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The paper suggests a simple method of deriving minimax lower bounds to the accuracy of
statistical inference on heavy tails. A well-known result by Hall and Welsh (Ann. Statist. 12

(1984) 1079–1084) states that if α̂n is an estimator of the tail index αP and {zn} is a sequence
of positive numbers such that sup

P∈Dr
P(|α̂n − αP | ≥ zn) → 0, where Dr is a certain class of

heavy-tailed distributions, then zn ≫ n
−r. The paper presents a non-asymptotic lower bound to

the probabilities P(|α̂n−αP | ≥ zn). We also establish non-uniform lower bounds to the accuracy
of tail constant and extreme quantiles estimation. The results reveal that normalising sequences
of robust estimators should depend in a specific way on the tail index and the tail constant.
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1. Introduction

A growing number of publications is devoted to the problem of statistical inference on
heavy-tailed distributions. Such distributions naturally appear in finance, meteorology,
hydrology, teletraffic engineering, etc. [4, 13]. In particular, it is widely accepted that
frequent financial data (e.g., daily and hourly log-returns of share prices, stock indexes
and currency exchange rates) often exhibits heavy tails [4, 5, 10, 11], while less frequent
financial data is typically light-tailed. The heaviness of a tail of the distribution appears
to be responsible for extreme movements of stock indexes and share prices. The tail index
indicates how heavy the tail is; extreme quantiles are used as measures of financial risk
[4, 11]. The need to evaluate the tail index and extreme quantiles stimulated research on
methods of statistical inference on heavy-tailed data.
The distribution of a random variable (r.v.) X is said to have a heavy right tail if

P(X ≥ x) = L(x)x−α (α > 0), (1)

where the (unknown) function L is slowly varying at infinity:

lim
x→∞

L(xt)/L(x) = 1 (∀t > 0).

We denote by H the non-parametric class of distributions obeying (1).
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The tail index α is the main characteristic describing the tail of a distribution. If
L(x) = c+ o(1), then c is called the tail constant.
Let F (·) = P(X < ·) denote the distribution function (d.f.). Obviously, the tail index

is a functional of the distribution function:

αF ≡ αP =− lim
x→∞

lnP(X ≥ x)

lnx
. (2)

If L(x) tends to a constant (say, cF ) as x→∞, then the tail constant is also a functional
of F :

cF ≡ cP = lim
x→∞

xαF P(X ≥ x).

The statistical inference on a heavy-tailed distribution is straightforward if the class
of unknown distributions is assumed to be a regular parametric family. The drawback of
the parametric approach is that one usually cannot reliably check whether the unknown
distribution belongs to a chosen parametric family.
A lot of attention during the past three decades has been given to the problem of

reliable inference on heavy tails without parametric assumptions. The advantage of the
non-parametric approach is that a class of unknown distributions, P , is so large that
the problem of testing the hypothesis that the unknown distribution belongs to P does
not arise. The disadvantage of the non-parametric approach is that virtually no question
concerning inference on heavy tails can be given a simple answer. In particular, the
problem of establishing a lower bound to the accuracy of tail index estimation remained
open for decades.
A lower bound to the accuracy of statistical inference sets a benchmark against which

the accuracy of any particular estimator can be compared. When looking for an estimator
ân of a quantity of interest, aP , where P ∈ P is the unknown distribution, P is the class
of distributions and aP is a functional of P, one often would like to choose an estimator
that minimises a loss function uniformly in P (e.g., supP∈P EP ℓ(|ân − aP |), where ℓ is
a particular loss function). A lower bound to supP∈P EP ℓ(|ân − aP |) follows if one can
establish a lower bound to

sup
P∈P

P(|ân − aP | ≥ u) (u > 0).

The first step towards establishing a lower bound to the accuracy of tail index es-
timation was made by Hall and Welsh [7], who proved the following result. Note that
the class H of heavy-tailed distributions is too “rich” for meaningful inference, and one
usually deals with a subclass of H, imposing certain restrictions on the asymptotics of
L(·). Hall and Welsh dealt with the class Db,A ≡Db,A(α0, c0, ε) of distributions on (0;∞)
with densities

f(x) = cαx−α−1(1 + u(x)), (3)

where supx>0 |u(x)|x
bα ≤ A, |α − α0| ≤ ε, |c − c0| ≤ ε. Note that the range of possible

values of the tail index is restricted to interval [α0 − ε;α0 + ε]. Let

α̂n ≡ α̂n(X1, . . . ,Xn)
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be an arbitrary tail index estimator, where X1, . . . ,Xn are independent and identically
distributed (i.i.d.) random variables, and let {zn} be a sequence of positive numbers. If

lim
n→∞

sup
F∈Db,A

PF (|α̂n − αF | ≥ zn) = 0 (∀A> 0), (4)

then

zn ≫ n−b/(2b+1) (n→∞)

(to be precise, Hall and Welsh [7] dealt with the random variables Yi = 1/Xi, where Xi

are distributed according to (3)).
Beirlant et al. [1] have a similar result for a larger class P of distributions but require

the estimators are uniformly consistent in P . Pfanzagl [12] has established a lower bound
in terms of a modulus of continuity related to the total variation distance dTV . Let D

+
b

be the class of distributions with densities (3) such that supx>0 |u(x)|x
αb <∞, α > 0, and

set

sn(ε,P0) = sup
P∈Pn,ε

|αP − αP0
|,

where αP is the tail index of distribution P and Pn,ε = {P ∈ D+
b : dTV(P

n
0 ;P

n) ≤ ε} is
a neighborhood of P0 ∈D+

b . Pfanzagl has showed that neither estimator can converge to
α uniformly in Pn,ε with the rate better than sn(ε,P0), and

inf
0<ε<1

ε−2b/(1+2b) lim inf
n→∞

nb/(1+2b)sn(ε,P0)> 0.

Donoho and Liu [2] present a lower bound to the accuracy of tail index estimation in
terms of a modulus of continuity ∆A(n, ε). However, they do not calculate ∆A(n, ε).
The claim that a particular heavy-tailed distribution is stochastically dominant over all
heavy-tailed distributions with the same tail index appears without proof. Assuming
that the range of possible values of the tail index is restricted to an interval of fixed
length, Drees [3] derives the asymptotic minimax risk for affine estimators of the tail
index and indicates an approach to numerical computation of the asymptotic minimax
risk for non-affine ones.
The paper presents a simple method of deriving minimax lower bounds to the ac-

curacy of non-parametric inference on heavy-tailed distributions. The results are non-
asymptotic, the constants in the bounds are shown explicitly, the range of possible values
of the tail index is not restricted to an interval of fixed length. The information func-
tional seems to be found for the first time, as well as the lower bound to the accuracy of
extreme quantiles estimation.
The results indicate that the traditional minimax approach may require revising. The

classical approach suggests looking for an estimator ân that minimises, say,

sup
P∈P

EP |ân − aP |
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(cf. [8, 9, 14]), while our results suggest looking for an estimator â∗n that minimises

sup
P∈P

gPEP |â
∗
n − aP |,

where gP is the “information functional” (an analogue of Fisher’s information). Theorems
1–4 reveal the information functionals and indicate that the normalising sequence of a
robust estimator should depend in a specific way on the characteristics of the unknown
distribution.

2. Results

In the sequel, we deal with the non-parametric class

H(b) =
{

P ∈H: sup
x>K∗(P )

|c−1
F xαF P (X ≥ x)− 1|xbαF <∞

}

(5)

of distributions on (0;∞), where b > 0 and K∗(P ) is the left end-point of the distribution.
If L(X) ∈H(b), then

P(X ≥ x) = cFx
−αF (1 +O(x−bαF )) (x→∞).

The class H(b) is larger than D+
b ; the range of possible values of the tail index is not re-

stricted to an interval of fixed length. Below, given a distribution function (d.f.) Fi, we put

aFi
= 1/αFi

, r = b/(1 + 2b),

Ei means the mathematical expectation with respect to Fi and Pi is the corresponding
distribution. We set K ≡Kα,b,c = α−2rc−αre−1(cαb ∧ e−2b).

Theorem 1. For any α > 0, c > 0, any tail index estimator α̂n and any estimator ân of
index a= 1/α there exist d.f.s F0, F1 ∈H(b) such that αF0

= α, cF0
= c−α, and

max
i∈{0;1}

Pi(|α̂n/αFi
− 1|α

r/b
Fi

crFi
nr ≥ v/2) ≥ (1− v1/r/8n)

2n
/4, (6)

max
i∈{0;1}

Pi(|ân/aFi
− 1|a

−r/b
Fi

crFi
nr ≥ v/2) ≥ (1− v1/r/8n)

2n
/4 (7)

as n > 4max{α2c−2αb; c2αα−2/b} and v ∈ [0;Knr].

Note that if maxi∈{0;1} Pi(|α̂n/αFi
− 1| ≥ zn)→ 0 as n→∞, then for any C > 0 we

have zn ≥ Cn−r for all large enough n, yielding zn ≫ n−r. Thus, the Hall–Welsh result
follows from (6).

Theorem 1 shows that the natural normalising sequence for α̂n/αF −1 is n−rα
−r/b
F c−r

F .

The information functional gF = α
r/b
F crF plays here the same role as Fisher’s information

function in the Fréchet–Rao–Cramér inequality.
Theorem 1 yields also minimax lower bounds to the moments of |α̂n/αFi

− 1|. In
particular, there holds
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Corollary 2. For any α > 0, c > 0 there exist distribution functions F0, F1 ∈H(b) such
that αF0

= α, cF0
= c−α, and for any tail index estimator α̂n

max
i∈{0;1}

α
r/b
Fi

crFi
EFi

|α̂n/αFi
− 1|nr ≥ 4rrΓ(r)/8 + o(1). (8)

The result holds if α
r/b
Fi

crFi
EFi

|α̂n/αFi
−1| in (8) is replaced with a

−r/b
Fi

crFi
EFi

|ân/aFi
−1|.

Let Hn(b)⊂H(b) be a class of d.f.s such that infF∈Hn(b)KαF ,b,cF n
r →∞ as n→∞.

Then for any estimator α̂n

sup
F∈Hn(b)

α
r/b
F crFEF |α̂n/αF − 1|nr ≥ 4rrΓ(r)/8 + o(1). (8∗)

A lower bound to EF |α̂n/αF − 1| seems to be established for the first time.
The presence of the information functional makes the bound non-uniform. Note that a

uniform lower bound would be meaningless: as the range of possible values of αF is not
restricted to an interval of fixed length, it follows from (8∗) that

sup
F∈Hn(b)

EF |α̂n/αF − 1| →∞ (n→∞).

More generally, supF∈Hn(b) g̃FEF |α̂n/αF −1| may tend to ∞ as n→∞ if g̃F /gF 6= const.
Let ĉn be an arbitrary tail constant estimator. The next theorem presents a lower

bound to the probabilities PF (|ĉn − cF | ≥ x).

Theorem 3. Let ĉn be an arbitrary tail constant estimator. For any α≥ n−r/2 and c > 0
there exist distribution functions F0, F1 ∈H(b) such that αF0

= α, cF0
= c−α, and for all

large enough n, as v ∈ [0;α−2c−α lnn],

max
i∈{0;1}

Pi(|ĉn/cFi
− 1|α

r/b
Fi

crFi
≥ rvrn−r ln(n/ lnn)tn/2b)≥ (1− v/8n)2n/4, (9)

where tn = exp(−r(1− r)n−r/2(ln(n/ lnn))r+1/b).

Similarly to (8) Theorem 3 yields lower bounds to the moments of |ĉn/cFi
− 1|. In

particular, (9) entails

max
i∈{0;1}

α
r/b
Fi

crFi
EFi

|ĉn/cFi
− 1| ≥ (lnn)n−rr24r−1Γ(r)/(2b+ o(1)). (9∗)

According to Hall and Welsh [7],

zn ≫ (lnn)n−b/(2b+1)

if limn→∞ supF∈Db,A
PF (|ĉn − cF | ≥ zn) = 0 (∀A > 0). This fact can be obtained as a

consequence to Theorem 3: if maxi∈{0;1} Pi(|ĉn − cFi
| ≥ zn)→ 0 as n→∞, then for any

C > 0 we have zn ≥Cn−r lnn for all large enough n, hence zn ≫ n−r lnn.
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We now present a lower bound to the accuracy of estimating extreme upper quantiles.
We call an upper quantile of level q “extreme” if q ≡ qn tends to 0 as n grows. In
financial applications (see, e.g., [4, 11]), an upper quantile of the level as high as 0.05 can
be considered extreme as the empirical quantile estimator appears unreliable. Of course,
there is an infinite variety of possible rates of decay of qn. Theorem 4 presents lower
bounds in the case qn = sn−1/(1+2b), where s is bounded away from 0 and ∞.
Set F̄ = 1− F. We denote the upper quantile of level qn by

xF,n = F̄−1(qn).

Let x̂n be an arbitrary estimator of xF,n. Denote wFi
≡ wFi

(αFi
, cFi

, b, s, u) =
| ln(uα2r

Fi
c2brFi

/sb)|.

Theorem 4. For any α > 0, c > 0 there exist distribution functions F0, F1 ∈H(b) such
that αF0

= α, cF0
= c−α, and for all large enough n and u ∈ (sbα−2rc2αbr ;Knr),

max
i∈{0;1}

Pi(|x̂n/xFi,n − 1|α
2(1−r)
Fi

crFi
/wFi

t⋆i,n ≥ un−r/2b)≥ (1− u1/r/8n)
2n
/4, (10)

max
i∈{0;1}

Pi(|xFi,n/x̂n − 1|α
2(1−r)
Fi

crFi
/wFi

t⋆i,n ≥ un−r/2b)≥ (1− u1/r/8n)
2n
/4, (11)

where maxi∈{0;1} |t
⋆
i,n − 1| → 0 as n→∞.

3. Proofs

Our approach to establishing lower bounds requires constructing two distribution func-
tions F0 and F1, where F0 is a Pareto d.f. and F1 ≡ F1,n is a “disturbed” version of F0.
We then apply Lemma 5 that provides a non-asymptotic lower bound to the accuracy of
estimation when choosing between two close alternatives.
The problem of estimating the tail index, the tail constant and xF,n from X1, . . . ,Xn

is equivalent to the problem of estimating αF , cF and quantiles from a sample Y1, . . . , Yn

of i.i.d. positive r.v.s with the distribution

F (y)≡ P(Y ≤ y) = yαℓ(y) (y > 0), (12)

where function ℓ slowly varies at the origin.
We denote by F the class of distributions obeying (12). Note that L(Y ) ∈ F if and

only if L(1/Y ) ∈H. Obviously, a tail index estimator αn(X1, . . . ,Xn) can be considered
an estimator αn(1/Y1, . . . ,1/Yn) of index α from the sample Y1 = 1/X1, . . . , Yn = 1/Xn,
and vice versa. The tradition of dealing with this equivalent problem stems from [6]. We
proceed with this equivalent formulation.
A counterpart to H(b) is the following non-parametric class of d.f.s on (0;∞):

F(b) =
{

F ∈ F : sup
y<K∗(F )

|c−1
F y−αFF (y)− 1|y−bαF <∞

}

, (13)
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where b > 0 and K∗(F ) is the right end-point of F . A d.f. F ∈ F(b) obeys

F (y) = cF y
αF (1 +O(ybαF )) (y → 0),

where αF = limy↓0(lnF (y))/ lny and cF = limy↓0 y
−αFF (y).

Proof of Theorem 1. Let h ∈ (0; c), and denote

α0 = α, α1 = α+ γ, γ = hαb.

We will employ the distribution functions F0 and F1, where

F0(y) = (y/c)α1{0< y ≤ c},

F1(y) = (h/c)−γ(y/c)α11{0< y ≤ h}+ (y/c)α1{h < y ≤ c}.

The counterparts to these distributions are

P0(X > x) = (cx)−α
1{x≥ 1/c},

P1(X > x) = (cx)−α
1{1/c≤ x< 1/h}+ c−αh−γx−α1

1{x≥ 1/h}.

It is easy to see that F1 ≤ F0 and

αF0
= α, αF1

= α1, cF0
= c−α, cF1

= c−αh−γ . (14)

Obviously, F0 ∈F(b). We now check that F1 ∈ F(b).
Since

c−1
F1

y−α1F1(y) = y−γhγ (h < y ≤ c),

we have

sup
0<y≤c

|1− c−1
F1

y−α1F1(y)|y
−bα1 = sup

h<y≤c
(1− y−γhγ)y−bα1 . (15)

The right-hand side of (15) takes on its maximum at y0 = h(1+γ/bα1)
1/γ ; the supremum

is bounded by A := e1/eα/bα. Note that {F0, F1} ⊂Db,A.
Let d2

H
(P0;P1) denote the Hellinger distance. It is easy to check that

d2
H
(F0;F1)≤ γ1/r/8α2cα. (16)

According to Lemma 5 below,

max
i∈{0;1}

Pi(|α̂n −αFi
| ≥ γ/2)≥ (1− γ1/r/8α2cα)

2n
/4. (17)

Let γ = γn, where

γn ≡ γn(α, c, v) = v(α2cα/n)
r
.
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Note that h < c as n > α2c−2bαv1/r. From (17),

max
i∈{0;1}

Pi(|α̂n/αFi
− 1|α

r/b
Fi

crFi
nr ≥ vtn,i/2)≥ (1− v1/r/8n)

2n
/4, (18)

where tn,0 = 1 and tn,1 = 1/f(γ), f(γ) = (1 + γ/α)2γγ/αb. Note that f(γ) ≤ 1 as γ ≤
e−1−2b. Hence, tn,1 ≥ 1 as v ∈ [0;Knr] and (6) follows.
Let ân be an arbitrary estimator of index a= 1/α. Denote a= a0. Since |a0 − a1|=

γaa1, Lemma 5 yields

max
i∈{0;1}

Pi(|ân − aFi
| ≥ γaa1/2)≥ (1− γ1/r/8α2cα)

2n
/4.

With γ = γn, the left-hand side of this inequality is

max
i∈{0;1}

Pi(|ân − aFi
| ≥ vn−ra1−2ra1/2c

r
F0
) = max

i∈{0;1}
Pi(|ân/aFi

− 1|a
−r/b
Fi

crFi
nr ≥ vt+n,i/2),

where t+n,0 = (1 + γa)r ≥ 1 and t+n,1 = (1+ γa)r/bγ−rγa/b ≥ 1, leading to (7). �

Proof of Corollary 2. Note that

Eξ =

∫ ∞

0

P(ξ ≥ x) dx (19)

for any non-negative r.v. ξ. Since
∫ zn

0

(1− v1/r/8n)
2n

dv = 4rrΓ(r) + o(1) (n→∞)

as zn →∞, zn = o(nr), (6) and (19) entail (8). �

Proof of Theorem 3. With F0 and F1 defined as above, we have

cF1
− cF0

= c−α(γ−γ/αb − 1)≥ c−αγ| lnγ|/αb.

Using this inequality, (17) and Lemma 5, we derive

max
i∈{0;1}

Pi(|ĉn − cFi
| ≥ c−αγ| lnγ|/2αb)≥ (1− γ1/r/8α2cα)

2n
/4.

Let γ ≡ γ(n) = (vα2cα/n)r. Then

max
i∈{0;1}

Pi(|ĉn − cFi
| ≥ cF0

(vα2cα/n)
r
r ln(n/ lnn)/2αb)≥ (1− v/8n)2n/4.

Note that α2cα/α2
1c

−1
F1

≥ tn as v ∈ [0;α−2c−α lnn]. The result follows. �

Proof of Theorem 4. Denote

xi ≡ xFi,n, yi = 1/xi.
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Obviously, yi is the quantile of Li(1/X). We find convenient dealing with the equivalent
problem of estimating quantiles of the distribution of a random variable Y = 1/X .
With functions F0, F1 defined as above, it is easy to see that

y0 = cq1/αn = cκh, y1 = cα/α1q1/α1

n hγ/α1 = y0(cκ)
−γ/α1 , (20)

where we put κ= q
1/α
n /h. Note that y1 = h(cκ)1−γ/α1 . Hence yi < h if cκ < 1 (i ∈ {0,1}).

Denote

γ ≡ γn(α, b, c) = u(α2cα/n)
r
. (21)

Then κ= s1/α(α2cα)−r/αbu−1/αb and

cκ= u−1/αbs1/αc2rα−2r/αb < 1 (22)

by the assumption.
Using the facts that ex − 1≥ xex/2 and 1− e−x ≥ xe−x/2 as x≥ 0, we derive

y1 − y0 = y0((cκ)
−γ/α1 − 1)

≥ γ1+1/αb(cκ)1−γ/2α1 | ln cκ|/α1.

Hence, (y1−y0)/y0 ≥ γ| ln cκ|/α1 and (y1−y0)/y1 = 1− (cκ)γ/α1 ≥ γ| ln cκ|(cκ)γ/2α1/α1.
By Lemma 5,

max
i∈{0;1}

Pi(|ŷn − yi| ≥ γ1+1/αb(cκ)1−γ/2α1 | ln cκ|/2α1)≥ (1− γ1/r/8α2cα)
2n
/4

for any estimator ŷn. Thus,

max
i∈{0;1}

Pi(|ŷn/yi − 1| ≥ γ|ln(cκ)αb|t⋆n,i/2bα
2
Fi
)≥ (1− γ1/r/8α2cα)

2n
/4,

where t⋆n,0 = 1/(1 + γ/α) = 1/(1 + uα
−r/b
F0

c−r
F0

n−r) and t⋆n,1 = (1 + γ/α)(cκ)γ/2α. Taking
into account (21) and (22), we derive

max
i∈{0;1}

Pi(|ŷn/yi − 1| ≥ uα
2(r−1)
Fi

c−r
Fi

n−r ln(uα2r/sbc2rαb)t⋆n,i/2b)≥ (1− u1/r/8n)
2n
/4.

This leads to (11).
Recall that xi = 1/yi. From (20),

|x1 − x0|= |y1 − y0|/y0y1 ≥ γ1−1/αb(cκ)−1+γ/2α1 | ln cκ|/α1.

By Lemma 5,

max
i∈{0;1}

Pi(|x̂n − xi| ≥ γ1−1/αb(cκ)−1+γ/2α1 | ln cκ|/2α1)≥ (1− γ1/r/8α2cα)
2n
/4.
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Hence,

max
i∈{0;1}

Pi(|x̂n/xi − 1| ≥ uα
2(r−1)
Fi

c−r
Fi

n−r|ln(sbc2rαb/α2ru)|t̃n,i/2b)≥ (1− u1/r/8n)
2n
/4,

where t̃n,0 = (cκ)γ/2α/(1 + γ/α) = (u−1/αbs1/αc2rα−2r/αb)γ/2α/(1 + uα
−r/b
F0

c−r
F0

n−r) and

t̃n,1 = 1. The proof is complete. �

The next lemma presents a lower bound to the accuracy of choosing between two
“close” alternatives.
Let P be an arbitrary class of distributions, and assume that the quantity of interest,

aP , is an element of a metric space (X , d). An estimator â of aP is a measurable function
of X1, . . . ,Xn taking values in a subspace {aP : P ∈P} of the metric space (X , d).
Examples of functionals aP include (a) aPθ

= θ, where P = {Pθ, θ ∈Θ} is a parametric
family of distributions (Θ⊂R

m); (b) aP = fP , where fP is the density of P with respect
to a particular measure; (c) aP = P . A minimax lower bound over P follows from a lower
bound to maxi∈{0;1} Pi(d(â;aPi

)≥ δ), where P0, P1 ∈ P .

Lemma 5. Denote 2δ = d(aP1
;aP0

). Then

max
i∈{0;1}

Pi(d(â;aPi
)≥ δ)≥ (1− d2H)

2n
/4, (23)

where dH ≡ dH(P0;P1) is the Hellinger distance.

There is considerable literature on techniques of deriving minimax lower bounds of
this kind (cf. [8, 9, 14]). Classical results include Fano’s and Assuad’s lemmas. Inequality
(23) is sharper than Lemma 1 in [8]. Another related result is Theorem 2.2 in [14].

Proof of Lemma 5. Recall that

d2H(P0;P1) =
1

2

∫

(f
1/2
0 − f

1/2
1 )

2
= 1−

∫

√

f0f1,

where fi is a density of Pi with respect to a certain measure (e.g., P0 + P1).
Let fi,n denote the density of Li(X1, . . . ,Xn), and put ai = aPi

. By the triangle in-
equality, 2δ≤ d(aP0

; â) + d(â;aP1
). Therefore, 1≤ 10 + 11, where

10 = 1{d(a0; â)≥ δ}, 11 = 1{d(â;a1)≥ δ}.

Using the definition of d
H

and the Bunyakovskiy–Cauchy–Schwarz inequality, we derive

(1− d2
H
)
n
=

∫

√

f0,nf1,n

≤

∫

√

f0,nf1,n10 +

∫

√

f0,nf1,n11

≤ P
1/2
0 (d(â;a0)≥ δ) + P

1/2
1 (d(â;a1)≥ δ).

Hence (1− d2
H
)2n ≤ 2(P0(d(â;a0)≥ δ) + P1(d(â;a1)≥ δ)), leading to (23). �
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[9] Ibragimov, I.A. and Has’minskĭı, R.Z. (1981). Statistical Estimation: Asymptotic Theory.
Applications of Mathematics 16. New York: Springer. MR0620321

[10] Mandelbrot, B.B. (1963). New methods in statistical economics. J. Political Economy
71 421–440.

[11] Novak, S.Y. (2011). Extreme Value Methods with Applications to Finance. Monographs on
Statistics and Applied Probability 122. Boca Raton, FL: CRC Press. MR2933280

[12] Pfanzagl, J. (2000). On local uniformity for estimators and confidence limits. J. Statist.
Plann. Inference 84 27–53. MR1747496

[13] Resnick, S.I. (1997). Heavy tail modeling and teletraffic data. Ann. Statist. 25 1805–1869.
MR1474072

[14] Tsybakov, A.B. (2009). Introduction to Nonparametric Estimation. Springer Series in
Statistics. New York: Springer. MR2724359

Received June 2012 and revised January 2013

http://www.ams.org/mathscinet-getitem?mr=2181974
http://www.ams.org/mathscinet-getitem?mr=1105839
http://www.ams.org/mathscinet-getitem?mr=1833966
http://www.ams.org/mathscinet-getitem?mr=1458613
http://www.ams.org/mathscinet-getitem?mr=0233452
http://www.ams.org/mathscinet-getitem?mr=0653530
http://www.ams.org/mathscinet-getitem?mr=0751294
http://www.ams.org/mathscinet-getitem?mr=1462949
http://www.ams.org/mathscinet-getitem?mr=0620321
http://www.ams.org/mathscinet-getitem?mr=2933280
http://www.ams.org/mathscinet-getitem?mr=1747496
http://www.ams.org/mathscinet-getitem?mr=1474072
http://www.ams.org/mathscinet-getitem?mr=2724359

	1 Introduction
	2 Results
	3 Proofs
	Acknowledgements
	References

