on all 

the routes actually used are equal, and less than those 

which would be experienced by a single vehicle on any 

unused route, leads to a user-equilibrium. The effects 

of congestion on journey time have to be taken into 

account and this makes algorithms to assign routes 

according to this criterion quite complicated. The time 

for each link of the journey may be dependent not only on 

the volume of traffic using that link but also, through 

the delay caused by queueing at junctions, on the volumes 

of traffic passing through junctions downstream of the 

direction of travel. The conventional way of dealing with 

such a minimisation problem is to use approximate link 

times to prime an iterative process in which assignment to 

minimum time routes alternates with the computation of the 

time for each link. It can easily happen that a 

particular origin to destination route oscillates between 

paths; each becomes more congested, and therefore less 

attractive in the subsequent assignment, so this 

conventional solution method may run into difficulties. 

These difficulties can be overcome by such methods as 

incremental assignment, in which link times are recomputed 

after successive proportions of the traffic have been 

loaded onto the network. 

Wardrop's second criterion, that the average 

journey time is a minimum, leads to a system optimum 

rather than a user-optimum. Holroyd and Miller (1966) 
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illustrate the possible difference between the two with 

the following example. Consider two roads between an 

origin and a destination where the journey time on each 

road is partly constant and varies partly as the traffic 

flow on that road. Suppose the demand for trips between 

the origin and destination is 12 and the flow is divided 

into Qi drivers using Road 1 and Q2 drivers using Road 2 

so that 

Q1 + Q2 = 12. 

Suppose also that the journey times are respectively, 

Ti =6+ Q1 and T2 = 12 + 2Q2. 

Then the total journey time of all the drivers, 

Q1*T1 + Q2*T2, is a minimum, 189, when Q1 is 9 and Q2 is 

3; whereas if individual drivers minimise their own 

journey time, Ql is 10 and Q2 is 2, giving a total journey 

time of 192 for all the drivers. 

The traffic engineer prefers the second criterion 

while the driver prefers the first. 

The criterion of minimum conflict has the property 

that the system optimum will also be a user-optimum. If it 

were not a user-optimum, then a route with less conflict 

could be found which would reduce the total number of 
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conflicts from the hypothetical minimum. In the urban 

situation, this criterion is closely correlated to journey 

time. Drivers might well find routes chosen according to 

this criterion an acceptable alternative to the routes 

they would choose for themselves, and thus find their aims 

coinciding with those of the traffic engineer. 

Compared with Wardrop's criteria, the criterion 

of minimum conflict is relatively easy to apply. It takes 

account of the interaction between streams of traffic at 

junctions, using the details of the topology of the road 

network, without the need for details of the geometry of 

the junctions. Engineers would like to address the 

problem of junctions but do not always have the resources 

for collecting the data required for a conventional model. 

The CROWN design tool would enable them to take some 

account of junction conflicts, but with relatively simple 

input. Such a tool has been lacking from the traffic 

manager's toolkit (Boyce 1988). 

1.5 T VISION jjj+ DETAIL 

The routeing patterns chosen so that the total 

amount of weighted conflict at junctions is minimised are 

found by means of a computer program. The CROWN design 

tool is a suite of three computer programs. The input 

consists of three data files. One contains the data which 

specifies the road network for which an efficient routeing 

pattern is desired. The network could be an existing one, 
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or an existing one modified by proposed changes, or an 

idealised one for a green field site. A second data file 

is a trip matrix indicating the demand for paths between 

various origins and destinations on the road network. The 

third data file, which is optional, specifies the 

weighting factors to reflect the relative danger and delay 

arising from different pairs of conflicting manoeuvres at 

different types of junction; this latter file need not be 

specific to the network. To use the tool, one runs the 

suite of programs with the appropriate input files. The 

output specifies the routeing pattern. 

A secondary function of the suite of programs is 

to show the effect, in terms of volumes of traffic, of the 

resulting routeing pattern on the network. Some links 

will be used in one direction only; these indicate 

streets, which, if they were made into one-way streets, 

would reinforce the routeing pattern. Some permitted 

junction manoeuvres will not be used at all; these 

manoeuvres indicate turns which could be banned to 

reinforce the routeing pattern. 

1.6 = OBJECTIVE: 2Q REALISE VISION 

The objective of this project was to realise the 

vision in the form of a computer program developed to the 

point where its use could be demonstrated. Refinement of 

the code to professional standards would be left to the 
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software house benefiting from the commercial exploitation 

of the tool. The objective has been achieved in nine 

stages. 

1) A way of modelling the road network in which 

conflicting manoeuvres at junctions could be 

identified was developed. 

2) The objective function, to be minimised, subject to 

flow conservation constraints, was defined in terms 

of conflicting flows on this model network. 

3) Mathematical programming techniques for solving 

this kind of constrained minimisation problem were 

investigated. 

4) A satisfactory technique was selected and adapted 

for use in solving the problem. 

5) Preliminary tests on small networks were carried 

out to validate the procedure. 

6) In order to test the procedure with larger 

networks, an algorithm was designed to create the 

details of the model network, to identify 

conflicting manoeuvres and to match them to 

appropriate weights. 
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7) An algorithm was then designed to translate 

results, obtained in terms of the model network, 

into terms relating to the road network. 

8) These two algorithms and the selected solution 

technique were embedded in a suite of computer 

programs written in the FORTRAN 77 language. 

9) The suite was tested with various networks to 

assess performance. 

The description of the completed project begins 

with the model network, because the problem to find a 

routeing pattern is defined in terms of it. This model 

network is an elaboration of the road network; algorithms 

were designed to translate from one to the other. The 

model and the algorithms are described in Chapter 2. The 

problem is defined and solution methods are investigated 

in Chapter 3. The fine details of the solution method 

chosen are given in Chapter 4. The Out-of-Kilter 

algorithm, adapted and used as a subroutine in our 

solution method, is described in detail in Chapter 5, so 

that the adaptations can be explained. The suite of 

programs which constitute our design tool is described in 

Chapter 6. The performance of the tool is assessed in 

terms of results with test networks in Chapter 7. 

Conclusions are drawn in Chapter 8. 
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CHAPTER 2 

A NETWORK MODEL WHICH SHOWS CONFLICTING MANOEUVRES 

The purpose of this chapter is to show how 

conflict between streams of traffic at a junction is 

quantified so that it can be used as a criterion for route 

selection. The network has to be specified in a 

particular way to make this possible. This particular way 

of specifying the network will be referred to as the 

'Circulation System', the term used by Wright, Appa and 

Jarrett (1989), to contrast it with references to the road 

network. The specification of the Circulation System 

will be described in Section 2.1. The industrial 

collaborators MVA Systematica see the essential 

difference between the road network and the Circulation 

System in terms of trees and what they call 'vines'. The 

significance of this difference is explained in Section 

2.2. We need to be able to identify the streams which 

conflict with a given stream at a junction; the way we 

use a junction model to make this possible is described in 

Section 2.3. A driver in a particular stream at a 

junction may experience conflict with traffic in the 

conflicting streams. The way this potential conflict is 

quantified so that it can be used as the cost to the 

driver of making each manoeuvre will be explained in 

Section 2.4. An algorithm was devised to synthesise the 

details of the Circulation System from details of the road 

network. A program POLYARCS was written incorporating 
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this algorithm but also performing other relevant 

functions. The program's functions are described in 

Section 2.5. In order to explain how the algorithm to 

synthesise the Circulation System works, the way the 

details of the road network are specified has to be 

defined; this is done in Section 2.6. The steps of the 

algorithm can then be described in Section 2.7. 

2.1 SPECIFICATION QZ 
,E 

CIRCULATION SYSTEM 

Consider what the proverbial man in the street 

might say when asked for directions to some nearby 

destination. He might say "First left then second right". 

He is specifying the route in terms of the required 

movements at the next three junctions. This is just the 

way we need to express each route, if we are to identify 

the streams of traffic which conflict with each other on a 

network. 

In graph theory this way of expressing a route 

would be described as a path in a directed graph or 

"digraph". A digraph is specified as a list of vertices 

and a list of ordered pairs of distinct vertices. The 

ordered pairs are called "arcs" to distinguish them from 

the unordered pairs which are the edges in a ordinary 

graph. A path would then be specified by an ordered list 

of arcs in the form uv, vw, wx, xy, yz. 
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The image used by that man in the street so 

foreshortens the road between junctions that leaving one 

junction is practically identified with arriving at the 

next. Thus for our purposes, the first vertex in the 

ordered pair of vertices, defining an arc, corresponds to 

a particular approach to a junction, and the second vertex 

corresponds to a particular exit, so that movement along 

an arc represents a particular manoeuvre at a junction. 

Once one has left a junction, using a particular exit, 

both the next junction that one will encounter, and the 

approach on which one will arrive, are already determined, 

so the same vertex can be used to represent both the exit 

from one junction and the approach to the next junction. 

We illustrate the correspondence between the road 

network and the Circulation System in Figure 1. Arrows on 

the arcs assume that road users drive on the left; we will 

assume driving on the left throughout this thesis. The 

CROWN design tool can be used by traffic managers in 

countries where road users drive on the right; junction 

details would have to be entered in a different order 

which will be described in Section 2.6.4. 

It is obvious that the Circulation System is much 

more complicated than the road network. One can sketch 

the Circulation System and then specify it in a form 

suitable for input to a computer. However, for all but 

very simple road networks, the sketches become so 

extensive that the effort required would be prohibitive. 
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It seemed essential therefore, to design an algorithm to 

perform this feat of technical sketching in computer 

terms. The program POLYARCS was written to accept details 

of the road network as input, and synthesise the 

specification of the corresponding Circulation System. 

Its functions are described in Section 2.5. 

Road Network 

Circulation System 

Fig. 1 Road network and corresponding Circulation System 

2.2 TREES M VINES 
MVA Systematica describe the Circulation System as 

an expansion of the road network which allows the building 

of vines as opposed to trees; these terms need 

is 



explanation. The plane drawing of a road network consists 

of links and nodes. A crossroads is represented by a 

node. Links would only cross if there was a bridge or 

flyover. The activity of an assignment program in finding 

minimum cost routes between origins and destinations is 

described as path building. The paths from a single 

origin form a tree. In a tree there is only one path 

between any pair of nodes. However, the traffic engineer 

may want to allow more than one path between a pair of 

nodes. This is where vines come in. 

Consider traffic approaching a crossroads where 

the right turn is banned. One often caters for right- 

turning traffic by indicating a sequence of left, right, 

right, turns starting at the junction before the 

crossroads. See Figure 2 below. 

1> 

Fig. 2 Right-turning traffic 

One would expect straight-ahead traffic to proceed 

straight ahead. This requires the links in the tree to 

cross at a node; something with which the minimum cost 

path building algorithm cannot cope. The way to get round 

this difficulty is to expand the junctions as in the 

Circulation System. Figure 1. Paths can then be built in 

which the two streams do cross but not at a vertex of this 
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expanded network. The paths from a single origin in this 

expanded network are said to form 'vines'. There will 

only be one path between each pair of vertices in the vine 

but the arcs between two different pairs of vertices may 

cross. 

2.3 INDENTIFICATION QZ CONFLICTING STREAMS 

To show how conflicting streams are identified we 

consider the manoeuvres as represented in the digraph of 

the T-junction shown in Figure 3. 

3 
APZ 

EX 2. 

Fx3 

RP 3 

Fig.. 3 A T-junction 

First we will consider the left-turning manoeuvre from 

Approach 1 to Exit 2, represented by Arc 1. It merges 

with the manoeuvre from Approach 3 to Exit 2, represented 

by Arc 6, so we identify Arc 6 as conflicting with Arc 

1. Similarly, we see that Arc 6 crosses Arcs 2 and 4 as 

well as merging with Arc 1, so the list of arcs 

conflicting with Arc 6 would consist of Arcs 1,2 and 4. 
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The program POLYARCS incorporates digraph models 

of various different types of junction. It uses these 

models to create the part of the Circulation System 

corresponding to each junction. For each arc which it 

creates, it compiles the list of conflicting arcs from the 

model. The models are shown in Appendix 1. 

2.4 CONFLICT QUANTIFIED M USED $& 8 COST 

Referring again to Figure 3, the potential 

conflict encountered by a driver using Arc 1 is quantified 

as the volume of traffic using Arc 6, the conflicting arc, 

because that driver is potentially in conflict with any of 

the users of Arc 6. The 'cost' to a driver of using Arc 1 

is therefore equated to the volume of traffic using Arc 6. 

The way in which this definition of cost has to be revised 

is explained in Subsection 3.5.3. The cost, to the whole 

system, of having many drivers using Arc 1 will be the 

volume of traffic assigned to Arc 1 multiplied by the 

cost, to one driver, of using Arc 1. This definition, as 

it stands, is reflexive in that, for instance, the cost of 

assigning 3 drivers to Arc 1 and 4 drivers to Are 6 (in 

the absence of any other traffic at that junction) is 12 

for each of these two assignments. 

In order to find a cost for each arc we need both 

the list of arcs conflicting with it, and the volume of 

traffic using each of those conflicting arcs. What is 

called an "incumbent assignment" of traffic to the 
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network is used to provide this figure for volume of 

traffic using each arc. The way a first incumbent 

assignment is found is described in Section 4.1. The 

assignment program POLYSEND then finds a succession of new 

assignments using each one as the incumbent from which to 

compute the costs for the next. 

Some conflicting manoeuvres would seem to be more 

dangerous, or to cause more delay than others. In order 

to reflect these differences, each term in the sum 

referred to above can be given an appropriate weight. The 

program POLYARCS has provision for a list of weights to 

correspond to each list of conflicting arcs. 

2.5 
, 

FUNCTION QZ PROGRAM POLYARCS 

The Circulation System is an elaboration of the 

road network. It is defined in terms of vertices and arcs, 

hence the name POLYARCS. When the program was first being 

tested, with very simple networks, deducing the 

specification of the Circulation System from the details 

of the road network was easy. However, as soon as tests 

were extended to a real network this deduction became 

tedious and prone to error. Compiling the lists of 

conflicting arcs was also tedious. It was therefore 

decided to write a program to - 
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1) accept details of the road network, 

2) synthesise the specification of the corresponding 

Circulation System while drawing the user's 

attention to any inconsistencies in the input data, 

3) compile lists of conflicting arcs with appropriate 

weights, 

4) prepare data to set up the correspondence between 

flows on the arcs of the Circulation System and 

flows on the links of the road network. 

Stage 2 proved to be a fairly complicated 

exercise in algorithm design. A similar network synthesis 

is performed within the TRIPS suite of programs developed 

by the industrial collaborators, MVA Systematica. 

However, in this application we need to identify pairs of 

arcs which conflict. By using a purpose built algorithm, 

Stages 3 and 4 could be anticipated from the outset. 

2.6 SPECIFICATION QE ROAD NETWORK 

The first function of the program POLYARCS is to 

accept details of the road network. Much of that detail 

is common to traffic modelling packages available 

commercially. Those details which pertain to the CROWN 

design tool in particular will be clearly indicated. The 
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road network is 

distinct number, 

between junctions, 

as it is listed. 

specify the orde 

well. 

specified by giving each junction a 

and then making a list of the links 

giving each link a consecutive number 

For the CROWN design tool we need to 

r of the links round each junction as 

Traffic management is concerned with the traffic 

as well as the road network. Traffic is generated by the 

need to transport people or goods between certain origins 

and destinations. For the purposes of a traffic study, 

the area covered by the road network is divided into a 

manageable number of zones. Trips are deemed to originate 

or terminate in these zones. The points where traffic can 

enter the network from outside the study area, or leave 

the area, are also designated as zones; these are often 

referred to as external zones. Each zone has a notional 

zone centroid which is connected to the network by a 

notional zone connector, functioning like a link. An 

extra junction can be defined, if necessary, to be the 

point at which the zone connector meets the road network. 

The first record of the input file which specifies 

the road network contains entries which enable the 

computer to interpret further records correctly. These 

entries are the numbers of zones, nodes and links. The 

number of zones indicates how many zone records are to be 

read. The number of link records and of junction records 

to be read are indicated similarly. The precise details 
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of the specification are given in the subsections which 

follow. 

2.6.1 Zone records 

In the CROWN design tool, the number of zone 

connectors for Zone M is indicated by a single integer in 

the Mth zone record. 

2.6.2 Links specified by B nodes Ind $ nodes 

The topology of the road network is specified by 

a list of links. The CROWN design tool requires the zone 

connectors, defined in Section 2.6, to be listed first, 

and in zone order. The relevance of this is set out in 

Section 2.7.2. Each link is specified by the numbers of 

the nodes at its ends. One of these nodes is referred to 

as the A node and the other as the B node. If the road is 

two-way the link will be two-way and it will not matter 

which node is designated as the A node. If, however, the 

road is a one-way street, the link will be one-way, and 

the nodes should be chosen so that the permitted direction 

is from the A node to the B node. For links which are 

zone connectors, the A node should have the same number as 

the zone; one-way outbound zone connectors are allowed in 

the current version of the program, but not one-way 

inbound connectors. 
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2.6.3 
, 
Link records 

An example of a link record is shown below. 

5 12 1 

If this is the Mth such record, it means that link number 

M joins node 5 to node 12. The 1 indicates that it is a 

two-way link. A zero in this position would indicate that 

the link was one-way. These three entries are sufficient 

for the CROWN design tool. Commercial modelling packages 

would include many more entries: the distances, times, 

type, capacity etc. of the link. 

2.6.4 Junction records 

We need to record the order of links round a 

junction so that we can distinguish left-turning, right- 

turning and straight ahead movements. Some commercial 

packages make this distinction too. What follows is 

specific to the CROWN design tool but mimics the widely 

used SATURN program input to some extent. Each link has a 

link number, corresponding to its order in the list of 

links, so a junction can be specified by the node number 

of the junction and a list of the link numbers of those 

links terminating at it. For countries where road users 

drive on the left, the list should be in clockwise order. 

Conversely, where road users drive on the right, the list 

should be in anti-clockwise order. Further comments on the 

application of the program suite in countries where road 
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users drive on the right will be found in Appendix 2. 

Provision has been made for priorities at junctions to be 

specified by attaching significance to the link which is 

first in the list of links for input to the CROWN design 

tool. For a priority T-junction, the convention is that 

the link which is the minor road is listed first in this 

list. At a crossroads, we make the simplifying assumption 

that the minor road will cross the major road, and list 

one of the minor links first. 

The possible turning movements and, in particular, 

the way those turning movements conflict with each other 

will vary according to the type of junction. Each type is 

specified by a type number so that the program uses the 

appropriate digraph to model the junction. Provision has 

been made in the prototype program version of the CROWN 

design tool for the following types of junction: no 

specified priority, priority, mini-roundabout, 

conventional roundabout, signalised, and grade-separated. 

Different subroutines will be called depending on how many 

links meet at a junction, so this number is also recorded 

in the junction record. A junction record might be as 

shown below. 

25 23 14 13 32 

This means that Node 25 is a junction of Type 2, a 

priority junction, that it has three arms, Links 14,13 

and 32 in that clockwise order, and with Link 14 being the 
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minor road. Three-arm junctions are referred to as T- 

junctions throughout. 

2.7 SYNTHESIS DZ = CIRCULATION SYSTEM 

The second function of the program POLYARCS is to 

specify the arcs and vertices of the Circulation System. 

As explained in Section 2.1, one vertex represents both an 

exit from one junction and the approach to the next. This 

means that a vertex corresponds to a particular side of 

the road which is the link joining the two junctions. An 

arc corresponds to a manoeuvre through a junction, so its 

start and end vertices correspond to the links and the 

side of the road in which one starts and finishes this 

manoeuvre. The first task then, is to set up the 

correspondence between links and vertices. The way this 

this is done is shown in subsection 2.7.1. 

Some vertices will be used for origins and 

destinations of flow. The correspondence between these 

vertices and the zones for the trip matrix is described 

in Subsection 2.7.2. The next step is to create ordered 

pairs of vertices to correspond to the arcs in the 

appropriate digraph models of the junctions. If there is 

inconsistency in the input data, the creation of these 

ordered pairs will be halted. Detection of such 

inconsistencies is described in Appendix 3. The creation 

of arcs is described in Subsection 2.7.3. The creation of 

the lists of conflicting arcs and their corresponding 
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weights is described in Subsection 2.7.4. Finally, the 

translation from flow on arcs in the Circulation System, 

to flows on links in the road network is described in 

Subsection 2.7.5. 

2.7.1 Vertices created tg correspond Jt2 
links 

The reader has been introduced to the digraph 

model for one type of junction; the model for a T- 

junction was shown in Figure 3. As explained in Section 

2.6, a vertex corresponds to a particular side of the 

road. A path through such a vertex will therefore be 

along a link in a particular direction. If it is in the A 

to B direction, that vertex is described as being 

'Upstream of the B node' so we use element L of an array 

UB to record the number of the vertex upstream of the B 

node for link number L. Conversely, paths in the B to A 

direction pass 'Downstream' through vertices with numbers 

recorded in the array DB. 

Vertices in the Circulation System are given 

numbers in the order in which they are created. When link 

number L is being processed, the element UB(L) will be set 

equal to the next vertex number, to indicate that it is 

the vertex upstream of the junction represented by the B 

node of link L. If the link numbered L is two-way, the 

element DB(L) will be set equal to the following vertex 

number, to show that it is downstream of that junction and 

that traffic is permitted to leave the junction in the B 
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to A direction. Otherwise this element will remain zero, 

and no such vertex will be created. Consequently a one- 

way link will correspond to a single vertex. 

The vertex downstream of the B node would clearly 

be upstream of the junction represented by the A node and 

vice versa. The decision to consider vertices in relation 

to the B node is arbitrary, but has the result that it is 

the upstream array that contains no zeros. 

2.7.2 Vertices corresuondina IQ origins g destinations 

In the road network, the origins and destinations 

of traffic coincide with zone centroids. The trip matrix 

will define the demand for trips between pairs of zones. 

A route assignment program needs to find routes for the 

trips between each pair of distinct zones. Routes are 

defined as a succession of arcs, so they start and finish 

at vertices. The origin corresponding to a zone centroid 

will therefore be the vertex corresponding to the side of 

the zone connector used for outbound traffic. The 

destination will be the vertex corresponding to the side 

of the zone connector used for inbound traffic. These 

vertices have to be identified correctly with the 

corresponding zone. This is accomplished as follows. 

In the link records, the zone connectors are 

assumed to be listed first, and in zone order. The A node 

is assumed to have the same number as the zone. Links are 
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processed in order, starting with Link 1, and a pair of 

vertices are created, and numbered consecutively, for each 

link that is processed. The origin vertex for Zone 1 will 

therefore be vertex number 1, and the destination vertex 

will be vertex number 2. If there is more than one zone 

connector for any particular zone, the same vertex is 

designated as upstream of all the B nodes for those zone 

connectors and similarly for the vertex downstream of the 

corresponding B nodes. This designation enables a route 

to be found which uses the most suitable zone connector 

both for leaving the zone as an origin and for arriving at 

it as a destination. 

Proceeding in this way, the origin vertex for Zone r 

will be vertex number 2r-1 and the destination vertex will 

be vertex number 2r. The demand for trips between Zone p 

and Zone q is then interpreted as a demand between vertex 

number 2p -1 and vertex number 2q. 

2.7.3 Creation jIt arcs 

When all the vertices have been created, the 

program proceeds to create the arcs using a digraph model 

of the appropriate type for each junction. A manoeuvre 

corresponds to movement from one link to another, so the 

arc corresponding to it will start at a vertex in the pair 

corresponding to the one link and finish at a vertex 

in the pair corresponding to the other link. The vertices 
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have to be paired up in the correct order to create the 

appropriate arcs. This process can be compared to a 

jigsaw puzzle consisting of a junction piece and one piece 

for each arm. We know which arm piece is to be fitted to 

each hole in the junction piece but we have to decide 

which end of the arm piece to fit in that hole. The 

explanation of how this is done follows. 

The vertices in the model are designated as 

approach vertices, e. g. AP(1), for the first link, and as 

exit vertices, e. g. EX(2), for the second link. They are 

matched to the vertices already created for the 

Circulation System. The program checks whether the B 

node or the A node of each link matches the node number of 

the junction. This matching process is illustrated with an 

example of a T-junction. Consider an example in which the 

junction record for the T-junction and the link records 

for the three links are as shown below. 

Junction record 25 1 3 14 13 32 

Link record for link 13 13 25 26 1 
Link record for link 14 14 24 25 1 
Link record for link 32 32 27 25 1 

Further suppose that the vertices in the Circulation 

System corresponding to these three links have numbers as 

shown below. 

UB(13) = 101, DB(13) = 102, 
UB(14) = 103, DB(14) = 104, 
UB(32) = 139, DB(32) = 140. 

The completed matching is shown in Figure 4. 
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Fig. 4 Matching vertices 

For the first link (Link 14), traffic approaches 

the junction upstream of the B node (25), so AP(1) is set 

equal to Uß(14). Similarly traffic leaving by the first 

exit is downstream of the B node so, EX(1) is set equal 

to Dß(14). 

For the second link (Link 13), traffic approaches 

the junction downstream of the B node (26), -so AP(2) is 

set equal to Dß(13). Similarly traffic leaving by the 

second exit is upstream of the B node so, EX(2) is set 

equal to UB(13). 



Once the elements of the AP and EX arrays have 

been matched to vertex numbers, the arcs can be created. 

The digraph models of each type of junction are stored in 

the computer memory as arrays and rules which 

1) relate ordered pairs of elements from the AP and EX 
arrays respectively, which will represent vertices, 
to elements of an array KJ which represent arcs, 

2) list for each arc the numbers of those arcs 
conflicting with it, and 

3) list the first and last arc number of arcs 
starting at each approach vertex. 

if non-zero vertex numbers have been matched to both 

elements in the pair corresponding to the first element in 

the array KJ, then an arc will be defined as being bounded 

by that pair of vertices. it will be allocated the next 

available arc number, and this number entered, as the 

first element, in the temporary array KJ. This procedure 

is repeated for all subsequent pairs of elements in the AP 

and EX arrays. In this way arcs are only created for 

permitted manoeuvres. In Figure 5, we show the arcs which 

would be created for the T-junction example above if we 

suppose that we are starting with arc number 201. 
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Fig. 5 Creation of arcs 

From Figure 5, the reader can observe that arcs 

from a vertex upstream of the junction are numbered 

consecutively, starting with the left turning arc, and 

finishing with the right turning arc. All traffic 

proceeding along this link towards that junction has to 

pass through this vertex, so if we add up the flows on 

these arcs, the sum will give the total flow in this 

direction on this link. These arcs are numbered 

consecutively to make that process simpler. 

2.7.4 Creation 
, 

fist g conflicting arcs. with weights 

The third function of the program POLYARCS is to 

compile a list, for each arc, of the arc numbers of those 

arcs which conflict with it, and matching weights for each 

of these conflicting arcs. This list is needed for the 

computation of costs in the assignment program POLYSEND. 

This program POLYARCS includes a one-to-many mapping of 
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the elements of the array KJ onto themselves which 

constitutes the ordered set of conflicting arcs for each 

arc. For example, at the T-junction, the set for Arc 

KJ(2) will consist of KJ(3), KJ(4) and KJ(6). 

Corresponding to the set of conflicting arcs for Arc 

KJ(2), there will be a set of appropriate weights. These 

are indicated by arguments in an array of weights. Thus 

for each set of conflicting arcs appropriate weights are 

also recorded, as described in Appendix I. The list of 

conflicting arcs and appropriate weights is added to, 

after the creation of arcs is completed for each junction. 

2.7.5 Flows 
,2 arcs converted ±, Q flows 

,Z 
links 

The fourth function of the program POLYARCS is to 

prepare data to enable results, expressed in terms of 

flows in the Circulation System, to be re-expressed in 

terms of flows on links of the road network. When arcs 

are created, starting at the vertex UB(L), they will have 

consecutive numbers. The first and last of these numbers 

are stored in arrays as FIRSTAB(L) and LASTAB(L). These 

arcs carry flow from the A node to the B node. Addition of 

the flows on arcs numbered FIRSTAB(L) to LASTAB(L) will 

thus give total flow along Link L in the direction A to B. 

Similarly when arcs are created starting at DB(L) their 

first and last numbers are stored in arrays as FIRSTBA(L) 

and LASTBA(L). The arcs numbered from FIRSTBA(L) to 

LASTBA(L) are used to obtain total flow in the B to A 

direction of Link L. 
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By this means, flows in each direction on each 

link can be computed, with the exception of flows along 

zone connectors into destinations. The exception arises 

because each such flow is carried by arcs having a common 

end vertex rather than a common start vertex. An 

arbitrary choice was made to obtain flows on links by 

summing the flows on arcs carrying flow leaving the link 

and entering another one rather than those carrying flow 

entering the link; no flow leaves a zone connector into a 

destination to enter another link. The effect is that 

flows into destinations appear as zeros in the output. An 

extra subroutine to list the arcs terminating at each 

destination would be needed to remove this exception. 

The contents of these arrays are recorded in a 

file ARCLINK. DAT. Once the main program POLYSEND has 

determined the assignments, the following program POLYZINK 

uses this file to convert flows on arcs of the Circulation 

System into flows on the links of the original road 

network. 

2.8 CONCLUSION 

The Circulation System has to be created so that 

the problem to find minimum cost routes can be formulated 

in terms of flows on arcs in it. The problem is 

formulated in the next chapter. 
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CHAPTER 3 

THE MATHEMATICAL PROBLEM AND ITS SOLUTION 

The aim of this project is to develop a 

mathematical programming technique as a design tool for 

traffic management. In Chapter 2, the way that the road 

network is modelled in order to make it possible to 

quantify conflict for each arc of the model, was 

explained. This particular model will be referred to as 

the Circulation System. The problem is defined in terms 

of the Circulation System. The inputs to the problem are 

described in Section 3.1. Traffic flow in a network with 

n zones can be modelled as an n-commodity problem. This is 

explained in Section 3.2. Some notation is introduced in 

Section 3.3 so that the problem can be formulated in 

Section 3.4. Several possible methods of solution are 

discussed in Section 3.5. 

3.1 INPUTS SQ THE PROBLEM 

There are four categories of inputs to the 

problem. They are: 

1) the road network with its zones, and rules 

governing permitted traffic movements, 

2) the weights for different types of conflict, 

3) the trip matrix, 

4) the objective desired in the solution. 

These are described in detail in the following 
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subsections. 

3.1.1 The road network And g weights 

Both the details of the road network and the 

weights for different types of conflict are prepared by 

the program POLYARCS. It produces a file, ARCS. DAT, which 

lists, for each arc of the Circulation System, the numbers 

of its start and end vertices. For each zone r, it will 

have designated vertex number 2r -1 to be the origin 

vertex and vertex number 2r to be the destination 

vertex. 

it also produces a file, CONFLICT. DAT, which lists 

for each arc, the numbers of those arcs conflicting with 

it, and the weight to be applied to each of those 

conflicting arcs when the cost of using the arc is 

computed. It is these two sets of lists of prepared input 

that will be used when the variables are defined in 

Section 3.3, and when the problem is formulated in Section 

3.4. Each pair of conflicting arcs appears twice in the 

CONFLICT. DAT file, once in a list pertaining to one of the 

pair and again in a list pertaining to the other of the 

pair. This double entry format is not specifically 

required in order to define the objective function, but it 

is convenient for the solution method eventually chosen. 
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There are other details of the road network which 

appear in traffic models but which do not have to be 

included for the CROWN design tool. These are the length 

of each link, its capacity, and a speed-flow curve. The 

signal settings for signalised junctions are not included 

either. The intention is to minimise a measure of the 

amount of conflict between streams of traffic at 

junctions, so link times, which could be computed from 

link distance and a speed-flow curve, are not relevant to 

the main objective, although they may be relevant for 

comparing the various properties of different traffic 

assignments. An assignment made without capacity 

restraint can show where extra capacity would be 

advantageous. It may happen to use some links in one 

direction only in which case more capacity is actually 

available than would be specified for two-way operation. 

Although the facility for capacity restraint is available 

in the Out-of-Kilter algorithm it is not being used both 

because its use introduces considerably more complexity 

and because it may inhibit desirable possibilities at a 

design stage. Signal settings affect the delays at 

junctions and therefore the link times but we are not 

primarily concerned with link times. 

3.1.2 Tha trio matrix 

In reality, the demands for trips fluctuate both 

with the time of day, and from day to day. Traffic 

engineers usually model demand by assuming a steady state. 
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They may use different trip matrices to model steady 

states for the morning peak, the evening peak and off-peak 

travel demand. Recent advances in traffic modelling 

include what is called dynamic traffic assignment to 

distinguish it from the static, steady state assignment, 

which is adequate for the purpose of the CROWN design 

tool. 

The elements of the trip matrix are used directly 

in formulating the problem. They are used to specify the 

amount of flow emanating from each origin to each 

destination and the amount of flow into each destination 

from each origin. 

3.1.3 Zhg objective 

The objective is that the total weighted sum of 

the conflicts at junctions should be minimised. The input 

required for this is a list of pairs of conflicting arcs 

and a weight to be applied to each pair. This is the 

CONFLICT. DAT file produced by the program POLYARCS. 

3.2 j N-COMMODITY FLOW PROBLEM 

Consider first a traffic flow problem in which 

traffic from various different origins all goes to the 

same destination. The network would consist of origin 

vertices, intermediate vertices and a destination vertex, 
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these vertices being connected by one-way arcs. If one 

variable is used for the flow on each arc, paths can be 

found for all this traffic, by specifying the amount of 

flow out of each origin, the total flow into the 

destination, and conservation of flow for all 

intermediate vertices. This implies that such a flow 

problem is in fact a single commodity flow problem. 

A very similar argument can be used to show that a 

traffic flow problem in which all the traffic starts from 

the same origin and goes to different destinations is also 

a single commodity flow problem. 

Either of these arguments can be used to explain 

that the general traffic flow problem, in which there are 

n zones functioning as both origins and destinations, and 

in which the demand for trips between pairs of zones is 

specified by a trip matrix, is an n-commodity flow 

problem. The commodities are distinguished from each 

other either by origin or by destination. An n-commodity 

problem will therefore need n variables for the flow on 

each arc. 

In the definition of variables which follows, we 

define our commodities by their origin. The relative 

merits of this way of defining the variables, as opposed 

to the alternative way, are discussed in Subsection 4.3.2. 
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3.3 NOTATION USED 19 DEFINE = PROBLEM 

A set of variables is defined for each arc of the 

Circulation System. Each set consists of the flows 

currently assigned from the different zones. A variable 

can therefore be identified by two subscripts; one is the 

zone number for the zone where the flow originates and the 

other is the arc number. However, for reasons that will 

become clear, when we come to specify the constraints, it 

is more convenient to identify an arc by the numbers of 

the ordered pair of terminal vertices. Thus the variable 

for flow from Zone p on arc (i, j) is denoted by 

FLOW(p, i, j). 

A particular instance of the 

is specified by the elements of the 

weights. The demand for trips from 

will be denoted by T(p, q). For a 

conflicting arcs denoted by x, the 

to that pair will be denoted by W(x). 

traffic flow problem 

trip matrix and the 

Zone p to Zone q 

particular pair of 

weight to be applied 

3.4 E FORMULATION Qf M PROBLEM. 

The problem is formulated in terms of the 

variables FLOW(p, i, j), and the constants T(p, q) and W(x). 

Before formulating the constraints it will be convenient 

to define further variables in terms of the variables 

FLOW(p, i, j). The total flow from Zone p, into Vertex j, 

is defined by: 
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FLOWIN(p, j) =E FLOW(p, i, j); 
i 

where the summation is taken over every i for which 

there is an arc from i to j, 

The total flow from Zone p out of Vertex i is defined 

by: 

FLOWOUT(p, i) =E FLOW(p, i, j) 
7 

where the summation is taken over every j for which 

there is an arc from i to j. 

The total flow on arc (i, j) is defined by: 

TOTFLOW(i, j) =E FLOW(p, i, j) 
p 

where the summation is taken over all zones p. 

We now formulat 

It will be convenient to 

zones in the network, so 

origin vertex for Zone 

Subsection 2.7.2). We 

of each zone. 

e. the constraints of the problem. 

be able to refer to the number of 

we denote this number by n. The 

p is vertex number 2p -1 (see 

have n constraints for flow out 

For each Zone p they take the form: 

FLOWOUT(p, 2p-1) =E T(p, q) [1] 
q 

where the summation is taken over all zones, q. 
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Each destination may receive flow from all the other 

zones. Traffic from one part of a zone to another part, 

for example in a car park or on a housing estate, is not 

modelled in this formulation or in the MICROTRIPS suite of 

programs. If such trips, which are called intra-zonal 

trips, are important, the zone should be split so that 

movements between its parts can be modelled. Therefore 

each destination may receive (n - 1) commodities and we 

have n(n - 1) constraints for flow into the destinations. 

The destination vertex for Zone q is vertex number 2q 

(see Subsection 2.7.2). We will often find it convenient 

to refer to the flow from origin, Zone p, to 

destination, Zone q, as being between 0-D pair (p, q). 

For each O-D pair (p, q), with p#q, these 

constraints take the form: 

FLOWIN(p, 2q) = T(p, q) [2] 

If the Circulation System has m vertices, there will 

be n(m - 2n) constraints for flow through the m- 2n 

intermediate vertices. 

For each Zone p, and for each intermediate Vertex 

t, they will take the form: 

FLOWIN(p, t) = FLOWOUT(p, t) [31 
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This gives a total of n(m - n) constraints. As a guide 

to the likely size of m, the number of vertices, for a 

road network with n zones and k links (excluding zone 

connectors) m equals 2k ( or less if there are one-way 

links), so there would be 2kn - n* constraints. 

Typically the number of zones into which a network would 

be divided would be chosen so that n would be 

approximately k/4. This gives us about 7n' 

constraints. For a problem with 50 zones we would have 

about 20,000 constraints. The use of a network algorithm 

enables such large numbers of constraints to be handled 

with relative ease. Capacity constraints have not been 

included at this stage of development of the CROWN design 

tool as explained in Subsection 3.1.1. 

The objective function is defined by: 

C=E W(x)*TOTFLOW(ft, b)*TOTFLOW(c, d) 
x 

where arcs (a, b) and (c, d) are the conflicting 

pair x and the summation is over all pairs x 

of conflicting arcs. 

C is a quadratic function of the variables FLOW(p, i, j). 

The problem can now be formulated as: 

Minimise C subject to the constraints detailed at Cl], 

(2] and (3]. 
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3.5 POSSIBLE SOLUTION METHODS 

Although one intuitively feels that the number of 

trips demanded between each O-D pair should be an integer, 

the demand is expressed per unit time, so this is not 

necessarily the case. 

The problem is to determine how the traffic should 

be allocated between the possible routes in order to 

minimise the value of the objective function. A solution 

is said to be in equilibrium when no individual change of 

route will reduce the value of the objective function. In 

our case, there will be no O-D pair for which a change of 

route will reduce the conflict for that O-D pair. If 

there were, then such a change would also reduce the value 

of the objective function. This implies that our system 

equilibrium solutions consist of user-equilibria. We make 

use of this fact in one of our solution methods. In 

general, solutions to minimisation problems can be in 

equilibrium without being globally optimal. Such 

solutions are referred to as local optima. The solution 

we seek is a global optimum. 

Another property of an equilibrium solution to our 

problem is that all vehicles between a particular O-D pair 

will use the same route. If there were two routes with an 

equal amount of conflict, the total amount of conflict 

would only be increased by assigning some vehicles to each 

route; they would have to merge at some point. This 

property is known as the group travel property. It is 
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made use of in some of the solution methods which follow. 

Traffic managers refer to assignments where this property 

holds as all-or-nothing assignments. 

The problem has been formulated as a constrained 

minimisation problem with a quadratic objective function. 

A mathematical programming technique for solving Quadratic 

Programming (QP) problems is considered in Subsection 

3.5.1. Two different approaches using Integer Linear 

Programming (ILP) methods are considered in Subsection 

3.5.2. Finally a heuristic method for improving a 

solution is outlined in Subsection 3.5.3. 

3.5.1 Quadratic Programming 

The solution requires the minimisation of a 

quadratic objective function. The first question to 

consider is whether the algorithms available for solving 

what are called quadratic (as opposed to linear) 

programming problems would be appropriate. Each term in 

the objective function represents the amount of flow on 

one arc multiplied by the amount of flow on a conflicting, 

and therefore different, arc, so there are no squared 

terms. This means that the function is not convex and the 

matrix of the quadratic form is not positive definite. 

For such functions Wolfe's method and Beale's method may 

only find a local rather than a global optimum (Sheffi 

1985). A small test problem is formulated for quadratic 
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programming and solved using Beale's method in Appendix 4. 

The value obtained for the objective function is higher 

than the values obtained by other methods that were tried. 

The actual mechanism which prevented the solution process 

progressing to a better optimum is identified using this 

example. There is, however, a standard method for 

converting the quadratic function into a linear function 

using zero-one integer variables. This method is 

explained in the next section. 

3.5.2 Integer linear proarammina 

Two different approaches using integer programming 

were tried. The first method involved the conversion of 

the quadratic function into a linear function by the 

introduction of many extra zero-one variables. The other 

involved making a list of all plausible routes for each 0- 

D pair, and using zero-one decision variables 

corresponding to the use or non-use of these routes. The 

formulation of a trivially small example by these two 

methods is given in Appendix 4. A description of the two 

methods follows. 

FIRST METHOD 

For the conversion of a quadratic function to a 

linear function the original variables have to be zero-one 

variables too. Fortunately the original variables can be 

split up to satisfy this condition. Each variable 

represents the use or non-use of each arc by the flow from 
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each O-D pair. The volume of flow is taken into the 

coefficients of a new but still quadratic objective 

function. For each pair of variables x and y occurring in 

the quadratic objective function, a new zero-one variable, 

z, is defined by 

x+y <_ 1+z 

so that the product xy will only contribute to the 

quadratic function when z=1. When each such product xy 

is replaced by z, minimisation of the quadratic function 

can be taken care of by minimising the weighted sum of the 

z's which is a linear function. This is an integer linear 

programming problem (ILP). As the number of variables, n, 

increases, the number of computations necessary to solve 

such problems increases exponentially with n. There is no 

known algorithm which solves the problem with computations 

whose number is a polynomial function of n. The problem 

is said to be N-P complete. The phenomenon is known as 

the combinatorial explosion: the number of possible 

solutions, which have to be tested to see if the objective 

function is a minimum, rises explosively with the size of 

the problem. This method can be used to find the global 

optimum for a small test problem so that the result can be 

compared with the results obtained by other methods. 

The small test problem solved by QP in Appendix 4 

is also solved by this method in that appendix. The road 
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network only has 6 links and 3 zones. The Circulation 

System has 12 vertices and 18 arcs but 52 zero-one 

variables were needed in the formulation. 

A slightly bigger problem was also formulated by 

this method. The network is taken from WRIGHT (1979) and 

it has a street plan with 5 zones, 8 junctions and 15 

links, 4 of which were one-way. Its corresponding 

Circulation System had 25 vertices and 37 one-way 

arcs. Eighteen pairs of arcs were involved in crossings 

and nineteen pairs were involved in mergings. This 

network would have had 740 variables just for the 

different flows on the different arcs. With very careful 

consideration of each flow and each arc one can establish 

that certain flows would not use certain arcs in any 

sensible solution, so the number of variables can be 

reduced from 740 to 81. However, by the time a zero-one 

variable has been defined for every pair of these 

variables occurring in the quadratic function, the total 

number of variables has reached 575. These extra 

variables require 494 constraints to define them. In 

addition there are 55 flow conservation constraints making 

a total of 549 constraints. 

SECOND METHOD 

The second method uses decision variables for the 

possible routes assuming that the group travel property 

holds. Considerable pre-processing of the data is 

required. The pre-processing brings to light some 

51 



interesting aspects of conflict between routes on a 

network. For each O-D pair there will be a finite number 

of alternative routes, none of which pass through the same 

vertex twice. Let us suppose we have a list of these 

routes for each O-D pair. The conflicts that vehicles 

using these routes might encounter can be shown in a 

square matrix M; each row and each column represents a 

route so that element M(i, j) can be used to show the 

number of conflicts between route i and route j. For 

simplicity, unit weights will be assumed so that the 

matrix will be symmetric, with zeros in the leading 

diagonal. This implies that the number of conflicts 

between route i and route j is entered as both M(i, j) 

and M(j, i). When this matrix is used to cost out a 

particular assignment in terms of conflict, each conflict 

is accounted for twice because the number of conflicts 

between each pair of routes has been entered twice. it 

turns out to be quite convenient to retain this double 

count of the conflicts. 

Different categories of conflict can be identified 

in a process which starts by partitioning the matrix. 

Each part is a rectangular sub-matrix for the conflicts 

between the routes for one O-D pair and the routes for 

another O-D pair. Consider that part with rows 

corresponding to all the routes between O-D pair s and 

with columns corresponding to routes between a different 

O-D pair t. This submatrix may have some interesting 

properties. These are discussed as two cases. 
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CASE 1 All the elements in this part are strictly 

positive, with each one greater than or equal to 

some number k. This implies that whatever route 

is chosen for O-D pair s and whatever route is 

chosen for O-D pair t the two chosen routes will 

have at least k conflicts. O-D pairs s and t 

are said to have a topologically essential cost of 

k. If T(s) trips are assigned to O-D 

pair s and T(t) trips are assigned to O-D pair 

t, then for each such part, k*T(s)*T(t) cost 

units will be topologically essential in any 

solution. 

Furthermore, if the globally optimum 

solution consists entirely of such topologically 

essential conflicts, then the routeing pattern for 

that solution will be globally optimal for any trip 

matrix. This property, which conforms with come, on 

sense, was observed when the program was tested 

with a small network. This small test network 

evidently has the special property that there is a 

globally optimum solution consisting only of 

topologically essential conflicts. 

This may be a fairly rare property. The test 

network happened to include a zone inside a ring 

which was not a two-way ring. When the one-way 

link was made into a two-way link, then situations 
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occurred where, for example, O-D pair r could 

either use a route clockwise round the ring to 

avoid conflict with O-D pair s, or use a route 

anticlockwise round the ring to avoid conflict 

with O-D pair t. The globally optimal solution 

had to include conflict with one of these pairs, 

but neither of these conflicts was topologically 

essential on its own. It should be fairly easy to 

spot an O-D pair for which this situation 

existed. 

Even where the network does not have this 

special property, the topologically essential 

conflicts can be used to obtain a lower bound for 

the solution to a conflict-minimising problem. 

Each part of the conflict matrix can be examined 

for the occurrence of topologically essential 

conflicts and all such conflicts added to obtain a 

lower bound for the total number of conflicts. 

CASE 2 becomes relevant once any parts to which Case 1 

applied have been 'reduced' by carrying out Step 1 

below. It is also relevant for any parts to which 

Case 1 does not apply. 

STEP 1 Reduce the conflict matrix to remove topologically 

essential conflicts in the following way. For each 

part of the matrix with smallest positive element 

k, subtract k from every element and record that 

54 



O-D pairs s and t contribute k*T(s)*T(t) 

essential conflicts. 

When the cost matrix has been reduced by performing 

Step 1, there may be parts where, for a particular 

row i, all the elements M(i, j) in that part are 

strictly positive with each one greater than or 

equal to h. Consider such a part and suppose that 

the rows represent routes between O-D pair s, with 

row i representing route I, and that the 

columns represent routes between O-D pair t. In 

this case, if the solution is constrained so that 

route I is used, then the topologically essential 

conflicts will be increased by h*T(s)*T(t), no 

matter what route is selected for O-D pair t. The 

sum of such increases in conflicts for all parts of 

the matrix in which row i features, provides a 

figure for the increase in cost that must occur if 

traffic is constrained to use route I. This will 

be called the route cost of route I. One can 

assign traffic purely on the basis of these route 

costs. The solution to such a relaxed problem is 

obtained as a first solution for this second method 

of solution by ILP. The route costs are obtained by 

performing Step 2. 

STEP 2 Reduce each row in each part by subtracting h the 

smallest positive entry from each element. For 

example suppose there are three routes A, B, and C 
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between O-D pair s and four routes W, X, Y, and Z 

between O-D pair t. Suppose that the part 

corresponding to conflict between O-D pairs s and 

t, and its transpose are shown below. For 

simplicity, also suppose that only one trip is 

demanded between each of these 0-D pairs. 

WXYZ AB C 
A 1221W 11 2 
B 1031X 20 2 
C 2223Y 23 2 

Z 11 3 

This part will attribute route costs o f 

1 to A 1 to W 

2 to C 2 to Y 
1 to Z. 

Sub-mat rices reduced as in Step 2, are shown below. 

WXYZABC 
A0110W001 
B1031X202 
C0001Y010 

Z00 

The two matrices are no longer transposes of each other, 

but the two together have significance. Refer back to the 

matrix they come from, and consider, for example, the cost 

in extra conflict of using route C with route Z. The 

CZ element is 3; it occurs twice in the conflict matrix, 

so with double counting, this combination contributes 6 

conflicts. The 6 is the sum of 

the route cost of using C=2 
the route cost of using Z=1 
the cost of using C with Z=3. 
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The cost of using C with Z can be obtained by adding 

the CZ element remaining in the one reduced part to the 

CZ element remaining in the other reduced part. Using 

the pairs of reduced parts in this way, a submatrix of 

what will be called pair costs, can be obtained. For 

conflict between the example O-D pairs s and t above it 

is: 

W X Y Z 
A 0 3 1 0 
B 1 0 4 1 
C 1 2 0 3 

To summarise, possible conflict between 0-D pairs 

s and t has been split into: 

a) topologically essential conflict, 
b) route conflict for each route between 0-D pair s, 
c) route conflict for each route between O-D pair t, 
d) pair conflict for each particular pair of routes. 

The second ILP method of solution involves solving 

a series of ILP problems. 

For the first problem, the variables correspond to 

the plausible routes between each O-D pair. The ith route 

between O-D pair s is denoted by Si, and the variable 

corresponding to it by X(Si). The route cost of using 

route Si is denoted by R(Si). The objective function to 

be minimised is: 

I R(Si)*X(Si) where summation is taken over 

all routes and all O-D pairs. 
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Each O-D pair is constrained to use only one route so, for 

each 0-D pair s: 

E x(si) = ý. 
i 

For the second problem, more variables are 

introduced, one for each pair of routes used in the 

solution to the first problem. For the pair of routes Si 

and Ti, the variable X(SiTj) is introduced and the pair 

cost, as defined above, is denoted by P(SiTj). For each 

new variable, there is a constraint: 

X(Si) + X(Tj) 51+ X(SiTj). 

The objective function is augmented with an extra term: 

P(SiTj)*X(SiTj). 

Pair costs are introduced in this way, only as the 

pairs are used in the solution to the preceding ILP 

problems. Each successive ILP problems is a tightening of 

the previous problem. In this series of problems, one 

will arise where the solution contains no pairs of routes 

for which the pair cost has not been included in the 

objective function. This may, of course, involve quite a 

long series of ILP problems. The final solution in the 

series will be optimal. This statement is justified in 

Appendix 4. 
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This method is used to solve the small example 

also solved by other methods in Appendix 4. Full details 

of the way the solution progressed are given in that 

appendix. In summary, the series consisted of seven 

problems, only 7 out of the 26 pair costs had to be 

introduced to the objective function before the optimal 

solution was found. This implies that the first in the 

series of ILP problems had 12 variables, and the last 

and biggest had 19 variables. In contrast, the same 

problem solved by the first method had 52 variables. 

This method capitalises on the network nature of 

the problem by taking paths as the fundamental variables. 

It recognises that the topological conflicts fall into 

three classes: those essential for the given network and 

trip matrix, those essential for each path, the route 

costs, and those pertaining to the use of a particular 

pair of paths, the pair costs. By starting with a 

solution which minimises the set of route conflicts it 

concentrates subsequent effort in a sensible direction. 

In any realistic problem a large number of paths 

would have to be considered. The introduction of pair 

costs in the way described might turn out to involve the 

solution of very many ILP's. However, the pair costs 

which are introduced are restricted to pairs involving 

routes which appeared in the previous solutions. The 

large number of paths, which would have to be considered 
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in a realistic problem, would make even these reduced ILP 

problems rather big. 

3.5.3 & heuristic method involving improvement. 

An alternative method, which also makes use of the 

network nature of the problem, involves splitting the n- 

commodity problem into n single commodity problems and 

using a network algorithm to solve each of these 

subproblems in turn. It requires a starting solution to 

be improved. Methods for finding a starting solution are 

described in section 4.1. Arc costs have to be computed 

for each subproblem. Consider the subproblem for the 

commodity defined as originating in Zone r. The values of 

the variables FLOW(p, i, j) can be fixed at their values in 

the incumbent solutions to all the subproblems and used in 

the formula for arc cost. This subproblem is to find 

values for FLOW(r, i, j) which minimise the cost of the 

assignment. This is the formula for cost used in Beale's 

method. However, with this formula a better solution may 

have a higher cost; this higher cost is not the true 

cost as demonstrated with an example, in the next two 

paragraphs. 

The example, the same as the one used in Appendix 

4, consists of a ring road with Zones 1 and 2 outside 

it, and Zone 3 inside it. The trip matrix is shown in 

shown below. 
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2 4 6 

1 - 1 3 
3 1 - 1 
5 1 4 

The Circulation System for this network with its three T- 

junctions is shown in Figure 6. The numbers by the arrows 

on the arcs show the total flow in an assignment of these 

trips and the numbers in brackets show the costs. For 

simplicity, we use unit weights for all pairs of 

conflicts. The value of the objective function for this 

assignment is 20. 

I Ck) 

1 k 

Compare the costs of the two possible paths from 

Vertex 5 to Vertex 4. The clockwise path has a cost of 4, 

and the anticlockwise path has a cost of 6. Because the 

clockwise path has a lower cost, it would appear that the 
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total cost of the assignment would not be improved by 

assigning the flow, from Vertex 5 to Vertex 4, to the 

anticlockwise path. However, one element of the cost of 

the anticlockwise path is the cost of merging with 4 units 

flowing from 5 to 4 along arc (9,4). If this flow were 

transferred to the anticlockwise path it would no longer 

be on arc (9,4). This sort of cost will appropriately be 

called a 'ghost' cost. If it is omitted from the 

computations, the cost of the anticlockwise path from 

Vertex 5 to Vertex 4 will fall to 2, which is its 

true cost. When the assignment is changed by switching 

the flow of 4 units from Vertex 5 to Vertex 4 to the 

anticlockwise path, the reader can confirm, from Figure 7, 

that the number of conflicts has been reduced from 20 

to 12. 

I 

Fig. 7A better assignment 
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However, omitting the value of FLOW(r, i, j) from 

the cost computation means that no account can be taken 

of any conflict between vehicles setting out from Zone r. 

Common sense would suggest that routes from the same 

origin fan out without crossing one another or merging 

with each other. The network algorithm has been modified 

so that it finds routes which form vines whose branches do 

not merge, although they may cross. 

Crossing conflicts between traffic from the same 

origin can be accounted for if, instead of splitting the 

problem into n subproblems corresponding to the n 

commodities, it is split it into n(n - 1) subproblems 

corresponding to the demand for trips between each O-D 

pair. This involves (n -1) times as many variables, with 

the r in FLOW(r, i, j) referring to O-D pair r. Omitting 

the value of FLOW(r, i, j) from the cost computation in the 

subproblem involving O-D pair r, will remove the ghost 

costs and allow crossing conflicts with traffic from the 

same origin to be accounted for. Unfortunately this move 

towards accuracy multiplies the number of computations, 

that have to be done for each cycle of subproblems, by 

approximately (n - 1). As explained in Section 5.5, a 

subproblem for one O-D pair involves nearly as many 

computations as a subproblem for one commodity. This 

quest for extreme accuracy does not seem to justify the 

extra computations required, when the demand for trips is 

modelled rather crudely by a steady state. The heuristic 

method chosen for the CROWN design tool was therefore 
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based on subproblems corresponding to the n commodities. 

The heuristic method will improve the solution, or 

leave it unchanged, with every subproblem that is solved. 

This improvement can be continued by solving each 

subproblem again and again. The solution of each 

subproblem once will be described as a complete cycle of 

iteration, to distinguish it from the solution of one 

subproblem, which will be referred to as a subcycle. 

Proceeding from one subcycle to the next, trips may be 

reassigned to different routes. Each reassignment will 

reduce the conflict at some junctions but it may increase 

it at others. Although the reductions will exceed the 

increases, the total cost of some of the routes used in 

the current assignments of trips from other origins may 

well show an increase over the total cost in the previous 

assignment. However, each reassignment made in this way 

will either reduce the value of the objective function or 

leave it unchanged. This is in contrast to what may 

happen when the time taken to traverse each arc, suitably 

modified to take account of congestion effects, is used as 

the arc cost; the value of the objective function may 

increase. This property of such time costs implies that, 

when they are used, the system optimum obtained may not be 

a user-optimum. With conflict costs, the system optimum 

will always be a user-optimum. The iteration process can, 

in principle, be carried on until no changes have taken 

place for a complete cycle of iterations. However, the 

equilibrium solution may be only a local optimum. 
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During the study, one condition which inhibited 

further improvement was identified. It involved the 

merging of trips from different origins to the same 

destination. Any improvement involves switching the route 

for one component. This may lead to the use of a route 

which diverges from the original route and then has to 

merge with it again to reach the same destination. This 

second merging involves an unnecessary conflict which 

would not occur if both the flows were simultaneously 

reassigned to a new common route. This phenomenon is 

referred to as 'mutually beneficial sightseeing' to 

indicate that the assignment is sub-optimal, but that 

change is inhibited by mutual benefit. The phenomenon is 

demonstrated with two examples in Section 4.1.1. A way to 

avoid its occurrence is suggested in Section 4.3.2. 

It is regrettable that a global optimum cannot be 

guaranteed by the heuristic method. The solution may get 

trapped at a local optimum. Recent research has focused 

on ways of getting the solution out of the trap. 

Simulated annealing and what is called "Taboo search" are 

examples of approaches to this problem. It arises because 

the globally optimal solution may not be reachable by 

stepwise improvement from a particular incumbent solution. 

This problem is addressed in the CROWN design tool by 

offering the user different ways for finding a start-up 

solution with which to prime the iterative process, and by 

offering a choice in the order in which he solves and 

resolves the subproblems. The significance of the 
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differences in the values objective function obtained with 

these various options is illustrated in Sections 7.3 and 

7.4. 

3.6 CONCLUSION 

In this chapter the problem has been formulated in 

terms of the Circulation System. Four methods of solving 

the problem of finding an assignment which minimises the 

total number of weighted conflicts at junctions have been 

reviewed. Although the goal of finding a global optimum 

appears not to be a practical proposition, a return to 

Beale's method is not recommended. This is because his 

technique involves taking account of the ghost costs 

defined in Section 3.5.3. Two possible formulations by 

Integer Linear Programming have been explored. Both these 

formulations increased rapidly in complexity as soon as 

the network ceased to be of only trivial size. The issues 

addressed in developing a heuristic method involving 

improvement have been summarised. As this is the method 

incorporated in the CROWN design tool, full details of 

this method appear in the next chapter. 
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CHAPTER 4 

THE HEURISTIC METHOD OF SOLUTION 

The method chosen to solve the problem is a 

heuristic method, involving improvement in the value of 

the objective function, by an iterative procedure. The 

purpose of this chapter is to describe that iterative 

process in more detail. In Section 4.1 various methods 

for finding a start-up solution with which to prime the 

iterative process are described. The iterative process may 

be restarted with a preferred interim solution. The 

provision for this is described in Section 4.2. The choice 

of the definition of subproblem to be solved in each 

subcycle is discussed in Section 4.3 Certain terms of 

the objective function are selected for improvement by the 

solution of each subproblem. These terms are identified, 

and the way in which the value of the quadratic objective 

function is improved by the minimisation of a series of 

linear objective functions is explained in Section 4.4. 

4.1 PRIMING IJ ITERATIVE PROCESS 

The objective is to minimise conflict, which has 

been quantified as a cost dependent on existing traffic 

flows. A set of flows is therefore needed for each arc of 

the Circulation System, in order to compute the costs. 

These flow values should be plausible so that the first 

iteration uses plausible costs. The four methods that 
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were considered for finding a plausible solution with 

which to prime the iterative process are described in this 

section. 

4.1.1 LOADFLOW 

One sensible way to build up a starting solution 

is to load traffic from the first origin onto an empty 

network with zero costs on the arcs. Traffic from 

subsequent origins is then loaded so as to avoid as much 

conflict as possible with traffic already loaded. This 

method of obtaining a solution is called 'LOADFLOW'. It 

requires costs to be recomputed before the traffic from 

each successive origin is loaded. In the other methods, 

the same arc costs are used for finding minimum cost 

routes for all the traffic. However, although this method 

involves an extravagant use of computer time, it has the 

appeal that the ultimate objective of minimising conflict 

is being applied as the traffic is being loaded on to the 

network. The start-up solution obtained this way should 

have a lower amount of conflict than solutions obtained 

without taking any account of conflict. However one can 

see that it might be very sensitive to the order in which 

origins are selected for the flows from them to be 

assigned. This sensitivity is demonstrated with the 

network and trip matrices shown below. 

A simple network in which there are only two 

routes from each origin to each destination, clockwise and 
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anticlockwise round a block, is used. Different orders of 

loading for two fairly sparse trip matrices were tried. In 

the first one, the heavier flows were loaded first and in 

the second one they were loaded last. The two trip 

matrices we use are: 

Trip matrix 1 

to 
5 6 7 

1 0 0 2 
2 0 0 2 

from 3 4 0 0 
4 0 3 0 

Trip matrix 2 

to 
5 6 7 

1 0 0 4 
2 0 0 4 

from 3 3 0 0 
4 0 2 0 

The road network is shown in Figure 8. 

I 
¢6 

Fig. 8 The road network for LOADFLOW 

Two routeing patterns were obtained for Trip Matrix 1, 

first by loading the heavier flows first and then by 

loading the lighter flows first: Cases A and B 

respectively. 

Case A 

Assignment in descending 
order of number of trips 
required; i. e. origins 
3,4,1 then 2. 

Case B 

Assignment in ascending 
order of number of trips 
required; i. e. origins 

1,2 4 then 3. 
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The routeing patterns obtained in these two cases are: 

Case A Case B 

From 3 to 5: clockwise From 1 to 7: clockwise 
From 4 to 6: anticlockwise From 2 to 7: clockwise 
From 1 to 7: anticlockwise From 4 to 6: anticlockwise 
From 2 to 7: anticlockwise From 3 to 5: clockwise 

They are shown in Figure 9. 
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Total conflicts = 16 Total conflicts = 20 

Fig. 9 Routeing patterns with Trip Matrix 1 

In Case A, the assignment 

2 follows the assignment 

from 3 to 5), so they are 

those 4 trips. In Case B, 

2 were already assigned to 

origin 3 could not avoid. 

of the trips from origins 1 and 

of the largest flow (4 units 

assigned to avoid a merge with 

the trips from origins 1 and 

the route which the flow from 

Case B demonstrates mutually beneficial 

sightseeing for the traffic from origins 1 and 2. Further 

assignments cannot improve the situation, Case A offers a 

better solution. 

Two routeing patterns were obtained for Trip 

Matrix 2, first by loading the heavier flows first and 
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then by loading the lighter flows first: Cases C and D 

respectively. 

Case C Case D 

Assignment in descending Assignment in ascending 
order of number of trips order of n umber of trips 
required; i. e. origins required; i. e. origins 
1,2,3 then 4. 4,3,1 t hen 2. 

The routeing patterns obtained in these two cases are: 

From 1 to 7: clockwise From 4 to 6: anticlockwise 
From 2 to 7: clockwise From 3 to 5: clockwise 
From 3 to 5: clockwise From 1 to 7: anticlockwise 
From 4 to 6: anticlockwise From 2 to 7: anticlockwise 

They are shown in Figure 10. 
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Total conflicts = 40 Total conflicts = 32 

Fig. 10 Routeing patterns with Trip Matrix 2 

7 

In Case C, the flows from origins 1 and 2 are the 

largest flows and the flow from origin 3 cannot be 

assigned to avoid conflict with them. In Case D, the 

flows from origins 1 and 2 can once again be assigned to 

avoid conflict with either the trips from origin 3 or the 

trips from origin 4. It is the conflict with the greater 

number of trips, from origin 3, which is avoided. 
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Case C provides another demonstration of mutually 

beneficial sightseeing for traffic from origins 1 and 2. 

In the face of this sensitivity to the order of 

loading and the large number of computations involved, 

simpler methods for finding a starting solution were 

designed. 

4.1.2 DARTFLOW 

The simplest method of all is to set all arc costs 

at unity and find minimum cost paths to assign the traffic 

to. This method is called 'DARTFLOW'. Routes are chosen 

to minimise the number of junctions used. 

4.1.3 DASHFLOW 

An elaboration of the DARTFLOW method goes some 

way towards taking account of conflict; the cost on each 

arc is set equal to the number of arcs it conflicts with. 

For example, turning left at a T-junction would have a 

cost of 1, whereas turning right would have a cost of 3; 

going straight ahead at a crossroads would have a cost of 

6. This method is called 'DASHFLOW'. It is recommended 

for starting up, with DARTFLOW as an alternative which 

might lead to a better local optimum. 
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4.1.4 FASTFLOW 

At an early stage in the development of the 

program, a method was used which was a crude imitation of 

a minimum journey time assignment. The real network, for 

which details were available, also included details of 

free flow times for the links; free flow time means time 

computed, from distance, using expected average speed in 

uncongested conditions. As an arc in the Circulation 

System corresponds to movement from one link to another, 

the average of the times for these two links was taken as 

the time for the arc and used as the cost. 

The incentive to develop such a method was to 

provide some comparison between routes chosen to minimise 

journey time and those chosen to minimise conflict. The 

question of the trade-off between conflicts and journey 

time is of some interest. However, the only way to 

achieve a proper comparison is to use a conventional 

assignment package which takes the effects of congestion 

on journey time into account, so this poor imitation of 

conventional assignment was abandoned as a method for 

finding a start-up solution. 

In principle comparisons can be made between the 

times for an assignment which minimises time and for one 

which minimises conflict, and between the number of 

conflicts occurring in these two assignments, without 

having to use a conventional assignment as the start-up 

solution. To make this comparison straight forward, input 
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and output files would need to be compatible with a 

conventional assignment package such as MICROTRIPS. 

4.2 RESTARTING T ITERATIVE PROCESS 

As the user is offered various options for running 

the assignment program, he may want to try with various 

options for a few iterations each, and then choose the 

best solution to date to restart the iterative process. 

To the computer, re-starting is merely another method of 

priming the iterative process. The option of starting up 

with a previously obtained solution is called 'OLDFLOW'. 

4.3 SERIAL SOLUTION QE SINGLE COMMODITY PROBLEMS 

The term serial implies that the subproblems are 

solved one after the other. The user may choose the order 

in which the subproblems are solved; the various options 

are detailed in Subsection 6.2.2. The order chosen may 

affect the routeing pattern obtained and the value of the 

objective function at each stage of the iterative process. 

Such effects are assessed in Section 7.4. The user has 

another option which controls the maximum number of times 

each subproblem is solved before the program stops. This 

option is explained in Subsection 6.2.2 and the rate of 

convergence is demonstrated with various test problems in 

Section 7.2. 
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The two alternative ways of defining the 

commodities for an n-commodity problem are explained 

below. It is also possible to split the problem into 

n(n - 1) subproblems. 

4.3.1 Commodity defined ]y oricin 

In Section 3.4, the problem was formulated in 

terms of commodities defined by their origin. This is the 

way the problem was formulated from the very start of the 

project, and this definition is used in the CROWN design 

tool. This choice was made for several reasons. The 

simple reason is that this was the way it was first 

thought of. The MICROTRIPS programs also sort routes by 

origin zone first and destination zone second. 

The choice also lends itself to a natural visual 

image, that of the tree. Routes with a common origin 

vertex form a tree (the term is retained here although the 

word vine is more appropriate, see Section 2.2). In graph 

theory, a tree need not be directed, but a tree in a 

directed graph is described as being rooted at a 

particular vertex. The arcs in it will be directed away 

from the root towards what are called the tips of the 

branches. 

More significantly, when one is concentrating on 

crossing and merging conflicts, and, as explained in 

Subsection 3.5.3, no account can be taken of conflicts 
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between vehicles being assigned in the same subproblem, it 

was attractive to define the subproblems so that such 

conflicts seemed unlikely to occur; routes from the same 

origin seemed likely to fan out in such a way that there 

would be no crossing or merging conflicts between them. 

However, these conflicts can and do occur. 

Merging conflicts have been prevented by modifying the 

algorithm used to find minimum cost routes so that the 

group travel property will hold; routes from the same 

origin will be common until they diverge for their 

different destinations. Crossing conflicts can occur but 

no account will be taken of them. The problem being 

solved by the CROWN design tool is therefore a relaxation 

of the original problem. The relaxation involves 

neglecting crossing conflicts between vehicles starting 

out from the same origin. 

The iterative process can be illustrated in terms 

of a fictional situation. Let us suppose that the number 

of trips required between each O-D pair is fixed. Let us 

further suppose that all the trips from the same origin 

are made in a fleet of vehicles, and that the fleet 

manager dictates the routes to be used. A set of routeing 

plans, one for each manager, is what we call a starting 

solution. Each day we hope to improve the solution. At 

dawn on the first day, the manager of the first fleet uses 

the plans from-all the other managers to plot the numbers 
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of vehicles using each arc of the Circulation System. He 

wants his vehicles to encounter the minimum amount of 

conflict with all the other vehicles. He has a handy 

computer program to devise a routeing plan which achieves 

his aim. He dictates his new plan to his drivers. All 

the other drivers use the plan they have already. During 

the day, his drivers avoid conflict with the other 

drivers, so when the other drivers get together that 

evening they conclude that, between them, they experienced 

less conflict than the day before. That night the manager 

of the second fleet feeds the details of the routes all 

the drivers in the other fleets used that day into the 

computer program, and comes up with a new plan for his 

drivers by dawn. As they start out on the second day, his 

drivers are using a new plan but all the other drivers are 

using their plan of the day before. As the days progress, 

the manager of each fleet has a turn at finding a better 

plan; sometimes he does not succeed but at least he will 

not find a worse plan. If all the managers are given a 

second turn, and then further turns, at finding a new 

plan, there will come a time when no better plans have 

been found for a whole cycle of searches. The plans in 

operation at that time constitute the set of plans which 

we call the final solution. 

4.3.2 Commodity defined Jy destination 

If commodity is to be defined by destination, the 

variable FLOW(p, i, j) has to be redefined as the flow 

into Zone p on arc (i, j). This gives rise to a new set 
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of constraints: 

FLOWOUT(p, 2q-1) = T(q, p) for each q¢p, 

FLOWIN((p, 2p) =E T(q, p), 
q 

FLOWIN(p, t) = FLOWOUT(p, t) for each 

intermediate vertex t. 

These constraints will ensure the assignment of the 

required trips between all the other zones and Zone P. 

The single commodity is flow into Zone p. 

The routes will form a bundle of rays converging 

at the destination vertex. Unfortunately, the term ray 

suggests a straight route, and the term converge suggests 

that the routes all merge at the same point; the overtones 

of science detract from the suitability of this image. 

The image of a basin of tributaries converging at the 

mouth of a river has the right overtones but it is not in 

general use; the set of routes to a common destination 

will be referred to as a bundle of rays. 

There will certainly be conflict between flows 

into the same destination because the routes will merge 

with each other. However the amount of topologically 

necessary merging, for a given trip matrix, will be 

invariant; it will be 

I {T(r, p)*T(s, p)) 
r, s 
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where the summation is taken over all pairs r and s with r 

not equal to s. It will be desirable that the bundles of 

routes merge with each other only once. The algorithm can 

be adapted to build routes by working backwards from the 

destination in such a way that the group travel property 

holds, in that once routes have merged they do not diverge 

again. 

This formulation may actually inhibit the 

occurrence of 'mutually beneficial sightseeing' mentioned 

in Subsection 3.5.3. Looking back at Figure 9 in 

Subsection 4.1.1, if no account is taken of the mergings 

with flows into the same destination, the clockwise route 

from either Zone 1 or Zone 2 to Zone 7 has a cost of 4, 

and the anticlockwise route has a cost of 3. The solution 

would therefore switch both these flows to the 

anticlockwise route. With the other definition of 

subproblems they get trapped on the clockwise route. This 

would be a good reason for considering changing the 

program to solve subproblems with commodities defined by 

destination. 

4.3.3 Commodity defined by Q- pair 

As explained in Subsection 3.5.3, crossing 

conflicts between flows from the same origin could be 

accounted for if the problem were defined by O-D pair. 

This involves splitting it into n(n - 1) subproblems. 

This would increase the amount of computation required. 
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It might be desirable to find a good solution by solving 

subproblems defined by either of the two methods already 

considered and then separating the flow variables to 

correspond to O-D pairs. An enlarged iterative procedure 

could then be used to solve subproblems defined by O-D 

pair. 

4.4 jý QUADRATIC FUNCTION }& SUM QF LINEAR FUNCTIONS 

The linear functions which the Out-of-Kilter 

algorithm minimises are related to the original quadratic 

objective function. If the commodities are defined by 

origin, the format of the objective function which uses 

the variables FLOW(p, k) for flow from Zone p on arc k, 

where arc number k is the arc (i, j), is more compact for 

the purposes of this section. 

To see how the terms are related, consider the 

terms of the quadratic function in detail. Consider the 

terms in the product of flows for just one pair of 

conflicting arcs m and n. Suppose the problem concerns 

flows from 4 origins: "W, X, Y and Z. Denote flows from 

these origins on arc m by FLOW(W, m), FLOW(X, m), 

FLOW(Y, m), and FLOW(Z, m) and on arc n by FLOW(W, n), 

FLOW(X, n), FLOW(Y, n), and FLOW(Z, n) respectively. The 

product of flows on this pair of arcs can be shown in a 

table. All terms of the sort FLOW(W, m)*FLOW(W, n) are 

being neglected because crossing conflicts between flows 

from the same origin are being neglected. When these 
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terms are set out in a tabular form, there will be no 

diagonal terms. Those terms which will appear in the 

linear objective function when flows from origin W are 

assigned are indicated by a 'W' in Table 1. The linear 

terms are: 

[FLOW(X, m) + FLOW(Y, m) + FLOW(Z, m)]*FLOW(W, n) 

+ [FLOW(X, n) + FLOW(Y, n) + FLOW(Z, n)]*FLOW(W, m); 

The variables in these terms are FLOW(W, n) and FLOW(W, m). 

The parts in square brackets are the coefficients; they 

take on the values corresponding to the last assignment of 

flows from X, Y and Z. 

TABLE 1 

FLOW(W, m) FLOW(X, m) FLOW(Y, m) FLOW (Z, in) 
----------- ----------------------------------- 

FLOW(W, n) 11 0W; W; W 

FLOW(X, n) W 
----------------------------------------------- 

FLOW(Y, n) W; 0 
----------------------------------------------- 

FLOW(Z, n) W;; 0 
----------------------------------------------- 

Denoting the terms that will appear in the linear function 

when the trips from X, Y and Z are reassigned by X, Y and 

Z respectively, the complete table would appear as shown 

in Table 2. 
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TABLE 2 

FLOW(W, m) FLOW(X, m) FLOW(Y, m) FLOW(Z, m) 

FLOW(W, n) 0- WXWYwz 

FLOW(X, n) WX0XYXZ 

FLOW(Y, n) WYXY0; YZ 

FLOW(Z, n) wzxZ; YZ; 0 
------------------------------------------------ 

It will be observed that each non-zero cell has 

exactly two letters, indicating that the terms of the 

quadratic function will appear in exactly two of the 

linear functions which are minimised as the flow from each 

origin is assigned. Looked at the other way round, once no 

changes have occurred for a complete cycle of reassigning 

trips from W, X, Y and Z, the sum of the values of the 

linear functions which have been minimised equals twice 

the value of the quadratic function. 

Now the minimum of a sum of parts is not 

necessarily the sum of the minima of the parts, 

particularly if those parts are interdependent. However, 

the way these parts depend on each other means that there 

is no see-saw effect; when the value of one part is 

reduced the sum of the values of the others will be 

reduced by the same amount. In conflict terms, the flows 

from one origin have been reassigned to remove certain 

conflicts from the system and the other flows encounter 

correspondingly fewer conflicts. Hence the CROWN design 

tool produces flow patterns which progressively decrease 
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the value of the quadratic function. 

4.5 CONCLUSION 

The way the CROWN design tool solves the route 

allocation problem is not perfect, but it has been refined 

to overcome some of the difficulties encountered in the 

other possible methods which were considered. It makes 

use of a network algorithm, the Out-of-Kilter algorithm. 

This algorithm is described in some detail, in the next 

chapter, so that modifications made to it can be 

explained. 
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CHAPTER 5 

THE ALGORITHM FOR FINDING MINIMUM CONFLICT ROUTES 

The iterative process, described in the last 

chapter, requires the use of an algorithm to find minimum 

cost routes. There are several such algorithms available. 

The Out-of-Kilter algorithm was chosen in the first place 

because it allows for capacity limitations on the arcs, 

which are relevant to traffic assignment. Although this 

facility is being by-passed in the prototype tool, it is 

intended that capacity restraint should be re-instated as 

an option when the CROWN design tool is developed further. 

This algorithm may well not be the most efficient one, but 

any software house interested in developing the fruits of 

this research for commercial purposes would probably use 

their own favoured algorithm at the time. The quest for 

the most efficient algorithm was not specified as part of 

the research project, but the question of efficiency has 

not been entirely neglected. 

There are those modifications which have been 

developed by others to improve the efficiency of the 

algorithm as applied to minimum cost assignment problems. 

These are documented in the paper by Barr et al. (1974). 

They are not incorporated in the CROWN design tool. 

Then there are those modifications which improve 

its efficiency in solving this particular problem. These 
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are described in Sections 5.5 and 5.6. In a personal 

conversation, Dr. Clover (joint author of Barr et al. 

(1974)), suggested that the efficiency of the out-of- 

Kilter algorithm, when fine tuned to this particular 

application, might well be comparable with the efficiency 

of other, more general purpose, algorithms. 

So that these and other modifications can be 

described, this chapter starts with a brief general 

description of the algorithm in Section 5.1, before the 

mathematical meaning attached to the term 'out-of-kilter' 

is explained, in Section 5.2. The way in which the 

algorithm searches for a flow augmenting circuit is 

described in Section 5.3. A trip matrix does not come 

into the general description of the algorithm; the way the 

demand for routes can be incorporated is explained in 

Section 5.4. The group travel property does not always 

hold for solutions found by the Out-of-Kilter algorithm. 

The modification to ensure it does hold is described in 

Section 5.5. The way in which one of the search routines 

is speeded up is described in Section 5.6. The 

implications of re-instating capacity restraint in the 

design tool are explained in Section 5.7. 

5.1 TM OUT-OF-KILTER ALGORITHM 

This algorithm finds a minimum cost loading of a 

single commodity onto a network, where each arc has a 

lower and an upper bound on capacity; flow is conserved 
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through the vertices. It can be used to find a cost 

minimising assignment of a single commodity demanded 

between certain sources and destinations. The term, 

single commodity, implies that the origin of the commodity 

is immaterial. In traffic assignment, however, origin 

matters, so traffic consists of many commodities. As 

already pointed out, in Subsection 4.2.3, all the traffic 

either from a common origin or into a common destination 

can be treated as a single commodity. The algorithm is 

used for trips from one origin at a time, thus solving 

the multi-commodity problem by solving a series of single 

commodity problems. 

5.2 MEANING QE 'OUT-OF-KILTER' 

The algorithm functions on a network of one-way 

arcs, in which every arc is part of at least one circuit 

of connected one-way arcs. Each arc is specified by a 

start vertex I, and an end vertex J. Associated with each 

arc three further items of data must be supplied. These 

are an upper and a lower bound on capacity, and a cost. A 

variable flow of a single commodity is associated with 

each arc, and it is the sum, taken over all arcs, of the 

product flow*cost which the algorithm minimises. In the 

more usual network, with sources and sinks, artificial 

arcs, and possibly vertices, will have to be specified 

which connect up the sinks to the relevant sources in any 

network flow problem. 
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Associated with each vertex, 

called the dual value or shadow co 

programming terms the dual value is 

constraint to conserve flow through 

these sets of variables are initially 

on an arc, and the dual values of 

vertices, a net cost can be computed 

is defined by 

is another variable 

st. In mathematical 

associated with the 

the vertex. Both 

zero. From the cost 

its start and end 

for it. The net cost 

net cost = dual value at start vertex 
+ cost 
- dual value at end vertex. 

It may be helpful to think of the dual value at a 

start vertex as a buying price, the cost as a 

transportation cost and the dual value at an end vertex as 

a selling price. 

Then 

net cost = buying price at start vertex 
+ transportation cost 
- selling price at end vertex. 

This makes economic sense of the 'Out-of-Kilter' idea; if 

the net cost on an are is positive, then only enough flow 

to satisfy the lower bound (LB) of flow should be assigned 

to it. But if the net cost is negative, implying that it 

is profitable to use that arc, then the maximum amount of 

flow, the upper bound (UB), should be assigned to it. If 

the net cost is zero then it does not matter as long as 

the flow is within the bounds on capacity. These 
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conditions are shown in what is known as the Kilter 

Diagram in Figure 11. At all stages of the algorithm, the 

values of the two variables, flow and net cost, can be 

plotted as points on a graph for each arc. A line showing 

points fulfilling these conditions is called the Kilter 

line. If the point is NOT on the Kilter line the arc is 

described as 'Out-of-Kilter'. 

net cast' 
uB 

LQ 
flew 

oomo Kilter line 

Fig. 11 The Kilter Diagram 

The algorithm starts with zero flows on all arcs, 

so strictly positive lower bounds on some arcs are what 

drives it. The first step of the algorithm is a search of 

the list of arcs until one is found which is 'Out-of- 

Kilter'. This first arc will trigger off the next step, 

to find a flow-augmenting circuit. The value of flow for 

this arc can only be increased if two conditions are met. 

The first is that flow will be conserved through all 

vertices of the network. The second is that the proposed 

increase in flow in the circuit does not put any 'In 

Kilter' arcs 'Out-of-Kilter'. All the dual values are 

initialised at zero with the result that the first net 

costs used are merely transportation costs. 
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5.3 
, 

SEARCH M8 OW AUGMENTING CIRCUIT 

The algorithm starts to build a vine of arcs, 

rooted at the end vertex of the 'Out-of-Kilter' arc, and 

consisting of arcs which would not be put 'Out-of-Kilter' 

by an increase in flow. When an arc has been added to the 

vine its end vertex is labelled with the number of its 

start vertex. This facilitates the tracing back through 

the vine to identify the arcs of a flow-augmenting circuit 

when one has been found. As each new arc is added to the 

vine and its end vertex labelled, the algorithm tests 

whether the start vertex of the 'Out-of-Kilter' arc has 

been labelled. If it has, then there is a path through 

the vine from its root, the end vertex of the 'Out-of- 

Kilter' arc, to the start vertex of the 'Out-of-Kilter' 

arc. This path together with the 'Out-of-Kilter' arc 

forms a flow-augmenting circuit. The algorithm then 

augments the flow on the arcs of this circuit by as much 

as is required or at least as much as is permitted by the 

upper bounds. 

If the algorithm fails to find a flow-augmenting 

circuit, the dual values of all vertices not in the vine 

are increased by the smallest amount which will enable at 

least one arc to be added to the vine. In order to 

progress with finding a flow augmenting circuit at this 

juncture, this smallest amount, the cost of using this 

extra are, has to be accepted in the objective function. 

The increase in dual values has the effect of increasing 

the selling price but not the buying price on arcs with 
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start vertices, but not end vertices, in the vine. For at 

least one of these, the increased differential between 

selling price and buying price will reduce the net cost to 

zero, and then it can be added to the vine. The search 

continues, keeping the cost to reach the tips of the vine 

to a minimum, until a flow augmenting circuit is found. 

Thus the algorithm ensures that the total cost on the flow 

augmenting circuit has been kept to a minimum. The vine- 

building process is illustrated in Appendix 5. 

5.4 USING Jj ALGORITHM = TRAFFIC ASSIGNMENT. 

As explained in Section 3.2, traffic assignment is 

an n-commodity problem. As explained in Section 3.5.3, 

this algorithm is being used to solve a series of single 

commodity problems, the commodity being defined by origin. 

In the Circulation System, origins of flow have one-way 

arcs out of them but not into them, and conversely for 

destinations, so circuits connecting the origin with each 

destination node do not exist in this network. To enable 

the algorithm to function, an artificial arc must be added 

to the network to connect each destination directly to 

the origin. The number of trips required between the 

origin and that destination is then set as the lower bound 

of flow on that artificial arc. 

When that arc has been brought 'into Kilter', a 

flow satisfying the the demand for trips between that 
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origin and that destination will have been assigned to the 

network. Costs for the arcs are based on an incumbent 

assignment. By excluding the flows from the origin being 

considered, the 'ghost' costs, described in Subsection 

4.2.1, can be removed. 

5.5 ADAPTATION TQ ENSURE GROUP Ali PROPERTY 

Because the trips from only one origin are being 

assigned, all the artificial arcs from the destination 

vertices will end at that origin vertex. These are the 

only 'Out-of-Kilter' arcs, so the vines built to find flow 

augmenting circuits will all be rooted at the same vertex. 

However, the algorithm builds a fresh vine rooted at the 

end of each 'Out-of-Kilter' arc, in order to find a flow 

augmenting circuit to bring it into Kilter, but it will 

retain dual values between finding one flow augmenting 

circuit and the next. This can result in the violation of 

the group travel property. In conflict terms this implies 

routes from the same origin diverging and then merging 

again before diverging to their separate destinations. 

This would involve a conflict which is not only 

unnecessary but also not taken into account in the arc 

costs. The small example of vine-building shown in 

Appendix 5 is extended to provide an illustration of 

how this can happen, in Appendix 6. 

The algorithm is therefore modified to retain 

vines between finding one flow augmenting circuit and the 
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next. This is possible because the vines required would 

all be rooted at the same vertex, this vertex being the 

origin for trips being assigned. At each stage, all tips 

of the branches which are not destination vertices will 

represent the ends of equal cost routes from the root. 

When the next 'Out-of Kilter' arc is considered, its start 

vertex will either be in the existing vine or not. if it 

is in the vine, a minimum cost path can be traced back to 

the root; no further search will be needed to add more 

branches, and the time needed to build a new vine from 

scratch will be saved. If it is not in the vine, further 

branches will be needed, but the addition of further 

branches also takes less time than building from scratch. 

Retention of vines saves computing time as well as 

avoiding unnecessary merging of paths from the same 

origin. 

5.6 $ TIME-SAVING ADAPTATION 

Details of the arcs in the circulation system are 

supplied to the algorithm as an ordered set. Those in the 

Circulation system will be the same for each run but the 

artificial arcs will be different. The loop to identify 

the 'Out-of-Kilter' arcs is adapted to test only those 

arcs which can ever be 'Out-of-Kilter'. These are the 

artifical arcs, and they are put at the end of the list of 

arcs so that the loop can be restricted to testing these. 

This saves computing time. 
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5.7 CAPACITY RESTRAINT 

As explained in Subsection 3.1.1, capacity 

constraints are not applied in the prototype tool. 

Without them, arcs do not have to be tested for sufficient 

spare capacity. The effect of including them is, 

therefore, a considerable increase in the time needed for 

computation. One can no longer assume that minimum cost 

paths already identified have sufficient spare capacity. 

Fresh vines would have to be built for each Out-of-Kilter 

arc. With the building of fresh vines vehicles from the 

same origin might merge with each other. Although this 

might be necessary to keep flows within capacity, one 

would not want it to happen just because the cost of 

merges between vehicles from the same origin did not enter 

the cost calculations. In order to include these costs 

the problem would have to be split into a subproblem for 

each O-D pair. This would multiply the computation time 

approximately by the number of zones. The extra time 

would not only enable capacity restraint to operate, but 

also provide for the cost of crossings between vehicles 

from the same origin to be included in the cost 

calculations. 

5.8 CONCLUSION 

With this chapter the description of how solutions 

are obtained is complete. The next two chapters concern 

the user's interaction with the design tool; firstly his 

input and output, secondly his appraisal of the output. 
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CHAPTER 6 

THE DESIGN TOOL 

The aim of this project is to create the 

prototype of a design tool for traffic managers. M. V. A. 

Systematica, a software house specializing in transport 

modelling, accepted the invitation to collaborate on the 

project. Compatibility with their software was borne in 

mind during development of the design tool. For a start, 

the tool was programmed in the language they use, FORTRAN 

77. It was not intended to produce a commercial package 

at this prototype stage, but to investigate possible 

solution algorithms, and to use the most effective one. 

The structure reflects the natural divisions of the 

computation required with the use of subroutines. To make 

the task of refining the code to professional standards 

straightforward, each subroutine is described in comment 

lines; further comment lines, charting the progress of the 

computations, are included in the longer subroutines. The 

structure is built up in layers so that intermediate 

results can be easily checked for correctness. Once the 

main program had been validated with small networks two 

subsidiary programs were written, one to accept relatively 

simple input and the other to produce relatively simple 

output. 

This chapter starts with a brief description of 

the structure of the programs in section 6.1. The input 
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required from the user is intended to be simple in 

format; it is described in Section 6.2. The design tool 

consists of a suite of three programs; the function of 

each one, and the way that they are designed to be run one 

after the other is explained in Section 6.3. The 

interpretation of the output is given in Section 6.4. 

These three sections are summarised with a flow chart in 

Section 6.5. The CROWN design tool could be adapted to 

assess the effects of proposed traffic management measures 

on conflict at junctions and on accidents. The necessary 

adaptations are detailed in Section 6.6. 

6.1 THE STRUCTURE QE = PROGRAMS 

Chapter 5 was devoted to a description of the Out- 

of-Kilter algorithm which is at the heart of the solution 

method. It is used repeatedly with different data sets. 

The structure of the main program POLYSEND was therefore 

built up by stages, starting with a FORTRAN program, the 

subroutine KILTER. The different data sets are prepared 

for input to KILTER. The output from KILTER is processed 

both to provide interim solutions to the problem and to 

modify the input for the next call to KILTER. It is 

therefore the data structures for the input to and the 

output from KILTER which dictate the form of the 

surrounding structures. The design is actually an 

'inside-out' design approach. 
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During the course of the program, KILTER is called 

on successive occasions for use with different inputs. 

Some of these inputs depend on the changes that KILTER 

itself has made to the values of some of the variables at 

previous calls. An iterative procedure ITERATE manages 

these inputs. 

6.1.1 The subroutine ITERATE 

As explained in Section 5.1, KILTER handles flows 

of a single commodity. As explained in Section 4.3, the 

prpblem is solved as a series of subproblems. The 

subroutine KILTARCS sets up the input for the artificial 

arcs, defined in Section 5.4, appropriate to the single 

commodity in the current subproblem. The subroutine 

GETREADY computes the costs to be used for the arcs in the 

current subproblem. It calls a subroutine ARCCOSTS to 

compute the cost of using each arc. The solution of each 

subproblem therefore involves calls to KILTARCS, GETREADY 

and KILTER. 

When each subproblem has been solved once, the 

value of the objective function is reviewed. As explained 

in Section 4.4, this value is the sum of the values of the 

linear objective functions minimised in the solution of 

each subproblem. The subroutine ZONECOST evaluates the 

linear objective functions for each subproblem. It also 

calls ARCCOSTS. The subroutine SUMCRASH adds these values 

together. 
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6.1.2 Priming fig iterative process 

The iterative process has to be primed with a 

start-up solution. Some of the subroutines called by 

ITERATE are also called to obtain the start-up solution. 

The first option the user has is the order in which the 

subproblems are solved; a call to a subroutine LOADING 

reads this option from the screen. The various options 

will be described in Subsection 6.3.2. The second call is 

to a subroutine NETWORK which reads the file ARCS. DAT, 

produced by the program POLYARCS and described in 

Subsection 3.1.1. The option for the order in which the 

subproblems are solved is taken up by the subroutine 

ASSIGN which then calls LOADFLOW, DARTFLOW, DASHFLOW or 

OLDFLOW as appropriate. The subroutines called are 

tabulated in Table 3 below. 

TABLE 3 

SUBROUTINES CALLED BY ASSIGN 

LOADFLOW DARTFLOW DASHFLOW OLDFLOW 

* * * KILTARCS 

* BUILDUP 

* * * KILTER 

* * * VINES(0) 

* * ** SUMMARY 

* * TOTALFLO 

* * ** ZONECOST 

* * ** SUMCRASH 
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LOADFLOW is the only subroutine that uses the 

output from previous calls to KILTER; the subroutine 

BUILDUP processes this output. The description of VINES 

and SUMMARY is deferred until the next section, on output 

reports. 

6.1.3 Output reports 

once iteration has stopped, either because tests 

have shown that there will be no further changes in the 

flow variables, or because the maximum number of 

iterations set by the user have been carried out, the main 

program calls a subroutine FINAL. FINAL calls VINES to 

record flows from each origin on each arc in the file 

FARCFLOW. DAT. VINES(0), called by those subroutines which 

find a start-up solution rather than restart with an old 

solution, records flows in the file STARCFLO. DAT. A list 

of unused arcs is recorded in the file SUMMARY. RPT by 

calling the subroutine SUMMARY. The value of the 

objective function at the end of each cycle of iterations 

is also recorded in this file so that the user can see how 

the process of reassignment converged. 

6.1.4 71M tiroaram POLYARCS 

The structure of this program follows the 

structure of the network synthesis algorithm as described 

in Section 2.6. It is a top-down tree structure. The 
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subroutine ODVERT creates vertices corresponding to those 

links which are zone connectors. The call to ODVERT is 

followed by a call to REMVERT which creates vertices for 

the remaining links. The program spends most of its time 

iterating inside the subroutine MAKEARCS which creates the 

arcs of the Circulation System. Finally it calls a 

subroutine PRINT to record output to be used for the 

program POLYSEND in the file ARCS. DAT, and for the program 

POLYLINK in the file ARCLINK. DAT. 

MAKEARCS processes the junction re 

the subroutine TJUNCTN if the junction has 

one of the subroutines MINI4, ROUND4 or 

junction has four arms and conditional on 

The prototype design tool only processes 

four-arm junctions. 

cords and calls 

three arms, and 

XROADS if the 

junction type. 

three-arm and 

The branching structure of the program is shown in 

Figure 12. The second level of branching prepares data to 

be recorded in the file ARCLINK. DAT for use by the program 

POLYZINK. The third level, its iterative nature indicated 

by the *, prepares data on the pairs of arcs which 

conflict, and on the weights to be attached to those 

conflicts. This data is recorded in the file CROSSFLO. DAT 

for use by the program POLYSEND. 
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* 
C6-CON3RF 

C1 TJUNCTN-ARC3LINK 

C7-CON3ARC1 

C3-MINI4-ALMINI4-----CON4ARC4 
ODVERT 

C4-ROUND4-ALROUND4----- CON4ARC5 + 
LINKVERT PRINT 

C2 CS-CON4ARC1 

C9-CON4ARC2 
C5-XROADS-ARC4LINK 

C10-CON4ARC3 

C11-CON4ARC6 

Conditions for branching. 

Cl: 3 arms 

C2: 4 arms 

C3: mini-roundabout 

C4: roundabout 

C5: not C3 or C4 

C6: mini-roundabout 

C7: not C6 

C8: free-for-all 

C9: priority junction 

ClO: signalised junction 

Cl].: grade-separated 

Fig 12 The structure of POLYARCS 

6.1.5 TIM oroaram POLYLINK 

This data processing program was designed with a 

top-down approach. It reads the files ARCLINK. DAT, 

STARCFLO. DAT and FARCFLOW. DAT. It adds up consecutive 

100 



items of data from the latter two files in DO-loops where 

the number of times the loop is executed is determined by 

the data in the first file. These sums represent flows on 

links of the road network. The results for total flows are 

recorded in the files SLINKFLO. DAT and FLINKFLO. DAT, for 

start-up flows and final flows respectively. The same 

results are sorted into bands according to volume of flow 

and recorded in the files SLINKSUM. DAT and FLINKSUM. DAT 

respectively. The results for flows segregated by origin 

are recorded in the files SLINKTRE. DAT and FLINKTRE. DAT, 

respectively. As the only iterations were within single 

DO-loops subroutines did not seem appropriate in this 

program. 

6.2 INPUTTING .= DATA. 

The data pertaining to the road network is 

entered in the form of a file called LINKS. DAT. The 

matrix of trips demanded on that network is entered in a 
file called TRIPS. DAT. A set of weights, to reflect the 

relative importance of the different types of conflict, is 

provided as a default in the program, but the intention is 

to give the user the option of using his own set of 

weights in the form of a file WEIGHTS. DAT, when the 

prototype design tool is developed further. All the record 

types used in these input files will now be specified. 
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6.2.1 a LXNKS. DAT file. 

This file has been described in Section 2.5; it 

is described again here in the context of using the design 

tool. The road network consists of nodes and links. The 

number of zones, which are origins or destinations of 

trips, is denoted by the parameter ZONES. Zones are 

connected to the network by connectors either to a node or 

to a node created in the middle of a link to terminate the 

connector. The connectors function like links, and the 

total number of connectors and links is denoted by the 

parameter LINKS. The number of nodes, including zones and 

any nodes required to terminate connectors, is denoted by 

the parameter NODES. The nodes should have distinct 

numbers but the order or the existence of gaps in the 

numbers is of no significance. 

Th-e first record in the LINKS. DAT file is 

ZONES, NODES, LINKS. 

This will control the DO-loops to read the other records. 

The user may wish to postpone entering NODES and LINKS 

until the file is complete, when he can deduce from the 

line numbers how many links and junctions there are. 

The zone records state the number of connectors 

from each zone, these numbers being entered in zone order; 

each record consists of an integer, the number of zone 

connectors for that zone. 
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Ig 
, 
jig records have a record for each link 

starting with the zone connectors in zone order. This 

ordering ensures that in the Circulation System the origin 

vertex for the rth zone will have vertex number 2r-1 and 

the destination vertex for that zone the vertex number 

2r. The connectors and links will acquire link numbers 

in the order in which they appear in these records. The 

user is advised to write in the numbers on a copy of the 

road network as a means not only of ticking them off, but 

also to assist him in identifying the numbers of the links 

which meet at each junction. The format of these records 

is - 

A-NODE, B-NODE, TW(L). 

TW(L) =0 implies link L is one-way from A to B. 

TW(L) =1 implies link L is two-way. 

In the Junction records provision is made for 

seven different junction types. The diagrams for these 

appear in Appendix 1. Three of the types require comment 

here: free-for-all, grade separated, and user to be asked 

for weights. The "free-for-all" junction has no link 

given priority; this allows the user to experiment with 

the network before deciding on any priorities or other 

junction types. The grade separated junction has right- 

turning arcs which fly over or pass under the traffic on 

the main links so as to avoid crossing conflicts with it. 
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Traffic on the minor links in a four-arm grade separated 

junction also flies over or passes under. When the user 

designates a junction as "user to be asked for weights" 

the intention is that the tool will be developed further 

to prompt him for weights to be entered in accordance with 

the diagrams given in Appendix 1. The form of these 

records is free format - 

XION(X), JT(X), NL(X), INJ(X, 1),.... INJ(X, NL(X)) 

where XION(X) is the node number of the Xth junction in 

the road network. 

JT(X) is the junction type for that junction with: 

JT(X) =1 for a free-for-all junction 
JT(X) =2 for a priority junction 
JT(X) =3 for a signalised junction 
JT(X) =4 for a mini-roundabout 
JT(X) =5 for a roundabout 
JT(X) =6 for a grade separated junction 
JT(X) =7 FOR USER TO BE ASKED FOR WEIGHTS 

NL(X) is the number of links at that junction. 

INJ(X, 1) is the link number of a minor road meeting 
at a priority junction or otherwise an arbitrary first 
link meeting at that junction. 

Further links meeting at that junction are listed in 

clockwise order after the first, so INJ(X, NL(X)) is the 

link number of the last link. 

6.2.2 
,8 

TRIPS. DAT file. 

This is a standard character matrix file such as 

would be created by the MICROTRIPS transport modelling 

suite when 'dumping' a matrix in a file. The format is as 
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follows: 

Columns Contents 
1 -6 Zone number 
7 - 12 Cell value for first column 

13 - 18 Cell value for second column 
19 - 24 Cell value for third column 

73 - 78 Cell value for twelfth column. 

If there are more than twelve zones in the matrix, then 

each matrix row will spill over onto additional records. 

The first record for each matrix row will contain values 

for columns 1 to 12 of the matrix; the second record will 

contain values for columns 13 to 24 etc. Each zone will 

start on a new output record. 

6.2.3 hit WEIGHTS. DAT file. 

This file will be optional; it will allow the 

traffic manager to apply his own set of standard weights 

to the various conflicts in different types of junctions 

instead of the set of default weights provided in the 

program. Appendix 1 shows which arguments in the 

appropriate arrays apply to the different types of 

conflict. 
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6.3 RUNNING M PROGRAMS 

6.3.1 vroaram POLYARCS. 

The first program in the suite, POLYARCS, 

synthesises the specification of the Circulation system 

from the details of the road network supplied by the user 

in a file LINKS. DAT. It may happen that the records in the 

LINKS. DAT file are inconsistent. If this is the case, the 

program cannot continue; it will stop with aa message on 

the screen: 

"Mistake in LINKS. DAT file for junction ." 

"Check your LINKS. DAT file and start again. " 

The user will have been directed to the scene of the 

inconsistency. The way such errors are detected has been 

explained in Appendix 3. If there are no inconsistencies, 

the program will complete the specification of the 

Circulation System and output the details to a file 

ARCS. DAT. 

The program will proceed to prepare a list, for 

each arc, of those arcs conflicting with it, and a list of 

matching weights from the arrays WT3 and WT4 for each of 

those conflicting arcs. These lists are output to a file 

CONFLICT. DAT. These two files, ARCS. DAT and CONFLICT. DAT, 

will be used by the next program POLYSEND. 
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The program also identifies the first and last 

numbers of those arcs which between them will carry all 

the flow in one direction along each link of the road 

network. These details, which are needed for translating 

results in terms of flow on the arcs of the Circulation 

System into flows on the links of the road network, are 

output in a file ARCLINK. DAT. This file will be needed by 

the final program POLYLINK. 

6.3.2 The program POLYSEND. 

The second program, POLYSEND, is the route 

assignment program. It uses three files: ARCS. DAT, 

CONFLICT. DAT, created by POLYARCS, and TRIPS. DAT which has 

been prepared by the user. The user will be asked to 

input certain parameters as follows: 

The parameter INIT controls which of the four methods 

of obtaining an initial assignment to prime the 

iterative process is to be used. These different 

methods have been described in Section 4.1. 

INIT =0 if LOADFLOW is to be the initial assignment 
INIT =1 if DARTFLOW is to be the initial assignment 
INIT =2 if DASHFLOW is to be the initial assignment 
INIT =3 if OLDFLOW is to be the initial assignment. 

The parameter MAXITRN is the maximum number of 

iterations the user wants the program to run for. (It 

has been found that beyond about the third iteration 

the improvements, per complete iteration, in the 

objective function amount to less than 1% of its value 

for the initial assignment. ) 
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The user will then be asked to if he wants to 

specify the order in which he wants the subproblems to be 

solved by giving answers as below: 

I for numeric order of zones, 
2 for an order he will be asked to input 
3 for a random order, for which he will be asked to 

input an integer seed to prime the random selection. 

His selection will set up a correspondence between problem 

number and zone number. The order in which the 

subproblems are solved can have an effect on the outcome 

of the program. 

POLYSEND prepares two files for the third program, 

POLYLINK, to give the user the opportunity to analyse 

results both for the initial assignment and for the final 

assignment. The flows assigned in the initial assignment 

are output in the file STARCFLO. DAT; those for the final 

assignment are output in the file FARCFLOW. DAT. 

POLYSEND summarises the run, with details of the 

order of assignment and of the values of the objective 

function after each complete iteration. This summary is 

written to the file SUMMARY. RPT. 

6.3.3 The nrocram POLYLINK 

When the user runs POLYSEND for the first time, 

with a particular combination of network and trip matrix, 

he will have no idea whether the options he has chosen are 
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giving rise to one of the more efficient solutions or to 

one of the less efficient solutions. Several runs with 

different orders of assignment and perhaps different 

values of INIT are recommended. He could then select the 

best solution and either use it as input to POLYLINK 

straight away or use it as OLDFLOW. DAT, with INIT = 4, to 

improve it for a few more iterations of POLYSEND. 

POLYLINK converts the results obtained by 

POLYSEND, which are in terms of volumes of flow on the 

arcs in the Circulation System, to volumes of flow on the 

links of the road network. It produces two sets of files, 

one for the initial assignment and the other for the final 

assignment. Two files in each set give total flows on 

links, separately in each direction. One has the links in 

link order and the other has them sorted into bands 

according to the level of total flow. A third file shows 

the assignment of trips from each origin separately, 

listing volumes of flow from each origin in link order. 

The set of files with filenames beginning with S (for 

Start-up) give the results for the initial assignment. 

These may serve as a benchmark for comparison with the 

final assignment, which has been made with the aim of 

reducing potential conflict between streams of traffic. 

The set with filenames beginning with F (for Final) gives 

the results for the final assignment. The finer details of 

their contents are described in the next section. 
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6.4 INTERPRETING THE OUTPUT. 

POLYARCS produces three output files for use by 

the other programs. Although they are formatted files 

they are not intended to be read by the user; a readable 

format was useful for checking the program during 

development. POLYSEND produces three output files only 

one of which is intended to be read by the user. POLYLINK 

produces six output files. 

6.4.1 Ia file SUMMARY. RPT 

The file SUMMARY. RPT summarises a run of the 

program POLYSEND. First it gives the order in which the 

subproblems were solved. Second it gives the value of the 

objective function after each complete cycle of iteration. 

Third it lists unused arcs. These correspond to turning 

movements which are not used in the efficient routeing 

pattern. The program could be enhanced to make it easier 

to identify these by expressing them as a series of three 

junction numbers, rather than as their start and end 

vertex numbers. An analysis has been made of the unused 

turning movements in Section 7.7. The banning of unused 

turning movements would be consistent with the efficient 

routeing pattern, and it would push traffic towards that 

pattern. 

6.4.2 The files SLINKSUM. DAT d FLINKSUM. DAT. 

These files, produced by POLYLINK, summarise the 

results in terms of total flows on the links, with the 

flows sorted into bands to show those links with bigger 
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volumes of flow distinctly from those with lighter flow. 

The first table is of unused links. The flows 

into destinations will be shown as zero; the reason for 

this and a way of overcoming this anomaly were given in 

Subsection 2.5.7. 

Those links used only in one direction are either 

one-way streets already or would make good candidates for 

one-way streets which are consistent with the efficient 

routeing pattern. To some extent they would push the 

traffic towards that pattern. 

Subsequent tables have 

and then start node, end node, 

plot of these link flows onto a 

displayed on the screen, if the 

a graphics environment, would 

first impression of where the t; 

headings giving the bands 

and the volume of flow. A 

diagram of the network or 

programs were to be run in 

give the traffic manager a 

raffic was concentrated. 

6.4.3 The files SLINKFLO. DAT and FLINKFLO. DAT. 

These files list in link order the total flows in 

each direction on each link. They contain exactly the 

same information as SLINKSUM. DAT and FLINKSUM. DAT but in 

link order rather than sorted into bands. These files 

would be more appropriate than SLINKSUM. DAT and 

FLINKSUM. DAT if one wanted to look at a particular link, 
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to see how near to capacity it was, for instance. 

6.4.4 The files SLINKTRE. DAT and FLINKTRE. DAT. 

These files, produced by POLYLINK, decompose the 

volumes of flow according to their origin. They consist of 

tables which are lists, for every link used and in each 

direction, of the flow from the origin named in the 

heading to the table. Again flows into destinations will 

be shown as zero by default. Plotted onto a diagram of 

the network these routes form a vine. Certain features of 

the routes may stand out, and comparison of the vines for 

the initial flows and for the final flows may give the 

traffic manager insight into desirable changes to 

encourage. The move to a graphics environment would be 

much more rewarding than any attempt to give these vines 

in terms of consecutive nodes along the paths from the 

origin to each destination as an aid to plotting. 
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6.5 FLOW DIAGRAM ýQg Ijý SUITE QX PROGRAMS 

The Road Network 
LINKS. DAT 
prepared by user 

The Weights file 
WEIGHTS. DAT 
optional, 

prepared by user. 

POLYARCS 
Synthesises the Circulation System 

ARCLINK. DAT ARCS. DAT CROSSFLO. DAT 

The trip matrix 
TRIPS. DAT 
prepared by user 

POLYSEND 
Assigns traffic to routes on the 
Circulation System. 

. RPT1 1 STARCFLO . DATI IFARCFLOW . DA 

POLYLINK 
Converts routes on arcs of the Circulation System 
to routes on links of the original Road Network. 
Allocates links to bands according to total flow. 

Start-up flows Final flows 

SLINKFLO. DAT FLINKFLO. DAT 
Total flows in link order 

SLINKSUM. DAT FLINKSUM. DAT 
Total flows on links sorted into bands 

SLINKTRE. DAT FLINKTRE. DAT 
Flows from each origin in link order. 
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6.6 ASSESSING TRAFFIC MANAGEMENT MEASURES. 

Drivers react, over a period of time, to changes 

in traffic management measures. The routes they choose 

are forecast using conventional route assignment programs 

which imitate the criteria they use for route choice. 

From such programs, the redistribution of traffic vis-a- 

vis capacity and the effect on journey times can be 

forecast. The CROWN design tool could be adapted to 

assess the likely effect of these changes on the amount of 

conflict at junctions, and the potential for accident. 

To assess the effect on the amount of conflict, 

total turning flows would have to be accessed from a 

conventional assignment package. A new subroutine would 

be required to read in these turning flows and convert 

them to flows on the arcs of the Circulation System. This 

subroutine could then call ZONECOST and SUMCRASH to 

compute the total amount of conflict which is a simple 

proxy for both the potential for accidents and for noise 

and air pollution. 

The design tool also has the potential for 

adaptation so that the costs on arcs of the Circulation 

System are computed using accident predictive relations, 

such as those recently developed at the Transport and Road 

Research Laboratory. Adapted in this way, it could then 

be used for assessing the predicted number of accidents 

for a given flow pattern (Wackrill 1990). 
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6.7 CONCLUSION. 

The CROWN design tool has relatively simple input. 

In its prototype version, it can be used to guide the 

traffic manager with respect to some of the management 

measures he uses. It has the potential for enhancement so 

that it could be a useful adjunct to existing traffic 

modelling packages. Care has been taken with programming 

so that distinct functions are performed by separate 

subroutines. The source code is given in Appendix 7. 

This general description of how it might be used will be 

followed, in the next chapter, with some results to 

demonstrate its performance. 
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CHAPTER 7 

SOME RESULTS TO DEMONSTRATE PERFORMANCE 

Experiments with the design tool to show both how 

well it performs, and how it can help with traffic 

management problems are described in this chapter. These 

experiments were carried out during the course of the 

project, some before the facility for weighting conflicts 

was installed and some with weighted conflicts. The 

simple default weighting of 1 for a merge, 2 for a 

crossing, and 3 for interlocking right turns, is used 

when weighted conflicts are referred to. The test 

networks used are described in Section 7.1. During the 

iterative process, the program progressively disentangles 

the routeing pattern to reduce the total number of 

conflicts; examples to show how quickly this process 

converges are given in Section 7.2. The user is offered 

various options for finding a start-up solution, to prime 

the iterative process. As shown in Section 4.1, the 

LOADFLOW method is very sensitive to the order in which 

trips are assigned from the various zones, so comparisons 

of performance, in Section 7.3, are restricted to the 

other two methods, which are not affected by the order of 

assignment. The DARTFLOW method and several test networks 

are used to investigate the effect of order of assignment 

on the reduction in conflict that is achieved at each 

iteration; the results are given in Section 7.4. This is 

followed with a study of the effect on traffic 

distribution, of some of the routeing patterns obtained, 
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in Section 7.5. Then, in section 7.6 some spatial 

features of the routeing patterns obtained are analysed. 

These are the patterns the CROWN design tool identifies as 

efficient in reducing conflict. Traffic engineers may not 

be in a position to impose such patterns on the traffic, 

but they can take measures which would reinforce such 

patterns; the designation of one-way streets and the 

banning of particular turning movements are such measures. 

In Section 7.7, the extent to which the patterns indicate 

the places in the network where such measures would be 

appropriate is demonstrated. 

7.1 TEST NETWORKS. 

Some cities are actually built on a square grid 

pattern, so such a pattern is one obvious choice for 

idealised networks. These networks also have four-fold 

symmetry, so for every zone, except the centre zone, there 

are three others like it. When one attempts to quantify 

some characteristics of the routeing patterns there will 

be four which in theory should correspond to each other. 

The three idealised road networks used are 

described first. They are extensions of one another. The 

first is a4 by 4 square grid with 16 zones inside 

the 16 blocks, each being connected to the midpoints of 

the sides of its block. The number of trips required for 

each O-D pair was set as inversely proportional to the 
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road distance between them. This network and the 

corresponding trip matrix were extended to a5 by 5 

square grid. In reality, traffic enters and leaves a city 

across what is effectively an orbital ring road, so this 

network was extended further by the addition of external 

zones on continuations of the grid lines beyond what had 

been the boundary road. To increase the realism further, 

the junctions on the outer ring were modelled to allow 

right turning traffic to avoid crossing conflicts with the 

traffic on this ring road. This extended network is 

called "M25" in acknowledgement of its faint similarity to 

the orbital road around London. Two trip matrices were 

devised for it: one to represent the morning peak and the 

other the evening peak. The demand for trips between 

internal and external zones was assumed to be independent 

of distance between them and similarly for a small demand 

between external zones. The relative sizes of the non- 

diagonal elements in these trip matrices are indicated in 

Table 4. 

TABLE 4 

TRIP MATRICES FOR THE M25 NETWORK 

Morning peak Evening peak 

To External Internal External Internal 
zones zones zones zones 

From 
External 10 40 10 10 

zones 

Internal 10 Average 40 Average 
zones = 40 = 40 
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The real network and trip matrix used are for 

Hazel Grove near Manchester. The road network has 68 

junctions and 127 links and the trip matrix is for 33 

zones. Only 17 of these junctions are cross-roads and 

the rest are T-junctions, a very different structure to 

the grid networks with their predominance of crossroads. 

The relative sizes of the elements in the trip matrix are 

indicated in Table 5. Most of the traffic is between 

external zones and very little indeed between internal 

zones for the particular trip matrix available for this 

network. This, again, is rather different from the 

matrices created for the M25 network. 

TABLE 5 

TRIP MATRIX FOR HAZEL GROVE 

To External 
zones 

From 
External Average = 36 

zones Range 0- 360 

Internal Average = 12 
zones Range 0- 230 

Internal 
zones 

Average = 10 
Range 0- 120 

Average =1 
Range 0- 10 

7.2 CHANGES Tja VALUE QE = OBJECTIVE FUNCTION. 

To demonstrate how fast the value of the objective 

function changes, the DARTFLOW method was used to obtain a 

start-up solution and experiments made with three 

networks. Changes in the value of the objective function 

for unweighted conflicts, occurring in each complete cycle 

of iterations, are shown as a percentage of its value at 

the start-up assignment. These are given in Table 6. 
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TABLE 6 

PERCENTAGE CHANGES IN THE VALUE OF THE OBJECTIVE FUNCTION 

4 by 4 grid 5 by 5 grid Hazel Grove 
After 

1 cycle 43 49 17 
2 cycles 5 4 3 
3 cycles 0.6 0.5 2.5 
4 cycles 0.2 0.3 1.5 
5 cycles 0.05 0.08 0.5 

This table would seem to indicate that it is only 

appropriate to do about five complete cycles of re- 

assignments. 

7.3 T 
,E 

EFFECTS QE M STARTING ASSIGNMENT 

The effects of the two start-up methods which are 

not affected by the order of assigning trips are compared. 

The methods are DARTFLOW, which minimises the number of 

junctions used on a route, and DASHFLOW which minimises 

the number of conflicting streams of traffic encountered 

on a route regardless of the amount of traffic in those 

streams. The number of conflicting arcs is an attribute 

of each arc which is recorded for another purpose and 

therefore available for this purpose. Results with these 

two methods, with weighted conflicts, on the Hazel Grove 

network, are shown in Table 7. 
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TABLE 7 

THE EFFECTS OF START-UP SOLUTION WITH HAZEL GROVE 

DARTFLOW DASHFLOW 
Start-up 60.5 59.6 

After 2 cycle 49.2 49.1 
2 cycles 46.8 47.3 
3 cycles 45.9 45.9 

Weighted conflicts in millions correct to 3 sig. fig. 

DASHFLOW is better to start with, but gives rise 

to a worse value than DARTFLOW by the end of the second 

cycle and is then equally good by the end of the third 

cycle. It is also noticeable that at all stages the 

differences only showed in the third significant figure. 

7.4 IJ, EFFECTS QZ ORDER QE ASSIGNMENT 

Two experiments, in which the order of re- 

assignment is varied, are carried out using DARTFLOW as 

the start-up method. In the first one with the smaller, 4 

by 4 grid network, the facility for generating random 

orders of re-assignment is used to obtain five such random 

orders. The program is run until there would be no 

further changes in the objective function for unweighted 

conflicts. Different final values are obtained for the 

objective function with the different orders of 

assignment; one might be a global optimum but the others 

must be local optima. These random orders are given 

numbers in descending order of eventual merit; the results 

are shown in Table S. There is not much difference 

between the values of the objective function at the 

121 



various local optima. 

TABLE 8 

RANDOM ORDERS OF RE-ASSIGNMENT WITH THE 4 BY 4 GRID 

Order no. 12345 

Start-up 3192288 3192288 
After 
1 cycle 1783282* 1794012 
2 cycles 1619471 1619109* 
3 cycles 1603598 1602653 
4 cycles 1593551* 1599153 
5 cycles 1589246* 1596234 
6 cycles 1587654* 1591325 
7 cycles 1587474* 1589450 
8 cycles 1587492* 1589250 

3192288 3192288 3192288 

1806858 1804978 1834255 
1629345 1667849 1624815 
1602355* 1621859 1603765 
1599005 1599819 1601927 
1598135 1597521 
1597115 
1596115 

* best result at this stage. 

For the second experiment, the bigger 5 by 5 

network was used and trips were assigned in an order 

related to the spatial layout of the zones at which they 

originated. These orders are described in words here, and 

their meaning shown in Figure 13. The simplest order 

starts in the top left-hand corner and works across the 

rows of the grid as one reads a page of English script; 

this is called order No. 1. Order No. 2 starts in the top 

left-hand corner and works down the columns of the grid. 

Order No. 3 starts off like order No. 1 but then spirals 

in clockwise to the central zone. Order No. 4 starts off 

like order No. 2 but then spirals in anti-clockwise to the 

central zone. Order No 5 starts at the central zone and 

spirals out clockwise to finish in the top right-hand 

corner. Order No 6 starts at the central zone and spirals 

out anticlockwise to finish in the top left-hand corner. 
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Order No. 1 
down rows from left. 

12345 
6789 10 

11 12 13 14 15 
16 17 18 19 20 
21 22 23 24 25 

Order No. 3 
clockwise spiral in. 

12345 
16 17 18 19 6 
15 24 25 20 7 
14 23 22 21 8 
13 12 11 10 9 

Order No. 5 
clockwise spiral out. 

21 22 23 24 25 
20 789 10 
19 612 11 
18 543 12 
17 16 15 14 13 

Order No. 2 
along columns from top. 

16 11 16 21 
27 12 17 22 
38 13 18 23 
49 14 19 24 
5 10 15 20 25 

Order No. 4 
anti-clockwise spiral in. 

1 16 15 14 13 
2 17 24 23 12 
3 18 25 22 11 
4 19 20 21 10 
56789 

Order No. 6 
anti-clockwise spiral out. 

25 24 23 22 21 
10 987 20 
11 216 19 
12 345 18 
13 14 15 16 17 

Fig. 13 Geometric orders of assignment for the 5 by 5 grid 

The program was run for three complete cycles of 

iteration; the results, with numbers of unweighted 

conflicts, after each cycle of iterations, are given in 

Table 9. 

TABLE 9 

GEOMETRIC ORDER OF ASSIGNMENT WITH THE 5 BY 5 GRID 

Order Start-up after - 
1 cycle 

1 39968016 23173468 
2 39968016 22730166 
3 39968016 22877552 
4 39968016 21928642* 
5 39968016 25601850 
6 39968016 24959956 

2 cycles 
20550060 
20455650 
20506156 
20268430* 
20661382 
20605034 

* best result at this stage. 

3 cycles 
20187722 
20170602 
20207414 
20077082* 
20225182 
20152354 
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Anti-clockwise spiralling in gives the best 

result, and anti-clockwise spiralling out the second best 

result. Order No. 2, which starts off anti-clockwise is 

third best. One wonders whether, if the Circulation 

System had been created for driving on the right, the 

corresponding clockwise order of assignments would have 

been better. 

7.5 TK THAT TRAFFIC U DISPERSED 

The total flows on links show where the traffic 

is concentrated in the routeing patterns. The patterns 

found for three networks are analysed. 

Assignment in the 'anti-clockwise spiralling in' 

order gave the best result with the 5 by 5 grid, so 

the program was run with this order for 10 cycles of 

iteration, and with weighted conflicts, in an attempt to 

achieve a really good solution. In the course of the 

tenth cycle the objective function only improved by 

0.00015 % of its value at the start of the iteration. 

When the total flows were analysed, it was noticed not 

only that traffic is concentrated on the outer ring, but 

also that on all links in the outer ring the clockwise 

flow is about twice as heavy as the anti-clockwise flow. 

For the M25 network, the traffic is again 

concentrated on the outer ring but it is fairly evenly 

distributed between clockwise and anticlockwise flow. 
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For the Hazel Grove network, most of the traffic 

is concentrated on a central spine but much is also 

concentrated on the outer ring. 

7.6 SPATIAL PROPERTIES QE = ROUTEING PATTERNS 

The tendency of the routeing patterns to favour 

clockwise or anticlockwise orbital routes is illustrated 

with the M25 network and weighted conflicts. Just four of 

the 90 diagrams of trees of paths, which were drawn from 

each of the 45 zones and for morning and evening trip 

matrices, are selected for this purpose. They are shown 

in Figures 14 to 17. The convention, common in electrical 

diagrams, that paths which do not interfere with each 

other are shown with a 'bridge' or a curve, is used. The 

reader may recall that the junctions on the outer ring 

road were modelled with flyovers, so that there are no 

crossing conflicts for traffic on this outer ring. The 

tree and not the underlying road network is shown for the 

sake of clarity. The origin zone is shown by a circle and 

the destination zones as arrowheads. 

This tendency, to use clockwise or anticlockwise 

orbital routes is analysed for all 90 of the diagrams 

referred to above. The way paths were selected to 

contribute to the totals in this analysis is illustrated 

with reference to Figures 14 to 17. In the analysis it 

was noted that the path used along the outer ring is not 
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always the shorter of the two possible paths. For zones 

diametrically opposite each other, it is also interesting 

to observe whether the orbital path used is clockwise or 

anticlockwise. Further details of this analysis, which is 

shown in Table 10, are given following the figures showing 

the routeing patterns. 

34 3T 

Fig. 14 Paths from internal Zone 2: morning trips 

The routeing pattern in Figure 14 contributes 

(the path to zone 24) to the count, in Table 10, of 11 
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paths from internal zones to internal zones which use the 

outer ring anticlockwise. It contributes 2 (the paths to 

zones 38 and 39) to the count of 19 paths from internal 

zones to external zones which use the outer ring 

clockwise. 

3t 

Fig. 15 Paths from internal Zone 21: evening trips 

The routeing pattern in Figure 15 contributes 1 

(the path to zone 5) to the count, in Table 10, of 11 

paths from internal zones to internal zones which use the 

outer ring anticlockwise. it contributes I (the path to 
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zone 32) to the count of 7 paths from internal zones to 

external zones which use the outer ring clockwise. 

3c 37 

Pig. 16 Paths from external Zone 26: morning trips 

The routeing pattern in Figure 16 contributes 1 

(the path to zone 25) to the count, in Table 10, of 14 

paths from external zones to internal zones which use the 

outer ring clockwise. It contributes 3 (the paths to zones 

36,37 and 38) to the count of 56 paths from external 

zones to external zones which use the outer ring 
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clockwise. 

38 3'1 

Fig. 17 Paths from external Zone 26: evening trips 

The routeing pattern in Figure 17 contributes 2 

(the paths to zones 24 and 25) to the count, in Table 10, 

of 24 paths from external zones to internal zones which 

use the outer ring clockwise. It contributes 3 (the paths 

to zones 36,37 and 38) to the count of 56 paths from 

external zones to external zones which use the outer ring 

clockwise. 
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In the analysis which follows only four categories 

of paths are considered. First those paths between pairs 

of zones just inside the outer ring, referred to simply as 

internal zones, will be considered. Paths to or from 

zones further inside the outer ring were not considered 

because they tend to be direct, and paths using the outer 

ring seem more interesting. Secondly, paths from internal 

to external zones are considered; thirdly, paths from 

external to internal zones; and lastly paths between pairs 

of external zones. 

When these paths use the outer ring, only those 

using the longer orbital path are analysed. In the case 

of paths between diametrically opposite zones, all those 

using the outer ring are analysed. The analysis is to 

find how many of these paths use the orbital route 

clockwise and anticlockwise. This analysis is made 

separately for morning and evening peak trip matrices. 

The analysis is shown in Table 10. 
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TABLE 10 

ANALYSIS OF PATHS FOR THE M25 NETWORK 

Morning peak 

Paths for zone types cw. acw. 

Internal to internal 6 11 

Internal to external 19 1 

External to internal 14 2 

External to external 56 0 

cw. = clockwise. acw. = anticlo ckwise. 

Evening peak 

cw. acw. 

5 11 

7 3 

24 0 

56 0 

For paths between pairs of internal zones, about 

twice as many use an anticlockwise route as use a 

clockwise route for both morning and evening peak 

matrices. In contrast, paths between pairs of external 

zones are all clockwise. 

The paths from internal zones to external zones 

tend to use clockwise orbital routes more than 

anticlockwise. This tendency is much more marked in the 

morning than in the evening. In the morning the flow from 

internal to external zones is lighter than it is in the 

evening. 

The paths from external zones to internal zones 

also tend to use clockwise orbital routes more than 

anticlockwise. This tendency is much more marked in the 

evening than in the morning. In the evening the flow from 
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external to internal zones is lighter than it is in the 

morning. 

There does not seem to be a simple explanation of 

why these tendencies are affected by the difference in the 

trip matrices in the way they are. Two changes have been 

introduced between the morning and evening trip matrices; 

the internal to external demand has been increased from 

10 to 40 trips per O-D pair and the external to 

internal demand has been decreased from 40 to 10 

trips per O-D pair. The next step to establishing an 

explanation would be to make these changes one at a time. 

The intermediate step might represent a mid-day trip 

matrix. Further steps would then involve making the 

changes more gradually. 

For the Hazel Grove network a similar analysis of 

the tendency of paths to use the outer ring in the 

clockwise or anticlockwise direction is made. Only one 

trip matrix was available and it was very skewed in that 

very many of the trips were destined for one part of the 

network. The lack of symmetry in the network and the skew 

in the matrix preclude much deduction from the analysis. 

In this assignment, paths make significant use of the 

central spine so these paths are given a place in the 

analysis as well as those which use the outer ring. The 

results of the analysis are shown in Table 11. 
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TABLE 11 

ANALYSIS OF PATHS HAZEL GROVE 

Along outer ring 

Paths for zone types Spine cw. acw. 

Internal to internal 48 11 30 

Internal to external 46 52 73 

External to internal 22 2 8 

External to external 55 31 45 

cw. = clo ckwise. acw. = anticlockwise. 

The Hazel Grove trip matrix is dominated by trips 

between pairs of external zones; just the opposite to the 

model trip matrix created for the M25 network. Another 

major difference is that junctions on the outer ring of 

the M25 network were modelled with flyovers whereas no 

junctions in the Hazel Grove network were modelled that 

way. These differences are too great for much weight to 

be attached to any consistency in tendencies to use the 

outer ring clockwise or anticlockwise. It was however the 

fairly marked tendency to use the outer ring anticlockwise 

in the Hazel Grove network which prompted the analysis of 

the M25 paths. In the latter case this tendency was only 

evident for paths between pairs of internal zones. 

There are many spatial properties of the vine of 

routes from a common origin. In nature, trees can be 

classified according to the way their branches spread out. 

In fruit culture, certain formations are actually 
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encouraged. The vines which the CROWN design tool creates 

are two-dimensional and the ones analysed here have two 

main branches curving round the outside. These main 

branches sometimes extend over the top. The magnitude and 

direction of such extensions is the property analysed 

above. 

To analyse a property one has to be able to define 

it and count its occurrence. In the course of the project 

other spatial properties relevant to traffic were 

analysed. One was the tendency of the tips of the vines 

to terminate in a left turn or a right turn. Another was 

the tendency of the branches to pass clockwise or 

anticlockwise round blocks. As no clear pattern was 

emerging the analysis is not recorded here. 

The effect of choosing minimum conflict routes is 

to avoid some turning movements altogether; an analysis of 

the unused turning movements is included in the next 

section. 

7.7 TRAFFIC CONTROL MEASURES 

The interest in the unused turning movements 

centres on the fact that they indicate streets whose 

capacity could be increased by being designated one-way, 

and turns which could be banned. These traffic control 

measures would reduce conflict locally and might encourage 

drivers into more efficient routeing patterns. They are 
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consistent with the pattern found by the design tool. The 

simple weighting system used did not reflect any priority 

at junctions, so the routeing patterns suggest where the 

priorities should be rather than vice versa. 

7.7.1 Analysis SLf proportions 9& unused elements 

The unused elements are analysed both in terms of 

numbers of links which could be made one-way, and in terms 

of the numbers of unused turning movements segregated by 

T-junction and crossroads. The data are given in Tables 

12 and 13. 

TABLE 12 

M25 NETWORK WITH EVENING PEAK TRIP MATRIX 

Number of links used only one way: 2 out of 240. 

Unused turning movements: 166 out of 1032, 

at crossroads: 37 left turns 

43 straight on 

86 right turns 

at T-junctions: none. 

TABLE 13 

HAZEL GROVE 

Number of links used only one way: 16 out of 127. 

Unused turning movements: 142 out of 501, 

at crossroads: 20 left turns 

27 straight on 

32 right turns 

at T-junctions: 12 left turns 

51 right turns. 
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In the Hazel Grove network about a quarter of the 

possible turning movements are not used compared with only 

about a sixth in the M25 network. 

7.7.2 
, 
fig locations 

, Q& unused elements 

The actual location of these unused movements is 

more interesting for the Hazel Grove network; the streets 

which could be made one-way are shown in Figure 18. 

These streets are marked with a single arrow to 

distinguish them from the two streets which the local 

authority has already designated as one-way; the latter 

are marked with a double arrow. The design tool has 

effectively 'created' three one-way circulatory systems 

and six other one-way streets. 
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Fig. 18 One-way streets for Hazel Grove 

137 



The location of unused turning movements in the 

Hazel Grove network shows how conflicts are avoided. The 

road joining two of the one-way circulation systems 

exhibits an interesting feature. This part of the road 

network is shown in Figure 19. The four T-junctions, 

shown by a circle, are examined in detail. The 

Circulation System for these four junctions is shown in 

Figure 20, with the unused movements shown distinctly. 

There are no crossing conflicts at these junctions. The 

design tool has effectively turned this road into a dual 

carriage-way. 
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Fig. 19 Two one-way circulatory systems for Hazel Grove 
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Fig. 20 The Circulation System for four T-junctions 
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The spatial distribution of the total flows was 

described in Section 7.5, but one aspect of that 

distribution is more appropriately described in the 

context of the one-way streets 'created' by the CROWN 

design tool. There are several blocks of streets where 

most of the traffic is flowing clockwise round the block. 

There is one block, sharing a link with one of these 

clockwise blocks, where most of the traffic is flowing 

anticlockwise. These features may remind one of eddies in 

a fluid. They are shown in Figure 21. 
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Fig. 21 'Eddies' of traffic in Hazel Grove 
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7.7.3 Designing traffic control measures 

The design tool gives the traffic manager the 

details of a routeing pattern which reduces conflict for 

the given road network and trip matrix. The results could 

be used to design traffic management measures which would 

encourage drivers to use those routes. That encouragement 

could range from automatic route guidance to local 

measures which force or encourage drivers to use one 

street rather than another. 

The presently available method of direct route 

guidance is by signposts. The diagrams one can draw from 

the output in the file FLINKTRE. DAT show the vines of 

routes from each origin and thus the route which should be 

taken to each destination. Hierarchical signing on 

hierarchical networks could go some way to directing 

traffic onto these routes; it would tend to compress 

traffic onto single routes rather than multiple routes. 

Automatic on-board route guidance is being 

developed for trial in the London area. The most obvious 

criterion for the choice of route would be minimum journey 

time,, especially in view of the fact that current link 

times reflecting the effect of any incident or roadworks 

could be fed to the on-line computer, and the advised 

routes updated accordingly. This obvious choice may not 

be the best either for reducing the level of congestion 

occurring in the system or for safety at junctions. The 

routes found by the CROWN design tool have much to commend 
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them as an alternative to those found to mimimise journey 

time. 

The one-way streets found by the design tool would 

force drivers towards the desired routeing pattern. Their 

likely effect on traffic movements could be tested using a 

conventional traffic assignment program. The unused 

turning movements could be banned, again forcing drives 

towards the desired routing pattern. Their likely effect 

could be tested by heavy turn penalties in a conventional 

assignment program. 

Drivers could also be encouraged towards the 

desired routeing pattern by various means. When changes 

are made, those who regularly use the network are expected 

to discover the improvements and switch their routes to 

make use of them over a period of time. The capacity of 

particular roads and junctions can sometimes be increased. 

Those roads where an increase in capacity could be 

expected to provide indirect guidance could be identified 

from the plot of the results in the file FLINKSUM. DAT. 

Capacity can be increased by widening the road or 

restricting on-street parking. 

The capacity of junctions can be increased both by 

channelling traffic appropriately and by preferential 

signal timings. Shifts in signal offsets and cycle 
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timings which reduce the delay for existing traffic flows 

are identified by using programs, such as TRANSYT and 

SCOOT. Those involved in managing traffic where there are 

either co-ordinated or isolated traffic signals already 

realise that shifts which affirm the existing flows may 

not be most beneficial in reducing congestion. However, 

the flows used as input to TRANSYT do not have to be 

existing flows; there is no reason why an alternative set 

of flows, such as those provided by the CROWN design tool, 

could not be used. TRANSYT would then optimise the 

performance index for these flows. If the resulting 

shifts were implemented, drivers might well find shorter 

queues where conflict minimising routes produced the 

heavier flows. They might even respond by trying out an 

alternative route. In this way the traffic manager could 

break away from his present passive response to existing 

flows. 

7.8 CONCLUSION 

The design tool has been tested with several 

networks. It finds routes to reduce the amount of 

conflict between streams of traffic at junctions by using 

less direct routes for some of the traffic. The iterative 

process converges rapidly. Single cycles of iteration 

with these networks take between 20 and 40 minutes each. 

In further development of the design tool, an attempt will 

be made to reduce these times. The resulting values of 

the objective function are only slightly sensitive to the 
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options chosen for a particular run. 

Examples have been given of the kinds of insights 

into solutions to the traffic management problem which 

have been made possible with the development of this tool. 

The tool has been demonstrated with a real network and 

with idealised networks. The tool can be used, in a 

general way, to help us explore the routeing potential for 

different types of network. 
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CHAPTER 8 

CONCLUSION 

8.1 I VISION REALISED 

Various mathematical programming methods for 

solving the problem to find conflict minimising routes 

were investigated. The objective was to develop a method 

which would work reasonably well under realistic 

conditions. As a result of the investigation, the 

heuristic method for improving a start-up assignment of 

traffic was chosen. Two particular hindrances to this 

improvement were identified. One is the effect of what 

were called 'ghost costs'; these were easy to eliminate. 

The other is what was called 'mutually beneficial 

sightseeing'. The opportunity for this to occur might be 

reduced by redefining the subproblems, which are solved 

during the iterative process; one could try defining each 

subproblem as involving traffic with a common destination 

rather than a common origin. 

The second formulation for solution by ILP showed 

up the way that the topology of the network restricts 

paths whose end points are fixed so that there is a 

certain amount of conflict between them; the conflict 

between a pair of paths can be split into topologically 

essential conflict, a path conflict and a path pair 

conflict. 
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Once the heuristic method had proved satisfactory 

for small test networks, it was tried out with bigger and 

realistic networks. The effort involved in preparing a 

complete specification of the Circulation System from a 

road network diagram might deter practising traffic 

engineers from using the design tool. An algorithm was 

designed to perform this task automatically. The design 

of these algorithms proved to be a quite a challenge. The 

design tool thus consists of three programs. POLYARCS 

prepares certain input files for the other two programs. 

The main program POLYSEND assigns traffic to routes chosen 

to reduce the amount of conflict at junctions. POLYLINK 

processes the output files from POLYSEND to express the 

results in terms of links in the original road network. 

The operation of the program suite was validated 

with test networks. Its use was demonstrated with various 

networks of a more realistic size. The resulting routeing 

patterns were plotted on diagrams of the networks and 

their features studied. Conflict was sometimes reduced by 

not making use of all possible manoeuvres at junctions. 

These unused manoeuvres point to suitable one-way streets 

and banned turns. The effects of designating these 

streets for one-way operation and banning these turns 

could be assessed using a conventional assignment. 
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8.2 = VISION AMENDED 

The ideal of finding a globally optimal solution 

to the problem had to be abandoned. Any practitioner 

realises that the mathematical model of a problem is only 

an approximation to the real world, so when the best 

solution to his problem proves impossible to find in a 

reasonable time, he has to be content with finding a good 

solution. Provision is made for him to find several 

reasonably good locally optimal solutions. 

No provision is made in the tool for taking 

account of crossing conflicts between traffic from the 

same origin. To do so would involve redefining the 

subproblems to involve the traffic between one O-D pair at 

a time. This would increase the number of subproblems by 

a factor of (n - 1). As common sense would suggest that 

such paths would usually fan out without crossing, the 

large increase in the number of computations required did 

not seem worthwhile. 

8.3 = VISION EXTENDED 

Throughout the thesis, refinements to the design 

tool have been suggested. It is intended that these 

should be made during further development of the design 

tool. Perhaps the most obvious one is the inclusion of 

capacity restraint. The network algorithm has provision 

for this. The test for spare capacity would have to be 

applied instead of being bypassed. Residual capacity 
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would also have to be recomputed after the solution of 

each subproblem. However, it would involve the building 

of a fresh vine for each O-D pair because some branches 

already in the vine might not have enough spare capacity 

to accommodate the flow required for the next O-D pair. 

This would increase the number of computations required by 

a factor of (n -1). 

Details of the volume of flow, in each direction 

through each junction, is accessible from the output from 

the main program POLYSEND, but it would be more convenient 

to have these turning volumes expressed in terms of the 

links in the road network rather than in their present 

form, which refers to the more complex Circulation System. 

The data files which are output by the program 

POLYLINK can never be an entirely satisfactory medium for 

the solution to a spatial problem. A graphics environment 

is the proper one in which to display the solution to a 

traffic problem. Such an environment requires that the 

nodes (junctions) of the road network be given co- 

ordinates in co-ordinate file. It is expected that the 

next stage of development will include making output files 

from the CROWN design tool compatible with MVORAF the 

graphics program produced by the industrial collaborators 

MVA Systematica. 

149 



The single criterion, of reducing conflict between 

streams of traffic, could be combined with the criterion 

of reducing journey distance, if movements along links as 

well as junction manoeuvres were represented in the 

Circulation System. The network synthesis program could 

easily be adapted to represent these movements as well. 

Diverging conflicts were not included because they 

were deemed to be of secondary importance compared with 

merging and crossing conflicts. The lists of conflicting 

arcs could easily be extended to include pairs of 

diverging arcs. 

8.4 FURTHER VISIONS 

The CROWN design tool could be adapted to find 

routes which specifically reduced the potential for 

accidents. The adaptation would involve replacing the 

cost functions with the accident predictive relations 

developed at the Transport and Road Research Laboratory. 

A paper in which this possibility was explored was 

presented at the Universities Transport Study Group Annual 

Conference in January 1990 (Wackrill 1990). 

The concept of minimising conflict between streams 

of traffic can be applied to streams of pedestrians. A 

map has recently appeared at Kings Cross Station in London 

showing the paths into which rush hour pedestrians are 

guided to reduce conflict. A sketch of this map is shown 
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in Figure 22. 
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Fig. 22 Sketch of pedestrian movements at Rings Cross. 

151 



In principle, the interaction between vehicle and 

pedestrian flows could be modelled in the CROWN design 

tool. This is relevant to the siting of bus stops and 

pedestrian crossings. 

8.5 JU HEAVENLY VISION 

"Each of you should look not only to his own 

interests, but also to the interests of others. " 

Philippians 2: 4. 

Traffic management is a social responsibility. 

This approach to traffic management looks not only to the 

interests of the individual driver but also to those of 

the group of drivers as a whole. It looks beyond the 

driver to include his passengers, in reducing the 

potential for accidents. it looks beyond road users to 

urban inhabitants in reducing the amount of noise and air 

pollution. May this heavenly vision do some earthly good. 

152 



REFERENCES 

ALLSOP, R. E. and CHARLESWORTH, J. A. 1977. Traffic in a 

signal-controlled network: an example of different signal 

timings inducing different routeings. Traffic Enaaa 

Control 18 (5), 262-264. 

BARR, R. S., GLOVER, F. and KLINGMAN, D. 1974. An improved 

version of the Out-of-Kilter mathod and a comparative 

study of computer codes. Math. gros. 7(1974), 60-86. 

BELL, M. G. H. 1990. Environmental impact of traffic. 

Presented at the 22nd Universities Transport Studies Group 

Annual Conference. (Unpublished). 

BOYCE, D. E. 1988 Route guidance systems for improving 

urban travel and location choices. TransDn. Res. g 

Vol. 22A, No. 4,274-281. 

HOLROYD, E. M., and MILLER, A. J. 1966 Route Crossings in 

Urban Areas. Australian Road Research Proceedings 237, 

394-419. 

SHEFFI, Y. 1985. Urban transvortation networks: 

ecuilibrium analysis with mathematical nroarammina 

methods. Prentice-Hall 203-229. 

STOELHURST, H. J., and ZANDBEROEN, A. J. 1990. The 

development of a road pricing system in The Netherlands. 

Traffic Enona A Control 31 (2), 66-71. 

153 



SUMMERSGILL, I. 1988 Accident Predictive Relations for 

some Junction Types in Great Britain. P. T. R. C. Conference 

Proceedings 1988 163 - 178. 

TURAN, P. 1977. A note of welcome. Graph Theory 1 

(1979) 7-9. 

WACKRILL, P. A. 1990. Routes chosen to reduce the potential 

for urban accidents. Presented at the 22nd Universities 

Transport Studies Group Annual Conference. (Unpublished). 

WARDROP, J. G., 1952. Some theoretical aspects of road 

traffic research. Proceedinas. Institution pj Civil 

Engineers 11(1), 325-378. 

WRIGHT, C. C., 1978 Control of drivers' route choice: 

pipe dream or panacea? Transportation 7(1978) 193-210. 

WRIGHT, C. C. 1979. Arcs and cars: an approach to road 

traffic management based on graph theory. Graph theory 

And combinatorics (R. J. Wilson, editor). London: Pitman, 

133-146. 

WRIGHT, C. C., APPA, ß. M., and JARRETT, D. F. 1989 Conflict- 

minimising traffic patterns: a graph-theoretic approach to 

efficient traffic circulation in urban areas. 

Transaor ation Research 23A(2), 115-127,1989. 

WRIGHT, P. T., and SEMMENS, M. C. 1984. An assessment of the 

Denham roundabout conversion. Traffic Enana IL Control 25 

(9), 422-426. 

154 



APPENDIX 1 

THE DIGRAPH MODELS 

The purpose of this appendix is to relate the 

weights to the particular pairs of conflicting movements. 

Diagrams show the arcs in each junction type. 

Approach vertices are labelled with A, exit vertices with 

E, and vertices on a roundabout with R. 

There follows a table containing a row for each 

arc, and an ordered list in that row of the arcs 

conflicting with that arc. The format of this table is 

then used to show the corresponding weights. 

Under the heading 'Arguments in the WT3 (or WT4) 

array', a number n in row r and column c will imply 

that the nth element in the WT3 (or WT4) array is to be 

used for weighting the conflict between the arc in row r 

and the cth arc with which it conflicts. Where the 

pattern of conflicts and weights repeats itself, only one 

repeat is used to indicate the corresponding arguments. 

Under the heading 'Default weights', the same 

table, or part of it, is used to show the actual default 

weights available in the program. These are 1 for a 

merge, 2 for a crossing and 3 for interlocking turns. 

Where several junction types have the same 
diagram, the corresponding tables appear one after the 

other under these two headings. Each junction type has a 

name and a type number, the value of JT(X) for the type. 
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3-ARM JUNCTIONS 

3 

as 

Fý 

E3 

A3 

Conflicting arcs 
Ist 2nd 3rd 

Arcs 
16 
2643 
32 
4265 
54 
6421 

CORRESPONDING WEIGHTS 

Arguments in WT3 array Default weights 

FREE-FOR-ALL: JT(X) =1 Repeat with three-fold symmetry. 

11 
234221 

PRIORITY: JT(X) =2 

51 
678221 
91 
10 11 12 221 
13 1 
14 15 16 221 

SIGNALS: JT(X) =3 

17 1 
18 19 20 221 
21 1 
22 23 24 221 
25 1 
26 27 28 221 
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3-ARM JUNCTIONS 

Pic. 
3 

F2. 

E3 

A3 

Conflicting arcs 
1st 2nd 3rd 

Arcs 
16 
26 4 3 
32 
42 6 5 
54 
64 2 1 

CORRESPONDING WEIGHTS 

Arguments in WT3 array Default weights 

MINI-ROUNDABOUT JT(X) =4 Repeat with 3-fold symmetry. 

29 1 
30 31 32 221 

ROUNDABOUT JT(X) ý5 Repeat with 3-fold symmetry. 

33 1 
34 35 36 221 

3 
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3-ARM JUNCTION: GRADE SEPARATED 

3 
Al E3 

El I Al VS 

Al 

Conflicting arcs 
lst 2nd 3rd 

Arcs 
1 6 
2 3 
3 2 
4 5 
5 4 
6 1 

CORRESPONDING WEIGHTS 

Arguments in WT3 array . 
Default weights 

GRADE-SEPARTATED JT(X) =6 

37 1 
38 1 
39 1 
40 1 
41 1 
42 1 
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4-ARM JUNCTION: FREE-FOR-ALL 

E3 43 

4 
S 

Al nor EI 

8 

E Ak 

ý1 gd. 

Conflicting arcs 
ist 2nd 3rd 4th 5th 6th 7th 

Arcs 
1 11 9 
2 11 9 65 12 4 
3 11 9 12 6 8 57 
4 2 12 
5 2 12 98 3 7 
6 2 12 39 11 8 10 
7 5 3 
8 5 3 12 11 6 10 
9 5 3 6 12 2 11 1 

10 8 6 
11 8 6 32 6 1 
12 8 6 93 5 24 

CORRESPONDING WEIGHTS 

FREE-FOR-ALL JT(X) =1 Repeat with 4-fold symmetry. 

Arguments in WT4 array 

1 2 
3 4 56 7 8 
9 10 11 12 13 14 15 

Default weights 

1 1 
2 2 22 1 1 
2 3 22 2 11 
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4-ARM JUNCTION: PRIORITY 

531 1 14s 

�1/\ 54 Al 
6 

E4 

1g 

Es Aý. 

3 iv 

R'1 E9. 

Conflicting arcs 
1st 2nd 3rd 4th 5th 6th 7th 

Arcs 
1 11 9 
2 11 965 12 4 
3 11 9 12 6857 
42 12 
52 12 9837 
62 12 39 11 8 10 
753 
853 12 11 6 10 
9536 12 2 11 1 

10 86 
11 863261 
12 8693524 

CORRESPONDING WEIGHTS 

PRIORITY JT(X) =2 Repeat with 2-fold symmetry. 

Arguments in WT4 array 

16 17 
18 19 20 21 22 23 
24 25 26 27 28 29 30 
31 32 
33 34 35 36 37 38 
39 40 41 42 43 44 45 

Default weights 

11 
222211 
2322211 
11 
222211 
2322211 
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4-ARM JUNCTION: SIGNALS 

E3 as 

4 
S 

Al 
q 

6 

2. g 

EZ R4 
3 to 

R1 E1 

Conflicting arcs 
Ist 2nd 3rd 4th 5th 6th 7th 

Arcs 
1 11 9 
2 11 965 12 4 
3 11 9 12 6857 
42 12 
52 12 9837 
62 12 39 11 8 10 
753 
853 12 11 6 10 
9536 12 2 11 1 

10 86 
11 863261 
12 8693524 

CORRESPONDING WEIGHTS 

SIGNALS JT(X) =3 Repeat with 4-fold symmetry. 

Arguments in WT4 array 

46 47 
48 49 50 51 52 53 
54 55 56 57 58 59 60 

Default weights 

11 
222211 
2322211 
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Al 

E. 

Conflicting arcs 
1st 2nd 

Arcs 
1 3 
2 3 4 
3 2 1 
4 2 
5 7 
6 7 8 
7 6 5 
8 6 
9 11 

10 11 12 
11 10 9 
12 10 
13 15 
14 15 16 
15 14 13 
16 14 

If1. 

CORRESPONDING WEIGHTS 

94 

44 

MINI-ROUNDABOUT JT(X) =4 Repeat with 4-fold symmetry. 

Arguments in WT4 array. Default weights. 

61 1 
62 63 21 
64 65 21 
66 1 
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Al E1 
Conflicting arcs repeat with 4-fold symmetry. 

ist 2nd 3rd 4th 5th 6th 
Arcs 

1 17 15 
2 17 15 876 20 
3 17 15 19 
48 
5 13 12 7 11 

CORRESPONDING WEIGHTS 

ROUNDABOUT JT(X) =5 Repeat with 4-fold symmetry. 

Arguments in WT4 array 

67 68 
69 70 71 72 73 74 
75 76 77 
78 
79 80 81 82 

Default weights 

11 
222211 
221 
1 
2211 
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Conflicting arcs 01,1s is 

Ist 2nd 3rd 4th 5th 6th 
Area 

1 11 9 
2964 12 
39 12 6857 
42 12 
573 
62 12 398 10 
753 
83 12 10 6 
936 12 2 11 1 

10 86 
11 19 
12 869424 

CORRESPONDING WEIGHTS 

GRADE-SEPARATED JT(X) =6 Repeat with 4-fold symmetry. 

Arguments in WT4 array 

83 84 
85 86 87 Be 
89 90 91 92 93 94 
95 96 
97 98 
99 100 101 102 103 104 

Default weights 

11 
2211 
322211 
11 
11 
232211 
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APPENDIX 2 

USE WITH RIGHT HAND DRIVING 

When the digraphs are reflected, or viewed from 

below 'the plane of the paper', they represent driving on 

the right. It follows that the mirror image of the 

Circulation System for left-hand driving on a road network 

is the Circulation System for right-hand driving on the 

mirror image of the road network. 

This property can be exploited when using overhead 

projection for the digraph models of junctions, by placing 

the foil the other way up on the projector in countries 

where road users drive on the right. If the road network 

is symmetric, appropriate routeing patterns can also be 

shown in this way. 
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APPENDIX 3 

DETECTION OF INCONSISTENCIES 

Inconsistency in the input data is detected and 

reported in the following way. When all the vertices have 

been created, the program proceeds to create the arcs 

using a digraph model of the appropriate type for each 

junction. For each link meeting at the junction, the 

program checks whether the B node of the first link 

matches the node number of the junction; if it does the 

program proceeds as described in Chapter 2. 

If the B node does not match the node number of 

the junction, the program goes on to check whether the A 

node matches, and proceeds as described in Chapter 2. 

If, however, neither the A node nor the B node 

matches the junction node then, there must be some 

inconsistency. The program stops with a message indicating 

inconsistency at the junction specified by its node 

number. Either the link is correctly recorded in the link 

records but should not appear in this particular junction 

record, or the link record is faulty. In either case the 

user is alerted, and directed to the likely sources of his 

error. 
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APPENDIX 4 

EXAMPLE TO ILLUSTRATE QP AND ILP SOLUTIONS 

The road network used for this example is shown in 

Figure 1. The Circulation System is shown in Figure 2. 

3 

12 

Fig. 1. The road network 

a 

I 

-- .ý 

Fig. 2 The Circulation System 

The trip matrix used is given below. 

1 2 3 

1 - 1 3 

2 1 - 1 

3 1 4 - 

4 
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4.1 THE VARIABLES 

Three variables are defined for each arc of the 

Circulation System. They correspond to flows from the 

three Origin Vertices 1,3, and 5. Consideration of the 

flow conservation constraints shows that, for example, 

there will be no flow from Origin Vertices 3 or 5 on Arcs 

1 or 2. Similarly there will be no flow from Origin 

Vertex 1 on Arcs 4 or 5. Arc 3 will not carry flow from 

Origin Vertices 1 or 3. Are 6 will not carry flow from 

origin Vertices 1 or 5. This cuts down the number of 

variables required for the first 6 arcs from 18 to 8. The 

24 variables are tabulated in terms of arcs and the origin 

vertices, in Table 1. 

TABLE 1 

Arcs 123456 

Flow from Vertex 1 x(1) x(2) ---- 

Flow from Vertex 3--- x(3) x(4) x(5) 

Flow from Vertex 5 x(6) x(7) x(8) - 

Arcs 789 10 11 12 

Flow from Vertex 1-- x(9) x(10) x(11) - 

Flow from Vertex 3--- x(12) x(13) x(14) 

Flow from Vertex 5 x(15) x(16) ---- 

Arcs 13 14 15 16 17 18 

Flow from Vertex 1-- x(17) x(18) x(19) - 

Flow from Vertex 2 x(20) x(21) ---- 

Flow from Vertex 3--- x(22) x(23) x(24) 
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The constraints for flow through intermediate vertices 

show that the number of variables can be reduced further. 

For instance, conservation of flow through Vertex 7, 

involves flow arriving on Arcs 1 and 6 and leaving on Arcs 

9 and 10. For the flow from Vertex 3, this implies that 

x(5) = x(12). There are five similar equations for flow 

through the five other intermediate vertices. This 

reduces the number of variables required to 18. In the 

case of flow from Vertex 1 through Vertex 7, the equation 

obtained is x(1) = x(9) + x(10). For this particularly 

simple network, the eighteen variables are split into two 

sets, one being those single variables on the left sides 

of the six similar equations, and the other being the six 

pairs of variables on the right hand sides. Each of the 

six variables on the left hand sides can therefore be 

replaced by the sum of the pair of variables on the right 

sides. This reduces the number of variables required to 

twelve. A closer inspection shows that these variables 

correspond to the two arc-disjoint paths between each 

origin to destination pair of vertices (0-D pair). This 

problem involves six O-D pairs and just two possible paths 

between each pair. The problem is formulated in terms of 

these variables. The paths are referred to as clockwise 

(cw) or anti-clockwise (acw). The variables are defined 

in Table 2 below, and the path corresponding to variable 

x(n) will be referred to as Path n. 
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TABLE 2 

From vertex to vertex 

1 4 
1 6 

3 2 
3 6 

5 2 
5 4 

flow cw 

x(1) 
x(3) 

x(5) 
x(7) 

x(9) 
x(11) 

flow acw 

x(2) 
x(4) 

X(6) 
x(8) 

X(10) 
x(12) 

This leaves a very simple and convenient set of 

constraints for the flow into each destination vertex. 

There is one constraint for each non-zero element of the 

trip matrix, with its right hand side equal to that 

element. 

For the objective function each pair of conflicting 

arcs has to be identified and the variables representing 

flow on the one multiplied by those representing flow on 

the other. 

4.2 SOL UTION JLX OUADRATIC PROGRAMMING 

The solution is obtained using the MPCODE software, 

developed at the London School of Economics, and based on 

Beale's method. The solution is used to demonstrate that 

what were called 'ghost costs' in Chapter 3, Subsection 

3.5.3, are not only included but also inhibit further 

improvement of the solution. The data file for the 

formulation in Section 3.1 is shown below. It consists 

of twelve records as follows: 

16 



Record 1- some words to control the output, NONE asks for 

the minimal amount of output. 

Record 2-M (no. of constraints), N (no. of variables), 

and NUMQ (the dimension of the D matrix). 

Record 3- triples of 2 integers and a real or integer 

number, for the row, column and coefficient of 

each non-zero element in the D matrix. 

Record 4- 'MAX' or 'MIN', M, N, 

Record 5- pairs of an integer for the variable, and a 

real or integer for its coefficient for the non- 

zero terms in the linear part of the objective 

function. 

Record 6- triples of three elements for each constraint, 

an integer for the constraint number, a letter 

'L', 'G` or 'E' for its sign, and a real or 

integer number for the right hand side. 

Records 7 onwards - Separate records for each row of the A 

matrix, starting with the row identifier 

followed by two commas, then for each non-zero 

element a pair consisting of an integer to 

identify the variable and a real or integer 

number for its coefficient. 

The problem can be solved with different trip matrices 

merely by making changes to Record 6. 
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The data file for this problem 
'NONE', / 
6,12,12, / 
1,2,1,1,7,1,1,9,1,1,11,1,1,12,1, 
2,6,2,2,7,1,2,8,1,2,9,1,2,10,1,2,11,1,2,12,1, 
3,4,1,3,6,1,3,7,1,3,8,1,3,9,1,3,11,1, 
4,6,2,4,7,2,4,8,1,4,10,1,4,12,1, 
5,6,1,5,9,1,5,10,1, 
6,7,2,6,9,3,6,10,1,6,11,1,6,12,2, 
7,8,1,7,9,2,7,10,1,7,11,1, 
8,9,1,8,12,1, 
9,10,1,9,12,1, 
11,12,1, / 
'MIN', 6,12, / 

1, 'E', l, 2, 'E, 3,3, 'E', 1,4, 'E', 1,5, 'E', 1,6, 'E', 4, / 
1,, 1,1,2,1, / 
2,, 3,1,4,1, / 
3,, 5,1,6,1, / 
4,, 7,1,8,1, / 
5,, 9,1,10,1, / 
6,, 11,1,12,1, / 

The relevant parts of the output file are shown below. 

The program has found a local optimum which is not the 

global optimum. The way the variables are defined 

provides for a very relevant interpretation of the partial 

derivatives of the quadratic function. The values are the 

costs, in terms of conflict, of using each of the twelve 

paths. In each case the cost of the alternative path for 

any O-D pair is greater than or equal to the cost of the 

path used; the partial derivative is at a minimum so the 

program terminated with this solution. 
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Part of the output file for the solution 

IN THE FOLLOWING OUTPUT, THE C VECTOR CONTAINS THE 
PARTIAL DERIVATIVES OF THE QUADRATIC FUNCTION. 

****** QUADRATIC PROGRAM OPTIMUM ****** 

Value of Minimand = 20.00000000 

PRIMAL SOLUTION 

Variable ------------ --- 
j Name 

----------- 
c(j) 

-------------- 
x(j) 

---------- 
yA-c 

-------- 
Status 

------------ 
1 4.000 1.000 0.000 BS 
2 7.000 0.000 -3.000 DN 
3 5.000 3.000 0.000 BS 
4 5.000 0.000 0.000 DN 
5 1.000 1.000 0.000 BS 
6 9.000 0.000 -8.000 DN 
7 9.000 0.000 -7.000 DN 
8 3.000 1.000 0.000 BS 
9 7.000 0.000 -6.000 DN 

10 1.000 1.000 0.000 BS 
11 4.000 4.000 0.000 BS 
12 6.000 0.000 -2.000 DN 

The total flows, with the costs in brackets, are shown 

in Figure 3. The cost of the unused paths all incorporate 

what were called 'ghost costs'. For each such path, this 

is the cost due to the flow on the other of the pair of 

paths between the same O-D pair. If that path was 

actually used, the flow would no longer be on the other 

path; so the cost of using it goes down as soon as it is 

used. When the ghost costs are removed, the costs are 

reduced to the values shown below. The variables have 

been defined in such a way that the terms which give rise 

to ghost costs can be identified and removed from the 

objective function. 
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I 

Notation flow(cost) 

Fig. 3 The first solution 

4 

Costs reduced by the removal of ghost costs 

Variable 
i 

------------- 
c(J) 

------------- 
x(J) yA-c Status 

------------------------------ 
1 4.000 1.000 
2 6.000 0.000 
3 5.000 3.000 
4 2.000 0.000 
5 1.000 1.000 
6 8.000 0.000 
7 9.000 0.000 
8 3.000 1.000 
9 6.000 0.000 

10 1.000 1.000 
11 4.000 4.000 
12 2.000 0.000 

With these reduced costs the value of the partial 
derivative could be reduced by making use of some of the 

unused paths. Path 4, anticlockwise from Vertex 1 to 

Vertex 6, is cheaper than the used Path 3. Path 12, 

anticlockwise from Vertex 5 to Vertex 4, is also cheaper 
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than the used Path 11. 

When the ghost costs are removed from the objective 
function, a better solution is obtained. The relevant 

part of the output file is shown below, and the solution 

is shown in Figure 4. 

Part of the output file for the better solution 

IN THE FOLLOWING OUTPUT, THE C VECTOR CONTAINS THE 
PARTIAL DERIVATIVES OF THE QUADRATIC FUNCTION. 

****** QUADRATIC PROGRAM OPTIMUM ****** 

Value of Minimand = 10.0 0000000 

PRIMAL SOLUTION 

Variable 
j Name c(j) 

- ----- 
x(j) yA-c Status 

-- 
1 

-------------------- 
5.000 

------- 
1.000 

--------- 
0.000 

------------ 
BS 

2 6.000 0.000 -1.000 DN 
3 6.000 0.000 -5.000 DN 
4 1.000 3.000 0.000 BS 
5 1.000 1.000 0.000 BS 
6 13.000 0.000 -12.000 DN 
7 13.000 0.000 -9.000 DN 
8 4.000 1.000 0.000 85 
9 3.000 1.000 0.000 BS 

10 4.000 0.000 -1.000 DN 
11 1.000 4.000 0.000 85 
12 6.000 0.000 -5.000 DN 
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Fig. 4 The better solution 

4 

This example demonstrates a case in which the 

ghost costs, incorporated in the partial derivative which 

Beale uses to determine the point at which to terminate 

his program, inhibited the improvement of the solution to 

a better optimum. in this small example, where it was 

feasible to relate variables to paths between O-D pairs, 

the removal of the ghost costs allowed the program to 

proceed to find the global optimum as demonstrated by the 

integer Linear Programming method in the next section. 

4.3 FIRST ILE METHOD 
The purpose of using ILP is to guarantee a global 

optimum by the branch and bound method. The MPCODE, 

developed at the Londion School of Economics, was used. 

22 

Z 12.1 



The variables defined at the end of Section 3.1 are 

redefined as zero-one variables signifying the non-use or 

use of each path respectively. The constraints of the QP 

formulation, are changed by replacing all the right hand 

sides by 1, to ensure that only one of each pair of paths 

connecting an O-D pair is used; this is jusified by the 

fact that the group travel property will hold in the 

optimal solution. The terms of the quadratic function, 

which signified the number of times a pair of paths 

conflicted, therefore acquire increased coefficients in 

proportion as the two paths involved have to carry more 

than one unit of flow. For example, the term x(4)*x(12) 

becomes 12x(4)*x(12) because Path 4, if it is used, will 

carry 3 units of flow, and Path 12, if it is used, will 

carry 4 units of flow. 

In enable the use of ILP, the quadratic objective 

function is replaced with a linear function. This involves 

the definition of new variables, one for each term in the 

quadratic function, for example, 

x(l) + z(2) s1+ x(13) 

and x(1) + x(7) s1+ z(14). 

For these examples the terms are then replaced with linear 

terms as follows: 

x(1)*x(2) ___> x(13) 

x(1)*x(7) __=> x(14). 
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The data file for this formulation is shown below. In 

this case, Record 2 consists of M, N, and NUMD, with NUMD 

being -1 to show that all the variables take discrete 

values. Record 3 is like Record 4 for QP and consists of 

'MIN', M, N, and ISBND with ISBND being -1 to show that 

all the variables are zero or one. Record 4, like Record 

5 in QP, shows the elements of the linear objective 

function. Records 5 and 6 and following are like Record 6 

and 7 and following for QP. 

'NONE', / 
46,52, -1, / 
'MIN', 46,52, -1, / 
13,1,14,1,15,1,16,4,17,4, 
18,2,19,1,20,1,21,1,22,1,23,4,24,4, 
25,9,26,3,27,3,28,3,29,3,30,12, 
31,6,32,6,33,3,34,3,35,12, 
36,1,37,1,38,1, 
39,2,40,3,41,1,42,4,43,8, 
44,1,45,2,46,1,47,4, 
48,1,49,4, 
50,1,51,4, 
52,16, / 

21, 'L', 1,22, 'L', 1, 
23, 'L', l, 24, 'L', l, 25, 'L', l, 26, 'L', l, 27, 'L', l, 
28, 'L', 1,29, 'L', l, 30, 'L', l, 31, 'L', l, 32, 'L', 1, 
33, 'L', l, 34, 'L', l, 35, 'L', l, 36, 'L', l, 37, L', l, 
38, 'L', 1,39, 'L', l, 40, 'L', l, 41, 'L', l, 42, 'L', l, 
43, 'L', l, 44, L', l, 45, 'L', l, 
1,, 1,1,2,1, / 
2,, 3,1,4,1, / 
3,, 5,1,6,1, / 
4,, 7,1,8,1, / 
5,, 9,1,10,1, / 
6,, 11,1,12,1, / 
7,, 1,1,2,1,13, -1, / 
8,, 1,1,7,1,14, -1, / 
9,, 1,1,9,1,15, -1, / 
10,, 1,1,11,1,16, -1, / 
11 ,, 1,1,12,1,17, -1, / 
12,, 2,1,6,1,18, -1, / 
13,, 2,1,7,1,19, -1, / 
14,, 2,1,8,1,20, -1, / 

continued overleaf 
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15,, 2,1,9,1,21, -1, / 
16,, 2,1,10,1,22, -1, / 
17,, 2,1,11,1,23, -1, / 
18,, 2,1,12,1,24, -1, / 
19,, 3,1,4,1,25, -1, / 
20,, 3,1,6,1,26, -1, / 
21,, 3,1,7,1,27, -1, / 
22,, 3,1,8,1,28, -l, / 
23,, 3,1,9,1,29, -1, / 
24,, 3,1,11,1,30, -1, / 
25,, 4,1,6,1,31, -1, / 
26,4,1,7,1,32, -1, / 
27,, 4,1,8,1,33, -1, / 
28,, 4,1,10,1,34, -1, / 
29,, 4,1,12,1,35, -1, / 
30,, 5,1,6,1,36, -1, / 
31,, 5,1,9,1,37, -1, / 
32,, 5,1,10,1,38, -1, / 
33,, 6,1,7,1,39, -1, / 
34,, 6,1,9,1,40, -1, / 
35,, 6,1,10,1,41, -1, / 
36,, 6,1,11,1,42, -1, / 
37,, 6,1,12,1,43, -1, / 
38,, 7,1,8,1,44, -1, / 
39,, 7,1,9,1,45, -1, / 
40,, 7,1,10,1,46, -1, / 
41,, 7,1,11,1,47, -1, / 
42,, 8,1,9,1,48, -1, / 
43,, 8,1,12,1,49, -1, / 
44,, 9,1,10,1,50, -1, / 
45,, 9,1,12,1,51, -1, / 
46,, 11,1,12,1,52, -1, / 

The output file is too extensive to reproduce here. The 

solution is the same as that obtained by QP when the ghost 

costs were removed. 

4.4 SECOND 
, 
_, j METHOD 

For the second ILP method, a matrix of costs is 

compiled in terms of conflicts between all possible pairs 

of paths, suitably weighted for those paths which carry 

more than one unit of flow. The matrix, partitioned as 

described in Chapter 3, Subsection 3.5.2, is shown below. 
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Path 1 2 3 4 5 6 7 8 9 10 11 12 

4 4 

2 
- 

1 
-- 

- 
--- 

; 
-- 

- 
--- 

- 
---- 

1 
- 

- 
---- 

1 
--- 

; 
- 

1 
--- 

1 
---- - 

1 
---- 

1 
---- - 

4 
---- 

4 
---- 

3 - - ; - 9 3 3 3 3 - ; 12 - 

4 
- 

- 
---- 

- 
--- 

; 
- 

9 
--- 

- 
---- 

; 
- 

- 
---- 

6 
--- - 

6 
--- 

3 
---- - 

- 
---- 

3 
---- - 

- 
----- 

12 
--- 5 

- - 1 
- - 

1 - 1 f - - 1 
i 

1 j - - 
1 1 1 

$ 

6 
- 

- 
---- 

1 
--- 

1 
- 

3 
--- 

6 
---- 

; 
- 

1 
- 

- ; 2 2 
-- 

1 
---- - 

4 
----- 

4 
--- 7 1 1 1 3 6 ; 

- -- 
- 

--- 
2 

- 
1 
---- 

- 
--- 
1 

- -- 
2 1 4 - 

i i i It i 

8 
- 

- 
---- 

1 
--- 

1 
- 

3 
--- 

3 
---- 

; 
- 

- 
---- 

- 
--- 

; 
- 

1 
---- 

- 
--- 

; 
- 

1 
---- 

- 
---- 

; 
- 

- 
----- 

4 
--- 

9 1 1 3 - ; 1 2 2 1 1 - 1 1 - 4 

10 
- 

- 
---- 

1 
--- 

1 
- 

- 
---- 

3 
--- - 

1 
---- 

1 
--- 

1 
- 

1 
---- 

- 
--- 

; 
-- 

1 
--- 

- 
---- 

; 
-- 

- 
---- 

- 
--- 

11 4 4 ; 12 - 4 4 - ; - - ; - 16 

12 4 4 ; - 12 ; - 4 ; - 4 4 - ; 16 - 

This matrix is reduced as described in Case 1 in Chapter 

3, Subsection 3.5.2; for each part whose elements are all 

greater than some number k, k is subtracted from each of 

those elements. The sum of all the k's for each part 

reduced in this way is twice the number of essential 

conflicts in the problem; which ever pairs of paths are 

chosen these conflicts are unavoidable. The number of 

essential conflicts is 8. To highlight places where these 

reductions were made zeros are entered when the reduction 

resulted in a zero. The reduced matrix is shown below. 
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Path 1 2 3 4 5 6 7 8 9 10 11 12 

0 0 

2 
---- ---- - --- ---- - --- ---- - --- ---- - ---- 

1 
--- 

1 
-- 

0 
---- 

0 
--- 

3 - - ; - 9 ; - 3 ; 0 0 ; 3 - ; 12 - 

4 - 
---- 

- 
---- - 

9 
--- 

- 
--- 

; 
- 

- 
--- 

6 
---- - 

3 
-- 

0 
---- 

; 
- 

- 
---- 

3 
--- -- 

- 
---- 

12 
---- 

5 - - ; - 
- 

- ; - 1 1 
- 

- - 1 0 0 ; - - 

6 - 
---- 

1 
---- 

3 
- 

6 
-- 

1 
--- 

- 
--- 

1 
- 

2 
-- 

- 
---- 

; 
- 

1 
---- 

0 
---- - 

4 
---- 

4 
---- 

7 1 1 
- 
1 
-- 
0 

-- 
3 

- 
; - 

- 
2 

- 
1 2 1 1 4 - 

8 
- 

- 
---- 

1 
--- - 

0 
--- 

0 
---- 

; 
- 

- 
---- 

- 
--- 

; 
- 

1 
---- 

- 
--- 

1 
-- 

1 
--- 

- 
---- 

; 
- 

- 
----- 

4 
--- 

9 1 1 1 3 - ; 0 1 2 1 1 - 1 ; - - 

10 
- 

- 
---- 

1 
--- 

; 
-- 

- 
-- 

3 
--- 

; 
- 

0 
-- 

0 
- 

; 1 
- - 

- 
--- 

; 
- 
1 
--- 

- 
---- - 

- 
----- 

- 
--- 11 0 0 ; 12 

- 
- 

- - -- 
4 

-- 
; 

- 
4 - ; - - ; - 16 

12 0 0 ; - 12 ; - 4 ; - 4 ; - - ; 16 - 

Next each row in each part is examined, 

reduction to that described for Case 2 

Subsection 3.5.2, 

obtained are: 

is carried out. 

2 for Path 2, 

7 for Path 6, 

2 for Path 7, 

and 2 for Path 9. 

The reduced matrix is shown below. 

and a similar 

in Chapter 3, 

Route conflicts 
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Path 1 2 3 4 5 6 7 8 9 10 11 12 

1 - 1 - - ; - - ; 1 - ; 1 - ; 0 0 

2 1 
---- 

- 
---- 

; 

- 
- 

--- 
- 

--- 
1 

-- 
- 

---- 
1 

--- 
; 
- 

0 
--- 

0 

---- 
; 
- 

0 
---- 

0 
---- - 

0 

---- 
0 

---- 3 - - ; - 9 ; - 3 ; 0 0 ; 3 - ; 12 - 

4 - 
---- 

- 
---- 

; 
- 

9 
--- 

- 
---- 

; 
- 

- 
---- 

6 
--- - 

3 
--- 

0 
---- - 

- 
---- 

3 
---- - 

- 
----- 

12 
--- 

5 - - ; - - ; - 1 ; - - 1 0 0 ; - - 
1 i i i 

6 
- 

- 
---- 

1 
--- 

; 
-- 

0 
-- 

3 
---- 

1 
- 

1 
---- 

- 
--- 

; 
- 

2 
-- 

- 
---- 

; 
-- 

1 
--- 

0 
---- 

; 
- 

0 
----- 

0 
--- 

7 0 0 ; 0 3 ; - 2 ; 
- 

- 1 0 , 4 - 
i $ $ i $ 

8 
- 

- 
---- 

- 
--- 

; 
-- 

0 
-- 

0 
---- 

; 
- 

- 
---- 

- 
--- 

; 
- 

1 
---- 

- 
--- 

; 
-- 

1 
--- 

- 
---- 

; 
- 

- 
----- 

4 
--- 

9 0 0 3 - ; 0 1 1 1 0 ; - 1 ; - - 

10 
- 

- 
---- 

1 
--- 

; 
-- 

- 
--- 

3 
--- 

; 
- 

0 
---- 

0 
--- 

; 
-- 

1 
--- 

- 
--- 

; 
-- 

1 
--- 

- 
---- 

; 
- 

- 
----- 

- 
--- 

11 0 0 ; 12 - ; - 4 ; 4 - ; - - ; - 16 
$ It 

12 0 0 1 - 12 i - 4 - 4 , - - i 16 - 

The pair conflicts are computed by adding the 

elements (i, j) and (j, i) to find the pair conflict for the 

pair of paths i and J. The 26 non-zero pair conflicts 

are listed below. 

P(1,2) = 2, P(1,7) = 1, P(1,9) = 1, 

P(2,6) = 2, P(2,10) = 1, 

P(3,4) = 18, P(3,6) = 3, P(3,9) = 6, P(3,11) = 24, 

P(4,6) 2 9, P(4,7) = 6, P(4,10) = 6, P(4,12) = 24, 

P(5,6) = 2, 

P(6,7) = 4, P(6,9) 2 2, P(6,11) 4, P(6,12) = 4, 

P(7,8) = 2, P(7,9) = 2, P(7,10) 1, P(7,11) = 8, 

P(8,9) = 1, P(8,12) = 8, 

P(9,10) = 2, 

P(11,12) = 32. 
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The method involves solving a sequence of ILP 

problems. 

FIRST PROBLEM 

Twelve (0,1) variables are defined to correspond to non- 

use and use of the 12 paths. Six constraints specify that 

exactly one of the pair of paths between each 0-D pair is 

used. The objective function to be minimised involves 

only the route costs for each path. 

The data file is shown below. 

'NONE', / 

2,2,6,7,7,2,9,2, / 
1, 'E', 1,2, 'E', 1,3, 'E', l, 
1,, 1,1,2,1, / 
2,, 3,1,4,1, / 
3,, 5,1,6,1, / 
4,, 7,1,8,1, / 
5,, 9,1,10,1, / 
6,, 11,1,12,1, / 

It will be observed that only Paths 2,6,7, and 9 have 

non-zero route costs. The solution to this problem is to 

use: 

Paths 1,3,5,8,10, and 11. 

The value of the minimand is zero and the LP solution 

did, in fact, satisfy the discrete constraints. 

SECOND PROBLEM 

Of the path pairs used in the first solution only the pair 
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(3,11) has a positive cost, 24, so a variable x(13) 

defined by: 

x(3) + x(11) LE 1+ x(13), 

is introduced and a term 24*x(13) is added to the 

objective function. 

The solution to this problem is to use: 

Paths 1,4,5,8,10, and 11. 

Path 4 is used instead of Path 3 to avoid the pair 

conflict whose cost has been introduced. The value of 

the minimand is zero and the LP solution did, again, 

satisfy the discrete constraints. 

THIRD PROBLEM 

Of the path pairs used in the second solution only the new 

pair (4,10) has a positive cost, 6, so a variable x(14) 

defined by: 

X(4) + x(10) LE 1+ x(14), 

is introduced and a term 6*x(14) is added to the 

objective function. 

The solution to this problem is to use: 

Paths 1,3,5,8,10, and 12. 

30 



The solution has gone back to using Path 3, but uses Path 

12 instead of Path 11 to avoid the pair costs of both 

(3,11) and (4,10). The value of the minimand is zero and 

the LP solution did, again, satisfy the discrete 

constraints. 

FOURTH PROBLEM 

Of the path pairs used in the third solution only the new 

pair (8,12) has a positive cost, 8, so a variable x(15) 

defined by: 

x(8) + x(12) LE 1+ x(15), 

is introduced and a term 8*x(15) is added to the 

objective function. 

The solution to this problem is to use: 

Paths 1,4,5,8,9, and 11. 

The solution has gone 

9 instead of Path 10 

also uses Path 11, 

instead of Path 12 to 

value of the minimand 

the LP solution did, 

constraints. 

FIFTH PROBLEM 

back to using Path 4, but uses Path 

to avoid the pair cost of (4,10). It 

now that Path 3 is not being used, 

avoid the pair cost of (8,12). The 

is 2, the route cost of Path 9, and 

once again, satisfy the discrete 

Of the path pairs used in the fourth solution only the new 
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pair (8,9) has a positive cost, 1, so a variable x(16) 

defined by: 

x(8) + x(9) LE 1+ x(16), 

is introduced and a term 1*x(16) is added to the 

objective function. 

The solution to this problem is to use: 

Paths 1,3,5,7,10, and 12. 

The solution has gone back to using Path 3, but uses Path 

12 instead of Path 11 to avoid the pair cost of (3,11). 

It also uses Path 7 instead of Path 8 to avoid the pair 

cost of (8,12), which exceeds the route of Path 7. it 

uses Path 10, now that Path 4 is not being used, instead 

of Path 9 to avoid the route cost of Path 9. The value of 

the minimand is 2, the route cost of Path 7. This time 

the LP solution did not satisfy the discrete constraints. 

SIXTH PROBLEM 

Of the path pairs used in the fifth solution only the new 

pairs (1,7) and (7,10) have positive costs, both being 1, 

so two new variables x(17) and x(18) defined by: 

x(1) + x(7) LE 1+ x(17), 
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and x(7) + x(10) LE 1+ x(18), 

are introduecd and two terms 1*x(17) and 1*x(18) are 

added to the objective function. 

The solution to this problem is to use: 

Paths 1,4,5,8,9, and 11. 

The solution has gone back to using Path 4, but uses Path 

9 instead of Path 10 to avoid the pair cost of (4,10), 

which exceeds the route cost of Path 9. It also uses Path 

8 instead of Path 7 to avoid the route cost of Path 7 and 

the pair cost of (1,7) which together exceed the pair 

cost of (8,9). It uses Path 11 instead of path 12 to 

avoid the pair cost of (8,12). The value of the minimand 

is 3, being the sum of the route cost of Path 9 and the 

pair cost of (8,9). The LP solution does not satisfy the 

discrete constraints. 

SEVENTH PROBLEM 

Of the path pairs used in the sixth solution the new pair 

(1,9) has a positive cost of 1, so a new variable x(19) 

defined by: 

z(1) + z(9) LE 1+ x(19), 

is introduced and a term 1*x(19) added to the objective 

function. 
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The solution to this problem is to use: 

Paths 1,3,5,7,10, and 12. 

The solution has gone back to using Path 10 to avoid both 

the pair cost of (1,9) and the route cost of Path 9, but 

uses Path 3 instead of Path 4 to avoid the pair cost of 

(4,10). It therefore uses Path 12 instead of Path 11 to 

avoid the pair cost of (3,11) at 24, and it uses Path 7 to 

avoid the pair cost of (8,12) at 8; these avoidance 

measures incur the lower total costs of the route cost of 

Path 7, and the pair costs of (1,7) and (7,10). The value 

of the minimand is 4, being the sum of the route cost of 

Path 7 and the pair costs of (1,7) and (7,10). The LP 

solution does not satisfy the discrete constraints. 

For this solution all the costs of used pairs of paths 

feature in the objective function. Although there may be 

other solutions with the same value of the objective 
function, there will not be one with a lower value of the 

objective function for the following reason. If we assume 

that this is not the case we arrive at a contradiction as 
follows. Any change of path used to give a better 

solution will either involve a zero or a non-zero pair 

cost. If it involves a zero pair cost it would be the 

solution to this last problem -a contradiction. If it 

involves a positive pair cost, either that cost already 

features in the objective function or it does not. If it 

does, then it is equally as good as the current solution - 
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a contradiction. If it does not, then the cost of the 

current solution would be higher than the cost of the 

alternative feasible solution neglecting this pair cost. 

However, the current problem is the first to have a 

solution with all the pair costs already featuring in the 

objective function so no chaeper alternative solution can 

exist. We therefore conclude that we have an optimal 

solution. It is different to the one found by the first 

ILP method. The objective functions used in this series 

of problems solved by the second method have taken no 

account of the 8 essential conflicts but have counted the 

remaining conflicts twice. To obtain the true value, we 

divide 4 by 2 and add on 8 to obtain the value of 10 

obtained by the first method. 

The way these seven solutions have involved switches 

between pairs of paths is shown in a diagram in Figure 5. 

Path 123456789 10 11 12 

Problem 

1 

2 

3 

4 

5 

6 

7 

* used path. 

Fig. 5 Successive solutions to the seven problems 

35 



APPENDIX 5 

THE VINE BUILDING PROCESS 

A very simple network is used to demonstrate the 

tree building process. It consists of an origin vertex 

number 1, a destination vertex number 2,5 arcs as shown 

in Figure 1, together with the artificial arc added to 

connect Vertex 2 to Vertex 1. Arc numbers, lower bounds 

and costs are as shown. The problem is to find a minimum 

cost route for 1 trip from Origin 1 to Destination 2. The 

flow on each arc is set to zero and the dual value at each 

vertex is set to zero at the start-up. The steps are 

somewhat abbreviated. 

Figure 1 

Step 1 
Look for out-of-Kilter arc. 

Find Arc number 6 

Set SRC = 1, the number of the vertex at the end of 

Arc 6. 

Set SNK = 2, the number of the vertex at the start of 

Arc 6. 
Label Vertex 1 with 6. See Figure 2. 
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Notation 
cost/lower bound 
arc number by > 

Figure 2 

vertex 
label 
dual va ue 

Step 2 

Look for arcs with 1) start vertex with non-zero label, 

find Arcs 2 and 4; 

and 2) end vertex with zero label, 

Arcs 2 or 4 have this property; 

and 3) net cost negative or zero 

BUT net cost(2) =2 

and net cost(4) =1 

so neither of these arcs can be added to the vine. 

Step 3 

Look for smallest differential in dual values which will 

bring the net cost of one of these arcs to zero. 

Look at Arc 2 and set DEL = 2. 

Look at Arc 4 and reset DEL =1 

Increase the dual value, of all vertices with zero label 

by DEL. See Figure 3. 
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Figure 3 

Step 4 

Go back to Step 2 

Look for arcs with 1) start vertex with non-zero label, 

find Arcs 2 and 4; 

and 2) end vertex with zero label, 

Arcs 2 or 4 have this property; 

and 3) net cost negative or zero 

net cost(2) =1 

and net cost(4) = 0. 

Arc 4 can be added to the vine and Vertex 4 labelled with 

4. 

Check whether the label of Vertex 2 (because SNK = 2) is 

non-zero. 

It is not non-zero so LAB is net equal to 3. to indicate 

that some labelling has happened, and that it is 

worthwhile to repeat step 2. See Figure 4. 
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Figure 4 

Return to Step 2. 

Look for arcs with 1) start vertex with non-zero label, 

find Arcs 2,3 and 4; 

and 2) end vertex with zero label, 

Arcs 2 and 3 have this property; 

and 3) net cost negative or zero 

BUT net cost(2) =1 

and net cost(3) = 1. 

so neither of these arcs can be added to the vine. 

Return to Step 3. 

Look for smallest differential in dual values which will 

bring the net cost of one of these arcs to zero. 

Look at Arc 2 and set DEL = 1. 

Look at Arc 3 and keep DEL = 1. 

Increase the dual value, of all vertices with zero label 

by DEL. See Figure 5. 
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Figure 5 

Go back to Step 2. 

Look for arcs with 1) start vertex with non-zero label, 

find Arcs 2,3 and 4; 

and 2) end vertex with zero label, 

Arcs 2 and 3 have this property; 

and 3) net cost negative or zero 

net cost(2) = 0. 

Add Arc 2 to the vine and label Vertex 3 with 2. 

Check whether the label of Vertex 2 (because SNK = 2) is 

non-zero. 

It is not non-zero so LAB is set equal to 1 to indicate 

that some labelling has happened, and that it is 

worthwhile to continue with Step 2. See Figure 6. 
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Figure 6 

Continue with Step 2 

Look for arcs with 1) start vertex with non-zero label, 

find Arc 3; 

and 2) end vertex with zero label, 

Arc 3 has this property; 

and 3) net cost negative or zero 

net cost(3) = 0. 

Arc 3 can be added to the vine and Vertex 5 labelled with 

3. 

Check whether the label of Vertex 2 (because SNK = 2) is 

non-zero. 

It is not non-zero, so LAB is set equal to 1 to indicate 

that some labelling has happened, and that it is 

worthwhile to continue with Step 2. See Figure 7. 

ft 
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Continue with Step 2 

Look for arcs with 1) start vertex with non-zero label, 

find Arcs 4 and 5; 

and 2) end vertex with zero label, 

Arc 5 has this property; 

and 3) net cost negative or zero 

net cost(s) = 0. 

Arc 5 can be added to the vine and Vertex 2 labelled with 

S. 

Check whether the label of Vertex 2 (because SNK = 2) is 

non-zero. 

It is non-zero, so flow is augmented on the flow 

augmenting circuit from vertex 1 to 4 to 5 to 2 to 1, by 1 

unit, and a return made to Step 1. 

Step 1. 

Look for Out-of-Kilter arcs. 

Find none. Stop. 
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APPENDIX 6 

ENSURING THE GROUP TRAVEL PROPERTY 

The small example in Appendix 5 is extended with the 

addition of a second destination at Vertex 6, as shown 

below, and demand for an extra trip from the origin, 

Vertex 1, to Vertex 6. After having augmented the flow to 

cater for 1 trip from 1 to 2 the problem is to find a 

minimum cost route for one trip from 1 to 6. Labels would 

be reset at zero but dual values would be retained. The 

start-up position is as in Figure 1. 

Nc 
Cc 

at 

Figure 1 

Step 1 

Look for out-of-Kilter are. 

Find Arc number 8. 

Set SRC = 1, the number of the end vertex for Arc S. 

Set SNK = 6, the number of the start vertex for Arc 8. 

Label vertex 1 with S. 

See Figure 2. 
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Step 2 

Look for arcs with 1) start vertex with non-zero label, 

find Arcs 2 and 4; 

and 2) end vertex with zero label, 

Arcs 2 and 4 have this property; 

and 3) net cost negative or zero 

net cost(2) =0 

Arc 2 can be added to the vine and Vertex 3 labelled with 

2. 

Check whether the label of Vertex 6 (because SNK = 6) is 

non-zero. 

It is not non-zero, so LAB is set equal to 1 to indicate 

that some labelling has happened, and that it may be 

worthwhile repeating Step 2. 

See Figure 3 and continue with Step 2. 

44 



Nc 
cc 
aj 

Figure 3 

Continue with Step 2 

Look for arcs with 1) start vertex with non-zero label, 

find Arc 4; 

and 2) end vertex with zero label, 

Arc 4 has this property; 

and 3) net cost negative or zero, 

net cost(4) =0 

Arc 4 can be added to the vine and Vertex 4 labelled with 

4. 

Check whether the label of Vertex 6 (because SNK = 6) is 

non-zero. 

It is not non-zero, so continue with Step 2. 

See Figure 4. 
ft 
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Continue with Step 2 

Look for arcs with 1) start vertex with non-zero label, 

find no more arcs. 

But some labelling has happened, so it is worthwhile to 

repeat Step 2 starting with Arc 1. 

Look for arcs with 1) start vertex with non-zero label, 

find Arcs 1,2,3,4; 

and 2) end vertex with zero label, 

Arcs 1 and 3 have this property; 

and 3) net cost negative or zero, 

net cost(1) = 0. 

Arc 1 can be added to the vine and Vertex 5 labelled with 

1. 

Check whether the label of Vertex 6 (because SNK = 6) is 

non-zero. 

It is not non-zero, so continue with Step 2. 

See Figure 5. 
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Continue with Step 2 

Look for arcs with 1) start vertex with non-zero label, 

find Arcs 2,3,4,5 and 7. 

and 2) end vertex with zero label, 

Arcs 5 and 7 have this property; 

and 3) net cost negative or zero, 

net cost(s) = 0. 

Arc 5 can be added to the vine and Vertex 2 labelled with 

5. 

Check whether the label of Vertex 6 (because SNK = 6) is 

non-zero. 
It is not non-zero, so continue with Step 2. 

See Figure 6. 
ft 
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Continue with Step 2 

Look for arcs with 1) start vertex with non-zero label, 

find Arc 6 and 7; 

and 2) end vertex with zero label, 

Arc 7 has this property; 

and 3) net cost negative or zero, 

net cost(7) = 0. 

Arc 7 can be added to the vine and Vertex 6 labelled with 

7. 

Check whether the label of Vertex 6 (because SNK s 6) is 

non-zero. 

It is, so proceed to Step 5. 

Step 5 

Augment flow on flow augmenting circuit, Vertex 1 to 3 to 

5 to 6 by 1 unit. 

Return to Step 1 

Step 1 

Look for Out-of-Kilter arcs. Find none. Stop. 
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The result of this assignment is that the trip 

from 1 to 2 is assigned to the path through vertices 1,4, 

5 and 2 and the trip from 1 to 6 is assigned to the path 
through vertices 1,3,5 and 6. These paths diverge at 1 

and merge again at 5. This is violating the group travel 

property. The routes would have had the same costs if 

both trips had been routed via 4 and they would have 

avoided the merge with each other. 

To avoid the occurrence of this situation, the 

following change is made to the algorithm. 

The labels as well as the dual values are retained 

between finding flow augmenting paths. 

With each new Out-of-Kilter arc which is 

discovered, a check is made as to whether the vertex whose 

number matches the new value of SNK is labelled. If it 

is, then the new destination for which a trip is required, 
is already in the vine and a flow augmenting path can be 

found straight away. If it is not, then one starts adding 
branches to the tips of the vine. 

This has the effect of ensuring -that all the 

routes from an origin form a vine of paths which do not 

merge; the group travel property is ensured. It also has 

the effect of saving the computing time that would be 

involved in building a new vine from scratch for each 

destination. 
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APPENDIX 7 

THE SOURCE CODE FOR THE PROGRAMS 

This appendix contains the source code for the 

programs, written in the FORTRAN 77 language. The 

listings are in the order in which the suite of programs 

is to be used, namely POLYARCS the program to synthesise 

the Circulation System, POLYSEND the assignment program 

which finds the minimum cost routes, and POLYLINK the 

program which translates the results from POLYSEND into 

flows on the links of the road network. Subroutines 

appear in alphabetical order following each main program. 

These programs were compiled using the RMFORT FORTRAN 

compiler. They have been run on a Victor 286 micro- 

computer. 
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PROGRAM POLYARCS 
c 12 June 89 
C This program takes details of nodes and links in an urban road 
c network and creates a pair of vertices (one if the link is one- 
c way) at the midpoint of each link. 
C It creates arcs to join up the vertices according to the allowed 
C traffic movements at the junction represented by the node. 
C If there are inconsistencies in details of the links said to be 
c incident at a junction, e. g. neither the A-node nor the B-node 
c is the junction node, the program stops with a report of the 
c junction node where this happened. 
C The program can model movements at t-junctions, t-junctions onto 
c motorways, 
c crossroads, mini-4-arm roundabouts, conventional 4-arm roundabouts 
c and flyovers over a roundabout or underpasses below a roundabout. 
c It compiles a list of those arcs which conflict with each arc. 
c IT COMPUTES A CONFLICT WEIGHT TO BE APPLIED TO EACH ARC IF THE 
C LIST ABOVE. 
C It creates the files, ARCS. DAT, and CROSSFLO. DAT which can be 
c read by the program, POLYSEND. 
c It creates the file, ARCLINK. DAT, to be read by the program, 
c POLYLINK 
C It can synthesise a traffic circulation network with 
c up to 1200 arcs from a road network with 
c up to 50 zones, 300 junctions and 300 links. 

INTEGER ZONES, XIONS, LINKS, A, B, TW, UB, DB, X, 
1 DA, UA, INJ, XION, I, J, NC, CR, CW, ARCS, FIRSTAB, 
1 FIRSTBA, AP, EX, R, FEED, ZONESIN 

C 
COMMON INJ(300,8), XION(300), UB(300), DB(300), I(1200), J(1200), 

1 NC(1200), CR(1200,8), NODES, ARCS, ZONES, A(300), B(300), FIRSTAB(300), 
1 LASTAB(300), FIRSTBA(300), LASTBA(300), KJ(20), AP(4), EX(4), NL(300), 
1 CW(1200,8), JT(300), TW(300), DA(200), UA(200), R(5), 
1 FEED(50), LINKS, XIONS, ZONESIN 

C 
C ZONES is the number of nodes which can be origins or 
c destinations of traffic. 
C FEED(M) is the number of connectors from zone M into the 
c network. 
c XIONS is the number of junctions in the urban road network. 
c LINKS is the number of links in the urban road network. 
C A(L) and B(L) are the end nodes of link, L, A being the start 
c node if link, L, is one-way. TW(L) is 0 if link, L, is one-ray 
c and 1 if link, L, is two-way. 
c UB(L) is the vertex created on link, L, upstream of node, B. 
c DB(L) is the vertex created on link, L, downstream of node, B. 
C DA(M) is the vertex number of the vertex from which flow 
c from the origin zone, M, will emanate. 
c UA(M) is the vertex number of the vertex at which flow 
c to the destination zone, M, will arrive. 
c NL(J) is the number of links incident to junction, J. 
C INJ(J, NL(J)) is a list for each junction, J, of the link numbers 
c of those links which are incident to junction, J. 
c AP(q) is the vertex number of the vertex upstream of J 
c on the qth link incident to junction, J. 
C EX(q) is the vertex number of the vertex downstream of J 
c on the qth link incident to junction, 3. 
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C R(q) the extra vertex at the centre of a roundabout opposite 
c the qth link. 
c ZONESIN is the total number of zone connectors. 
c XION(J) is the number of the Jth junction, allowing for the 
c possibility that the junction numbers need not be consecutive. 
c I(K) and J(K) are the numbers of the start and finish vertices 
c of the directed are, K. 
c NC(K) is the number of arcs conflicting with arc, 1. 
c CR(K, NC(K)) is a list for each are, K, of the numbers of the 
c NC(K) arcs conflicting with it. 
c JT(X) is the junction type 
c JT(X) =1 for a free-for-all junction 
c JT(X) =2 for a priority junction 
c JT(X) =3 for a signalised junction 
c JT(X) =4 for a mini-roundabout 
c JT(X) =5 for a roundabout 
c JT(X) =6 for a flyover 
c JT(X) 27 FOR USER TO BE ASKED FOR WEIGHTS 
C CW(K, NC(K)) is the weight for the NC(K)th arc conflicting with 
c arc K. 

OPEN(UNIT=6, FILE ='ARCS. DAT', STATUS--'NEW') 
OPEN(UNIT=7, FILE ='LINKS. DAT', STATUS='OLD') 
OPEN(UNIT=8, FILE ='CROSSFLO. DAT', STATUS='NEW') 
OPEN(UNIT=9, FILE ='ARCLINK. DAT', STATUS='NEW') 
READ( 7, t)ZONES, XIONS, LINKS 
ZONESIN =0 
DO 10 M=1, ZONES 
READ(7, *)FEED(M) 
ZONESIN 2 ZONESIN + FEED(M) 

10 CONTINUE 
C We have got past 1st record and next ZONES records 

DO 40 L=1, ZONESIN 
READ(7, *, END--40)A(L), B(L), TW(L) 

40 CONTINUE 
C So L will be number of links so far +1 
C All link records for zone connectors have been read so there are 
c LINKS-ZONESIN links left. 

DO 50 ML=L, LINKS 
READ(7, *, END=50)A(ML), B(ML), TW(XL) 

50 CONTINUE 
c All link records have now been read 

DO 60 X=1, XIONS 
READ(7, *, END=60)XION(X), JT(X), NL(X), (INJ(X, JL), JL=1, NL(X)) 

60 CONTINUE 
CLOSE(UNIT=7, STATUS--'KEEP') 

1 All road network records have been read. 
CALL ODVERT 
CALL LINKVERT(L) 
CALL MAKEARCS 
CALL PRINT 
WRITE(9, *)ZONES, XIONS, LIKKS, ARCS 
DO 70 L=1, LINKS 

WRITE(9, *)L, FIRSTAB(L), LASTAB(L), TW(L), FIRSTBA(L), LASTBA(L) 
70 CONTINUE 

STOP 'Output files are ARCS. DAT, CROSSFLO. DAT and ARCLINX. DAT' 
END 

52 



BLOCK DATA W3 
INTEGER CON3, CONRF, WT3 
COMKON/C3/CON3(6,3), CONRF(6), VT3(42) 
DATA (CON3(I, 1), I=1,2) / 2*6 / (CON3(2, I), I=2, 3) / 4,3 

1 (CON3(I, 1), I=3,4) / 2*2 / (C013(4, I), I=2,3) / 6,5 / 
1 (CON3(I, 1), I=5,6) / 2*4 / (CON3(6, I), I=2,3) / 2,1 / 
1 CONRF(1) /6/ CONRF(2) /3/ CONRF(3) /2/ 
1 CONRF(4) /5/ CONRF(5) /4/ CONRF(6) /1/ 
1 WT3(1) /1/ (WT3(I), I=2,3) / 2*2 / WT3(4) /1 / 
1 WT3(5) /1/ (WT3(I), I=6,7) / 2*2 / WT3(8) /1 / 
1 NT3(9) /1/ (WT3(I), I210,11) / 2*2 / NT3(12) /1/ 
1 WT3(13) /1/ (WT3(I), I=14,15) / 2*2 / WT3(16) /1/ 
1 WT3(17) /1/ (WT3(I), I=18,19) / 2*2 / NT3(20) /1/ 
1 WT3(21) /1/ (WT3(I), I=22,23) / 2*2 / WT3(24) /1/ 
1 WT3(25) /1/ (WT3(I), I=26,27) / 2*2 / WT3(28) /1/ 
1 WT3(29) /1/ (WT3(I), I=30,31) / 2*2 / W73(32) /1/ 
1 WT3(33) /1/ (WT3(I), I=34,35) / 2*2 / WT3(36) /1/ 
1 (WT3(I), I=37,41) / 6*1 / 

END 
BLOCK DATA W4 
INTEGER CON4, WT4, CON4MRi CONRO, CONFO 
COMMON/C4/CON4(12,7), WT4(104), CON4MR(16,2), CONRO(20,6), 

1 CONFO(12,6) 
DATA (CON4(I, 1), I=1,3) / 3*11 / (C0N4(I, 1), I=4,6) / 3*2 / 

1 (CON4(I, 1), I=7,9) / 3*5 / (CON4(I, 1), I=10,12) / 3*8 / 
1 (C0N4(I, 2), I=1,3) / 3*9 / (CON4(I, 2), I=4,6) / 3*12 / 
1 (CON4(I, 2), I=7,9) / 3*3 / (C0N4(1,2), I=10,12) / 3*6 / 
1 (CON4(I, 3), I=2,3) / 6,12 / (CON4(I, 3), I=5,6) / 9,3 / 
1 (C0N4(I, 3), I=8,9) / 12,6 / (CON4(I, 3), I=11,12) / 3,9 / 
1 (C0N4(I, 4), I=2,3) / 5,6 / (CON4(I, 4), I=5,6) / 8,9 / 
1 (C0N4(I, 4), I=8,9) / 11,12 / (CON4(1,4), I=11,12) / 2,3 / 
1 (C0N4(1,5), I: 2,3) / 12,8 / (CON4(I, 5), I=5,6) / 3,11/ 
1 (CON4(I, 5), I=8,9) / 6,2 / (CON4(I, 5), I=11,12) / 9.5 / 
1 (C0N4(I, 6), I=2,3) / 4,5 / (CON4(I, 6), I=5,6) / 7,8 / 
1 (C0N4(I, 6), 1=8,9) / 10,11 / (CON4(1,6), 1=11,12) / 1,2 / 
1 CON4(3,7) /7/ CON4(6,7) / 10 / CON4(9,7) /1/ CON4(12,7)/4/ 
1 (WT4(I), I=1,2) / 2*1 / (NT4(I), I=3,6) / 4*2 / 
1 (WT4(I), I=7,8) / 2*1 / WT4(9) /2/ WT4(10) /3/ 
1 (WT4(I), I=11,13) / 3*2 / (WT4(I), I214,15) / 2*1 / 
1 (WT4(I), I=16,17) / 2*1 / (WT4(I), I218,21) / 4*2 / 
1 (WT4(I), I=22,23) / 2*1 / $T4(24) /2/ NT4(25) /3/ 
1 (WT4(I), I=26,28) / 3*2 / (WT4(I), I=29,30) / 2*1 / 
1 (WT4(I), I=31,32) / 2*1 / (WT4(I), I=33,36) / 4*2 / 
1 (WT4(I), 1=37,38) / 2*1 / WT4(39) /2/ WT4(40) /3/ 
1 (WT4(I), I=41,43) / 3*2 / (i1T4(I), I=44,45) / 2*1 / 
1 (WT4(I), I=46,47) / 2*1 / (WT4(I), I=48,51) / 4*2 / 
1 (WT4(I), I=52,53) / 2*1 / WT4(54) /2/ WT4(55) /3/ 
1 (WT4(I), I=56,58) / 3*2 / (WT4(I), I=59,60) / 2*1 / 
1 WT4(61) /1/ WT4(62) /2/ VT(63) /1/ 
1 Wr4(64) /2/ WT4(65) /1/ WT(66) /1/ 
1 (WT4(I), I267,68) / 2*1 / (WT4(I), I=69,72 / 4*2 / 
1 (WT4(I), I=73,74) / 2*1 / (NT4(I), I=75,76) / 2*2 / 
1 (WT4(I), I=77,78) / 2*1 / (WT4(I), I=79,80) / 2*2 I 
1 (WT4(I), I=81,82) / 2*1 / 
1 (WT4(I), I=83,84) / 2*1 / (WT4(I), 1=85,86) / 2*2 / 
1 (WT4(I), I=87,88) / 2*1 / WT4(89) /3/ 
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(WT4(I), I290,92) / 3*2 / (WT4(I), I=93,94) / 2*1 / 
(WT4(I), 1295,96) / 2*1 / (WT4(I), I=97,98) / 2*1 / 
WT4(99) /2/ WT4(100) /3/ 
(WT4(I), I=101,102) / 2*2 / (WT4(I), I=103,104) / 2*1 / 
(CON4MR(I, 1), I=1,2) / 2*3 / (C0N41Qt(I, 1), I=3,4) / 2*2 / 
(CON4MR(I, 1), I=5,6) / 2*7 / (CON4MR(I, 1), I=7,8) / 2*6 / 
(CON4MR(I, 1), I=9,10) / 2*11 / (C0N4MR(I, 1), I=11,12) / 2*10 / 
(CON4MR(1,1), I=13,14) / 2*15 / (CON4MR(1,1), I=15,16) / 2*14 / 
(C0N4MR(I, 2), I=2,3) / 4,1 / (CON4MR(I, 2), I=6,7) / 8,5 / 
(CON4MR(I, 2), I=10,11) / 12,9 / (C01I41Qt(I, 2), I=14,15) / 16,13 / 
(CONRO(1,1), I=1,3) / 3*17 / (CONRO(I, 2), I=1,3) / 3*15 / 
(CONRO(I, 1), I=6,8) / 3*2 / (COIIRO(I, 2), 1=6,8) / 3*20 / 
(CONRO(I, 1), 1=11,13) / 3*7 / (CONRO(I, 2), I=11,13) / 3*5 / 
(CONRO(I, 1), 1=16,18) / 3*12 / (CONRO(I, 2), 1 16,18) / 3*10 / 
(CONRO(1,1), I=4,5) / 8,13 / (CONRO(I, 1), I=9,10) / 13,18 / 
(CONRO(I, 1), I=14,15) /18,3 / (CONRO(I, 1), I=19,20) / 3,8 / 
(CONRO(2,1), I=3,6) / 8,7,6,20 / (CONRO(7, I), I=3,6) / 13,12,11,5/ 
(CONRO(12, I), I=3,6) /18,17,16,10/(CONRO(17, I), 1=3,6) / 3,2,1,15/ 
CONRO(3,3) / 19 / CONRO(8,3) /4/ 
CONRO(13,3) /9/ CONRO(18,3) / 14 / 
(CONRO(5, I), I=2,4) / 12,7,11 / (CONRO(10, I), I=2,4) / 17,12,16 / 
(CONRO(15,1), 1=2,4) / 2,17,1 / (CON80(20, I), I=2,4) / 7,2,6 / 
(CONFO(1, I), I=1,2) / 11,9 / (CONFO(4, I), I=1,2) / 2,12 / 
(CONFO(7, I), I=1,2) / 5,3 / (CONFO(10, I), I=1,2) / 8,6 / 
(CONFO(2, I), 1=1,4) / 9,6,4,12 / (CONFO(5, I), I=1,2) / 7,3 / 
(CONFO(8, I), 1=1,4) / 3,12,10,6 / (CONFO(11, I), I=1º1) / 1,9 / 
(CONFO(3, I), I=1,6) / 9,12,6,8,5,7 / 
(CONFO(6, I), I=1,6) / 2,12,3,9,8,10 / 
(CONFO(9, I), I=1,6) / 3,6,12,2,11,1 / 
(CONFO(12, I), I=1,6) / 8,6,9,3,2,4 / 
END 

SUBROUTINE ARC3LINK(X, L) 
C For each link, L, feeding into a T-junction, X, this subroutine 
c determines whether the B node or the A node is at the junction 
c and computes FIRSTAB(L) and LASTAB(L) or FIRSTBA(L) and LASTBA(L) 
C respectively. This is to enable the total flow on link, L, to be 
c computed separately for the direction A to B and B to A from the 
c array TOTEFLOW(K) as output to the file, FARCPLO. DAT, by the program 
c POLYSEND. If those links from zones have their A to B direction 
c coded away from the tone no arcs will be created from the 
c destination vertex so FIRSTBA andd LASTBA will be 0 for links from 
c from zones and no means will be provided for computing the total 
c flow along a link into a destination. It can be assumed to equal 
c the demand. 
c 

INTEGER AP, EX, R, FEED, X, A, B, INJ, YION, UB, DB, I, J. NC, CR, ARCS, EONES, 
1 FIRSTAB, FIRSTBA, TW, DA, UA, LINKS, XIONS, LONESII 

COMMON INJ(300,8), YION(300), UB(300), DB(300), I(1200), J(1200), 
1 NC(1200), CR(1200,8), NODES, ARCS, EONES, A(300), B(300)ºFIRSTAB(300), 
1 LASTAB(300), FIRSTBA(300), LASTBA(300), KJ(20), AP(4), EX(/), NL(300), 
1 CW(1200,8), JT(300), TN(300), DA(200), UA(200), R(5), 
1 FEED(50), LINRS, XIONS, LONESIN 

IF(AP(L). EQ. UB(INJ(X, L)))THEN 
IF(AJ(2*L-1). NE. O)TEEN 

FIRSTAB(INJ(X, L))=KJ(2*L"1) 
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IF(KJ(2*L). NE. O)TBEJ 
LASTAB(INJ(X, L))=KJ(2*L) 

ELSE 
LASTAB(INJ(X, L))--KJ(2*L-1) 

END IF 
ELSE 

IF(KJ(2*L). NE. O)THEN 
FIRSTAB(INJ(X, L))=KJ(2*L) 
LASTAB(INJ(X, L))=KJ(2*L) 

END IF 
END IF 

ELSE 
IF(KJ(2*L-1). NE. 0)THEN 

FIRSTBA(INJ(X, L))--KJ(2*L-1) 
IF(KJ(2*L). NE. O)THEN 

LASTBA(INJ(X, L))=KJ(2*L) 
ELSE 

LASTBA(INJ(X, L))=RJ(2*L-1) 
END IF 

ELSE 
IF(KJ(2*L). NE. O)THEN 

FIRSTBA(INJ(X, L))=KJ(2*L) 
LASTBA(INJ(X, L))--KJ(2*L) 

END IF 
END IF 

END IF 
RETURN 
END 

C Of subroutine ARC3LINK(X, L) 
C 

SUBROUTINE ALMINI4(X, L) 
c Relates are numbers to links in a mini-roundabout. 

INTEGER AP, EX, R, FEED, X, A, B, INJ, XION, UB, DB, I, J, NC, CR, CW, NT, ARCS, 
1 FIRSTAB, FIRSTBA, TW, DA, UA, LINKS, XIONS, ZONESIN, ZONES 

COMMON INJ(300,8), XION(300), UB(300), DB(300), I(1200), J(1200), 
1 NC(1200), CR(1200,8), NODES, ARCS, ZONES, A(300), B(300), FIRSTAB(300), 
1 LASTAB(300), FIRSTBA(300), LASTBA(300), KJ(20), AP(4), EX(4), NL(300), 
I CW(1200,8), JT(300), TW(300), DA(200), UA(200), R(S), 
1 FEED(50), LINKS, XIONS, ZONESIN 

IF(AP(L). EQ. UB(INJ(X, L)))THEN 
IF(KJ(4*L-3). NE. O)THEN 

FIRSTAB(INJ(X, L)): KJ(4*L-3) 
IF(KJ(4*L-2). NE. O)THEN 

LASTAB(INJ(X, L))=KJ(4*L-2) 
ELSE 

LASTAB(INJ(X, L))=KJ(4*L-3) 
END IF 

ELSE 
FIRSTAB(INJ(X, L))=KJ(4*L-2) 
LASTAB(INJ(X, L)) =KJ(4*L-2) 

END IF 
ELSE 

IF(KJ(4*L-3). NE. O)TBEN 
FIRSTBA(INJ(X, L)): KJ(4*L-3) 
IF(KJ(4*L-2). NE. O)TBEN 

LASTBA(INJ(X, L))=KJ(4*L-2) 
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ELSE 
LASTBA(INJ(X, L))=KJ(4*L-3) 

END IF 
ELSE 

FIRSTEA(INJ(X, L))=XJ(4*L-2) 
LASTBA(INJ(X, L)) =KJ(4*L-2) 

END IF 
END IF 

RETURN 
END 

C Of subroutine ALNINI4(X, L) 
C 

SUBROUTINE ALROUND4(X, L) 
C Relates arcs to links in a conventional 4-arm roundabout. 

INTEGER AP, EX, R, FEED, X, A, BºINJ, ZION, UB, DB, I, J, NC, CR, CR, NTºARCS, 
1 FIRSTAB, FIRSTBA, TR, DA, UA, LINKS, XIONS, ZONESIN, ZONES 

COMMON INJ(300,8), XION(300), UB(300), DB(300), I(1200), J(1200), 
1 NC(1200), CR(1200,8), NODES, ARCS, ZONES, A(300), B(300), FIRSTAB(300), 
1 LASTAB(300), FIRSTBA(300), LASTBA(300), KJ(20), AP(4), EX(4), NL(300), 
1 CW(1200,8), JT(300), TW(300), DA(200), UA(200), R(5), 
1 FEED(50), LINKS, %IONS, ZONESIN 

IF(AP(L). EQ. UB(INJ(X, L)))THEN 
IF(KJ(5*L-4). NE. O)THEN 

FIRSTAB(INJ(X, L))--KJ(5*L-4) 
IF(KJ(5*L-2). NE. O)TNEN 

LASTAB(INJ(X, L))=KJ(5*L-2) 
ELSE 

IF(KJ(S*L-3). NE. O)THEN 
LASTAB(INJ(X, L))=KJ(5*L-3) 

ELSE 
LASTAB(INJ(X, L))=KJ(5*L-4) 

END IF 
END IF 

ELSE 
IF(KJ(S*L-3). NE. O)THEN 

FIRSTAB(INJ(X, L))=KJ(5*L-3) 
IF(KJ(5*L-2). NE. O)THEN 

LASTAB(INJ(X, L))=KJ(S*L-2) 
ELSE 

LASTAB(INJ(X, L))=KJ(5*L-3) 
END IF 

ELSE 
IP(KJ(5*L-2). NE. O)TBEN 

FIRSTAB(INJ(X, L)): KJ(5*L-2) 
LASTAB(INJ(X, L))=KJ(5*L-2) 

END IF 
END IF 

END IF 
ELSE 

IF(KJ(5*L-4). NE. O)TNEN 
FIRSTBA(INJ(%, L))=KJ(5*L-4) 
IF(KJ(5*L-2). NE. O)TNEI 

LASTBA(INJ(X, L))=KJ(5*L-2) 
ELSE 

IF(KJ(5*L-3). NE. O)TAEN 
LASTBA(INJ(X, L))--KJ(S*L-3) 
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ELSE 
LASTBA(INJ(X, L))=RJ(5*L-4) 

END IF 
END IF 

ELSE 
IF(KJ(5*L-3). NE. O)TBEN 

FIRSTBA(INJ(X, L))=KJ(5*L-3) 
IF(KJ(5*L-2). NE. O)THEN 

LASTBA(INJ(X, L))=KJ(5*L-2) 
ELSE 

LASTBA(INJ(X, L))=KJ(5*L-3) 
END IF 

ELSE 
IF(KJ(5*L-2). NE. O)THEN 

FIRSTBA(INJ(X, L))=KJ(5*L-2) 
LASTBA(INJ(X, L))=KJ(5*L-2) 

END IF 
END IF 

END IF 
END IF 

RETURN 
END 

C Of subroutine ALROUND4(X, L) 

SUBROUTINE ARC4LINK(X, L) 
C For each link, L, feeding into a crossroads, X, this subroutine 
c determines whether the a node or the A node is at the junction 
c and computes FIRSTAB(L) and LASTAB(L) or FIRSTBA(L) and LASTBA(L) 
C respectively. This is to enable the total flow on link, L, to be 
c computed separately for the direction A to B and B to A from the 
c array TOTEFLOW(K) as output to the file, FLOW. DAT, by the program 
c POLYREAL. If those links from zones have their A to B direction 
c coded away from the zone no arcs will be created from the 
c destination vertex so FIRSTBA andd LASTBA will be 0 for links from 
c from zones and no means will be provided for computing the total 
c flow along a link into a destination. It can be assumed to equal 
c the demand. 
C 

INTEGER AP, EX, R, PEED, X, A, B, INJ, XION, UB, DB, I, J, NC, CR, CN, WT, ARCB, 
1 FIRSTAB, FIRSTBA, TW, DA, UA, LINKS, XIONS, ZONESIN, SONES 

COMMON INJ(300,8), XION(300), UB(300), DB(300), I(1200), J(1200), 
1 NC(1200), CR(1200,8), NODES, ARCS, ZONES, A(300), B(300), PIRSTAB(300), 
1 LASTAB(300), FIRSTBA(300), LASTBA(300), KJ(20), AP(4), E1(4), NL(300), 
1 CW(1200,8), JT(300), Til(300), DA(200), UA(200), R(5), 
1 FEED(50), LINKS, XIONS, ZONESIN 

IF(AP(L). EQ. UB(INJ(X, L)))TBEN 
IF(KJ(3*L-2). NE. O)THEN 

FIRSTAB(INJ(X, L))--KJ(3*L-2) 
IF(KJ(3*L). KE. O)THEN 

LASTAB(INJ(X, L))=KJ(3*L) 
ELSE 

IF(KJ(3*L-1). NE. O)TREN 
LASTAB(INJ(X, L))=KJ(3*L-1) 

ELSE 
LASTAB(INJ(X, L)): X3(3*L-2) 

END IF 
END IF 
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ELSE 
IF(KJ(3*L-1). NE. 0)THEN 

FIRSTAB(IEJ(X, L))=KJ(3*L-1) 
IF(KJ(3*L). NE. O)THEN 

LASTAB(INJ(X, L))=KJ(3*L) 
ELSE 

LASTAB(INJ(X, L))=KJ(3*L-1) 
END IF 

ELSE 
IF(KJ(3*L). NE. O)THEN 

FIRSTAB(INJ(X, L))--KJ(3*L) 
LASTAB(INJ(%, L))=KJ(3*L) 

END IF 
END IF 

END IF 
ELSE 

IF(KJ(3*L-2). NE. O)THEN 
FIRSTBA(INJ(X, L))=KJ(3*L-2) 
IF(KJ(3*L). NE. O)THEN 

LASTBA(INJ(X, L))=KJ(3*L) 
ELSE 

IF(KJ(3*L-1). NE. O)THEN 
LASTBA(INJ(X, L))=KJ(3*L-1) 

ELSE 
LASTBA(INJ(X, L))=KJ(3*L-2) 

END IF 
END IF 

ELSE 
IF(KJ(3*L-1). NE. O)THEN 

FIRSTBA(INJ(%, L))=KJ(3*L-1) 
IF(KJ(3*L). NE. O)THEN 

LASTBA(INJ(X, L))=KJ(3*L) 
ELSE 

LASTBA(INJ(%, L))=KJ(3*L-1) 
END IF 

ELSE 
IF(KJ(3*L). NE. O)THEN 

FIRSTBA(INJ(x, L))=KJ(3*L) 
LASTBA(INJ(X, L))2KJ(3*L) 

END IF 
END IF 

END IF 
END IF 

RETURN 
END 
Of subroutine ARC4LINK(%, L) 

SUBROUTINE CON3ARC1 
C Specify conflicts 
C Free-for-all 3-way junction 

INTEGER AP, EX, R, FEED, X, A, B, INJ, %ION, UB, DB, I, J, NC, CR, CW, ARCS, 
1 FIRSTAB, FIRSTBA, TW, DA, UA, LINRS, XIONS, ZONESIN, ZONES, WT3, CON3, 
1 CONRF 

COMMON / C3 / C0N3(6,3), CONRF(6), WT3(42) 
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COMMON INJ(300,8), SION(300), UB(300), DB(300), I(1200), J(1200), 
1 NC(1200), CR(1200,8), NODES, ARCS, ZONES, A(300), B(300), FIRSTAB(300), 
I LASTAB(300), FIRSTBA(300), LASTBA(300), KJ(20), AP(4), EX(4), NL(300), 
1 CW(1200,8), JT(300), TW(300), DA(200), UA(200), R(5), 
1 FEED (50), LINKS, XIONS, ZONESIN 

SAVE /C3/ 
DO 2 KP=1,5,2 

IF(KJ(KP). NE. O)THEN 
KR=1 
IF(KJ(C0N3(KP, 1)). NE. O)THEN 

CR(KJ(KP), KR) = KJ(CON3(KP, 1)) 
CW(KJ(KP), KR) = WT3(1) 
KR=KR+1 

END IF 
NC(KJ(KP)) = KR -1 

END IF 
2 CONTINUE 

DO 4 KP=2,6,2 
IF(KJ(KP), JE. O)TBEN 

KR=1 
DO 6 K0=1,3 

IF(KJ(CON3(KP, KO)). NE. O)TBEN 
CR(KJ(KP), KR) = KJ(CON3(KP, KO)) 
CW(KJ(KP), KR) = wr3(1+KO) 
KR = KR +1 

END IF 
6 CONTINUE 

NC(KJ(KP)) = KR -1 
END IF 

4 CONTINUE 
RETURN 
END 

C Of subroutine CON3ARC1 
C 

SUBROUTINE CON3RF 
Specify conflicts 
Right-turning flyover to and from minor road 
INTEGER AP, EB, R, FEED, X, A, B, INJ, XION, UB, DB, I, J, NC, CR, CW, ARCS, 
FIRSTAB, FIRSTBA, TW, DA, UA, LINKS, XIONS, ZONESIN, ZO$! S, NT3, CON3, 
CONRF 
COMMON / C3 / CON3(6,3), CONRF(6), NT3(42) 
COMMON INJ(300, B), XION(300), UB(300), DB(300), I(1200), J(1200), 
NC(1200), CR(1200,8), NODES, ARCS, ZONES, A(300), B(300), FIRSTAB(300), 
LASTAB(300), FIRSTBA(300), LASTBA(300), KJ(20), AP(4), EX(4), NL(300), 
CW(1200,8), JT(300), TW(300), DA(200), UA(200), R(5), 
FEED(50), LINKS, BIONS, ZONESIN 
SAVE /C3/ 
DO 2 KP=1,6 

IF(KJ(KP). NE. O)TREN 
KR= 1 
IF(KJ(CONRF(KP)). NE. O)TAEN 

CR(KJ(KP), KR) = KJ(CONRF(KP)) 
CW(KJ(KP), KR) = NT3(36+KP) 
KR =KR +1 

END IF 
NC(KJ(KP)) = KR -1 

END IF 
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2 CONTINUE 
RETURN 
END 

C Of subroutine CON3RF 
C 

SUBROUTINE CON4ARC1 
C 12 JUNE 89 
c Free-for-all 4-way junction 

INTEGER XION, DB, UB, CR, CW, ARCS, 80NES, A, B, FIRSTAB, FIRSTBA, 
1 AP, EX, R, FEED, TW, DA, UA, XIONS, ZONESIN, CO14, WT4, CON4MR, COUR0, CONFO 

COMMON / C4 / CON4(12,7), WT4(104), CON4NR(16,2), CONRO(20,6), 
1 CONFO(12,6) 

COMMON INJ(300,8), XION(300), UB(300), DB(300), I(1200), J(1200), 
1 NC(1200), CR(1200,8), NODES, ARCS, ZONES, A(300), B(300), FIRSTAB(300), 
1 LASTAB(300), FIRSTBA(300), LASTBA(300), KJ(20), AP(4), EK(4), NL(300), 
1 CW(1200,8), JT(300), TW(300), DA(200), UA(200), R(5), 
1 FEED(50), LINKS, XIONS, ZONESIN 

SAVE /C4/ 
DO 2 KP=1,10,3 

IF(KJ(KP). NE. O)THEN 
KR=1 
Do 4 K0=1,2 

IF(KJ(CON4(KP, KO)). NE. O)TBEN 
CR(KJ(KP), KR) = KJ(CON4(KP, KO)) 
CW(KJ(KP), KR) = WT4(KO) 
KR =KR +1 

END IF 
4 CONTINUE 

NC(KJ(KP)) = KR -1 
END IF 

2 CONTINUE 
DO 6 KP=2,11,3 

IF(KJ(KP). NE. O)THEN 
KR= 1 
DO 8 K0=1,6 

IF(KJ(CON4(KP, KO)). NE. O)THEN 
CR(KJ(KP), KR) = KJ(CON4(KP, KO)) 
CW(KJ(KP), KR) = WT4(2+K0) 
KR ca KR +1 

END IF 
8 CONTINUE 

NC(KJ(KP)) = KR -. 1 
END IF 

6 CONTINUE 
DO 10 KP=3,12,3 

IF(KJ(KP). NE. O)TNEN 
KR=1 
DO 12 K0=1,7 

IF(KJ(CON4(KP, KO)). NE. O)TAEN 
CR(KJ(KP), KR) 2 KJ(CON4(KP, KO)) 
CW(KJ(KP), KR) = KT4(8+K0) 
KR =KR +1 

END IF 
12 CONTINUE 

NC(KJ(KP)) = KR -1 
END IF 
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10 CONTINUE 
RETURN 
END 

C of subroutine CON4ARC1 
C 

SUBROUTINE CON4ARC2 
C 13 JUNE 89 
c Priority 4-way junction 

INTEGER KION, DB, UB, CR, CW, ARCS, ZONES, A, B, FIRSTAB, FIRSTBA, 
1 AP, EX, R, FEED, TW, DA, UA, XIONS, ZONESIN, CON4, NT4, CON4MR, CONRO, CONFO 

COMMON / C4 / CON4(12,7), WT4(104), CON4MR(16,2), COIRO(20,6), 
1 CONFO(12,6) 

COMMON INJ(300,8), BION(300), UB(300), DB(300), I(1200), J(1200), 
1 NC(1200), CR(1200,8), NODES, ARCS, ZONES, A(300), B(300), FIRSTAB(300), 
1 LASTAB(300), FIRSTBA(300), LASTBA(300), KJ(20), AP(4), U(4), NL(300), 
1 CW(1200,8), JT(300), TW(300), DA(200), UA(200), R(5), 
1 FEED(50), LINKS, XIONS, ZONESIN 

SAVE /C4/ 
DO 2 KP=1,7,6 

IF(KJ(KP). NE. O)THEN 
KR=1 
DO 4 K0=1,2 

IF(KJ(CON4(KP, KO)). NE. O)TREN 
CR(KJ(KP), KR) = KJ(CON4(KP, KO)) 
CW(KJ(KP), KR) = WT4(15+KO) 
KR=KR+1 

END IF 
4 CONTINUE 

NC(KJ(KP)) = KR -1 
END IF 

2 CONTINUE 
DO 6 KP=2,8,6 

IF(KJ(KP). NE. O)THEN 
KR-1 
DO 8 K0=1,6 

IF(KJ(CON4(KP, KO)). NE. O)THEN 
CR(KJ(KP), KR) = KJ(CON4(KP, KO)) 
CN(KJ(KP), KR) = WT4(17+KO) 
KR-KR +1 

END IF 
8 CONTINUE 

NC(KJ(KP)) = KR -1 
END IF 

6 CONTINUE 
DO 10 KP=3,9,6 

IF(KJ(KP). NE. 0)TBEN 
KR=1 
DO 12 K0=1,7 

IF(KJ(CON4(KP, KO)). NE. O)TBEN 
CR(KJ(KP), KR) = KJ(CON4(KP, KO)) 
CW(KJ(KP), KR) = NT4(23+K0) 
KR =KR +1 

END IF 
12 CONTINUE 

NC(KJ(KP)) 2 KR -1 
END IF 

10 CONTINUE 
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DO 14 KP=4,10,6 
IF(KJ(KP). NE. O)THEN 

KR=1 
DO 16 K0=1,2 

IF(KJ(CON4(KP, KO)). NE. O)TREN 
CR(KJ(KP), KR) = KJ(CON4(KP, KO)) 
CW(KJ(KP), KR) = WT4(30+KO) 
KR =jut +1 

END IF 
16 CONTINUE 

NC(KJ(KP)) = KR -1 
END IF 

14 CONTINUE 
DO 18 KP=5,11,6 

IF(KJ(KP). NE. O)TEEN 
KR =1 
DO 20 K0=1,6 

IF(KJ(CON4(KP, KO)). NE. O)THEN 
CR(KJ(KP), KR) 2 KJ(CON4(KP, KO)) 
CW(KJ(K? ), KR) = WT4(32+K0) 
KR=KR+1 

END IF 
20 CONTINUE 

NC(KJ(KP)) = KR -1 
END IF 

18 CONTINUE 
DO 22 KP=6,12,6 

IF(KJ(KP). NE. 0)THEN 
KR=I 
DO 24 K0=1,7 

IF(KJ(CON4(KP, KO)). NE. O)TBEN 
CR(KJ(KP), KR) = XJ(C0N4(KP, KO)) 
CW(KJ(KP), KR) = WT4(36+KO) 
KR-- KR+1 

END IF 
24 CONTINUE 

NC(KJ(KP)) = KR -I 
END IF 

22 CONTINUE 
RETURN 
END 
of subroutine CON4ARC2 

SUBROUTINE CON4ARC3 
13 JUNE 89 
4-way signalised junction 
INTEGER XION, DB, UB, CR, CW, ARCS, ZONES, A, B, FIRSTAB, FIRSTBA, 

1 AP, EX, R, FEED, TW, DA, UA, XIONS, ZONESIN, CON4, WT4, CON4MR, CONRO, CONFO 
COMMON / C4 / C014(12,7), WT4(104), CO14MR(16,2), CONRO(20,6), 

1 CONFO(12,6) 
COMMON INJ(300,8), BION(300), UB(300), DB(300), I(1200), J(1200), 

1 NC(1200), CR(1200,8), NODES, ARCS, ZONES, B(300), 3(300), FIRSTAB(300), 
1 LASTAR(300), FIRSTBA(300), USTBA(300)ºRJ(20), AP(4), u(4), XL(300), 
1 CW(1200,8), JT(300), TW(300), DA(200), UA(200), R(S), 
1 FEED(50), LINKS, IIONS, ZONESIN 

SAVE /C4/ 
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DO 2 KP=1,10,3 
IF(KJ(KP). NE. O)TßEN 

KR=1 
DO 4 K0=1,2 

IF(KJ(C0N4(KP, KO)). IE. O)TREN 
CR(KJ(KP), KR) = KJ(CON4(KP, Ko)) 
CW(KJ(KP), KR) = WT4(45+K0) 
KR =KR +1 

END IF 
4 CONTINUE 

NC(KJ(KP)) = KR -1 
END IF 

2 CONTINUE 
DO 6 KP=2,11,3 

IF(KJ(KP). NE. O)THEN 
KR-1 
DO 8 K0=1,6 

IF(KJ(CON4(KP, KO) ). NE. O)THEN 
CR(KJ(KP), KR) = KJ(CON4(KP, K0)) 
CW(KJ(KP), KR) = WT4(47+K0) 
KR=KR+1 

END IF 
8 CONTINUE 

NC(KJ(KP)) = KR -1 
END IF 

6 CONTINUE 
DO 10 KP=3,12,3 

IF(KJ(KP). NE. O)THEN 
KR -1 
DO 12 K0=1,7 

IF(KJ(CON4(KP, KO) ). NE. O)THEN 
CR(KJ(KP), KR) = KJ(CON4(KP, KO)) 
CW(KJ(KP), KR) = WT4(53+K0) 
KR=KR+1 

END IF 
12 CONTINUE 

NC(KJ(KP)) = KR -1 
END IF 

10 CONTINUE 
RETURN 
END 
of subroutine COMM 

SUBROUTINE CON4ARC4 
C Mini-roundabout 
C 13 JUNE 89 

INTEGER XION, DB, UB, CR, CW, ARCS, ZONES, A, B, FIRSTAB, FIRSTBA, 
AP, EX, R, FEED, TV, DA, UA, XIONS, ZONESIN, CON4, KT4, C014MR, CONRO, COJF0 
COMMON / C4 / CON4(12,7), WT4(104), CON4MR(16,2), CONRO(20,6), 
CONFO(12,6) 
COMMON INJ(300,8), XION(300), UB(300), DB(300), I(1200), J(1200), 
NC(1200), CR(1200,8), NODES, ARCS, ZONES, A(300), B(300), FIRSTAB(300), 
LASTAB(300), FIRSTBA(300), LASTBA(300), KJ(20), AP(4), EX(4), NL(300), 
Cw(1200,8), JT(300), TW(300), DA(200), UA(200)ºR(5), 
FEED(50), LINKS, XIONS, ZONESIN 
SAVE /C4/ 
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12 

10 

14 

DO 2 KP=1,13,4 
IF(KJ(KP). NE. O)TREN 

KR- 1 
IF(KJ(CON4MR(KP, 1)). NE. O)THEN 

CR(KJ(KP), KR) = KJ(CO14MR(KP, 1)) 
CW(KJ(KP), KR) = WT4(61) 
KR-- KR+1 

END IF 
NC(KJ(KP)) = KR -1 

END IF 
CONTINUE 
DO 6 KP=2,14,4 

IF(KJ(KP). NE. O)THEN 
KR=1 
DO 8 K0=1,2 

IF(KJ(CON4MR(KP, KO)). NE. O)THEN 
CR(KJ(KP), KR) = KJ(CON4MR(KD, KD)) 
CW(KJ(KP), KR) = WT4(61+KO) 
KR-- KR+1 

END IF 
CONTINUE 
NC(KJ(KP)) = KR -1 

END IF 
CONTINUE 
DO 10 KP=3,15,4 

IF(KJ(KP). NE. O)THEN 
KR-1 
DO 12 K0=1,2 

IF(KJ(CON4I1R(KP, KO)). NE. O)TREN 
CR(KJ(KP), KR) = KJ(C0N4NR(KP, KO)) 
CW(KJ(KP), KR) = WT4(63+K0) 
KR=KR+1 

END IF 
CONTINUE 
NC(KJ(KP)) 2 KR -1 

END IF 
CONTINUE 
DO 14 KP=4,16,4 

IF(KJ(KP). NE. O)THER 
IHR =1 

IF(KJ(CON4NR(KP, 1)). NE. O)THEN 
CR(KJ(KP), KR) = KJ(CON4HR(KP, 1)) 
CW(KJ(KP), KR) = WT4(66) 
KR: KR+1 

END IF 
NC(KJ(KP)) = KR -1 

END IF 
CONTINUE 

RETURN 
END 
of subroutine CON4aRC4 
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SUBROUTINE CON4ARC5 
C Roundabout 
C 13 JUNE 89 

INTEGER XION, DB, UB, CR, CFI, ARCS, ZONZS, A, B, FIRSTAB, FIRSTBA, 
1 AP, EX, R, FEED, T9, DA, UA, XIONS, ZONESIN, CON4, VT4, CON4MR, COJR0, CONF0 

COMMON / C4 / CON4(12,7), WT4(104), CON4MR(16,2), C0NRO(20,6), 
1 CONFO(12,6) 

COMMON INJ(300,8), XION(300), UB(300), DS(300), I(1200), J(1200), 
1 NC(1200), CR(1200,8), NODES, ARCS, ZONES, A(300), B(300), FIRSTAB(300), 
1 LASTAB(300), FIRSTBA(300), LASTBA(300), KJ(20), AP(4), EX(4), NL(300), 
1 CW(1200,8), JT(300), TW(300), DA(200), UA(200), R(5), 
1 FEED(50), LINRS, XIONS, ZONESIN 

SAVE /C4/ 
DO 2 KP=1,16,5 

IF(KJ(KP). NE. O)THEN 
KR=1 
DO 4 K0=1,2 

IF(KJ(CONRO(KP, KO)). NE. O)TBEN 
CR(KJ(KP), KR) = KJ(CONRO(KP, KO)) 
CW(KJ(KP), KR) = äT4(66+K0) 
KR=KR+1 

END IF 
4 CONTINUE 

NC(KJ(KP)) 2 KR -1 
END IF 

2 CONTINUE 
DO 6 KP=2,17,5 

IF(KJ(KP). NE. O)THEN 
KR=1 
DO 8 K0=1,6 

IF(KJ(CONRO(KP, KO)). NE. O)THEN 
CR(KJ(KP), KR) = KJ(CONRO(KP, KO)) 
CN(KJ(KP), KR) = NT4(68+K0) 
KR =KR+1 

END IF 
8 CONTINUE 

NC(KJ(KP)) % KR -1 
END IF 

6 CONTINUE 
DO 10 KP=3,18,5 

IF(KJ(KP). NE. 0)THEN 
KR 21 
DO 12 K0=1,3 

IF(KJ(CONRO(KP, KO)). NE. O)TMEN 
CR(KJ(KF), KR) as KJ(CONRO(KP, KO)) 
CW(KJ(KP), KR) = 0T4(74+K0) 
KR=KR+1 

END IF 
12 CONTINUE 

NC(KJ(KP)) = KR -1 
END IF 

10 CONTINUE 
DO 14 KP=4,19,5 

IF(KJ(KP). NE. O)THEN 
KR 21 
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IF(KJ(CONRO(KP, 1)). NE. O)TREN 
CR(KJ(KP), KR) = KJ(CONRO(XP, 1)) 
CW(XJ(KP), KR) = WT4(78) 
KR: RR+1 

END IF 
NC(KJ(KP)) = RR -1 

END IF 
14 CONTINUE 

DO 16 KP=5,20,5 
IF(KJ(KP). NE, O)THEN 

KR=1 
DO 18 K0=1,4 

IF(RJ(CONRO(KP, KO)). NE. 0)THEN 
CR(KJ(KP), KR) = KJ(CONRO(KPDKO)) 
Ci(KJ(KP), KR) _ w14(78+KO) 
KR=KR+1 

END IF 
18 CONTINUE 

NC(KJ(KP)) = KR -1 
END IF 

16 CONTINUE 
RETURN 
END 
of subroutine CON4ARC5 

SUBROUTINE CON4ARC6 
C 13 JUNE 89 
G Fly-over (links 2 and 4 fly over links 1 and 3) 

INTEGER XION, DB, UB, CR, CW, ARCS, ZONES, A, B, FIRSTAB, FIRSTBA, 
AP, EX, R, FEED, TW, DA, UA, XIONS, ZONESIN, CON4, WT4, CON4MR, CONRO, CONFO 
COMMON / C4 / CON4(12,7), WT4(104), CON4MR(16,2), CONRO(20,6), 
CONFO(12,6) 
COMMON INJ(300,8), XION(300), UB(300), DB(300), I(1200), J(1200), 
NC(1200), CR(1200,8), NODES, ARCS, ZONES, A(300), B(300), FIRSTAB(300), 
LASTAS(300), FIRSTBA(300), LASTBA(300), KJ(20), AP(4), EX(4), NL(300), 
CW(1200,8), JT(300), TW(300), DA(200), UA(200), R(5), 
FEED(50), LINKS, XIONS, ZONESIN 
SAVE /C4/ 

DO 2 KP=1,7,6 
IF(KJ(KP). NE. O)TNEN 

KR-1 
DO 4 K0=1,2 

IF(KJ(CONFO(KP, KO)). NB. O)TNEN 
CR(KJ(KP), KR) = KJ(CONFO(KP, KO)) 
CW(KJ(K1), KR) = WT4(82+K0) 
KR =KR +1 

END IF 
CONTINUE 
NC(KJ(KP)) = KR -1 

END IF 
CONTINUE 
DO 6 KP=2,8,6 

IF(KJ(KP). NE. O)THEN 
KR =1 
DO 8 K0=1,4 
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IF(KJ(CONFO(KP, KO)). NE. O)THEN 
CR(KJ(KP), KR) = KJ(CONFO(KP, KO)) 
CW(KJ(KP), KR) = WT4(84+KO) 
KR=KR+1 

END IF 
8 CONTINUE 

NC(KJ(KP)) = KR -1 
END IF 

6 CONTINUE 
DO 10 KP=3,9,6 

IF(KJ(KP). NE. O)THEN 
KR :1 
DO 12 K0=1,6 

IF(KJ(CONFO(KP, KO)). NE. O)TEEN 
CR(KJ(KP), KR) = KJ(CONFO(KP, KO)) 
CW(KJ(KP), KR) = WT4(88+KO) 
KR=KR+1 

END IF 
12 CONTINUE 

NC(KJ(KP)) = KR -1 
END IF 

10 CONTINUE 
DO 14 KP=4,10,6 

IF(KJ(KP). NE. O)THEN 
KR=1 
DO 16 K0=1,2 

IF(KJ(CONFO(KP, KO)). NE. O)THEN 
CR(KJ(KP), KR) = KJ(CONFO(KP, KO)) 
CW(KJ(KP), KR) = WT4(94+K0) 
KR=KR+1 

END IF 
16 CONTINUE 

NC(KJ(KP)) = KR -1 
END IF 

14 CONTINUE 
DO 18 KP=5,11,6 

IF(KJ(KP). NE. O)THEN 
KR -- 1 
DO 20 K0=1,2 

IF(KJ(CONFO(KP, KO)). NE. O)THEN 

CR(KJ(KP), KR) = KJ(CONFO(KP, xo)) 
CW(KJ(KP), KR) = WT4(96+KO) 
KR=KR+1 

END IF 
20 CONTINUE 

NC(KJ(KP)) = KR -1 
END IF 

18 CONTINUE 
DO 22 KP=6,12,6 

IF(KJ(KP). NE. O)THEI 
KR 21 
DO 24 K0=1,6 

IF(KJ(CONFO(KP, KO)). NE. O)THEN 
CR(KJ(KP), KR) = KJ(CONFO(KP, KO)) 
CW(KJ(KP), KR) = WT4(98+KO) 
KR: KR+1 

END IF 
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24 CONTINUE 
NC(KJ(RP)) = KR -1 

END IF 
22 CONTINUE 

RETURN 
END 

C of subroutine CON4ARC6 
C 

SUBROUTINE MAKEARCS 
INTEGER XION, DB, UB, CR, Cii, WT, ARC8, EOIES, A, B, FIRSTAB, FIRSTBA, 

1 AP, EX, R, FEED, TW, DA, UA, X, XIONS, ZONESIN 
COMMON INJ(300,8), XION(300), UB(300), DB(300), I(1200), J(1200), 

1 NC(1200), CR(1200,8), NODES, ARCS, ZONES, A(300), B(300), FIRSTAB(300), 
1 LASTAR(300), FIRSTBA(300), LASTBA(300), KJ(20), AP(4), EX(4), IL(300), 
1 CW(1200,8), JT(300), TW(300), DA(200), UA(200), R(5), 
1 FEED(50), LINKS, XIONS, LOJESIR 

ARCS =0 
DO 60 X-1, XIONS 

IF (n (i) . EQ. 3) THEN 
CALL TJUNCTN(X) 

ELSE IF(NL(X). EQ. 4)THEN 
IF(JT(X). EQ. 4)THEN 

CALL MINI4(X) 
ELSE IF(JT(X). EQ. 5)THEN 

CALL ROUND4(X) 
ELSE 

CALL XROADS(X) 
END IF 

END IF 
60 CONTINUE 

RETURN 
END 

C Of subroutine MAKEARCS 
C 

SUBROUTINE MINI4(X) 

INTEGER AP, EX, R, FEED, X, A, B, INJ, XION, UB, DB, I, J, NC, CR, CN, WT, ARCS, 
1 FIRSTAB, FIRSTBA, TW, DA, UA, XIONS, ZONESIN, ZONES 

COMMON INJ(300,8), XION(300), OB(300), DB(300), I(1200), J(1200), 
1 NC(1200), CR(1200,8), NODES, ARCS, ZONES, A(300), B(300), FIRSTAB(300), 
1 LASTAB(300), FIRSTBA(300), LASTBA(300), KJ(20), AP(4), EX(4), NL(300), 
1 CW(1200,8), JT(300), TW(300), DA(200), UA(200), R(S), 
1 FEED(50), LINKS, XIONS, ZONESIN 

Create approach and exit vertices 
DO 2 N=1,4 

AP(N)=0 
EX(N)-0 

CONTINUE 
DO 10 JL=1,4 
IF(B(INJ(X, JL)). EQ. XION(X))THEN 

AP(JL)-0B(INJ(X, JL)) 
EX(JL)=DB(INJ(X, JL)) 

ELSE IF(A(INJ(X, JL)). EQ. XION(X))THEN 
AP(JL)=DB(INJ(X, JL)) 
EX(JL)=UB(INJ(X, JL)) 

ELSE 
PRINT*, 'Mistake in LINKS. DAT file for junction ', XION(X) 
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STOP 'Check your LINKS. DAT file and start again' 
END IF 

10 CONTINUE 
C create roundabout nodes at each entry 

N= NODES +1 
DO 12 IR=1,4 

R(IR) =N 
N=N+1 

12 CONTINUE 
NODES =N-1 

DO 20 K=1,16 
KJ(K)=0 

20 CONTINUE 
K--ARCS+1 

c Create arcs from AP(1) 
IF(AP(1). NE. O)THER 

IF(EX(2). NE. O)THEN 
I(K)=AP(1) 
J(K)=EK(2) 
KJ(1)=K 
K--K+1 

END IF 
I(K)=AP(1) 
J(K)=R(2) 
KJ(2)=K 
K=K +1 

END IF 
IF(EX(2). NE. O)THEN 

I(K)=R(1) 
J(K)=EX(2) 
KJ(3)=K 
K=K+1 

END IF 
I(K)=R(1) 
J(K)=R(2) 
KJ(4)=K 
K=K+1 

CALL ALMINI4(X, 1) 
c Create arcs from AP(2) 

IF(AP(2). NE. O)THEN 
IF(EX(3). NE. O)THEN 

I(K)=AP(2) 
J(K)=EX(3) 
KJ(S)=K 
K=K+1 

END IF 
I(K)=AP(2) 
J(K)=R(3) 
KJ(6)=K 
K--K+1 

END IF 
IF(EX(3). NE. O)THEN 

I(K)=R(2) 
J(K)=EX(3) 
RJ(7)=K 
K=R+1 

END IF 
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I(K)=R(2) 
J(K)=R(3) 
K3(8)=K 
K=K+1 

CALL ALMINI4(X, 2) 
Create arcs from AP(3) 
IF(AP(3). NE. O)THEN 

IF(EX(4). NE. O)THEN 
I(K)=AP(3) 
J(K)=EX(4) 
KJ(9)=K 
K=K+1 

END IF 
I(K)=AP(3) 
J(K)=R(4) 
KJ(10)=K 
K=K+1 

END IF 
IF(EX(4). NE. O)THEN 

I(K)=R(3) 
J(K)=EX(4) 
KJ(11)=K 
K--K+1 

END IF 
I(K)=R(3) 
J(K)=R(4) 
KJ(12)=K 
K=K+1 

CALL ALMINI4(X, 3) 
Create arcs from AP(4) 
IF(AP(4). NE. O)THEN 

IF(EX(1). NE. O)THEN 
I(K)=AP(4) 
J(K)=EX(1) 
KJ(13)%K 
K=K+1 

END IF 
I(K)=AP(4) 
J(K)=R(1) 
KJ(14)=K 
K=K+1 

END IF 
IF(EX(1). NE. O)THEN 

I(K)=R(4) 
J(K)=EX(1) 
KJ(15)=K 
K=K+1 

END IF 
I(K)=R(4) 
J(K)=R(1) 
KJ(16)=K 
K=K+1 

CALL ALKINI4(X, 4) 
ARCS=K-1 
CALL C0N4ARC4 
RETURN 
END 
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SUBROUTINE ODVERT 
C Creates origin and destination nodes 

INTEGER XION, DB, UB, CR, CW, WT, ARCS, ZONES, A, B, FIRSTAB, FIRSTBA, 
1 AP, EX, R, FEED, TW, DA, UA, XIONS, ZONESIN 

COMMON INJ(300,8), XION(300), UB(300), DB(300), I(1200), J(1200), 
1 NC(1200), CR(1200,8), NODES, ARCS, ZONES, A(300), B(300), FIRSTAB(300), 
1 LASTAB(300), FIRSTBA(300), LASTBA(300), KJ(20), AP(4), EX(4), NL(300), 
1 CW(1200,8), JT(300), TW(300), DA(200), UA(200), R(5), 
1 FEED(50), LINKS, XIONS, ZONESIN 

NOL =0 
DO 20 MZ=1, ZONES 

DO 30 MF=1, FEED(MZ) 
L=NOL+HF 
DA(L) = 2*MZ -1 
UA(L) = 2*MZ 

C The values of DA(L) will be the same for all links from zone ME 
30 CONTINUE 

C All links from zone HZ have the same node downstream of their 
cA node which is the sots. etc. 

NOL--L 
20 CONTINUE 

DO 40 L=1, ZONESIN 
UB(L) = DA(L) 
IF(TW(L). EQ. 1)THEN 

DB(L)= UA(L) 
ELSE 

DB(L)=0 
END IF 

40 CONTINUE 
C All zone connectors have been processed so there are 
c LINKS-ZONESIN links left and 2*ZONES nodes have been created. 

END 
C of subroutine ODVERT 
C 

SUBROUTINE PRINT 
C 
C Prints arc numbers, start vertices, finish vertices, number of 
c conflicting arcs in the file ARCS-OUT 
c Prints the arcs conflicting with each arc in the file, CROSSFLO. DAT. 

INTEGER A, B, INJ, XION, UB, DB, I, J, äC, CR, CW, WT, ARCS, PIRSTAB, FIRSTBA, 
1 AP, EX, R, PEED, TW, DA, UA, XIONS, ZONESIN, ZONES 

COMMON INJ(300,8), XIOä(300), UB(300), DB(300), I(1200), J(1200), 
1 NC(1200), CR(1200,8), NODES, ARCS, ZONZS, A(300), B(300), FIRSTAB(300), 
1 LASTAB(300), PIRSTBA(300), LASTBA(300), KJ(20), AP(4), EX(4), äL(300), 
1 CW(1200,8), JT(300), TW(300), DA(200), UA(200), R(5), 
1 FEED(50), LINKS, XIONS, ZONBSIN 

WRITE(6, *)NODES, ARCS, ZONES 
DO 10 K--1, ARCS 

WRITE(6, *)K, I(K), J(K) 
10 CONTINUE 

9010 FORNAT(9I5) 
9020 FORMAT(5X, 815) 

DO 20 K=1, ARCS 
WRITE(8,9010)NC(K), (CR(K, NCF), NCF=1,8) 
WRITE(8,9020)(CW(K, NCF), NCF=1,8) 

20 CONTINUE 
RETURN 
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END 
C Of subroutine PRINT 
C 

SUBROUTINE LINKVERT(L) 
C creates remaining nodes corresponding to ordinary links 

INTEGER XION, DB, UB, CR, CW, WT, ARCS, ZONES, A, B, FIRSTAB, FIRSTBA, 
1 B, AP, EX, R, FEED, TW, DA, UA, XIONS, ZONESIN 

COMMON INJ(300, B), XIOK(300), UB(300), DB(300), 1(1200), J(1200), 
1 AC(1200), CR(1200,8), NODES, ARCS, ZONES, A(300), B(300), FIRSTAB(300), 
1 LASTAB(300), FIRSTBA(300), LASTBA(300), KJ(20), AP(4), EE(4), NL(300), 
I CW(1200,8), JT(300), TR(300), DA(200), UA(200), R(S), 
1 FEED(50), LINKS, BIONS, ZONESIN 

N= 2*ZONES +1 
DO 50 ML: L, LINKS 

UB(ML) =I 
N: N+1 
IF(TW(ML). EQ. 1)TBEN 

DB(XL) -- N 
N: N+1 

ELSE 
DB(KL): 0 

END IF 
50 CONTINUE 

NODES =N-1 
Otherwise it would be 1 more than the number of nodes 
RETURN 
END 
of subroutine LINRVERT 

SUBROUTINE ROUND4(X) 
Conventional 4-arm roundabout 

INTEGER AP, EX, R, FEED, X, A, B, INJ, XION, UB, DB, I, J, NC, CR, CN, WT, ARCS, 
1 FIRSTAB, FIRSTBA, TW, DA, OA, XIONS, ZONESIN, LONES 

COMMON INJ(300,8), XION(300), OB(300), DB(300), I(1200), J(1200), 
1 NC(1200), CR(1200,8), NODES, ARCS, ZONES, A(300), B(300), FIRSTAB(300), 
1 LASTAB(300), FIRSTBA(300), LASTBA(300), KJ(20), AP(4), EH(4), NL(300), 
1 CW(1200,8), JT(300), TW(300), DA(200), UA(200), R(5), 
1 FEED(50), LINKS, XIONS, ZONESIN 

C Create approach and exit vertices 
DO 2 N=1,4 

AP(N)=0 
ES(N)=0 

2 CONTINUE 
DO 10 JL=1,4 
IF(B(INJ(X, JL)). EQ. XION(X))THEN 

AP(JL)=UB(INJ(X, JL)) 
EX(JL)=DB(INJ(X, JL)) 

ELSE IF(A(INJ(X, JL)). EQ. XION(X))THEN 
AP(JL)=DB(IEJ(X, JL)) 
EX(JL)=0B(INJ(X, JL)) 

ELSE 
PRINT*, 'Mistake in LINAS. DAT file for junction ', XION(X) 
STOP 'Check your LINKS. DAT file and start again' 
END IF 

10 CONTINUE 
C create roundabout nodes at each entry 

72 



12 

20 

N: NODES +1 
DO 12 IR=1,4 

R(IR) =N 
N=N+1 

CONTINUE 
NODES =N-1 

DO 20 K=1,20 
KJ(K)=0 

CONTINUE 
K-ARCS+1 
Create arcs from AP(1) 
IF(AP(1). NE. O)THEN 

IF(EX(2). NE. O)THEN 
i(K)=AP(1) 
J(K)=E%(2) 
KJ(1)=K 
K--K+1 

END IF 
IF(EX(3). JE. 0)THEN 

I(K)=AP(1) 
J(K): EX(3) 
KJ(2)%K 
K=K+1 

END IF 
I(K)=AP(1) 
J(K)=R(2) 
KJ(3)=K 
K=K +1 

END IF 
I(K)=R(2) 
J(K)=R(3) 
KJ(4)=K 
K=K+1 
IF(EX(4). NE. O)THEN 

I(K)=R(3) 
J(K)=E%(4) 
KJ(5)=K 
K=K+1 

END IF 
CALL ALROUND4(%, 1) 

Create arcs from AP(2) 
IF(AP(2). NE. 0)THEN 

IF(EI(3). NE. O)THEN 
I(K)=AP(2) 
J(K)=EX(3) 
KJ(6)--K 
K=K+1 

END IF 
IF(EX(4). NE. O)THEN 

I(K)=AP(2) 
J(K)=E%(4) 
KJ(7)=K 
K=K+1 

END IF 
I(K)=AP(2) 
J(K)=R(3) 

KJ(8)-K 
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K=K+1 
END IF 
I(K)=R(3) 
J(K)=R(4) 
KJ(9)=K 
K=K+1 
IF(EX(1). 1E. O)THEN 

I(K)=R(4) 
J(K)=EX(1) 
KJ(10)=K 
K=K+1 

END IF 
CALL ALROUKD4(X, 2) 

Create arcs from AP(3) 
IF(AP(3). NE. O)THEN 

IF(EX(4). NE. O)THEli 
I(K)=AP(3) 
J(K)=EX(4) 
KJ(11)=K 
K=K+1 

END IF 
IF(EX(1). NE. O)THEN 

I(K)=AP(3) 
J(K)=EX(1) 
KJ(12)=K 
K=K+1 

END IF 
I(K)=AP(3) 
J(K)=R(4) 
KJ(13)=K 
K--K+1 

END IF 
I(K)=R(4) 
J(K)=R(1) 
KJ(14)=K 
K=K+1 
IF(EX(2). NE. O)THEN 

I(K)=R(1) 
J(K)=EX(2) 
KJ(15)= K 
K=K+1 

END IF 
CALL ALROUND4(X, 3) 

Create arcs from AP(4) 
IF(AP(4). NE. O)THEN 

IF(EX(1). NE. O)THEN 
I(K)=AP(4) 
J(K)=EX(1) 
KJ(16)=K 
K--K+1 

END IF 
IF(EX(2). AE. O)TBEN 

I(K)=AP(4) 
J(K)=EX(2) 
KJ(17)=K 
K=K+1 

END IF 
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I(K): M (4) 
J(K)=R(1) 
KJ(18)=K 
K=K+1 

END IF 
I(K)=R(1) 
J(K)=R(2) 
KJ(19)=K 
K-- K+1 
IF(EX(3). NE. 0)THEN 

I(K)=R(2) 
J(K)=EX(3) 
KJ(20)=K 
K=K+1 

END IF 
CALL ALROUND4(1,4) 

ARCS=K-1 
CALL CON4ARC5 
RETURN 
END 

C Of subroutine ROUKD4(%) 
C 

SUBROUTINE TJUNCTN(X) 
C 
C Creates up to six arcs for possible movements at T-junction, I. 

INTEGER AP, EX, R, FEED, X, A, B, INJ, XION, UB, DB, I, J, NC, CR, CW, WT, ARCS, 
1 FIRSTAB, PIRSTBA, TW, DA, UA, XIONS, ZONESIN, ZONES 

COMMON INJ(300,8), XION(300), UB(300), DB(300), I(1200), J(1200), 
1 NC(1200), CR(1200,8), NODES, ARCS, ZONES, A(300), B(300), FIRSTAB(300), 
1 LASTAB(300), FIRSTBA(300), LASTBA(300), KJ(20), AP(4), ES(4), NL(300), 
1 CW(1200,8), JT(300), Tw(300), DA(200), UA(200), R(5), 
1 FEED(50), LINKS, XIONS, ZONESIN 

Create approach and exit vertices 
DO 2 N=1,3 

AP(N)=0 
EX(N)=0 

2 CONTINUE 
DO 10 JL=1,3 
IF(B(INJ(X, JL)). EQ. XION(X))TBEN 

AP(JL)=UB(INJ(X, JL)) 
EX(JL)=DB(INJ(X, JL)) 

ELSE IF(A(INJ(X, JL)). EQ. XION(X))TBEN 
AP(JL)=DB(INJ(X, JL)) 
EX(JL): U3(INJ(X, JL)) 

ELSE 
PRINT*, 'Mistake in LINKS. DAT file for junction ', XION(X) 
STOP 'Check your LINKS. DPT file and start again' 
END IF 

10 CONTINUE 
DO 20 K=1,6 

KJ(K)=0 
20 CONTINUE 

K=ARCS +1 
Create arcs from AP(1) 
IF(AP(1). NE. D)THEN 

IF(EX(2). NE. 0)TBEN 
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I(K)=AP(1) 
J(K)=E%(2) 
KJ(1)=K 
K--K+1 

ELSE 
KJ(1)=0 

END IF 
IF(EX(3). NE. 0)THEN 

I(K)=AP(1) 
J(K)=EX(3) 
KJ(2)=K 
K--K+1 

ELSE 
KJ(2)=0 

END IF 
CALL ARC3LINK(1,1) 

END IF 
Create arcs from AP(2) 
IF(AP(2). NE. O)TKEN 

IF(EX(3). NE. O)TBEII 
I(K)=AP(2) 
J(K)=E%(3) 
KJ(3)=K 
K=K+1 

ELSE 
KJ(3)=0 

END IF 
IF(EX(1). NE. 0)THEN 

I(K)=AP(2) 
J(K)=EX(1) 
KJ(4)=K 
K=K+1 

ELSE 
KJ(4)20 

END IF 
CALL ARC3LINK(1,2) 

END IF 
Create arcs from AP(3) 
IF(AP(3). NE. O)THEN 

IF(EX(1). NE. O)THEN 
I(K)=AP(3) 
J(K)=EX(1) 
KJ(5): K 
X--K+1 

ELSE 
KJ(S)=0 

END IF 
IF(EX(2). NE. O)TmEN 

I(K)=AP(3) 
J(K)=El(2) 
KJ(6)=K 
14+1 

ELSE 
KJ(6)20 

END IF 
CALL ARC3LINK(1,3) 

END IF 
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ARCS=K-1 
IF(JT(%). EQ. 1) THEN 

CALL CON3ARCL 
ELSE IF(JT(X). EQ. 6)THEN 

CALL CON3RF 
END IF 
RETURN 
END 

C Of subroutine TJUNCTN(X) 
C 

SUBROUTINE XROADS(X) 

Creates up to twelve arcs for possible movements at crossroads, X. 

INTEGER AP, EX, R, FEED, X, A, B, INJ, XION, UB, DB, I, J, NC, CR, CN, NT, ARCS, 
1 FIRSTAB, FIRSTBA, TW, DA, UA, XIONS, ZONESIN, 80NES 

COMMON INJ(300,8), IION(300), UB(300), DB(300), I(1200), J(1200), 
1 NC(1200), CR(1200,8), NODES, ARCS, ZONES, A(300), B(300), FIRSTAB(300), 
1 LASTAB(300), FIRSTBA(300), LASTBA(300), KJ(20), AP(4), EX(4), NL(300), 
1 CW(1200,8), JT(300), TW(300), DA(200), UA(200), R(5), 
1 FEED(50), LINKS, 1IONS, ZONESIN 

C Create approach and exit vertices 
DO 2 N=1,4 

AP(N)=0 
EX(N)=0 

2 CONTINUE 
DO 10 JL=1,4 
IF(B(INJ(X, JL)). EQ. BION(X))TBEN 

AP(JL)=UB(INJ(X, JL)) 
EX(JL)=DB(INJ(X, JL)) 

ELSE IF(A(INJ(X, JL)). EQ, XION(S))TBEN 
AP(JL)=DB(INJ(X, JL)) 
EX(JL)=UB(INJ(X, JL)) 

ELSE 
PRINT*, 'Kistake in LINKS. DAT file for junction ', XION(X) 
STOP 'Check your LINKS. DAT file and start again' 
END IF 

10 CONTINUE 
DO 20 R=1,12 

KZ(K)=O 
20 CONTINUE 

K=ARCS+1 
Create arcs from AP(1) 
IF(AP(1). NE. O)TBEN 

IF(EX(2). NE. O)TBEN 
I(K)=AP(1) 
J(K)=EX(2) 
KJ(1)=K 
x--K+1 

ELSE 
KJ(1)=o 

END IF 
IF(EX(3). NE. O)TBEN 

I(K)=AP(1) 
J(K)=E%(3) 
KJ(2)=K 
K: K+1 
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ELSE 
KJ(2)=0 

END IF 
IF(EX(4). NE. O)THEN 

I(K)=AP(1) 
J(K)=EX(4) 
KJ(3)=K 
K=K+1 

ELSE 
KJ(3)=0 

END IF 
CALL ARC4LINK(X, 1) 

END IF 
Create arcs from AP(2) 
IF(AP(2). NE. O)THEN 

IF(EX(3). NE. O)ThEN 
I(K)=AP(2) 
J(K)=EX(3) 
KJ(4)=K 
K=K+1 

ELSE 
KJ(4)=0 

END IF 
IF(EK(4). NE. O)THEN 

I(K): AP(2) 
J(K)=EX(4) 
KJ(5)=K 
K--K+1 

ELSE 
KJ(5)=0 

END IF 
IF(EX(1). NE. O)THEN 

I(K)=AP(2) 
J(K)=EX(1) 
KJ(6)=K 
K=K+1 

ELSE 
KJ(6)=0 

END IF 
KJ(4): KJ(4) 
KJ(5)=KJ(5) 
KJ(6)=KJ(6) 
CALL ARC4LINK(X, 2) 

END IF 
Create arcs from AP(3) 
IF(AP(3). NE. O)THEN 

IF(EX(4). NE. O)THEN 
I(K)=AP(3) 
J(K)=EX(4) 
KJ(7)_K 
K--K+1 

ELSE 
K3(7)=0 

END IF 
IF(EX(1). NE. O)THEN 

I(K)=AP(3) 
J(K)=EX(1) 
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Ka(8)=K 
x--x+1 

ELSE 
KJ(8)=0 

END IF 
IF(EX(2). NE. O)THEN 

I(K)=AP(3) 
J(K)=EX(2) 
KJ(9)=K 
K=K+1 

ELSE 
KJ(9)=0 

END IF 
CALL XRC4LINK(I, 3) 

END IF 
c Create arcs from XP(4) 

IF(AP(4). NE. O)THEN 
IF(EX(1). NE. O)THEN 

I(K)=AP(4) 
J(K)=EI(1) 
KJ(10)--K 
K=K+1 

ELSE 
KJ(10)=0 

END IF 
IF(EX(2). l(E. O)THEN 

I(K)=AP(4) 
J(X)=EX(2) 
KJ(11)=K 
K=K+1 

ELSE 
KJ(11)=0 

END IF 
IF(EX(3). NE. O)THEN 

I(K)=AP(4) 
J(K)=EX(3) 
KJ(12)=K 
K--K+1 

ELSE 
KJ(12)=0 

END IF 
CALL ARC4LINK(X, 4) 

END IF 
ARCS=K-1 
IF(JT(X). EQ. 1) THEN 

CALL CON4ARC1 
ELSE IF(JT(X). EQ. 2) THEN 

CALL CON4XRC2 
ELSE IF(JT(X). EQ. 3) THEN 

CALL CON4ARC3 
ELSE IF(JT(X). EQ. 6) THEN 

CALL CON4ARC6 
END IF 
RETURN 
END 

C Of subroutine XROADS(X) 
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PROGRAM POLYSEND 
C 
C1 September 89 Enhanced POLYSEND with OLDFLOii assignment. 
c Takes account of weights for 
c conflicts as given in every second record of CROSSFLO. DAT. 
C Also enhanced to allow user to specify a different order of 
c loading from numeric order of zones either by entering an order 
c from the keyboard or giving a seed to find a random order. 
C Four start-up assignments offered - 
c INIT =0 Start with an empty network and load 
c it so as to avoid as much conflict as possible with trips 
c already assigned to obtain a LOADFLOV assignment 
c INIT =1 Assign routes which use a minimum number of area 
c and therefore pass a minimum number of junctions to obtain 
c the DARTFLOW assignment. 
c INIT =2 Set costs on arcs to equal the number of conflicting 
c arcs and find minimum cost routes for DASHFLOW assignment. 
c INIT =3 Reads arc flows from file STARTFLO. DAT which is in the 
c sane format as PARCFLO. DAT. This is the OLDFLOii assignmat. 
c The program reassigns the flows from up to 50 different origins, 
c on a traffic circulation network consisting of up to 1100 arcs 
c and up to 400 nodes. 
c It does MAXITRN complete iterations or terminates when there 
c will be no further changes, 
c It reports changes after each reassignment (run of f(ilter). 
c 

INTEGER ARCS, ZONES, ORIGIN, PKA, CR, TRIPS, CW 
REAL LO 

C KA is the number of artificial arcs (kiltares) which have to be 
c added to the network to carry flow away frag the destinations 
c to the origin. FKA is the are no. of the first 
c kiltarc and LEA is that of the last kiltarc. 

COMMON I(1100), J(1100), LO(1100), FLON(50,1100), 
1 TFLOW(1100), TC'OST(1100), PI(400), INFERS, NA(400), NODES, ARCS, ZONES, 
1 INIT, MAXITRN, ITRP, ITRD, TOTFLOW(1100), TC, 
1 OTHERFLO(1100), KA, FKA, LKA, TOTCRASR, BASECOST(50), NCBANGB(50), 
1 NC(1100), CR(1100,7), TRIPS(50,50), 
1 ORIGIN(50), MCHANGE, CW(1100,7) 

8001 FORMAT (2I5,3F10.0) 
9003 FORMAT('INFEASIBLE PROBLEM') 

WRITE(*, *)' Enter method for start-up assignment' 
WRITE(*, *)' I for LOADFLOW' 
WRITE(*, *)' 2 for DARTFLOW' 
WRITE(*, *)' 3 for DASEFLOW' 
WRITE(*, *)' 4 for OLDFLON' 
READ(*, *)INIT 
WRITE(*, *)' How many iterations do you want? ' 
READ(*, *)MAXITRN 
OPEN(UNIT: 8, FILE = 'ARCS. DAT', STATUS: '0LD') 
READ(8, *) NODES, ARCS, ZONES 
CLOSE(O1IT: 8, STATUS='KEEP') 
CALL LOADING 
Reads order of loading from screen 
OPEN(WU T=B, FILE a 'ARCS. DAT', STATUS: 'OLD') 
OPEN(UNIT=9, FILE = 'TRIPS. DAT', STATDS='OLD') 
OPEN(UNIT: 10, FILE _ 'CROSSFLO. DAT', STATUS='OLD') 
OPEN(UNIT: 11, FILE = 'STARCFLO. DAT', STATUS='NEW') 
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OPEN(DNIT=12, FILE = 'FARCFLOW. DAT', STATDS='U V') 
READ(8, *) NODES, ARCS, ZONES 

c File reopened so repeat reading of first record. 
c These set limits for do loops etc. 
c Now read CROSSFLO. DAT 

DO 2 K=1, ARCS 
READ(10, *, END=2)NC(K), (CR(K, KC), KC=l, NC(K)) 
READ(10, *, END: 2)(CW(K, KC), KC=1, NC(K)) 

2 CONTINUE 
CLOSE(UNIT=1O, STATUS--'KEEP') 
IF(NODES. LE. 0) COTO 100 
KA = ZONES-i 
FKA = ARCS +1 
LEA = ARCS + KA 
DO 3 KAR=FKA, LKA 

C Cost on the kilter arcs will always be zero 
TCOST(KAR)=0.0 

3 CONTINUE 
CALL NETWORK 

c Reads rest of ARCS. DAT 
CALL ASSIGN 

c Reads TRIPS. DAT 
DO 4 K: 1, LKA 

DO 6 N0=1, ZONES 
FLOW(NO, K)=0.0 

6 CONTINUE 
TOTFLOW(K)=0.0 

4 CONTINUE 
C Now proceed according to value of INIT 

IF(INIT. EQ. 0)THEN 
CALL LOADFLOW 

ELSE IF(INIT. EQ. 1)THEN 
CALL DARTFLOW 

ELSE IF(INIT. EQ. 2)THEN 
CALL DASHFLOW 

ELSE IF(INIT. EQ. 3)THEN 
CALL OLDFLOW 

ELSE 
STOP' INIT not given as 1,2,3, or 4- start again' 

END IF 
DO 10 NI=1, MA%ITRN 
The program spends most of its time in this loop 
CALL ITERATE(NI) 

10 CONTINUE 
CALL FINAL(NI) 
To print the final assignment 
IF (MCHANGE. EQ. 0) THEN 
STOP 'Program terminated by no further changes' 
END IF 
IF(INFEAS. EQ. 1) GOTO 999 

100 STOP 'Maximum number of iterations now complete' 
999 STOP 'Infeasible problem' 

END 

SUBROUTINE ARCCOSTS 
C Uses data of conflicting flows from the array OTKERFLO(K) 
C to calculate costs on arcs and creates the array TCOST(K). 
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INTEGER ARCS, ZONES, ORIGIN, FKA, CR, TRIPS, CW 
REAL LO 
COMMON I(1100), J(1100), LO(1100), FLOW(50,1100), 

1 TFLOW(1100), TCOST(1100), PI(400), INFERS, NA(400), NODES, ARCS, ZONES, 
1 INIT, MAXITRN, ITRP, ITRD, TOTFLOW(1100), TC, 
1 OTEERFLO(1100), Klo, FIFA, LKA, TOTCRASN, BASECOST(50), NCRANGE(50), 
1 NC(1100), CR(1100,7), TRIPS(50,50),. 
1 ORIGIN(S0), MCRANGE, CW(1100,7) 

DO 4 K=1, ARCS 
TCOST(K)=0.0 
DO 6 KC=1, NC(K) 

TCOST(K)=TCOST(R) + OT HERFLO(CR(R, RC))*CW(K, KC) 
6 CONTINUE 
4 CONTINUE 

RETURN 
END 
Of subroutine ARCCOSTS 

SUBROUTINE ASSIGN 
Reads data from TRIPS. DAT 
INTEGER ARCS, ZONES, ORIGIN, FKA, CR, CW, TRIPS 
REAL LO 
COMMON I(1100), J(1100), LO(1100), FLOW(50,1100), 

1 TPLOW(1100), TCOST(1100), PI(400), INFEAS, NA(400), NODES, ARCS, ZONES, 
1 INIT, MAXITRN, ITRP, ITRD, TOTFLOW(1100), TC, 
I OTHERFLO(1100), KA, FKA, LKA, TOTCRASH, BASECOST(50), NCHANGE(50), 
1 NC(1100), CR(1100,7), TRIPS(50,50), 
1 ORIGIN(50), MCHANGE, CW(1100,7) 

9005 FORMAT(13I6) 
DO 10 N0=1, ZONES 

DO 20 ND=1, LONES, 12 
READ(9,9005)NOR, (TRIPS(NO, NT), NT=ND, ND+11) 

20 CONTINUE 
10 CONTINUE 

CLOSE(UNIT=9, STATUS='REEP') 
RETURN 
END 
of subroutine ASSIGN 

SUBROUTINE BUILDUP 
C 
C Builds up the costs on arcs 

INTEGER ARCS, ZONES, ORIGIN, FKA, CR, CK, TRIPS 
REAL LO 
COMMON I(1100), J(1100), LO(1100), FLOW(50,1100), 

1 TFLOW(1100), TCOST(1100), PI(400), INFEAS, NA(400), NODES, ARCS, ZONES, 
1 INIT, MAXITRN, ITRP, ITRD, TOTFLOW(1100), TC, 
1 OTHERFLO(1100), KR, FKA, LKA, TOTCRASR, BASECOST(50), NCWGE(50), 
1 KC(1100), CR(1100,7), TRIPS(50,50), 
1 ORIGIN(50), MCEANGE, CW(1100,7) 

DO 4 K=1, ARCS 
TCOST(K)=0.0 
DO 6 KC=1, NC(K) 

TCOST(K)=TCOST(K) + TOTPLOW(CR(K, KC)) 
6 CONTINUE 
4 CONTINUE 
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RETURN 
END 
Of subroutine BUILDUP 

SUBROUTINE DARTFLOW 
C 
C Assigns flows to minimise the total 
c number of arcs used, computes BASECOST(NO), the total number 
c of conflicts encountered by each initial flow, and TOTCRASH, 
c the total number of conflicts in the initial flow pattern. 
C 

INTEGER ARCS, ZONES, ORIGIN, F1A, CR, CW, TRIPS 
COMMON I(1100), J(1100), LO(1100), FLOW(50,1100), 

1 TFLOW(1100), TCOST(1100), PI(400), INFERS, NA(400), NODES, ARCS, ZONES, 
1 INIT, NAXITRN, ITRP, ITRD, TOTFLOW(1100), TC, 
1 OTHERFLO(1100)ºKA, PKA, LKA, TOTCRASH, BASECOST(50), NCHANGE(50), 
1 Nc(1100), CR(1100,7), TRIPS(50,50), 
1 ORIGIN(50), MCHANGE, CW(1100,7) 

DO 2 R=1, ARCS 
TCOST(K)=1.0 

2 CONTINUE 
DO 36 NORIG=I, ZONES 

NOD=ORIGIN(NORIG) 
CALL KILTARCS(NOD) 

C Sets up Kilter arcs 
CALL KILTER 
DO 32 K: 1, ARCS 

FLOW(NOD, K)=TFLOW(K) 
32 CONTINUE 
36 CONTINUE 

CALL TOTALFLO 
DO 38 NOD=1, ZONES 
CALL ZONECOST(NOD) 

38 CONTINUE 
CALL SUMCRASH 

C Above is the means of computing TOTCRASH 
9016 FORMAT(/'THE DARTFLOW NUMBER OF POSSIBLE CRASHES IS ', F18.2) 

WRITE(7,9016)TOTCRASH 
CALL VINES(0) 

C To print DARTFLOW assignment 
CALL SUMMARY 

30 CONTINUE 
RETURN 
END 

C Of subroutine DARTFLOW 

SUBROUTINE DASBFLOW 
C 
C Assigns flows to minimise the total amber of arcs crossed 
c or merged into, computes MSECOST(NO), the total number 
c of conflicts encountered by each initial flow, and TOTCRASB, 
c the total number of conflicts in the initial flow pattern. 
C 

INTEGER ARCS, ZONES, ORIGIN, FIU, CR, CW, TRIPS 
COMMON I(1100), J(1100), LO(1100), FLOW(50,1100), 

1 TFLOW(1100), TCOST(1100), PI(400), INFERS, NA(400), NODES, ARCS, LONES, 
1 INIT, MAXXITRN, ITRP, ITRD, TOTFLOW(1100), TC, 
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1 OTHERFLO(1100), KA, FKA, LKA, TOTCRASR, BASEC08T(50), NCHANGE(50), 
1 NC(1100), CR(1100,7), TRIPS(50,50), 
1 ORIGIN(50), MCHANGE, CW(1100,7) 

DO 2 R=1, ARCS 
TCOST(K) 2 NC(K) 

2 CONTINUE 
DO 36 JORIG=1, ZONES 

NOD=ORIGIN(NORIG) 
CALL KILTARCS(NOD) 

C Sets up Kilter arcs 
CALL KILTER 
DO 32 R=1, ARCS 

PLOW(NOD, K)=TFLOW(K) 
32 CONTINUE 
36 CONTINUE 

CALL TOTALFLO 
DO 38 NOD=I, ZONES 
CALL ZONECOST(NOD) 

38 CONTINUE 
CALL SUNCRASH 

C Above is the means of computing TOTCRASR 
9016 FORMAT(/THE DASHPLOW NUMBER OF POSSIBLE CRASHES IS ', P18.2) 

WRITE(7,9016)TOTCRASR 
CALL VINES(0) 

C To print DASHPLOW assignment 
CALL SUMMARY 

30 CONTINUE 
RETURN 
END 
Of subroutine DASEFLOW 

SUBROUTINE FINAL(NI) 
C 
C Arranges printing of final assignment 

INTEGER ARCS, ZONES, ORIGIN, FKA, CR, CW, TRIPS 
REAL LO 
COMMON I(1100), J(1100), LO(1100), FLOW(50,1100), 

1 TFLOW(1100), TCOST(1100), PI(400), INFEAS, NA(400), NODES, ARCS, ZONES, 
1 INIT, MAXITRN, ITRP, ITRD, TOTFLOW(1100), TC, 
1 OTHERFLO(1100), KA, FKA, LKA, TOTCRASR, BASECOST(50), NCRANGE(50), 
1 NC(1100), CR(1100,7), TRIPS(50,50), 
1 ORIGIN(50), MCHANGE, Ci1(1100,7) 

CALL VINES(NI) 
C To print final flow 

CALL SUMMARY 
DO 42 NOD=1, ZONES 

CALL ZONECOST(NOD) 
42 CONTINUE 

C BASECOST(NOD) is now uptodate 
CALL SUMCRASH 
RETURN 
END 

C Of subroutine FINAL 

SUBROUTINE GETREADY(NOD) 
C 
C Computes OTBERPLO(K) appropiate to tone NOD 
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INTEGER ARCS, ZONES, ORIGIN, FKA, CR, CW, TRIPS 
REAL LO 
COMMON I(1100), J(1100), LO(1100), FLOW(50,1100), 

1 TFLOW(1100), TCOST(1100), PI(400), INFERS, NA(400), NODES, ARCS, ZONES, 
1 INIT, MA%ITRN, ITRP, ITRD, TOTFLON(1100), TC, 
I OTHERFLO(1100), KA, FKA, LKA, TOTCRASH, BASECOST(50), NCRANGE(50), 
1 NC(1100), CR(1100,7), TRIPS(50,50), 
1 ORIGIN(50), MCRUGE, CW (1100,7 ) 

DO 2 K=1, ARCS 
OTHERFLO(K) = TOTFLOW(K) - FLOW(NOD, K) 

2 CONTINUE 
CALL ARCCOSTS(NOD) 
RETURN 
END 

C Of subroutine GETREADY(NOD) 
C 

SUBROUTINE ITERATE(NI) 
c Reassigns successive flows with an update of TOTFLOW(K) 
C and TCOST(K) between each reassignment. 

INTEGER ARCS, ZONES, ORIGIN, FKA, CR, CW, TRIPS 
REAL LO 
COMMON I(1100), J(1100), LO(1100), FLOW(50,1100), 

1 TFLOW(1100), TCOST(1100), PI(400), INFEAS, NA(400), NODES, ARCS, ZONES, 
1 INIT, MABITRN, ITRP, ITRD, TOTFLOW(1100), TC, 
1 OTHERFLO(1100), KA, FKA, LKA, TOTCRASB, BASECOST(50), NCHANGE(50), 
1 NC(1100), CR(1100,7), TRIPS(50,50), 
1 ORIGIN(50), MCHANGE, CW(1100,7) 

DO 30 NORIG = 1, ZONES 
NOD = ORIGIN(NORIG) 

C So if the Ist origin is zone 3 NOD =3 
IF(NI. NE. 1)THEN 

MCHANGE=MCBANGE - NCHANGE(NOD) 
C MCHANGE now refers to the last (ZONES-1) changes 

END IF 
CALL KILTARCS(NOD) 
CALL GETREADY(NOD) 

c TCOST(K) is now appropriate to flow from zone NOD 
CALL KILTER 
NCHANGE(NOD)=0 
DO 32 K=1, ARCS 

IF(TFLOW(K). NE. FLOW(NOD, K))NCHANGE(NOD)=NCHANGE(NOD)+1 
FLOW(NOD, K)=TFLOW(K) 
TOTFLOW(K)=OTHERFLO(K) + TFLCW(A) 

32 CONTINUE 
C TOTFLOW(K), FLOW(NOD, K) and NCNANGE(NOD) are now uptodate 

MCHANGE = MCAANGE + NCHANGE(NOD) 
c MCBANGE now uptodate 

IF((MCHANGE. EQ. 0). AND. (NI. NE. 1))GOTO 37 
c Gets out of this loop and ITERATE 

MX=NI-1 
9004 FORMAT (/' NEW VINE HAD', I5, ' CHANGES IN FLOW VALUES, ') 

WRITE (5,9004) NCBANGE(NOD) 
9032 FORMAT('AFTER ', 13, ' COMPLETE ITERATIONS') 
9033 FORMAT('PLQS ', I3, ' RUNS OF KILTER') 

WRITE(5,9032)MX 
WRITE(5,9033)NORIG 

39 CONTINUE 
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30 CONTINUE 
IF(NI. NE, 1)GOTO 40 
MCHANGE=0 
DO 28 N=1, ZONES 

MCHMGE=KCHANGE + NCHANGE(N) 
28 CONTINUE 

IF(MCHANGE. NE. O) GOTO 40 
9040 FORMAT(/'THERE WILL BE NO FURTHER CHANGES') 

37 WRITE(7,9040) 
WRITE(5,9040) 
GOTO 44 

40 CONTINUE 
C After each iteration give total of crashes 

DO 42 NOD=1, ZONES 
CALL ZONECOST(NOD) 

42 CONTINUE 
C BASECOST(NOD) is now uptodate 

CALL SUMCRASH 
44 RETURN 

END 
C Of subroutine ITERATE(NI) 
C 

SUBROUTINE KILTARCS(NOD) 
Sets up the artificial arcs with positive lower bounds equal 
to the trips demanded. 
INTEGER ARCS, ZONES, ORIGIN, FKA, CR, CW, TRIPS 
REAL LO 
COMMON I(1100), J(1100), LO(1100), FLOW(50,1100), 

1 TFLOW(1100), TCOST(1100), PI(400), INFEAS, NA(400), NODES, ARCS, 80NES, 
1 INIT, MASITRN, ITRP, ITRD, TOTFLOW(1100), TC, 
1 OTHERFLO(1100), KA, FKA, LKA, TOTCRASH, BASECOST(50), NCHANGE(50), 
1 NC(1100), CR(1100,7), TRIPS(50,50), 
1 ORIGIN(50), MCHANGE, CW(1100,7) 

DO 31 KAR--FKA, LKA 
J (TSAR) =2*NOD-1 

31 CONTINUE 
DO 33 KR=I, NOD-1 

I(FKA+KR-1)=2*KR 
LO(FKA+KR-1): TRIPS(NOD, KR) 

33 CONTINUE 
DO 34 KR=N0D+1, ZONES 

I(FKA+KR-2)=2*KR 
LO(FKA+KR-2)=TRIPS(NOD, KR) 

34 CONTINUE 
RETURN 
END 
Of subroutine KILTARCS(NOD) 

SUBROUTINE KILTER 
Assigns flows which conserves flow through nodes while 
minimising the total cost of those flows. 

INTEGER ARCS, A, AOR, AF, AD, SRC, SNK, ZONES, ORIGIN, FRA, CR, CW, TRIPS 
REAL INF, B, LO 
COMMON I(1100), J(1100), LO(1100), FLOW(50,1100), 

1 TFLOW(1100), TCOST(1100), PI(400), INFERS, NA(400), NODES, ARCS, ZONES, 
1 INIT, MARITRN, ITRP, ITRD, TOTFLOW(1100), TC, 
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I OTHERPLO(1100), KA, FKA, LKA, TOTCRASE, BASECOST(50), NCHANGE(50), 
1 NC(1100), CR(1100,7), TRIPS(50,50), 
1 ORIGIN(50), XCHANGE, CW(1100,7) 

8000 FORMAT (J' DUAL VALUES OF UNLABELLED VERTICES MUST MOVE BY 
1 , F10.5) 

8001 FORMAT (/'BREAKTHROUGH WITH FLOW ', F10.5) 
ITRP =0 
ITRD =0 
DO 9 K=1, LKA 
TFLOW(K) = 0.0 
IX = I(K) 
JK = J(K) 
PI(IK) 20.0 
NA(IK) =0 

9 CONTINUE 
INF=-1.0 
DO 220 AOK=FKA, LKA 

C Looking for an 0-0-K arc 
IX=I(AOK) 
JK=J(AOK) 
COK=TCOST(AOK)+PI(IK)-PI(JK) 

20 IF((TFLOW(AOK). LT. LO(AOK)). OR. (COK. LT. 0.0)) GOTO 30 
GOTO 220 

30 SRC=JK 
SNK=IK 
NA(SRC)=AOK 

IF(NA(SNK). NE. 0)G0TO 150 
C We already have node SNK in the vine of paths. 

70 LAB =0 
DO 100 AF = 1, LKA 
IA=I(AF) 
JA=J(AF) 
IF(((NA(IA). EQ. 0). AND. (NA(JA). EQ. 0)). OR. ((NA(IA). NE. O). AND. 

1 (NA(JA). 1E. 0))) GOTO 100 
c This arc, AF, is not eligible for the vine. 

C=TCOST(AF)+PI(IA)-PI(3A) 
IF(NA(IA). EQ. 0) GOTO 80 
IF(C. GT. 0.0)GOTO 100 
NA(JA)=AF 

c The start node is labelled now label the finish node. 
GO TO 90 

80 IF((TPLOW(AF). LE. LO(AF)). OR. (C. LT. 0.0)) 00 TO 100 
90 LAB =1 

c Some labelling has happened 
IF(NA(SNK). NE. O) GO TO 150 

c We have a flow augmenting circuit 
100 CONTINUE 

IF(LAB. NE. O. ) GOTO 70 
c We might be able to do some more labelling 

DEL=INF 
c Because we bavn't got a flow augmenting path 

DO 110 AD = 1, LKA 
IA=I(AD) 
JA=J(AD) 
IF(((NA(IA). EQ. O). AND. (NA(JA). EQ. O)). OR. ((NA(IA). NE. O). AND. 

1 (NA(JA). NE. 0))) 00 TO 110 
C=TCOST(AD)+PI(IA)-PI(JA) 
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IF(NA(JA). EQ. O) DEL=RMIN(DEL, C) 
IF(NA(JA). 1E. 0. AND. TFLOV(AD). GT. LO(AD)) DEL--RKIN(DEL, -C) 

110 CONTINUE 
IF(DEL. NE. AfF) 00 TO 130 
IF(TFLOW(AOK). EQ. LO(AOK)) GO TO 120 
GO TO 230 

120 DEL=ABS(COX) 
130 ITRD = ITRD +1 

GO TO 135 
135 DO 140 N= 1SNODES 

c Increasing the dual values of unlabelled nodes 
IF(NA(N). EQ. O) PI(N)=PI(N)+DEL 

140 CONTINUE 
IF((DEL. EQ. ABS(COK)). AND. (TFLOW(AOK). GE. LO(AOK))) 

1 G0 T0 220 
IK=I(AOK) 
JK=J(AOK) 
COK=TCOST(AOK)+PI(IK)-PI(JK) 
GO TO 70 

c Now try labelling again 
150 EPS=LO(AOK) 

X--SRC 
c Starting with arc, AOK, we increase the flow on it 
c and trace back increasing all flows until we reach, SRC, 
c the finish node of arc AOK. 

190 A=NA(N) 
K=I(A) 
TFLOW(A) = TFLOW(A) + EPS 

210 N=M 
IF(N. NE. SRC) GOTO 190 
ITRP = ITRP +1 
GOTO 20 

220 CONTINUE 
INFERS=-1 
T= 10000.0 
DO 250 K=1, N0DES 
IF (PI(K) LT. T) T= PI(K) 

250 CONTINUE 
DO 260 K= LNODES 

260 PI(K) = PI(K) -T 
260 CONTINUE 

RETURN 
230 INFEAS =1 

RETURN 
END 
Of subroutine KILTER 

SUBROUTINE LOADFLOW 
Assigns flows, starting with empty network, & avoiding conflict, 
INTEGER BRCS, LONES, ORIGIN, FKA, CR, CW, TRIPS 
COMMON I(1100), J(1100), LO(1100), FLOW(50,1100), 

1 TFLOW(1100), TCOST(1100), PI(400), INPEAS, NA(400), NODES, ARCS, ZONES, 
1 INIT, MAXITRN, ITRP, ITRD, TOTFLOW(1100), TC, 
1 OTHERFLO(1100), NA, FRA, LRA, TOTCRASH, BASECOST(50), NCRANGE(S0), 
1 NC(1100), CR(1100,7), TRIPS(50,50), 
1 ORIGIN(50), MCWGE, CW(1100,7) 

DO 30 NORIG = 1, ZONES 
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NOD = ORIGIN(NORIG) 
C So if e. g. the Ist origin is son* 3 NOD =3 

CALL RILTARCS(NOD) 
IF(NORIG. NE. 1)THEN 

c Some updating is called for. 
DO 32 K=1, ARCS 

TOTFLOW(K)=TOTFLOW(K) 4 TFLOW(K) 
C This updates TOTFLOW(K) 

32 CONTINUE 
CALL BUILDUP 

c Builds up the costs on arcs using the increased TOTFLOW(K) 
ELSE 

DO 34 K=1, ARCS 
TCOST(K)=0.0 

34 CONTINUE 
END IF 

c TCOST(K) has been updated using the current TOTFLOW(K) 
CALL KILTER 
DO 36 K: i, ARCS 

FLOW(NOD, K)=TFLOW(K) 
36 CONTINUE 

C This updates FLOW(NOD, K) 
30 CONTINUE 

CALL VINES(0) 
C To print LOADFLOW assignment 

CALL SUMMARY 
C After each iteration give total of crashes 

DO 42 NOD: i, ZONES 
CALL ZONECOST(NOD) 

42 CONTINUE 
C BASECOST(NOD) is now uptodate 

CALL SUMCRASH 
RETURN 
END 

C Of subroutine LOADFLOW 
C 

SUBROUTINE LOADING 
Asks user if he wants an order of loading different from the 
numeric order of zones. 
INTEGER ARCS, ZONES, FKA, CR, CW, ORIGIN, ORDER 
REAL LO 
COMMON I(1100), J(1100), LO(1100), PLOW(50,1100), 

I TFLOW(1100), TCOST(1100), PI(400), INFEAS, NA(400), NODES, ARCS, ZONES, 
1 INIT, MAXITRN, ITRP, ITRD, TOTFLOW(1100), TC, 
1 OTHERFLO(1100), KA, FIFA, LKA, TOTCRASH, BASECOST(50), NCRANGE(50), 
1 NC(1100), CR(1100,7), TRIPS(50,50), 
1 ORIGIN(50), MCRMGE, CW(1100,7) 

WRITE (*, *) 'Do you want to load other than in numeric order? ' 
WRITE (*, *) 'Enter' 
WRITE (*, *) '0 for numeric order, ' 
WRITE (*, *) '1 for user specified order, 
WRITE (*, *) '2 for random, user to supply seed. 
READ (*, *)ORDER 
IF(ORDER. EQ. O)THEN 
DO 10 N=1, ZONES 

ORIGIN(N)=N 
10 CONTINUE 
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OPEN(UNIT=7, FILE = 'SUMK RY. RPT', STATUS='NEW') 
ELSE IF(ORDER. EQ. 1)TBEN 
WRITE (*, *) 'Enter order of loading on separate lines' 
DO 20 N=1, ZONES 

READ(*, *)ORIGIN(N) 
20 CONTINUE 

OPEN(UNIT=7, FILE = 'SUlß4ERY. RPT', STATUS='NEW') 
ELSE IF(ORDER. EQ. 2)THEN 
WRITE (*, *) 'Enter an integer seed 
READ(*, *)ISEED 
OPEN(UNIT=7, FILE = 'SUMKARY. RPT', STATUS='NEli') 

9005 FORMAT(/' This random order of loading was started with seed') 
9007 FORXAT(I5) 

WRITE(7,9005) 
WRITE(7,9007)ISEED 

DO 30 1=1, ZONES 
ORIGIN(N)=N 

30 CONTINUE 
DO 40 N=1, ZONES 

R= URA1 D(ISEED) 
URAND is listed in 'Problem solving with Fortran77' 
by B. D. Hahn publ Arnold 1987 page 142. 

NUM = INT(ZONES*R) +1 
ITEMP -- ORIGIN(NUM) 
ORIGIN(NUM) = ORIGIN(N) 
ORIGIN(N) = ITEMP 

40 CONTINUE 
ELSE 
WRITE (*, *) 'Not a valid entry - start again' 
END IF 

9000 FORMAT(20I3) 
9010 FORMAT(' The order of loading in this assignment is') 

WRITE(7,9010) 
DO 42 K=1, ZONES, 20 

WRITE(7,9000)(ORIGIN(KL), KL=K, K+19) 
42 CONTINUE 

RETURN 
END 
Of subroutine LOADING 

FUNCTION URAND(IY) 
INTEGER IA, IC, ITWO, M2, M, MIC 
DOUBLE PRECISION HALFM 
REAL S 
DATA M2/ 0/, ITWO/ 2/ 
IF(M2. EQ. 0)THEN 

M=1 
M2 = 16384 
HALFM = M2 
IA = 8*INT(NALFM*ATAN(1. D0)/8. D0) +5 
IC = 2*INT(HALFM*(0.5D0 - SQRT(3. DO)/6. D0)) +1 
MIC = (M2 -IC) + M2 
S=0.5/HALFM 

END IF 
IY = IY*IA 
IY = IY + IC 
IY = MOD(IY, 32768) 
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URMD = FLO? T(IY)*S 
RETURN 
END 

c Of function URAND 
C 

SUBROUTINE NETWORK 
C Reads rest of ARCS. DAT 

INTEGER ARCS, ZONES, ORIGIN, FKA, CR, CW, TRIPS 
REAL LO 
COMMON I(1100), J(1100), LO(1100), FLOW(50,1100), 

1 TFLOW(1100), TCOST(1100), PI(400), IJFEAS, N&(400), NODES, ARCS, ZONES, 
1 INIT, MAXITRN, ITRP, ITRD, TOTFLOW(1100), TC, 
1 OTHERFLO(I100), KA, FKA, LKA, TOTCRASH, BASECOST(50), NCHANGE(50), 
1 NC(1100), CR(1100,7), TRIPS(50,50), 
1 ORIGIN(50), MCHANGE, CW(1100,7) 

DO 28 R=1, ARCS 
READ(S, e, END=28)KK, I(K), J(K) 
LO(R)=0.0 

28 CONTINUE 
CLOSE(UNIT=S, STATUS: 'KEEP') 
END 

C Of subroutine NETWORK 
C 

SUBROUTINE OLDFLOW 

Reads file STARTFLO. DAT to fill arrays FLOW(NOD, K) and 
computes BASECOST(NO), the total costs of each initial 
flow, and TOTCRASH, the total number of conflicts in the 
initial flow pattern. 

INTEGER ARCS, ZONES, ORIGIN, FKA, CR, CW, TRIPS 
REAL LO 
COMMON I(1100), J(1100), LO(1100), FLOW(50,1100), 

1 TFLOW(1100), TCOST(1100), PI(400), INFEAS, NA(400), NODES, ARCS, LONES, 
1 INIT, MAXITRN, ITRP, ITRD, TOTFLOW(1100), TC, 
1 OTHERFLO(1100), KA, FKA, LKA, TOTCRASH, BASECOST(50), HCHANGE(50), 
1 NC(1100), CR(1100,7), TRIPS(50,50), 
1 ORIGIN(50), MCMM GE, CW(1100,7) 

OPEN(UNIT=8, FILE = 'STARTFLO. DAT', STATUS='OLD') 
9010 FORMAT(1X, 2I4,5F10.2) 
9020 FORMAT(1X, I4,5F10.2) 

DO 40 N0=1, ZONES 
DO 50 K=1, ARCS, 5 

READ(8,9010)NN, KK, (FLOW(NO, KT), KT=K, K+4) 
50 CONTINUE 
40 CONTINUE 

DO 60 K=1, ARCS, 5 
READ(8,9020)KK, (TOTFLOW(KT), KT=K, K+4) 

60 CONTINUE 
DO 38 NOD: 1, ZONES 
CALL ZONECOST(NOD) 

38 CONTINUE 
CALL SUMCRASH 

9016 FORMAT(J'THE OLDFLOW NUMBER OF POSSIBLE CRASHES IS ', F18.2) 
WRITE(7,9016)TOTCRASH 
CALL SUMMARY 
RETURN 
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END 
C Of subroutine OLDFLOW 
C 

SUBROUTINE SUNCRASH 

INTEGER ARCS, ZONES, ORIGIN, FKA, CR, Cii, TRIPS 
REAL LO 
COMMON I(1100), J(1100), LO(1100), FLOW(50,1100), 

1 TFLOW(1100), TCOST(1100), PI(400), INPEAS, NA(400), NODES, ARCS, ZONES, 
1 INIT, MAXITRN, ITRP, ITRD, TOTFLOW(1100), TC, 
1 OTHERFLO(1100), KA, FKA, LKA, TOTCRASH, BASECOST(50), NCHANGE(50), 
1 NC(1100), CR(1100,7), TRIPS(50,50), 
1 ORIGIN(50), MCHANGE, CW(1100,7) 

BASHES = 0.0 
DO 20 NO = 1, ZONES 
BASHES = BASHES + BASECOST(NO) 

20 CONTINUE 
TOTCRASH = 0.5*BASHES 

9007 FORMAT(/' THE TOTAL NUMBER OF POSSIBLE CRASHES IS ', F1S. 1) 
WRITE(7,9007)TOTCRASH 
RRITE(5,9007)TOTCRASH 
RETURN 
END 

C Of subroutine SUMCRASH 
C 

SUBROUTINE SUMMARY 
INTEGER ARCS, ZONES, ORIGIN, FKA, CR, CW, TRIPS 
COMMON I(1100), J(1100), LO(1100), FLOW(50,1100), 

1 TFLOW(1100), TCOST(1100), PI(400), INFERS, NA(400), NODES, ARCS, ZONES, 
1 INIT, MAXITRN, ITRP, ITRD, TOTFLOW(1100), TC, 
1 OTHERFLO(1100), KA, FKA, LKA, TOTCRASH, BASECOST(50), NCHANGE(50), 
1 NC(1100), CR(1100,7), TRIPS(50,50), 
1 ORIGIN(50), MCRMGE, CW(1100,7) 

9015 FORMAT(/'THE FOLLOWING ARCS HAVE NOT BEEN USED') 
WRITE(7,9015) 

9016 FORXAT(1X, ' ARC I J') 
WRITE(7,9016) 

9017 FORIAT(1X, 314) 
DO 60 K=1, ARCS 
IF(TOTFLOW(K). EQ. 0.0)WRITE(7,9017)K, I(K), J(K) 

60 CONTINUE 
RETURN 
END 

C Of subroutine SUMMARY 
C 

SUBROUTINE TOTALFLO 
C Uses the 2-dimensional array FLOW(NO, K) 
C to create a 1-dimensional array TOTFLOW(X) 

INTEGER ARCS, LONES, ORIGIN, PKA, CR, CW, TRIPS 
REAL LO 
COMMON I(1100), d(1100), LO(1100), FLOW(50,1100), 

1 TFLOW(1100), TCOST(1100), PI(400), INFEAS, NA(400), NODE$, ARCS, ZONE$, 
1 INIT, MAXITRN, ITRP, ITRD, TOTFLOW(1100), TC, 
1 OTHERFLO(1100), KA, FKA, LXA, TOTCRASB, BASECOST(50), NCHANGE(50), 
1 NC(1100), CR(1100,7), TRIPS(50,50), 
1 ORIGIN(50), MCRANGE, Ci(1100,7) 
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DO 12 K=1, ARCS 
TOTFLOW(K) =0.0 

DO 16 NO=1, ZONES 
TOTFLOW(K) = TOTFLOW(K) + FLOW(NO, K) 

16 CONTINUE 
12 CONTINUE 

RETURN 
END 
Of subroutine TOTALFLO 

SUBROUTINE VINES(NI) 
INTEGER ARCS, ZONES, ORIGIN, FKA, CR, CW, TRIPS 
COMMON I(1100), J(1100), LO(1100). FLOW(50,1100), 

1 TFLOW(1100), TCOST(1100), PI(400), INFEAS, NA(400), NODES, ARCS, ZONES, 
1 INIT, MAXITRN, ITRP, ITRD, TOTFLOW(1100), TC, 
1 OTHERFLO(1100), KA, FKA, LKA, TOTCRASH, BASECOST(50), NCRAROE(50), 
1 NC(1100), CR(1100,7), TRIPS(50,50), 
1 ORIGIN(50), MCRANGE, CW(1100,7) 

9010 FORMAT(1X, 2I4,5F10.2) 
9020 FORMAT(1R, I4, SF10.2) 

IF(NI. LE. 1)THEN 
DO 40 N0=1, ZONES 

DO 50 K=1, ARCS, 5 
WRITE (11,9010)NO, K, (FLOW(NO, KT), KT=K, K+4) 

50 CONTINUE 
40 CONTINUE 

DO 60 K=1, ARCS, 5 
WRITE(11,9020)K, (TOTFLOW(KT), KT=K, K+4) 

60 CONTINUE 
ELSE 

DO 70 N0=1, ZONES 
DO 80 K=1, ARCS, 5 

WRITE(12,9010)NO, K, (FLOW(NO, KT), KT=K, K+4) 
80 CONTINUE 
70 CONTINUE 

DO 90 K=1, ARCS, 5 
WRITE(12,9020)K, (TOTFLOW(KT), KT=K, K+4) 

90 CONTINUE 
END IF 
RETURN 
END 

C Of subroutine VINES(NI) 
C 

SUBROUTINE ZONECOST(NOD) 
C Calculates BASECOST(NOD), the total costs of flows 
c from cone NOD using FLOW(NOD, K) and TCOST(K). 

INTEGER 21RCS, ZONES, ORIGIN, FIU, CR, CN, TRIPS 
REAL LO 
COMMON I(1100), J(1100), LO(1100), FLON(50,1100), 

1 TFLOW(1100), TCOST(1100), PI(400), INFEAS, NA(400), IODES, ARCS, ZONES, 
1 INIT, MA%ITRN, ITRP, ITRD, TOTPLOW(1100), TC, 
1 OTHERPLO(1100), KA, FKA, LIA, TOTCRASH, BASECOST(50), NCRANGE(50), 
1 NC(1100), CR(1100,7), TRIPS(50,50), 
1 ORIGIN(50), MCHANGE, CW(1100,7) 

Now compute the total coat to the flow from zone NOD 
DC 20 K: 1, ARCS 
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OTHERFLO(K)=TOTFLOW(K)-FLOW(NOD, K) 
20 CONTINUE 

CALL ARCCOSTS(NOD) 
C Cost is now appropriate to flow from zone NOD 

ETC = 0.0 
D012 K=1, ARCS 

BTC = ETC +TCOST(K)*FLOW(WOD, K) 
22 CONTINUE 

BASECOST(NOD) = ETC 
21 CONTINUE 

RETURN 
END 

C Of subroutine LOBECOST(NOD) 

FUNCTION RXIN(Z, T) 
R=Y 
IF((X LT. Y) AND. (I . GE. 0.0)) R 
RKIN =R 
RETURN 
END 
Of function RHIN 

END 
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PROGRAM POLYLINK 
C Starting with files, STARCFLO. DAT and FARCFLOW. DAT, which are 
c the output files from the program, POLYSETID, and the file, 
c ARCLINK. DAT, which is an output file from the program, POLYARCS, 
C POLYZINK creates files, SLINKFLO. DAT and FLINKFLO. DAT, which 
c give the total flows in each direction of the road network 
c according to the START-UP and FINAL assignments produced by the 
c program, POLYSEND, the files, SLINKTRE. DAT and FLINKTRE. DAT, 
C which give the trees of flow from each origin in terms of links 
c on the road network and the files SLINKSUM. DAT and FLINKSUM. DAT 
C which table the links in bands according to amount of total flow. 
C The road network can have up to 300 links and 50 zones and the 
c traffic circulation network up to 1100 arcs. 

INTEGER ZONES, XIONS, ARCS, FIRSTAB, TW, FIRSTBA, A, B, FEED 
COMMON ZONES, XIONS, LINKS, ARCS, FIRSTAB(300), LASTAB(300), TR(300), 

1 FIRSTBA(300), LASTBA(300), TOTFLOW(1100), ABFLOW(300), BAFLOW(300), 
1 A(300), B(300), FLOW(50,1100) 

OPEN(UNIT=6, FILE ='LINKS. DAT', STATUS='OLD') 
OPEN(UNIT--9, FILE ='ARCLINK. DAT', STATUS='OLD') 
OPEN(UNIT=12, FILE='STARCFLO. DAT', STATUS='OLD') 
OPEN (UNIT=13, FILE= 'FARCFLOW. DAT' , STATUS='OLD') 
OPEN(UNIT=14, PILE='SLINKFLO. DAT', STATUS='NEW') 
OPEN(UNIT=15, FILE='FLINKFLO. DAT', STATUS='NEW') 
OPEN(UNIT=16, FILE--'SLINKTRE. DAT', STATUS=')EW') 
OPEN(UNIT=17, FILE='FLINKTRE. DAT', STATUS='NEW') 
OPEN(UNIT=18, FILE='SLINKSUM. DAT', STATUS='NEW ) 
OPEN(UNIT=19, FILE: 'FLINKSUM. DAT', STATUS= 'NEW) 

C Read ARCLINK. DAT and LINKS. DAT to set up arrays. 
READ(9, *)ZONES, %IONS, LINKS, ARCS 
DO 10 L=1, LINKS 
READ(9, *, END=10)LL, FIRSTAE(L), LASTAB(L), TN(L), FIRSTBA(L), 

1 LASTBA(L) 
10 CONTINUE 

READ(6, *)ZONES, SIONS, LINKS 
DO 12 M: 1, ZONES 
READ(6, *)FEED 

12 CONTINUE 
DO 20 L=1, LINKS 

READ(6, *, END=20)A(L), B(L), TW(L) 
20 CONTINUE 

c Compute flows on links for LOADFLOW, DARTFLOW or FASTFLOW. 
C Start by reading STARCFLO. DAT for flows from origins. 
9005 FORKAT(1K, 2I4,5F10.2) 

DO 30 N0=1, ZONES 
DO 40 X=1, ARCS, 5 
READ(12,9005)NN, KK, (FLOW(NO, KT), KT=K, K+4) 

40 CONTINUE 
DO 50 L=1, LINKS 

ABFLOW(L)=0.0 
DO 60 K=FIRSTAB(L), LASTAB(L) 

ABFLOW(L)=ABFLON(L) + FLOW(NO, K) 
60 CONTINUE 
50 CONTINUE 

DO 70 L=1, LINKS 
BAFLOW(L)=0.0 
DO 80 K=FIRSTBA(L), LASTBA(L) 
BAFLOW(L)=BAFLON(L) + FLOI(NO, K) 
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80 CONTINUE 
70 CONTINUE 

9015 FORMAT(/'TBE START-UP FLOWS FROM ORIGIN ', 14, ' ARE') 
WRITE(16,9015)10 

9025 FORMAT('(But flows into destinations are 0 by default)') 
WRITE(16,9025) 

9035 FORMAT(/' From A to B Flow From B to A Flow') 
WRITE(16,9035) 

9045 FORMAT(3X, 216, F10.2,5X, 215, F10.2) 
DO 90 L=1, LINKS 

IF((ABFLOW(L). EQ. 0.0). AND. (BAFLOW(L). EQ. 0.0))GOTO 430 
WRITE(16,9045)A(L), B(L), ABFLOW(L), B(L), A(L), BAFLOW(L) 

430 CONTINUE 
90 CONTINUE 

c When the loop is re-entered ABFLOW and BAFLOW will be ro- 
e assigned. 

30 CONTINUE 
c Compute total flows on links for LOADFLOW, DARTFLOW or FASTFLOW. 
C Read the last part of STARCFLO. DAT 
9055 FORMAT(1X, 14,5F10.2) 

DO 100 K=1, ARCS, 5 
READ(12,9055)KK, (TOTFLOW(KT), KT=K, K+4) 

100 CONTINUE 
C AEFLOW and BAFLOW will now be total flows. 

DO 110 L: 1, LINKS 
ABFLOW(L)=0.0 
DO 120 K=FIRSTAB(L), LASTAB(L) 

ABFLOW(L)=ABFLOW(L) + TOTFLOW(K) 
120 CONTINUE 
110 CONTINUE 

DO 130 L=1, LINKS 
BAFLOW(L)=0.0 
DO 140 K=FIRSTBA(L), LASTBA(L) 

BAFLOW(L)=BAFLOW(L) + TOTFLOW(K) 
140 CONTINUE 
130 CONTINUE 

c Write the table for SLINKFLO 
9065 FORMAT(/'TBE START-UP TOTAL FLOWS ON THE LINKS ARE') 

WRITE(14,9065) 
WRITE(14,9025) 
WRITE(14,9035) 
DO 150 L-1, LINKS 

IF((ABFLON(L). EQ. 0.0). AND. (BAFLOW(L). EQ. C. 0))GOTO 440 
WRITE(14,9045)A(L), B(L), ABFLOW(L), B(L), A(L), BAFLOW(L) 

440 CONTINUE 
150 CONTINUE 

C Write the links in bands for BLINKSUM 
9075 FORMAT(/'The following links have not been used') 

WRITE(18,9075) 
9080 FORMAT(' From to') 

WRITE(18,9080) 
9085 FORMAT(3X, 2I6) 

DO 160 L-1, LINKS 
IF(ABFL(W(L). EQ. 0.0)WRITE(18,9085)A(L), B(L) 
IF(BAFLOW(L). EQ. 0.0)WRITE(18,9085)B(L), A(L) 

160 CONTINUE 
9095 FORMAT(/'The following links have flow between 1 and 10') 
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WRITE(18,9095) 
9105 FORMAT(' From to Flow ') 

WRITE(18,9105) 
9115 FORI1AT(3X, 2I6, F10.2) 

DO 170 L=1, LINKS 
IF((ABFLOW(L). GT. 0.0). AND. (ABFLOW(L). LE. 10.0))WRITE(18,9115) 

1 A(L), B(L), ABFLOW(L) 
IF((BAFLOW(L). GT. 0.0). AND. (BAFLOW. (L). LE. 10.0))NRITE(18,9115) 

1 B(L), A(L), BAFLOW(L) 
170 CONTINUE 

9125 FORMAT(/'The following links have flow between 11 and 100') 
WRITE(18,9125) 
WRITE(18,9105) 
DO 180 L=1, LINKS 
IF((ABFLOW(L). GT. 10.0). AND. (ABFLON(L). LE. 100.0))WRITE(18,9115) 

1 A(L), B(L), ABFLOV(L) 
IP((BAFLOW(L). GT. 10.0). AND. (BAFLOFI(L). LE. 100.0))WRITE(18,9115) 

1 B(L), A(L), BAFLOW(L) 
180 CONTINUE 

9135 FORMAT(/'The following links have flow between 101 and 500') 
WRITE(18,9135) 
WRITE(18,9105) 
DO 190 L=1, LINKS 
IF((ABFLOW(L). GT. 100.0). AND. (ABFLOW(L). LE. 500.0))WRITE(18,9115) 

1 A(L), B(L), ABFLOW(L) 
IF((BAFLOW(L). GT. 100.0). AND. (BAFLOW(L). LE. 500.0))WRITE(18,9115) 

1 B(L), A(L), BAFLOW(L) 
190 CONTINUE 

9145 FORMAT(/'The following links have flow between 501 and 1000') 
WRITE(18,9145) 
WRITE(18,9105) 
DO 200 L=1, LINKS 
IF((ABPLOW(L). GT. 500.0). AND. (ABFLOR(L). LE. 1000.0))WRITE(18,9115) 

1 A(L), B(L), ABFLOW(L) 
IF((BAFLOW(L). GT. 500.0). AND. (BAFLOW(L). LE. 1000.0))WRITE(18,9115) 

1 B(L), A(L), BAFLOW(L) 
200 CONTINUE 

9155 FORMAT(/'The following links have flow between 1001 and 5000') 
WRITE(18,9155) 
WRITE(18,9105) 
DO 210 L=1, LINKS 
IF((ABFLOW(L). GT. 1000.0). AND. (ABFLOW(L). LE. 5000.0)) 

1 WRITE(18,9115)A(L), B(L), ABFLOW(L) 
IF((BAFLOW(L). GT. 1000.0). AND. (BAFLOW(L). LE. 5000.0)) 

1 WRITE(18,9115)B(L), A(L), BAFLOW(L) 
210 CONTINUE 

9165 FORI1AT(/'The following links have flow greater than 5000') 
WRITE(18,9165) 
WRITE(18,9105) 
DO 220 L=1, LINKS 
IF(ABFLOW(L). GT. 5000.0)WRITE(18,9115)A(L), B(L), ABFLOW(L) 
IF(BAFLOW(L). GT. 5000.0)WRITE(18,9115)B(L), A(L), BAFLON(L) 

220 CONTINUE 
Compute flows on links from the final flow pattern. 
Start by reading FARCFLOW. DAT for flows from origins. 
DO 230 N0=1, t0NES 

DO 240 K=1, ARCS, 5 
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READ(13,9005)NN, KK, (FLOW(NO, KT), KT=K, K+4) 
240 CONTINUE 

DO 250 L=1, LINKS 
ABFLOW(L)=0.0 
DO 260 K=FIRSTAB(L), LASTAB(L) 

ABFLOW(L)=ABFLOW(L) + FLOW(NO, K) 
260 CONTINUE 
250 CONTINUE 

DO 270 L=1, LINKS 
BAFLOW(L)=0.0 
DO 280 K=FIRSTBA(L), LASTBA(L) 
BAFLOW(L)=BAFLOW(L) + FLOW(NO, K) 

280 CONTINUE 
270 CONTINUE 

C Write FLINKTRE. DAT 
9175 FORMAT(/'THE FINAL FLOWS FROM ORIGIN ', I4, ' ARE') 

WRITE(17,9175)NO 
WRITE(17,9025) 
WRITE(17,9035) 
DO 290 L=1, LINKS 

IF((ABFLOW(L). EQ. 0.0). AND. (BAFLOW(L). EQ. 0.0))GOTO 450 
WRITE(17,9045)A(L), B(L), ABFLOW(L), B(L), A(L), BAFLOW(L) 

450 CONTINUE 
290 CONTINUE 
230 CONTINUE 

C Compute the total flows on links in the final assignment. 
c Start by reading the last part, total flows, of FARCFLOW. DAT. 

DO 300 K=1, ARCS, 5 
READ(13,9055)KK, (TOTFLOW(KT), KT=K, K+4) 

300 CONTINUE 
DO 310 L=1, LINKS 

ABFLOW(L)=0.0 
DO 320 K=FIRSTAB(L), LASTAB(L) 

ABFLOW(L)=ABFLOW(L) + TOTFLOW(K) 
320 CONTINUE 
310 CONTINUE 

DO 330 L=1, LINKS 
BAFLOW(L)=0.0 
DO 340 K=FIRSTBA(L), LASTBA(L) 

BAFLOW(L)=BAFLOW(L) + TOTFLOW(K) 
340 CONTINUE 
330 CONTINUE 

C Write table for FLINKFLO. DAT 
WRITE(15,9085) 
WRITE(15,9025) 
WRITE(15,9035) 
DO 350 L=1, LINKS 

IF((ABFLOW(L). EQ. 0.0). AND. (BAFLOW(L). EQ. 0.0))GOTO 460 
WRITE(15,9045)A(L), B(L), ABFLOW(L), B(L), A(L), BAFLOW(L) 

460 CONTINUE 
350 CONTINUE 

C Write links in bands for FLINKSUM. DAT 
WRITE(19,9075) 
WRITE(19,9080) 
DO 360 L=1, LINKS 

IF(ABFLOW(L). EQ. 0.0)WRITE(19,9085)A(L), B(L) 
IF(BAFLOW(L). EQ. 0.0)WRITE(19,9085)B(L), A(L) 
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360 CONTINUE 
WRITE(19,9095) 
WRITE(19,9105) 
DO 370 L=1, LINKS 
IF((ABFLOW(L). GT. 0.0). AND. (ABFLOW(L). LE. 10.0))WRITE(19,9115) 

1 A(L), B(L), ABFLOW(L) 
IF((BAFLOW(L). GT. 0,0). AND. (SAFLOW(L). LE. 10.0))WRITE(19,9115) 

1 B(L), A(L), BAFLOW(L) 
370 CONTINUE 

WRITE(19,9125) 
WRITE(19,9105) 
DO 380 L=1, LINKS 
IF((ABFLOW(L). GT. 10.0). AND. (ABFLOW(L). LE. 100.0))WRITE(19,9115) 

1 A(L), B(L), ABFLOW(L) 
IF((BAFLOW(L). GT. 10.0). AND. (BAFLOW(L). LE. 100.0))WRITE(19,9115) 

1 B(L), A(L), BAFLOW(L) 
380 CONTINUE 

WRITE(19,9135) 
WRITE(19,9105) 
DO 390 L=1, LINKS 
IF((ABFLOW(L). GT. 100.0). AND. (ABFLOW(L). LE. 500.0))WRITE(19,9115) 

1 A(L), B(L), ABFLOW(L) 
IF((BAFLOW(L). GT. 100.0). AND. (BAFLOW(L). LE. 500.0))WRITE(19,9115) 

1 B(L), A(L), BAFLOW(L) 
390 CONTINUE 

WRITE(19,9145) 
WRITE(19,9105) 
DO 400 L=1, LINKS 
IF((ABFLOW(L). GT. 500.0). AND. (ABFLOW(L). LE. 1000.0)) 

1 WRITE(19,9115)A(L), B(L), ABFLOW(L) 
IF((BAFLOW(L). GT. 500.0). AND. (BAFLOW(L). LE. 1000.0)) 

1 WRITE(19,9115)B(L), A(L), BAFLOW(L) 
400 CONTINUE 

WRITE(19,9155) 
WRITE(19,9105) 
DO 410 L=1, LINKS 
IF((ABFLOW(L). GT. 1000.0). AND. (ABFLOW(L). LE. 5000.0)) 

1 WRITE(19,9115)A(L), B(L), ABFLOW(L) 
IF((BAFLOW(L). GT. 1000.0). AND. (BAFLOW(L). LE. 5000.0)) 

1 WRITE(19,9115)B(L), A(L), BAFLOW(L) 
410 CONTINUE 

WRITE(19,9165) 
WRITE(19,9105) 
DO 420 L=1, LINKS 
IF(ABFLOW(L). GT. 5000.0)WRITE(19,9115)A(L), B(L), ABFLOW(L) 
IF(BAFLOW(L). GT. 5000.0)WRITE(19,9115)B(L), A(L), BAFLOW(L) 

420 CONTINUE 
STOP 'Output - SLINKTRE, SLINKPLO, SLINKSUM and 

1 FLINKTRE, FLINKFLO, FLINKSUK' 
END 
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