
19 Middlesex
University
London

Middlesex University Research Repository:
an open access repository of
Middlesex University research

http: //eprints. mdx. ac. uk

Wackrill, Patricia Anne, 1990.
The development of a mathematical programming technique as a design

tool for traffic management.
Available from Middlesex University's Research Repository.

Copyright:

Middlesex University Research Repository makes the University's research available electronically.

Copyright and moral rights to this thesis/research project are retained by the author and/or other
copyright owners. The work is supplied on the understanding that any use for commercial gain is
strictly forbidden. A copy may be downloaded for personal, non-commercial, research or study without
prior permission and without charge. Any use of the thesis/research project for private study or
research must be properly acknowledged with reference to the work's full bibliographic details.

This thesis/research project may not be reproduced in any format or medium, or extensive quotations
taken from it, or its content changed in any way, without first obtaining permission in writing from the
copyright holder(s).

If you believe that any material held in the repository infringes copyright law, please contact the
Repository Team at Middlesex University via the following email address:
eorintsCcD_mdx. ac. uk

The item will be removed from the repository while any claim is being investigated.

ýiiüäii
THE DEVELOPMENT OF A MATHEMATICAL PROGRAMMING TECHNIQUE

AS A DESIGN TOOL FOR TRAFFIC MANAGEMENT

PATRICIA ANNE WACKRILL

A thesis submitted in partial fulfilment of the

requirements of the Council for National Academic Awards

for the degree of Doctor of Philosophy

June 1990

Middlesex Polytechnic in collaboration with

MVA Systematica

BEST COPY

AVAILABLE

Variable print quality

ACKNOWLEDGEMENTS

I acknowledge with gratitude both help and support from

the following people and organisations. The project was

conceived by Prof. C. Wright and Dr. G. Appa but without

this support it might never have been undertaken.

I. A research grant from the Science and Engineering

Research Council for two years.

2. Financial support from the Faculty of Engineering,

Science, and Mathematics at Middlesex Polytechnic and

help from several members of staff.

3. Software from the collaborating establishment MVA

Systematica and advice from Mr. M. Logie.

4. The use of software, and the invitation to attend

research seminars, from the London school of

Economics.

5. Data on the Hazel Grove network from the institute of

Transport Studies in the University of Leeds and help

from Dr. T. van Vuren with its interpretation.

Permission to quote the analysis of results with this

data from the Director of Works at Stockport M. B. C.

6. Discussions with Dr. M. Maher and colleagues at the

Transport and Road Research Laboratory.

7. Discussions with Dr. M. Bell and colleagues at

Nottingham University Transport Research Group.

(i)

8. Continual guidance and encouragement from the

Director of Studies Dr. 0. Appa.

9. The inspiration necessary to persevere in completing

the thesis came largely from the Internal Supervisor

Prof. C. Wright.

10. Prof. A Land first introduced me to the Out-of-

Kilter algorithm and its applications. She also

suggested the approach using solutions to a series

of ILP problems. Her comments, as External

Supervisor, on the preparation of the thesis were

most helpful.

1Z. Unfailing support and encouragement, especially in

debugging programs, from my husband Bruce Wackrill.

(ii)

THE DEVELOPMENT OF A MATHEMATICAL PROGRAMMING TECHNIQUE AS
A DESIGN TOOL FOR TRAFFIC MANAGEMENT.

P. A. WACKRILL

ABSTRACT

In urban areas, competition for road space at junctions
is one of the major causes of congestion and accidents.
Routes chosen to avoid conflict at junctions have a
mutually beneficial effect which should improve
circulation and reduce accidents. A prototype design
tool has been developed to provide for traffic management
based on such routes.

The mathematical model behind the design tool works
with a given road network and a given O-D demand matrix to
produce feasible routes for all drivers in such a way that
the weighted sum of potential conflicts is minimised. The
result is a route selection in which all journeys from
origin i to destination j follow the same route.

The method which works best splits the problem into
single commodity problems and solves these repeatedly by
the Out-of-Kilter algorithm. Good locally optimal
solutions can be produced by this method, even though
global optimality cannot be guaranteed. Software for a
microcomputer presented here as part of the design tool is
capable of solving problems on realistic networks in a
reasonable time.

This method is embedded in a suite of computer programs
which makes the input and output straightforward. Used as
a design tool in the early stages of network design it
gives a network-wide view of the possibilities for
reducing conflict and indicates a coherent set of traffic
management measures. The ideal measure would be automatic
route guidance, such as the pilot scheme currently being
developed for London. Other measures include a set of
one-way streets and banned turns. The resulting turning
flows could be used as input to the signal optimiser
TRANSYT to determine signal settings favouring the
routeing pattern.

The project was funded by the S. E. R. C. and carried out
at Middlesex Polytechnic in collaboration with MVA
Systematica.

(iii)

CONTENTS
Page

ACKNOWLEDGEMENTS i
ABSTRACT iii

INTRODUCTION 1
1.1 The vision 1
1.2 The vision developed 4
1.3 The vision refined 6
1.4 The vision defended 7
1.5 The vision in detail 11
1.6 The objective: to realise the vision 12

2A NETWORK MODEL WHICH SHOWS CONFLICTING MANOEUVRES 15
2.1 Specification of the Circulation System 16
2.2 Trees and vines 18
2.3 Identification of conflicting streams 20
2.4 Conflict quantified and used as a cost 21
2.5 The function of the program POLYARCS 22
2.6 Specification of the road network 23

2.6.1 Zone records 25
2.6.2 Links specified by A nodes and B nodes 25
2.6.3 Link records 26
2.6.4 Junction records 26

2.7 Synthesis of the Circulation System 28
2.7.1 Vertices created to correspond to links 29
2.7.2 Vertices corresponding to origins and

destinations 30
2.7.3 Creation of arcs 31
2.7.4 Creation of lists of conflicting arcs,

with weights 35
2.7.5 Flows on arcs converted to flows on links 36

2.8 Conclusion 37

3 THE MATHEMATICAL PROBLEM AND ITS SOLUTION 38
3.1 The inputs to the problem 38

3.1.1 The road network and the weights 39
3.1.2 The trip matrix 40
3.1.3 The objective 41

3.2 An n-commodity flow problem 41
3.3 Notation used to define the problem 43
3.4 The formulation of the problem 43
3.5 Possible solution methods 47

3.5.1 Quadratic programming 48
3.5.2 Integer linear programming 49
3.5.3 A heuristic method involving improvement 60

3.6 Conclusion 66

(iv)

4 THE HEURISTIC METHOD OF SOLUTION 67
4.1 Priming the iterative process 67

4.1.1 LOADFLOW 68
4.1.2 DARTFLOW 72
4.1.3 DASHFLOW 72
4.1.4 FASTFLOW 73

4.2 Restarting the iterati ve process 74
4.3 The serial solution of single commodity problems 74

4.3.1 Commodity defined by origin 75
4.3.2 Commodity defined by destination 78
4.3.3 Commodity defined by O-D pair 80

4.4 The quadratic function as a sum of linear
functions 80

4.5 Conclusion 83

5 THE ALGORITHM FOR FINDING MINIMUM CONFLICT ROUTES 84
5.1 The Out-of-Kilter algorithm 85
5.2 The meaning of 'Out-of-Kilter' 86
5.3 the search for a flow augmenting circuit 89
5.4 Using the algorithm for traffic assignment 90
5.5 Adaptation to ensure the group travel property 91
5.6 A time-saving adaptation 92
5.7 Capacity restraint 93
5.8 Conclusion 93

6 THE DESIGN TOOL 94
6.1 The structure of the programs 95

6.1.1 The subroutine ITERATE 96
6.1.2 Priming the iterative process 97
6.1.3 The output reports 98
6.1.4 The program POLYARCS 98
6.1.5 The program POLYZINK 100

6.2 Inpu tting the data 101
6.2.1 The LINKS. DAT file 102
6.2.2 The TRIPS. DAT file 104
6.2.3 The WEIGHTS. DAT file 105

6.3 Runn ing the programs 106
6.3.1 The program POLYARCS 106
6.3.2 The program POLYSEND 107
6.3.3 The program POLYLINK 108

6.4 Interpreting the output 110
6.4.1 The file SUMMARY. RPT 110
6.4.2 The files SLINKSUM. DAT and FLINKSUM. DAT 110
6.4.3 The files SLINKFLO. DAT and FLINKFLO. DAT 111
6.4.4 The files SLINKTRE. DAT and FLINKTRE. DAT 112

6.5 Flow diagram for the suite of programs 113
6.6 Assessing traffic management measures 114
6.7 Conclusion 115

(v)

7 SOME RESULTS TO DEMONSTRATE PERFORMANCE 116
7.1 Test networks 117
7.2 Changes in the value of the objective function 119
7.3 The effects of the starting assignment 120
7.4 The effects of order of assignment 121
7.5 The way the traffic is dispersed 124
7.6 Spatial properties of the routeing patterns 125
7.7 Traffic control measures 134

7.7.1 Analysis of proportions of unused elements 135
7.7.2 The locations of unused elements 136
7.7.3 Designing traffic control measures 142

7.8 Conclusion 144

8 CONCLUSION 146
8.1 The vision realised 146
8.2 The vision amended 148
8.3 The vision extended 148
8.4 Further visions 150
8.5 The heavenly vision 152

REFERENCES 153

APPENDIX 1 Digraph models 1
APPENDIX 2 Use with right hand driving. 11
APPENDIX 3 Detection of inconsistencies 12
APPENDIX 4 Example to illustrate QP and ILP solutions 13
APPENDIX 5 The vine building process 36
APPENDIX 6 Ensuring the group travel property 43
APPENDIX 7 The source code for the programs 50

(vi)

CHAPTER 1

INTRODUCTION

"Where there is no vision the people perish. "

Proverbs 29: 18.

1.1 M VISION

Through the centuries man has had visions of how

he could improve the way he organized his life. Usually

these visions have been concerned with increased

efficiency in the use of scarce or expensive resources of

energy or materials. Recently the emphasis has shifted to

combine considerations of increased efficiency with

limited damage to the environment.

The particular vision which inspired this project

concerns the improvement of traffic circulation in urban

areas. Traffic is unable to circulate freely because the

amount of road space available has not kept up with the

demand for it. The aim of traffic management is to

facilitate circulation while paying due attention to

safety and environmental considerations. This aim can be

achieved by several means.

First, the capacity of the road network to

accommodate the flow of traffic can be increased by

building new roads. The capacity of existing roads where

on-street parking occurs can be increased by restricting

that parking. Bottlenecks often occur at junctions;

traffic signals regulate the flow through a junction, so

1

that it can be used more efficiently. The signal settings

can be optimised either for isolated junctions, or for a

whole set of co-ordinated junctions, so that the green

time allotted to each stream of traffic is used more

efficiently.

Second, demand can be curbed by the legal

enforcement of traffic restrictions. Various methods have

been tried; in Britain access is denied to heavy goods

vehicles at certain times and places. One might expect

congestion, which pushes up the cost of travel, to curb

demand, but demand continues to grow. Road pricing can be

used to deter drivers from using the network at the most

congested times and places. A scheme to implement road

pricing is at an advanced stage in the Netherlands

(Stoelhorst and Zandbergen 1990).

Third, the driver can be encouraged to satisfy his

demand for a route to his destination in such a way that

traffic circulates more efficiently. At present this is

done both directly and indirectly, but in rather a

piecemeal fashion. Direct guidance is given by signposts

to bypasses and ring roads, and by one-way streets and

restricted access. In this way the traffic manager

succeeds in diverting some of the traffic away from

congestion blackspots. The efficiency of the one-way

gyratory system is, however, dependent on the distribution

of traffic between the various routes through it. An

2

example, where efficiency was improved by reverting to

two-way circulation is given by Wright and Semmens (1984).

Indirect guidance is given by changed traffic conditions

in parts of the network; it has been found that drivers

respond to changes in signal settings which favour certain

streams of traffic (Allsop and Charlesworth 1977), and to

other changes affecting road capacity. The decisions to

guide traffic in these ways are, however, made on an ad

hoc basis, what one might call a 'bottom-up' approach to

traffic management.

The design tool developed in this project starts

with the whole network and the demand for routes through

it, and finds a coherent routeing pattern to facilitate

circulation. It will be referred to as the CROWN design

tool because the method used achieves 'Conflict Reduction

Over a Wide Network'. The word crown is associated with

the top; the CROWN design tool provides for a top-down

approach to the design of traffic management measures.

This is a new approach to facilitating circulation, by

means of a more efficient routeing pattern.

Circulation would be improved because, in the

urban situation, the delays caused by streams of traffic

competing for road space at junctions are the primary

symptoms of congestion. A routeing pattern chosen for its

relatively low level of conflict will therefore reduce

that competition. If the engineer actually knows the

3

routeing pattern he wishes to encourage, he can design his

local controlling measures to encourage that pattern. The

CROWN design tool identifies one-way streets and banned

turns consistent with the routeing pattern. It also shows

the flows arising from that pattern; these flows could be

used as input to a signal setting optimization program

such as TRANSYT. If signals were set on this basis, road

users would discover that green time was relatively longer

for the manoeuvres favoured by the routeing pattern.

Automatic route guidance (AUTOGUIDE) is being developed as

a pilot project for the London area; the guidance is to be

in the form of in-vehicle advice to the driver rather than

physical guidance. AUTOGUIDE would provide the ideal

means for encouraging the use of the routeing pattern

devised by the CROWN design tool. The idea of routes

chosen to minimize conflict is not new; its development is

traced in the next section.

1.2 VISION DEVELOPED

When paths have to be laid out between fixed

points, it may be desirable that these paths cross as

little as possible. This was the case in Turan's brick

factory, where the bricks were transported between various

kilns and storage yards by rail. Where the rails crossed

the trucks were likely to be derailed (Turan 1977).

4

Holroyd and Miller (1966) considered the

desirability of finding routes through a town so that the

number of path crossings was minimised. They analysed the

statistical properties of the number of path crossings in

idealised grid networks. They pointed out the contrast

between the effects of choosing a route to minimise

journey time and a route to minimise the number of path

crossings encountered. In the first case, the total

journey time for the group of drivers as a whole may

actually be increased by the choice. In the second case,

the total number of path crossings in the system will be

reduced by the action of each driver avoiding such path

crossings. They also developed methods for laying out

paths so as to minimise crossings in simple regular

networks.

Wright (1978) took up this theme in his vision of

alleviating congestion by imposing route choice on

drivers. Wright, Appa and Jarrett (1989) explored ways of

tracing paths through idealised networks to minimise the

number of crossings. Further exploration was deemed to

require a computer program to find such routes in any

given network. Appa set the development of such a program

as a student project in the final year of the Mathematics

for Business degree course at Middlesex Polytechnic in

1986. This thesis describes the project which grew

directly out of that student project carried out by Large.

5

1.3 I VISION REFINED

An algorithm for finding routes to minimise

crossings will require some means of recognising path

crossings. The road network has to be modelled so that

one can tell whether the paths of the vehicles using a

pair of routes have to cross or not. There are two

separate cases to consider. The two paths may enter a

junction by different approaches, cross each other and

leave by different exits. This case is easy to detect.

Alternatively the two paths may enter a junction by

different approaches and leave by the same exit, staying

together until they diverge at a subsequent junction. A

very intricate model would be required to distinguish

between such paths which diverged without actually

crossing and those which did cross. Practical

considerations come to the rescue here.

It is the necessity for merging in order to leave

the junction that is significant as far as competition for

road space is concerned. Even if there are two lanes, the

choice of lane will not be governed by whether the

vehicles are following paths which must cross. Any lane

changing necessary for the junction at which crossing, or

indeed non-crossing, paths diverge depends on the driver's

preferred lane, rather than his entry to it in the first

place.

6

The vision is therefore refined to one in which

the number of crossings and mergings at junctions is

minimised. Paths which cross and use the same road

between junctions will be counted in these mergings.

Paths which merge on leaving a junction without actually

having to cross will also be counted in these mergings.

This refined vision is defended in the next section.

1.4 THE VISION DEFENDED

The criterion for route choice to be defended is

that the number of crossings and mergings at junctions

should be minimised. If one defines conflicting streams

as those which cross or merge, this number will be the sum

of the products of the flows in each pair of conflicting

streams. It will be referred to as the amount of

conflict. The product of flows features in the first

order approximations of the calculations in queueing

theory; the expected frequency with which two vehicles

arrive at a junction so as to compete for road space is

proportional to the product of flows in their streams.

Reduction in the expected number of such competitions

should be beneficial on three counts.

Such a competition is usually resolved by one

competitor giving way to the other. However the giving

way is regulated, it is a cause of delay. This delay adds

to the journey time; compared with the rural situation,

it has a larger effect than the distance travelled. When

7

a particular stream features in several pairs of

conflicting streams, realism may be served by weighting

the different types of conflict to reflect the likely

delay. If routes are chosen to minimise the amount of

conflict, one should reap the benefit of a reduction in

the total delay at junctions.

Alternatively, the competition is not resolved and

therefore results in an accident. This rare result is

also likely to vary with the number of competitions.

Reduction in this number should be beneficial in reducing

the likelihood of accidents. Recent studies, made at the

Transport and Road Research Laboratory, have resulted in

the development of accident predictive relations in terms

of products involving powers of the flows in conflicting

streams (Summersgill 1988). The CROWN design tool could

be fairly easily modified to incorporate these relations

so as to reflect the potential for accidents more

accurately (Wackrill 1990).

The third beneficial effect concerns the

environmental consideration of air and noise pollution.

Bell (1990) asserts that the level of noise and air

pollution would be reduced if the amount of conflict at

junctions was reduced.

This criterion also has merit in comparison to two

others commonly used for route choice. The criteria with

8

which it will be compared are Wardrop's criteria (Wardrop

1952). His first criterion, that the journey times on all

the routes actually used are equal, and less than those

which would be experienced by a single vehicle on any

unused route, leads to a user-equilibrium. The effects

of congestion on journey time have to be taken into

account and this makes algorithms to assign routes

according to this criterion quite complicated. The time

for each link of the journey may be dependent not only on

the volume of traffic using that link but also, through

the delay caused by queueing at junctions, on the volumes

of traffic passing through junctions downstream of the

direction of travel. The conventional way of dealing with

such a minimisation problem is to use approximate link

times to prime an iterative process in which assignment to

minimum time routes alternates with the computation of the

time for each link. It can easily happen that a

particular origin to destination route oscillates between

paths; each becomes more congested, and therefore less

attractive in the subsequent assignment, so this

conventional solution method may run into difficulties.

These difficulties can be overcome by such methods as

incremental assignment, in which link times are recomputed

after successive proportions of the traffic have been

loaded onto the network.

Wardrop's second criterion, that the average

journey time is a minimum, leads to a system optimum

rather than a user-optimum. Holroyd and Miller (1966)

9

illustrate the possible difference between the two with

the following example. Consider two roads between an

origin and a destination where the journey time on each

road is partly constant and varies partly as the traffic

flow on that road. Suppose the demand for trips between

the origin and destination is 12 and the flow is divided

into Qi drivers using Road 1 and Q2 drivers using Road 2

so that

Q1 + Q2 = 12.

Suppose also that the journey times are respectively,

Ti =6+ Q1 and T2 = 12 + 2Q2.

Then the total journey time of all the drivers,

Q1*T1 + Q2*T2, is a minimum, 189, when Q1 is 9 and Q2 is

3; whereas if individual drivers minimise their own

journey time, Ql is 10 and Q2 is 2, giving a total journey

time of 192 for all the drivers.

The traffic engineer prefers the second criterion

while the driver prefers the first.

The criterion of minimum conflict has the property

that the system optimum will also be a user-optimum. If it

were not a user-optimum, then a route with less conflict

could be found which would reduce the total number of

10

conflicts from the hypothetical minimum. In the urban

situation, this criterion is closely correlated to journey

time. Drivers might well find routes chosen according to

this criterion an acceptable alternative to the routes

they would choose for themselves, and thus find their aims

coinciding with those of the traffic engineer.

Compared with Wardrop's criteria, the criterion

of minimum conflict is relatively easy to apply. It takes

account of the interaction between streams of traffic at

junctions, using the details of the topology of the road

network, without the need for details of the geometry of

the junctions. Engineers would like to address the

problem of junctions but do not always have the resources

for collecting the data required for a conventional model.

The CROWN design tool would enable them to take some

account of junction conflicts, but with relatively simple

input. Such a tool has been lacking from the traffic

manager's toolkit (Boyce 1988).

1.5 T VISION jjj+ DETAIL

The routeing patterns chosen so that the total

amount of weighted conflict at junctions is minimised are

found by means of a computer program. The CROWN design

tool is a suite of three computer programs. The input

consists of three data files. One contains the data which

specifies the road network for which an efficient routeing

pattern is desired. The network could be an existing one,

11

or an existing one modified by proposed changes, or an

idealised one for a green field site. A second data file

is a trip matrix indicating the demand for paths between

various origins and destinations on the road network. The

third data file, which is optional, specifies the

weighting factors to reflect the relative danger and delay

arising from different pairs of conflicting manoeuvres at

different types of junction; this latter file need not be

specific to the network. To use the tool, one runs the

suite of programs with the appropriate input files. The

output specifies the routeing pattern.

A secondary function of the suite of programs is

to show the effect, in terms of volumes of traffic, of the

resulting routeing pattern on the network. Some links

will be used in one direction only; these indicate

streets, which, if they were made into one-way streets,

would reinforce the routeing pattern. Some permitted

junction manoeuvres will not be used at all; these

manoeuvres indicate turns which could be banned to

reinforce the routeing pattern.

1.6 = OBJECTIVE: 2Q REALISE VISION

The objective of this project was to realise the

vision in the form of a computer program developed to the

point where its use could be demonstrated. Refinement of

the code to professional standards would be left to the

12

software house benefiting from the commercial exploitation

of the tool. The objective has been achieved in nine

stages.

1) A way of modelling the road network in which

conflicting manoeuvres at junctions could be

identified was developed.

2) The objective function, to be minimised, subject to

flow conservation constraints, was defined in terms

of conflicting flows on this model network.

3) Mathematical programming techniques for solving

this kind of constrained minimisation problem were

investigated.

4) A satisfactory technique was selected and adapted

for use in solving the problem.

5) Preliminary tests on small networks were carried

out to validate the procedure.

6) In order to test the procedure with larger

networks, an algorithm was designed to create the

details of the model network, to identify

conflicting manoeuvres and to match them to

appropriate weights.

13

7) An algorithm was then designed to translate

results, obtained in terms of the model network,

into terms relating to the road network.

8) These two algorithms and the selected solution

technique were embedded in a suite of computer

programs written in the FORTRAN 77 language.

9) The suite was tested with various networks to

assess performance.

The description of the completed project begins

with the model network, because the problem to find a

routeing pattern is defined in terms of it. This model

network is an elaboration of the road network; algorithms

were designed to translate from one to the other. The

model and the algorithms are described in Chapter 2. The

problem is defined and solution methods are investigated

in Chapter 3. The fine details of the solution method

chosen are given in Chapter 4. The Out-of-Kilter

algorithm, adapted and used as a subroutine in our

solution method, is described in detail in Chapter 5, so

that the adaptations can be explained. The suite of

programs which constitute our design tool is described in

Chapter 6. The performance of the tool is assessed in

terms of results with test networks in Chapter 7.

Conclusions are drawn in Chapter 8.

14

CHAPTER 2

A NETWORK MODEL WHICH SHOWS CONFLICTING MANOEUVRES

The purpose of this chapter is to show how

conflict between streams of traffic at a junction is

quantified so that it can be used as a criterion for route

selection. The network has to be specified in a

particular way to make this possible. This particular way

of specifying the network will be referred to as the

'Circulation System', the term used by Wright, Appa and

Jarrett (1989), to contrast it with references to the road

network. The specification of the Circulation System

will be described in Section 2.1. The industrial

collaborators MVA Systematica see the essential

difference between the road network and the Circulation

System in terms of trees and what they call 'vines'. The

significance of this difference is explained in Section

2.2. We need to be able to identify the streams which

conflict with a given stream at a junction; the way we

use a junction model to make this possible is described in

Section 2.3. A driver in a particular stream at a

junction may experience conflict with traffic in the

conflicting streams. The way this potential conflict is

quantified so that it can be used as the cost to the

driver of making each manoeuvre will be explained in

Section 2.4. An algorithm was devised to synthesise the

details of the Circulation System from details of the road

network. A program POLYARCS was written incorporating

15

this algorithm but also performing other relevant

functions. The program's functions are described in

Section 2.5. In order to explain how the algorithm to

synthesise the Circulation System works, the way the

details of the road network are specified has to be

defined; this is done in Section 2.6. The steps of the

algorithm can then be described in Section 2.7.

2.1 SPECIFICATION QZ
,E

CIRCULATION SYSTEM

Consider what the proverbial man in the street

might say when asked for directions to some nearby

destination. He might say "First left then second right".

He is specifying the route in terms of the required

movements at the next three junctions. This is just the

way we need to express each route, if we are to identify

the streams of traffic which conflict with each other on a

network.

In graph theory this way of expressing a route

would be described as a path in a directed graph or

"digraph". A digraph is specified as a list of vertices

and a list of ordered pairs of distinct vertices. The

ordered pairs are called "arcs" to distinguish them from

the unordered pairs which are the edges in a ordinary

graph. A path would then be specified by an ordered list

of arcs in the form uv, vw, wx, xy, yz.

16

The image used by that man in the street so

foreshortens the road between junctions that leaving one

junction is practically identified with arriving at the

next. Thus for our purposes, the first vertex in the

ordered pair of vertices, defining an arc, corresponds to

a particular approach to a junction, and the second vertex

corresponds to a particular exit, so that movement along

an arc represents a particular manoeuvre at a junction.

Once one has left a junction, using a particular exit,

both the next junction that one will encounter, and the

approach on which one will arrive, are already determined,

so the same vertex can be used to represent both the exit

from one junction and the approach to the next junction.

We illustrate the correspondence between the road

network and the Circulation System in Figure 1. Arrows on

the arcs assume that road users drive on the left; we will

assume driving on the left throughout this thesis. The

CROWN design tool can be used by traffic managers in

countries where road users drive on the right; junction

details would have to be entered in a different order

which will be described in Section 2.6.4.

It is obvious that the Circulation System is much

more complicated than the road network. One can sketch

the Circulation System and then specify it in a form

suitable for input to a computer. However, for all but

very simple road networks, the sketches become so

extensive that the effort required would be prohibitive.

17

It seemed essential therefore, to design an algorithm to

perform this feat of technical sketching in computer

terms. The program POLYARCS was written to accept details

of the road network as input, and synthesise the

specification of the corresponding Circulation System.

Its functions are described in Section 2.5.

Road Network

Circulation System

Fig. 1 Road network and corresponding Circulation System

2.2 TREES M VINES
MVA Systematica describe the Circulation System as

an expansion of the road network which allows the building

of vines as opposed to trees; these terms need

is

explanation. The plane drawing of a road network consists

of links and nodes. A crossroads is represented by a

node. Links would only cross if there was a bridge or

flyover. The activity of an assignment program in finding

minimum cost routes between origins and destinations is

described as path building. The paths from a single

origin form a tree. In a tree there is only one path

between any pair of nodes. However, the traffic engineer

may want to allow more than one path between a pair of

nodes. This is where vines come in.

Consider traffic approaching a crossroads where

the right turn is banned. One often caters for right-

turning traffic by indicating a sequence of left, right,

right, turns starting at the junction before the

crossroads. See Figure 2 below.

1>

Fig. 2 Right-turning traffic

One would expect straight-ahead traffic to proceed

straight ahead. This requires the links in the tree to

cross at a node; something with which the minimum cost

path building algorithm cannot cope. The way to get round

this difficulty is to expand the junctions as in the

Circulation System. Figure 1. Paths can then be built in

which the two streams do cross but not at a vertex of this

19

expanded network. The paths from a single origin in this

expanded network are said to form 'vines'. There will

only be one path between each pair of vertices in the vine

but the arcs between two different pairs of vertices may

cross.

2.3 INDENTIFICATION QZ CONFLICTING STREAMS

To show how conflicting streams are identified we

consider the manoeuvres as represented in the digraph of

the T-junction shown in Figure 3.

3
APZ

EX 2.

Fx3

RP 3

Fig.. 3 A T-junction

First we will consider the left-turning manoeuvre from

Approach 1 to Exit 2, represented by Arc 1. It merges

with the manoeuvre from Approach 3 to Exit 2, represented

by Arc 6, so we identify Arc 6 as conflicting with Arc

1. Similarly, we see that Arc 6 crosses Arcs 2 and 4 as

well as merging with Arc 1, so the list of arcs

conflicting with Arc 6 would consist of Arcs 1,2 and 4.

20

ßp1 Exi

The program POLYARCS incorporates digraph models

of various different types of junction. It uses these

models to create the part of the Circulation System

corresponding to each junction. For each arc which it

creates, it compiles the list of conflicting arcs from the

model. The models are shown in Appendix 1.

2.4 CONFLICT QUANTIFIED M USED $& 8 COST

Referring again to Figure 3, the potential

conflict encountered by a driver using Arc 1 is quantified

as the volume of traffic using Arc 6, the conflicting arc,

because that driver is potentially in conflict with any of

the users of Arc 6. The 'cost' to a driver of using Arc 1

is therefore equated to the volume of traffic using Arc 6.

The way in which this definition of cost has to be revised

is explained in Subsection 3.5.3. The cost, to the whole

system, of having many drivers using Arc 1 will be the

volume of traffic assigned to Arc 1 multiplied by the

cost, to one driver, of using Arc 1. This definition, as

it stands, is reflexive in that, for instance, the cost of

assigning 3 drivers to Arc 1 and 4 drivers to Are 6 (in

the absence of any other traffic at that junction) is 12

for each of these two assignments.

In order to find a cost for each arc we need both

the list of arcs conflicting with it, and the volume of

traffic using each of those conflicting arcs. What is

called an "incumbent assignment" of traffic to the

21

network is used to provide this figure for volume of

traffic using each arc. The way a first incumbent

assignment is found is described in Section 4.1. The

assignment program POLYSEND then finds a succession of new

assignments using each one as the incumbent from which to

compute the costs for the next.

Some conflicting manoeuvres would seem to be more

dangerous, or to cause more delay than others. In order

to reflect these differences, each term in the sum

referred to above can be given an appropriate weight. The

program POLYARCS has provision for a list of weights to

correspond to each list of conflicting arcs.

2.5
,

FUNCTION QZ PROGRAM POLYARCS

The Circulation System is an elaboration of the

road network. It is defined in terms of vertices and arcs,

hence the name POLYARCS. When the program was first being

tested, with very simple networks, deducing the

specification of the Circulation System from the details

of the road network was easy. However, as soon as tests

were extended to a real network this deduction became

tedious and prone to error. Compiling the lists of

conflicting arcs was also tedious. It was therefore

decided to write a program to -

22

1) accept details of the road network,

2) synthesise the specification of the corresponding

Circulation System while drawing the user's

attention to any inconsistencies in the input data,

3) compile lists of conflicting arcs with appropriate

weights,

4) prepare data to set up the correspondence between

flows on the arcs of the Circulation System and

flows on the links of the road network.

Stage 2 proved to be a fairly complicated

exercise in algorithm design. A similar network synthesis

is performed within the TRIPS suite of programs developed

by the industrial collaborators, MVA Systematica.

However, in this application we need to identify pairs of

arcs which conflict. By using a purpose built algorithm,

Stages 3 and 4 could be anticipated from the outset.

2.6 SPECIFICATION QE ROAD NETWORK

The first function of the program POLYARCS is to

accept details of the road network. Much of that detail

is common to traffic modelling packages available

commercially. Those details which pertain to the CROWN

design tool in particular will be clearly indicated. The

23

road network is

distinct number,

between junctions,

as it is listed.

specify the orde

well.

specified by giving each junction a

and then making a list of the links

giving each link a consecutive number

For the CROWN design tool we need to

r of the links round each junction as

Traffic management is concerned with the traffic

as well as the road network. Traffic is generated by the

need to transport people or goods between certain origins

and destinations. For the purposes of a traffic study,

the area covered by the road network is divided into a

manageable number of zones. Trips are deemed to originate

or terminate in these zones. The points where traffic can

enter the network from outside the study area, or leave

the area, are also designated as zones; these are often

referred to as external zones. Each zone has a notional

zone centroid which is connected to the network by a

notional zone connector, functioning like a link. An

extra junction can be defined, if necessary, to be the

point at which the zone connector meets the road network.

The first record of the input file which specifies

the road network contains entries which enable the

computer to interpret further records correctly. These

entries are the numbers of zones, nodes and links. The

number of zones indicates how many zone records are to be

read. The number of link records and of junction records

to be read are indicated similarly. The precise details

24

of the specification are given in the subsections which

follow.

2.6.1 Zone records

In the CROWN design tool, the number of zone

connectors for Zone M is indicated by a single integer in

the Mth zone record.

2.6.2 Links specified by B nodes Ind $ nodes

The topology of the road network is specified by

a list of links. The CROWN design tool requires the zone

connectors, defined in Section 2.6, to be listed first,

and in zone order. The relevance of this is set out in

Section 2.7.2. Each link is specified by the numbers of

the nodes at its ends. One of these nodes is referred to

as the A node and the other as the B node. If the road is

two-way the link will be two-way and it will not matter

which node is designated as the A node. If, however, the

road is a one-way street, the link will be one-way, and

the nodes should be chosen so that the permitted direction

is from the A node to the B node. For links which are

zone connectors, the A node should have the same number as

the zone; one-way outbound zone connectors are allowed in

the current version of the program, but not one-way

inbound connectors.

25

2.6.3
,
Link records

An example of a link record is shown below.

5 12 1

If this is the Mth such record, it means that link number

M joins node 5 to node 12. The 1 indicates that it is a

two-way link. A zero in this position would indicate that

the link was one-way. These three entries are sufficient

for the CROWN design tool. Commercial modelling packages

would include many more entries: the distances, times,

type, capacity etc. of the link.

2.6.4 Junction records

We need to record the order of links round a

junction so that we can distinguish left-turning, right-

turning and straight ahead movements. Some commercial

packages make this distinction too. What follows is

specific to the CROWN design tool but mimics the widely

used SATURN program input to some extent. Each link has a

link number, corresponding to its order in the list of

links, so a junction can be specified by the node number

of the junction and a list of the link numbers of those

links terminating at it. For countries where road users

drive on the left, the list should be in clockwise order.

Conversely, where road users drive on the right, the list

should be in anti-clockwise order. Further comments on the

application of the program suite in countries where road

26

users drive on the right will be found in Appendix 2.

Provision has been made for priorities at junctions to be

specified by attaching significance to the link which is

first in the list of links for input to the CROWN design

tool. For a priority T-junction, the convention is that

the link which is the minor road is listed first in this

list. At a crossroads, we make the simplifying assumption

that the minor road will cross the major road, and list

one of the minor links first.

The possible turning movements and, in particular,

the way those turning movements conflict with each other

will vary according to the type of junction. Each type is

specified by a type number so that the program uses the

appropriate digraph to model the junction. Provision has

been made in the prototype program version of the CROWN

design tool for the following types of junction: no

specified priority, priority, mini-roundabout,

conventional roundabout, signalised, and grade-separated.

Different subroutines will be called depending on how many

links meet at a junction, so this number is also recorded

in the junction record. A junction record might be as

shown below.

25 23 14 13 32

This means that Node 25 is a junction of Type 2, a

priority junction, that it has three arms, Links 14,13

and 32 in that clockwise order, and with Link 14 being the

27

minor road. Three-arm junctions are referred to as T-

junctions throughout.

2.7 SYNTHESIS DZ = CIRCULATION SYSTEM

The second function of the program POLYARCS is to

specify the arcs and vertices of the Circulation System.

As explained in Section 2.1, one vertex represents both an

exit from one junction and the approach to the next. This

means that a vertex corresponds to a particular side of

the road which is the link joining the two junctions. An

arc corresponds to a manoeuvre through a junction, so its

start and end vertices correspond to the links and the

side of the road in which one starts and finishes this

manoeuvre. The first task then, is to set up the

correspondence between links and vertices. The way this

this is done is shown in subsection 2.7.1.

Some vertices will be used for origins and

destinations of flow. The correspondence between these

vertices and the zones for the trip matrix is described

in Subsection 2.7.2. The next step is to create ordered

pairs of vertices to correspond to the arcs in the

appropriate digraph models of the junctions. If there is

inconsistency in the input data, the creation of these

ordered pairs will be halted. Detection of such

inconsistencies is described in Appendix 3. The creation

of arcs is described in Subsection 2.7.3. The creation of

the lists of conflicting arcs and their corresponding

28

weights is described in Subsection 2.7.4. Finally, the

translation from flow on arcs in the Circulation System,

to flows on links in the road network is described in

Subsection 2.7.5.

2.7.1 Vertices created tg correspond Jt2
links

The reader has been introduced to the digraph

model for one type of junction; the model for a T-

junction was shown in Figure 3. As explained in Section

2.6, a vertex corresponds to a particular side of the

road. A path through such a vertex will therefore be

along a link in a particular direction. If it is in the A

to B direction, that vertex is described as being

'Upstream of the B node' so we use element L of an array

UB to record the number of the vertex upstream of the B

node for link number L. Conversely, paths in the B to A

direction pass 'Downstream' through vertices with numbers

recorded in the array DB.

Vertices in the Circulation System are given

numbers in the order in which they are created. When link

number L is being processed, the element UB(L) will be set

equal to the next vertex number, to indicate that it is

the vertex upstream of the junction represented by the B

node of link L. If the link numbered L is two-way, the

element DB(L) will be set equal to the following vertex

number, to show that it is downstream of that junction and

that traffic is permitted to leave the junction in the B

29

to A direction. Otherwise this element will remain zero,

and no such vertex will be created. Consequently a one-

way link will correspond to a single vertex.

The vertex downstream of the B node would clearly

be upstream of the junction represented by the A node and

vice versa. The decision to consider vertices in relation

to the B node is arbitrary, but has the result that it is

the upstream array that contains no zeros.

2.7.2 Vertices corresuondina IQ origins g destinations

In the road network, the origins and destinations

of traffic coincide with zone centroids. The trip matrix

will define the demand for trips between pairs of zones.

A route assignment program needs to find routes for the

trips between each pair of distinct zones. Routes are

defined as a succession of arcs, so they start and finish

at vertices. The origin corresponding to a zone centroid

will therefore be the vertex corresponding to the side of

the zone connector used for outbound traffic. The

destination will be the vertex corresponding to the side

of the zone connector used for inbound traffic. These

vertices have to be identified correctly with the

corresponding zone. This is accomplished as follows.

In the link records, the zone connectors are

assumed to be listed first, and in zone order. The A node

is assumed to have the same number as the zone. Links are

30

processed in order, starting with Link 1, and a pair of

vertices are created, and numbered consecutively, for each

link that is processed. The origin vertex for Zone 1 will

therefore be vertex number 1, and the destination vertex

will be vertex number 2. If there is more than one zone

connector for any particular zone, the same vertex is

designated as upstream of all the B nodes for those zone

connectors and similarly for the vertex downstream of the

corresponding B nodes. This designation enables a route

to be found which uses the most suitable zone connector

both for leaving the zone as an origin and for arriving at

it as a destination.

Proceeding in this way, the origin vertex for Zone r

will be vertex number 2r-1 and the destination vertex will

be vertex number 2r. The demand for trips between Zone p

and Zone q is then interpreted as a demand between vertex

number 2p -1 and vertex number 2q.

2.7.3 Creation jIt arcs

When all the vertices have been created, the

program proceeds to create the arcs using a digraph model

of the appropriate type for each junction. A manoeuvre

corresponds to movement from one link to another, so the

arc corresponding to it will start at a vertex in the pair

corresponding to the one link and finish at a vertex

in the pair corresponding to the other link. The vertices

31

have to be paired up in the correct order to create the

appropriate arcs. This process can be compared to a

jigsaw puzzle consisting of a junction piece and one piece

for each arm. We know which arm piece is to be fitted to

each hole in the junction piece but we have to decide

which end of the arm piece to fit in that hole. The

explanation of how this is done follows.

The vertices in the model are designated as

approach vertices, e. g. AP(1), for the first link, and as

exit vertices, e. g. EX(2), for the second link. They are

matched to the vertices already created for the

Circulation System. The program checks whether the B

node or the A node of each link matches the node number of

the junction. This matching process is illustrated with an

example of a T-junction. Consider an example in which the

junction record for the T-junction and the link records

for the three links are as shown below.

Junction record 25 1 3 14 13 32

Link record for link 13 13 25 26 1
Link record for link 14 14 24 25 1
Link record for link 32 32 27 25 1

Further suppose that the vertices in the Circulation

System corresponding to these three links have numbers as

shown below.

UB(13) = 101, DB(13) = 102,
UB(14) = 103, DB(14) = 104,
UB(32) = 139, DB(32) = 140.

The completed matching is shown in Figure 4.

32

APý1) , Dß03)
y

zb i3 ý5

14

EXý1ý = uGCt3)

l03

RPLº) : ue (4)
(-7-4

u (max) Vx (3)
L/

139

31 21

a

betslý = PFPt3)

a
Io4

m
1E I)=Dßta4)

Fig. 4 Matching vertices

For the first link (Link 14), traffic approaches

the junction upstream of the B node (25), so AP(1) is set

equal to Uß(14). Similarly traffic leaving by the first

exit is downstream of the B node so, EX(1) is set equal

to Dß(14).

For the second link (Link 13), traffic approaches

the junction downstream of the B node (26), -so AP(2) is

set equal to Dß(13). Similarly traffic leaving by the

second exit is upstream of the B node so, EX(2) is set

equal to UB(13).

Once the elements of the AP and EX arrays have

been matched to vertex numbers, the arcs can be created.

The digraph models of each type of junction are stored in

the computer memory as arrays and rules which

1) relate ordered pairs of elements from the AP and EX
arrays respectively, which will represent vertices,
to elements of an array KJ which represent arcs,

2) list for each arc the numbers of those arcs
conflicting with it, and

3) list the first and last arc number of arcs
starting at each approach vertex.

if non-zero vertex numbers have been matched to both

elements in the pair corresponding to the first element in

the array KJ, then an arc will be defined as being bounded

by that pair of vertices. it will be allocated the next

available arc number, and this number entered, as the

first element, in the temporary array KJ. This procedure

is repeated for all subsequent pairs of elements in the AP

and EX arrays. In this way arcs are only created for

permitted manoeuvres. In Figure 5, we show the arcs which

would be created for the T-junction example above if we

suppose that we are starting with arc number 201.

34

Fig. 5 Creation of arcs

From Figure 5, the reader can observe that arcs

from a vertex upstream of the junction are numbered

consecutively, starting with the left turning arc, and

finishing with the right turning arc. All traffic

proceeding along this link towards that junction has to

pass through this vertex, so if we add up the flows on

these arcs, the sum will give the total flow in this

direction on this link. These arcs are numbered

consecutively to make that process simpler.

2.7.4 Creation
,

fist g conflicting arcs. with weights

The third function of the program POLYARCS is to

compile a list, for each arc, of the arc numbers of those

arcs which conflict with it, and matching weights for each

of these conflicting arcs. This list is needed for the

computation of costs in the assignment program POLYSEND.

This program POLYARCS includes a one-to-many mapping of

35

the elements of the array KJ onto themselves which

constitutes the ordered set of conflicting arcs for each

arc. For example, at the T-junction, the set for Arc

KJ(2) will consist of KJ(3), KJ(4) and KJ(6).

Corresponding to the set of conflicting arcs for Arc

KJ(2), there will be a set of appropriate weights. These

are indicated by arguments in an array of weights. Thus

for each set of conflicting arcs appropriate weights are

also recorded, as described in Appendix I. The list of

conflicting arcs and appropriate weights is added to,

after the creation of arcs is completed for each junction.

2.7.5 Flows
,2 arcs converted ±, Q flows

,Z
links

The fourth function of the program POLYARCS is to

prepare data to enable results, expressed in terms of

flows in the Circulation System, to be re-expressed in

terms of flows on links of the road network. When arcs

are created, starting at the vertex UB(L), they will have

consecutive numbers. The first and last of these numbers

are stored in arrays as FIRSTAB(L) and LASTAB(L). These

arcs carry flow from the A node to the B node. Addition of

the flows on arcs numbered FIRSTAB(L) to LASTAB(L) will

thus give total flow along Link L in the direction A to B.

Similarly when arcs are created starting at DB(L) their

first and last numbers are stored in arrays as FIRSTBA(L)

and LASTBA(L). The arcs numbered from FIRSTBA(L) to

LASTBA(L) are used to obtain total flow in the B to A

direction of Link L.

36

By this means, flows in each direction on each

link can be computed, with the exception of flows along

zone connectors into destinations. The exception arises

because each such flow is carried by arcs having a common

end vertex rather than a common start vertex. An

arbitrary choice was made to obtain flows on links by

summing the flows on arcs carrying flow leaving the link

and entering another one rather than those carrying flow

entering the link; no flow leaves a zone connector into a

destination to enter another link. The effect is that

flows into destinations appear as zeros in the output. An

extra subroutine to list the arcs terminating at each

destination would be needed to remove this exception.

The contents of these arrays are recorded in a

file ARCLINK. DAT. Once the main program POLYSEND has

determined the assignments, the following program POLYZINK

uses this file to convert flows on arcs of the Circulation

System into flows on the links of the original road

network.

2.8 CONCLUSION

The Circulation System has to be created so that

the problem to find minimum cost routes can be formulated

in terms of flows on arcs in it. The problem is

formulated in the next chapter.

37

CHAPTER 3

THE MATHEMATICAL PROBLEM AND ITS SOLUTION

The aim of this project is to develop a

mathematical programming technique as a design tool for

traffic management. In Chapter 2, the way that the road

network is modelled in order to make it possible to

quantify conflict for each arc of the model, was

explained. This particular model will be referred to as

the Circulation System. The problem is defined in terms

of the Circulation System. The inputs to the problem are

described in Section 3.1. Traffic flow in a network with

n zones can be modelled as an n-commodity problem. This is

explained in Section 3.2. Some notation is introduced in

Section 3.3 so that the problem can be formulated in

Section 3.4. Several possible methods of solution are

discussed in Section 3.5.

3.1 INPUTS SQ THE PROBLEM

There are four categories of inputs to the

problem. They are:

1) the road network with its zones, and rules

governing permitted traffic movements,

2) the weights for different types of conflict,

3) the trip matrix,

4) the objective desired in the solution.

These are described in detail in the following

38

subsections.

3.1.1 The road network And g weights

Both the details of the road network and the

weights for different types of conflict are prepared by

the program POLYARCS. It produces a file, ARCS. DAT, which

lists, for each arc of the Circulation System, the numbers

of its start and end vertices. For each zone r, it will

have designated vertex number 2r -1 to be the origin

vertex and vertex number 2r to be the destination

vertex.

it also produces a file, CONFLICT. DAT, which lists

for each arc, the numbers of those arcs conflicting with

it, and the weight to be applied to each of those

conflicting arcs when the cost of using the arc is

computed. It is these two sets of lists of prepared input

that will be used when the variables are defined in

Section 3.3, and when the problem is formulated in Section

3.4. Each pair of conflicting arcs appears twice in the

CONFLICT. DAT file, once in a list pertaining to one of the

pair and again in a list pertaining to the other of the

pair. This double entry format is not specifically

required in order to define the objective function, but it

is convenient for the solution method eventually chosen.

39

There are other details of the road network which

appear in traffic models but which do not have to be

included for the CROWN design tool. These are the length

of each link, its capacity, and a speed-flow curve. The

signal settings for signalised junctions are not included

either. The intention is to minimise a measure of the

amount of conflict between streams of traffic at

junctions, so link times, which could be computed from

link distance and a speed-flow curve, are not relevant to

the main objective, although they may be relevant for

comparing the various properties of different traffic

assignments. An assignment made without capacity

restraint can show where extra capacity would be

advantageous. It may happen to use some links in one

direction only in which case more capacity is actually

available than would be specified for two-way operation.

Although the facility for capacity restraint is available

in the Out-of-Kilter algorithm it is not being used both

because its use introduces considerably more complexity

and because it may inhibit desirable possibilities at a

design stage. Signal settings affect the delays at

junctions and therefore the link times but we are not

primarily concerned with link times.

3.1.2 Tha trio matrix

In reality, the demands for trips fluctuate both

with the time of day, and from day to day. Traffic

engineers usually model demand by assuming a steady state.

40

They may use different trip matrices to model steady

states for the morning peak, the evening peak and off-peak

travel demand. Recent advances in traffic modelling

include what is called dynamic traffic assignment to

distinguish it from the static, steady state assignment,

which is adequate for the purpose of the CROWN design

tool.

The elements of the trip matrix are used directly

in formulating the problem. They are used to specify the

amount of flow emanating from each origin to each

destination and the amount of flow into each destination

from each origin.

3.1.3 Zhg objective

The objective is that the total weighted sum of

the conflicts at junctions should be minimised. The input

required for this is a list of pairs of conflicting arcs

and a weight to be applied to each pair. This is the

CONFLICT. DAT file produced by the program POLYARCS.

3.2 j N-COMMODITY FLOW PROBLEM

Consider first a traffic flow problem in which

traffic from various different origins all goes to the

same destination. The network would consist of origin

vertices, intermediate vertices and a destination vertex,

41

these vertices being connected by one-way arcs. If one

variable is used for the flow on each arc, paths can be

found for all this traffic, by specifying the amount of

flow out of each origin, the total flow into the

destination, and conservation of flow for all

intermediate vertices. This implies that such a flow

problem is in fact a single commodity flow problem.

A very similar argument can be used to show that a

traffic flow problem in which all the traffic starts from

the same origin and goes to different destinations is also

a single commodity flow problem.

Either of these arguments can be used to explain

that the general traffic flow problem, in which there are

n zones functioning as both origins and destinations, and

in which the demand for trips between pairs of zones is

specified by a trip matrix, is an n-commodity flow

problem. The commodities are distinguished from each

other either by origin or by destination. An n-commodity

problem will therefore need n variables for the flow on

each arc.

In the definition of variables which follows, we

define our commodities by their origin. The relative

merits of this way of defining the variables, as opposed

to the alternative way, are discussed in Subsection 4.3.2.

42

3.3 NOTATION USED 19 DEFINE = PROBLEM

A set of variables is defined for each arc of the

Circulation System. Each set consists of the flows

currently assigned from the different zones. A variable

can therefore be identified by two subscripts; one is the

zone number for the zone where the flow originates and the

other is the arc number. However, for reasons that will

become clear, when we come to specify the constraints, it

is more convenient to identify an arc by the numbers of

the ordered pair of terminal vertices. Thus the variable

for flow from Zone p on arc (i, j) is denoted by

FLOW(p, i, j).

A particular instance of the

is specified by the elements of the

weights. The demand for trips from

will be denoted by T(p, q). For a

conflicting arcs denoted by x, the

to that pair will be denoted by W(x).

traffic flow problem

trip matrix and the

Zone p to Zone q

particular pair of

weight to be applied

3.4 E FORMULATION Qf M PROBLEM.

The problem is formulated in terms of the

variables FLOW(p, i, j), and the constants T(p, q) and W(x).

Before formulating the constraints it will be convenient

to define further variables in terms of the variables

FLOW(p, i, j). The total flow from Zone p, into Vertex j,

is defined by:

43

FLOWIN(p, j) =E FLOW(p, i, j);
i

where the summation is taken over every i for which

there is an arc from i to j,

The total flow from Zone p out of Vertex i is defined

by:

FLOWOUT(p, i) =E FLOW(p, i, j)
7

where the summation is taken over every j for which

there is an arc from i to j.

The total flow on arc (i, j) is defined by:

TOTFLOW(i, j) =E FLOW(p, i, j)
p

where the summation is taken over all zones p.

We now formulat

It will be convenient to

zones in the network, so

origin vertex for Zone

Subsection 2.7.2). We

of each zone.

e. the constraints of the problem.

be able to refer to the number of

we denote this number by n. The

p is vertex number 2p -1 (see

have n constraints for flow out

For each Zone p they take the form:

FLOWOUT(p, 2p-1) =E T(p, q) [1]
q

where the summation is taken over all zones, q.

44

Each destination may receive flow from all the other

zones. Traffic from one part of a zone to another part,

for example in a car park or on a housing estate, is not

modelled in this formulation or in the MICROTRIPS suite of

programs. If such trips, which are called intra-zonal

trips, are important, the zone should be split so that

movements between its parts can be modelled. Therefore

each destination may receive (n - 1) commodities and we

have n(n - 1) constraints for flow into the destinations.

The destination vertex for Zone q is vertex number 2q

(see Subsection 2.7.2). We will often find it convenient

to refer to the flow from origin, Zone p, to

destination, Zone q, as being between 0-D pair (p, q).

For each O-D pair (p, q), with p#q, these

constraints take the form:

FLOWIN(p, 2q) = T(p, q) [2]

If the Circulation System has m vertices, there will

be n(m - 2n) constraints for flow through the m- 2n

intermediate vertices.

For each Zone p, and for each intermediate Vertex

t, they will take the form:

FLOWIN(p, t) = FLOWOUT(p, t) [31

45

This gives a total of n(m - n) constraints. As a guide

to the likely size of m, the number of vertices, for a

road network with n zones and k links (excluding zone

connectors) m equals 2k (or less if there are one-way

links), so there would be 2kn - n* constraints.

Typically the number of zones into which a network would

be divided would be chosen so that n would be

approximately k/4. This gives us about 7n'

constraints. For a problem with 50 zones we would have

about 20,000 constraints. The use of a network algorithm

enables such large numbers of constraints to be handled

with relative ease. Capacity constraints have not been

included at this stage of development of the CROWN design

tool as explained in Subsection 3.1.1.

The objective function is defined by:

C=E W(x)*TOTFLOW(ft, b)*TOTFLOW(c, d)
x

where arcs (a, b) and (c, d) are the conflicting

pair x and the summation is over all pairs x

of conflicting arcs.

C is a quadratic function of the variables FLOW(p, i, j).

The problem can now be formulated as:

Minimise C subject to the constraints detailed at Cl],

(2] and (3].

46

3.5 POSSIBLE SOLUTION METHODS

Although one intuitively feels that the number of

trips demanded between each O-D pair should be an integer,

the demand is expressed per unit time, so this is not

necessarily the case.

The problem is to determine how the traffic should

be allocated between the possible routes in order to

minimise the value of the objective function. A solution

is said to be in equilibrium when no individual change of

route will reduce the value of the objective function. In

our case, there will be no O-D pair for which a change of

route will reduce the conflict for that O-D pair. If

there were, then such a change would also reduce the value

of the objective function. This implies that our system

equilibrium solutions consist of user-equilibria. We make

use of this fact in one of our solution methods. In

general, solutions to minimisation problems can be in

equilibrium without being globally optimal. Such

solutions are referred to as local optima. The solution

we seek is a global optimum.

Another property of an equilibrium solution to our

problem is that all vehicles between a particular O-D pair

will use the same route. If there were two routes with an

equal amount of conflict, the total amount of conflict

would only be increased by assigning some vehicles to each

route; they would have to merge at some point. This

property is known as the group travel property. It is

47

made use of in some of the solution methods which follow.

Traffic managers refer to assignments where this property

holds as all-or-nothing assignments.

The problem has been formulated as a constrained

minimisation problem with a quadratic objective function.

A mathematical programming technique for solving Quadratic

Programming (QP) problems is considered in Subsection

3.5.1. Two different approaches using Integer Linear

Programming (ILP) methods are considered in Subsection

3.5.2. Finally a heuristic method for improving a

solution is outlined in Subsection 3.5.3.

3.5.1 Quadratic Programming

The solution requires the minimisation of a

quadratic objective function. The first question to

consider is whether the algorithms available for solving

what are called quadratic (as opposed to linear)

programming problems would be appropriate. Each term in

the objective function represents the amount of flow on

one arc multiplied by the amount of flow on a conflicting,

and therefore different, arc, so there are no squared

terms. This means that the function is not convex and the

matrix of the quadratic form is not positive definite.

For such functions Wolfe's method and Beale's method may

only find a local rather than a global optimum (Sheffi

1985). A small test problem is formulated for quadratic

48

programming and solved using Beale's method in Appendix 4.

The value obtained for the objective function is higher

than the values obtained by other methods that were tried.

The actual mechanism which prevented the solution process

progressing to a better optimum is identified using this

example. There is, however, a standard method for

converting the quadratic function into a linear function

using zero-one integer variables. This method is

explained in the next section.

3.5.2 Integer linear proarammina

Two different approaches using integer programming

were tried. The first method involved the conversion of

the quadratic function into a linear function by the

introduction of many extra zero-one variables. The other

involved making a list of all plausible routes for each 0-

D pair, and using zero-one decision variables

corresponding to the use or non-use of these routes. The

formulation of a trivially small example by these two

methods is given in Appendix 4. A description of the two

methods follows.

FIRST METHOD

For the conversion of a quadratic function to a

linear function the original variables have to be zero-one

variables too. Fortunately the original variables can be

split up to satisfy this condition. Each variable

represents the use or non-use of each arc by the flow from

49

each O-D pair. The volume of flow is taken into the

coefficients of a new but still quadratic objective

function. For each pair of variables x and y occurring in

the quadratic objective function, a new zero-one variable,

z, is defined by

x+y <_ 1+z

so that the product xy will only contribute to the

quadratic function when z=1. When each such product xy

is replaced by z, minimisation of the quadratic function

can be taken care of by minimising the weighted sum of the

z's which is a linear function. This is an integer linear

programming problem (ILP). As the number of variables, n,

increases, the number of computations necessary to solve

such problems increases exponentially with n. There is no

known algorithm which solves the problem with computations

whose number is a polynomial function of n. The problem

is said to be N-P complete. The phenomenon is known as

the combinatorial explosion: the number of possible

solutions, which have to be tested to see if the objective

function is a minimum, rises explosively with the size of

the problem. This method can be used to find the global

optimum for a small test problem so that the result can be

compared with the results obtained by other methods.

The small test problem solved by QP in Appendix 4

is also solved by this method in that appendix. The road

50

network only has 6 links and 3 zones. The Circulation

System has 12 vertices and 18 arcs but 52 zero-one

variables were needed in the formulation.

A slightly bigger problem was also formulated by

this method. The network is taken from WRIGHT (1979) and

it has a street plan with 5 zones, 8 junctions and 15

links, 4 of which were one-way. Its corresponding

Circulation System had 25 vertices and 37 one-way

arcs. Eighteen pairs of arcs were involved in crossings

and nineteen pairs were involved in mergings. This

network would have had 740 variables just for the

different flows on the different arcs. With very careful

consideration of each flow and each arc one can establish

that certain flows would not use certain arcs in any

sensible solution, so the number of variables can be

reduced from 740 to 81. However, by the time a zero-one

variable has been defined for every pair of these

variables occurring in the quadratic function, the total

number of variables has reached 575. These extra

variables require 494 constraints to define them. In

addition there are 55 flow conservation constraints making

a total of 549 constraints.

SECOND METHOD

The second method uses decision variables for the

possible routes assuming that the group travel property

holds. Considerable pre-processing of the data is

required. The pre-processing brings to light some

51

interesting aspects of conflict between routes on a

network. For each O-D pair there will be a finite number

of alternative routes, none of which pass through the same

vertex twice. Let us suppose we have a list of these

routes for each O-D pair. The conflicts that vehicles

using these routes might encounter can be shown in a

square matrix M; each row and each column represents a

route so that element M(i, j) can be used to show the

number of conflicts between route i and route j. For

simplicity, unit weights will be assumed so that the

matrix will be symmetric, with zeros in the leading

diagonal. This implies that the number of conflicts

between route i and route j is entered as both M(i, j)

and M(j, i). When this matrix is used to cost out a

particular assignment in terms of conflict, each conflict

is accounted for twice because the number of conflicts

between each pair of routes has been entered twice. it

turns out to be quite convenient to retain this double

count of the conflicts.

Different categories of conflict can be identified

in a process which starts by partitioning the matrix.

Each part is a rectangular sub-matrix for the conflicts

between the routes for one O-D pair and the routes for

another O-D pair. Consider that part with rows

corresponding to all the routes between O-D pair s and

with columns corresponding to routes between a different

O-D pair t. This submatrix may have some interesting

properties. These are discussed as two cases.

52

CASE 1 All the elements in this part are strictly

positive, with each one greater than or equal to

some number k. This implies that whatever route

is chosen for O-D pair s and whatever route is

chosen for O-D pair t the two chosen routes will

have at least k conflicts. O-D pairs s and t

are said to have a topologically essential cost of

k. If T(s) trips are assigned to O-D

pair s and T(t) trips are assigned to O-D pair

t, then for each such part, k*T(s)*T(t) cost

units will be topologically essential in any

solution.

Furthermore, if the globally optimum

solution consists entirely of such topologically

essential conflicts, then the routeing pattern for

that solution will be globally optimal for any trip

matrix. This property, which conforms with come, on

sense, was observed when the program was tested

with a small network. This small test network

evidently has the special property that there is a

globally optimum solution consisting only of

topologically essential conflicts.

This may be a fairly rare property. The test

network happened to include a zone inside a ring

which was not a two-way ring. When the one-way

link was made into a two-way link, then situations

53

occurred where, for example, O-D pair r could

either use a route clockwise round the ring to

avoid conflict with O-D pair s, or use a route

anticlockwise round the ring to avoid conflict

with O-D pair t. The globally optimal solution

had to include conflict with one of these pairs,

but neither of these conflicts was topologically

essential on its own. It should be fairly easy to

spot an O-D pair for which this situation

existed.

Even where the network does not have this

special property, the topologically essential

conflicts can be used to obtain a lower bound for

the solution to a conflict-minimising problem.

Each part of the conflict matrix can be examined

for the occurrence of topologically essential

conflicts and all such conflicts added to obtain a

lower bound for the total number of conflicts.

CASE 2 becomes relevant once any parts to which Case 1

applied have been 'reduced' by carrying out Step 1

below. It is also relevant for any parts to which

Case 1 does not apply.

STEP 1 Reduce the conflict matrix to remove topologically

essential conflicts in the following way. For each

part of the matrix with smallest positive element

k, subtract k from every element and record that

54

O-D pairs s and t contribute k*T(s)*T(t)

essential conflicts.

When the cost matrix has been reduced by performing

Step 1, there may be parts where, for a particular

row i, all the elements M(i, j) in that part are

strictly positive with each one greater than or

equal to h. Consider such a part and suppose that

the rows represent routes between O-D pair s, with

row i representing route I, and that the

columns represent routes between O-D pair t. In

this case, if the solution is constrained so that

route I is used, then the topologically essential

conflicts will be increased by h*T(s)*T(t), no

matter what route is selected for O-D pair t. The

sum of such increases in conflicts for all parts of

the matrix in which row i features, provides a

figure for the increase in cost that must occur if

traffic is constrained to use route I. This will

be called the route cost of route I. One can

assign traffic purely on the basis of these route

costs. The solution to such a relaxed problem is

obtained as a first solution for this second method

of solution by ILP. The route costs are obtained by

performing Step 2.

STEP 2 Reduce each row in each part by subtracting h the

smallest positive entry from each element. For

example suppose there are three routes A, B, and C

55

between O-D pair s and four routes W, X, Y, and Z

between O-D pair t. Suppose that the part

corresponding to conflict between O-D pairs s and

t, and its transpose are shown below. For

simplicity, also suppose that only one trip is

demanded between each of these 0-D pairs.

WXYZ AB C
A 1221W 11 2
B 1031X 20 2
C 2223Y 23 2

Z 11 3

This part will attribute route costs o f

1 to A 1 to W

2 to C 2 to Y
1 to Z.

Sub-mat rices reduced as in Step 2, are shown below.

WXYZABC
A0110W001
B1031X202
C0001Y010

Z00

The two matrices are no longer transposes of each other,

but the two together have significance. Refer back to the

matrix they come from, and consider, for example, the cost

in extra conflict of using route C with route Z. The

CZ element is 3; it occurs twice in the conflict matrix,

so with double counting, this combination contributes 6

conflicts. The 6 is the sum of

the route cost of using C=2
the route cost of using Z=1
the cost of using C with Z=3.

56

The cost of using C with Z can be obtained by adding

the CZ element remaining in the one reduced part to the

CZ element remaining in the other reduced part. Using

the pairs of reduced parts in this way, a submatrix of

what will be called pair costs, can be obtained. For

conflict between the example O-D pairs s and t above it

is:

W X Y Z
A 0 3 1 0
B 1 0 4 1
C 1 2 0 3

To summarise, possible conflict between 0-D pairs

s and t has been split into:

a) topologically essential conflict,
b) route conflict for each route between 0-D pair s,
c) route conflict for each route between O-D pair t,
d) pair conflict for each particular pair of routes.

The second ILP method of solution involves solving

a series of ILP problems.

For the first problem, the variables correspond to

the plausible routes between each O-D pair. The ith route

between O-D pair s is denoted by Si, and the variable

corresponding to it by X(Si). The route cost of using

route Si is denoted by R(Si). The objective function to

be minimised is:

I R(Si)*X(Si) where summation is taken over

all routes and all O-D pairs.

57

Each O-D pair is constrained to use only one route so, for

each 0-D pair s:

E x(si) = ý.
i

For the second problem, more variables are

introduced, one for each pair of routes used in the

solution to the first problem. For the pair of routes Si

and Ti, the variable X(SiTj) is introduced and the pair

cost, as defined above, is denoted by P(SiTj). For each

new variable, there is a constraint:

X(Si) + X(Tj) 51+ X(SiTj).

The objective function is augmented with an extra term:

P(SiTj)*X(SiTj).

Pair costs are introduced in this way, only as the

pairs are used in the solution to the preceding ILP

problems. Each successive ILP problems is a tightening of

the previous problem. In this series of problems, one

will arise where the solution contains no pairs of routes

for which the pair cost has not been included in the

objective function. This may, of course, involve quite a

long series of ILP problems. The final solution in the

series will be optimal. This statement is justified in

Appendix 4.

58

This method is used to solve the small example

also solved by other methods in Appendix 4. Full details

of the way the solution progressed are given in that

appendix. In summary, the series consisted of seven

problems, only 7 out of the 26 pair costs had to be

introduced to the objective function before the optimal

solution was found. This implies that the first in the

series of ILP problems had 12 variables, and the last

and biggest had 19 variables. In contrast, the same

problem solved by the first method had 52 variables.

This method capitalises on the network nature of

the problem by taking paths as the fundamental variables.

It recognises that the topological conflicts fall into

three classes: those essential for the given network and

trip matrix, those essential for each path, the route

costs, and those pertaining to the use of a particular

pair of paths, the pair costs. By starting with a

solution which minimises the set of route conflicts it

concentrates subsequent effort in a sensible direction.

In any realistic problem a large number of paths

would have to be considered. The introduction of pair

costs in the way described might turn out to involve the

solution of very many ILP's. However, the pair costs

which are introduced are restricted to pairs involving

routes which appeared in the previous solutions. The

large number of paths, which would have to be considered

59

in a realistic problem, would make even these reduced ILP

problems rather big.

3.5.3 & heuristic method involving improvement.

An alternative method, which also makes use of the

network nature of the problem, involves splitting the n-

commodity problem into n single commodity problems and

using a network algorithm to solve each of these

subproblems in turn. It requires a starting solution to

be improved. Methods for finding a starting solution are

described in section 4.1. Arc costs have to be computed

for each subproblem. Consider the subproblem for the

commodity defined as originating in Zone r. The values of

the variables FLOW(p, i, j) can be fixed at their values in

the incumbent solutions to all the subproblems and used in

the formula for arc cost. This subproblem is to find

values for FLOW(r, i, j) which minimise the cost of the

assignment. This is the formula for cost used in Beale's

method. However, with this formula a better solution may

have a higher cost; this higher cost is not the true

cost as demonstrated with an example, in the next two

paragraphs.

The example, the same as the one used in Appendix

4, consists of a ring road with Zones 1 and 2 outside

it, and Zone 3 inside it. The trip matrix is shown in

shown below.

60

2 4 6

1 - 1 3
3 1 - 1
5 1 4

The Circulation System for this network with its three T-

junctions is shown in Figure 6. The numbers by the arrows

on the arcs show the total flow in an assignment of these

trips and the numbers in brackets show the costs. For

simplicity, we use unit weights for all pairs of

conflicts. The value of the objective function for this

assignment is 20.

I Ck)

1 k

Compare the costs of the two possible paths from

Vertex 5 to Vertex 4. The clockwise path has a cost of 4,

and the anticlockwise path has a cost of 6. Because the

clockwise path has a lower cost, it would appear that the

61

1Cb) 1 (S I.

Fig. 6 Circulation System with assigned flows

total cost of the assignment would not be improved by

assigning the flow, from Vertex 5 to Vertex 4, to the

anticlockwise path. However, one element of the cost of

the anticlockwise path is the cost of merging with 4 units

flowing from 5 to 4 along arc (9,4). If this flow were

transferred to the anticlockwise path it would no longer

be on arc (9,4). This sort of cost will appropriately be

called a 'ghost' cost. If it is omitted from the

computations, the cost of the anticlockwise path from

Vertex 5 to Vertex 4 will fall to 2, which is its

true cost. When the assignment is changed by switching

the flow of 4 units from Vertex 5 to Vertex 4 to the

anticlockwise path, the reader can confirm, from Figure 7,

that the number of conflicts has been reduced from 20

to 12.

I

Fig. 7A better assignment

62

_1 13.1

However, omitting the value of FLOW(r, i, j) from

the cost computation means that no account can be taken

of any conflict between vehicles setting out from Zone r.

Common sense would suggest that routes from the same

origin fan out without crossing one another or merging

with each other. The network algorithm has been modified

so that it finds routes which form vines whose branches do

not merge, although they may cross.

Crossing conflicts between traffic from the same

origin can be accounted for if, instead of splitting the

problem into n subproblems corresponding to the n

commodities, it is split it into n(n - 1) subproblems

corresponding to the demand for trips between each O-D

pair. This involves (n -1) times as many variables, with

the r in FLOW(r, i, j) referring to O-D pair r. Omitting

the value of FLOW(r, i, j) from the cost computation in the

subproblem involving O-D pair r, will remove the ghost

costs and allow crossing conflicts with traffic from the

same origin to be accounted for. Unfortunately this move

towards accuracy multiplies the number of computations,

that have to be done for each cycle of subproblems, by

approximately (n - 1). As explained in Section 5.5, a

subproblem for one O-D pair involves nearly as many

computations as a subproblem for one commodity. This

quest for extreme accuracy does not seem to justify the

extra computations required, when the demand for trips is

modelled rather crudely by a steady state. The heuristic

method chosen for the CROWN design tool was therefore

63

based on subproblems corresponding to the n commodities.

The heuristic method will improve the solution, or

leave it unchanged, with every subproblem that is solved.

This improvement can be continued by solving each

subproblem again and again. The solution of each

subproblem once will be described as a complete cycle of

iteration, to distinguish it from the solution of one

subproblem, which will be referred to as a subcycle.

Proceeding from one subcycle to the next, trips may be

reassigned to different routes. Each reassignment will

reduce the conflict at some junctions but it may increase

it at others. Although the reductions will exceed the

increases, the total cost of some of the routes used in

the current assignments of trips from other origins may

well show an increase over the total cost in the previous

assignment. However, each reassignment made in this way

will either reduce the value of the objective function or

leave it unchanged. This is in contrast to what may

happen when the time taken to traverse each arc, suitably

modified to take account of congestion effects, is used as

the arc cost; the value of the objective function may

increase. This property of such time costs implies that,

when they are used, the system optimum obtained may not be

a user-optimum. With conflict costs, the system optimum

will always be a user-optimum. The iteration process can,

in principle, be carried on until no changes have taken

place for a complete cycle of iterations. However, the

equilibrium solution may be only a local optimum.

64

During the study, one condition which inhibited

further improvement was identified. It involved the

merging of trips from different origins to the same

destination. Any improvement involves switching the route

for one component. This may lead to the use of a route

which diverges from the original route and then has to

merge with it again to reach the same destination. This

second merging involves an unnecessary conflict which

would not occur if both the flows were simultaneously

reassigned to a new common route. This phenomenon is

referred to as 'mutually beneficial sightseeing' to

indicate that the assignment is sub-optimal, but that

change is inhibited by mutual benefit. The phenomenon is

demonstrated with two examples in Section 4.1.1. A way to

avoid its occurrence is suggested in Section 4.3.2.

It is regrettable that a global optimum cannot be

guaranteed by the heuristic method. The solution may get

trapped at a local optimum. Recent research has focused

on ways of getting the solution out of the trap.

Simulated annealing and what is called "Taboo search" are

examples of approaches to this problem. It arises because

the globally optimal solution may not be reachable by

stepwise improvement from a particular incumbent solution.

This problem is addressed in the CROWN design tool by

offering the user different ways for finding a start-up

solution with which to prime the iterative process, and by

offering a choice in the order in which he solves and

resolves the subproblems. The significance of the

65

differences in the values objective function obtained with

these various options is illustrated in Sections 7.3 and

7.4.

3.6 CONCLUSION

In this chapter the problem has been formulated in

terms of the Circulation System. Four methods of solving

the problem of finding an assignment which minimises the

total number of weighted conflicts at junctions have been

reviewed. Although the goal of finding a global optimum

appears not to be a practical proposition, a return to

Beale's method is not recommended. This is because his

technique involves taking account of the ghost costs

defined in Section 3.5.3. Two possible formulations by

Integer Linear Programming have been explored. Both these

formulations increased rapidly in complexity as soon as

the network ceased to be of only trivial size. The issues

addressed in developing a heuristic method involving

improvement have been summarised. As this is the method

incorporated in the CROWN design tool, full details of

this method appear in the next chapter.

66

CHAPTER 4

THE HEURISTIC METHOD OF SOLUTION

The method chosen to solve the problem is a

heuristic method, involving improvement in the value of

the objective function, by an iterative procedure. The

purpose of this chapter is to describe that iterative

process in more detail. In Section 4.1 various methods

for finding a start-up solution with which to prime the

iterative process are described. The iterative process may

be restarted with a preferred interim solution. The

provision for this is described in Section 4.2. The choice

of the definition of subproblem to be solved in each

subcycle is discussed in Section 4.3 Certain terms of

the objective function are selected for improvement by the

solution of each subproblem. These terms are identified,

and the way in which the value of the quadratic objective

function is improved by the minimisation of a series of

linear objective functions is explained in Section 4.4.

4.1 PRIMING IJ ITERATIVE PROCESS

The objective is to minimise conflict, which has

been quantified as a cost dependent on existing traffic

flows. A set of flows is therefore needed for each arc of

the Circulation System, in order to compute the costs.

These flow values should be plausible so that the first

iteration uses plausible costs. The four methods that

67

were considered for finding a plausible solution with

which to prime the iterative process are described in this

section.

4.1.1 LOADFLOW

One sensible way to build up a starting solution

is to load traffic from the first origin onto an empty

network with zero costs on the arcs. Traffic from

subsequent origins is then loaded so as to avoid as much

conflict as possible with traffic already loaded. This

method of obtaining a solution is called 'LOADFLOW'. It

requires costs to be recomputed before the traffic from

each successive origin is loaded. In the other methods,

the same arc costs are used for finding minimum cost

routes for all the traffic. However, although this method

involves an extravagant use of computer time, it has the

appeal that the ultimate objective of minimising conflict

is being applied as the traffic is being loaded on to the

network. The start-up solution obtained this way should

have a lower amount of conflict than solutions obtained

without taking any account of conflict. However one can

see that it might be very sensitive to the order in which

origins are selected for the flows from them to be

assigned. This sensitivity is demonstrated with the

network and trip matrices shown below.

A simple network in which there are only two

routes from each origin to each destination, clockwise and

68

anticlockwise round a block, is used. Different orders of

loading for two fairly sparse trip matrices were tried. In

the first one, the heavier flows were loaded first and in

the second one they were loaded last. The two trip

matrices we use are:

Trip matrix 1

to
5 6 7

1 0 0 2
2 0 0 2

from 3 4 0 0
4 0 3 0

Trip matrix 2

to
5 6 7

1 0 0 4
2 0 0 4

from 3 3 0 0
4 0 2 0

The road network is shown in Figure 8.

I
¢6

Fig. 8 The road network for LOADFLOW

Two routeing patterns were obtained for Trip Matrix 1,

first by loading the heavier flows first and then by

loading the lighter flows first: Cases A and B

respectively.

Case A

Assignment in descending
order of number of trips
required; i. e. origins
3,4,1 then 2.

Case B

Assignment in ascending
order of number of trips
required; i. e. origins

1,2 4 then 3.

69

The routeing patterns obtained in these two cases are:

Case A Case B

From 3 to 5: clockwise From 1 to 7: clockwise
From 4 to 6: anticlockwise From 2 to 7: clockwise
From 1 to 7: anticlockwise From 4 to 6: anticlockwise
From 2 to 7: anticlockwise From 3 to 5: clockwise

They are shown in Figure 9.

3 'S

s 4 17 4ý4
1 33

46

3S
44

ý sý 44
7

a
13ý

46

Total conflicts = 16 Total conflicts = 20

Fig. 9 Routeing patterns with Trip Matrix 1

In Case A, the assignment

2 follows the assignment

from 3 to 5), so they are

those 4 trips. In Case B,

2 were already assigned to

origin 3 could not avoid.

of the trips from origins 1 and

of the largest flow (4 units

assigned to avoid a merge with

the trips from origins 1 and

the route which the flow from

Case B demonstrates mutually beneficial

sightseeing for the traffic from origins 1 and 2. Further

assignments cannot improve the situation, Case A offers a

better solution.

Two routeing patterns were obtained for Trip

Matrix 2, first by loading the heavier flows first and

70

then by loading the lighter flows first: Cases C and D

respectively.

Case C Case D

Assignment in descending Assignment in ascending
order of number of trips order of n umber of trips
required; i. e. origins required; i. e. origins
1,2,3 then 4. 4,3,1 t hen 2.

The routeing patterns obtained in these two cases are:

From 1 to 7: clockwise From 4 to 6: anticlockwise
From 2 to 7: clockwise From 3 to 5: clockwise
From 3 to 5: clockwise From 1 to 7: anticlockwise
From 4 to 6: anticlockwise From 2 to 7: anticlockwise

They are shown in Figure 10.

3535

2

I
I

2

I
4b4.6

Total conflicts = 40 Total conflicts = 32

Fig. 10 Routeing patterns with Trip Matrix 2

7

In Case C, the flows from origins 1 and 2 are the

largest flows and the flow from origin 3 cannot be

assigned to avoid conflict with them. In Case D, the

flows from origins 1 and 2 can once again be assigned to

avoid conflict with either the trips from origin 3 or the

trips from origin 4. It is the conflict with the greater

number of trips, from origin 3, which is avoided.

71

Case C provides another demonstration of mutually

beneficial sightseeing for traffic from origins 1 and 2.

In the face of this sensitivity to the order of

loading and the large number of computations involved,

simpler methods for finding a starting solution were

designed.

4.1.2 DARTFLOW

The simplest method of all is to set all arc costs

at unity and find minimum cost paths to assign the traffic

to. This method is called 'DARTFLOW'. Routes are chosen

to minimise the number of junctions used.

4.1.3 DASHFLOW

An elaboration of the DARTFLOW method goes some

way towards taking account of conflict; the cost on each

arc is set equal to the number of arcs it conflicts with.

For example, turning left at a T-junction would have a

cost of 1, whereas turning right would have a cost of 3;

going straight ahead at a crossroads would have a cost of

6. This method is called 'DASHFLOW'. It is recommended

for starting up, with DARTFLOW as an alternative which

might lead to a better local optimum.

72

4.1.4 FASTFLOW

At an early stage in the development of the

program, a method was used which was a crude imitation of

a minimum journey time assignment. The real network, for

which details were available, also included details of

free flow times for the links; free flow time means time

computed, from distance, using expected average speed in

uncongested conditions. As an arc in the Circulation

System corresponds to movement from one link to another,

the average of the times for these two links was taken as

the time for the arc and used as the cost.

The incentive to develop such a method was to

provide some comparison between routes chosen to minimise

journey time and those chosen to minimise conflict. The

question of the trade-off between conflicts and journey

time is of some interest. However, the only way to

achieve a proper comparison is to use a conventional

assignment package which takes the effects of congestion

on journey time into account, so this poor imitation of

conventional assignment was abandoned as a method for

finding a start-up solution.

In principle comparisons can be made between the

times for an assignment which minimises time and for one

which minimises conflict, and between the number of

conflicts occurring in these two assignments, without

having to use a conventional assignment as the start-up

solution. To make this comparison straight forward, input

73

and output files would need to be compatible with a

conventional assignment package such as MICROTRIPS.

4.2 RESTARTING T ITERATIVE PROCESS

As the user is offered various options for running

the assignment program, he may want to try with various

options for a few iterations each, and then choose the

best solution to date to restart the iterative process.

To the computer, re-starting is merely another method of

priming the iterative process. The option of starting up

with a previously obtained solution is called 'OLDFLOW'.

4.3 SERIAL SOLUTION QE SINGLE COMMODITY PROBLEMS

The term serial implies that the subproblems are

solved one after the other. The user may choose the order

in which the subproblems are solved; the various options

are detailed in Subsection 6.2.2. The order chosen may

affect the routeing pattern obtained and the value of the

objective function at each stage of the iterative process.

Such effects are assessed in Section 7.4. The user has

another option which controls the maximum number of times

each subproblem is solved before the program stops. This

option is explained in Subsection 6.2.2 and the rate of

convergence is demonstrated with various test problems in

Section 7.2.

74

The two alternative ways of defining the

commodities for an n-commodity problem are explained

below. It is also possible to split the problem into

n(n - 1) subproblems.

4.3.1 Commodity defined]y oricin

In Section 3.4, the problem was formulated in

terms of commodities defined by their origin. This is the

way the problem was formulated from the very start of the

project, and this definition is used in the CROWN design

tool. This choice was made for several reasons. The

simple reason is that this was the way it was first

thought of. The MICROTRIPS programs also sort routes by

origin zone first and destination zone second.

The choice also lends itself to a natural visual

image, that of the tree. Routes with a common origin

vertex form a tree (the term is retained here although the

word vine is more appropriate, see Section 2.2). In graph

theory, a tree need not be directed, but a tree in a

directed graph is described as being rooted at a

particular vertex. The arcs in it will be directed away

from the root towards what are called the tips of the

branches.

More significantly, when one is concentrating on

crossing and merging conflicts, and, as explained in

Subsection 3.5.3, no account can be taken of conflicts

75

between vehicles being assigned in the same subproblem, it

was attractive to define the subproblems so that such

conflicts seemed unlikely to occur; routes from the same

origin seemed likely to fan out in such a way that there

would be no crossing or merging conflicts between them.

However, these conflicts can and do occur.

Merging conflicts have been prevented by modifying the

algorithm used to find minimum cost routes so that the

group travel property will hold; routes from the same

origin will be common until they diverge for their

different destinations. Crossing conflicts can occur but

no account will be taken of them. The problem being

solved by the CROWN design tool is therefore a relaxation

of the original problem. The relaxation involves

neglecting crossing conflicts between vehicles starting

out from the same origin.

The iterative process can be illustrated in terms

of a fictional situation. Let us suppose that the number

of trips required between each O-D pair is fixed. Let us

further suppose that all the trips from the same origin

are made in a fleet of vehicles, and that the fleet

manager dictates the routes to be used. A set of routeing

plans, one for each manager, is what we call a starting

solution. Each day we hope to improve the solution. At

dawn on the first day, the manager of the first fleet uses

the plans from-all the other managers to plot the numbers

76

of vehicles using each arc of the Circulation System. He

wants his vehicles to encounter the minimum amount of

conflict with all the other vehicles. He has a handy

computer program to devise a routeing plan which achieves

his aim. He dictates his new plan to his drivers. All

the other drivers use the plan they have already. During

the day, his drivers avoid conflict with the other

drivers, so when the other drivers get together that

evening they conclude that, between them, they experienced

less conflict than the day before. That night the manager

of the second fleet feeds the details of the routes all

the drivers in the other fleets used that day into the

computer program, and comes up with a new plan for his

drivers by dawn. As they start out on the second day, his

drivers are using a new plan but all the other drivers are

using their plan of the day before. As the days progress,

the manager of each fleet has a turn at finding a better

plan; sometimes he does not succeed but at least he will

not find a worse plan. If all the managers are given a

second turn, and then further turns, at finding a new

plan, there will come a time when no better plans have

been found for a whole cycle of searches. The plans in

operation at that time constitute the set of plans which

we call the final solution.

4.3.2 Commodity defined Jy destination

If commodity is to be defined by destination, the

variable FLOW(p, i, j) has to be redefined as the flow

into Zone p on arc (i, j). This gives rise to a new set

77

of constraints:

FLOWOUT(p, 2q-1) = T(q, p) for each q¢p,

FLOWIN((p, 2p) =E T(q, p),
q

FLOWIN(p, t) = FLOWOUT(p, t) for each

intermediate vertex t.

These constraints will ensure the assignment of the

required trips between all the other zones and Zone P.

The single commodity is flow into Zone p.

The routes will form a bundle of rays converging

at the destination vertex. Unfortunately, the term ray

suggests a straight route, and the term converge suggests

that the routes all merge at the same point; the overtones

of science detract from the suitability of this image.

The image of a basin of tributaries converging at the

mouth of a river has the right overtones but it is not in

general use; the set of routes to a common destination

will be referred to as a bundle of rays.

There will certainly be conflict between flows

into the same destination because the routes will merge

with each other. However the amount of topologically

necessary merging, for a given trip matrix, will be

invariant; it will be

I {T(r, p)*T(s, p))
r, s

78

where the summation is taken over all pairs r and s with r

not equal to s. It will be desirable that the bundles of

routes merge with each other only once. The algorithm can

be adapted to build routes by working backwards from the

destination in such a way that the group travel property

holds, in that once routes have merged they do not diverge

again.

This formulation may actually inhibit the

occurrence of 'mutually beneficial sightseeing' mentioned

in Subsection 3.5.3. Looking back at Figure 9 in

Subsection 4.1.1, if no account is taken of the mergings

with flows into the same destination, the clockwise route

from either Zone 1 or Zone 2 to Zone 7 has a cost of 4,

and the anticlockwise route has a cost of 3. The solution

would therefore switch both these flows to the

anticlockwise route. With the other definition of

subproblems they get trapped on the clockwise route. This

would be a good reason for considering changing the

program to solve subproblems with commodities defined by

destination.

4.3.3 Commodity defined by Q- pair

As explained in Subsection 3.5.3, crossing

conflicts between flows from the same origin could be

accounted for if the problem were defined by O-D pair.

This involves splitting it into n(n - 1) subproblems.

This would increase the amount of computation required.

79

It might be desirable to find a good solution by solving

subproblems defined by either of the two methods already

considered and then separating the flow variables to

correspond to O-D pairs. An enlarged iterative procedure

could then be used to solve subproblems defined by O-D

pair.

4.4 jý QUADRATIC FUNCTION }& SUM QF LINEAR FUNCTIONS

The linear functions which the Out-of-Kilter

algorithm minimises are related to the original quadratic

objective function. If the commodities are defined by

origin, the format of the objective function which uses

the variables FLOW(p, k) for flow from Zone p on arc k,

where arc number k is the arc (i, j), is more compact for

the purposes of this section.

To see how the terms are related, consider the

terms of the quadratic function in detail. Consider the

terms in the product of flows for just one pair of

conflicting arcs m and n. Suppose the problem concerns

flows from 4 origins: "W, X, Y and Z. Denote flows from

these origins on arc m by FLOW(W, m), FLOW(X, m),

FLOW(Y, m), and FLOW(Z, m) and on arc n by FLOW(W, n),

FLOW(X, n), FLOW(Y, n), and FLOW(Z, n) respectively. The

product of flows on this pair of arcs can be shown in a

table. All terms of the sort FLOW(W, m)*FLOW(W, n) are

being neglected because crossing conflicts between flows

from the same origin are being neglected. When these

80

terms are set out in a tabular form, there will be no

diagonal terms. Those terms which will appear in the

linear objective function when flows from origin W are

assigned are indicated by a 'W' in Table 1. The linear

terms are:

[FLOW(X, m) + FLOW(Y, m) + FLOW(Z, m)]*FLOW(W, n)

+ [FLOW(X, n) + FLOW(Y, n) + FLOW(Z, n)]*FLOW(W, m);

The variables in these terms are FLOW(W, n) and FLOW(W, m).

The parts in square brackets are the coefficients; they

take on the values corresponding to the last assignment of

flows from X, Y and Z.

TABLE 1

FLOW(W, m) FLOW(X, m) FLOW(Y, m) FLOW (Z, in)
----------- -----------------------------------

FLOW(W, n) 11 0W; W; W

FLOW(X, n) W

FLOW(Y, n) W; 0

FLOW(Z, n) W;; 0

Denoting the terms that will appear in the linear function

when the trips from X, Y and Z are reassigned by X, Y and

Z respectively, the complete table would appear as shown

in Table 2.

81

TABLE 2

FLOW(W, m) FLOW(X, m) FLOW(Y, m) FLOW(Z, m)

FLOW(W, n) 0- WXWYwz

FLOW(X, n) WX0XYXZ

FLOW(Y, n) WYXY0; YZ

FLOW(Z, n) wzxZ; YZ; 0
--

It will be observed that each non-zero cell has

exactly two letters, indicating that the terms of the

quadratic function will appear in exactly two of the

linear functions which are minimised as the flow from each

origin is assigned. Looked at the other way round, once no

changes have occurred for a complete cycle of reassigning

trips from W, X, Y and Z, the sum of the values of the

linear functions which have been minimised equals twice

the value of the quadratic function.

Now the minimum of a sum of parts is not

necessarily the sum of the minima of the parts,

particularly if those parts are interdependent. However,

the way these parts depend on each other means that there

is no see-saw effect; when the value of one part is

reduced the sum of the values of the others will be

reduced by the same amount. In conflict terms, the flows

from one origin have been reassigned to remove certain

conflicts from the system and the other flows encounter

correspondingly fewer conflicts. Hence the CROWN design

tool produces flow patterns which progressively decrease

82

the value of the quadratic function.

4.5 CONCLUSION

The way the CROWN design tool solves the route

allocation problem is not perfect, but it has been refined

to overcome some of the difficulties encountered in the

other possible methods which were considered. It makes

use of a network algorithm, the Out-of-Kilter algorithm.

This algorithm is described in some detail, in the next

chapter, so that modifications made to it can be

explained.

83

CHAPTER 5

THE ALGORITHM FOR FINDING MINIMUM CONFLICT ROUTES

The iterative process, described in the last

chapter, requires the use of an algorithm to find minimum

cost routes. There are several such algorithms available.

The Out-of-Kilter algorithm was chosen in the first place

because it allows for capacity limitations on the arcs,

which are relevant to traffic assignment. Although this

facility is being by-passed in the prototype tool, it is

intended that capacity restraint should be re-instated as

an option when the CROWN design tool is developed further.

This algorithm may well not be the most efficient one, but

any software house interested in developing the fruits of

this research for commercial purposes would probably use

their own favoured algorithm at the time. The quest for

the most efficient algorithm was not specified as part of

the research project, but the question of efficiency has

not been entirely neglected.

There are those modifications which have been

developed by others to improve the efficiency of the

algorithm as applied to minimum cost assignment problems.

These are documented in the paper by Barr et al. (1974).

They are not incorporated in the CROWN design tool.

Then there are those modifications which improve

its efficiency in solving this particular problem. These

84

are described in Sections 5.5 and 5.6. In a personal

conversation, Dr. Clover (joint author of Barr et al.

(1974)), suggested that the efficiency of the out-of-

Kilter algorithm, when fine tuned to this particular

application, might well be comparable with the efficiency

of other, more general purpose, algorithms.

So that these and other modifications can be

described, this chapter starts with a brief general

description of the algorithm in Section 5.1, before the

mathematical meaning attached to the term 'out-of-kilter'

is explained, in Section 5.2. The way in which the

algorithm searches for a flow augmenting circuit is

described in Section 5.3. A trip matrix does not come

into the general description of the algorithm; the way the

demand for routes can be incorporated is explained in

Section 5.4. The group travel property does not always

hold for solutions found by the Out-of-Kilter algorithm.

The modification to ensure it does hold is described in

Section 5.5. The way in which one of the search routines

is speeded up is described in Section 5.6. The

implications of re-instating capacity restraint in the

design tool are explained in Section 5.7.

5.1 TM OUT-OF-KILTER ALGORITHM

This algorithm finds a minimum cost loading of a

single commodity onto a network, where each arc has a

lower and an upper bound on capacity; flow is conserved

85

through the vertices. It can be used to find a cost

minimising assignment of a single commodity demanded

between certain sources and destinations. The term,

single commodity, implies that the origin of the commodity

is immaterial. In traffic assignment, however, origin

matters, so traffic consists of many commodities. As

already pointed out, in Subsection 4.2.3, all the traffic

either from a common origin or into a common destination

can be treated as a single commodity. The algorithm is

used for trips from one origin at a time, thus solving

the multi-commodity problem by solving a series of single

commodity problems.

5.2 MEANING QE 'OUT-OF-KILTER'

The algorithm functions on a network of one-way

arcs, in which every arc is part of at least one circuit

of connected one-way arcs. Each arc is specified by a

start vertex I, and an end vertex J. Associated with each

arc three further items of data must be supplied. These

are an upper and a lower bound on capacity, and a cost. A

variable flow of a single commodity is associated with

each arc, and it is the sum, taken over all arcs, of the

product flow*cost which the algorithm minimises. In the

more usual network, with sources and sinks, artificial

arcs, and possibly vertices, will have to be specified

which connect up the sinks to the relevant sources in any

network flow problem.

86

Associated with each vertex,

called the dual value or shadow co

programming terms the dual value is

constraint to conserve flow through

these sets of variables are initially

on an arc, and the dual values of

vertices, a net cost can be computed

is defined by

is another variable

st. In mathematical

associated with the

the vertex. Both

zero. From the cost

its start and end

for it. The net cost

net cost = dual value at start vertex
+ cost
- dual value at end vertex.

It may be helpful to think of the dual value at a

start vertex as a buying price, the cost as a

transportation cost and the dual value at an end vertex as

a selling price.

Then

net cost = buying price at start vertex
+ transportation cost
- selling price at end vertex.

This makes economic sense of the 'Out-of-Kilter' idea; if

the net cost on an are is positive, then only enough flow

to satisfy the lower bound (LB) of flow should be assigned

to it. But if the net cost is negative, implying that it

is profitable to use that arc, then the maximum amount of

flow, the upper bound (UB), should be assigned to it. If

the net cost is zero then it does not matter as long as

the flow is within the bounds on capacity. These

87

conditions are shown in what is known as the Kilter

Diagram in Figure 11. At all stages of the algorithm, the

values of the two variables, flow and net cost, can be

plotted as points on a graph for each arc. A line showing

points fulfilling these conditions is called the Kilter

line. If the point is NOT on the Kilter line the arc is

described as 'Out-of-Kilter'.

net cast'
uB

LQ
flew

oomo Kilter line

Fig. 11 The Kilter Diagram

The algorithm starts with zero flows on all arcs,

so strictly positive lower bounds on some arcs are what

drives it. The first step of the algorithm is a search of

the list of arcs until one is found which is 'Out-of-

Kilter'. This first arc will trigger off the next step,

to find a flow-augmenting circuit. The value of flow for

this arc can only be increased if two conditions are met.

The first is that flow will be conserved through all

vertices of the network. The second is that the proposed

increase in flow in the circuit does not put any 'In

Kilter' arcs 'Out-of-Kilter'. All the dual values are

initialised at zero with the result that the first net

costs used are merely transportation costs.

88

5.3
,

SEARCH M8 OW AUGMENTING CIRCUIT

The algorithm starts to build a vine of arcs,

rooted at the end vertex of the 'Out-of-Kilter' arc, and

consisting of arcs which would not be put 'Out-of-Kilter'

by an increase in flow. When an arc has been added to the

vine its end vertex is labelled with the number of its

start vertex. This facilitates the tracing back through

the vine to identify the arcs of a flow-augmenting circuit

when one has been found. As each new arc is added to the

vine and its end vertex labelled, the algorithm tests

whether the start vertex of the 'Out-of-Kilter' arc has

been labelled. If it has, then there is a path through

the vine from its root, the end vertex of the 'Out-of-

Kilter' arc, to the start vertex of the 'Out-of-Kilter'

arc. This path together with the 'Out-of-Kilter' arc

forms a flow-augmenting circuit. The algorithm then

augments the flow on the arcs of this circuit by as much

as is required or at least as much as is permitted by the

upper bounds.

If the algorithm fails to find a flow-augmenting

circuit, the dual values of all vertices not in the vine

are increased by the smallest amount which will enable at

least one arc to be added to the vine. In order to

progress with finding a flow augmenting circuit at this

juncture, this smallest amount, the cost of using this

extra are, has to be accepted in the objective function.

The increase in dual values has the effect of increasing

the selling price but not the buying price on arcs with

89

start vertices, but not end vertices, in the vine. For at

least one of these, the increased differential between

selling price and buying price will reduce the net cost to

zero, and then it can be added to the vine. The search

continues, keeping the cost to reach the tips of the vine

to a minimum, until a flow augmenting circuit is found.

Thus the algorithm ensures that the total cost on the flow

augmenting circuit has been kept to a minimum. The vine-

building process is illustrated in Appendix 5.

5.4 USING Jj ALGORITHM = TRAFFIC ASSIGNMENT.

As explained in Section 3.2, traffic assignment is

an n-commodity problem. As explained in Section 3.5.3,

this algorithm is being used to solve a series of single

commodity problems, the commodity being defined by origin.

In the Circulation System, origins of flow have one-way

arcs out of them but not into them, and conversely for

destinations, so circuits connecting the origin with each

destination node do not exist in this network. To enable

the algorithm to function, an artificial arc must be added

to the network to connect each destination directly to

the origin. The number of trips required between the

origin and that destination is then set as the lower bound

of flow on that artificial arc.

When that arc has been brought 'into Kilter', a

flow satisfying the the demand for trips between that

90

origin and that destination will have been assigned to the

network. Costs for the arcs are based on an incumbent

assignment. By excluding the flows from the origin being

considered, the 'ghost' costs, described in Subsection

4.2.1, can be removed.

5.5 ADAPTATION TQ ENSURE GROUP Ali PROPERTY

Because the trips from only one origin are being

assigned, all the artificial arcs from the destination

vertices will end at that origin vertex. These are the

only 'Out-of-Kilter' arcs, so the vines built to find flow

augmenting circuits will all be rooted at the same vertex.

However, the algorithm builds a fresh vine rooted at the

end of each 'Out-of-Kilter' arc, in order to find a flow

augmenting circuit to bring it into Kilter, but it will

retain dual values between finding one flow augmenting

circuit and the next. This can result in the violation of

the group travel property. In conflict terms this implies

routes from the same origin diverging and then merging

again before diverging to their separate destinations.

This would involve a conflict which is not only

unnecessary but also not taken into account in the arc

costs. The small example of vine-building shown in

Appendix 5 is extended to provide an illustration of

how this can happen, in Appendix 6.

The algorithm is therefore modified to retain

vines between finding one flow augmenting circuit and the

91

next. This is possible because the vines required would

all be rooted at the same vertex, this vertex being the

origin for trips being assigned. At each stage, all tips

of the branches which are not destination vertices will

represent the ends of equal cost routes from the root.

When the next 'Out-of Kilter' arc is considered, its start

vertex will either be in the existing vine or not. if it

is in the vine, a minimum cost path can be traced back to

the root; no further search will be needed to add more

branches, and the time needed to build a new vine from

scratch will be saved. If it is not in the vine, further

branches will be needed, but the addition of further

branches also takes less time than building from scratch.

Retention of vines saves computing time as well as

avoiding unnecessary merging of paths from the same

origin.

5.6 $ TIME-SAVING ADAPTATION

Details of the arcs in the circulation system are

supplied to the algorithm as an ordered set. Those in the

Circulation system will be the same for each run but the

artificial arcs will be different. The loop to identify

the 'Out-of-Kilter' arcs is adapted to test only those

arcs which can ever be 'Out-of-Kilter'. These are the

artifical arcs, and they are put at the end of the list of

arcs so that the loop can be restricted to testing these.

This saves computing time.

92

5.7 CAPACITY RESTRAINT

As explained in Subsection 3.1.1, capacity

constraints are not applied in the prototype tool.

Without them, arcs do not have to be tested for sufficient

spare capacity. The effect of including them is,

therefore, a considerable increase in the time needed for

computation. One can no longer assume that minimum cost

paths already identified have sufficient spare capacity.

Fresh vines would have to be built for each Out-of-Kilter

arc. With the building of fresh vines vehicles from the

same origin might merge with each other. Although this

might be necessary to keep flows within capacity, one

would not want it to happen just because the cost of

merges between vehicles from the same origin did not enter

the cost calculations. In order to include these costs

the problem would have to be split into a subproblem for

each O-D pair. This would multiply the computation time

approximately by the number of zones. The extra time

would not only enable capacity restraint to operate, but

also provide for the cost of crossings between vehicles

from the same origin to be included in the cost

calculations.

5.8 CONCLUSION

With this chapter the description of how solutions

are obtained is complete. The next two chapters concern

the user's interaction with the design tool; firstly his

input and output, secondly his appraisal of the output.

93

CHAPTER 6

THE DESIGN TOOL

The aim of this project is to create the

prototype of a design tool for traffic managers. M. V. A.

Systematica, a software house specializing in transport

modelling, accepted the invitation to collaborate on the

project. Compatibility with their software was borne in

mind during development of the design tool. For a start,

the tool was programmed in the language they use, FORTRAN

77. It was not intended to produce a commercial package

at this prototype stage, but to investigate possible

solution algorithms, and to use the most effective one.

The structure reflects the natural divisions of the

computation required with the use of subroutines. To make

the task of refining the code to professional standards

straightforward, each subroutine is described in comment

lines; further comment lines, charting the progress of the

computations, are included in the longer subroutines. The

structure is built up in layers so that intermediate

results can be easily checked for correctness. Once the

main program had been validated with small networks two

subsidiary programs were written, one to accept relatively

simple input and the other to produce relatively simple

output.

This chapter starts with a brief description of

the structure of the programs in section 6.1. The input

94

required from the user is intended to be simple in

format; it is described in Section 6.2. The design tool

consists of a suite of three programs; the function of

each one, and the way that they are designed to be run one

after the other is explained in Section 6.3. The

interpretation of the output is given in Section 6.4.

These three sections are summarised with a flow chart in

Section 6.5. The CROWN design tool could be adapted to

assess the effects of proposed traffic management measures

on conflict at junctions and on accidents. The necessary

adaptations are detailed in Section 6.6.

6.1 THE STRUCTURE QE = PROGRAMS

Chapter 5 was devoted to a description of the Out-

of-Kilter algorithm which is at the heart of the solution

method. It is used repeatedly with different data sets.

The structure of the main program POLYSEND was therefore

built up by stages, starting with a FORTRAN program, the

subroutine KILTER. The different data sets are prepared

for input to KILTER. The output from KILTER is processed

both to provide interim solutions to the problem and to

modify the input for the next call to KILTER. It is

therefore the data structures for the input to and the

output from KILTER which dictate the form of the

surrounding structures. The design is actually an

'inside-out' design approach.

95

During the course of the program, KILTER is called

on successive occasions for use with different inputs.

Some of these inputs depend on the changes that KILTER

itself has made to the values of some of the variables at

previous calls. An iterative procedure ITERATE manages

these inputs.

6.1.1 The subroutine ITERATE

As explained in Section 5.1, KILTER handles flows

of a single commodity. As explained in Section 4.3, the

prpblem is solved as a series of subproblems. The

subroutine KILTARCS sets up the input for the artificial

arcs, defined in Section 5.4, appropriate to the single

commodity in the current subproblem. The subroutine

GETREADY computes the costs to be used for the arcs in the

current subproblem. It calls a subroutine ARCCOSTS to

compute the cost of using each arc. The solution of each

subproblem therefore involves calls to KILTARCS, GETREADY

and KILTER.

When each subproblem has been solved once, the

value of the objective function is reviewed. As explained

in Section 4.4, this value is the sum of the values of the

linear objective functions minimised in the solution of

each subproblem. The subroutine ZONECOST evaluates the

linear objective functions for each subproblem. It also

calls ARCCOSTS. The subroutine SUMCRASH adds these values

together.

96

6.1.2 Priming fig iterative process

The iterative process has to be primed with a

start-up solution. Some of the subroutines called by

ITERATE are also called to obtain the start-up solution.

The first option the user has is the order in which the

subproblems are solved; a call to a subroutine LOADING

reads this option from the screen. The various options

will be described in Subsection 6.3.2. The second call is

to a subroutine NETWORK which reads the file ARCS. DAT,

produced by the program POLYARCS and described in

Subsection 3.1.1. The option for the order in which the

subproblems are solved is taken up by the subroutine

ASSIGN which then calls LOADFLOW, DARTFLOW, DASHFLOW or

OLDFLOW as appropriate. The subroutines called are

tabulated in Table 3 below.

TABLE 3

SUBROUTINES CALLED BY ASSIGN

LOADFLOW DARTFLOW DASHFLOW OLDFLOW

* * * KILTARCS

* BUILDUP

* * * KILTER

* * * VINES(0)

* * ** SUMMARY

* * TOTALFLO

* * ** ZONECOST

* * ** SUMCRASH

97

LOADFLOW is the only subroutine that uses the

output from previous calls to KILTER; the subroutine

BUILDUP processes this output. The description of VINES

and SUMMARY is deferred until the next section, on output

reports.

6.1.3 Output reports

once iteration has stopped, either because tests

have shown that there will be no further changes in the

flow variables, or because the maximum number of

iterations set by the user have been carried out, the main

program calls a subroutine FINAL. FINAL calls VINES to

record flows from each origin on each arc in the file

FARCFLOW. DAT. VINES(0), called by those subroutines which

find a start-up solution rather than restart with an old

solution, records flows in the file STARCFLO. DAT. A list

of unused arcs is recorded in the file SUMMARY. RPT by

calling the subroutine SUMMARY. The value of the

objective function at the end of each cycle of iterations

is also recorded in this file so that the user can see how

the process of reassignment converged.

6.1.4 71M tiroaram POLYARCS

The structure of this program follows the

structure of the network synthesis algorithm as described

in Section 2.6. It is a top-down tree structure. The

98

subroutine ODVERT creates vertices corresponding to those

links which are zone connectors. The call to ODVERT is

followed by a call to REMVERT which creates vertices for

the remaining links. The program spends most of its time

iterating inside the subroutine MAKEARCS which creates the

arcs of the Circulation System. Finally it calls a

subroutine PRINT to record output to be used for the

program POLYSEND in the file ARCS. DAT, and for the program

POLYLINK in the file ARCLINK. DAT.

MAKEARCS processes the junction re

the subroutine TJUNCTN if the junction has

one of the subroutines MINI4, ROUND4 or

junction has four arms and conditional on

The prototype design tool only processes

four-arm junctions.

cords and calls

three arms, and

XROADS if the

junction type.

three-arm and

The branching structure of the program is shown in

Figure 12. The second level of branching prepares data to

be recorded in the file ARCLINK. DAT for use by the program

POLYZINK. The third level, its iterative nature indicated

by the *, prepares data on the pairs of arcs which

conflict, and on the weights to be attached to those

conflicts. This data is recorded in the file CROSSFLO. DAT

for use by the program POLYSEND.

99

*
C6-CON3RF

C1 TJUNCTN-ARC3LINK

C7-CON3ARC1

C3-MINI4-ALMINI4-----CON4ARC4
ODVERT

C4-ROUND4-ALROUND4----- CON4ARC5 +
LINKVERT PRINT

C2 CS-CON4ARC1

C9-CON4ARC2
C5-XROADS-ARC4LINK

C10-CON4ARC3

C11-CON4ARC6

Conditions for branching.

Cl: 3 arms

C2: 4 arms

C3: mini-roundabout

C4: roundabout

C5: not C3 or C4

C6: mini-roundabout

C7: not C6

C8: free-for-all

C9: priority junction

ClO: signalised junction

Cl].: grade-separated

Fig 12 The structure of POLYARCS

6.1.5 TIM oroaram POLYLINK

This data processing program was designed with a

top-down approach. It reads the files ARCLINK. DAT,

STARCFLO. DAT and FARCFLOW. DAT. It adds up consecutive

100

items of data from the latter two files in DO-loops where

the number of times the loop is executed is determined by

the data in the first file. These sums represent flows on

links of the road network. The results for total flows are

recorded in the files SLINKFLO. DAT and FLINKFLO. DAT, for

start-up flows and final flows respectively. The same

results are sorted into bands according to volume of flow

and recorded in the files SLINKSUM. DAT and FLINKSUM. DAT

respectively. The results for flows segregated by origin

are recorded in the files SLINKTRE. DAT and FLINKTRE. DAT,

respectively. As the only iterations were within single

DO-loops subroutines did not seem appropriate in this

program.

6.2 INPUTTING .= DATA.

The data pertaining to the road network is

entered in the form of a file called LINKS. DAT. The

matrix of trips demanded on that network is entered in a
file called TRIPS. DAT. A set of weights, to reflect the

relative importance of the different types of conflict, is

provided as a default in the program, but the intention is

to give the user the option of using his own set of

weights in the form of a file WEIGHTS. DAT, when the

prototype design tool is developed further. All the record

types used in these input files will now be specified.

101

6.2.1 a LXNKS. DAT file.

This file has been described in Section 2.5; it

is described again here in the context of using the design

tool. The road network consists of nodes and links. The

number of zones, which are origins or destinations of

trips, is denoted by the parameter ZONES. Zones are

connected to the network by connectors either to a node or

to a node created in the middle of a link to terminate the

connector. The connectors function like links, and the

total number of connectors and links is denoted by the

parameter LINKS. The number of nodes, including zones and

any nodes required to terminate connectors, is denoted by

the parameter NODES. The nodes should have distinct

numbers but the order or the existence of gaps in the

numbers is of no significance.

Th-e first record in the LINKS. DAT file is

ZONES, NODES, LINKS.

This will control the DO-loops to read the other records.

The user may wish to postpone entering NODES and LINKS

until the file is complete, when he can deduce from the

line numbers how many links and junctions there are.

The zone records state the number of connectors

from each zone, these numbers being entered in zone order;

each record consists of an integer, the number of zone

connectors for that zone.

102

Ig
,
jig records have a record for each link

starting with the zone connectors in zone order. This

ordering ensures that in the Circulation System the origin

vertex for the rth zone will have vertex number 2r-1 and

the destination vertex for that zone the vertex number

2r. The connectors and links will acquire link numbers

in the order in which they appear in these records. The

user is advised to write in the numbers on a copy of the

road network as a means not only of ticking them off, but

also to assist him in identifying the numbers of the links

which meet at each junction. The format of these records

is -

A-NODE, B-NODE, TW(L).

TW(L) =0 implies link L is one-way from A to B.

TW(L) =1 implies link L is two-way.

In the Junction records provision is made for

seven different junction types. The diagrams for these

appear in Appendix 1. Three of the types require comment

here: free-for-all, grade separated, and user to be asked

for weights. The "free-for-all" junction has no link

given priority; this allows the user to experiment with

the network before deciding on any priorities or other

junction types. The grade separated junction has right-

turning arcs which fly over or pass under the traffic on

the main links so as to avoid crossing conflicts with it.

103

Traffic on the minor links in a four-arm grade separated

junction also flies over or passes under. When the user

designates a junction as "user to be asked for weights"

the intention is that the tool will be developed further

to prompt him for weights to be entered in accordance with

the diagrams given in Appendix 1. The form of these

records is free format -

XION(X), JT(X), NL(X), INJ(X, 1),.... INJ(X, NL(X))

where XION(X) is the node number of the Xth junction in

the road network.

JT(X) is the junction type for that junction with:

JT(X) =1 for a free-for-all junction
JT(X) =2 for a priority junction
JT(X) =3 for a signalised junction
JT(X) =4 for a mini-roundabout
JT(X) =5 for a roundabout
JT(X) =6 for a grade separated junction
JT(X) =7 FOR USER TO BE ASKED FOR WEIGHTS

NL(X) is the number of links at that junction.

INJ(X, 1) is the link number of a minor road meeting
at a priority junction or otherwise an arbitrary first
link meeting at that junction.

Further links meeting at that junction are listed in

clockwise order after the first, so INJ(X, NL(X)) is the

link number of the last link.

6.2.2
,8

TRIPS. DAT file.

This is a standard character matrix file such as

would be created by the MICROTRIPS transport modelling

suite when 'dumping' a matrix in a file. The format is as

104

follows:

Columns Contents
1 -6 Zone number
7 - 12 Cell value for first column

13 - 18 Cell value for second column
19 - 24 Cell value for third column

73 - 78 Cell value for twelfth column.

If there are more than twelve zones in the matrix, then

each matrix row will spill over onto additional records.

The first record for each matrix row will contain values

for columns 1 to 12 of the matrix; the second record will

contain values for columns 13 to 24 etc. Each zone will

start on a new output record.

6.2.3 hit WEIGHTS. DAT file.

This file will be optional; it will allow the

traffic manager to apply his own set of standard weights

to the various conflicts in different types of junctions

instead of the set of default weights provided in the

program. Appendix 1 shows which arguments in the

appropriate arrays apply to the different types of

conflict.

105

6.3 RUNNING M PROGRAMS

6.3.1 vroaram POLYARCS.

The first program in the suite, POLYARCS,

synthesises the specification of the Circulation system

from the details of the road network supplied by the user

in a file LINKS. DAT. It may happen that the records in the

LINKS. DAT file are inconsistent. If this is the case, the

program cannot continue; it will stop with aa message on

the screen:

"Mistake in LINKS. DAT file for junction ."

"Check your LINKS. DAT file and start again. "

The user will have been directed to the scene of the

inconsistency. The way such errors are detected has been

explained in Appendix 3. If there are no inconsistencies,

the program will complete the specification of the

Circulation System and output the details to a file

ARCS. DAT.

The program will proceed to prepare a list, for

each arc, of those arcs conflicting with it, and a list of

matching weights from the arrays WT3 and WT4 for each of

those conflicting arcs. These lists are output to a file

CONFLICT. DAT. These two files, ARCS. DAT and CONFLICT. DAT,

will be used by the next program POLYSEND.

106

The program also identifies the first and last

numbers of those arcs which between them will carry all

the flow in one direction along each link of the road

network. These details, which are needed for translating

results in terms of flow on the arcs of the Circulation

System into flows on the links of the road network, are

output in a file ARCLINK. DAT. This file will be needed by

the final program POLYLINK.

6.3.2 The program POLYSEND.

The second program, POLYSEND, is the route

assignment program. It uses three files: ARCS. DAT,

CONFLICT. DAT, created by POLYARCS, and TRIPS. DAT which has

been prepared by the user. The user will be asked to

input certain parameters as follows:

The parameter INIT controls which of the four methods

of obtaining an initial assignment to prime the

iterative process is to be used. These different

methods have been described in Section 4.1.

INIT =0 if LOADFLOW is to be the initial assignment
INIT =1 if DARTFLOW is to be the initial assignment
INIT =2 if DASHFLOW is to be the initial assignment
INIT =3 if OLDFLOW is to be the initial assignment.

The parameter MAXITRN is the maximum number of

iterations the user wants the program to run for. (It

has been found that beyond about the third iteration

the improvements, per complete iteration, in the

objective function amount to less than 1% of its value

for the initial assignment.)

107

The user will then be asked to if he wants to

specify the order in which he wants the subproblems to be

solved by giving answers as below:

I for numeric order of zones,
2 for an order he will be asked to input
3 for a random order, for which he will be asked to

input an integer seed to prime the random selection.

His selection will set up a correspondence between problem

number and zone number. The order in which the

subproblems are solved can have an effect on the outcome

of the program.

POLYSEND prepares two files for the third program,

POLYLINK, to give the user the opportunity to analyse

results both for the initial assignment and for the final

assignment. The flows assigned in the initial assignment

are output in the file STARCFLO. DAT; those for the final

assignment are output in the file FARCFLOW. DAT.

POLYSEND summarises the run, with details of the

order of assignment and of the values of the objective

function after each complete iteration. This summary is

written to the file SUMMARY. RPT.

6.3.3 The nrocram POLYLINK

When the user runs POLYSEND for the first time,

with a particular combination of network and trip matrix,

he will have no idea whether the options he has chosen are

108

giving rise to one of the more efficient solutions or to

one of the less efficient solutions. Several runs with

different orders of assignment and perhaps different

values of INIT are recommended. He could then select the

best solution and either use it as input to POLYLINK

straight away or use it as OLDFLOW. DAT, with INIT = 4, to

improve it for a few more iterations of POLYSEND.

POLYLINK converts the results obtained by

POLYSEND, which are in terms of volumes of flow on the

arcs in the Circulation System, to volumes of flow on the

links of the road network. It produces two sets of files,

one for the initial assignment and the other for the final

assignment. Two files in each set give total flows on

links, separately in each direction. One has the links in

link order and the other has them sorted into bands

according to the level of total flow. A third file shows

the assignment of trips from each origin separately,

listing volumes of flow from each origin in link order.

The set of files with filenames beginning with S (for

Start-up) give the results for the initial assignment.

These may serve as a benchmark for comparison with the

final assignment, which has been made with the aim of

reducing potential conflict between streams of traffic.

The set with filenames beginning with F (for Final) gives

the results for the final assignment. The finer details of

their contents are described in the next section.

109

6.4 INTERPRETING THE OUTPUT.

POLYARCS produces three output files for use by

the other programs. Although they are formatted files

they are not intended to be read by the user; a readable

format was useful for checking the program during

development. POLYSEND produces three output files only

one of which is intended to be read by the user. POLYLINK

produces six output files.

6.4.1 Ia file SUMMARY. RPT

The file SUMMARY. RPT summarises a run of the

program POLYSEND. First it gives the order in which the

subproblems were solved. Second it gives the value of the

objective function after each complete cycle of iteration.

Third it lists unused arcs. These correspond to turning

movements which are not used in the efficient routeing

pattern. The program could be enhanced to make it easier

to identify these by expressing them as a series of three

junction numbers, rather than as their start and end

vertex numbers. An analysis has been made of the unused

turning movements in Section 7.7. The banning of unused

turning movements would be consistent with the efficient

routeing pattern, and it would push traffic towards that

pattern.

6.4.2 The files SLINKSUM. DAT d FLINKSUM. DAT.

These files, produced by POLYLINK, summarise the

results in terms of total flows on the links, with the

flows sorted into bands to show those links with bigger

110

volumes of flow distinctly from those with lighter flow.

The first table is of unused links. The flows

into destinations will be shown as zero; the reason for

this and a way of overcoming this anomaly were given in

Subsection 2.5.7.

Those links used only in one direction are either

one-way streets already or would make good candidates for

one-way streets which are consistent with the efficient

routeing pattern. To some extent they would push the

traffic towards that pattern.

Subsequent tables have

and then start node, end node,

plot of these link flows onto a

displayed on the screen, if the

a graphics environment, would

first impression of where the t;

headings giving the bands

and the volume of flow. A

diagram of the network or

programs were to be run in

give the traffic manager a

raffic was concentrated.

6.4.3 The files SLINKFLO. DAT and FLINKFLO. DAT.

These files list in link order the total flows in

each direction on each link. They contain exactly the

same information as SLINKSUM. DAT and FLINKSUM. DAT but in

link order rather than sorted into bands. These files

would be more appropriate than SLINKSUM. DAT and

FLINKSUM. DAT if one wanted to look at a particular link,

111

to see how near to capacity it was, for instance.

6.4.4 The files SLINKTRE. DAT and FLINKTRE. DAT.

These files, produced by POLYLINK, decompose the

volumes of flow according to their origin. They consist of

tables which are lists, for every link used and in each

direction, of the flow from the origin named in the

heading to the table. Again flows into destinations will

be shown as zero by default. Plotted onto a diagram of

the network these routes form a vine. Certain features of

the routes may stand out, and comparison of the vines for

the initial flows and for the final flows may give the

traffic manager insight into desirable changes to

encourage. The move to a graphics environment would be

much more rewarding than any attempt to give these vines

in terms of consecutive nodes along the paths from the

origin to each destination as an aid to plotting.

112

6.5 FLOW DIAGRAM ýQg Ijý SUITE QX PROGRAMS

The Road Network
LINKS. DAT
prepared by user

The Weights file
WEIGHTS. DAT
optional,

prepared by user.

POLYARCS
Synthesises the Circulation System

ARCLINK. DAT ARCS. DAT CROSSFLO. DAT

The trip matrix
TRIPS. DAT
prepared by user

POLYSEND
Assigns traffic to routes on the
Circulation System.

. RPT1 1 STARCFLO . DATI IFARCFLOW . DA

POLYLINK
Converts routes on arcs of the Circulation System
to routes on links of the original Road Network.
Allocates links to bands according to total flow.

Start-up flows Final flows

SLINKFLO. DAT FLINKFLO. DAT
Total flows in link order

SLINKSUM. DAT FLINKSUM. DAT
Total flows on links sorted into bands

SLINKTRE. DAT FLINKTRE. DAT
Flows from each origin in link order.

113

6.6 ASSESSING TRAFFIC MANAGEMENT MEASURES.

Drivers react, over a period of time, to changes

in traffic management measures. The routes they choose

are forecast using conventional route assignment programs

which imitate the criteria they use for route choice.

From such programs, the redistribution of traffic vis-a-

vis capacity and the effect on journey times can be

forecast. The CROWN design tool could be adapted to

assess the likely effect of these changes on the amount of

conflict at junctions, and the potential for accident.

To assess the effect on the amount of conflict,

total turning flows would have to be accessed from a

conventional assignment package. A new subroutine would

be required to read in these turning flows and convert

them to flows on the arcs of the Circulation System. This

subroutine could then call ZONECOST and SUMCRASH to

compute the total amount of conflict which is a simple

proxy for both the potential for accidents and for noise

and air pollution.

The design tool also has the potential for

adaptation so that the costs on arcs of the Circulation

System are computed using accident predictive relations,

such as those recently developed at the Transport and Road

Research Laboratory. Adapted in this way, it could then

be used for assessing the predicted number of accidents

for a given flow pattern (Wackrill 1990).

114

6.7 CONCLUSION.

The CROWN design tool has relatively simple input.

In its prototype version, it can be used to guide the

traffic manager with respect to some of the management

measures he uses. It has the potential for enhancement so

that it could be a useful adjunct to existing traffic

modelling packages. Care has been taken with programming

so that distinct functions are performed by separate

subroutines. The source code is given in Appendix 7.

This general description of how it might be used will be

followed, in the next chapter, with some results to

demonstrate its performance.

115

CHAPTER 7

SOME RESULTS TO DEMONSTRATE PERFORMANCE

Experiments with the design tool to show both how

well it performs, and how it can help with traffic

management problems are described in this chapter. These

experiments were carried out during the course of the

project, some before the facility for weighting conflicts

was installed and some with weighted conflicts. The

simple default weighting of 1 for a merge, 2 for a

crossing, and 3 for interlocking right turns, is used

when weighted conflicts are referred to. The test

networks used are described in Section 7.1. During the

iterative process, the program progressively disentangles

the routeing pattern to reduce the total number of

conflicts; examples to show how quickly this process

converges are given in Section 7.2. The user is offered

various options for finding a start-up solution, to prime

the iterative process. As shown in Section 4.1, the

LOADFLOW method is very sensitive to the order in which

trips are assigned from the various zones, so comparisons

of performance, in Section 7.3, are restricted to the

other two methods, which are not affected by the order of

assignment. The DARTFLOW method and several test networks

are used to investigate the effect of order of assignment

on the reduction in conflict that is achieved at each

iteration; the results are given in Section 7.4. This is

followed with a study of the effect on traffic

distribution, of some of the routeing patterns obtained,

116

in Section 7.5. Then, in section 7.6 some spatial

features of the routeing patterns obtained are analysed.

These are the patterns the CROWN design tool identifies as

efficient in reducing conflict. Traffic engineers may not

be in a position to impose such patterns on the traffic,

but they can take measures which would reinforce such

patterns; the designation of one-way streets and the

banning of particular turning movements are such measures.

In Section 7.7, the extent to which the patterns indicate

the places in the network where such measures would be

appropriate is demonstrated.

7.1 TEST NETWORKS.

Some cities are actually built on a square grid

pattern, so such a pattern is one obvious choice for

idealised networks. These networks also have four-fold

symmetry, so for every zone, except the centre zone, there

are three others like it. When one attempts to quantify

some characteristics of the routeing patterns there will

be four which in theory should correspond to each other.

The three idealised road networks used are

described first. They are extensions of one another. The

first is a4 by 4 square grid with 16 zones inside

the 16 blocks, each being connected to the midpoints of

the sides of its block. The number of trips required for

each O-D pair was set as inversely proportional to the

117

road distance between them. This network and the

corresponding trip matrix were extended to a5 by 5

square grid. In reality, traffic enters and leaves a city

across what is effectively an orbital ring road, so this

network was extended further by the addition of external

zones on continuations of the grid lines beyond what had

been the boundary road. To increase the realism further,

the junctions on the outer ring were modelled to allow

right turning traffic to avoid crossing conflicts with the

traffic on this ring road. This extended network is

called "M25" in acknowledgement of its faint similarity to

the orbital road around London. Two trip matrices were

devised for it: one to represent the morning peak and the

other the evening peak. The demand for trips between

internal and external zones was assumed to be independent

of distance between them and similarly for a small demand

between external zones. The relative sizes of the non-

diagonal elements in these trip matrices are indicated in

Table 4.

TABLE 4

TRIP MATRICES FOR THE M25 NETWORK

Morning peak Evening peak

To External Internal External Internal
zones zones zones zones

From
External 10 40 10 10

zones

Internal 10 Average 40 Average
zones = 40 = 40

118

The real network and trip matrix used are for

Hazel Grove near Manchester. The road network has 68

junctions and 127 links and the trip matrix is for 33

zones. Only 17 of these junctions are cross-roads and

the rest are T-junctions, a very different structure to

the grid networks with their predominance of crossroads.

The relative sizes of the elements in the trip matrix are

indicated in Table 5. Most of the traffic is between

external zones and very little indeed between internal

zones for the particular trip matrix available for this

network. This, again, is rather different from the

matrices created for the M25 network.

TABLE 5

TRIP MATRIX FOR HAZEL GROVE

To External
zones

From
External Average = 36

zones Range 0- 360

Internal Average = 12
zones Range 0- 230

Internal
zones

Average = 10
Range 0- 120

Average =1
Range 0- 10

7.2 CHANGES Tja VALUE QE = OBJECTIVE FUNCTION.

To demonstrate how fast the value of the objective

function changes, the DARTFLOW method was used to obtain a

start-up solution and experiments made with three

networks. Changes in the value of the objective function

for unweighted conflicts, occurring in each complete cycle

of iterations, are shown as a percentage of its value at

the start-up assignment. These are given in Table 6.

119

TABLE 6

PERCENTAGE CHANGES IN THE VALUE OF THE OBJECTIVE FUNCTION

4 by 4 grid 5 by 5 grid Hazel Grove
After

1 cycle 43 49 17
2 cycles 5 4 3
3 cycles 0.6 0.5 2.5
4 cycles 0.2 0.3 1.5
5 cycles 0.05 0.08 0.5

This table would seem to indicate that it is only

appropriate to do about five complete cycles of re-

assignments.

7.3 T
,E

EFFECTS QE M STARTING ASSIGNMENT

The effects of the two start-up methods which are

not affected by the order of assigning trips are compared.

The methods are DARTFLOW, which minimises the number of

junctions used on a route, and DASHFLOW which minimises

the number of conflicting streams of traffic encountered

on a route regardless of the amount of traffic in those

streams. The number of conflicting arcs is an attribute

of each arc which is recorded for another purpose and

therefore available for this purpose. Results with these

two methods, with weighted conflicts, on the Hazel Grove

network, are shown in Table 7.

120

TABLE 7

THE EFFECTS OF START-UP SOLUTION WITH HAZEL GROVE

DARTFLOW DASHFLOW
Start-up 60.5 59.6

After 2 cycle 49.2 49.1
2 cycles 46.8 47.3
3 cycles 45.9 45.9

Weighted conflicts in millions correct to 3 sig. fig.

DASHFLOW is better to start with, but gives rise

to a worse value than DARTFLOW by the end of the second

cycle and is then equally good by the end of the third

cycle. It is also noticeable that at all stages the

differences only showed in the third significant figure.

7.4 IJ, EFFECTS QZ ORDER QE ASSIGNMENT

Two experiments, in which the order of re-

assignment is varied, are carried out using DARTFLOW as

the start-up method. In the first one with the smaller, 4

by 4 grid network, the facility for generating random

orders of re-assignment is used to obtain five such random

orders. The program is run until there would be no

further changes in the objective function for unweighted

conflicts. Different final values are obtained for the

objective function with the different orders of

assignment; one might be a global optimum but the others

must be local optima. These random orders are given

numbers in descending order of eventual merit; the results

are shown in Table S. There is not much difference

between the values of the objective function at the

121

various local optima.

TABLE 8

RANDOM ORDERS OF RE-ASSIGNMENT WITH THE 4 BY 4 GRID

Order no. 12345

Start-up 3192288 3192288
After
1 cycle 1783282* 1794012
2 cycles 1619471 1619109*
3 cycles 1603598 1602653
4 cycles 1593551* 1599153
5 cycles 1589246* 1596234
6 cycles 1587654* 1591325
7 cycles 1587474* 1589450
8 cycles 1587492* 1589250

3192288 3192288 3192288

1806858 1804978 1834255
1629345 1667849 1624815
1602355* 1621859 1603765
1599005 1599819 1601927
1598135 1597521
1597115
1596115

* best result at this stage.

For the second experiment, the bigger 5 by 5

network was used and trips were assigned in an order

related to the spatial layout of the zones at which they

originated. These orders are described in words here, and

their meaning shown in Figure 13. The simplest order

starts in the top left-hand corner and works across the

rows of the grid as one reads a page of English script;

this is called order No. 1. Order No. 2 starts in the top

left-hand corner and works down the columns of the grid.

Order No. 3 starts off like order No. 1 but then spirals

in clockwise to the central zone. Order No. 4 starts off

like order No. 2 but then spirals in anti-clockwise to the

central zone. Order No 5 starts at the central zone and

spirals out clockwise to finish in the top right-hand

corner. Order No 6 starts at the central zone and spirals

out anticlockwise to finish in the top left-hand corner.

122

Order No. 1
down rows from left.

12345
6789 10

11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

Order No. 3
clockwise spiral in.

12345
16 17 18 19 6
15 24 25 20 7
14 23 22 21 8
13 12 11 10 9

Order No. 5
clockwise spiral out.

21 22 23 24 25
20 789 10
19 612 11
18 543 12
17 16 15 14 13

Order No. 2
along columns from top.

16 11 16 21
27 12 17 22
38 13 18 23
49 14 19 24
5 10 15 20 25

Order No. 4
anti-clockwise spiral in.

1 16 15 14 13
2 17 24 23 12
3 18 25 22 11
4 19 20 21 10
56789

Order No. 6
anti-clockwise spiral out.

25 24 23 22 21
10 987 20
11 216 19
12 345 18
13 14 15 16 17

Fig. 13 Geometric orders of assignment for the 5 by 5 grid

The program was run for three complete cycles of

iteration; the results, with numbers of unweighted

conflicts, after each cycle of iterations, are given in

Table 9.

TABLE 9

GEOMETRIC ORDER OF ASSIGNMENT WITH THE 5 BY 5 GRID

Order Start-up after -
1 cycle

1 39968016 23173468
2 39968016 22730166
3 39968016 22877552
4 39968016 21928642*
5 39968016 25601850
6 39968016 24959956

2 cycles
20550060
20455650
20506156
20268430*
20661382
20605034

* best result at this stage.

3 cycles
20187722
20170602
20207414
20077082*
20225182
20152354

123

Anti-clockwise spiralling in gives the best

result, and anti-clockwise spiralling out the second best

result. Order No. 2, which starts off anti-clockwise is

third best. One wonders whether, if the Circulation

System had been created for driving on the right, the

corresponding clockwise order of assignments would have

been better.

7.5 TK THAT TRAFFIC U DISPERSED

The total flows on links show where the traffic

is concentrated in the routeing patterns. The patterns

found for three networks are analysed.

Assignment in the 'anti-clockwise spiralling in'

order gave the best result with the 5 by 5 grid, so

the program was run with this order for 10 cycles of

iteration, and with weighted conflicts, in an attempt to

achieve a really good solution. In the course of the

tenth cycle the objective function only improved by

0.00015 % of its value at the start of the iteration.

When the total flows were analysed, it was noticed not

only that traffic is concentrated on the outer ring, but

also that on all links in the outer ring the clockwise

flow is about twice as heavy as the anti-clockwise flow.

For the M25 network, the traffic is again

concentrated on the outer ring but it is fairly evenly

distributed between clockwise and anticlockwise flow.

124

For the Hazel Grove network, most of the traffic

is concentrated on a central spine but much is also

concentrated on the outer ring.

7.6 SPATIAL PROPERTIES QE = ROUTEING PATTERNS

The tendency of the routeing patterns to favour

clockwise or anticlockwise orbital routes is illustrated

with the M25 network and weighted conflicts. Just four of

the 90 diagrams of trees of paths, which were drawn from

each of the 45 zones and for morning and evening trip

matrices, are selected for this purpose. They are shown

in Figures 14 to 17. The convention, common in electrical

diagrams, that paths which do not interfere with each

other are shown with a 'bridge' or a curve, is used. The

reader may recall that the junctions on the outer ring

road were modelled with flyovers, so that there are no

crossing conflicts for traffic on this outer ring. The

tree and not the underlying road network is shown for the

sake of clarity. The origin zone is shown by a circle and

the destination zones as arrowheads.

This tendency, to use clockwise or anticlockwise

orbital routes is analysed for all 90 of the diagrams

referred to above. The way paths were selected to

contribute to the totals in this analysis is illustrated

with reference to Figures 14 to 17. In the analysis it

was noted that the path used along the outer ring is not

125

always the shorter of the two possible paths. For zones

diametrically opposite each other, it is also interesting

to observe whether the orbital path used is clockwise or

anticlockwise. Further details of this analysis, which is

shown in Table 10, are given following the figures showing

the routeing patterns.

34 3T

Fig. 14 Paths from internal Zone 2: morning trips

The routeing pattern in Figure 14 contributes

(the path to zone 24) to the count, in Table 10, of 11

126

paths from internal zones to internal zones which use the

outer ring anticlockwise. It contributes 2 (the paths to

zones 38 and 39) to the count of 19 paths from internal

zones to external zones which use the outer ring

clockwise.

3t

Fig. 15 Paths from internal Zone 21: evening trips

The routeing pattern in Figure 15 contributes 1

(the path to zone 5) to the count, in Table 10, of 11

paths from internal zones to internal zones which use the

outer ring anticlockwise. it contributes I (the path to

127

zone 32) to the count of 7 paths from internal zones to

external zones which use the outer ring clockwise.

3c 37

Pig. 16 Paths from external Zone 26: morning trips

The routeing pattern in Figure 16 contributes 1

(the path to zone 25) to the count, in Table 10, of 14

paths from external zones to internal zones which use the

outer ring clockwise. It contributes 3 (the paths to zones

36,37 and 38) to the count of 56 paths from external

zones to external zones which use the outer ring

128

clockwise.

38 3'1

Fig. 17 Paths from external Zone 26: evening trips

The routeing pattern in Figure 17 contributes 2

(the paths to zones 24 and 25) to the count, in Table 10,

of 24 paths from external zones to internal zones which

use the outer ring clockwise. It contributes 3 (the paths

to zones 36,37 and 38) to the count of 56 paths from

external zones to external zones which use the outer ring

clockwise.

129

In the analysis which follows only four categories

of paths are considered. First those paths between pairs

of zones just inside the outer ring, referred to simply as

internal zones, will be considered. Paths to or from

zones further inside the outer ring were not considered

because they tend to be direct, and paths using the outer

ring seem more interesting. Secondly, paths from internal

to external zones are considered; thirdly, paths from

external to internal zones; and lastly paths between pairs

of external zones.

When these paths use the outer ring, only those

using the longer orbital path are analysed. In the case

of paths between diametrically opposite zones, all those

using the outer ring are analysed. The analysis is to

find how many of these paths use the orbital route

clockwise and anticlockwise. This analysis is made

separately for morning and evening peak trip matrices.

The analysis is shown in Table 10.

130

TABLE 10

ANALYSIS OF PATHS FOR THE M25 NETWORK

Morning peak

Paths for zone types cw. acw.

Internal to internal 6 11

Internal to external 19 1

External to internal 14 2

External to external 56 0

cw. = clockwise. acw. = anticlo ckwise.

Evening peak

cw. acw.

5 11

7 3

24 0

56 0

For paths between pairs of internal zones, about

twice as many use an anticlockwise route as use a

clockwise route for both morning and evening peak

matrices. In contrast, paths between pairs of external

zones are all clockwise.

The paths from internal zones to external zones

tend to use clockwise orbital routes more than

anticlockwise. This tendency is much more marked in the

morning than in the evening. In the morning the flow from

internal to external zones is lighter than it is in the

evening.

The paths from external zones to internal zones

also tend to use clockwise orbital routes more than

anticlockwise. This tendency is much more marked in the

evening than in the morning. In the evening the flow from

131

external to internal zones is lighter than it is in the

morning.

There does not seem to be a simple explanation of

why these tendencies are affected by the difference in the

trip matrices in the way they are. Two changes have been

introduced between the morning and evening trip matrices;

the internal to external demand has been increased from

10 to 40 trips per O-D pair and the external to

internal demand has been decreased from 40 to 10

trips per O-D pair. The next step to establishing an

explanation would be to make these changes one at a time.

The intermediate step might represent a mid-day trip

matrix. Further steps would then involve making the

changes more gradually.

For the Hazel Grove network a similar analysis of

the tendency of paths to use the outer ring in the

clockwise or anticlockwise direction is made. Only one

trip matrix was available and it was very skewed in that

very many of the trips were destined for one part of the

network. The lack of symmetry in the network and the skew

in the matrix preclude much deduction from the analysis.

In this assignment, paths make significant use of the

central spine so these paths are given a place in the

analysis as well as those which use the outer ring. The

results of the analysis are shown in Table 11.

132

TABLE 11

ANALYSIS OF PATHS HAZEL GROVE

Along outer ring

Paths for zone types Spine cw. acw.

Internal to internal 48 11 30

Internal to external 46 52 73

External to internal 22 2 8

External to external 55 31 45

cw. = clo ckwise. acw. = anticlockwise.

The Hazel Grove trip matrix is dominated by trips

between pairs of external zones; just the opposite to the

model trip matrix created for the M25 network. Another

major difference is that junctions on the outer ring of

the M25 network were modelled with flyovers whereas no

junctions in the Hazel Grove network were modelled that

way. These differences are too great for much weight to

be attached to any consistency in tendencies to use the

outer ring clockwise or anticlockwise. It was however the

fairly marked tendency to use the outer ring anticlockwise

in the Hazel Grove network which prompted the analysis of

the M25 paths. In the latter case this tendency was only

evident for paths between pairs of internal zones.

There are many spatial properties of the vine of

routes from a common origin. In nature, trees can be

classified according to the way their branches spread out.

In fruit culture, certain formations are actually

133

encouraged. The vines which the CROWN design tool creates

are two-dimensional and the ones analysed here have two

main branches curving round the outside. These main

branches sometimes extend over the top. The magnitude and

direction of such extensions is the property analysed

above.

To analyse a property one has to be able to define

it and count its occurrence. In the course of the project

other spatial properties relevant to traffic were

analysed. One was the tendency of the tips of the vines

to terminate in a left turn or a right turn. Another was

the tendency of the branches to pass clockwise or

anticlockwise round blocks. As no clear pattern was

emerging the analysis is not recorded here.

The effect of choosing minimum conflict routes is

to avoid some turning movements altogether; an analysis of

the unused turning movements is included in the next

section.

7.7 TRAFFIC CONTROL MEASURES

The interest in the unused turning movements

centres on the fact that they indicate streets whose

capacity could be increased by being designated one-way,

and turns which could be banned. These traffic control

measures would reduce conflict locally and might encourage

drivers into more efficient routeing patterns. They are

134

consistent with the pattern found by the design tool. The

simple weighting system used did not reflect any priority

at junctions, so the routeing patterns suggest where the

priorities should be rather than vice versa.

7.7.1 Analysis SLf proportions 9& unused elements

The unused elements are analysed both in terms of

numbers of links which could be made one-way, and in terms

of the numbers of unused turning movements segregated by

T-junction and crossroads. The data are given in Tables

12 and 13.

TABLE 12

M25 NETWORK WITH EVENING PEAK TRIP MATRIX

Number of links used only one way: 2 out of 240.

Unused turning movements: 166 out of 1032,

at crossroads: 37 left turns

43 straight on

86 right turns

at T-junctions: none.

TABLE 13

HAZEL GROVE

Number of links used only one way: 16 out of 127.

Unused turning movements: 142 out of 501,

at crossroads: 20 left turns

27 straight on

32 right turns

at T-junctions: 12 left turns

51 right turns.

135

In the Hazel Grove network about a quarter of the

possible turning movements are not used compared with only

about a sixth in the M25 network.

7.7.2
,
fig locations

, Q& unused elements

The actual location of these unused movements is

more interesting for the Hazel Grove network; the streets

which could be made one-way are shown in Figure 18.

These streets are marked with a single arrow to

distinguish them from the two streets which the local

authority has already designated as one-way; the latter

are marked with a double arrow. The design tool has

effectively 'created' three one-way circulatory systems

and six other one-way streets.

136

Fig. 18 One-way streets for Hazel Grove

137

The location of unused turning movements in the

Hazel Grove network shows how conflicts are avoided. The

road joining two of the one-way circulation systems

exhibits an interesting feature. This part of the road

network is shown in Figure 19. The four T-junctions,

shown by a circle, are examined in detail. The

Circulation System for these four junctions is shown in

Figure 20, with the unused movements shown distinctly.

There are no crossing conflicts at these junctions. The

design tool has effectively turned this road into a dual

carriage-way.

138

Fig. 19 Two one-way circulatory systems for Hazel Grove

1

<Li

k 41 -\

i

TI t ýC'ý

/\ (\U
-0 \ YO ,

/%

-}-- used arcs
--ý- unused arcs

Fig. 20 The Circulation System for four T-junctions

139

The spatial distribution of the total flows was

described in Section 7.5, but one aspect of that

distribution is more appropriately described in the

context of the one-way streets 'created' by the CROWN

design tool. There are several blocks of streets where

most of the traffic is flowing clockwise round the block.

There is one block, sharing a link with one of these

clockwise blocks, where most of the traffic is flowing

anticlockwise. These features may remind one of eddies in

a fluid. They are shown in Figure 21.

140

Fig. 21 'Eddies' of traffic in Hazel Grove

141

7.7.3 Designing traffic control measures

The design tool gives the traffic manager the

details of a routeing pattern which reduces conflict for

the given road network and trip matrix. The results could

be used to design traffic management measures which would

encourage drivers to use those routes. That encouragement

could range from automatic route guidance to local

measures which force or encourage drivers to use one

street rather than another.

The presently available method of direct route

guidance is by signposts. The diagrams one can draw from

the output in the file FLINKTRE. DAT show the vines of

routes from each origin and thus the route which should be

taken to each destination. Hierarchical signing on

hierarchical networks could go some way to directing

traffic onto these routes; it would tend to compress

traffic onto single routes rather than multiple routes.

Automatic on-board route guidance is being

developed for trial in the London area. The most obvious

criterion for the choice of route would be minimum journey

time,, especially in view of the fact that current link

times reflecting the effect of any incident or roadworks

could be fed to the on-line computer, and the advised

routes updated accordingly. This obvious choice may not

be the best either for reducing the level of congestion

occurring in the system or for safety at junctions. The

routes found by the CROWN design tool have much to commend

142

them as an alternative to those found to mimimise journey

time.

The one-way streets found by the design tool would

force drivers towards the desired routeing pattern. Their

likely effect on traffic movements could be tested using a

conventional traffic assignment program. The unused

turning movements could be banned, again forcing drives

towards the desired routing pattern. Their likely effect

could be tested by heavy turn penalties in a conventional

assignment program.

Drivers could also be encouraged towards the

desired routeing pattern by various means. When changes

are made, those who regularly use the network are expected

to discover the improvements and switch their routes to

make use of them over a period of time. The capacity of

particular roads and junctions can sometimes be increased.

Those roads where an increase in capacity could be

expected to provide indirect guidance could be identified

from the plot of the results in the file FLINKSUM. DAT.

Capacity can be increased by widening the road or

restricting on-street parking.

The capacity of junctions can be increased both by

channelling traffic appropriately and by preferential

signal timings. Shifts in signal offsets and cycle

143

timings which reduce the delay for existing traffic flows

are identified by using programs, such as TRANSYT and

SCOOT. Those involved in managing traffic where there are

either co-ordinated or isolated traffic signals already

realise that shifts which affirm the existing flows may

not be most beneficial in reducing congestion. However,

the flows used as input to TRANSYT do not have to be

existing flows; there is no reason why an alternative set

of flows, such as those provided by the CROWN design tool,

could not be used. TRANSYT would then optimise the

performance index for these flows. If the resulting

shifts were implemented, drivers might well find shorter

queues where conflict minimising routes produced the

heavier flows. They might even respond by trying out an

alternative route. In this way the traffic manager could

break away from his present passive response to existing

flows.

7.8 CONCLUSION

The design tool has been tested with several

networks. It finds routes to reduce the amount of

conflict between streams of traffic at junctions by using

less direct routes for some of the traffic. The iterative

process converges rapidly. Single cycles of iteration

with these networks take between 20 and 40 minutes each.

In further development of the design tool, an attempt will

be made to reduce these times. The resulting values of

the objective function are only slightly sensitive to the

144

options chosen for a particular run.

Examples have been given of the kinds of insights

into solutions to the traffic management problem which

have been made possible with the development of this tool.

The tool has been demonstrated with a real network and

with idealised networks. The tool can be used, in a

general way, to help us explore the routeing potential for

different types of network.

145

CHAPTER 8

CONCLUSION

8.1 I VISION REALISED

Various mathematical programming methods for

solving the problem to find conflict minimising routes

were investigated. The objective was to develop a method

which would work reasonably well under realistic

conditions. As a result of the investigation, the

heuristic method for improving a start-up assignment of

traffic was chosen. Two particular hindrances to this

improvement were identified. One is the effect of what

were called 'ghost costs'; these were easy to eliminate.

The other is what was called 'mutually beneficial

sightseeing'. The opportunity for this to occur might be

reduced by redefining the subproblems, which are solved

during the iterative process; one could try defining each

subproblem as involving traffic with a common destination

rather than a common origin.

The second formulation for solution by ILP showed

up the way that the topology of the network restricts

paths whose end points are fixed so that there is a

certain amount of conflict between them; the conflict

between a pair of paths can be split into topologically

essential conflict, a path conflict and a path pair

conflict.

146

Once the heuristic method had proved satisfactory

for small test networks, it was tried out with bigger and

realistic networks. The effort involved in preparing a

complete specification of the Circulation System from a

road network diagram might deter practising traffic

engineers from using the design tool. An algorithm was

designed to perform this task automatically. The design

of these algorithms proved to be a quite a challenge. The

design tool thus consists of three programs. POLYARCS

prepares certain input files for the other two programs.

The main program POLYSEND assigns traffic to routes chosen

to reduce the amount of conflict at junctions. POLYLINK

processes the output files from POLYSEND to express the

results in terms of links in the original road network.

The operation of the program suite was validated

with test networks. Its use was demonstrated with various

networks of a more realistic size. The resulting routeing

patterns were plotted on diagrams of the networks and

their features studied. Conflict was sometimes reduced by

not making use of all possible manoeuvres at junctions.

These unused manoeuvres point to suitable one-way streets

and banned turns. The effects of designating these

streets for one-way operation and banning these turns

could be assessed using a conventional assignment.

147

8.2 = VISION AMENDED

The ideal of finding a globally optimal solution

to the problem had to be abandoned. Any practitioner

realises that the mathematical model of a problem is only

an approximation to the real world, so when the best

solution to his problem proves impossible to find in a

reasonable time, he has to be content with finding a good

solution. Provision is made for him to find several

reasonably good locally optimal solutions.

No provision is made in the tool for taking

account of crossing conflicts between traffic from the

same origin. To do so would involve redefining the

subproblems to involve the traffic between one O-D pair at

a time. This would increase the number of subproblems by

a factor of (n - 1). As common sense would suggest that

such paths would usually fan out without crossing, the

large increase in the number of computations required did

not seem worthwhile.

8.3 = VISION EXTENDED

Throughout the thesis, refinements to the design

tool have been suggested. It is intended that these

should be made during further development of the design

tool. Perhaps the most obvious one is the inclusion of

capacity restraint. The network algorithm has provision

for this. The test for spare capacity would have to be

applied instead of being bypassed. Residual capacity

148

would also have to be recomputed after the solution of

each subproblem. However, it would involve the building

of a fresh vine for each O-D pair because some branches

already in the vine might not have enough spare capacity

to accommodate the flow required for the next O-D pair.

This would increase the number of computations required by

a factor of (n -1).

Details of the volume of flow, in each direction

through each junction, is accessible from the output from

the main program POLYSEND, but it would be more convenient

to have these turning volumes expressed in terms of the

links in the road network rather than in their present

form, which refers to the more complex Circulation System.

The data files which are output by the program

POLYLINK can never be an entirely satisfactory medium for

the solution to a spatial problem. A graphics environment

is the proper one in which to display the solution to a

traffic problem. Such an environment requires that the

nodes (junctions) of the road network be given co-

ordinates in co-ordinate file. It is expected that the

next stage of development will include making output files

from the CROWN design tool compatible with MVORAF the

graphics program produced by the industrial collaborators

MVA Systematica.

149

The single criterion, of reducing conflict between

streams of traffic, could be combined with the criterion

of reducing journey distance, if movements along links as

well as junction manoeuvres were represented in the

Circulation System. The network synthesis program could

easily be adapted to represent these movements as well.

Diverging conflicts were not included because they

were deemed to be of secondary importance compared with

merging and crossing conflicts. The lists of conflicting

arcs could easily be extended to include pairs of

diverging arcs.

8.4 FURTHER VISIONS

The CROWN design tool could be adapted to find

routes which specifically reduced the potential for

accidents. The adaptation would involve replacing the

cost functions with the accident predictive relations

developed at the Transport and Road Research Laboratory.

A paper in which this possibility was explored was

presented at the Universities Transport Study Group Annual

Conference in January 1990 (Wackrill 1990).

The concept of minimising conflict between streams

of traffic can be applied to streams of pedestrians. A

map has recently appeared at Kings Cross Station in London

showing the paths into which rush hour pedestrians are

guided to reduce conflict. A sketch of this map is shown

150

in Figure 22.

r: vvt. -y ro unj&trGK, qd

N
1 '--8R

r" y
Mý

r

S Pan cress / (I
o11

`"" e.

t ISCa. l d+e r to

j(ý

/K% r-i ng s
x

, tea
Cm%£

"% Two-w 1-. i %e. '

wtitcsc Gonge%te

Mtt+ropolýl'an
, ý.

ý

and ürclt Li C$ %1

Fig. 22 Sketch of pedestrian movements at Rings Cross.

151

In principle, the interaction between vehicle and

pedestrian flows could be modelled in the CROWN design

tool. This is relevant to the siting of bus stops and

pedestrian crossings.

8.5 JU HEAVENLY VISION

"Each of you should look not only to his own

interests, but also to the interests of others. "

Philippians 2: 4.

Traffic management is a social responsibility.

This approach to traffic management looks not only to the

interests of the individual driver but also to those of

the group of drivers as a whole. It looks beyond the

driver to include his passengers, in reducing the

potential for accidents. it looks beyond road users to

urban inhabitants in reducing the amount of noise and air

pollution. May this heavenly vision do some earthly good.

152

REFERENCES

ALLSOP, R. E. and CHARLESWORTH, J. A. 1977. Traffic in a

signal-controlled network: an example of different signal

timings inducing different routeings. Traffic Enaaa

Control 18 (5), 262-264.

BARR, R. S., GLOVER, F. and KLINGMAN, D. 1974. An improved

version of the Out-of-Kilter mathod and a comparative

study of computer codes. Math. gros. 7(1974), 60-86.

BELL, M. G. H. 1990. Environmental impact of traffic.

Presented at the 22nd Universities Transport Studies Group

Annual Conference. (Unpublished).

BOYCE, D. E. 1988 Route guidance systems for improving

urban travel and location choices. TransDn. Res. g

Vol. 22A, No. 4,274-281.

HOLROYD, E. M., and MILLER, A. J. 1966 Route Crossings in

Urban Areas. Australian Road Research Proceedings 237,

394-419.

SHEFFI, Y. 1985. Urban transvortation networks:

ecuilibrium analysis with mathematical nroarammina

methods. Prentice-Hall 203-229.

STOELHURST, H. J., and ZANDBEROEN, A. J. 1990. The

development of a road pricing system in The Netherlands.

Traffic Enona A Control 31 (2), 66-71.

153

SUMMERSGILL, I. 1988 Accident Predictive Relations for

some Junction Types in Great Britain. P. T. R. C. Conference

Proceedings 1988 163 - 178.

TURAN, P. 1977. A note of welcome. Graph Theory 1

(1979) 7-9.

WACKRILL, P. A. 1990. Routes chosen to reduce the potential

for urban accidents. Presented at the 22nd Universities

Transport Studies Group Annual Conference. (Unpublished).

WARDROP, J. G., 1952. Some theoretical aspects of road

traffic research. Proceedinas. Institution pj Civil

Engineers 11(1), 325-378.

WRIGHT, C. C., 1978 Control of drivers' route choice:

pipe dream or panacea? Transportation 7(1978) 193-210.

WRIGHT, C. C. 1979. Arcs and cars: an approach to road

traffic management based on graph theory. Graph theory

And combinatorics (R. J. Wilson, editor). London: Pitman,

133-146.

WRIGHT, C. C., APPA, ß. M., and JARRETT, D. F. 1989 Conflict-

minimising traffic patterns: a graph-theoretic approach to

efficient traffic circulation in urban areas.

Transaor ation Research 23A(2), 115-127,1989.

WRIGHT, P. T., and SEMMENS, M. C. 1984. An assessment of the

Denham roundabout conversion. Traffic Enana IL Control 25

(9), 422-426.

154

APPENDIX 1

THE DIGRAPH MODELS

The purpose of this appendix is to relate the

weights to the particular pairs of conflicting movements.

Diagrams show the arcs in each junction type.

Approach vertices are labelled with A, exit vertices with

E, and vertices on a roundabout with R.

There follows a table containing a row for each

arc, and an ordered list in that row of the arcs

conflicting with that arc. The format of this table is

then used to show the corresponding weights.

Under the heading 'Arguments in the WT3 (or WT4)

array', a number n in row r and column c will imply

that the nth element in the WT3 (or WT4) array is to be

used for weighting the conflict between the arc in row r

and the cth arc with which it conflicts. Where the

pattern of conflicts and weights repeats itself, only one

repeat is used to indicate the corresponding arguments.

Under the heading 'Default weights', the same

table, or part of it, is used to show the actual default

weights available in the program. These are 1 for a

merge, 2 for a crossing and 3 for interlocking turns.

Where several junction types have the same
diagram, the corresponding tables appear one after the

other under these two headings. Each junction type has a

name and a type number, the value of JT(X) for the type.

1

3-ARM JUNCTIONS

3

as

Fý

E3

A3

Conflicting arcs
Ist 2nd 3rd

Arcs
16
2643
32
4265
54
6421

CORRESPONDING WEIGHTS

Arguments in WT3 array Default weights

FREE-FOR-ALL: JT(X) =1 Repeat with three-fold symmetry.

11
234221

PRIORITY: JT(X) =2

51
678221
91
10 11 12 221
13 1
14 15 16 221

SIGNALS: JT(X) =3

17 1
18 19 20 221
21 1
22 23 24 221
25 1
26 27 28 221

2

Al r1

3-ARM JUNCTIONS

Pic.
3

F2.

E3

A3

Conflicting arcs
1st 2nd 3rd

Arcs
16
26 4 3
32
42 6 5
54
64 2 1

CORRESPONDING WEIGHTS

Arguments in WT3 array Default weights

MINI-ROUNDABOUT JT(X) =4 Repeat with 3-fold symmetry.

29 1
30 31 32 221

ROUNDABOUT JT(X) ý5 Repeat with 3-fold symmetry.

33 1
34 35 36 221

3

Al E.

3-ARM JUNCTION: GRADE SEPARATED

3
Al E3

El I Al VS

Al

Conflicting arcs
lst 2nd 3rd

Arcs
1 6
2 3
3 2
4 5
5 4
6 1

CORRESPONDING WEIGHTS

Arguments in WT3 array .
Default weights

GRADE-SEPARTATED JT(X) =6

37 1
38 1
39 1
40 1
41 1
42 1

4

4-ARM JUNCTION: FREE-FOR-ALL

E3 43

4
S

Al nor EI

8

E Ak

ý1 gd.

Conflicting arcs
ist 2nd 3rd 4th 5th 6th 7th

Arcs
1 11 9
2 11 9 65 12 4
3 11 9 12 6 8 57
4 2 12
5 2 12 98 3 7
6 2 12 39 11 8 10
7 5 3
8 5 3 12 11 6 10
9 5 3 6 12 2 11 1

10 8 6
11 8 6 32 6 1
12 8 6 93 5 24

CORRESPONDING WEIGHTS

FREE-FOR-ALL JT(X) =1 Repeat with 4-fold symmetry.

Arguments in WT4 array

1 2
3 4 56 7 8
9 10 11 12 13 14 15

Default weights

1 1
2 2 22 1 1
2 3 22 2 11

5

4-ARM JUNCTION: PRIORITY

531 1 14s

�1/\ 54 Al
6

E4

1g

Es Aý.

3 iv

R'1 E9.

Conflicting arcs
1st 2nd 3rd 4th 5th 6th 7th

Arcs
1 11 9
2 11 965 12 4
3 11 9 12 6857
42 12
52 12 9837
62 12 39 11 8 10
753
853 12 11 6 10
9536 12 2 11 1

10 86
11 863261
12 8693524

CORRESPONDING WEIGHTS

PRIORITY JT(X) =2 Repeat with 2-fold symmetry.

Arguments in WT4 array

16 17
18 19 20 21 22 23
24 25 26 27 28 29 30
31 32
33 34 35 36 37 38
39 40 41 42 43 44 45

Default weights

11
222211
2322211
11
222211
2322211

6

4-ARM JUNCTION: SIGNALS

E3 as

4
S

Al
q

6

2. g

EZ R4
3 to

R1 E1

Conflicting arcs
Ist 2nd 3rd 4th 5th 6th 7th

Arcs
1 11 9
2 11 965 12 4
3 11 9 12 6857
42 12
52 12 9837
62 12 39 11 8 10
753
853 12 11 6 10
9536 12 2 11 1

10 86
11 863261
12 8693524

CORRESPONDING WEIGHTS

SIGNALS JT(X) =3 Repeat with 4-fold symmetry.

Arguments in WT4 array

46 47
48 49 50 51 52 53
54 55 56 57 58 59 60

Default weights

11
222211
2322211

7

Al

E.

Conflicting arcs
1st 2nd

Arcs
1 3
2 3 4
3 2 1
4 2
5 7
6 7 8
7 6 5
8 6
9 11

10 11 12
11 10 9
12 10
13 15
14 15 16
15 14 13
16 14

If1.

CORRESPONDING WEIGHTS

94

44

MINI-ROUNDABOUT JT(X) =4 Repeat with 4-fold symmetry.

Arguments in WT4 array. Default weights.

61 1
62 63 21
64 65 21
66 1

8

4-ARM MINI-ROUNDABOUT
k3 AS

Al E1
Conflicting arcs repeat with 4-fold symmetry.

ist 2nd 3rd 4th 5th 6th
Arcs

1 17 15
2 17 15 876 20
3 17 15 19
48
5 13 12 7 11

CORRESPONDING WEIGHTS

ROUNDABOUT JT(X) =5 Repeat with 4-fold symmetry.

Arguments in WT4 array

67 68
69 70 71 72 73 74
75 76 77
78
79 80 81 82

Default weights

11
222211
221
1
2211

9

4-ARM ROUNDABOUT
E3 h3

Conflicting arcs 01,1s is

Ist 2nd 3rd 4th 5th 6th
Area

1 11 9
2964 12
39 12 6857
42 12
573
62 12 398 10
753
83 12 10 6
936 12 2 11 1

10 86
11 19
12 869424

CORRESPONDING WEIGHTS

GRADE-SEPARATED JT(X) =6 Repeat with 4-fold symmetry.

Arguments in WT4 array

83 84
85 86 87 Be
89 90 91 92 93 94
95 96
97 98
99 100 101 102 103 104

Default weights

11
2211
322211
11
11
232211

10

4-ARM GRADE SEPARATED JUNCTION
a es

APPENDIX 2

USE WITH RIGHT HAND DRIVING

When the digraphs are reflected, or viewed from

below 'the plane of the paper', they represent driving on

the right. It follows that the mirror image of the

Circulation System for left-hand driving on a road network

is the Circulation System for right-hand driving on the

mirror image of the road network.

This property can be exploited when using overhead

projection for the digraph models of junctions, by placing

the foil the other way up on the projector in countries

where road users drive on the right. If the road network

is symmetric, appropriate routeing patterns can also be

shown in this way.

11

APPENDIX 3

DETECTION OF INCONSISTENCIES

Inconsistency in the input data is detected and

reported in the following way. When all the vertices have

been created, the program proceeds to create the arcs

using a digraph model of the appropriate type for each

junction. For each link meeting at the junction, the

program checks whether the B node of the first link

matches the node number of the junction; if it does the

program proceeds as described in Chapter 2.

If the B node does not match the node number of

the junction, the program goes on to check whether the A

node matches, and proceeds as described in Chapter 2.

If, however, neither the A node nor the B node

matches the junction node then, there must be some

inconsistency. The program stops with a message indicating

inconsistency at the junction specified by its node

number. Either the link is correctly recorded in the link

records but should not appear in this particular junction

record, or the link record is faulty. In either case the

user is alerted, and directed to the likely sources of his

error.

12

APPENDIX 4

EXAMPLE TO ILLUSTRATE QP AND ILP SOLUTIONS

The road network used for this example is shown in

Figure 1. The Circulation System is shown in Figure 2.

3

12

Fig. 1. The road network

a

I

-- .ý

Fig. 2 The Circulation System

The trip matrix used is given below.

1 2 3

1 - 1 3

2 1 - 1

3 1 4 -

4

13

4.1 THE VARIABLES

Three variables are defined for each arc of the

Circulation System. They correspond to flows from the

three Origin Vertices 1,3, and 5. Consideration of the

flow conservation constraints shows that, for example,

there will be no flow from Origin Vertices 3 or 5 on Arcs

1 or 2. Similarly there will be no flow from Origin

Vertex 1 on Arcs 4 or 5. Arc 3 will not carry flow from

Origin Vertices 1 or 3. Are 6 will not carry flow from

origin Vertices 1 or 5. This cuts down the number of

variables required for the first 6 arcs from 18 to 8. The

24 variables are tabulated in terms of arcs and the origin

vertices, in Table 1.

TABLE 1

Arcs 123456

Flow from Vertex 1 x(1) x(2) ----

Flow from Vertex 3--- x(3) x(4) x(5)

Flow from Vertex 5 x(6) x(7) x(8) -

Arcs 789 10 11 12

Flow from Vertex 1-- x(9) x(10) x(11) -

Flow from Vertex 3--- x(12) x(13) x(14)

Flow from Vertex 5 x(15) x(16) ----

Arcs 13 14 15 16 17 18

Flow from Vertex 1-- x(17) x(18) x(19) -

Flow from Vertex 2 x(20) x(21) ----

Flow from Vertex 3--- x(22) x(23) x(24)

14

The constraints for flow through intermediate vertices

show that the number of variables can be reduced further.

For instance, conservation of flow through Vertex 7,

involves flow arriving on Arcs 1 and 6 and leaving on Arcs

9 and 10. For the flow from Vertex 3, this implies that

x(5) = x(12). There are five similar equations for flow

through the five other intermediate vertices. This

reduces the number of variables required to 18. In the

case of flow from Vertex 1 through Vertex 7, the equation

obtained is x(1) = x(9) + x(10). For this particularly

simple network, the eighteen variables are split into two

sets, one being those single variables on the left sides

of the six similar equations, and the other being the six

pairs of variables on the right hand sides. Each of the

six variables on the left hand sides can therefore be

replaced by the sum of the pair of variables on the right

sides. This reduces the number of variables required to

twelve. A closer inspection shows that these variables

correspond to the two arc-disjoint paths between each

origin to destination pair of vertices (0-D pair). This

problem involves six O-D pairs and just two possible paths

between each pair. The problem is formulated in terms of

these variables. The paths are referred to as clockwise

(cw) or anti-clockwise (acw). The variables are defined

in Table 2 below, and the path corresponding to variable

x(n) will be referred to as Path n.

15

TABLE 2

From vertex to vertex

1 4
1 6

3 2
3 6

5 2
5 4

flow cw

x(1)
x(3)

x(5)
x(7)

x(9)
x(11)

flow acw

x(2)
x(4)

X(6)
x(8)

X(10)
x(12)

This leaves a very simple and convenient set of

constraints for the flow into each destination vertex.

There is one constraint for each non-zero element of the

trip matrix, with its right hand side equal to that

element.

For the objective function each pair of conflicting

arcs has to be identified and the variables representing

flow on the one multiplied by those representing flow on

the other.

4.2 SOL UTION JLX OUADRATIC PROGRAMMING

The solution is obtained using the MPCODE software,

developed at the London School of Economics, and based on

Beale's method. The solution is used to demonstrate that

what were called 'ghost costs' in Chapter 3, Subsection

3.5.3, are not only included but also inhibit further

improvement of the solution. The data file for the

formulation in Section 3.1 is shown below. It consists

of twelve records as follows:

16

Record 1- some words to control the output, NONE asks for

the minimal amount of output.

Record 2-M (no. of constraints), N (no. of variables),

and NUMQ (the dimension of the D matrix).

Record 3- triples of 2 integers and a real or integer

number, for the row, column and coefficient of

each non-zero element in the D matrix.

Record 4- 'MAX' or 'MIN', M, N,

Record 5- pairs of an integer for the variable, and a

real or integer for its coefficient for the non-

zero terms in the linear part of the objective

function.

Record 6- triples of three elements for each constraint,

an integer for the constraint number, a letter

'L', 'G` or 'E' for its sign, and a real or

integer number for the right hand side.

Records 7 onwards - Separate records for each row of the A

matrix, starting with the row identifier

followed by two commas, then for each non-zero

element a pair consisting of an integer to

identify the variable and a real or integer

number for its coefficient.

The problem can be solved with different trip matrices

merely by making changes to Record 6.

17

The data file for this problem
'NONE', /
6,12,12, /
1,2,1,1,7,1,1,9,1,1,11,1,1,12,1,
2,6,2,2,7,1,2,8,1,2,9,1,2,10,1,2,11,1,2,12,1,
3,4,1,3,6,1,3,7,1,3,8,1,3,9,1,3,11,1,
4,6,2,4,7,2,4,8,1,4,10,1,4,12,1,
5,6,1,5,9,1,5,10,1,
6,7,2,6,9,3,6,10,1,6,11,1,6,12,2,
7,8,1,7,9,2,7,10,1,7,11,1,
8,9,1,8,12,1,
9,10,1,9,12,1,
11,12,1, /
'MIN', 6,12, /

1, 'E', l, 2, 'E, 3,3, 'E', 1,4, 'E', 1,5, 'E', 1,6, 'E', 4, /
1,, 1,1,2,1, /
2,, 3,1,4,1, /
3,, 5,1,6,1, /
4,, 7,1,8,1, /
5,, 9,1,10,1, /
6,, 11,1,12,1, /

The relevant parts of the output file are shown below.

The program has found a local optimum which is not the

global optimum. The way the variables are defined

provides for a very relevant interpretation of the partial

derivatives of the quadratic function. The values are the

costs, in terms of conflict, of using each of the twelve

paths. In each case the cost of the alternative path for

any O-D pair is greater than or equal to the cost of the

path used; the partial derivative is at a minimum so the

program terminated with this solution.

18

Part of the output file for the solution

IN THE FOLLOWING OUTPUT, THE C VECTOR CONTAINS THE
PARTIAL DERIVATIVES OF THE QUADRATIC FUNCTION.

****** QUADRATIC PROGRAM OPTIMUM ******

Value of Minimand = 20.00000000

PRIMAL SOLUTION

Variable ------------ ---
j Name

c(j)

x(j)

yA-c

Status

1 4.000 1.000 0.000 BS
2 7.000 0.000 -3.000 DN
3 5.000 3.000 0.000 BS
4 5.000 0.000 0.000 DN
5 1.000 1.000 0.000 BS
6 9.000 0.000 -8.000 DN
7 9.000 0.000 -7.000 DN
8 3.000 1.000 0.000 BS
9 7.000 0.000 -6.000 DN

10 1.000 1.000 0.000 BS
11 4.000 4.000 0.000 BS
12 6.000 0.000 -2.000 DN

The total flows, with the costs in brackets, are shown

in Figure 3. The cost of the unused paths all incorporate

what were called 'ghost costs'. For each such path, this

is the cost due to the flow on the other of the pair of

paths between the same O-D pair. If that path was

actually used, the flow would no longer be on the other

path; so the cost of using it goes down as soon as it is

used. When the ghost costs are removed, the costs are

reduced to the values shown below. The variables have

been defined in such a way that the terms which give rise

to ghost costs can be identified and removed from the

objective function.

19

I

Notation flow(cost)

Fig. 3 The first solution

4

Costs reduced by the removal of ghost costs

Variable
i

c(J)

x(J) yA-c Status

1 4.000 1.000
2 6.000 0.000
3 5.000 3.000
4 2.000 0.000
5 1.000 1.000
6 8.000 0.000
7 9.000 0.000
8 3.000 1.000
9 6.000 0.000

10 1.000 1.000
11 4.000 4.000
12 2.000 0.000

With these reduced costs the value of the partial
derivative could be reduced by making use of some of the

unused paths. Path 4, anticlockwise from Vertex 1 to

Vertex 6, is cheaper than the used Path 3. Path 12,

anticlockwise from Vertex 5 to Vertex 4, is also cheaper

20

than the used Path 11.

When the ghost costs are removed from the objective
function, a better solution is obtained. The relevant

part of the output file is shown below, and the solution

is shown in Figure 4.

Part of the output file for the better solution

IN THE FOLLOWING OUTPUT, THE C VECTOR CONTAINS THE
PARTIAL DERIVATIVES OF THE QUADRATIC FUNCTION.

****** QUADRATIC PROGRAM OPTIMUM ******

Value of Minimand = 10.0 0000000

PRIMAL SOLUTION

Variable
j Name c(j)

- -----
x(j) yA-c Status

--
1

5.000

1.000

0.000

BS

2 6.000 0.000 -1.000 DN
3 6.000 0.000 -5.000 DN
4 1.000 3.000 0.000 BS
5 1.000 1.000 0.000 BS
6 13.000 0.000 -12.000 DN
7 13.000 0.000 -9.000 DN
8 4.000 1.000 0.000 85
9 3.000 1.000 0.000 BS

10 4.000 0.000 -1.000 DN
11 1.000 4.000 0.000 85
12 6.000 0.000 -5.000 DN

21

a

I

Fig. 4 The better solution

4

This example demonstrates a case in which the

ghost costs, incorporated in the partial derivative which

Beale uses to determine the point at which to terminate

his program, inhibited the improvement of the solution to

a better optimum. in this small example, where it was

feasible to relate variables to paths between O-D pairs,

the removal of the ghost costs allowed the program to

proceed to find the global optimum as demonstrated by the

integer Linear Programming method in the next section.

4.3 FIRST ILE METHOD
The purpose of using ILP is to guarantee a global

optimum by the branch and bound method. The MPCODE,

developed at the Londion School of Economics, was used.

22

Z 12.1

The variables defined at the end of Section 3.1 are

redefined as zero-one variables signifying the non-use or

use of each path respectively. The constraints of the QP

formulation, are changed by replacing all the right hand

sides by 1, to ensure that only one of each pair of paths

connecting an O-D pair is used; this is jusified by the

fact that the group travel property will hold in the

optimal solution. The terms of the quadratic function,

which signified the number of times a pair of paths

conflicted, therefore acquire increased coefficients in

proportion as the two paths involved have to carry more

than one unit of flow. For example, the term x(4)*x(12)

becomes 12x(4)*x(12) because Path 4, if it is used, will

carry 3 units of flow, and Path 12, if it is used, will

carry 4 units of flow.

In enable the use of ILP, the quadratic objective

function is replaced with a linear function. This involves

the definition of new variables, one for each term in the

quadratic function, for example,

x(l) + z(2) s1+ x(13)

and x(1) + x(7) s1+ z(14).

For these examples the terms are then replaced with linear

terms as follows:

x(1)*x(2) ___> x(13)

x(1)*x(7) __=> x(14).

23

The data file for this formulation is shown below. In

this case, Record 2 consists of M, N, and NUMD, with NUMD

being -1 to show that all the variables take discrete

values. Record 3 is like Record 4 for QP and consists of

'MIN', M, N, and ISBND with ISBND being -1 to show that

all the variables are zero or one. Record 4, like Record

5 in QP, shows the elements of the linear objective

function. Records 5 and 6 and following are like Record 6

and 7 and following for QP.

'NONE', /
46,52, -1, /
'MIN', 46,52, -1, /
13,1,14,1,15,1,16,4,17,4,
18,2,19,1,20,1,21,1,22,1,23,4,24,4,
25,9,26,3,27,3,28,3,29,3,30,12,
31,6,32,6,33,3,34,3,35,12,
36,1,37,1,38,1,
39,2,40,3,41,1,42,4,43,8,
44,1,45,2,46,1,47,4,
48,1,49,4,
50,1,51,4,
52,16, /

21, 'L', 1,22, 'L', 1,
23, 'L', l, 24, 'L', l, 25, 'L', l, 26, 'L', l, 27, 'L', l,
28, 'L', 1,29, 'L', l, 30, 'L', l, 31, 'L', l, 32, 'L', 1,
33, 'L', l, 34, 'L', l, 35, 'L', l, 36, 'L', l, 37, L', l,
38, 'L', 1,39, 'L', l, 40, 'L', l, 41, 'L', l, 42, 'L', l,
43, 'L', l, 44, L', l, 45, 'L', l,
1,, 1,1,2,1, /
2,, 3,1,4,1, /
3,, 5,1,6,1, /
4,, 7,1,8,1, /
5,, 9,1,10,1, /
6,, 11,1,12,1, /
7,, 1,1,2,1,13, -1, /
8,, 1,1,7,1,14, -1, /
9,, 1,1,9,1,15, -1, /
10,, 1,1,11,1,16, -1, /
11 ,, 1,1,12,1,17, -1, /
12,, 2,1,6,1,18, -1, /
13,, 2,1,7,1,19, -1, /
14,, 2,1,8,1,20, -1, /

continued overleaf

24

15,, 2,1,9,1,21, -1, /
16,, 2,1,10,1,22, -1, /
17,, 2,1,11,1,23, -1, /
18,, 2,1,12,1,24, -1, /
19,, 3,1,4,1,25, -1, /
20,, 3,1,6,1,26, -1, /
21,, 3,1,7,1,27, -1, /
22,, 3,1,8,1,28, -l, /
23,, 3,1,9,1,29, -1, /
24,, 3,1,11,1,30, -1, /
25,, 4,1,6,1,31, -1, /
26,4,1,7,1,32, -1, /
27,, 4,1,8,1,33, -1, /
28,, 4,1,10,1,34, -1, /
29,, 4,1,12,1,35, -1, /
30,, 5,1,6,1,36, -1, /
31,, 5,1,9,1,37, -1, /
32,, 5,1,10,1,38, -1, /
33,, 6,1,7,1,39, -1, /
34,, 6,1,9,1,40, -1, /
35,, 6,1,10,1,41, -1, /
36,, 6,1,11,1,42, -1, /
37,, 6,1,12,1,43, -1, /
38,, 7,1,8,1,44, -1, /
39,, 7,1,9,1,45, -1, /
40,, 7,1,10,1,46, -1, /
41,, 7,1,11,1,47, -1, /
42,, 8,1,9,1,48, -1, /
43,, 8,1,12,1,49, -1, /
44,, 9,1,10,1,50, -1, /
45,, 9,1,12,1,51, -1, /
46,, 11,1,12,1,52, -1, /

The output file is too extensive to reproduce here. The

solution is the same as that obtained by QP when the ghost

costs were removed.

4.4 SECOND
,
_, j METHOD

For the second ILP method, a matrix of costs is

compiled in terms of conflicts between all possible pairs

of paths, suitably weighted for those paths which carry

more than one unit of flow. The matrix, partitioned as

described in Chapter 3, Subsection 3.5.2, is shown below.

25

Path 1 2 3 4 5 6 7 8 9 10 11 12

4 4

2
-

1
--

-

;
--

-

-

1
-

-

1

;
-

1

1
---- -

1

1
---- -

4

4

3 - - ; - 9 3 3 3 3 - ; 12 -

4
-

-

-

;
-

9

-

;
-

-

6
--- -

6

3
---- -

-

3
---- -

-

12
--- 5

- - 1
- -

1 - 1 f - - 1
i

1 j - -
1 1 1

$

6
-

-

1

1
-

3

6

;
-

1
-

- ; 2 2
--

1
---- -

4

4
--- 7 1 1 1 3 6 ;

- --
-

2

-
1

-

1

- --
2 1 4 -

i i i It i

8
-

-

1

1
-

3

3

;
-

-

-

;
-

1

-

;
-

1

-

;
-

-

4

9 1 1 3 - ; 1 2 2 1 1 - 1 1 - 4

10
-

-

1

1
-

-

3
--- -

1

1

1
-

1

-

;
--

1

-

;
--

-

-

11 4 4 ; 12 - 4 4 - ; - - ; - 16

12 4 4 ; - 12 ; - 4 ; - 4 4 - ; 16 -

This matrix is reduced as described in Case 1 in Chapter

3, Subsection 3.5.2; for each part whose elements are all

greater than some number k, k is subtracted from each of

those elements. The sum of all the k's for each part

reduced in this way is twice the number of essential

conflicts in the problem; which ever pairs of paths are

chosen these conflicts are unavoidable. The number of

essential conflicts is 8. To highlight places where these

reductions were made zeros are entered when the reduction

resulted in a zero. The reduced matrix is shown below.

26

Path 1 2 3 4 5 6 7 8 9 10 11 12

0 0

2
---- ---- - --- ---- - --- ---- - --- ---- - ----

1

1
--

0

0

3 - - ; - 9 ; - 3 ; 0 0 ; 3 - ; 12 -

4 -

-
---- -

9

-

;
-

-

6
---- -

3
--

0

;
-

-

3
--- --

-

12

5 - - ; -
-

- ; - 1 1
-

- - 1 0 0 ; - -

6 -

1

3
-

6
--

1

-

1
-

2
--

-

;
-

1

0
---- -

4

4

7 1 1
-
1
--
0

--
3

-
; -

-
2

-
1 2 1 1 4 -

8
-

-

1
--- -

0

0

;
-

-

-

;
-

1

-

1
--

1

-

;
-

-

4

9 1 1 1 3 - ; 0 1 2 1 1 - 1 ; - -

10
-

-

1

;
--

-
--

3

;
-

0
--

0
-

; 1
- -

-

;
-
1

-
---- -

-

-
--- 11 0 0 ; 12

-
-

- - --
4

--
;

-
4 - ; - - ; - 16

12 0 0 ; - 12 ; - 4 ; - 4 ; - - ; 16 -

Next each row in each part is examined,

reduction to that described for Case 2

Subsection 3.5.2,

obtained are:

is carried out.

2 for Path 2,

7 for Path 6,

2 for Path 7,

and 2 for Path 9.

The reduced matrix is shown below.

and a similar

in Chapter 3,

Route conflicts

27

Path 1 2 3 4 5 6 7 8 9 10 11 12

1 - 1 - - ; - - ; 1 - ; 1 - ; 0 0

2 1

-

;

-
-

-

1

--
-

1

;
-

0

0

;
-

0

0
---- -

0

0

---- 3 - - ; - 9 ; - 3 ; 0 0 ; 3 - ; 12 -

4 -

-

;
-

9

-

;
-

-

6
--- -

3

0
---- -

-

3
---- -

-

12

5 - - ; - - ; - 1 ; - - 1 0 0 ; - -
1 i i i

6
-

-

1

;
--

0
--

3

1
-

1

-

;
-

2
--

-

;
--

1

0

;
-

0

0

7 0 0 ; 0 3 ; - 2 ;
-

- 1 0 , 4 -
i $ $ i $

8
-

-

-

;
--

0
--

0

;
-

-

-

;
-

1

-

;
--

1

-

;
-

-

4

9 0 0 3 - ; 0 1 1 1 0 ; - 1 ; - -

10
-

-

1

;
--

-

3

;
-

0

0

;
--

1

-

;
--

1

-

;
-

-

-

11 0 0 ; 12 - ; - 4 ; 4 - ; - - ; - 16
$ It

12 0 0 1 - 12 i - 4 - 4 , - - i 16 -

The pair conflicts are computed by adding the

elements (i, j) and (j, i) to find the pair conflict for the

pair of paths i and J. The 26 non-zero pair conflicts

are listed below.

P(1,2) = 2, P(1,7) = 1, P(1,9) = 1,

P(2,6) = 2, P(2,10) = 1,

P(3,4) = 18, P(3,6) = 3, P(3,9) = 6, P(3,11) = 24,

P(4,6) 2 9, P(4,7) = 6, P(4,10) = 6, P(4,12) = 24,

P(5,6) = 2,

P(6,7) = 4, P(6,9) 2 2, P(6,11) 4, P(6,12) = 4,

P(7,8) = 2, P(7,9) = 2, P(7,10) 1, P(7,11) = 8,

P(8,9) = 1, P(8,12) = 8,

P(9,10) = 2,

P(11,12) = 32.

28

The method involves solving a sequence of ILP

problems.

FIRST PROBLEM

Twelve (0,1) variables are defined to correspond to non-

use and use of the 12 paths. Six constraints specify that

exactly one of the pair of paths between each 0-D pair is

used. The objective function to be minimised involves

only the route costs for each path.

The data file is shown below.

'NONE', /

2,2,6,7,7,2,9,2, /
1, 'E', 1,2, 'E', 1,3, 'E', l,
1,, 1,1,2,1, /
2,, 3,1,4,1, /
3,, 5,1,6,1, /
4,, 7,1,8,1, /
5,, 9,1,10,1, /
6,, 11,1,12,1, /

It will be observed that only Paths 2,6,7, and 9 have

non-zero route costs. The solution to this problem is to

use:

Paths 1,3,5,8,10, and 11.

The value of the minimand is zero and the LP solution

did, in fact, satisfy the discrete constraints.

SECOND PROBLEM

Of the path pairs used in the first solution only the pair

29

(3,11) has a positive cost, 24, so a variable x(13)

defined by:

x(3) + x(11) LE 1+ x(13),

is introduced and a term 24*x(13) is added to the

objective function.

The solution to this problem is to use:

Paths 1,4,5,8,10, and 11.

Path 4 is used instead of Path 3 to avoid the pair

conflict whose cost has been introduced. The value of

the minimand is zero and the LP solution did, again,

satisfy the discrete constraints.

THIRD PROBLEM

Of the path pairs used in the second solution only the new

pair (4,10) has a positive cost, 6, so a variable x(14)

defined by:

X(4) + x(10) LE 1+ x(14),

is introduced and a term 6*x(14) is added to the

objective function.

The solution to this problem is to use:

Paths 1,3,5,8,10, and 12.

30

The solution has gone back to using Path 3, but uses Path

12 instead of Path 11 to avoid the pair costs of both

(3,11) and (4,10). The value of the minimand is zero and

the LP solution did, again, satisfy the discrete

constraints.

FOURTH PROBLEM

Of the path pairs used in the third solution only the new

pair (8,12) has a positive cost, 8, so a variable x(15)

defined by:

x(8) + x(12) LE 1+ x(15),

is introduced and a term 8*x(15) is added to the

objective function.

The solution to this problem is to use:

Paths 1,4,5,8,9, and 11.

The solution has gone

9 instead of Path 10

also uses Path 11,

instead of Path 12 to

value of the minimand

the LP solution did,

constraints.

FIFTH PROBLEM

back to using Path 4, but uses Path

to avoid the pair cost of (4,10). It

now that Path 3 is not being used,

avoid the pair cost of (8,12). The

is 2, the route cost of Path 9, and

once again, satisfy the discrete

Of the path pairs used in the fourth solution only the new

31

pair (8,9) has a positive cost, 1, so a variable x(16)

defined by:

x(8) + x(9) LE 1+ x(16),

is introduced and a term 1*x(16) is added to the

objective function.

The solution to this problem is to use:

Paths 1,3,5,7,10, and 12.

The solution has gone back to using Path 3, but uses Path

12 instead of Path 11 to avoid the pair cost of (3,11).

It also uses Path 7 instead of Path 8 to avoid the pair

cost of (8,12), which exceeds the route of Path 7. it

uses Path 10, now that Path 4 is not being used, instead

of Path 9 to avoid the route cost of Path 9. The value of

the minimand is 2, the route cost of Path 7. This time

the LP solution did not satisfy the discrete constraints.

SIXTH PROBLEM

Of the path pairs used in the fifth solution only the new

pairs (1,7) and (7,10) have positive costs, both being 1,

so two new variables x(17) and x(18) defined by:

x(1) + x(7) LE 1+ x(17),

32

and x(7) + x(10) LE 1+ x(18),

are introduecd and two terms 1*x(17) and 1*x(18) are

added to the objective function.

The solution to this problem is to use:

Paths 1,4,5,8,9, and 11.

The solution has gone back to using Path 4, but uses Path

9 instead of Path 10 to avoid the pair cost of (4,10),

which exceeds the route cost of Path 9. It also uses Path

8 instead of Path 7 to avoid the route cost of Path 7 and

the pair cost of (1,7) which together exceed the pair

cost of (8,9). It uses Path 11 instead of path 12 to

avoid the pair cost of (8,12). The value of the minimand

is 3, being the sum of the route cost of Path 9 and the

pair cost of (8,9). The LP solution does not satisfy the

discrete constraints.

SEVENTH PROBLEM

Of the path pairs used in the sixth solution the new pair

(1,9) has a positive cost of 1, so a new variable x(19)

defined by:

z(1) + z(9) LE 1+ x(19),

is introduced and a term 1*x(19) added to the objective

function.

33

The solution to this problem is to use:

Paths 1,3,5,7,10, and 12.

The solution has gone back to using Path 10 to avoid both

the pair cost of (1,9) and the route cost of Path 9, but

uses Path 3 instead of Path 4 to avoid the pair cost of

(4,10). It therefore uses Path 12 instead of Path 11 to

avoid the pair cost of (3,11) at 24, and it uses Path 7 to

avoid the pair cost of (8,12) at 8; these avoidance

measures incur the lower total costs of the route cost of

Path 7, and the pair costs of (1,7) and (7,10). The value

of the minimand is 4, being the sum of the route cost of

Path 7 and the pair costs of (1,7) and (7,10). The LP

solution does not satisfy the discrete constraints.

For this solution all the costs of used pairs of paths

feature in the objective function. Although there may be

other solutions with the same value of the objective
function, there will not be one with a lower value of the

objective function for the following reason. If we assume

that this is not the case we arrive at a contradiction as
follows. Any change of path used to give a better

solution will either involve a zero or a non-zero pair

cost. If it involves a zero pair cost it would be the

solution to this last problem -a contradiction. If it

involves a positive pair cost, either that cost already

features in the objective function or it does not. If it

does, then it is equally as good as the current solution -

34

a contradiction. If it does not, then the cost of the

current solution would be higher than the cost of the

alternative feasible solution neglecting this pair cost.

However, the current problem is the first to have a

solution with all the pair costs already featuring in the

objective function so no chaeper alternative solution can

exist. We therefore conclude that we have an optimal

solution. It is different to the one found by the first

ILP method. The objective functions used in this series

of problems solved by the second method have taken no

account of the 8 essential conflicts but have counted the

remaining conflicts twice. To obtain the true value, we

divide 4 by 2 and add on 8 to obtain the value of 10

obtained by the first method.

The way these seven solutions have involved switches

between pairs of paths is shown in a diagram in Figure 5.

Path 123456789 10 11 12

Problem

1

2

3

4

5

6

7

* used path.

Fig. 5 Successive solutions to the seven problems

35

APPENDIX 5

THE VINE BUILDING PROCESS

A very simple network is used to demonstrate the

tree building process. It consists of an origin vertex

number 1, a destination vertex number 2,5 arcs as shown

in Figure 1, together with the artificial arc added to

connect Vertex 2 to Vertex 1. Arc numbers, lower bounds

and costs are as shown. The problem is to find a minimum

cost route for 1 trip from Origin 1 to Destination 2. The

flow on each arc is set to zero and the dual value at each

vertex is set to zero at the start-up. The steps are

somewhat abbreviated.

Figure 1

Step 1
Look for out-of-Kilter arc.

Find Arc number 6

Set SRC = 1, the number of the vertex at the end of

Arc 6.

Set SNK = 2, the number of the vertex at the start of

Arc 6.
Label Vertex 1 with 6. See Figure 2.

36

Notation vertex
cost/lower bound label
arc number by >

Idual

va ue

Notation
cost/lower bound
arc number by >

Figure 2

vertex
label
dual va ue

Step 2

Look for arcs with 1) start vertex with non-zero label,

find Arcs 2 and 4;

and 2) end vertex with zero label,

Arcs 2 or 4 have this property;

and 3) net cost negative or zero

BUT net cost(2) =2

and net cost(4) =1

so neither of these arcs can be added to the vine.

Step 3

Look for smallest differential in dual values which will

bring the net cost of one of these arcs to zero.

Look at Arc 2 and set DEL = 2.

Look at Arc 4 and reset DEL =1

Increase the dual value, of all vertices with zero label

by DEL. See Figure 3.

37

zi
'in nIn

1
6 1 4 0 3 1/ 0

5
0

0 r 1 01 1

0/1 0/0

515

Notation
cost/lower bound
arc number by >

vert! Ix label
ua value

Figure 3

Step 4

Go back to Step 2

Look for arcs with 1) start vertex with non-zero label,

find Arcs 2 and 4;

and 2) end vertex with zero label,

Arcs 2 or 4 have this property;

and 3) net cost negative or zero

net cost(2) =1

and net cost(4) = 0.

Arc 4 can be added to the vine and Vertex 4 labelled with

4.

Check whether the label of Vertex 2 (because SNK = 2) is

non-zero.

It is not non-zero so LAB is net equal to 3. to indicate

that some labelling has happened, and that it is

worthwhile to repeat step 2. See Figure 4.

38

3
201

1
A IA A /A

5
6 104 4 310 0
0 1

o/I 2 /0
0

6I5

Notation
cost/lower bound
arc number by >

vertex
label
dual va ue

Figure 4

Return to Step 2.

Look for arcs with 1) start vertex with non-zero label,

find Arcs 2,3 and 4;

and 2) end vertex with zero label,

Arcs 2 and 3 have this property;

and 3) net cost negative or zero

BUT net cost(2) =1

and net cost(3) = 1.

so neither of these arcs can be added to the vine.

Return to Step 3.

Look for smallest differential in dual values which will

bring the net cost of one of these arcs to zero.

Look at Arc 2 and set DEL = 1.

Look at Arc 3 and keep DEL = 1.

Increase the dual value, of all vertices with zero label

by DEL. See Figure 5.

39

3
201

2
n 'In (1/

1 4 5
1/0 4 4 3 1/0

0

0/1 /0

szs
Notation
cost/lower bound
arc number by >

vertex
label
dual value

Figure 5

Go back to Step 2.

Look for arcs with 1) start vertex with non-zero label,

find Arcs 2,3 and 4;

and 2) end vertex with zero label,

Arcs 2 and 3 have this property;

and 3) net cost negative or zero

net cost(2) = 0.

Add Arc 2 to the vine and label Vertex 3 with 2.

Check whether the label of Vertex 2 (because SNK = 2) is

non-zero.

It is not non-zero so LAB is set equal to 1 to indicate

that some labelling has happened, and that it is

worthwhile to continue with Step 2. See Figure 6.

40

3
221

'/n n/n
1 4 5
6 104 4 3 1/0
0

0/1 /0
0

625

Notation
cost/lower bound
arc number by >

vertex
label
dual value

Figure 6

Continue with Step 2

Look for arcs with 1) start vertex with non-zero label,

find Arc 3;

and 2) end vertex with zero label,

Arc 3 has this property;

and 3) net cost negative or zero

net cost(3) = 0.

Arc 3 can be added to the vine and Vertex 5 labelled with

3.

Check whether the label of Vertex 2 (because SNK = 2) is

non-zero.

It is not non-zero, so LAB is set equal to 1 to indicate

that some labelling has happened, and that it is

worthwhile to continue with Step 2. See Figure 7.

ft

41

z2i
7/n nin

1
4 1/0

4
3 Z/0

5

o/1 /o
0

625

Notation
cost/lower bound
arc number by >

Figure 7

I vertex
label
ua value

Continue with Step 2

Look for arcs with 1) start vertex with non-zero label,

find Arcs 4 and 5;

and 2) end vertex with zero label,

Arc 5 has this property;

and 3) net cost negative or zero

net cost(s) = 0.

Arc 5 can be added to the vine and Vertex 2 labelled with

S.

Check whether the label of Vertex 2 (because SNK = 2) is

non-zero.

It is non-zero, so flow is augmented on the flow

augmenting circuit from vertex 1 to 4 to 5 to 2 to 1, by 1

unit, and a return made to Step 1.

Step 1.

Look for Out-of-Kilter arcs.

Find none. Stop.

42

APPENDIX 6

ENSURING THE GROUP TRAVEL PROPERTY

The small example in Appendix 5 is extended with the

addition of a second destination at Vertex 6, as shown

below, and demand for an extra trip from the origin,

Vertex 1, to Vertex 6. After having augmented the flow to

cater for 1 trip from 1 to 2 the problem is to find a

minimum cost route for one trip from 1 to 6. Labels would

be reset at zero but dual values would be retained. The

start-up position is as in Figure 1.

Nc
Cc

at

Figure 1

Step 1

Look for out-of-Kilter are.

Find Arc number 8.

Set SRC = 1, the number of the end vertex for Arc S.

Set SNK = 6, the number of the start vertex for Arc 8.

Label vertex 1 with S.

See Figure 2.

43

N<
c<
ai

Figure 2

Step 2

Look for arcs with 1) start vertex with non-zero label,

find Arcs 2 and 4;

and 2) end vertex with zero label,

Arcs 2 and 4 have this property;

and 3) net cost negative or zero

net cost(2) =0

Arc 2 can be added to the vine and Vertex 3 labelled with

2.

Check whether the label of Vertex 6 (because SNK = 6) is

non-zero.

It is not non-zero, so LAB is set equal to 1 to indicate

that some labelling has happened, and that it may be

worthwhile repeating Step 2.

See Figure 3 and continue with Step 2.

44

Nc
cc
aj

Figure 3

Continue with Step 2

Look for arcs with 1) start vertex with non-zero label,

find Arc 4;

and 2) end vertex with zero label,

Arc 4 has this property;

and 3) net cost negative or zero,

net cost(4) =0

Arc 4 can be added to the vine and Vertex 4 labelled with

4.

Check whether the label of Vertex 6 (because SNK = 6) is

non-zero.

It is not non-zero, so continue with Step 2.

See Figure 4.
ft

45

Ni
cl
ai

Figure 4

Continue with Step 2

Look for arcs with 1) start vertex with non-zero label,

find no more arcs.

But some labelling has happened, so it is worthwhile to

repeat Step 2 starting with Arc 1.

Look for arcs with 1) start vertex with non-zero label,

find Arcs 1,2,3,4;

and 2) end vertex with zero label,

Arcs 1 and 3 have this property;

and 3) net cost negative or zero,

net cost(1) = 0.

Arc 1 can be added to the vine and Vertex 5 labelled with

1.

Check whether the label of Vertex 6 (because SNK = 6) is

non-zero.

It is not non-zero, so continue with Step 2.

See Figure 5.

46

N(
Ct
8]

Figure 5

Continue with Step 2

Look for arcs with 1) start vertex with non-zero label,

find Arcs 2,3,4,5 and 7.

and 2) end vertex with zero label,

Arcs 5 and 7 have this property;

and 3) net cost negative or zero,

net cost(s) = 0.

Arc 5 can be added to the vine and Vertex 2 labelled with

5.

Check whether the label of Vertex 6 (because SNK = 6) is

non-zero.
It is not non-zero, so continue with Step 2.

See Figure 6.
ft

47

Nc
cc
at

Figure 6

Continue with Step 2

Look for arcs with 1) start vertex with non-zero label,

find Arc 6 and 7;

and 2) end vertex with zero label,

Arc 7 has this property;

and 3) net cost negative or zero,

net cost(7) = 0.

Arc 7 can be added to the vine and Vertex 6 labelled with

7.

Check whether the label of Vertex 6 (because SNK s 6) is

non-zero.

It is, so proceed to Step 5.

Step 5

Augment flow on flow augmenting circuit, Vertex 1 to 3 to

5 to 6 by 1 unit.

Return to Step 1

Step 1

Look for Out-of-Kilter arcs. Find none. Stop.

48

The result of this assignment is that the trip

from 1 to 2 is assigned to the path through vertices 1,4,

5 and 2 and the trip from 1 to 6 is assigned to the path
through vertices 1,3,5 and 6. These paths diverge at 1

and merge again at 5. This is violating the group travel

property. The routes would have had the same costs if

both trips had been routed via 4 and they would have

avoided the merge with each other.

To avoid the occurrence of this situation, the

following change is made to the algorithm.

The labels as well as the dual values are retained

between finding flow augmenting paths.

With each new Out-of-Kilter arc which is

discovered, a check is made as to whether the vertex whose

number matches the new value of SNK is labelled. If it

is, then the new destination for which a trip is required,
is already in the vine and a flow augmenting path can be

found straight away. If it is not, then one starts adding
branches to the tips of the vine.

This has the effect of ensuring -that all the

routes from an origin form a vine of paths which do not

merge; the group travel property is ensured. It also has

the effect of saving the computing time that would be

involved in building a new vine from scratch for each

destination.

49

APPENDIX 7

THE SOURCE CODE FOR THE PROGRAMS

This appendix contains the source code for the

programs, written in the FORTRAN 77 language. The

listings are in the order in which the suite of programs

is to be used, namely POLYARCS the program to synthesise

the Circulation System, POLYSEND the assignment program

which finds the minimum cost routes, and POLYLINK the

program which translates the results from POLYSEND into

flows on the links of the road network. Subroutines

appear in alphabetical order following each main program.

These programs were compiled using the RMFORT FORTRAN

compiler. They have been run on a Victor 286 micro-

computer.

50

PROGRAM POLYARCS
c 12 June 89
C This program takes details of nodes and links in an urban road
c network and creates a pair of vertices (one if the link is one-
c way) at the midpoint of each link.
C It creates arcs to join up the vertices according to the allowed
C traffic movements at the junction represented by the node.
C If there are inconsistencies in details of the links said to be
c incident at a junction, e. g. neither the A-node nor the B-node
c is the junction node, the program stops with a report of the
c junction node where this happened.
C The program can model movements at t-junctions, t-junctions onto
c motorways,
c crossroads, mini-4-arm roundabouts, conventional 4-arm roundabouts
c and flyovers over a roundabout or underpasses below a roundabout.
c It compiles a list of those arcs which conflict with each arc.
c IT COMPUTES A CONFLICT WEIGHT TO BE APPLIED TO EACH ARC IF THE
C LIST ABOVE.
C It creates the files, ARCS. DAT, and CROSSFLO. DAT which can be
c read by the program, POLYSEND.
c It creates the file, ARCLINK. DAT, to be read by the program,
c POLYLINK
C It can synthesise a traffic circulation network with
c up to 1200 arcs from a road network with
c up to 50 zones, 300 junctions and 300 links.

INTEGER ZONES, XIONS, LINKS, A, B, TW, UB, DB, X,
1 DA, UA, INJ, XION, I, J, NC, CR, CW, ARCS, FIRSTAB,
1 FIRSTBA, AP, EX, R, FEED, ZONESIN

C
COMMON INJ(300,8), XION(300), UB(300), DB(300), I(1200), J(1200),

1 NC(1200), CR(1200,8), NODES, ARCS, ZONES, A(300), B(300), FIRSTAB(300),
1 LASTAB(300), FIRSTBA(300), LASTBA(300), KJ(20), AP(4), EX(4), NL(300),
1 CW(1200,8), JT(300), TW(300), DA(200), UA(200), R(5),
1 FEED(50), LINKS, XIONS, ZONESIN

C
C ZONES is the number of nodes which can be origins or
c destinations of traffic.
C FEED(M) is the number of connectors from zone M into the
c network.
c XIONS is the number of junctions in the urban road network.
c LINKS is the number of links in the urban road network.
C A(L) and B(L) are the end nodes of link, L, A being the start
c node if link, L, is one-way. TW(L) is 0 if link, L, is one-ray
c and 1 if link, L, is two-way.
c UB(L) is the vertex created on link, L, upstream of node, B.
c DB(L) is the vertex created on link, L, downstream of node, B.
C DA(M) is the vertex number of the vertex from which flow
c from the origin zone, M, will emanate.
c UA(M) is the vertex number of the vertex at which flow
c to the destination zone, M, will arrive.
c NL(J) is the number of links incident to junction, J.
C INJ(J, NL(J)) is a list for each junction, J, of the link numbers
c of those links which are incident to junction, J.
c AP(q) is the vertex number of the vertex upstream of J
c on the qth link incident to junction, J.
C EX(q) is the vertex number of the vertex downstream of J
c on the qth link incident to junction, 3.

51

C R(q) the extra vertex at the centre of a roundabout opposite
c the qth link.
c ZONESIN is the total number of zone connectors.
c XION(J) is the number of the Jth junction, allowing for the
c possibility that the junction numbers need not be consecutive.
c I(K) and J(K) are the numbers of the start and finish vertices
c of the directed are, K.
c NC(K) is the number of arcs conflicting with arc, 1.
c CR(K, NC(K)) is a list for each are, K, of the numbers of the
c NC(K) arcs conflicting with it.
c JT(X) is the junction type
c JT(X) =1 for a free-for-all junction
c JT(X) =2 for a priority junction
c JT(X) =3 for a signalised junction
c JT(X) =4 for a mini-roundabout
c JT(X) =5 for a roundabout
c JT(X) =6 for a flyover
c JT(X) 27 FOR USER TO BE ASKED FOR WEIGHTS
C CW(K, NC(K)) is the weight for the NC(K)th arc conflicting with
c arc K.

OPEN(UNIT=6, FILE ='ARCS. DAT', STATUS--'NEW')
OPEN(UNIT=7, FILE ='LINKS. DAT', STATUS='OLD')
OPEN(UNIT=8, FILE ='CROSSFLO. DAT', STATUS='NEW')
OPEN(UNIT=9, FILE ='ARCLINK. DAT', STATUS='NEW')
READ(7, t)ZONES, XIONS, LINKS
ZONESIN =0
DO 10 M=1, ZONES
READ(7, *)FEED(M)
ZONESIN 2 ZONESIN + FEED(M)

10 CONTINUE
C We have got past 1st record and next ZONES records

DO 40 L=1, ZONESIN
READ(7, *, END--40)A(L), B(L), TW(L)

40 CONTINUE
C So L will be number of links so far +1
C All link records for zone connectors have been read so there are
c LINKS-ZONESIN links left.

DO 50 ML=L, LINKS
READ(7, *, END=50)A(ML), B(ML), TW(XL)

50 CONTINUE
c All link records have now been read

DO 60 X=1, XIONS
READ(7, *, END=60)XION(X), JT(X), NL(X), (INJ(X, JL), JL=1, NL(X))

60 CONTINUE
CLOSE(UNIT=7, STATUS--'KEEP')

1 All road network records have been read.
CALL ODVERT
CALL LINKVERT(L)
CALL MAKEARCS
CALL PRINT
WRITE(9, *)ZONES, XIONS, LIKKS, ARCS
DO 70 L=1, LINKS

WRITE(9, *)L, FIRSTAB(L), LASTAB(L), TW(L), FIRSTBA(L), LASTBA(L)
70 CONTINUE

STOP 'Output files are ARCS. DAT, CROSSFLO. DAT and ARCLINX. DAT'
END

52

BLOCK DATA W3
INTEGER CON3, CONRF, WT3
COMKON/C3/CON3(6,3), CONRF(6), VT3(42)
DATA (CON3(I, 1), I=1,2) / 2*6 / (CON3(2, I), I=2, 3) / 4,3

1 (CON3(I, 1), I=3,4) / 2*2 / (C013(4, I), I=2,3) / 6,5 /
1 (CON3(I, 1), I=5,6) / 2*4 / (CON3(6, I), I=2,3) / 2,1 /
1 CONRF(1) /6/ CONRF(2) /3/ CONRF(3) /2/
1 CONRF(4) /5/ CONRF(5) /4/ CONRF(6) /1/
1 WT3(1) /1/ (WT3(I), I=2,3) / 2*2 / WT3(4) /1 /
1 WT3(5) /1/ (WT3(I), I=6,7) / 2*2 / WT3(8) /1 /
1 NT3(9) /1/ (WT3(I), I210,11) / 2*2 / NT3(12) /1/
1 WT3(13) /1/ (WT3(I), I=14,15) / 2*2 / WT3(16) /1/
1 WT3(17) /1/ (WT3(I), I=18,19) / 2*2 / NT3(20) /1/
1 WT3(21) /1/ (WT3(I), I=22,23) / 2*2 / WT3(24) /1/
1 WT3(25) /1/ (WT3(I), I=26,27) / 2*2 / WT3(28) /1/
1 WT3(29) /1/ (WT3(I), I=30,31) / 2*2 / W73(32) /1/
1 WT3(33) /1/ (WT3(I), I=34,35) / 2*2 / WT3(36) /1/
1 (WT3(I), I=37,41) / 6*1 /

END
BLOCK DATA W4
INTEGER CON4, WT4, CON4MRi CONRO, CONFO
COMMON/C4/CON4(12,7), WT4(104), CON4MR(16,2), CONRO(20,6),

1 CONFO(12,6)
DATA (CON4(I, 1), I=1,3) / 3*11 / (C0N4(I, 1), I=4,6) / 3*2 /

1 (CON4(I, 1), I=7,9) / 3*5 / (CON4(I, 1), I=10,12) / 3*8 /
1 (C0N4(I, 2), I=1,3) / 3*9 / (CON4(I, 2), I=4,6) / 3*12 /
1 (CON4(I, 2), I=7,9) / 3*3 / (C0N4(1,2), I=10,12) / 3*6 /
1 (CON4(I, 3), I=2,3) / 6,12 / (CON4(I, 3), I=5,6) / 9,3 /
1 (C0N4(I, 3), I=8,9) / 12,6 / (CON4(I, 3), I=11,12) / 3,9 /
1 (C0N4(I, 4), I=2,3) / 5,6 / (CON4(I, 4), I=5,6) / 8,9 /
1 (C0N4(I, 4), I=8,9) / 11,12 / (CON4(1,4), I=11,12) / 2,3 /
1 (C0N4(1,5), I: 2,3) / 12,8 / (CON4(I, 5), I=5,6) / 3,11/
1 (CON4(I, 5), I=8,9) / 6,2 / (CON4(I, 5), I=11,12) / 9.5 /
1 (C0N4(I, 6), I=2,3) / 4,5 / (CON4(I, 6), I=5,6) / 7,8 /
1 (C0N4(I, 6), 1=8,9) / 10,11 / (CON4(1,6), 1=11,12) / 1,2 /
1 CON4(3,7) /7/ CON4(6,7) / 10 / CON4(9,7) /1/ CON4(12,7)/4/
1 (WT4(I), I=1,2) / 2*1 / (NT4(I), I=3,6) / 4*2 /
1 (WT4(I), I=7,8) / 2*1 / WT4(9) /2/ WT4(10) /3/
1 (WT4(I), I=11,13) / 3*2 / (WT4(I), I214,15) / 2*1 /
1 (WT4(I), I=16,17) / 2*1 / (WT4(I), I218,21) / 4*2 /
1 (WT4(I), I=22,23) / 2*1 / $T4(24) /2/ NT4(25) /3/
1 (WT4(I), I=26,28) / 3*2 / (WT4(I), I=29,30) / 2*1 /
1 (WT4(I), I=31,32) / 2*1 / (WT4(I), I=33,36) / 4*2 /
1 (WT4(I), 1=37,38) / 2*1 / WT4(39) /2/ WT4(40) /3/
1 (WT4(I), I=41,43) / 3*2 / (i1T4(I), I=44,45) / 2*1 /
1 (WT4(I), I=46,47) / 2*1 / (WT4(I), I=48,51) / 4*2 /
1 (WT4(I), I=52,53) / 2*1 / WT4(54) /2/ WT4(55) /3/
1 (WT4(I), I=56,58) / 3*2 / (WT4(I), I=59,60) / 2*1 /
1 WT4(61) /1/ WT4(62) /2/ VT(63) /1/
1 Wr4(64) /2/ WT4(65) /1/ WT(66) /1/
1 (WT4(I), I267,68) / 2*1 / (WT4(I), I=69,72 / 4*2 /
1 (WT4(I), I=73,74) / 2*1 / (NT4(I), I=75,76) / 2*2 /
1 (WT4(I), I=77,78) / 2*1 / (WT4(I), I=79,80) / 2*2 I
1 (WT4(I), I=81,82) / 2*1 /
1 (WT4(I), I=83,84) / 2*1 / (WT4(I), 1=85,86) / 2*2 /
1 (WT4(I), I=87,88) / 2*1 / WT4(89) /3/

53

(WT4(I), I290,92) / 3*2 / (WT4(I), I=93,94) / 2*1 /
(WT4(I), 1295,96) / 2*1 / (WT4(I), I=97,98) / 2*1 /
WT4(99) /2/ WT4(100) /3/
(WT4(I), I=101,102) / 2*2 / (WT4(I), I=103,104) / 2*1 /
(CON4MR(I, 1), I=1,2) / 2*3 / (C0N41Qt(I, 1), I=3,4) / 2*2 /
(CON4MR(I, 1), I=5,6) / 2*7 / (CON4MR(I, 1), I=7,8) / 2*6 /
(CON4MR(I, 1), I=9,10) / 2*11 / (C0N4MR(I, 1), I=11,12) / 2*10 /
(CON4MR(1,1), I=13,14) / 2*15 / (CON4MR(1,1), I=15,16) / 2*14 /
(C0N4MR(I, 2), I=2,3) / 4,1 / (CON4MR(I, 2), I=6,7) / 8,5 /
(CON4MR(I, 2), I=10,11) / 12,9 / (C01I41Qt(I, 2), I=14,15) / 16,13 /
(CONRO(1,1), I=1,3) / 3*17 / (CONRO(I, 2), I=1,3) / 3*15 /
(CONRO(I, 1), I=6,8) / 3*2 / (COIIRO(I, 2), 1=6,8) / 3*20 /
(CONRO(I, 1), 1=11,13) / 3*7 / (CONRO(I, 2), I=11,13) / 3*5 /
(CONRO(I, 1), 1=16,18) / 3*12 / (CONRO(I, 2), 1 16,18) / 3*10 /
(CONRO(1,1), I=4,5) / 8,13 / (CONRO(I, 1), I=9,10) / 13,18 /
(CONRO(I, 1), I=14,15) /18,3 / (CONRO(I, 1), I=19,20) / 3,8 /
(CONRO(2,1), I=3,6) / 8,7,6,20 / (CONRO(7, I), I=3,6) / 13,12,11,5/
(CONRO(12, I), I=3,6) /18,17,16,10/(CONRO(17, I), 1=3,6) / 3,2,1,15/
CONRO(3,3) / 19 / CONRO(8,3) /4/
CONRO(13,3) /9/ CONRO(18,3) / 14 /
(CONRO(5, I), I=2,4) / 12,7,11 / (CONRO(10, I), I=2,4) / 17,12,16 /
(CONRO(15,1), 1=2,4) / 2,17,1 / (CON80(20, I), I=2,4) / 7,2,6 /
(CONFO(1, I), I=1,2) / 11,9 / (CONFO(4, I), I=1,2) / 2,12 /
(CONFO(7, I), I=1,2) / 5,3 / (CONFO(10, I), I=1,2) / 8,6 /
(CONFO(2, I), 1=1,4) / 9,6,4,12 / (CONFO(5, I), I=1,2) / 7,3 /
(CONFO(8, I), 1=1,4) / 3,12,10,6 / (CONFO(11, I), I=1º1) / 1,9 /
(CONFO(3, I), I=1,6) / 9,12,6,8,5,7 /
(CONFO(6, I), I=1,6) / 2,12,3,9,8,10 /
(CONFO(9, I), I=1,6) / 3,6,12,2,11,1 /
(CONFO(12, I), I=1,6) / 8,6,9,3,2,4 /
END

SUBROUTINE ARC3LINK(X, L)
C For each link, L, feeding into a T-junction, X, this subroutine
c determines whether the B node or the A node is at the junction
c and computes FIRSTAB(L) and LASTAB(L) or FIRSTBA(L) and LASTBA(L)
C respectively. This is to enable the total flow on link, L, to be
c computed separately for the direction A to B and B to A from the
c array TOTEFLOW(K) as output to the file, FARCPLO. DAT, by the program
c POLYSEND. If those links from zones have their A to B direction
c coded away from the tone no arcs will be created from the
c destination vertex so FIRSTBA andd LASTBA will be 0 for links from
c from zones and no means will be provided for computing the total
c flow along a link into a destination. It can be assumed to equal
c the demand.
c

INTEGER AP, EX, R, FEED, X, A, B, INJ, YION, UB, DB, I, J. NC, CR, ARCS, EONES,
1 FIRSTAB, FIRSTBA, TW, DA, UA, LINKS, XIONS, LONESII

COMMON INJ(300,8), YION(300), UB(300), DB(300), I(1200), J(1200),
1 NC(1200), CR(1200,8), NODES, ARCS, EONES, A(300), B(300)ºFIRSTAB(300),
1 LASTAB(300), FIRSTBA(300), LASTBA(300), KJ(20), AP(4), EX(/), NL(300),
1 CW(1200,8), JT(300), TN(300), DA(200), UA(200), R(5),
1 FEED(50), LINRS, XIONS, LONESIN

IF(AP(L). EQ. UB(INJ(X, L)))THEN
IF(AJ(2*L-1). NE. O)TEEN

FIRSTAB(INJ(X, L))=KJ(2*L"1)

54

IF(KJ(2*L). NE. O)TBEJ
LASTAB(INJ(X, L))=KJ(2*L)

ELSE
LASTAB(INJ(X, L))--KJ(2*L-1)

END IF
ELSE

IF(KJ(2*L). NE. O)THEN
FIRSTAB(INJ(X, L))=KJ(2*L)
LASTAB(INJ(X, L))=KJ(2*L)

END IF
END IF

ELSE
IF(KJ(2*L-1). NE. 0)THEN

FIRSTBA(INJ(X, L))--KJ(2*L-1)
IF(KJ(2*L). NE. O)THEN

LASTBA(INJ(X, L))=KJ(2*L)
ELSE

LASTBA(INJ(X, L))=RJ(2*L-1)
END IF

ELSE
IF(KJ(2*L). NE. O)THEN

FIRSTBA(INJ(X, L))=KJ(2*L)
LASTBA(INJ(X, L))--KJ(2*L)

END IF
END IF

END IF
RETURN
END

C Of subroutine ARC3LINK(X, L)
C

SUBROUTINE ALMINI4(X, L)
c Relates are numbers to links in a mini-roundabout.

INTEGER AP, EX, R, FEED, X, A, B, INJ, XION, UB, DB, I, J, NC, CR, CW, NT, ARCS,
1 FIRSTAB, FIRSTBA, TW, DA, UA, LINKS, XIONS, ZONESIN, ZONES

COMMON INJ(300,8), XION(300), UB(300), DB(300), I(1200), J(1200),
1 NC(1200), CR(1200,8), NODES, ARCS, ZONES, A(300), B(300), FIRSTAB(300),
1 LASTAB(300), FIRSTBA(300), LASTBA(300), KJ(20), AP(4), EX(4), NL(300),
I CW(1200,8), JT(300), TW(300), DA(200), UA(200), R(S),
1 FEED(50), LINKS, XIONS, ZONESIN

IF(AP(L). EQ. UB(INJ(X, L)))THEN
IF(KJ(4*L-3). NE. O)THEN

FIRSTAB(INJ(X, L)): KJ(4*L-3)
IF(KJ(4*L-2). NE. O)THEN

LASTAB(INJ(X, L))=KJ(4*L-2)
ELSE

LASTAB(INJ(X, L))=KJ(4*L-3)
END IF

ELSE
FIRSTAB(INJ(X, L))=KJ(4*L-2)
LASTAB(INJ(X, L)) =KJ(4*L-2)

END IF
ELSE

IF(KJ(4*L-3). NE. O)TBEN
FIRSTBA(INJ(X, L)): KJ(4*L-3)
IF(KJ(4*L-2). NE. O)TBEN

LASTBA(INJ(X, L))=KJ(4*L-2)

55

ELSE
LASTBA(INJ(X, L))=KJ(4*L-3)

END IF
ELSE

FIRSTEA(INJ(X, L))=XJ(4*L-2)
LASTBA(INJ(X, L)) =KJ(4*L-2)

END IF
END IF

RETURN
END

C Of subroutine ALNINI4(X, L)
C

SUBROUTINE ALROUND4(X, L)
C Relates arcs to links in a conventional 4-arm roundabout.

INTEGER AP, EX, R, FEED, X, A, BºINJ, ZION, UB, DB, I, J, NC, CR, CR, NTºARCS,
1 FIRSTAB, FIRSTBA, TR, DA, UA, LINKS, XIONS, ZONESIN, ZONES

COMMON INJ(300,8), XION(300), UB(300), DB(300), I(1200), J(1200),
1 NC(1200), CR(1200,8), NODES, ARCS, ZONES, A(300), B(300), FIRSTAB(300),
1 LASTAB(300), FIRSTBA(300), LASTBA(300), KJ(20), AP(4), EX(4), NL(300),
1 CW(1200,8), JT(300), TW(300), DA(200), UA(200), R(5),
1 FEED(50), LINKS, %IONS, ZONESIN

IF(AP(L). EQ. UB(INJ(X, L)))THEN
IF(KJ(5*L-4). NE. O)THEN

FIRSTAB(INJ(X, L))--KJ(5*L-4)
IF(KJ(5*L-2). NE. O)TNEN

LASTAB(INJ(X, L))=KJ(5*L-2)
ELSE

IF(KJ(S*L-3). NE. O)THEN
LASTAB(INJ(X, L))=KJ(5*L-3)

ELSE
LASTAB(INJ(X, L))=KJ(5*L-4)

END IF
END IF

ELSE
IF(KJ(S*L-3). NE. O)THEN

FIRSTAB(INJ(X, L))=KJ(5*L-3)
IF(KJ(5*L-2). NE. O)THEN

LASTAB(INJ(X, L))=KJ(S*L-2)
ELSE

LASTAB(INJ(X, L))=KJ(5*L-3)
END IF

ELSE
IP(KJ(5*L-2). NE. O)TBEN

FIRSTAB(INJ(X, L)): KJ(5*L-2)
LASTAB(INJ(X, L))=KJ(5*L-2)

END IF
END IF

END IF
ELSE

IF(KJ(5*L-4). NE. O)TNEN
FIRSTBA(INJ(%, L))=KJ(5*L-4)
IF(KJ(5*L-2). NE. O)TNEI

LASTBA(INJ(X, L))=KJ(5*L-2)
ELSE

IF(KJ(5*L-3). NE. O)TAEN
LASTBA(INJ(X, L))--KJ(S*L-3)

56

ELSE
LASTBA(INJ(X, L))=RJ(5*L-4)

END IF
END IF

ELSE
IF(KJ(5*L-3). NE. O)TBEN

FIRSTBA(INJ(X, L))=KJ(5*L-3)
IF(KJ(5*L-2). NE. O)THEN

LASTBA(INJ(X, L))=KJ(5*L-2)
ELSE

LASTBA(INJ(X, L))=KJ(5*L-3)
END IF

ELSE
IF(KJ(5*L-2). NE. O)THEN

FIRSTBA(INJ(X, L))=KJ(5*L-2)
LASTBA(INJ(X, L))=KJ(5*L-2)

END IF
END IF

END IF
END IF

RETURN
END

C Of subroutine ALROUND4(X, L)

SUBROUTINE ARC4LINK(X, L)
C For each link, L, feeding into a crossroads, X, this subroutine
c determines whether the a node or the A node is at the junction
c and computes FIRSTAB(L) and LASTAB(L) or FIRSTBA(L) and LASTBA(L)
C respectively. This is to enable the total flow on link, L, to be
c computed separately for the direction A to B and B to A from the
c array TOTEFLOW(K) as output to the file, FLOW. DAT, by the program
c POLYREAL. If those links from zones have their A to B direction
c coded away from the zone no arcs will be created from the
c destination vertex so FIRSTBA andd LASTBA will be 0 for links from
c from zones and no means will be provided for computing the total
c flow along a link into a destination. It can be assumed to equal
c the demand.
C

INTEGER AP, EX, R, PEED, X, A, B, INJ, XION, UB, DB, I, J, NC, CR, CN, WT, ARCB,
1 FIRSTAB, FIRSTBA, TW, DA, UA, LINKS, XIONS, ZONESIN, SONES

COMMON INJ(300,8), XION(300), UB(300), DB(300), I(1200), J(1200),
1 NC(1200), CR(1200,8), NODES, ARCS, ZONES, A(300), B(300), PIRSTAB(300),
1 LASTAB(300), FIRSTBA(300), LASTBA(300), KJ(20), AP(4), E1(4), NL(300),
1 CW(1200,8), JT(300), Til(300), DA(200), UA(200), R(5),
1 FEED(50), LINKS, XIONS, ZONESIN

IF(AP(L). EQ. UB(INJ(X, L)))TBEN
IF(KJ(3*L-2). NE. O)THEN

FIRSTAB(INJ(X, L))--KJ(3*L-2)
IF(KJ(3*L). KE. O)THEN

LASTAB(INJ(X, L))=KJ(3*L)
ELSE

IF(KJ(3*L-1). NE. O)TREN
LASTAB(INJ(X, L))=KJ(3*L-1)

ELSE
LASTAB(INJ(X, L)): X3(3*L-2)

END IF
END IF

57

ELSE
IF(KJ(3*L-1). NE. 0)THEN

FIRSTAB(IEJ(X, L))=KJ(3*L-1)
IF(KJ(3*L). NE. O)THEN

LASTAB(INJ(X, L))=KJ(3*L)
ELSE

LASTAB(INJ(X, L))=KJ(3*L-1)
END IF

ELSE
IF(KJ(3*L). NE. O)THEN

FIRSTAB(INJ(X, L))--KJ(3*L)
LASTAB(INJ(%, L))=KJ(3*L)

END IF
END IF

END IF
ELSE

IF(KJ(3*L-2). NE. O)THEN
FIRSTBA(INJ(X, L))=KJ(3*L-2)
IF(KJ(3*L). NE. O)THEN

LASTBA(INJ(X, L))=KJ(3*L)
ELSE

IF(KJ(3*L-1). NE. O)THEN
LASTBA(INJ(X, L))=KJ(3*L-1)

ELSE
LASTBA(INJ(X, L))=KJ(3*L-2)

END IF
END IF

ELSE
IF(KJ(3*L-1). NE. O)THEN

FIRSTBA(INJ(%, L))=KJ(3*L-1)
IF(KJ(3*L). NE. O)THEN

LASTBA(INJ(X, L))=KJ(3*L)
ELSE

LASTBA(INJ(%, L))=KJ(3*L-1)
END IF

ELSE
IF(KJ(3*L). NE. O)THEN

FIRSTBA(INJ(x, L))=KJ(3*L)
LASTBA(INJ(X, L))2KJ(3*L)

END IF
END IF

END IF
END IF

RETURN
END
Of subroutine ARC4LINK(%, L)

SUBROUTINE CON3ARC1
C Specify conflicts
C Free-for-all 3-way junction

INTEGER AP, EX, R, FEED, X, A, B, INJ, %ION, UB, DB, I, J, NC, CR, CW, ARCS,
1 FIRSTAB, FIRSTBA, TW, DA, UA, LINRS, XIONS, ZONESIN, ZONES, WT3, CON3,
1 CONRF

COMMON / C3 / C0N3(6,3), CONRF(6), WT3(42)

58

COMMON INJ(300,8), SION(300), UB(300), DB(300), I(1200), J(1200),
1 NC(1200), CR(1200,8), NODES, ARCS, ZONES, A(300), B(300), FIRSTAB(300),
I LASTAB(300), FIRSTBA(300), LASTBA(300), KJ(20), AP(4), EX(4), NL(300),
1 CW(1200,8), JT(300), TW(300), DA(200), UA(200), R(5),
1 FEED (50), LINKS, XIONS, ZONESIN

SAVE /C3/
DO 2 KP=1,5,2

IF(KJ(KP). NE. O)THEN
KR=1
IF(KJ(C0N3(KP, 1)). NE. O)THEN

CR(KJ(KP), KR) = KJ(CON3(KP, 1))
CW(KJ(KP), KR) = WT3(1)
KR=KR+1

END IF
NC(KJ(KP)) = KR -1

END IF
2 CONTINUE

DO 4 KP=2,6,2
IF(KJ(KP), JE. O)TBEN

KR=1
DO 6 K0=1,3

IF(KJ(CON3(KP, KO)). NE. O)TBEN
CR(KJ(KP), KR) = KJ(CON3(KP, KO))
CW(KJ(KP), KR) = wr3(1+KO)
KR = KR +1

END IF
6 CONTINUE

NC(KJ(KP)) = KR -1
END IF

4 CONTINUE
RETURN
END

C Of subroutine CON3ARC1
C

SUBROUTINE CON3RF
Specify conflicts
Right-turning flyover to and from minor road
INTEGER AP, EB, R, FEED, X, A, B, INJ, XION, UB, DB, I, J, NC, CR, CW, ARCS,
FIRSTAB, FIRSTBA, TW, DA, UA, LINKS, XIONS, ZONESIN, ZO$! S, NT3, CON3,
CONRF
COMMON / C3 / CON3(6,3), CONRF(6), NT3(42)
COMMON INJ(300, B), XION(300), UB(300), DB(300), I(1200), J(1200),
NC(1200), CR(1200,8), NODES, ARCS, ZONES, A(300), B(300), FIRSTAB(300),
LASTAB(300), FIRSTBA(300), LASTBA(300), KJ(20), AP(4), EX(4), NL(300),
CW(1200,8), JT(300), TW(300), DA(200), UA(200), R(5),
FEED(50), LINKS, BIONS, ZONESIN
SAVE /C3/
DO 2 KP=1,6

IF(KJ(KP). NE. O)TREN
KR= 1
IF(KJ(CONRF(KP)). NE. O)TAEN

CR(KJ(KP), KR) = KJ(CONRF(KP))
CW(KJ(KP), KR) = NT3(36+KP)
KR =KR +1

END IF
NC(KJ(KP)) = KR -1

END IF

59

2 CONTINUE
RETURN
END

C Of subroutine CON3RF
C

SUBROUTINE CON4ARC1
C 12 JUNE 89
c Free-for-all 4-way junction

INTEGER XION, DB, UB, CR, CW, ARCS, 80NES, A, B, FIRSTAB, FIRSTBA,
1 AP, EX, R, FEED, TW, DA, UA, XIONS, ZONESIN, CO14, WT4, CON4MR, COUR0, CONFO

COMMON / C4 / CON4(12,7), WT4(104), CON4NR(16,2), CONRO(20,6),
1 CONFO(12,6)

COMMON INJ(300,8), XION(300), UB(300), DB(300), I(1200), J(1200),
1 NC(1200), CR(1200,8), NODES, ARCS, ZONES, A(300), B(300), FIRSTAB(300),
1 LASTAB(300), FIRSTBA(300), LASTBA(300), KJ(20), AP(4), EK(4), NL(300),
1 CW(1200,8), JT(300), TW(300), DA(200), UA(200), R(5),
1 FEED(50), LINKS, XIONS, ZONESIN

SAVE /C4/
DO 2 KP=1,10,3

IF(KJ(KP). NE. O)THEN
KR=1
Do 4 K0=1,2

IF(KJ(CON4(KP, KO)). NE. O)TBEN
CR(KJ(KP), KR) = KJ(CON4(KP, KO))
CW(KJ(KP), KR) = WT4(KO)
KR =KR +1

END IF
4 CONTINUE

NC(KJ(KP)) = KR -1
END IF

2 CONTINUE
DO 6 KP=2,11,3

IF(KJ(KP). NE. O)THEN
KR= 1
DO 8 K0=1,6

IF(KJ(CON4(KP, KO)). NE. O)THEN
CR(KJ(KP), KR) = KJ(CON4(KP, KO))
CW(KJ(KP), KR) = WT4(2+K0)
KR ca KR +1

END IF
8 CONTINUE

NC(KJ(KP)) = KR -. 1
END IF

6 CONTINUE
DO 10 KP=3,12,3

IF(KJ(KP). NE. O)TNEN
KR=1
DO 12 K0=1,7

IF(KJ(CON4(KP, KO)). NE. O)TAEN
CR(KJ(KP), KR) 2 KJ(CON4(KP, KO))
CW(KJ(KP), KR) = KT4(8+K0)
KR =KR +1

END IF
12 CONTINUE

NC(KJ(KP)) = KR -1
END IF

60

10 CONTINUE
RETURN
END

C of subroutine CON4ARC1
C

SUBROUTINE CON4ARC2
C 13 JUNE 89
c Priority 4-way junction

INTEGER KION, DB, UB, CR, CW, ARCS, ZONES, A, B, FIRSTAB, FIRSTBA,
1 AP, EX, R, FEED, TW, DA, UA, XIONS, ZONESIN, CON4, NT4, CON4MR, CONRO, CONFO

COMMON / C4 / CON4(12,7), WT4(104), CON4MR(16,2), COIRO(20,6),
1 CONFO(12,6)

COMMON INJ(300,8), BION(300), UB(300), DB(300), I(1200), J(1200),
1 NC(1200), CR(1200,8), NODES, ARCS, ZONES, A(300), B(300), FIRSTAB(300),
1 LASTAB(300), FIRSTBA(300), LASTBA(300), KJ(20), AP(4), U(4), NL(300),
1 CW(1200,8), JT(300), TW(300), DA(200), UA(200), R(5),
1 FEED(50), LINKS, XIONS, ZONESIN

SAVE /C4/
DO 2 KP=1,7,6

IF(KJ(KP). NE. O)THEN
KR=1
DO 4 K0=1,2

IF(KJ(CON4(KP, KO)). NE. O)TREN
CR(KJ(KP), KR) = KJ(CON4(KP, KO))
CW(KJ(KP), KR) = WT4(15+KO)
KR=KR+1

END IF
4 CONTINUE

NC(KJ(KP)) = KR -1
END IF

2 CONTINUE
DO 6 KP=2,8,6

IF(KJ(KP). NE. O)THEN
KR-1
DO 8 K0=1,6

IF(KJ(CON4(KP, KO)). NE. O)THEN
CR(KJ(KP), KR) = KJ(CON4(KP, KO))
CN(KJ(KP), KR) = WT4(17+KO)
KR-KR +1

END IF
8 CONTINUE

NC(KJ(KP)) = KR -1
END IF

6 CONTINUE
DO 10 KP=3,9,6

IF(KJ(KP). NE. 0)TBEN
KR=1
DO 12 K0=1,7

IF(KJ(CON4(KP, KO)). NE. O)TBEN
CR(KJ(KP), KR) = KJ(CON4(KP, KO))
CW(KJ(KP), KR) = NT4(23+K0)
KR =KR +1

END IF
12 CONTINUE

NC(KJ(KP)) 2 KR -1
END IF

10 CONTINUE

61

DO 14 KP=4,10,6
IF(KJ(KP). NE. O)THEN

KR=1
DO 16 K0=1,2

IF(KJ(CON4(KP, KO)). NE. O)TREN
CR(KJ(KP), KR) = KJ(CON4(KP, KO))
CW(KJ(KP), KR) = WT4(30+KO)
KR =jut +1

END IF
16 CONTINUE

NC(KJ(KP)) = KR -1
END IF

14 CONTINUE
DO 18 KP=5,11,6

IF(KJ(KP). NE. O)TEEN
KR =1
DO 20 K0=1,6

IF(KJ(CON4(KP, KO)). NE. O)THEN
CR(KJ(KP), KR) 2 KJ(CON4(KP, KO))
CW(KJ(K?), KR) = WT4(32+K0)
KR=KR+1

END IF
20 CONTINUE

NC(KJ(KP)) = KR -1
END IF

18 CONTINUE
DO 22 KP=6,12,6

IF(KJ(KP). NE. 0)THEN
KR=I
DO 24 K0=1,7

IF(KJ(CON4(KP, KO)). NE. O)TBEN
CR(KJ(KP), KR) = XJ(C0N4(KP, KO))
CW(KJ(KP), KR) = WT4(36+KO)
KR-- KR+1

END IF
24 CONTINUE

NC(KJ(KP)) = KR -I
END IF

22 CONTINUE
RETURN
END
of subroutine CON4ARC2

SUBROUTINE CON4ARC3
13 JUNE 89
4-way signalised junction
INTEGER XION, DB, UB, CR, CW, ARCS, ZONES, A, B, FIRSTAB, FIRSTBA,

1 AP, EX, R, FEED, TW, DA, UA, XIONS, ZONESIN, CON4, WT4, CON4MR, CONRO, CONFO
COMMON / C4 / C014(12,7), WT4(104), CO14MR(16,2), CONRO(20,6),

1 CONFO(12,6)
COMMON INJ(300,8), BION(300), UB(300), DB(300), I(1200), J(1200),

1 NC(1200), CR(1200,8), NODES, ARCS, ZONES, B(300), 3(300), FIRSTAB(300),
1 LASTAR(300), FIRSTBA(300), USTBA(300)ºRJ(20), AP(4), u(4), XL(300),
1 CW(1200,8), JT(300), TW(300), DA(200), UA(200), R(S),
1 FEED(50), LINKS, IIONS, ZONESIN

SAVE /C4/

62

DO 2 KP=1,10,3
IF(KJ(KP). NE. O)TßEN

KR=1
DO 4 K0=1,2

IF(KJ(C0N4(KP, KO)). IE. O)TREN
CR(KJ(KP), KR) = KJ(CON4(KP, Ko))
CW(KJ(KP), KR) = WT4(45+K0)
KR =KR +1

END IF
4 CONTINUE

NC(KJ(KP)) = KR -1
END IF

2 CONTINUE
DO 6 KP=2,11,3

IF(KJ(KP). NE. O)THEN
KR-1
DO 8 K0=1,6

IF(KJ(CON4(KP, KO)). NE. O)THEN
CR(KJ(KP), KR) = KJ(CON4(KP, K0))
CW(KJ(KP), KR) = WT4(47+K0)
KR=KR+1

END IF
8 CONTINUE

NC(KJ(KP)) = KR -1
END IF

6 CONTINUE
DO 10 KP=3,12,3

IF(KJ(KP). NE. O)THEN
KR -1
DO 12 K0=1,7

IF(KJ(CON4(KP, KO)). NE. O)THEN
CR(KJ(KP), KR) = KJ(CON4(KP, KO))
CW(KJ(KP), KR) = WT4(53+K0)
KR=KR+1

END IF
12 CONTINUE

NC(KJ(KP)) = KR -1
END IF

10 CONTINUE
RETURN
END
of subroutine COMM

SUBROUTINE CON4ARC4
C Mini-roundabout
C 13 JUNE 89

INTEGER XION, DB, UB, CR, CW, ARCS, ZONES, A, B, FIRSTAB, FIRSTBA,
AP, EX, R, FEED, TV, DA, UA, XIONS, ZONESIN, CON4, KT4, C014MR, CONRO, COJF0
COMMON / C4 / CON4(12,7), WT4(104), CON4MR(16,2), CONRO(20,6),
CONFO(12,6)
COMMON INJ(300,8), XION(300), UB(300), DB(300), I(1200), J(1200),
NC(1200), CR(1200,8), NODES, ARCS, ZONES, A(300), B(300), FIRSTAB(300),
LASTAB(300), FIRSTBA(300), LASTBA(300), KJ(20), AP(4), EX(4), NL(300),
Cw(1200,8), JT(300), TW(300), DA(200), UA(200)ºR(5),
FEED(50), LINKS, XIONS, ZONESIN
SAVE /C4/

63

12

10

14

DO 2 KP=1,13,4
IF(KJ(KP). NE. O)TREN

KR- 1
IF(KJ(CON4MR(KP, 1)). NE. O)THEN

CR(KJ(KP), KR) = KJ(CO14MR(KP, 1))
CW(KJ(KP), KR) = WT4(61)
KR-- KR+1

END IF
NC(KJ(KP)) = KR -1

END IF
CONTINUE
DO 6 KP=2,14,4

IF(KJ(KP). NE. O)THEN
KR=1
DO 8 K0=1,2

IF(KJ(CON4MR(KP, KO)). NE. O)THEN
CR(KJ(KP), KR) = KJ(CON4MR(KD, KD))
CW(KJ(KP), KR) = WT4(61+KO)
KR-- KR+1

END IF
CONTINUE
NC(KJ(KP)) = KR -1

END IF
CONTINUE
DO 10 KP=3,15,4

IF(KJ(KP). NE. O)THEN
KR-1
DO 12 K0=1,2

IF(KJ(CON4I1R(KP, KO)). NE. O)TREN
CR(KJ(KP), KR) = KJ(C0N4NR(KP, KO))
CW(KJ(KP), KR) = WT4(63+K0)
KR=KR+1

END IF
CONTINUE
NC(KJ(KP)) 2 KR -1

END IF
CONTINUE
DO 14 KP=4,16,4

IF(KJ(KP). NE. O)THER
IHR =1

IF(KJ(CON4NR(KP, 1)). NE. O)THEN
CR(KJ(KP), KR) = KJ(CON4HR(KP, 1))
CW(KJ(KP), KR) = WT4(66)
KR: KR+1

END IF
NC(KJ(KP)) = KR -1

END IF
CONTINUE

RETURN
END
of subroutine CON4aRC4

64

SUBROUTINE CON4ARC5
C Roundabout
C 13 JUNE 89

INTEGER XION, DB, UB, CR, CFI, ARCS, ZONZS, A, B, FIRSTAB, FIRSTBA,
1 AP, EX, R, FEED, T9, DA, UA, XIONS, ZONESIN, CON4, VT4, CON4MR, COJR0, CONF0

COMMON / C4 / CON4(12,7), WT4(104), CON4MR(16,2), C0NRO(20,6),
1 CONFO(12,6)

COMMON INJ(300,8), XION(300), UB(300), DS(300), I(1200), J(1200),
1 NC(1200), CR(1200,8), NODES, ARCS, ZONES, A(300), B(300), FIRSTAB(300),
1 LASTAB(300), FIRSTBA(300), LASTBA(300), KJ(20), AP(4), EX(4), NL(300),
1 CW(1200,8), JT(300), TW(300), DA(200), UA(200), R(5),
1 FEED(50), LINRS, XIONS, ZONESIN

SAVE /C4/
DO 2 KP=1,16,5

IF(KJ(KP). NE. O)THEN
KR=1
DO 4 K0=1,2

IF(KJ(CONRO(KP, KO)). NE. O)TBEN
CR(KJ(KP), KR) = KJ(CONRO(KP, KO))
CW(KJ(KP), KR) = äT4(66+K0)
KR=KR+1

END IF
4 CONTINUE

NC(KJ(KP)) 2 KR -1
END IF

2 CONTINUE
DO 6 KP=2,17,5

IF(KJ(KP). NE. O)THEN
KR=1
DO 8 K0=1,6

IF(KJ(CONRO(KP, KO)). NE. O)THEN
CR(KJ(KP), KR) = KJ(CONRO(KP, KO))
CN(KJ(KP), KR) = NT4(68+K0)
KR =KR+1

END IF
8 CONTINUE

NC(KJ(KP)) % KR -1
END IF

6 CONTINUE
DO 10 KP=3,18,5

IF(KJ(KP). NE. 0)THEN
KR 21
DO 12 K0=1,3

IF(KJ(CONRO(KP, KO)). NE. O)TMEN
CR(KJ(KF), KR) as KJ(CONRO(KP, KO))
CW(KJ(KP), KR) = 0T4(74+K0)
KR=KR+1

END IF
12 CONTINUE

NC(KJ(KP)) = KR -1
END IF

10 CONTINUE
DO 14 KP=4,19,5

IF(KJ(KP). NE. O)THEN
KR 21

65

IF(KJ(CONRO(KP, 1)). NE. O)TREN
CR(KJ(KP), KR) = KJ(CONRO(XP, 1))
CW(XJ(KP), KR) = WT4(78)
KR: RR+1

END IF
NC(KJ(KP)) = RR -1

END IF
14 CONTINUE

DO 16 KP=5,20,5
IF(KJ(KP). NE, O)THEN

KR=1
DO 18 K0=1,4

IF(RJ(CONRO(KP, KO)). NE. 0)THEN
CR(KJ(KP), KR) = KJ(CONRO(KPDKO))
Ci(KJ(KP), KR) _ w14(78+KO)
KR=KR+1

END IF
18 CONTINUE

NC(KJ(KP)) = KR -1
END IF

16 CONTINUE
RETURN
END
of subroutine CON4ARC5

SUBROUTINE CON4ARC6
C 13 JUNE 89
G Fly-over (links 2 and 4 fly over links 1 and 3)

INTEGER XION, DB, UB, CR, CW, ARCS, ZONES, A, B, FIRSTAB, FIRSTBA,
AP, EX, R, FEED, TW, DA, UA, XIONS, ZONESIN, CON4, WT4, CON4MR, CONRO, CONFO
COMMON / C4 / CON4(12,7), WT4(104), CON4MR(16,2), CONRO(20,6),
CONFO(12,6)
COMMON INJ(300,8), XION(300), UB(300), DB(300), I(1200), J(1200),
NC(1200), CR(1200,8), NODES, ARCS, ZONES, A(300), B(300), FIRSTAB(300),
LASTAS(300), FIRSTBA(300), LASTBA(300), KJ(20), AP(4), EX(4), NL(300),
CW(1200,8), JT(300), TW(300), DA(200), UA(200), R(5),
FEED(50), LINKS, XIONS, ZONESIN
SAVE /C4/

DO 2 KP=1,7,6
IF(KJ(KP). NE. O)TNEN

KR-1
DO 4 K0=1,2

IF(KJ(CONFO(KP, KO)). NB. O)TNEN
CR(KJ(KP), KR) = KJ(CONFO(KP, KO))
CW(KJ(K1), KR) = WT4(82+K0)
KR =KR +1

END IF
CONTINUE
NC(KJ(KP)) = KR -1

END IF
CONTINUE
DO 6 KP=2,8,6

IF(KJ(KP). NE. O)THEN
KR =1
DO 8 K0=1,4

66

IF(KJ(CONFO(KP, KO)). NE. O)THEN
CR(KJ(KP), KR) = KJ(CONFO(KP, KO))
CW(KJ(KP), KR) = WT4(84+KO)
KR=KR+1

END IF
8 CONTINUE

NC(KJ(KP)) = KR -1
END IF

6 CONTINUE
DO 10 KP=3,9,6

IF(KJ(KP). NE. O)THEN
KR :1
DO 12 K0=1,6

IF(KJ(CONFO(KP, KO)). NE. O)TEEN
CR(KJ(KP), KR) = KJ(CONFO(KP, KO))
CW(KJ(KP), KR) = WT4(88+KO)
KR=KR+1

END IF
12 CONTINUE

NC(KJ(KP)) = KR -1
END IF

10 CONTINUE
DO 14 KP=4,10,6

IF(KJ(KP). NE. O)THEN
KR=1
DO 16 K0=1,2

IF(KJ(CONFO(KP, KO)). NE. O)THEN
CR(KJ(KP), KR) = KJ(CONFO(KP, KO))
CW(KJ(KP), KR) = WT4(94+K0)
KR=KR+1

END IF
16 CONTINUE

NC(KJ(KP)) = KR -1
END IF

14 CONTINUE
DO 18 KP=5,11,6

IF(KJ(KP). NE. O)THEN
KR -- 1
DO 20 K0=1,2

IF(KJ(CONFO(KP, KO)). NE. O)THEN

CR(KJ(KP), KR) = KJ(CONFO(KP, xo))
CW(KJ(KP), KR) = WT4(96+KO)
KR=KR+1

END IF
20 CONTINUE

NC(KJ(KP)) = KR -1
END IF

18 CONTINUE
DO 22 KP=6,12,6

IF(KJ(KP). NE. O)THEI
KR 21
DO 24 K0=1,6

IF(KJ(CONFO(KP, KO)). NE. O)THEN
CR(KJ(KP), KR) = KJ(CONFO(KP, KO))
CW(KJ(KP), KR) = WT4(98+KO)
KR: KR+1

END IF

67

24 CONTINUE
NC(KJ(RP)) = KR -1

END IF
22 CONTINUE

RETURN
END

C of subroutine CON4ARC6
C

SUBROUTINE MAKEARCS
INTEGER XION, DB, UB, CR, Cii, WT, ARC8, EOIES, A, B, FIRSTAB, FIRSTBA,

1 AP, EX, R, FEED, TW, DA, UA, X, XIONS, ZONESIN
COMMON INJ(300,8), XION(300), UB(300), DB(300), I(1200), J(1200),

1 NC(1200), CR(1200,8), NODES, ARCS, ZONES, A(300), B(300), FIRSTAB(300),
1 LASTAR(300), FIRSTBA(300), LASTBA(300), KJ(20), AP(4), EX(4), IL(300),
1 CW(1200,8), JT(300), TW(300), DA(200), UA(200), R(5),
1 FEED(50), LINKS, XIONS, LOJESIR

ARCS =0
DO 60 X-1, XIONS

IF (n (i) . EQ. 3) THEN
CALL TJUNCTN(X)

ELSE IF(NL(X). EQ. 4)THEN
IF(JT(X). EQ. 4)THEN

CALL MINI4(X)
ELSE IF(JT(X). EQ. 5)THEN

CALL ROUND4(X)
ELSE

CALL XROADS(X)
END IF

END IF
60 CONTINUE

RETURN
END

C Of subroutine MAKEARCS
C

SUBROUTINE MINI4(X)

INTEGER AP, EX, R, FEED, X, A, B, INJ, XION, UB, DB, I, J, NC, CR, CN, WT, ARCS,
1 FIRSTAB, FIRSTBA, TW, DA, UA, XIONS, ZONESIN, ZONES

COMMON INJ(300,8), XION(300), OB(300), DB(300), I(1200), J(1200),
1 NC(1200), CR(1200,8), NODES, ARCS, ZONES, A(300), B(300), FIRSTAB(300),
1 LASTAB(300), FIRSTBA(300), LASTBA(300), KJ(20), AP(4), EX(4), NL(300),
1 CW(1200,8), JT(300), TW(300), DA(200), UA(200), R(S),
1 FEED(50), LINKS, XIONS, ZONESIN

Create approach and exit vertices
DO 2 N=1,4

AP(N)=0
EX(N)-0

CONTINUE
DO 10 JL=1,4
IF(B(INJ(X, JL)). EQ. XION(X))THEN

AP(JL)-0B(INJ(X, JL))
EX(JL)=DB(INJ(X, JL))

ELSE IF(A(INJ(X, JL)). EQ. XION(X))THEN
AP(JL)=DB(INJ(X, JL))
EX(JL)=UB(INJ(X, JL))

ELSE
PRINT*, 'Mistake in LINKS. DAT file for junction ', XION(X)

68

STOP 'Check your LINKS. DAT file and start again'
END IF

10 CONTINUE
C create roundabout nodes at each entry

N= NODES +1
DO 12 IR=1,4

R(IR) =N
N=N+1

12 CONTINUE
NODES =N-1

DO 20 K=1,16
KJ(K)=0

20 CONTINUE
K--ARCS+1

c Create arcs from AP(1)
IF(AP(1). NE. O)THER

IF(EX(2). NE. O)THEN
I(K)=AP(1)
J(K)=EK(2)
KJ(1)=K
K--K+1

END IF
I(K)=AP(1)
J(K)=R(2)
KJ(2)=K
K=K +1

END IF
IF(EX(2). NE. O)THEN

I(K)=R(1)
J(K)=EX(2)
KJ(3)=K
K=K+1

END IF
I(K)=R(1)
J(K)=R(2)
KJ(4)=K
K=K+1

CALL ALMINI4(X, 1)
c Create arcs from AP(2)

IF(AP(2). NE. O)THEN
IF(EX(3). NE. O)THEN

I(K)=AP(2)
J(K)=EX(3)
KJ(S)=K
K=K+1

END IF
I(K)=AP(2)
J(K)=R(3)
KJ(6)=K
K--K+1

END IF
IF(EX(3). NE. O)THEN

I(K)=R(2)
J(K)=EX(3)
RJ(7)=K
K=R+1

END IF

69

I(K)=R(2)
J(K)=R(3)
K3(8)=K
K=K+1

CALL ALMINI4(X, 2)
Create arcs from AP(3)
IF(AP(3). NE. O)THEN

IF(EX(4). NE. O)THEN
I(K)=AP(3)
J(K)=EX(4)
KJ(9)=K
K=K+1

END IF
I(K)=AP(3)
J(K)=R(4)
KJ(10)=K
K=K+1

END IF
IF(EX(4). NE. O)THEN

I(K)=R(3)
J(K)=EX(4)
KJ(11)=K
K--K+1

END IF
I(K)=R(3)
J(K)=R(4)
KJ(12)=K
K=K+1

CALL ALMINI4(X, 3)
Create arcs from AP(4)
IF(AP(4). NE. O)THEN

IF(EX(1). NE. O)THEN
I(K)=AP(4)
J(K)=EX(1)
KJ(13)%K
K=K+1

END IF
I(K)=AP(4)
J(K)=R(1)
KJ(14)=K
K=K+1

END IF
IF(EX(1). NE. O)THEN

I(K)=R(4)
J(K)=EX(1)
KJ(15)=K
K=K+1

END IF
I(K)=R(4)
J(K)=R(1)
KJ(16)=K
K=K+1

CALL ALKINI4(X, 4)
ARCS=K-1
CALL C0N4ARC4
RETURN
END

70

SUBROUTINE ODVERT
C Creates origin and destination nodes

INTEGER XION, DB, UB, CR, CW, WT, ARCS, ZONES, A, B, FIRSTAB, FIRSTBA,
1 AP, EX, R, FEED, TW, DA, UA, XIONS, ZONESIN

COMMON INJ(300,8), XION(300), UB(300), DB(300), I(1200), J(1200),
1 NC(1200), CR(1200,8), NODES, ARCS, ZONES, A(300), B(300), FIRSTAB(300),
1 LASTAB(300), FIRSTBA(300), LASTBA(300), KJ(20), AP(4), EX(4), NL(300),
1 CW(1200,8), JT(300), TW(300), DA(200), UA(200), R(5),
1 FEED(50), LINKS, XIONS, ZONESIN

NOL =0
DO 20 MZ=1, ZONES

DO 30 MF=1, FEED(MZ)
L=NOL+HF
DA(L) = 2*MZ -1
UA(L) = 2*MZ

C The values of DA(L) will be the same for all links from zone ME
30 CONTINUE

C All links from zone HZ have the same node downstream of their
cA node which is the sots. etc.

NOL--L
20 CONTINUE

DO 40 L=1, ZONESIN
UB(L) = DA(L)
IF(TW(L). EQ. 1)THEN

DB(L)= UA(L)
ELSE

DB(L)=0
END IF

40 CONTINUE
C All zone connectors have been processed so there are
c LINKS-ZONESIN links left and 2*ZONES nodes have been created.

END
C of subroutine ODVERT
C

SUBROUTINE PRINT
C
C Prints arc numbers, start vertices, finish vertices, number of
c conflicting arcs in the file ARCS-OUT
c Prints the arcs conflicting with each arc in the file, CROSSFLO. DAT.

INTEGER A, B, INJ, XION, UB, DB, I, J, äC, CR, CW, WT, ARCS, PIRSTAB, FIRSTBA,
1 AP, EX, R, PEED, TW, DA, UA, XIONS, ZONESIN, ZONES

COMMON INJ(300,8), XIOä(300), UB(300), DB(300), I(1200), J(1200),
1 NC(1200), CR(1200,8), NODES, ARCS, ZONZS, A(300), B(300), FIRSTAB(300),
1 LASTAB(300), PIRSTBA(300), LASTBA(300), KJ(20), AP(4), EX(4), äL(300),
1 CW(1200,8), JT(300), TW(300), DA(200), UA(200), R(5),
1 FEED(50), LINKS, XIONS, ZONBSIN

WRITE(6, *)NODES, ARCS, ZONES
DO 10 K--1, ARCS

WRITE(6, *)K, I(K), J(K)
10 CONTINUE

9010 FORNAT(9I5)
9020 FORMAT(5X, 815)

DO 20 K=1, ARCS
WRITE(8,9010)NC(K), (CR(K, NCF), NCF=1,8)
WRITE(8,9020)(CW(K, NCF), NCF=1,8)

20 CONTINUE
RETURN

71

END
C Of subroutine PRINT
C

SUBROUTINE LINKVERT(L)
C creates remaining nodes corresponding to ordinary links

INTEGER XION, DB, UB, CR, CW, WT, ARCS, ZONES, A, B, FIRSTAB, FIRSTBA,
1 B, AP, EX, R, FEED, TW, DA, UA, XIONS, ZONESIN

COMMON INJ(300, B), XIOK(300), UB(300), DB(300), 1(1200), J(1200),
1 AC(1200), CR(1200,8), NODES, ARCS, ZONES, A(300), B(300), FIRSTAB(300),
1 LASTAB(300), FIRSTBA(300), LASTBA(300), KJ(20), AP(4), EE(4), NL(300),
I CW(1200,8), JT(300), TR(300), DA(200), UA(200), R(S),
1 FEED(50), LINKS, BIONS, ZONESIN

N= 2*ZONES +1
DO 50 ML: L, LINKS

UB(ML) =I
N: N+1
IF(TW(ML). EQ. 1)TBEN

DB(XL) -- N
N: N+1

ELSE
DB(KL): 0

END IF
50 CONTINUE

NODES =N-1
Otherwise it would be 1 more than the number of nodes
RETURN
END
of subroutine LINRVERT

SUBROUTINE ROUND4(X)
Conventional 4-arm roundabout

INTEGER AP, EX, R, FEED, X, A, B, INJ, XION, UB, DB, I, J, NC, CR, CN, WT, ARCS,
1 FIRSTAB, FIRSTBA, TW, DA, OA, XIONS, ZONESIN, LONES

COMMON INJ(300,8), XION(300), OB(300), DB(300), I(1200), J(1200),
1 NC(1200), CR(1200,8), NODES, ARCS, ZONES, A(300), B(300), FIRSTAB(300),
1 LASTAB(300), FIRSTBA(300), LASTBA(300), KJ(20), AP(4), EH(4), NL(300),
1 CW(1200,8), JT(300), TW(300), DA(200), UA(200), R(5),
1 FEED(50), LINKS, XIONS, ZONESIN

C Create approach and exit vertices
DO 2 N=1,4

AP(N)=0
ES(N)=0

2 CONTINUE
DO 10 JL=1,4
IF(B(INJ(X, JL)). EQ. XION(X))THEN

AP(JL)=UB(INJ(X, JL))
EX(JL)=DB(INJ(X, JL))

ELSE IF(A(INJ(X, JL)). EQ. XION(X))THEN
AP(JL)=DB(IEJ(X, JL))
EX(JL)=0B(INJ(X, JL))

ELSE
PRINT*, 'Mistake in LINAS. DAT file for junction ', XION(X)
STOP 'Check your LINKS. DAT file and start again'
END IF

10 CONTINUE
C create roundabout nodes at each entry

72

12

20

N: NODES +1
DO 12 IR=1,4

R(IR) =N
N=N+1

CONTINUE
NODES =N-1

DO 20 K=1,20
KJ(K)=0

CONTINUE
K-ARCS+1
Create arcs from AP(1)
IF(AP(1). NE. O)THEN

IF(EX(2). NE. O)THEN
i(K)=AP(1)
J(K)=E%(2)
KJ(1)=K
K--K+1

END IF
IF(EX(3). JE. 0)THEN

I(K)=AP(1)
J(K): EX(3)
KJ(2)%K
K=K+1

END IF
I(K)=AP(1)
J(K)=R(2)
KJ(3)=K
K=K +1

END IF
I(K)=R(2)
J(K)=R(3)
KJ(4)=K
K=K+1
IF(EX(4). NE. O)THEN

I(K)=R(3)
J(K)=E%(4)
KJ(5)=K
K=K+1

END IF
CALL ALROUND4(%, 1)

Create arcs from AP(2)
IF(AP(2). NE. 0)THEN

IF(EI(3). NE. O)THEN
I(K)=AP(2)
J(K)=EX(3)
KJ(6)--K
K=K+1

END IF
IF(EX(4). NE. O)THEN

I(K)=AP(2)
J(K)=E%(4)
KJ(7)=K
K=K+1

END IF
I(K)=AP(2)
J(K)=R(3)

KJ(8)-K

73

K=K+1
END IF
I(K)=R(3)
J(K)=R(4)
KJ(9)=K
K=K+1
IF(EX(1). 1E. O)THEN

I(K)=R(4)
J(K)=EX(1)
KJ(10)=K
K=K+1

END IF
CALL ALROUKD4(X, 2)

Create arcs from AP(3)
IF(AP(3). NE. O)THEN

IF(EX(4). NE. O)THEli
I(K)=AP(3)
J(K)=EX(4)
KJ(11)=K
K=K+1

END IF
IF(EX(1). NE. O)THEN

I(K)=AP(3)
J(K)=EX(1)
KJ(12)=K
K=K+1

END IF
I(K)=AP(3)
J(K)=R(4)
KJ(13)=K
K--K+1

END IF
I(K)=R(4)
J(K)=R(1)
KJ(14)=K
K=K+1
IF(EX(2). NE. O)THEN

I(K)=R(1)
J(K)=EX(2)
KJ(15)= K
K=K+1

END IF
CALL ALROUND4(X, 3)

Create arcs from AP(4)
IF(AP(4). NE. O)THEN

IF(EX(1). NE. O)THEN
I(K)=AP(4)
J(K)=EX(1)
KJ(16)=K
K--K+1

END IF
IF(EX(2). AE. O)TBEN

I(K)=AP(4)
J(K)=EX(2)
KJ(17)=K
K=K+1

END IF

74

I(K): M (4)
J(K)=R(1)
KJ(18)=K
K=K+1

END IF
I(K)=R(1)
J(K)=R(2)
KJ(19)=K
K-- K+1
IF(EX(3). NE. 0)THEN

I(K)=R(2)
J(K)=EX(3)
KJ(20)=K
K=K+1

END IF
CALL ALROUND4(1,4)

ARCS=K-1
CALL CON4ARC5
RETURN
END

C Of subroutine ROUKD4(%)
C

SUBROUTINE TJUNCTN(X)
C
C Creates up to six arcs for possible movements at T-junction, I.

INTEGER AP, EX, R, FEED, X, A, B, INJ, XION, UB, DB, I, J, NC, CR, CW, WT, ARCS,
1 FIRSTAB, PIRSTBA, TW, DA, UA, XIONS, ZONESIN, ZONES

COMMON INJ(300,8), XION(300), UB(300), DB(300), I(1200), J(1200),
1 NC(1200), CR(1200,8), NODES, ARCS, ZONES, A(300), B(300), FIRSTAB(300),
1 LASTAB(300), FIRSTBA(300), LASTBA(300), KJ(20), AP(4), ES(4), NL(300),
1 CW(1200,8), JT(300), Tw(300), DA(200), UA(200), R(5),
1 FEED(50), LINKS, XIONS, ZONESIN

Create approach and exit vertices
DO 2 N=1,3

AP(N)=0
EX(N)=0

2 CONTINUE
DO 10 JL=1,3
IF(B(INJ(X, JL)). EQ. XION(X))TBEN

AP(JL)=UB(INJ(X, JL))
EX(JL)=DB(INJ(X, JL))

ELSE IF(A(INJ(X, JL)). EQ. XION(X))TBEN
AP(JL)=DB(INJ(X, JL))
EX(JL): U3(INJ(X, JL))

ELSE
PRINT*, 'Mistake in LINKS. DAT file for junction ', XION(X)
STOP 'Check your LINKS. DPT file and start again'
END IF

10 CONTINUE
DO 20 K=1,6

KJ(K)=0
20 CONTINUE

K=ARCS +1
Create arcs from AP(1)
IF(AP(1). NE. D)THEN

IF(EX(2). NE. 0)TBEN

75

I(K)=AP(1)
J(K)=E%(2)
KJ(1)=K
K--K+1

ELSE
KJ(1)=0

END IF
IF(EX(3). NE. 0)THEN

I(K)=AP(1)
J(K)=EX(3)
KJ(2)=K
K--K+1

ELSE
KJ(2)=0

END IF
CALL ARC3LINK(1,1)

END IF
Create arcs from AP(2)
IF(AP(2). NE. O)TKEN

IF(EX(3). NE. O)TBEII
I(K)=AP(2)
J(K)=E%(3)
KJ(3)=K
K=K+1

ELSE
KJ(3)=0

END IF
IF(EX(1). NE. 0)THEN

I(K)=AP(2)
J(K)=EX(1)
KJ(4)=K
K=K+1

ELSE
KJ(4)20

END IF
CALL ARC3LINK(1,2)

END IF
Create arcs from AP(3)
IF(AP(3). NE. O)THEN

IF(EX(1). NE. O)THEN
I(K)=AP(3)
J(K)=EX(1)
KJ(5): K
X--K+1

ELSE
KJ(S)=0

END IF
IF(EX(2). NE. O)TmEN

I(K)=AP(3)
J(K)=El(2)
KJ(6)=K
14+1

ELSE
KJ(6)20

END IF
CALL ARC3LINK(1,3)

END IF

76

ARCS=K-1
IF(JT(%). EQ. 1) THEN

CALL CON3ARCL
ELSE IF(JT(X). EQ. 6)THEN

CALL CON3RF
END IF
RETURN
END

C Of subroutine TJUNCTN(X)
C

SUBROUTINE XROADS(X)

Creates up to twelve arcs for possible movements at crossroads, X.

INTEGER AP, EX, R, FEED, X, A, B, INJ, XION, UB, DB, I, J, NC, CR, CN, NT, ARCS,
1 FIRSTAB, FIRSTBA, TW, DA, UA, XIONS, ZONESIN, 80NES

COMMON INJ(300,8), IION(300), UB(300), DB(300), I(1200), J(1200),
1 NC(1200), CR(1200,8), NODES, ARCS, ZONES, A(300), B(300), FIRSTAB(300),
1 LASTAB(300), FIRSTBA(300), LASTBA(300), KJ(20), AP(4), EX(4), NL(300),
1 CW(1200,8), JT(300), TW(300), DA(200), UA(200), R(5),
1 FEED(50), LINKS, 1IONS, ZONESIN

C Create approach and exit vertices
DO 2 N=1,4

AP(N)=0
EX(N)=0

2 CONTINUE
DO 10 JL=1,4
IF(B(INJ(X, JL)). EQ. BION(X))TBEN

AP(JL)=UB(INJ(X, JL))
EX(JL)=DB(INJ(X, JL))

ELSE IF(A(INJ(X, JL)). EQ, XION(S))TBEN
AP(JL)=DB(INJ(X, JL))
EX(JL)=UB(INJ(X, JL))

ELSE
PRINT*, 'Kistake in LINKS. DAT file for junction ', XION(X)
STOP 'Check your LINKS. DAT file and start again'
END IF

10 CONTINUE
DO 20 R=1,12

KZ(K)=O
20 CONTINUE

K=ARCS+1
Create arcs from AP(1)
IF(AP(1). NE. O)TBEN

IF(EX(2). NE. O)TBEN
I(K)=AP(1)
J(K)=EX(2)
KJ(1)=K
x--K+1

ELSE
KJ(1)=o

END IF
IF(EX(3). NE. O)TBEN

I(K)=AP(1)
J(K)=E%(3)
KJ(2)=K
K: K+1

77

ELSE
KJ(2)=0

END IF
IF(EX(4). NE. O)THEN

I(K)=AP(1)
J(K)=EX(4)
KJ(3)=K
K=K+1

ELSE
KJ(3)=0

END IF
CALL ARC4LINK(X, 1)

END IF
Create arcs from AP(2)
IF(AP(2). NE. O)THEN

IF(EX(3). NE. O)ThEN
I(K)=AP(2)
J(K)=EX(3)
KJ(4)=K
K=K+1

ELSE
KJ(4)=0

END IF
IF(EK(4). NE. O)THEN

I(K): AP(2)
J(K)=EX(4)
KJ(5)=K
K--K+1

ELSE
KJ(5)=0

END IF
IF(EX(1). NE. O)THEN

I(K)=AP(2)
J(K)=EX(1)
KJ(6)=K
K=K+1

ELSE
KJ(6)=0

END IF
KJ(4): KJ(4)
KJ(5)=KJ(5)
KJ(6)=KJ(6)
CALL ARC4LINK(X, 2)

END IF
Create arcs from AP(3)
IF(AP(3). NE. O)THEN

IF(EX(4). NE. O)THEN
I(K)=AP(3)
J(K)=EX(4)
KJ(7)_K
K--K+1

ELSE
K3(7)=0

END IF
IF(EX(1). NE. O)THEN

I(K)=AP(3)
J(K)=EX(1)

78

Ka(8)=K
x--x+1

ELSE
KJ(8)=0

END IF
IF(EX(2). NE. O)THEN

I(K)=AP(3)
J(K)=EX(2)
KJ(9)=K
K=K+1

ELSE
KJ(9)=0

END IF
CALL XRC4LINK(I, 3)

END IF
c Create arcs from XP(4)

IF(AP(4). NE. O)THEN
IF(EX(1). NE. O)THEN

I(K)=AP(4)
J(K)=EI(1)
KJ(10)--K
K=K+1

ELSE
KJ(10)=0

END IF
IF(EX(2). l(E. O)THEN

I(K)=AP(4)
J(X)=EX(2)
KJ(11)=K
K=K+1

ELSE
KJ(11)=0

END IF
IF(EX(3). NE. O)THEN

I(K)=AP(4)
J(K)=EX(3)
KJ(12)=K
K--K+1

ELSE
KJ(12)=0

END IF
CALL ARC4LINK(X, 4)

END IF
ARCS=K-1
IF(JT(X). EQ. 1) THEN

CALL CON4ARC1
ELSE IF(JT(X). EQ. 2) THEN

CALL CON4XRC2
ELSE IF(JT(X). EQ. 3) THEN

CALL CON4ARC3
ELSE IF(JT(X). EQ. 6) THEN

CALL CON4ARC6
END IF
RETURN
END

C Of subroutine XROADS(X)

79

PROGRAM POLYSEND
C
C1 September 89 Enhanced POLYSEND with OLDFLOii assignment.
c Takes account of weights for
c conflicts as given in every second record of CROSSFLO. DAT.
C Also enhanced to allow user to specify a different order of
c loading from numeric order of zones either by entering an order
c from the keyboard or giving a seed to find a random order.
C Four start-up assignments offered -
c INIT =0 Start with an empty network and load
c it so as to avoid as much conflict as possible with trips
c already assigned to obtain a LOADFLOV assignment
c INIT =1 Assign routes which use a minimum number of area
c and therefore pass a minimum number of junctions to obtain
c the DARTFLOW assignment.
c INIT =2 Set costs on arcs to equal the number of conflicting
c arcs and find minimum cost routes for DASHFLOW assignment.
c INIT =3 Reads arc flows from file STARTFLO. DAT which is in the
c sane format as PARCFLO. DAT. This is the OLDFLOii assignmat.
c The program reassigns the flows from up to 50 different origins,
c on a traffic circulation network consisting of up to 1100 arcs
c and up to 400 nodes.
c It does MAXITRN complete iterations or terminates when there
c will be no further changes,
c It reports changes after each reassignment (run of f(ilter).
c

INTEGER ARCS, ZONES, ORIGIN, PKA, CR, TRIPS, CW
REAL LO

C KA is the number of artificial arcs (kiltares) which have to be
c added to the network to carry flow away frag the destinations
c to the origin. FKA is the are no. of the first
c kiltarc and LEA is that of the last kiltarc.

COMMON I(1100), J(1100), LO(1100), FLON(50,1100),
1 TFLOW(1100), TC'OST(1100), PI(400), INFERS, NA(400), NODES, ARCS, ZONES,
1 INIT, MAXITRN, ITRP, ITRD, TOTFLOW(1100), TC,
1 OTHERFLO(1100), KA, FKA, LKA, TOTCRASR, BASECOST(50), NCBANGB(50),
1 NC(1100), CR(1100,7), TRIPS(50,50),
1 ORIGIN(50), MCHANGE, CW(1100,7)

8001 FORMAT (2I5,3F10.0)
9003 FORMAT('INFEASIBLE PROBLEM')

WRITE(*, *)' Enter method for start-up assignment'
WRITE(*, *)' I for LOADFLOW'
WRITE(*, *)' 2 for DARTFLOW'
WRITE(*, *)' 3 for DASEFLOW'
WRITE(*, *)' 4 for OLDFLON'
READ(*, *)INIT
WRITE(*, *)' How many iterations do you want? '
READ(*, *)MAXITRN
OPEN(UNIT: 8, FILE = 'ARCS. DAT', STATUS: '0LD')
READ(8, *) NODES, ARCS, ZONES
CLOSE(O1IT: 8, STATUS='KEEP')
CALL LOADING
Reads order of loading from screen
OPEN(WU T=B, FILE a 'ARCS. DAT', STATUS: 'OLD')
OPEN(UNIT=9, FILE = 'TRIPS. DAT', STATDS='OLD')
OPEN(UNIT: 10, FILE _ 'CROSSFLO. DAT', STATUS='OLD')
OPEN(UNIT: 11, FILE = 'STARCFLO. DAT', STATUS='NEW')

80

OPEN(DNIT=12, FILE = 'FARCFLOW. DAT', STATDS='U V')
READ(8, *) NODES, ARCS, ZONES

c File reopened so repeat reading of first record.
c These set limits for do loops etc.
c Now read CROSSFLO. DAT

DO 2 K=1, ARCS
READ(10, *, END=2)NC(K), (CR(K, KC), KC=l, NC(K))
READ(10, *, END: 2)(CW(K, KC), KC=1, NC(K))

2 CONTINUE
CLOSE(UNIT=1O, STATUS--'KEEP')
IF(NODES. LE. 0) COTO 100
KA = ZONES-i
FKA = ARCS +1
LEA = ARCS + KA
DO 3 KAR=FKA, LKA

C Cost on the kilter arcs will always be zero
TCOST(KAR)=0.0

3 CONTINUE
CALL NETWORK

c Reads rest of ARCS. DAT
CALL ASSIGN

c Reads TRIPS. DAT
DO 4 K: 1, LKA

DO 6 N0=1, ZONES
FLOW(NO, K)=0.0

6 CONTINUE
TOTFLOW(K)=0.0

4 CONTINUE
C Now proceed according to value of INIT

IF(INIT. EQ. 0)THEN
CALL LOADFLOW

ELSE IF(INIT. EQ. 1)THEN
CALL DARTFLOW

ELSE IF(INIT. EQ. 2)THEN
CALL DASHFLOW

ELSE IF(INIT. EQ. 3)THEN
CALL OLDFLOW

ELSE
STOP' INIT not given as 1,2,3, or 4- start again'

END IF
DO 10 NI=1, MA%ITRN
The program spends most of its time in this loop
CALL ITERATE(NI)

10 CONTINUE
CALL FINAL(NI)
To print the final assignment
IF (MCHANGE. EQ. 0) THEN
STOP 'Program terminated by no further changes'
END IF
IF(INFEAS. EQ. 1) GOTO 999

100 STOP 'Maximum number of iterations now complete'
999 STOP 'Infeasible problem'

END

SUBROUTINE ARCCOSTS
C Uses data of conflicting flows from the array OTKERFLO(K)
C to calculate costs on arcs and creates the array TCOST(K).

81

INTEGER ARCS, ZONES, ORIGIN, FKA, CR, TRIPS, CW
REAL LO
COMMON I(1100), J(1100), LO(1100), FLOW(50,1100),

1 TFLOW(1100), TCOST(1100), PI(400), INFERS, NA(400), NODES, ARCS, ZONES,
1 INIT, MAXITRN, ITRP, ITRD, TOTFLOW(1100), TC,
1 OTEERFLO(1100), Klo, FIFA, LKA, TOTCRASN, BASECOST(50), NCRANGE(50),
1 NC(1100), CR(1100,7), TRIPS(50,50),.
1 ORIGIN(S0), MCRANGE, CW(1100,7)

DO 4 K=1, ARCS
TCOST(K)=0.0
DO 6 KC=1, NC(K)

TCOST(K)=TCOST(R) + OT HERFLO(CR(R, RC))*CW(K, KC)
6 CONTINUE
4 CONTINUE

RETURN
END
Of subroutine ARCCOSTS

SUBROUTINE ASSIGN
Reads data from TRIPS. DAT
INTEGER ARCS, ZONES, ORIGIN, FKA, CR, CW, TRIPS
REAL LO
COMMON I(1100), J(1100), LO(1100), FLOW(50,1100),

1 TPLOW(1100), TCOST(1100), PI(400), INFEAS, NA(400), NODES, ARCS, ZONES,
1 INIT, MAXITRN, ITRP, ITRD, TOTFLOW(1100), TC,
I OTHERFLO(1100), KA, FKA, LKA, TOTCRASH, BASECOST(50), NCHANGE(50),
1 NC(1100), CR(1100,7), TRIPS(50,50),
1 ORIGIN(50), MCHANGE, CW(1100,7)

9005 FORMAT(13I6)
DO 10 N0=1, ZONES

DO 20 ND=1, LONES, 12
READ(9,9005)NOR, (TRIPS(NO, NT), NT=ND, ND+11)

20 CONTINUE
10 CONTINUE

CLOSE(UNIT=9, STATUS='REEP')
RETURN
END
of subroutine ASSIGN

SUBROUTINE BUILDUP
C
C Builds up the costs on arcs

INTEGER ARCS, ZONES, ORIGIN, FKA, CR, CK, TRIPS
REAL LO
COMMON I(1100), J(1100), LO(1100), FLOW(50,1100),

1 TFLOW(1100), TCOST(1100), PI(400), INFEAS, NA(400), NODES, ARCS, ZONES,
1 INIT, MAXITRN, ITRP, ITRD, TOTFLOW(1100), TC,
1 OTHERFLO(1100), KR, FKA, LKA, TOTCRASR, BASECOST(50), NCWGE(50),
1 KC(1100), CR(1100,7), TRIPS(50,50),
1 ORIGIN(50), MCEANGE, CW(1100,7)

DO 4 K=1, ARCS
TCOST(K)=0.0
DO 6 KC=1, NC(K)

TCOST(K)=TCOST(K) + TOTPLOW(CR(K, KC))
6 CONTINUE
4 CONTINUE

82

RETURN
END
Of subroutine BUILDUP

SUBROUTINE DARTFLOW
C
C Assigns flows to minimise the total
c number of arcs used, computes BASECOST(NO), the total number
c of conflicts encountered by each initial flow, and TOTCRASH,
c the total number of conflicts in the initial flow pattern.
C

INTEGER ARCS, ZONES, ORIGIN, F1A, CR, CW, TRIPS
COMMON I(1100), J(1100), LO(1100), FLOW(50,1100),

1 TFLOW(1100), TCOST(1100), PI(400), INFERS, NA(400), NODES, ARCS, ZONES,
1 INIT, NAXITRN, ITRP, ITRD, TOTFLOW(1100), TC,
1 OTHERFLO(1100)ºKA, PKA, LKA, TOTCRASH, BASECOST(50), NCHANGE(50),
1 Nc(1100), CR(1100,7), TRIPS(50,50),
1 ORIGIN(50), MCHANGE, CW(1100,7)

DO 2 R=1, ARCS
TCOST(K)=1.0

2 CONTINUE
DO 36 NORIG=I, ZONES

NOD=ORIGIN(NORIG)
CALL KILTARCS(NOD)

C Sets up Kilter arcs
CALL KILTER
DO 32 K: 1, ARCS

FLOW(NOD, K)=TFLOW(K)
32 CONTINUE
36 CONTINUE

CALL TOTALFLO
DO 38 NOD=1, ZONES
CALL ZONECOST(NOD)

38 CONTINUE
CALL SUMCRASH

C Above is the means of computing TOTCRASH
9016 FORMAT(/'THE DARTFLOW NUMBER OF POSSIBLE CRASHES IS ', F18.2)

WRITE(7,9016)TOTCRASH
CALL VINES(0)

C To print DARTFLOW assignment
CALL SUMMARY

30 CONTINUE
RETURN
END

C Of subroutine DARTFLOW

SUBROUTINE DASBFLOW
C
C Assigns flows to minimise the total amber of arcs crossed
c or merged into, computes MSECOST(NO), the total number
c of conflicts encountered by each initial flow, and TOTCRASB,
c the total number of conflicts in the initial flow pattern.
C

INTEGER ARCS, ZONES, ORIGIN, FIU, CR, CW, TRIPS
COMMON I(1100), J(1100), LO(1100), FLOW(50,1100),

1 TFLOW(1100), TCOST(1100), PI(400), INFERS, NA(400), NODES, ARCS, LONES,
1 INIT, MAXXITRN, ITRP, ITRD, TOTFLOW(1100), TC,

83

1 OTHERFLO(1100), KA, FKA, LKA, TOTCRASR, BASEC08T(50), NCHANGE(50),
1 NC(1100), CR(1100,7), TRIPS(50,50),
1 ORIGIN(50), MCHANGE, CW(1100,7)

DO 2 R=1, ARCS
TCOST(K) 2 NC(K)

2 CONTINUE
DO 36 JORIG=1, ZONES

NOD=ORIGIN(NORIG)
CALL KILTARCS(NOD)

C Sets up Kilter arcs
CALL KILTER
DO 32 R=1, ARCS

PLOW(NOD, K)=TFLOW(K)
32 CONTINUE
36 CONTINUE

CALL TOTALFLO
DO 38 NOD=I, ZONES
CALL ZONECOST(NOD)

38 CONTINUE
CALL SUNCRASH

C Above is the means of computing TOTCRASR
9016 FORMAT(/THE DASHPLOW NUMBER OF POSSIBLE CRASHES IS ', P18.2)

WRITE(7,9016)TOTCRASR
CALL VINES(0)

C To print DASHPLOW assignment
CALL SUMMARY

30 CONTINUE
RETURN
END
Of subroutine DASEFLOW

SUBROUTINE FINAL(NI)
C
C Arranges printing of final assignment

INTEGER ARCS, ZONES, ORIGIN, FKA, CR, CW, TRIPS
REAL LO
COMMON I(1100), J(1100), LO(1100), FLOW(50,1100),

1 TFLOW(1100), TCOST(1100), PI(400), INFEAS, NA(400), NODES, ARCS, ZONES,
1 INIT, MAXITRN, ITRP, ITRD, TOTFLOW(1100), TC,
1 OTHERFLO(1100), KA, FKA, LKA, TOTCRASR, BASECOST(50), NCRANGE(50),
1 NC(1100), CR(1100,7), TRIPS(50,50),
1 ORIGIN(50), MCHANGE, Ci1(1100,7)

CALL VINES(NI)
C To print final flow

CALL SUMMARY
DO 42 NOD=1, ZONES

CALL ZONECOST(NOD)
42 CONTINUE

C BASECOST(NOD) is now uptodate
CALL SUMCRASH
RETURN
END

C Of subroutine FINAL

SUBROUTINE GETREADY(NOD)
C
C Computes OTBERPLO(K) appropiate to tone NOD

84

INTEGER ARCS, ZONES, ORIGIN, FKA, CR, CW, TRIPS
REAL LO
COMMON I(1100), J(1100), LO(1100), FLOW(50,1100),

1 TFLOW(1100), TCOST(1100), PI(400), INFERS, NA(400), NODES, ARCS, ZONES,
1 INIT, MA%ITRN, ITRP, ITRD, TOTFLON(1100), TC,
I OTHERFLO(1100), KA, FKA, LKA, TOTCRASH, BASECOST(50), NCRANGE(50),
1 NC(1100), CR(1100,7), TRIPS(50,50),
1 ORIGIN(50), MCRUGE, CW (1100,7)

DO 2 K=1, ARCS
OTHERFLO(K) = TOTFLOW(K) - FLOW(NOD, K)

2 CONTINUE
CALL ARCCOSTS(NOD)
RETURN
END

C Of subroutine GETREADY(NOD)
C

SUBROUTINE ITERATE(NI)
c Reassigns successive flows with an update of TOTFLOW(K)
C and TCOST(K) between each reassignment.

INTEGER ARCS, ZONES, ORIGIN, FKA, CR, CW, TRIPS
REAL LO
COMMON I(1100), J(1100), LO(1100), FLOW(50,1100),

1 TFLOW(1100), TCOST(1100), PI(400), INFEAS, NA(400), NODES, ARCS, ZONES,
1 INIT, MABITRN, ITRP, ITRD, TOTFLOW(1100), TC,
1 OTHERFLO(1100), KA, FKA, LKA, TOTCRASB, BASECOST(50), NCHANGE(50),
1 NC(1100), CR(1100,7), TRIPS(50,50),
1 ORIGIN(50), MCHANGE, CW(1100,7)

DO 30 NORIG = 1, ZONES
NOD = ORIGIN(NORIG)

C So if the Ist origin is zone 3 NOD =3
IF(NI. NE. 1)THEN

MCHANGE=MCBANGE - NCHANGE(NOD)
C MCHANGE now refers to the last (ZONES-1) changes

END IF
CALL KILTARCS(NOD)
CALL GETREADY(NOD)

c TCOST(K) is now appropriate to flow from zone NOD
CALL KILTER
NCHANGE(NOD)=0
DO 32 K=1, ARCS

IF(TFLOW(K). NE. FLOW(NOD, K))NCHANGE(NOD)=NCHANGE(NOD)+1
FLOW(NOD, K)=TFLOW(K)
TOTFLOW(K)=OTHERFLO(K) + TFLCW(A)

32 CONTINUE
C TOTFLOW(K), FLOW(NOD, K) and NCNANGE(NOD) are now uptodate

MCHANGE = MCAANGE + NCHANGE(NOD)
c MCBANGE now uptodate

IF((MCHANGE. EQ. 0). AND. (NI. NE. 1))GOTO 37
c Gets out of this loop and ITERATE

MX=NI-1
9004 FORMAT (/' NEW VINE HAD', I5, ' CHANGES IN FLOW VALUES, ')

WRITE (5,9004) NCBANGE(NOD)
9032 FORMAT('AFTER ', 13, ' COMPLETE ITERATIONS')
9033 FORMAT('PLQS ', I3, ' RUNS OF KILTER')

WRITE(5,9032)MX
WRITE(5,9033)NORIG

39 CONTINUE

85

30 CONTINUE
IF(NI. NE, 1)GOTO 40
MCHANGE=0
DO 28 N=1, ZONES

MCHMGE=KCHANGE + NCHANGE(N)
28 CONTINUE

IF(MCHANGE. NE. O) GOTO 40
9040 FORMAT(/'THERE WILL BE NO FURTHER CHANGES')

37 WRITE(7,9040)
WRITE(5,9040)
GOTO 44

40 CONTINUE
C After each iteration give total of crashes

DO 42 NOD=1, ZONES
CALL ZONECOST(NOD)

42 CONTINUE
C BASECOST(NOD) is now uptodate

CALL SUMCRASH
44 RETURN

END
C Of subroutine ITERATE(NI)
C

SUBROUTINE KILTARCS(NOD)
Sets up the artificial arcs with positive lower bounds equal
to the trips demanded.
INTEGER ARCS, ZONES, ORIGIN, FKA, CR, CW, TRIPS
REAL LO
COMMON I(1100), J(1100), LO(1100), FLOW(50,1100),

1 TFLOW(1100), TCOST(1100), PI(400), INFEAS, NA(400), NODES, ARCS, 80NES,
1 INIT, MASITRN, ITRP, ITRD, TOTFLOW(1100), TC,
1 OTHERFLO(1100), KA, FKA, LKA, TOTCRASH, BASECOST(50), NCHANGE(50),
1 NC(1100), CR(1100,7), TRIPS(50,50),
1 ORIGIN(50), MCHANGE, CW(1100,7)

DO 31 KAR--FKA, LKA
J (TSAR) =2*NOD-1

31 CONTINUE
DO 33 KR=I, NOD-1

I(FKA+KR-1)=2*KR
LO(FKA+KR-1): TRIPS(NOD, KR)

33 CONTINUE
DO 34 KR=N0D+1, ZONES

I(FKA+KR-2)=2*KR
LO(FKA+KR-2)=TRIPS(NOD, KR)

34 CONTINUE
RETURN
END
Of subroutine KILTARCS(NOD)

SUBROUTINE KILTER
Assigns flows which conserves flow through nodes while
minimising the total cost of those flows.

INTEGER ARCS, A, AOR, AF, AD, SRC, SNK, ZONES, ORIGIN, FRA, CR, CW, TRIPS
REAL INF, B, LO
COMMON I(1100), J(1100), LO(1100), FLOW(50,1100),

1 TFLOW(1100), TCOST(1100), PI(400), INFERS, NA(400), NODES, ARCS, ZONES,
1 INIT, MARITRN, ITRP, ITRD, TOTFLOW(1100), TC,

86

I OTHERPLO(1100), KA, FKA, LKA, TOTCRASE, BASECOST(50), NCHANGE(50),
1 NC(1100), CR(1100,7), TRIPS(50,50),
1 ORIGIN(50), XCHANGE, CW(1100,7)

8000 FORMAT (J' DUAL VALUES OF UNLABELLED VERTICES MUST MOVE BY
1 , F10.5)

8001 FORMAT (/'BREAKTHROUGH WITH FLOW ', F10.5)
ITRP =0
ITRD =0
DO 9 K=1, LKA
TFLOW(K) = 0.0
IX = I(K)
JK = J(K)
PI(IK) 20.0
NA(IK) =0

9 CONTINUE
INF=-1.0
DO 220 AOK=FKA, LKA

C Looking for an 0-0-K arc
IX=I(AOK)
JK=J(AOK)
COK=TCOST(AOK)+PI(IK)-PI(JK)

20 IF((TFLOW(AOK). LT. LO(AOK)). OR. (COK. LT. 0.0)) GOTO 30
GOTO 220

30 SRC=JK
SNK=IK
NA(SRC)=AOK

IF(NA(SNK). NE. 0)G0TO 150
C We already have node SNK in the vine of paths.

70 LAB =0
DO 100 AF = 1, LKA
IA=I(AF)
JA=J(AF)
IF(((NA(IA). EQ. 0). AND. (NA(JA). EQ. 0)). OR. ((NA(IA). NE. O). AND.

1 (NA(JA). 1E. 0))) GOTO 100
c This arc, AF, is not eligible for the vine.

C=TCOST(AF)+PI(IA)-PI(3A)
IF(NA(IA). EQ. 0) GOTO 80
IF(C. GT. 0.0)GOTO 100
NA(JA)=AF

c The start node is labelled now label the finish node.
GO TO 90

80 IF((TPLOW(AF). LE. LO(AF)). OR. (C. LT. 0.0)) 00 TO 100
90 LAB =1

c Some labelling has happened
IF(NA(SNK). NE. O) GO TO 150

c We have a flow augmenting circuit
100 CONTINUE

IF(LAB. NE. O.) GOTO 70
c We might be able to do some more labelling

DEL=INF
c Because we bavn't got a flow augmenting path

DO 110 AD = 1, LKA
IA=I(AD)
JA=J(AD)
IF(((NA(IA). EQ. O). AND. (NA(JA). EQ. O)). OR. ((NA(IA). NE. O). AND.

1 (NA(JA). NE. 0))) 00 TO 110
C=TCOST(AD)+PI(IA)-PI(JA)

87

IF(NA(JA). EQ. O) DEL=RMIN(DEL, C)
IF(NA(JA). 1E. 0. AND. TFLOV(AD). GT. LO(AD)) DEL--RKIN(DEL, -C)

110 CONTINUE
IF(DEL. NE. AfF) 00 TO 130
IF(TFLOW(AOK). EQ. LO(AOK)) GO TO 120
GO TO 230

120 DEL=ABS(COX)
130 ITRD = ITRD +1

GO TO 135
135 DO 140 N= 1SNODES

c Increasing the dual values of unlabelled nodes
IF(NA(N). EQ. O) PI(N)=PI(N)+DEL

140 CONTINUE
IF((DEL. EQ. ABS(COK)). AND. (TFLOW(AOK). GE. LO(AOK)))

1 G0 T0 220
IK=I(AOK)
JK=J(AOK)
COK=TCOST(AOK)+PI(IK)-PI(JK)
GO TO 70

c Now try labelling again
150 EPS=LO(AOK)

X--SRC
c Starting with arc, AOK, we increase the flow on it
c and trace back increasing all flows until we reach, SRC,
c the finish node of arc AOK.

190 A=NA(N)
K=I(A)
TFLOW(A) = TFLOW(A) + EPS

210 N=M
IF(N. NE. SRC) GOTO 190
ITRP = ITRP +1
GOTO 20

220 CONTINUE
INFERS=-1
T= 10000.0
DO 250 K=1, N0DES
IF (PI(K) LT. T) T= PI(K)

250 CONTINUE
DO 260 K= LNODES

260 PI(K) = PI(K) -T
260 CONTINUE

RETURN
230 INFEAS =1

RETURN
END
Of subroutine KILTER

SUBROUTINE LOADFLOW
Assigns flows, starting with empty network, & avoiding conflict,
INTEGER BRCS, LONES, ORIGIN, FKA, CR, CW, TRIPS
COMMON I(1100), J(1100), LO(1100), FLOW(50,1100),

1 TFLOW(1100), TCOST(1100), PI(400), INPEAS, NA(400), NODES, ARCS, ZONES,
1 INIT, MAXITRN, ITRP, ITRD, TOTFLOW(1100), TC,
1 OTHERFLO(1100), NA, FRA, LRA, TOTCRASH, BASECOST(50), NCRANGE(S0),
1 NC(1100), CR(1100,7), TRIPS(50,50),
1 ORIGIN(50), MCWGE, CW(1100,7)

DO 30 NORIG = 1, ZONES

Be

NOD = ORIGIN(NORIG)
C So if e. g. the Ist origin is son* 3 NOD =3

CALL RILTARCS(NOD)
IF(NORIG. NE. 1)THEN

c Some updating is called for.
DO 32 K=1, ARCS

TOTFLOW(K)=TOTFLOW(K) 4 TFLOW(K)
C This updates TOTFLOW(K)

32 CONTINUE
CALL BUILDUP

c Builds up the costs on arcs using the increased TOTFLOW(K)
ELSE

DO 34 K=1, ARCS
TCOST(K)=0.0

34 CONTINUE
END IF

c TCOST(K) has been updated using the current TOTFLOW(K)
CALL KILTER
DO 36 K: i, ARCS

FLOW(NOD, K)=TFLOW(K)
36 CONTINUE

C This updates FLOW(NOD, K)
30 CONTINUE

CALL VINES(0)
C To print LOADFLOW assignment

CALL SUMMARY
C After each iteration give total of crashes

DO 42 NOD: i, ZONES
CALL ZONECOST(NOD)

42 CONTINUE
C BASECOST(NOD) is now uptodate

CALL SUMCRASH
RETURN
END

C Of subroutine LOADFLOW
C

SUBROUTINE LOADING
Asks user if he wants an order of loading different from the
numeric order of zones.
INTEGER ARCS, ZONES, FKA, CR, CW, ORIGIN, ORDER
REAL LO
COMMON I(1100), J(1100), LO(1100), PLOW(50,1100),

I TFLOW(1100), TCOST(1100), PI(400), INFEAS, NA(400), NODES, ARCS, ZONES,
1 INIT, MAXITRN, ITRP, ITRD, TOTFLOW(1100), TC,
1 OTHERFLO(1100), KA, FIFA, LKA, TOTCRASH, BASECOST(50), NCRANGE(50),
1 NC(1100), CR(1100,7), TRIPS(50,50),
1 ORIGIN(50), MCRMGE, CW(1100,7)

WRITE (*, *) 'Do you want to load other than in numeric order? '
WRITE (*, *) 'Enter'
WRITE (*, *) '0 for numeric order, '
WRITE (*, *) '1 for user specified order,
WRITE (*, *) '2 for random, user to supply seed.
READ (*, *)ORDER
IF(ORDER. EQ. O)THEN
DO 10 N=1, ZONES

ORIGIN(N)=N
10 CONTINUE

89

OPEN(UNIT=7, FILE = 'SUMK RY. RPT', STATUS='NEW')
ELSE IF(ORDER. EQ. 1)TBEN
WRITE (*, *) 'Enter order of loading on separate lines'
DO 20 N=1, ZONES

READ(*, *)ORIGIN(N)
20 CONTINUE

OPEN(UNIT=7, FILE = 'SUlß4ERY. RPT', STATUS='NEW')
ELSE IF(ORDER. EQ. 2)THEN
WRITE (*, *) 'Enter an integer seed
READ(*, *)ISEED
OPEN(UNIT=7, FILE = 'SUMKARY. RPT', STATUS='NEli')

9005 FORMAT(/' This random order of loading was started with seed')
9007 FORXAT(I5)

WRITE(7,9005)
WRITE(7,9007)ISEED

DO 30 1=1, ZONES
ORIGIN(N)=N

30 CONTINUE
DO 40 N=1, ZONES

R= URA1 D(ISEED)
URAND is listed in 'Problem solving with Fortran77'
by B. D. Hahn publ Arnold 1987 page 142.

NUM = INT(ZONES*R) +1
ITEMP -- ORIGIN(NUM)
ORIGIN(NUM) = ORIGIN(N)
ORIGIN(N) = ITEMP

40 CONTINUE
ELSE
WRITE (*, *) 'Not a valid entry - start again'
END IF

9000 FORMAT(20I3)
9010 FORMAT(' The order of loading in this assignment is')

WRITE(7,9010)
DO 42 K=1, ZONES, 20

WRITE(7,9000)(ORIGIN(KL), KL=K, K+19)
42 CONTINUE

RETURN
END
Of subroutine LOADING

FUNCTION URAND(IY)
INTEGER IA, IC, ITWO, M2, M, MIC
DOUBLE PRECISION HALFM
REAL S
DATA M2/ 0/, ITWO/ 2/
IF(M2. EQ. 0)THEN

M=1
M2 = 16384
HALFM = M2
IA = 8*INT(NALFM*ATAN(1. D0)/8. D0) +5
IC = 2*INT(HALFM*(0.5D0 - SQRT(3. DO)/6. D0)) +1
MIC = (M2 -IC) + M2
S=0.5/HALFM

END IF
IY = IY*IA
IY = IY + IC
IY = MOD(IY, 32768)

90

URMD = FLO? T(IY)*S
RETURN
END

c Of function URAND
C

SUBROUTINE NETWORK
C Reads rest of ARCS. DAT

INTEGER ARCS, ZONES, ORIGIN, FKA, CR, CW, TRIPS
REAL LO
COMMON I(1100), J(1100), LO(1100), FLOW(50,1100),

1 TFLOW(1100), TCOST(1100), PI(400), IJFEAS, N&(400), NODES, ARCS, ZONES,
1 INIT, MAXITRN, ITRP, ITRD, TOTFLOW(1100), TC,
1 OTHERFLO(I100), KA, FKA, LKA, TOTCRASH, BASECOST(50), NCHANGE(50),
1 NC(1100), CR(1100,7), TRIPS(50,50),
1 ORIGIN(50), MCHANGE, CW(1100,7)

DO 28 R=1, ARCS
READ(S, e, END=28)KK, I(K), J(K)
LO(R)=0.0

28 CONTINUE
CLOSE(UNIT=S, STATUS: 'KEEP')
END

C Of subroutine NETWORK
C

SUBROUTINE OLDFLOW

Reads file STARTFLO. DAT to fill arrays FLOW(NOD, K) and
computes BASECOST(NO), the total costs of each initial
flow, and TOTCRASH, the total number of conflicts in the
initial flow pattern.

INTEGER ARCS, ZONES, ORIGIN, FKA, CR, CW, TRIPS
REAL LO
COMMON I(1100), J(1100), LO(1100), FLOW(50,1100),

1 TFLOW(1100), TCOST(1100), PI(400), INFEAS, NA(400), NODES, ARCS, LONES,
1 INIT, MAXITRN, ITRP, ITRD, TOTFLOW(1100), TC,
1 OTHERFLO(1100), KA, FKA, LKA, TOTCRASH, BASECOST(50), HCHANGE(50),
1 NC(1100), CR(1100,7), TRIPS(50,50),
1 ORIGIN(50), MCMM GE, CW(1100,7)

OPEN(UNIT=8, FILE = 'STARTFLO. DAT', STATUS='OLD')
9010 FORMAT(1X, 2I4,5F10.2)
9020 FORMAT(1X, I4,5F10.2)

DO 40 N0=1, ZONES
DO 50 K=1, ARCS, 5

READ(8,9010)NN, KK, (FLOW(NO, KT), KT=K, K+4)
50 CONTINUE
40 CONTINUE

DO 60 K=1, ARCS, 5
READ(8,9020)KK, (TOTFLOW(KT), KT=K, K+4)

60 CONTINUE
DO 38 NOD: 1, ZONES
CALL ZONECOST(NOD)

38 CONTINUE
CALL SUMCRASH

9016 FORMAT(J'THE OLDFLOW NUMBER OF POSSIBLE CRASHES IS ', F18.2)
WRITE(7,9016)TOTCRASH
CALL SUMMARY
RETURN

91

END
C Of subroutine OLDFLOW
C

SUBROUTINE SUNCRASH

INTEGER ARCS, ZONES, ORIGIN, FKA, CR, Cii, TRIPS
REAL LO
COMMON I(1100), J(1100), LO(1100), FLOW(50,1100),

1 TFLOW(1100), TCOST(1100), PI(400), INPEAS, NA(400), NODES, ARCS, ZONES,
1 INIT, MAXITRN, ITRP, ITRD, TOTFLOW(1100), TC,
1 OTHERFLO(1100), KA, FKA, LKA, TOTCRASH, BASECOST(50), NCHANGE(50),
1 NC(1100), CR(1100,7), TRIPS(50,50),
1 ORIGIN(50), MCHANGE, CW(1100,7)

BASHES = 0.0
DO 20 NO = 1, ZONES
BASHES = BASHES + BASECOST(NO)

20 CONTINUE
TOTCRASH = 0.5*BASHES

9007 FORMAT(/' THE TOTAL NUMBER OF POSSIBLE CRASHES IS ', F1S. 1)
WRITE(7,9007)TOTCRASH
RRITE(5,9007)TOTCRASH
RETURN
END

C Of subroutine SUMCRASH
C

SUBROUTINE SUMMARY
INTEGER ARCS, ZONES, ORIGIN, FKA, CR, CW, TRIPS
COMMON I(1100), J(1100), LO(1100), FLOW(50,1100),

1 TFLOW(1100), TCOST(1100), PI(400), INFERS, NA(400), NODES, ARCS, ZONES,
1 INIT, MAXITRN, ITRP, ITRD, TOTFLOW(1100), TC,
1 OTHERFLO(1100), KA, FKA, LKA, TOTCRASH, BASECOST(50), NCHANGE(50),
1 NC(1100), CR(1100,7), TRIPS(50,50),
1 ORIGIN(50), MCRMGE, CW(1100,7)

9015 FORMAT(/'THE FOLLOWING ARCS HAVE NOT BEEN USED')
WRITE(7,9015)

9016 FORXAT(1X, ' ARC I J')
WRITE(7,9016)

9017 FORIAT(1X, 314)
DO 60 K=1, ARCS
IF(TOTFLOW(K). EQ. 0.0)WRITE(7,9017)K, I(K), J(K)

60 CONTINUE
RETURN
END

C Of subroutine SUMMARY
C

SUBROUTINE TOTALFLO
C Uses the 2-dimensional array FLOW(NO, K)
C to create a 1-dimensional array TOTFLOW(X)

INTEGER ARCS, LONES, ORIGIN, PKA, CR, CW, TRIPS
REAL LO
COMMON I(1100), d(1100), LO(1100), FLOW(50,1100),

1 TFLOW(1100), TCOST(1100), PI(400), INFEAS, NA(400), NODE$, ARCS, ZONE$,
1 INIT, MAXITRN, ITRP, ITRD, TOTFLOW(1100), TC,
1 OTHERFLO(1100), KA, FKA, LXA, TOTCRASB, BASECOST(50), NCHANGE(50),
1 NC(1100), CR(1100,7), TRIPS(50,50),
1 ORIGIN(50), MCRANGE, Ci(1100,7)

92

DO 12 K=1, ARCS
TOTFLOW(K) =0.0

DO 16 NO=1, ZONES
TOTFLOW(K) = TOTFLOW(K) + FLOW(NO, K)

16 CONTINUE
12 CONTINUE

RETURN
END
Of subroutine TOTALFLO

SUBROUTINE VINES(NI)
INTEGER ARCS, ZONES, ORIGIN, FKA, CR, CW, TRIPS
COMMON I(1100), J(1100), LO(1100). FLOW(50,1100),

1 TFLOW(1100), TCOST(1100), PI(400), INFEAS, NA(400), NODES, ARCS, ZONES,
1 INIT, MAXITRN, ITRP, ITRD, TOTFLOW(1100), TC,
1 OTHERFLO(1100), KA, FKA, LKA, TOTCRASH, BASECOST(50), NCRAROE(50),
1 NC(1100), CR(1100,7), TRIPS(50,50),
1 ORIGIN(50), MCRANGE, CW(1100,7)

9010 FORMAT(1X, 2I4,5F10.2)
9020 FORMAT(1R, I4, SF10.2)

IF(NI. LE. 1)THEN
DO 40 N0=1, ZONES

DO 50 K=1, ARCS, 5
WRITE (11,9010)NO, K, (FLOW(NO, KT), KT=K, K+4)

50 CONTINUE
40 CONTINUE

DO 60 K=1, ARCS, 5
WRITE(11,9020)K, (TOTFLOW(KT), KT=K, K+4)

60 CONTINUE
ELSE

DO 70 N0=1, ZONES
DO 80 K=1, ARCS, 5

WRITE(12,9010)NO, K, (FLOW(NO, KT), KT=K, K+4)
80 CONTINUE
70 CONTINUE

DO 90 K=1, ARCS, 5
WRITE(12,9020)K, (TOTFLOW(KT), KT=K, K+4)

90 CONTINUE
END IF
RETURN
END

C Of subroutine VINES(NI)
C

SUBROUTINE ZONECOST(NOD)
C Calculates BASECOST(NOD), the total costs of flows
c from cone NOD using FLOW(NOD, K) and TCOST(K).

INTEGER 21RCS, ZONES, ORIGIN, FIU, CR, CN, TRIPS
REAL LO
COMMON I(1100), J(1100), LO(1100), FLON(50,1100),

1 TFLOW(1100), TCOST(1100), PI(400), INFEAS, NA(400), IODES, ARCS, ZONES,
1 INIT, MA%ITRN, ITRP, ITRD, TOTPLOW(1100), TC,
1 OTHERPLO(1100), KA, FKA, LIA, TOTCRASH, BASECOST(50), NCRANGE(50),
1 NC(1100), CR(1100,7), TRIPS(50,50),
1 ORIGIN(50), MCHANGE, CW(1100,7)

Now compute the total coat to the flow from zone NOD
DC 20 K: 1, ARCS

93

OTHERFLO(K)=TOTFLOW(K)-FLOW(NOD, K)
20 CONTINUE

CALL ARCCOSTS(NOD)
C Cost is now appropriate to flow from zone NOD

ETC = 0.0
D012 K=1, ARCS

BTC = ETC +TCOST(K)*FLOW(WOD, K)
22 CONTINUE

BASECOST(NOD) = ETC
21 CONTINUE

RETURN
END

C Of subroutine LOBECOST(NOD)

FUNCTION RXIN(Z, T)
R=Y
IF((X LT. Y) AND. (I . GE. 0.0)) R
RKIN =R
RETURN
END
Of function RHIN

END

94

PROGRAM POLYLINK
C Starting with files, STARCFLO. DAT and FARCFLOW. DAT, which are
c the output files from the program, POLYSETID, and the file,
c ARCLINK. DAT, which is an output file from the program, POLYARCS,
C POLYZINK creates files, SLINKFLO. DAT and FLINKFLO. DAT, which
c give the total flows in each direction of the road network
c according to the START-UP and FINAL assignments produced by the
c program, POLYSEND, the files, SLINKTRE. DAT and FLINKTRE. DAT,
C which give the trees of flow from each origin in terms of links
c on the road network and the files SLINKSUM. DAT and FLINKSUM. DAT
C which table the links in bands according to amount of total flow.
C The road network can have up to 300 links and 50 zones and the
c traffic circulation network up to 1100 arcs.

INTEGER ZONES, XIONS, ARCS, FIRSTAB, TW, FIRSTBA, A, B, FEED
COMMON ZONES, XIONS, LINKS, ARCS, FIRSTAB(300), LASTAB(300), TR(300),

1 FIRSTBA(300), LASTBA(300), TOTFLOW(1100), ABFLOW(300), BAFLOW(300),
1 A(300), B(300), FLOW(50,1100)

OPEN(UNIT=6, FILE ='LINKS. DAT', STATUS='OLD')
OPEN(UNIT--9, FILE ='ARCLINK. DAT', STATUS='OLD')
OPEN(UNIT=12, FILE='STARCFLO. DAT', STATUS='OLD')
OPEN (UNIT=13, FILE= 'FARCFLOW. DAT' , STATUS='OLD')
OPEN(UNIT=14, PILE='SLINKFLO. DAT', STATUS='NEW')
OPEN(UNIT=15, FILE='FLINKFLO. DAT', STATUS='NEW')
OPEN(UNIT=16, FILE--'SLINKTRE. DAT', STATUS=')EW')
OPEN(UNIT=17, FILE='FLINKTRE. DAT', STATUS='NEW')
OPEN(UNIT=18, FILE='SLINKSUM. DAT', STATUS='NEW)
OPEN(UNIT=19, FILE: 'FLINKSUM. DAT', STATUS= 'NEW)

C Read ARCLINK. DAT and LINKS. DAT to set up arrays.
READ(9, *)ZONES, %IONS, LINKS, ARCS
DO 10 L=1, LINKS
READ(9, *, END=10)LL, FIRSTAE(L), LASTAB(L), TN(L), FIRSTBA(L),

1 LASTBA(L)
10 CONTINUE

READ(6, *)ZONES, SIONS, LINKS
DO 12 M: 1, ZONES
READ(6, *)FEED

12 CONTINUE
DO 20 L=1, LINKS

READ(6, *, END=20)A(L), B(L), TW(L)
20 CONTINUE

c Compute flows on links for LOADFLOW, DARTFLOW or FASTFLOW.
C Start by reading STARCFLO. DAT for flows from origins.
9005 FORKAT(1K, 2I4,5F10.2)

DO 30 N0=1, ZONES
DO 40 X=1, ARCS, 5
READ(12,9005)NN, KK, (FLOW(NO, KT), KT=K, K+4)

40 CONTINUE
DO 50 L=1, LINKS

ABFLOW(L)=0.0
DO 60 K=FIRSTAB(L), LASTAB(L)

ABFLOW(L)=ABFLON(L) + FLOW(NO, K)
60 CONTINUE
50 CONTINUE

DO 70 L=1, LINKS
BAFLOW(L)=0.0
DO 80 K=FIRSTBA(L), LASTBA(L)
BAFLOW(L)=BAFLON(L) + FLOI(NO, K)

95

80 CONTINUE
70 CONTINUE

9015 FORMAT(/'TBE START-UP FLOWS FROM ORIGIN ', 14, ' ARE')
WRITE(16,9015)10

9025 FORMAT('(But flows into destinations are 0 by default)')
WRITE(16,9025)

9035 FORMAT(/' From A to B Flow From B to A Flow')
WRITE(16,9035)

9045 FORMAT(3X, 216, F10.2,5X, 215, F10.2)
DO 90 L=1, LINKS

IF((ABFLOW(L). EQ. 0.0). AND. (BAFLOW(L). EQ. 0.0))GOTO 430
WRITE(16,9045)A(L), B(L), ABFLOW(L), B(L), A(L), BAFLOW(L)

430 CONTINUE
90 CONTINUE

c When the loop is re-entered ABFLOW and BAFLOW will be ro-
e assigned.

30 CONTINUE
c Compute total flows on links for LOADFLOW, DARTFLOW or FASTFLOW.
C Read the last part of STARCFLO. DAT
9055 FORMAT(1X, 14,5F10.2)

DO 100 K=1, ARCS, 5
READ(12,9055)KK, (TOTFLOW(KT), KT=K, K+4)

100 CONTINUE
C AEFLOW and BAFLOW will now be total flows.

DO 110 L: 1, LINKS
ABFLOW(L)=0.0
DO 120 K=FIRSTAB(L), LASTAB(L)

ABFLOW(L)=ABFLOW(L) + TOTFLOW(K)
120 CONTINUE
110 CONTINUE

DO 130 L=1, LINKS
BAFLOW(L)=0.0
DO 140 K=FIRSTBA(L), LASTBA(L)

BAFLOW(L)=BAFLOW(L) + TOTFLOW(K)
140 CONTINUE
130 CONTINUE

c Write the table for SLINKFLO
9065 FORMAT(/'TBE START-UP TOTAL FLOWS ON THE LINKS ARE')

WRITE(14,9065)
WRITE(14,9025)
WRITE(14,9035)
DO 150 L-1, LINKS

IF((ABFLON(L). EQ. 0.0). AND. (BAFLOW(L). EQ. C. 0))GOTO 440
WRITE(14,9045)A(L), B(L), ABFLOW(L), B(L), A(L), BAFLOW(L)

440 CONTINUE
150 CONTINUE

C Write the links in bands for BLINKSUM
9075 FORMAT(/'The following links have not been used')

WRITE(18,9075)
9080 FORMAT(' From to')

WRITE(18,9080)
9085 FORMAT(3X, 2I6)

DO 160 L-1, LINKS
IF(ABFL(W(L). EQ. 0.0)WRITE(18,9085)A(L), B(L)
IF(BAFLOW(L). EQ. 0.0)WRITE(18,9085)B(L), A(L)

160 CONTINUE
9095 FORMAT(/'The following links have flow between 1 and 10')

96

WRITE(18,9095)
9105 FORMAT(' From to Flow ')

WRITE(18,9105)
9115 FORI1AT(3X, 2I6, F10.2)

DO 170 L=1, LINKS
IF((ABFLOW(L). GT. 0.0). AND. (ABFLOW(L). LE. 10.0))WRITE(18,9115)

1 A(L), B(L), ABFLOW(L)
IF((BAFLOW(L). GT. 0.0). AND. (BAFLOW. (L). LE. 10.0))NRITE(18,9115)

1 B(L), A(L), BAFLOW(L)
170 CONTINUE

9125 FORMAT(/'The following links have flow between 11 and 100')
WRITE(18,9125)
WRITE(18,9105)
DO 180 L=1, LINKS
IF((ABFLOW(L). GT. 10.0). AND. (ABFLON(L). LE. 100.0))WRITE(18,9115)

1 A(L), B(L), ABFLOV(L)
IP((BAFLOW(L). GT. 10.0). AND. (BAFLOFI(L). LE. 100.0))WRITE(18,9115)

1 B(L), A(L), BAFLOW(L)
180 CONTINUE

9135 FORMAT(/'The following links have flow between 101 and 500')
WRITE(18,9135)
WRITE(18,9105)
DO 190 L=1, LINKS
IF((ABFLOW(L). GT. 100.0). AND. (ABFLOW(L). LE. 500.0))WRITE(18,9115)

1 A(L), B(L), ABFLOW(L)
IF((BAFLOW(L). GT. 100.0). AND. (BAFLOW(L). LE. 500.0))WRITE(18,9115)

1 B(L), A(L), BAFLOW(L)
190 CONTINUE

9145 FORMAT(/'The following links have flow between 501 and 1000')
WRITE(18,9145)
WRITE(18,9105)
DO 200 L=1, LINKS
IF((ABPLOW(L). GT. 500.0). AND. (ABFLOR(L). LE. 1000.0))WRITE(18,9115)

1 A(L), B(L), ABFLOW(L)
IF((BAFLOW(L). GT. 500.0). AND. (BAFLOW(L). LE. 1000.0))WRITE(18,9115)

1 B(L), A(L), BAFLOW(L)
200 CONTINUE

9155 FORMAT(/'The following links have flow between 1001 and 5000')
WRITE(18,9155)
WRITE(18,9105)
DO 210 L=1, LINKS
IF((ABFLOW(L). GT. 1000.0). AND. (ABFLOW(L). LE. 5000.0))

1 WRITE(18,9115)A(L), B(L), ABFLOW(L)
IF((BAFLOW(L). GT. 1000.0). AND. (BAFLOW(L). LE. 5000.0))

1 WRITE(18,9115)B(L), A(L), BAFLOW(L)
210 CONTINUE

9165 FORI1AT(/'The following links have flow greater than 5000')
WRITE(18,9165)
WRITE(18,9105)
DO 220 L=1, LINKS
IF(ABFLOW(L). GT. 5000.0)WRITE(18,9115)A(L), B(L), ABFLOW(L)
IF(BAFLOW(L). GT. 5000.0)WRITE(18,9115)B(L), A(L), BAFLON(L)

220 CONTINUE
Compute flows on links from the final flow pattern.
Start by reading FARCFLOW. DAT for flows from origins.
DO 230 N0=1, t0NES

DO 240 K=1, ARCS, 5

97

READ(13,9005)NN, KK, (FLOW(NO, KT), KT=K, K+4)
240 CONTINUE

DO 250 L=1, LINKS
ABFLOW(L)=0.0
DO 260 K=FIRSTAB(L), LASTAB(L)

ABFLOW(L)=ABFLOW(L) + FLOW(NO, K)
260 CONTINUE
250 CONTINUE

DO 270 L=1, LINKS
BAFLOW(L)=0.0
DO 280 K=FIRSTBA(L), LASTBA(L)
BAFLOW(L)=BAFLOW(L) + FLOW(NO, K)

280 CONTINUE
270 CONTINUE

C Write FLINKTRE. DAT
9175 FORMAT(/'THE FINAL FLOWS FROM ORIGIN ', I4, ' ARE')

WRITE(17,9175)NO
WRITE(17,9025)
WRITE(17,9035)
DO 290 L=1, LINKS

IF((ABFLOW(L). EQ. 0.0). AND. (BAFLOW(L). EQ. 0.0))GOTO 450
WRITE(17,9045)A(L), B(L), ABFLOW(L), B(L), A(L), BAFLOW(L)

450 CONTINUE
290 CONTINUE
230 CONTINUE

C Compute the total flows on links in the final assignment.
c Start by reading the last part, total flows, of FARCFLOW. DAT.

DO 300 K=1, ARCS, 5
READ(13,9055)KK, (TOTFLOW(KT), KT=K, K+4)

300 CONTINUE
DO 310 L=1, LINKS

ABFLOW(L)=0.0
DO 320 K=FIRSTAB(L), LASTAB(L)

ABFLOW(L)=ABFLOW(L) + TOTFLOW(K)
320 CONTINUE
310 CONTINUE

DO 330 L=1, LINKS
BAFLOW(L)=0.0
DO 340 K=FIRSTBA(L), LASTBA(L)

BAFLOW(L)=BAFLOW(L) + TOTFLOW(K)
340 CONTINUE
330 CONTINUE

C Write table for FLINKFLO. DAT
WRITE(15,9085)
WRITE(15,9025)
WRITE(15,9035)
DO 350 L=1, LINKS

IF((ABFLOW(L). EQ. 0.0). AND. (BAFLOW(L). EQ. 0.0))GOTO 460
WRITE(15,9045)A(L), B(L), ABFLOW(L), B(L), A(L), BAFLOW(L)

460 CONTINUE
350 CONTINUE

C Write links in bands for FLINKSUM. DAT
WRITE(19,9075)
WRITE(19,9080)
DO 360 L=1, LINKS

IF(ABFLOW(L). EQ. 0.0)WRITE(19,9085)A(L), B(L)
IF(BAFLOW(L). EQ. 0.0)WRITE(19,9085)B(L), A(L)

98

360 CONTINUE
WRITE(19,9095)
WRITE(19,9105)
DO 370 L=1, LINKS
IF((ABFLOW(L). GT. 0.0). AND. (ABFLOW(L). LE. 10.0))WRITE(19,9115)

1 A(L), B(L), ABFLOW(L)
IF((BAFLOW(L). GT. 0,0). AND. (SAFLOW(L). LE. 10.0))WRITE(19,9115)

1 B(L), A(L), BAFLOW(L)
370 CONTINUE

WRITE(19,9125)
WRITE(19,9105)
DO 380 L=1, LINKS
IF((ABFLOW(L). GT. 10.0). AND. (ABFLOW(L). LE. 100.0))WRITE(19,9115)

1 A(L), B(L), ABFLOW(L)
IF((BAFLOW(L). GT. 10.0). AND. (BAFLOW(L). LE. 100.0))WRITE(19,9115)

1 B(L), A(L), BAFLOW(L)
380 CONTINUE

WRITE(19,9135)
WRITE(19,9105)
DO 390 L=1, LINKS
IF((ABFLOW(L). GT. 100.0). AND. (ABFLOW(L). LE. 500.0))WRITE(19,9115)

1 A(L), B(L), ABFLOW(L)
IF((BAFLOW(L). GT. 100.0). AND. (BAFLOW(L). LE. 500.0))WRITE(19,9115)

1 B(L), A(L), BAFLOW(L)
390 CONTINUE

WRITE(19,9145)
WRITE(19,9105)
DO 400 L=1, LINKS
IF((ABFLOW(L). GT. 500.0). AND. (ABFLOW(L). LE. 1000.0))

1 WRITE(19,9115)A(L), B(L), ABFLOW(L)
IF((BAFLOW(L). GT. 500.0). AND. (BAFLOW(L). LE. 1000.0))

1 WRITE(19,9115)B(L), A(L), BAFLOW(L)
400 CONTINUE

WRITE(19,9155)
WRITE(19,9105)
DO 410 L=1, LINKS
IF((ABFLOW(L). GT. 1000.0). AND. (ABFLOW(L). LE. 5000.0))

1 WRITE(19,9115)A(L), B(L), ABFLOW(L)
IF((BAFLOW(L). GT. 1000.0). AND. (BAFLOW(L). LE. 5000.0))

1 WRITE(19,9115)B(L), A(L), BAFLOW(L)
410 CONTINUE

WRITE(19,9165)
WRITE(19,9105)
DO 420 L=1, LINKS
IF(ABFLOW(L). GT. 5000.0)WRITE(19,9115)A(L), B(L), ABFLOW(L)
IF(BAFLOW(L). GT. 5000.0)WRITE(19,9115)B(L), A(L), BAFLOW(L)

420 CONTINUE
STOP 'Output - SLINKTRE, SLINKPLO, SLINKSUM and

1 FLINKTRE, FLINKFLO, FLINKSUK'
END

99

