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Abstract 
 
Thermal absorbers and their integration methods are critical to solar photovoltaic/thermal (PV/T) modules. These two elements 
directly influence the cooling effort of PV layers and as a result, the related electrical/ thermal/overall efficiency. This paper 
conducts a critical review on the essential thermal absorbers and their integration methods for the currently‐available PV modules 
for the purpose of producing the combined PV/T modules. A brief overview of different PV/T technologies is initially summarized, 
including aspects of their structure, efficiencies, thermal governing expressions and their applications. Seven different types of 
thermal absorbers and four corresponding integration methods are subsequently discussed and summarized in terms of their 
advantages/disadvantages and the associated application for various PV/T modules. Compared to traditional thermal absorbers, 
such as sheet‐and‐tube structure, rectangular tunnel with or without fins/ grooves and flat‐plate tube, these four types, i.e. micro‐
channel heat pipe array/heat mat, extruded heat exchanger, roll‐bond heat exchanger and cotton wick structure, are promising 
due to the significant enhancement in terms of efficiency, structure, weight, and cost etc. The appropriate or suitable integration 
method varies in different cases, i.e. the ethylene‐vinyl acetate (EVA) based lamination method seems the best option for 
integration of PV layer with thermal absorber when compared with other conventional methods, such as direct contact, thermal 
adhesive and mechanical fixing. Finally, suggestions for further research topics are proposed from five aspects. The overall 
research results would provide useful information for the assistance of further development of solar PV/T modules with high 
feasibility for widespread application in energy supply even at district or city‐level in the near future. 
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1. Introduction 

 
Global current energy demand is continuously growing, therefore 

new solutions for energy conservation, energy supply and simultaneous 
environmental protection is highly desirable. The utilization of renew- 
able energy is, without a doubt, one of the most encouraging ecological 
solutions towards sustainable and resilient development. Solar energy,  

 
as an inexhaustible, renewable and eco-friendly energy source is 
currently promising to offer potential solutions for sustainable 
development [1]. At present, the most widely available solar 
technologies are solar photovoltaic (PV) and solar thermal heat, 
which combined contribute towards a large share of global energy 
supply as illustrated in Fig. 1 [2].

According to the International Energy Agency (IEA)’s 
projections [3] by 2050 there will be 3000 GW of installed PV 
capacity worldwide, generating 4500 TW h per year and 
contributing 11% of expected global electricity supply (Fig. 2). 
China has now overtaken Germany and the US to become the 
world's top generator of solar PV power. During the period of 
the Twelfth Five-Year Plan, China's PV capacity increased 168 
times, far beyond the speed of all previously observed renewable 

energy development. [4]. With 15 GW added in 2015, China has 
reached 43 GW of solar PV capacity at a mean 40% rise annually 
[5]. Fig. 3 shows the cumulative installed PV capacity in China 
from 2000 to 2015. 

Currently, solar thermal only provides around 0.5% of the 
estimated global water and space heating demand in the 
buildings sector

 



within the European area [6]. In 2005 Europe had a solar thermal
system capacity of around 10 GWth. This is expected to grow to
200 GWth by 2030, of which up to 50% will be used for the delivery
of low and medium temperature water [7]. In the UK, around
131 GWth of domestic hot water has already been provided by solar
systems, partly replacing conventional gas and electrical heating
systems in 2011 [8]. In 2013, it was indicated that 148.2 million
tonnes of oil equivalent was consumed, with 66% used for space
heating and another 17% for water heating, with a total estimated cost
of around £33 billion to the UK economy [9]. Meanwhile, solar driven
water heating systems have been identified as having the potential to

offset around 70–90% of the total energy required for water heating,
thus enabling significant savings in household fossil fuel energy use
[10]. Supporting the UK Government's Renewable Heat Premium
Payment scheme, solar thermal is expected to offer great potential
for heat source diversity and for the development of towns and cities in
sustainable and affordable ways.

As for China, the installed operating capacity of solar thermal in
2013 was 262.3 GWth[10], far beyond the installed capacity in any
other country (Fig. 4). At the beginning of 2015 the Chinese authorities
released its “Renewable Energy Development Roadmap 2050” as a
long-and-medium-term plan for the development of solar technologies.
This plan includes the huge expansion of low-median temperature
solar thermal applications to support a stronger growing Chinese
economy and a low carbon future.

PV/thermal (PV/T) technologies enable dual function of solar
collection within one module with an output of both electricity and
heat. Such synergetic integration of PV and thermal collection results
not only in improved PV efficiency [3], but also generates more energy
per unit area than a stand-alone PV or solar thermal module. The
market potential of PV/T technology is therefore significantly higher
than for individual PV and solar thermal systems. This strategic
concept will boost solar energy application in line with future devel-
opment trends of both PV and solar thermal technologies as addressed
above.

Nomenclature

a width of duct, m
Ac collector aperture area, m2

b length of duct, m
Cb thermal conductance of the bond between fin and tube, J/

kg k
Cp heat capacity of flowing medium, J/kg k
Dh hydraulic diameter, m
Di inside diameter of flow tubes, m
Do outside diameter of flow tubes, m
F fin efficiency
F’ module efficiency factor
FR heat-removal factor
h heat transfer coefficient, W/m2 k
I incident solar radiation, W/m2

P power, W
Q energy rate, W
T temperature, °C
U overall heat transfer coefficient, W/m2 k

W distance between tubes, m

Greek

α absorptivity
δ thickness, m
η efficiency, %
τ transmittance of the material

Subscripts

a air
e electricity
fi fluid
in inlet
L loss
o overall
p,m mean value of plate
PV-roll bond PV layer to roll-bond plate
th thermal

Fig. 1. Global capacity in operation and annual energy yields in 2014 [2].

Fig. 2. Global PV power generation and relative share of total electricity generation [3].

Fig. 3. Installed PV power capacity in China from 2000 to 2015 [5].
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Thermal absorbers for PV/T modules are complementary to solar
cells as another way of harvesting solar energy. The overall conversion
efficiency of a PV/T module increases with the efficiency of its thermal
absorber according to the laws of thermodynamics. Different methods
for thermal absorber design, namely sheet-and-tube structure, rectan-
gular tunnel with or without fins/grooves, flat-plate tube, micro-
channel heat pipe array/heat mat, extruded heat exchanger, roll-bond
heat exchanger and cotton wick structure, are being comprehensively
developed. Generally, a PV/T module is constructed by attaching a
commercially available PV layer to a thermal absorber using integra-
tion methods such as mechanical or chemical adhesive bonding. This
combination provides gap filler that transfers heat between the PV
layer and the thermal absorber and must have a good elongation
property to compensate for the different expansion of various compo-
nents of the PV layer and thermal absorber. Poor thermal contact
between the PV layer and the thermal absorber underneath leads to a
temperature difference of about 15 °C for an unglazed PV/T module.
This is due to reduced solar energy absorption, and increased heat
transfer resistance in the cell to the absorber interface, resulting in
poor module heat removal factor [11,12]. Moreover, the thermal
resistance between the PV layer and thermal absorber may become
extremely large if a small air gap or air bubbles exist within the
integration layer. Therefore, both the thermal absorber and the
integration method used is critical to the solar PV/T modules as they
directly affect cooling of PV layers and therefore also the related
electrical/thermal/overall efficiency.

This paper thus conducts a critical review on recent research and
development of thermal absorbers and the integration methods
required for their use within combined PV/T modules; categorised
into flat-plate, flexible and concentrated thermal absorbers. The overall
research provides useful information for the assistance of further
development of PV/T modules with high feasibility for widespread
application in energy supply even at district or city-level approaching
the near future.

2. Photovoltaic/thermal (PV/T) technologies

2.1. Basic concept and theory of PV/T operation

PV modules come in a variety of forms including conventional
framed flat-plate, flexible and concentrated types. However, owing to
the low energy output of solar PV modules combined with the low
exergy of solar thermal collectors, a solar PV/T module, combining
both electrical and thermal components in a single unit area, could
potentially provide a solution to the low overall (sum of electrical and
thermal) efficiency. Present PV technology has a major inherent
drawback in its inability to absorb solar radiation from the complete
solar spectrum. In addition, PV cells suffer from a drop in efficiency
with a rise in temperature. Increasing the temperature of PV cells by

1 °C causes a reduction in electrical efficiency by around 0.4–0.5% for
crystalline silicon PV cells and around 0.25% for amorphous silicon (a-
Si) PV cells [13]. This results in PV cells delivering relatively low
electrical efficiencies since a major part of the incident solar energy is
either lost due to convection and radiation or converted as heat. Solar
PV/T can harvest these thermal energy and therefore increase overall
thermal and electrical efficiency [14,15].

Fig. 5 shows the basic operation principle of a PV/T module. From
the point of view of the first law of thermodynamics, the overall
efficiency of a PV/T module is the sum of the module's thermal
efficiency ηth and the module's electrical efficiency ηe, which are
defined as the ratios of useful heat gain and electricity gain to the
incident solar irradiation striking on the module's collecting surface,
given as below:
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where Qth can alternatively be expressed by the difference in absorbed
solar radiation, heat loss and the generated electricity.

η Q
IA

P
IA

= =e
e

c

e

c (2)

where Q e is equal to the measured electrical power (Pe).
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Apart from categorization by working fluid (i.e. air, water, refrig-
erant, phase change material, nano-fluid etc.) [15,16] the hybrid PV/T
technologies can further be divided into flat-plate, flexible and con-
centrated, depending on the type of PV module, as indicated in Fig. 6.
The following section will give an overview of the different PV/T
technologies including aspects of their structure, efficiencies, applica-
tions etc.

2.2. Flat-plate PV/T modules

The flat-plate PV/T modules usually combine a flat-plate PV
module in the front, which converts sunlight into electricity, with a
solar thermal absorber at the back, which captures the remaining
energy and removes excessive heat from the PV module. Such modules
can be engineered to carry heat away from the PV cells thereby cooling
the cells and therefore improving their efficiency by lowering resis-
tance. The capture of both electricity and heat allow these devices to
have higher exergy [17] and thus have greater overall energy efficient
than solar PV or solar thermal alone [18]. A significant amount of
research has gone into developing the flat-plate PV/T technology since

Fig. 5. : Basic operation principle of PV/T modules.

Fig. 4. Share of the total installed solar thermal capacity in operation (glazed and
unglazed water and air collectors) by economic region at the end of 2013.

Solar PV/T modules

Flat-plate 
PV/T modules

Flexible
PV/T modules

Concentrated
PV/T modules

Fig. 6. : Category of solar PV/T modules according to PV types.
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the 1970s [19].
The main components of the flat-plate PV/T modules, given in

Fig. 7, are the glazing cover (optional), flat-plate PV module, adhesive,
thermal absorber and insulation. The adhesive often consists of
ethylene-vinyl acetate (EVA) and a layer of tedlar-polyester-tellar
(TPT). Glass cover is optional for flat-plate PV/T module and can
either be single or double glass. PV/T devices with more than three
glass covers are not recommended because their electrical efficiency is
very low, due to the low transmittance of the aperture and the
enhanced thermal resistance of the triple glazing cover [20]. The
purpose of the thermal absorber, also called an “extracting heat device”
is to reduce the temperature underneath the PV module. The fluid
flowing inside the channels transport the collected thermal energy in
low-temperature applications. The insulation layer prevents heat from
escaping into the surrounding area. Fig. 8 shows the typical classifica-
tion of flat-plate PV/T according to different working fluids [21], which
have electrical, thermal and combined efficiencies in the range of 6.7–
15%, 22–79%, and 40–87% respectively [22].

Flat-plate PV/T modules are produced in regular flat shapes that
could be applied in both urban and rural areas, i.e. ground mounted,
wall/roof mounted, etc., and for industry or building energy supply.
Each module is fitted with a tubular inlet and outlet at the back or the
side that allow for connection between module to module in either a
serial pattern to allow the working fluid to pass through from one to
another, or a parallel pattern. It is feasible to make further use of the
absorbed heat through a heat pump for one or more of the following
purposes, i.e. hot water supply [23–25], space heating [26,27], solar
cooling [28,29], thermal storage [30], desalination [31], drying [32,33]
and pool heating [34,35] etc. Electricity generation from the PV cells,
either exported to the national grid or stored in batteries, will meet the

electrical load or drive the system component, i.e. water pump, heat
pump compressor. The combination of these concepts could create a
low (zero) carbon industry process and building driven by solar energy.

2.3. Flexible PV/T modules

Flexible PV/T modules have an almost identical structure as
compared to flat-plat modules aside from the PV layers are often made
of amorphous silicon (a-Si). The flexible PV/T modules typically
include thermal pipes or air space beneath the metal sheet supporting
the thin film, which may be installed above the current roof structure in
the case of building retrofits. Amorphous silicon is the most popular
thin film technology used at low-and-medium temperature with cell
efficiencies of 5–7%, and double- and triple-junction designs raising it
to 8–10% [36]. The additional thermal efficiencies of flexible PV/T
modules could be in the same range as observed for flat-plate modules

1: Glaazing cover; 2

5: TPT bac

2: EVA-encap

ck sheet; 6: Th

psulate; 3: Sola

hermal absorb

ar PV cells; 4

ber; 7: Therma

: EVA-encaps

al insulation 

sulate;  

Fig. 7. Schematic of a typical flat-plat PV/T module. 1: Glazing cover; 2: EVA-
encapsulate; 3: Solar PV cells; 4: EVA-encapsulate; 5: TPT back sheet; 6: Thermal
absorber; 7: Thermal insulation.

Fig. 8. Classification of flat-plate PV/T module [21].

1: TThin film PV; 2: Metal rooff; 3: Fin sheet; 4: Thermal ppipes; 5: Insulaation 

Fig. 9. Schematic of a typical flexible PV/T module [37]. 1: Thin film PV; 2: Metal roof;
3: Fin sheet; 4: Thermal pipes; 5: Insulation.

Fig. 10. Schematic of a typical concentrated PV/T module [42].
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at 22–79% [22]. A typical structure of flexible PV/T module is
schematically illustrated in Fig. 9.

Due to their flexibility, flexible PV/T modules can serve as rooftop
shingles/tiles, irregular building facades, and the glazing for daylights.
Integration of flexible PV/T modules into the profile of the roofing
sheet is the most popular design that allows for heat and power to be
generated from the integrated panels and transferred to a location
within the building for purposes such as hot water supply [38], space
heating [39], space cooling [40], and even fresh water production etc.
[41].

2.4. Concentrated PV/T modules

The structure of a concentrated PV/T module, as shown in Fig. 10,

consists of upper glazing, mirror compound parabolic concentrator
(CPC), high-temperature PV layer, thermal pipe and thermal insulation
[42]. The PV cell is pasted on the under surface of solid CPC, consisting
of crystalline silicon, cadmium telluride (CdTe), copper indium gallium
diselenide (CIGS) and SiNx/SiO2[43,44]. The solar transmittance
varies in accordance to the changing radiation incidence angles,
ranging electrical efficiency from 7% to 16% and combined efficiency
from 46% to 86%, under different concentrating ratios [42–49].

The higher concentration ratios are expected in the concentrated
PV/T modules in order to generate higher temperature thermal energy,
mostly in case of roof or ground-mounted installation, allowing for a
wide range of applications, such as solar air/water heater, solar air-
condition (absorption and adsorption refrigeration) and solar dehumi-
dification [50], greenhouse drying [45], and fresh water production

Table 1
Comparison of different PV/T technologies from aspects of application and efficiencies.

PV/T types Temperature Applications Module efficiencies

Flat-plate Low-and-medium Flat-plate PV/T modules are in regular flat shapes that could be applied as ground mounted,
wall/roof mounted:

1. Electrical efficiency of
6.7%−15%[22]

1. Thermal efficiencies of
22%−79%[22]

1. Hot water supply[23–25]
1. Space heating[26,27]
1. Solar cooling[28,29]
1. Thermal storage[30]
1. Desalination[31]
1. Drying[32,33]
1. Pool heating[34,35]

Flexible Low-and-medium Flexible PV/T modules can serve as rooftop shingles/tiles, irregular building facades, and the
glazing for daylights:

1. Electrical efficiency of 5–10%[36]
1. Thermal efficiencies of 22–79%[22]

1. Hot water supply[38]
1. Space heating[39]
1. Space cooling[40]
1. Fresh water production[41]

Concentrated High temperature Concentrated PV/T modules are mostly in case of roof or ground-mounted installation 1. Electrical efficiency of 7–16%
1. Thermal efficiency of 39–70%[42–

49]
1. Solar air/water heater
1. Solar air-condition (absorption and adsorption refrigeration) and dehumidification[50]
1. Greenhouse drying[45]
1. Fresh water production[51]

Table 2
Summary of different thermal absorbers with advantages/disadvantages, and their application for PV/T modules.

Thermal absorbers Advantages Disadvantages Application

Sheet-and-tube a. Attractive cost due to established industry
b. Good heat-transfer efficiency

a. Complex structure
b. Require precise welding technologies
c. Heavy weight
d. Limited application on buildings
e. Leakage risks

a. Flat-plate PV/T
b. Flexible PV/T
c. Concentrated PV/T

Rectangular tunnel with or
without fins/grooves

a. Simple structure
b. Low weight
c. Low cost

a. Relatively low efficiency
b. Limited application in extreme weather

conditions

a. Flat-plate PV/T
b. Flexible PV/T
c. Concentrated PV/T

Flat plate tube a. Improve the contact between PV layer and absorber from line
to surface (if in a round configuration)

a. Increasing fluid temperate along flow direction
b. High flow resistance
c. Leakage risk
d. Choking risk

a. Flat-plate PV/T

Micro-channel heat pipe/heat
mat

a. High heat transfer performance, high reliability, high
compressive strength, low cost, and small contact thermal
resistance

a. Uneven heat transfer/temperature
distribution across the top and the bottom
areas

b. Additional thermal resistance between the
condenser and the manifold

a. Flat-plate PV/T
b. Flexible PV/T

Extruded heat exchanger a. Simple structure
b. Low cost

a. High volume of working fluid
b. Special hydrologic design

a. Flat-plate PV/T
b. Flexible PV/T

Roll-bond heat exchanger a. Uniform temperature distribution
b. Cost-effective
c. High efficiency
d. Low weight

a. Problem of long-term reliability
b. Corrosion risk

a. Flat-plate PV/T
b. Flexible PV/T

Cotton wick structure a. Very simple structure
b. Very low cost

a. Limited cooling efficiency
b. Limited application

a. Flat-plate PV/T
b. Flexible PV/T
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etc., [51].

2.5. Comparison of three PV/T modules

Table 1 summarizes the application areas and the solar electrical/
thermal efficiencies of these three different PV/T technologies. It is
clear that all these PV/T modules have a wide range of applications,
covering almost all domestic and industrial heat requirement. Since
flat-plate PV/T modules are in regular flat shapes, they are usually
applied for ground or wall/roof mounted installation. Their electrical
efficiencies are relatively high since the crystal silicon cells are used in
this PV/T type while their thermal efficiencies vary greatly depending
on their different structures or operation conditions. Flexible PV/T
modules, being able to serve as rooftop shingles/tiles, irregular
building facades, and glazing for daylights, demonstrate the lowest
electrical efficiency owing to the utilization of amorphous silicon cells;
but their thermal efficiencies are similar to the flat-plate PV/T ones.
Concentrated PV/T types are capable of connecting with complex air-
conditioning systems mostly only roof or ground-mounted installations
due to their high-temperature operation (high-level energy), and have

slightly-less maximum thermal efficiency than the other two PV/T
types (higher temperature, larger heat loss).

3. Thermal absorbers for PV/T modules

Solar thermal absorbers for PV/T modules are complementary to
PV cells as another method to harvest solar energy. Thermal absorbers
that affect the direct cooling of PV layers are critical as they influence
the electrical/thermal/overall efficiency of the PV/T modules. Recent
developing research shows that different types of thermal absorbers are
better suited for various PV/T modules. This part of the review will go
through the thermal absorbers, summarising the advantages/disad-
vantages and associated application for PV/T modules are outlined in
Table 2. The common equations applied for the estimation of the
thermal efficiency of typical PV/T modules with different structures are
also summed up in Table 3.

3.1. Sheet-and-tube structure

The sheet-and-tube structure dominates the absorbers typologies in
solar thermal application. Fig. 11 shows four sheet-and-tube structures
that are commonly employed as the thermal absorbers for different PV/
T modules [50,52–56], in which a flat-plate metal sheet (copper,
aluminium, or stainless steel) is enwrapped or bonded to a metal tube
or polyethylene tube mat [57]. The metal sheet not only offers feasible
contact between the PV layer and the tube, but also works in
conjunction with the fin function to enhance the overall heat transfer
efficiency from the PV layer to the working fluid inside the tube. The
arrangement of the tubes can also differ on the basis of the sheet-and-
tube structures depending on their working principles, such as parallel
tube [58], heat pipe [59], fin tube [60], and coil tube [61], as illustrated
in Fig. 12. Sheet-and-tube structures are common for thermal absor-
bers, having a high pressure bearing capacity [62] and good heat-

Table 3
Common equations applied for the estimation of the thermal efficiency of typical PV/T
modules with different structures.

Thermal absorbers Thermal efficiency expressions

Sheet-and-tube
structure

Classic Hottel and Willier equation systems[86,87]

η F τα T T η= ( )− ( − )−th R
UL
I in a e

⎡
⎣⎢

⎤
⎦⎥

where, FR is the heat-removal factor which is
associated with the efficiency factor (F’):

= [1 − exp(− )]FR
F

ICp
UL F

UL F
ICp′ ′

′

where, F’ is module efficiency factor:

F′= UL

W UL Do W Do F
Cb πDihfi

1 /

( + ( − ) ) + 1 + 1⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

Rectangular
tunnel with or
without fins/
grooves

Rectangular tunnel with grooves covered by PV
cells[64]:

η =0.574 −th
Tin Ta

I
4.85( − )

Polypropylene thermal absorber with honeycomb
structure for PV/T module[31]

η =0.53 −th
Tin Ta

I
11.7( − )

for flow rate of 200 l/h

η =0.51 −th
Tin Ta

I
12.6( − ) for flow rate of 100 l/h

Flat-plate tube Classic Hottel and Willier equation systems[86,87] by
only changing the expression of module efficiency
factor F’,[69]

F′= UL

UL Dh W Dh F
Cb a b hfi

1 /
( + ( − ) ) + 1 + 1

2( + )

Micro-channel
heat pipe array/
heat mat

Experimental expression of PV/T module using micro
heat pipe array[71]

η =0.30 −th
Tin Ta
I

0.105( − )

Extruded heat
exchanger

Experimental expression of PV/T module using
extruded heat exchanger[75]

η =0.4687 −th
Tin Ta
I

18.828( − )

Roll-bond heat
exchanger

Classic Hottel and Willier equation systems[86,87] by
only changing the expression of module efficiency
factor F’,[82]

F′= UL

W UL Do W Do F
hPV roll bond πDihfi

1 /

( + ( − ) ) + 1
−

+ 1⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

Experimental expression of PV/T module using roll-
bond heat exchanger[83]

η =0.79 −th
Tp m Ta

I
5.15( , − )

Fig. 11. Four sheet-and-tube structures as thermal absorber for PV/T modules.

Fig. 12. Different tubes arrangements on basis of the sheet-and-tube structures.
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transfer efficiency (only 2% less efficient [52] as compared to other
designs). Despite usually having complex structures, therefore requir-
ing precise welding technologies, sheet-and-tube structures can be
manufactured by well-established industry at an attractive cost.
However, the groupings of metal tube arrangements often add a lot
of weight to PV/T modules which limits their application on buildings
in large-scale projects.

3.2. Rectangular tunnel with or without fins/grooves

Rectangular tunnels, shown in Fig. 13, are the most basic and yet
promising structures as thermal absorbers for PV/T modules. They are
constructed from metal sheets or polymer materials either in separate
channels or double/multi-pass designs [13,63]. Rectangular tunnels
can be applied in all the above mentioned PV/T modules since the flat-
plate surfaces are easy to be integrated with PV cells or modules.
Additional fins, V-shaped grooves, rectangular grooves and honeycomb
grooves (Fig. 14) can be implemented in order to increase the heat
transfer between the fluid and the PV layer [13,20,21,31,64,65].
Different fluids, such as air [20], water [64], phase change material
(PCM) [66], thermal oil [67], nanofluids (i.e., dilute nanoparticle
suspensions in liquids) [68] etc., can be used as the working medium
that passes through the tunnel in one or both directions. These kinds of
thermal absorbers are characterized by their simple structure, low
weight, low cost and relatively low heat-transfer efficiency. These are
normally applied in large-scale PV/T projects where an equilibrium
between the investment and the amount of energy harvested is
attainable.

3.3. Flat-plate tube

The flat-plate tube absorber has flattened tubes in a round tube
configuration, making it easier for integration with a PV module. There
are two main types of designs, i.e. spiral [21,69] and coil [70]. The flat-
plate tube absorber can be made of rectangular hollow tubes of metal
(i.e. stainless steel, copper) using a welding method for tube connec-
tion. It has a single unilateral channel for the fluid flow as shown in
Fig. 15, which can be designed in the forms of continuous spiral or coil
configuration. The flat-plate tube absorber has at least one inlet and
outlet to allow the working medium to enter and to exit respectively.
The inlet and the outlet of are usually arranged further away to the
enter point. This allows the working medium to flow in the reversed
direction across the entire PV panel. However in practice, the efficiency
is about 2% lower as compared to other types of absorbers such as,
channel, free flow and two-absorber [69]. These kinds of thermal
absorbers improve the contact between PV layer and absorber from line
to surface (if in a round configuration) but they still have problems in
increasing fluid temperature along flow direction and high flow
resistance as well as the risks in terms of leakage and choking etc.
Most of flat-plate tube absorbers are only applied in water cooled flat-
plate PV/T modules, which therefore limits its applications.

3.4. Micro-channel heat pipe array/heat mat

Micro-channel heat pipe array (MHPA) [71–73], also termed as
heat mat [39], is a flat-plate heat pipe based thermal absorber suitable
for flat-plate and flexible PV/T modules. Fig. 16 shows a flat aluminium
plate with multiple parallel micro heat pipes operating independently
[71]. The entire MHPA/heat mat based PV/T module setup is shown in
Fig. 17. Each micro heat pipe has many inner microgrooves (or micro-
fins) that allow efficient heat transfer from upper surface facing solar
irradiation to the heat pipe working fluid. This fluid boils and flows up
to the condenser section of the heat pipe cooled itself using a manifold.
The MHPA/heat mat bears the advantages of high heat transfer
performance, high reliability, high compressive strength, low cost,
and small contact thermal resistance because of its flat-plate structure
[39,71–73]. It can also be applied in cold regions when ammonium
hydroxide is used as the working fluid. However, it may still have the
limitation such as uneven heat transfer/temperature distribution
across the top and the bottom areas of a PV layer as well as having
additional thermal resistance between the condenser and the manifold.

Fig. 13. Schematic of the rectangular tunnels as thermal absorbers for PV/T modules.

Fig. 14. Polypropylene thermal absorber with honeycomb structure for PV/T module [31].

Fig. 15. Thermal absorber with flat-plate tube for PV/T modules [69,70].
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3.5. Extruded heat exchanger

Fig. 18 illustrates an extruded metal heat exchanger as the thermal
absorber for PV/T modules. A single layer of steel sheet is extruded into
corrugations and then attached beneath the TPT back sheet of the PV
layer consequently, forming up the internal parallel flow channels.
Fig. 19 displays another extruded metal heat exchanger as the thermal
absorber for PV/T modules. This thermal absorber is made up of two
parallel thin flat-plate metal sheets, one of which is extruded by
machinery mould to form arrays of pin-fin banks, while another sheet
remains smooth in order to fit beneath the PV layer. A laser-welding
technology is applied to join them together, forming up the built-in
turbulent flow channels.

The extruded heat exchanger can also be constructed using non-
metal materials. Fig. 20 indicates an extruded heat exchanger com-
prised of a polycarbonate box that is located above the PV panel. It has
a thin layer of fluid flow through it that absorbs infrared radiation
without modifying the visible part of spectrum. The polycarbonate heat
exchanger is extruded into a particular flow pattern that allows the
working fluid to pass through in a serpentine way.

Such extruded heat exchangers have now become a promising
potential solution as solar thermal absorbers for flat-plate and flexible
PV/T modules in a wide range of applications, particularly feasible for
use in simple robust constructions and industrialization processes. As a
result, these types of thermal absorbers could be produced at low cost
since with significant cost reductions achieved due to the increased
flexibility of application in industrial mass production. In addition,
different arrangement and combination of the extruded corrugations
can form up various flow channels by eliminating complex tubing
system. So the channel structures can feature a high complexity
without any additional costs. However, these thermal absorbers usually
require a high volume of fluid flow due to the relatively low heat
transfer coefficient. Therefore, it needs to be pay careful attention to
the hydrologic design when they are applied in large-sale projects.

3.6. Roll-bond heat exchanger

Roll-bond technology is widely employed for the manufacturing of
heat exchangers, such as evaporators for refrigeration, radiant panels,
cytostatic circuits, and so on. It is now also popular in cooling the flat-
plate and flexible PV modules [77–84]. Roll-Bond heat exchangers are
manufactured using a well-established production process that foresees
the construction of panels with various channel configurations by a
sandwich bonding technique, using two 99.5% pure aluminium sheets,
based on a rolling process and a consequent inflation process [77].
Fig. 21 displays a roll-bond heat exchanger for PV/T modules with two
aluminium sheets. Before bonding the two aluminium sheets together,
the inner surface of one dedicated aluminium sheet has the desired
pattern of flow channels printed onto it via a serigraphic process. A
special graphite ink is used which prevents welding of the inner
surfaces where it has been applied. Finally, the un-bonded pattern of
channels is elevated by inflating them with air at high pressure. It is
also possible to replace the non-roll-bond aluminium sheet with an
expanded graphite sheet, whose plasticity and the stability over time
assure a very good interface between the roll-bond sheet and the TPT
back sheet of PV layer as indicated in Fig. 22[78]. The exchangers are
completed by inlet and outlet connections. The thermal absorbers with
roll-bond technology enable the customization and optimization of the
fluid channels to achieve higher efficiency in a cost-effective way. These
main features allow for a more uniform temperature distribution across
the absorber with respect to the standard sheet-and-tube structures
typically made of a metal sheet welded to metal tubes. However, there
is little research addressing the long-term reliability and corrosion risk
of pure aluminium sheets within these roll-bond heat exchangers based
PV/T modules.

Fig. 16. Micro-channel heat pipe for PV/T module [71].

Fig. 17. Heat mats for PV/T module [39].
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3.7. Cotton wick structure

A passive thermal absorber with aluminium heat spreaders used in
conjunction with cotton wicks have recently been developed for
controlling the temperature during operation of flat-plate PV module,
as shown in Fig. 23 [85]. Three aluminium heat spreaders are
fabricated in-house and screwed to the PV modules. Flat-plate cotton
wicks commonly used for lamps and lanterns are positioned at the heat
spreaders with their ends free for dipping in water stored in the
headers. Aluminium spikes were used as stiffeners to ensure proper
contact of the wick structure with the heat spreader and to avoid the
sagging of cotton wicks. PVC pipes were used as headers, in which a
rectangular slot was cut longitudinally on its surface for the insertion of
the ends of the PV panel and the wicks. Such passive thermal absorbers
have very simple structures and are very low cost; however, cooling
efficiency is very limited and therefore these absorbers are only
applicable to certain application scenarios.

4. Integration methods for PV/T modules

Generally, a PV/T module is constructed by attaching a commer-
cially available PV module to a thermal absorber using various
techniques such as mechanical or chemical bonding. The integration
is another critical element that directly influences a PV/T module's
thermal efficiency due to thermal resistance between PV layer and

1: Glazing cover; 2: EVA

4: Extru

A-encapsulate

uded metal hea

e-PV-cells; 3:

at exchanger;

EVA-encapsu

5: Thermal in

ulate and TPT

nsulation 

T back sheet; 

Fig. 18. An extruded metal heat exchanger with corrugations for PV/T module [74]. 1: Glazing cover; 2: EVA-encapsulate-PV-cells; 3: EVA-encapsulate and TPT back sheet; 4:
Extruded metal heat exchanger; 5: Thermal insulation.

Fig. 19. An extruded metal heat exchanger with internal pin-fin banks for PV/T module
[75].

Fig. 20. An extruded polycarbonate heat exchanger for PV/T module [76].
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thermal absorber. As a result, a critical review of the currently available
integration methods is discussed in this section in terms of their
advantages and limitations for application as summarized in Table 4.

4.1. Direct contact

Some air or water based flat-plate or flexible PV/T modules have
the integration features of direct contact between the PV layer and the
working fluid [88–90]. Figs. 24 and 25 demonstrate the direct
ventilation based and direct water spray based PV/T concepts respec-
tively. Fig. 24 presents the novel ceiling ventilation system integrated
with solar PVT modules and PCM [66]. The two PCM layers with an air
channel are integrated beneath a PV layer and mounted onto the
building ceiling as a part of the ceiling insulation to increase the local
thermal mass. The air flows upwards in direct contact with the PV layer
therefore cooling it down. In Fig. 25, a feeding tube with groups of
small holes on it is placed on the top of the PV module that is to
produce the water film flow downwards over the PV module. Direct-
contact integration method is the simplest way to combine the cooling
effort of thermal absorbers with dedicated PV layers. No additional
thermal resistance is observed, however direct-contact integration has

several limitations including low pressure bearing capacity, poor
thermal-removal efficiency, freezing risk etc. Therefore, these modules
can are most suitable for passive building design or water-based
cooling strategies when the PV modules are also implemented.

4.2. Thermal adhesive

Thermally conductive adhesives, in either film or mucilage status,
are the most widely used method in terms of the integration of PV layer
with their thermal absorbers for all kinds of PV/T modules, which
include epoxies, silicones and elastomeric solutions with the thermal
conductivity ranging from 0.8 to 11.4 W/m-K [91,92] depending on the
materials and the geometry. Thermal characteristics of the adhesive
include having high thermal conductivity, low electrical conductivity,
extreme operating temperature range, good elongation properties,
which influence the overall efficiency of the PV/T modules greatly
[22]. Figs. 26 and 27 show two examples of different thermal adhesives
used to combine PV layers and absorbers, i.e., silicone gel [93] and
mucilage glue [94]. The thermal adhesive integration method is simple
and cost effective. However, there is uncertainty as to its long-term
performance in cases of high solar intensity as well as the risk of mini
air gaps/bubbles forming. Imprecise adhesive thickness between the
PV layer and thermal absorber can also be an issue.

4.3. EVA based lamination

Ethylene vinyl acetate (EVA) is the copolymer of ethylene and vinyl
acetate. It is processed as a thermoplastic material with thermal
conductivity ranging from 0.31 to 5.56 W/m-K [95] depending on
the vinyl acetate content and the way the material are used. Recent
researches demonstrate that the transparent EVA sealant can be
applied to combine the PV layer and the thermal absorbers through
the PV vacuum lamination chamber in most flat-plate PV/T modules.
Fig. 28 depicts a section of the heat pipe-PV/T module [96]. In total,
there are six component layers i.e., glass cover, transparent TPT, EVA,
PV cells, black TPT, and aluminium-sheet-and-tube thermal absorber,
being placed in sequence for lamination together.

To further reduce the thermal resistance between the PV cells and
the fluid, researchers replaced the TPT back sheet (at low thermal
conductivity) of PV cells with the metal sheet (with high thermal
conductivity) [97,98]. Fig. 29 displays a copper sheet being laminated
in direct contact with the PV cells [97]. This PV/T module comprises
the glass cover, EVA, PV cells, EVA and copper, which are placed in a
lamination chamber at high temperature and pressure conditions in
order to remove any air that is present and to allow the polymerization
reaction of EVA. The high electrical resistivity and high elongation
property of the EVA layer acts as a buffer layer between the PV cells
and the copper sheet. The electrical terminals of the PV/T module are
on the side of the PV/T module with sufficient electrical insulation from
the copper sheet [97]. This modification eliminates the need for a TPT
back sheet and the additional thermal conductive adhesive required for
combination of a PV layer and a thermal absorber.,

Although, the EVA layer has slightly lower thermal conductivity
than the thermal adhesive, the difference in thermal resistance between
the two can be ignored on consideration of their thicknesses. In
addition, the EVA based lamination method can eliminate risks, such
as imprecise adhesive thickness, formation of mini air-gaps/bubbles
etc., between the PV layer and the thermal absorber. Moreover, it is
possible to replace the TPT back sheet of the PV layer with an EVA
attached thermal absorber, which leads to a significant reduction in the
overall thermal resistance from the PV cells to working fluid. This
method is also cost-effective, ideal for integration of the PV layer with
their absorbers based on established industrial PV manufacturing lines.
However, careful attention needs to be made at temperatures over
140 °C after the lamination process. The laminated PV/T module needs
to be cooled down by the quenching method, a rapid cooling process

Fig. 21. Roll-bond heat exchanger for PV/T modules - two aluminium sheets [77].

Fig. 22. Roll-bond heat exchanger for PV/T modules – single aluminium sheet [78].
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using air [98]. The reason for such a specialised cooling technique is
that metal sheet usually has a much higher thermal expansion
coefficient than any of the other components within the PV layer,
which may bend into an arc geometry (rather than the flat-plate) if
under free cooling [98].

4.4. Mechanical fixing

Integration of the PV layer with thermal absorber through mechan-
ical fixing is also very common in most of flat-plate and concentrated
PV/T modules. Fig. 30 shows the integration of a thermal absorber
with the PV layer by the fixing of rods with springs [31]. The
polypropylene absorber is pressed against the back of the PV module
by a construction consisting of five aluminium rods, springs, and
aluminium strips. Similarly in Fig. 31, the thermal absorber is fixed on
the PV layer by several specially designed mounting brackets. One of

Fig. 23. Cotton wick structure as thermal absorber for PV/T modules [85].

Table 4
Summary of different integration methods with advantages/disadvantages, and their application for PV/T modules.

Integration method Advantages Disadvantages Application

Direct contact a. Simplest way
b. No additional thermal resistance

a. limitations in low pressure bearing capacity
b. Poor thermal-removal efficiency
c. Freezing risk
d. Limited application

a. Flat-plate PV/T
b. Flexible PV/T

Thermal adhesive a. Simple structure
b. Low cost

a. Loose risk
b. Mini air-gap/bubble
c. Imprecise adhesive thickness

a. Flat-plate PV/T
b. Flexible PV/T
c. Concentrated PV/T

EVA based lamination a. Secured firm combination
b. Possible to eliminate TPT back sheet for reduction in the overall

thermal resistance
c. Cost-effective due to established PV manufacturing industry lines

a. Careful attention needs to be paid to the cooling of
lamination piece

b. Slightly low thermal conductivity

a. Flat-plate PV/T

Mechanical fixing a. Mature technology
b. Secured firm combination

a. Increase overall cost
b. Increase overall weight
c. Small air gap exists between PV layer and thermal

absorber
d. Weak the overall performance

a. Flat-plate PV/T
b. Concentrated PV/T

Fig. 24. Direct water spray based PV/T module [66].
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the bracket ends is fixed onto the PV frame with a grounding bolt and
screw whilst the other bracket end clamps the PV frame by tightening
the wingnut. The whole bracket is further reinforced with the thermal
absorber by two bottom bolt holes and screws. The thermal insulation
layer can finally be fixed onto the absorber using a similar approach
[99]. Xu et al. [75] also mentioned that attaching the thermal absorber
beneath the PV layer through a series of U-shaped resilient metal clips
could lead to a rapid PV/T formation.

Mechanical fixing firmly secures the combination of PV layer and
thermal absorber, but it adds additional consolidation elements i.e.
screws, springs, strips, brackets, clips etc., which increase the overall
cost and weight of the PV/T module. More importantly, mechanical
fixing cannot eliminate the small air gap that exists between the PV
layer and the thermal absorber, which may result in large thermal

Fig. 25. Direct water spray based PV/T module [38].

Fig. 26. Combine PV layer with thermal absorber by silicone gel [93].

Fig. 27. Combine PV layer with thermal absorber by mucilage glue [94].

Fig. 28. Combine PV layer with thermal absorber by EVA lamination with TPT back sheet [96].
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resistance and weaken the overall performance of the PV/T module for
long-term operation.

5. Suggestions for further research

5.1. Thermal absorbers for concentrated PV/T modules

Most of the existing researches on concentrated PV/T modules
focus on the study of concentrators and solar tracking systems etc., so
as to ensure effective collection of solar radiation. These concentrated
PV/T modules usually incorporate rectangular duct or thermal oil pipe
thermal absorbers. New research topics on appropriate high-efficient
thermal absorbers may need to be investigated further. In addition,
most of the concentrated PV/T modules are designed for power

generation while further research may focus on wider applications like
industrial heating load, or distributed district/city-level power/heating
network, which also require the development of new thermal absorbers
for dedicated concentrated PV/T systems.

5.2. Research on EVA based lamination method

Although the appropriate integration method for combining ther-
mal absorbers with PV layers varies with different cases, the EVA based
lamination method seems to be the best option for integration of PV
layer and thermal absorber on the basis of the research reviewed in this
paper. It is therefore suggested that further research on this integration
method should be undertaken including concept design, prototype
fabrication process, theoretical analysis, experimental evaluation and

Fig. 29. Combine PV layer with thermal absorber by EVA lamination without TPT back sheet [97].

Fig. 30. Integrating thermal absorber with PV layer by the fixing rods with springs [31].

Fig. 31. Mechanical integration for PV/T module: mounting brackets (upper) and combination with thermal insulation (bottom) [99].
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socio-economic assessment, especially for flexible and concentrated
PV/T modules. Furthermore, comparison of different integration
methods for different PV/T modules is also desirable to provide further
design guidance and optimization strategies for the integration meth-
ods applied in various conditions.

5.3. Building integrated PV/T module (BIPV/T)

Building integrated PV/T (BIPV/T) is another interesting topic with
BIPV/T serving as the building envelops in addition to generating
electricity and heat. BIPV/T can make supplementary heat available to
the building with less loss (distributed energy supply mode) and can be
used either directly for low-temperature applications or through the
mediation of a heat pump for higher temperatures. BIPV/T creates a
symbiotic relationship between energy and building. Despite the
potential of BIPV/T it currently has serious deficiencies due to the
introduction of greater complexity and risk relative to a pure PV/T
module. There are also many other unresolved issues with BIPV/T with
respect to its modelling, detailing, impact on building physics and
systems, integration method for installation and long-term perfor-
mance.

5.4. Fundamental research on thermal expansion coefficient of PV/T
module

Potential bending of a laminated PV/T module, owing to the
differing thermal expansion coefficients of the constituent components,
requires fundamental research to be undertaken to explore feasible
solutions. This may include theoretical analyses, derived from the
governing equations of mass, energy and momentum, on the basis of
heat transfer and flow characteristics as well as CFD based numerical
modelling. Validation experiments are also important to modelling by
delivering detailed discussion on various impact factors.

5.5. Field research on long-term reliability of PV/T module

Aside from fundamental theory and experimental laboratory re-
search, studies into the field application of PV/T modules for long-term
operation should also be considered in future work. Although short-
term evaluation of PV/T modules in real climates have been carried out
by a number of researchers, a long-term (seasonal or annual) scheme is
essential to resolve different practical uncertainties, especially for the
BIPV/T modules. On the whole, comprehensive evaluation of BIPV/T
can be made from the perspectives of construction, hydraulic and
hygiene characteristics. This work has certain challenges including
BIPV/T module installation, distributed power/heat demand/supply,
proper testing venue selection, detailed assessment categories and any
possible unpredicted operational problems.

6. Conclusion

This paper conducts a critical review on thermal absorbers and
their integration methods into currently-available PV modules for the
purpose of developing combined PV/T modules. Depending on the type
of PV module, PV/T technologies are categorized into flat-plate, flexible
and concentrated. Flat-plate PV/T modules are regular flat shapes with
combined efficiencies ranging between 40–87% and can be applied in
urban and rural areas, be ground mounted, wall/roof mounted, etc.
and used for both industry and building energy supply. Flexible PV/T
modules with overall efficiencies ranging from 27–89% can serve as
rooftop shingles and tiles, irregular building facades or as glazing for
daylights. The higher concentration ratio in concentrated PV/T mod-
ules enables them to generate higher temperature heat with the
combined efficiency varying from 46% to 86%, making them suitable
for a wider range of applications.

Recent research development shows that there are different types of

thermal absorbers suiting for the PV/T modules, i.e. sheet-and-tube
structure, rectangular tunnel with or without fins/grooves, flat-plate
tube, micro-channel heat pipe array/heat mat, extruded heat exchan-
ger, roll-bond heat exchanger and cotton wick structure, with the latter
four types are showing promising potential due to the significant
enhancement in efficiency, their structure, weight, and cost etc.
Although suitable integration methods for combining thermal absor-
bers and PV layers vary in different cases, EVA based lamination seems
to be the best option when compared to other traditional methods such
as direct contact, thermal adhesive and mechanical fixing.

Suggestions for further research topics have been proposed in five
particular areas: (1) developing more appropriate thermal absorbers
for concentrated PV/T modules; (2) conducting research on the EVA
based lamination method; (3) investigating building integrated PV/T
modules (BIPV/T); (4) fundamental research on the thermal expansion
coefficient of PV/T modules; (5) carrying out field research on the long-
term reliability of PV/T modules in operation. This combined research
would provide much useful information for the further development of
solar PV/T modules with high feasibility for use in a wide variety of
energy supply applications even at district or city-level.
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