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Let G be a linear algebraic group acting linearly on a vector 
space (or more generally, an affine variety) V, and let k[V]G be 
the corresponding algebra of invariant polynomial functions. 
A separating set S ⊆ k[V]G is a set of polynomials with the 
property that for all v, w ∈ V, if there exists f ∈ k[V]G
separating v and w, then there exists f ∈ S separating v
and w.
In this article we consider the action of G = SL2(C) ×SL2(C)
on the C-vector space Mn

2,2 of n-tuples of 2 × 2 matrices by 
multiplication on the left and the right. Minimal generating 
sets Sn of C[Mn

2,2]G are known, and |Sn| = 1
24 (n4 − 6n3 +

23n2 + 6n). In recent work, Domokos [8] showed that for 
all n ≥ 1, Sn is a minimal separating set by inclusion, 
i.e. that no proper subset of Sn is a separating set. This 
does not necessarily mean that Sn has minimum cardinality 
among all separating sets for C[Mn

2,2]G. Our main result 
shows that any separating set for C[Mn

2,2]G has cardinality 
≥ 5n − 9. In particular, there is no separating set of size 
dim(C[Mn

2 ]G) = 4n − 6 for n ≥ 4. Further, S4 has indeed 
minimum cardinality as a separating set, but for n ≥ 5 there 
may exist a smaller separating set than Sn. We also consider 
the action of G = SLl(C) on Ml,n by left multiplication. In 
that case the algebra of invariants has a minimum generating 
set of size 

(
n
l

)
(the l × l minors of a generic matrix) and 

dimension ln − l2 + 1. We show that a separating set for 
C[Ml,n]G must have size at least (2l − 2)n − 2(l2 − l). In 
particular, C[Ml,n]G does not contain a separating set of 
size dim(C[Ml,n]G) for l ≥ 3 and n ≥ l + 2. We include 
an interpretation of our results in terms of representations of 
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quivers, and make a conjecture generalising the Skowronski-
Weyman theorem.

© 2023 The Author. Published by Elsevier Inc. This is an 
open access article under the CC BY license (http://

creativecommons .org /licenses /by /4 .0/).

1. Introduction

1.1. Matrix semi-invariants

Let l, m ≥ 1 and let k be a field. Denote by Ml,m the set of l × m matrices with 
coefficients in k. The group G := SLl(k) × SLm(k) acts on Ml,m via the formula

(g, h) ·A = gAh−1

where g ∈ SLl(k), h ∈ SLm(k) and A ∈ Ml,m. More generally we can consider the 
diagonal action of G on the set Mn

l,m of n-tuples of l ×m matrices. Elements of Mn
l,m

can be viewed as n-tuples A = (A1, A2, . . . , An) of l ×m matrices, or as l×m matrices 
with elements in kn. We call these n-matrices for short. For (g, h) ∈ G we write

(g, h) ·A := (gA1h
−1, gA2h

−1, . . . , gAnh
−1). (1)

Determining whether a pair A, A′ of l×m matrices lie in the same G-orbit is straight-
forward. For all A ∈ Ml,m, one may find (g, h) ∈ G such that B := (g, h) · A has the 
following reduced form: for some r ≤ min(l, m) (the rank of A), the entries bij of B are 
nonzero if and only if i = j ≤ r. A pair (A, A′) of matrices in reduced form lie in the 
same G-orbit if and only if they have the same rank and their diagonal elements are the 
same up to order. However, if l, m, n > 1 then determining whether a pair of n-matrices 
lie in the same G-orbit is a very difficult problem.

There is an action of GLn(k) on Mn
l,m which commutes with the action of G: namely, 

for g ∈ GLn(k) and an n-matrix A = (aij) ∈ Ml,m(kn) we write g �A for the n-matrix 
whose i, j entry is

(g � A)ij = g(aij). (2)

Now for 1 ≤ i ≤ l, 1 ≤ j ≤ m and 1 ≤ k ≤ n, let x(k)
ij denote the linear functional 

Mn
l,m → k which picks out the i, jth entry of Ak, and introduce generic matrices

Xk :=

⎛
⎜⎜⎜⎜⎝
x

(k)
11 x

(k)
12 . . . x

(k)
1m

x
(k)
21 x

(k)
22 . . . x

(k)
2m

...
...

...
(k) (k) (k)

⎞
⎟⎟⎟⎟⎠ .
xl1 xl2 . . . xlm
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Then we have

k[Mn
l,m] = k[x(k)

ij : i = 1, . . . , l, j = 1, . . . ,m, k = 1, . . . , n].

The action of G on Mn
l,m induces an action of G on k[Mn

l,m] by algebra automor-
phisms: we define

(g · f)(A) = f(g−1 · A)

for all g ∈ G, f ∈ k[Mn
l,m] and A ∈ Mn

l,m. The set k[Mn
l,m]G of fixed points of this action 

forms a k-subalgebra. Elements of k[Mn
l,m]G are called matrix semi-invariants. The 

algebra C[Mn
l,m]G has been intensely studied over the years. Much of this work concerns 

computation of a set of invariants defining the null-cone. One reason for this is that it 
may be shown that A ∈ NG,V if and only if 

∑n
i=1 Aiξi is singular in C(〈ξ1, ξ2, . . . , ξn〉), 

where C(〈ξ1, . . . , ξn〉) denotes the skew field of fractions containing the non-commutative 
polynomial ring C〈ξ1, . . . , ξn〉 in n variables, see [20, Theorem 1.4]. This is an instance 
of non-commutative Polynomial Identity Testing, a problem central to the geometric 
complexity theory programme of Mulmuley and Sohoni [27].

While a complete set of generating invariants for k[Mn
l,m]G can be efficiently described 

(see [5, Theorem 2.5]), a minimal generating set is known for arbitrary n only in the 
cases l = 1, m = 1, l = m = 2, or l = m = 3. In the case m = 1, it is clear that Mn

l,1
is isomorphic as a SLl(C)-module to Ml,n with SLl(C) acting on the latter via left 
multiplication. Then the algebra of invariants is well known, see e.g. [3, Theorem 4.4.4]:

Proposition 1.1. Consider the action of SLl(C) on Ml,n via left multiplication. Then the 
ring of invariants is

C[Ml,n]SLl(C) = C[det(Xk1,k2,...,kl
) : 1 ≤ k1 < k2 < · · · < kl ≤ n]

where Xk1,k2,...,kl
denotes the submatrix of X consisting of the columns labelled by 

k1, k2, . . . , kl. Note that if n < l the ring of invariants is trivial.

Clearly the case l = 1 is analogous to the above. In the case l = m = 2, a minimal set 
of homogeneous generators is known:

Proposition 1.2 (Domokos [9]). The following is a minimal set of homogeneous genera-
tors for C[Mn

2,2]G

• det(Xi) : 1 ≤ i ≤ n;
• 〈Xi|Xj〉 := Tr(Xi) Tr(Xj) − Tr(XiXj) : 1 ≤ i < j ≤ n;
• ξ(Xi, Xj , Xk, Xl) : 1 ≤ i < j < k < l ≤ n.
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Here ξ(Xi, Xj , Xk, Xl) is the coefficient of aiajakal in the determinant

∣∣∣∣ aiXi ajXj

akXk alXl

∣∣∣∣ ∈ C[Mn
2 ][ai, aj , ak, al].

We note that an explicit finite set of generating invariants is also known in the case l =
m = 3, see [26]. For arbitrary l, m, n, algorithms to determine whether a given n-matrix 
is in the null-cone are known [20,22], as are degree bounds for generating invariants [4]. 
Better degree bounds are known for separating sets (see Definition 1.6 below) as is an 
algorithm for determining whether the orbit closures of n-matrices intersect [5]. This 
algorithm side-steps the need for a separating set (it is a white-box algorithm, while a 
separating set would give a black-box algorithm).

1.2. Separating invariants and dimension

Now consider a more general situation in which a linear algebraic group G defined 
over k acts linearly on an affine k-variety V. Let k[V] denote the algebra of polynomial 
functions on V. Then G acts on k[V]G according to the formula

(g · f)(v) = f(g−1 · v). (3)

We denote by k[V]G the subalgebra of k[V] fixed by this action. Further define the 
Nullcone of G on V:

NG,V = {v ∈ V : f(v) = 0 for all f ∈ k[V]G}. (4)

Assume that G is reductive. Then we have the following characterisation of the Krull 
dimension of k[V]G:

Proposition 1.3. Let f1, f2, . . . , fd ∈ k[V]G. Then the following are equivalent:

(1) k[V]G is finitely generated over k[f1, f2, . . . , fd];
(2) NG,V = V (f1, f2, . . . , fd).

Moreover, the minimum d > 0 such that there exist f1, f2, . . . , fd ∈ k[V]G satisfying the 
above is equal to the Krull dimension of k[V]G.

A set f1, f2, . . . , fd ∈ k[V]G with the properties above is sometimes called a zero-
separating set, since for any v ∈ V we have that if there exists f ∈ k[V]G with f(v) �= 0
then fi(v) �= 0 for some 1 ≤ i ≤ d. A zero-separating set with minimum cardinality 
(equivalently, an algebraically independent zero-separating set) consisting of homoge-
neous polynomials is called a homogeneous system of parameters.
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Suppose further that there exists no non-trivial character G → C∗. Then we have

dim(k[V]G) = dim(V) − dim(G) + min
v∈V

dim(Gv), (5)

see [16, Corollary 2.3] for proof.

Example 1.4. Consider the situation of Proposition 1.1 and suppose n ≥ l. Then we have

dim(k[V]G) = ln− l2 + 1.

It follows that one may find a homogeneous system of parameters for this algebra of 
invariants with cardinality ln − l2 +1. In fact, since the invariants det(Xk1,...,kl

) all have 
the same degree, it follows from the proof of the Noether Normalisation Lemma (see 
[3, Lemma 2.4.7]) that one may find a homogeneous system of parameters with this 
cardinality consisting of linear combinations of these det(Xk1,...,kl

).

Example 1.5. The dimension of C[Mn
2,2]G for n ≥ 3 is dim(Mn

2 ) − dim(G) = 4n − 6. 
This follows from Equation (5) because there exist 3-matrices whose stabiliser in G is 
the finite group (±I, ±I). Contrastingly, dim(C[M2

2,2]G) = 8 − 6 + 1 = 3, since every 
2-matrix has at least a 1-dimensional stabiliser, and dim(C[M2,2]G) = 4 − 6 + 3 = 1
since the stabiliser of any matrix has dimension at least 3.

If f ∈ k[V]G and f(v) �= f(w) we say that f separates v and w. We say that v and w
are separated by invariants if there exists an invariant separating v and w. In case G is 
reductive, we have that f(v) = f(w) for all f ∈ k[V]G if and only if Gv ∩Gw �= ∅ where 
the bar denotes closure in the Zariski topology, see [7, Corollary 6.1]. In particular, the 
invariants separate the orbits if G is a finite group.

One can in principle separate orbits whenever one can find an explicit generating set 
for k[V]G, but this is an extremely difficult problem in general. For this reason, Derksen 
and Kemper introduced the following in 2002 [3, Definition 2.3.8]:

Definition 1.6. Let S ⊆ k[V]G. We say S is a separating set for k[V]G if the following 
holds for all v, w ∈ V:

s(v) = s(w) for all s ∈ S ⇔ f(v) = f(w) for all f ∈ k[V]G.

Separating sets of invariants have been an area of much recent interest. In general they 
have nicer properties and are easier to construct than generating sets. For example, if G
is a finite group acting on a vector space V , then the set of invariants of degree ≤ |G| is a 
separating set [3, Theorem 3.9.14]. This is also true for generating invariants if char(k) =
0 [18], [19] but fails for generating invariants in the modular case. Separating sets for 
the rings of invariants k[V ]Cp , where k is a field of characteristic p and Cp the cyclic 
group of order p and V is indecomposable were constructed in [30]. Corresponding sets 
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of generating invariants are known only when dim(V ) ≤ 10 [32]. For the (non-reductive) 
linear algebraic group Ga of a field of characteristic zero, separating sets for k[V ]Ga

for arbitrary indecomposable linear representations V were constructed in [17]. These 
results were extended to decomposable representations in [12]. Even for indecomposable 
representations, generating sets are known only where dim(V ) ≤ 8 [1]. Finally, for an 
arbitrary (i.e. non-linear) Ga-variety V, the algebra of invariants k[V]Ga may not be 
finitely generated, but it is known that there must exist a finite separating set [25] and 
finite separating sets have been constructed for many examples where k[V]Ga is infinitely 
generated [13,14].

Evidently a separating set must be a zero-separating set. Therefore, if G is reductive, 
the Krull dimension of k[V]G is a lower bound for the size of any separating set. In fact 
this remains true for arbitrary linear algebraic groups. Let S be a separating set for k[V]G
consisting of homogeneous polynomials. The subalgebra k[S] of k[V]G generated by S
is called a separating algebra. By [10, Proposition 3.2.3], the quotient fields of k[S] and 
k[V]G have the same transcendence degree over k. Then by [21, Proposition 2.3(b)] we 
get that dim(k[S]) = dim(k[V]G). Consequently, the size of a separating set is bounded 
below by the dimension of k[V]G.

A separating set whose size equals the dimension of k[V]G is sometimes called a 
polynomial separating set, because it necessarily generates a polynomial subalgebra of 
k[V]G. On the other hand, there always exists a separating set of size ≤ 2 dim(k[V]G) +1, 
albeit such a separating set may necessarily contain non-homogeneous polynomials; see 
[23, Theorem 5.3] for a proof. In the present article we shall say a separating set S
is minimal if no proper subset of S is separating; and minimum if it has the smallest 
cardinality among all separating sets.

1.3. The separating variety

The main tool in our proofs will be the separating variety. This was introduced by 
Kemper in [24]:

Definition 1.7.

SG,V = {(v, w) ∈ V2 : f(v) = f(w) for all f ∈ k[V]G}.

In other words, the separating variety is the subvariety of V2 consisting of pairs of 
points which are not separated by any invariant. More scheme-theoretically, one may 
equivalently define

SG,V = (V ×V/G V)red, (6)

i.e. SG,V is the unique reduced scheme whose underlying variety is the fibre product 
(V ×V/G V). Given this observation, one might well expect that
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dim(SG,V) = 2 dim(V) − dim(k[V]G).

This is not the case in general however, as we will see in the next section.
We define IG,V to be the ideal of k[V2] consisting of the polynomial functions which 

vanish on SG,V . Clearly this is a radical ideal. Then a separating set can be characterised 
as a subset S ⊆ k[V]G which cuts out the separating variety in V2, in other words (see 
[11, Theorem 2.1]):

Proposition 1.8. S ⊆ k[V]G is a separating set if and only if

VV2(δ(S)) = SG,V ,

where δ : k[V] → k[V2] = k[V] ⊗ k[V] is defined by

δ(f) = 1 ⊗ f − f ⊗ 1.

Equivalently, via the Nullstellensatz, S is a separating if and only if

√
(δ(S) = IG,V .

Consequently the size of a separating set in k[V]G is bounded below by the minimum 
number of generators of IG,V up to radical, that is, the minimum number of elements 
generating any ideal whose radical is IG,V (this is sometimes called the arithmetic rank
of IG,V). We then find, using Krull’s height theorem, (see e.g. [15, Theorem 10.2]) that:

Proposition 1.9. Let S ⊆ k[V]G by a separating set. Then |S| ≥ codimV2(C) for all 
irreducible components C of SG,V .

Therefore, in order to use Proposition 1.9 above to find lower bounds for separating 
sets, we must decompose SG,V into irreducible components. As a first step, we observe 
that the separating variety contains the following subvariety, which we call the graph of 
the action:

Definition 1.10.

ΓG,V = {(v, gv) : v ∈ V, g ∈ G}.

If G is connected and reductive, then ΓG,V is an irreducible component of SG,V . Its 
dimension is easily seen to equal dim(V) +dim(G) −min{dim(Gv) : v ∈ V}, and we note 
that in case there is no nontrivial character G → C∗ that

dim(ΓG,V) = 2 dim(V) − dim(k[V]G). (7)
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In particular this implies dim(SG,V) ≥ 2 dim(V) − dim(k[V]G), but we do not have 
equality in general. Furthermore, the separating variety may have extra components 
of smaller dimension. These components are an obstruction to the existence of small 
separating sets.

We may obtain a first step towards decomposing SG,V as follows: notice that if (v, v′) ∈
SG,V then we have (v, v′) ∈ ΓG,V unless neither G · v nor G · v′ is closed. Now we recall 
the Hilbert-Mumford criterion [28]: given v ∈ V and a 1-parameter subgroup λ : C∗ → G

we define w(λ, v) to be the unique integer d such that

lim
t→0

λ(t) · tdv

exists and is non-zero. v ∈ V is called stable if w(λ, v) > 0 for all 1-parameter subgroups 
λ : C∗ → G, and semi-stable if w(λ, v) ≥ 0 for all 1-parameter subgroups λ : C∗ → G. 
A point v ∈ V is stable if and only if G ·v is closed and the dimension of G · v is maximal. 
The set Vs of stable points forms an open subset of V. A point is called non-stable if it 
is not stable (the more natural term unstable usually means not semi-stable). It follows 
that the set U := V \ Vs of non-stable points forms a closed subset of V. We thus obtain 
a decomposition

SG,V = ΓG,V ∪ SG,V,U (8)

where SG,V,U := U2 ∩SG,V . Since both U2 and SG,V are closed irreducible subsets of V2

it follows that SG,V,U is closed. It may or may not be irreducible; this depends on the 
action of G on V.

Stronger obstructions may be obtained by taking a closer look at the geometry of SG,V. 
Recall that a Noetherian topological space V is said to be connected in dimension k if the 
following holds: for each closed subvariety Z ⊆ V with dimension < k, the complement 
V \ Z is connected. If the same holds for all Z ⊆ V with codimV(Z) > k, we say that 
V is connected in codimension k. Note that if V is equidimensional, or all irreducible 
components of V intersect nontrivially then we have dim(Z) = dim(V) − codimV(Z); 
consequently V is connected in dimension k if and only if it is connected in codimension 
dim(V) − k. The following result was proved in [16]:

Proposition 1.11. Suppose SG,V is not connected in codimension k, and let S ⊆ k[V]G
be a separating set. Suppose further that all irreducible components of SG,V intersect 
nontrivially, and that there does not exist a non-trivial character G → k

∗. Then |S| ≥
dim(k[V]G) + k.

1.4. Statement of results

We return to the notation and setting of section 1.1. Our goal is to describe the sepa-
rating variety and use this description to find a lower bound for the size of a separating 
set. We first consider the case m = 1:
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Theorem 1.12. Let S ⊆ C[Mn
l,1]G be a separating set, and suppose l ≤ n. Then |S| ≥

(2l − 2)n − 2(l2 − l).

The dimension of the algebra of invariants C[Mn
l,1]G is ln − l2 + 1. Thus, we see that 

C[Mn
l,1]G does not contain a polynomial separating set for l ≥ 3 and n ≥ l + 2. On 

the other hand, the minimum generating set for C[Mn
l,1]G given in Proposition 1.1 has 

cardinality 
(
n
l

)
, so we see that for l ≥ 3 and n ≥ l + 2 this may not be a minimum 

separating set. The question of constructing minimum separating sets for this action will 
be taken up in a further article.

Our main results concern the case l = m = 2. Recently, Domokos [8] proved that the 
generating set given in Proposition 1.2 is a minimal separating set. Note that this does 
not necessarily mean it is a minimum separating set. In the present article we show:

Theorem 1.13. Let S ⊆ C[Mn
2,2]G be a separating set. Then |S| ≥ 5n − 9.

Recall that the Krull dimension of C[Mn
2,2]G is 4n −6 for n ≥ 3. Therefore our results 

show that C[Mn
2,2]G does not have a polynomial separating set for n ≥ 4.

Remark 1.14. In [16] we showed that in the situation above one always has |S| ≥ 5n −10. 
While the effort in this article results only in an improvement of 1, this closes a crucial 
gap in that we were not able to conclude whether or not a polynomial separating set for 
n = 4 existed until now.

These results are proved by examining in detail the connectivity structure of the 
separating variety. Since these results are likely of independent interest, we state them 
here:

Theorem 1.15. Let V = Mn
l,1, G = SLl(C).

(a) Suppose l ≥ 3. The separating variety SG,V has two components of dimensions ln +
l2 − 1 and 2(n + 1)(l − 1) respectively, which intersect in a closed subvariety of 
dimension ≤ ln + l2 − 2 (with equality if l = 3).

(b) Suppose l = 2. Then SG,V has just one irreducible component.

We note that for l ≥ 3 and n ≥ l+2 the separating variety has dimension 2(l−1)(n +
1) > ln + l2 − 1 = 2 dim(V) − dim(k[V]G).

Theorem 1.16. Let V = Mn
2,2, G = SL2(C) × SL2(C) and suppose n ≥ 4. Then the 

separating variety SG,V has three components of dimensions 4n + 6 (the graph closure), 
4n + 5 and 4n + 5 respectively. Each component of dimension 4n + 5 intersects the 
graph closure in a closed subvariety of dimension 3n + 8. The intersection of the two 
components of dimension 4n + 5 has dimension 3n + 6 and is completely contained in 
the graph closure.
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1.5. Structure of paper

The second section of this paper focuses on the left action of SLl(C) on Ml,n(C), and 
the goal is the proof of Theorem 1.12. The third section focuses on the case l = m = 2, i.e. 
of the left-right action on 2 ×2 matrices, and the goal is the proof of Theorem 1.13. In the 
final section we interpret some results of this article and [16] in terms of representations of 
quivers, and make a conjecture generalising the celebrated Skowronski-Weyman theorem.

Acknowledgements. This research was partially funded by the EPSRC small grant 
scheme, ref: EP/W001624/1. The author thanks the research council for their support. It 
was partially written while visiting Prof. Harm Derksen at Northeastern University, and 
the author wishes to thank Prof. Derksen for his hospitality and some helpful sugges-
tions. The author would also like to thank an anonymous referee for some very insightful 
remarks, and for bringing to his attention some of the connections with Geometric Com-
plexity Theory mentioned in Subsection 1.1.

2. Left invariants

In this section we consider the case m = 1. We can view elements of V as l×n matrices, 
or as l-tuples of row vectors having length n. G = SLl(C) acts by left-multiplication on 
elements of V viewed as matrices, and there is a commuting action of GLn(C) on V by 
right–multiplication. A generic element of V will be written as

A = (a1,a2, . . . ,al)t

where for each i = 1, . . . , n we write

ai = (aij : j = 1, . . . , n).

We let X denote the generic l×n matrix of coordinate functions on V, so that xij(A) =
aij . We assume n ≥ l, since otherwise C[V]G = C.

We begin by determining the non-stable points in V. Every 1-parameter subgroup 
of G is contained in a maximal torus, and the maximal tori in G are all conjugate. 
A 1-parameter subgroup of the diagonal group T takes the form

{λr(t) :=

⎛
⎜⎜⎝
tr1 0 · · · 0
0 tr2 · · · 0
...

... · · ·
...

0 0 · · · trl

⎞
⎟⎟⎠ : t ∈ C∗}

where r ∈ Zl with 
∑l

i=1 ri = 0.
Therefore A is non-stable for T if and only if A has a row of zeroes. It follows that A is 

non-stable for G if and only if rk(A) < l. Note that all such matrices lie in NG,V ⊆ SG,V . 
Applying equation (8) we obtain:
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SG,V = ΓG,V ∪N 2
G,V . (9)

Clearly NG,V is closed and irreducible, so the same is true of N 2
G,V . Therefore the 

separating variety SG,V has at most two components. The dimension of ΓG,V is

2 dim(V) − dim(k[V]G) = ln + l2 − 1.

On the other hand,

dim(NG,V) = (l − 1)(n + 1).

Therefore if l ≥ 3 and n ≥ l + 2 we have

dim(N 2
G,V) = 2(l − 1)(n + 1) > ln + l2 − 1 = dim(ΓG,V),

and therefore

dim(SG,V) = 2(l − 1)(n + 1) > ln + l2 − 1 = 2 dim(V) − dim(k[V]G)).

In order to find lower bounds for the size of separating sets, we would need to determine 
ΓG,V ∩ N 2

G,V . For A, A′ ∈ V = Ml,n, A|A′ ∈ M2l,n denotes the 2l × n matrix obtained 
by stacking A and A′.

Lemma 2.1. Let (A, A′) ∈ N 2
G,V . Then (A, A′) ∈ ΓG,V only if rk(A|A′) ≤ l.

Proof. Note that in general we must have rk(A), rk(A′) ≤ l − 1 so rk(A|A′) ≤ 2l − 2. 
Therefore, there is nothing to prove if l = 2; we may therefore assume l ≥ 3.

Let (A, A′) ∈ N 2
G,V . Since ΓG,V is preserved by the action of G2, we may assume that 

A and A′ are in row echelon form; in particular their bottom rows are both zero.
Now suppose in addition that (A, A′) ∈ ΓG,V . Then there exist functions

g = (gij : i, j = 1, . . . , l) : C∗ → G,

A = (a1, . . . ,al)t : C∗ → V

and

A′ = (a′
1, . . . ,a′

l)t : C∗ → V

such that

lim
t→0

A(t) = A, lim
t→0

(A′(t)) = A′, g(t) ·A(t) = A′(t) for all t ∈ C∗

where we abuse notation by using the same letter for a function and its limit. Therefore, 
for all t ∈ C∗ we have
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A(t)|A′(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1(t)
a2(t)

...
al(t)∑l

j=1 g1j(t)aj(t)∑l
j=1 g2j(t)aj(t)

...∑l
j=1 glj(t)aj(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Clearly the rank of (A(t)|A′(t)) is at most l, since its 2l rows can be expressed as linear 
combinations of l elements of Cn. Since the set of matrices with rank bounded above by 
a given number is closed, it follows that

(A|A′) = lim
t→0

(A(t)|A′(t))

also has rank at most l. �
We have a partial converse to Lemma 2.1:

Proposition 2.2. Suppose l = 2 or l = 3. Let (A, A′) ∈ N 2
G,V . Then (A, A′) ∈ ΓG,V if 

rk(A|A′) ≤ l.

Proof. We deal with the two cases separately. Since ΓG,V and N 2
G,V are preserved by the 

action of G2 we may again assume A and A′ are in row echelon form. Suppose l = 2 and 
note that the condition rk(A|A′) ≤ 2 is vacuous. Write

A =
(

a
0

)
, A′ =

(
a′

0

)
,

and note that (A, A′) = limt→0(A(t), A′(t)) where

A(t) =
(

a
t(a′ − a)

)
, A′(t) =

(
a′

t(a′ − a)

)
=

(
1 t−1

0 1

)
A(t).

Now suppose l = 3. Write

A =
(a1

a2
0

)
, A′ =

⎛
⎝a′

1
a′

2
0

⎞
⎠ .

Suppose first that dim(〈a′
1, a′

2〉) < 2. Then there exist λ′
1, λ

′
2 ∈ C, not both zero with

λ′
1a′

1 + λ′
2a′

2 = 0.
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As G contains the matrix

P :=
(0 1 0

1 0 0
0 0 −1

)

we may assume without loss of generality that λ′
2 �= 0. Then

⎛
⎝ 1 0 0
λ′

1 λ′
2 0

0 0 λ′
2
−1

⎞
⎠A′ =

(a′
1
0
0

)
∈ G ·A′

and
((a1

a2
0

)
,

(a′
1
0
0

))
= lim

t→0

⎛
⎝( a1

a2
t2(a′

1 − a)

)
,

⎛
⎝1 0 t−2

0 t 0
0 0 t−1

⎞
⎠( a1

a2
t2(a′

1 − a)

)⎞
⎠ ∈ ΓG,V .

Similarly we can show (A, A′) ∈ ΓG,V if dim(〈a1, a2〉) < 2, so we may assume that 
dim(〈a1, a2〉) = 2 = dim(〈a′

1, a′
2〉).

Now since rk(A|A′) ≤ 3 there exist λ1, λ2, λ′
1, λ

′
2 ∈ C, not all zero, such that

b := λ1a1 + λ2a2 = λ′
1 a′

1 + λ′
2a′

2,

and by the previous two paragraphs, we may assume that λ2 �= 0 and λ′
2 �= 0. We obtain 

that
(a1

b
0

)
∈ G ·A,

(a′
1
b
0

)
∈ G ·A′,

and
((a1

b
0

)
,

(a′
1
b
0

))
= lim

t→0

(( a1
b

t(a′ − a)

)
,

(1 0 t−1

0 1 0
0 0 1

)( a1
b

t(a′ − a)

))
∈ ΓG,V . �

In the case l = 2, we conclude that the NG,V = ΓG,V , and that our methods do not 
allow us to improve the lower bound dim(k[V]G) = 2n − 3 for the size of a separating 
set. Note however that for any separating set S we certainly have

|S| ≥ 2n− 3 > 2n− 4 = (2l − 2)n− 2(l2 − l)

so the claimed bound holds.
Lemma 2.1 showed that, for l ≥ 3, the intersection ΓG,V ∩ N 2

G,V is contained in the 
variety Z ⊂ M2l,n consisting of matrices whose first l rows span a subspace of Cn with 
dimension < l, whose last l rows span a subspace of Cn with dimension < l, and whose 
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2l rows together span a subspace of dimension ≤ l. We can compute the dimension of 
this variety. Let Z ∈ Z and write a1, a2, . . . , al, b1, b2, . . . , bl for its rows. If we want to 
choose Z ∈ Z, we have free choice of a1, . . . , al−1, giving (l− 1)n choices. Then we must 
choose al ∈ 〈a1, . . . , al−1〉, giving l− 1 choices. We have free choice of b1, but must then 
choose b2, b3, . . . , bl−1 ∈ 〈a1, . . . , al−1, b1〉 giving l choices for each. Finally we must 
choose bl ∈ 〈b1, . . . , bl−1〉, which happily guarantees that bl ∈ 〈a1, . . . , al−1, b1〉 at the 
same time, and gives us l − 1 further choices. Thus, the dimension of Z is

(l − 1)n + (l − 1) + n + (l − 1)l + l − 1 = ln + l2 − 2.

In the case l = 3, n > 3, the separating variety has two components, ΓG,V with 
dimension 2 − dim(k[V]G) = 3n + 8 and N 2

G,V with dimension 4n + 4. For n = 4 these 
components have the same dimension 3n + 8, and for n ≥ 5 the component ΓG,V is the 
smallest. Its codimension in V2 is 3n −8. These two components intersect in a subvariety 
of dimension 3n + 7. Thus, the separating variety is not connected in codimension

(4n + 4) − (3n + 8) = n− 4

and by Proposition 1.11 we have that any separating set for C[V]G has cardinality at 
least

3n− 8 + (n− 4) = 4n− 12.

The case l ≥ 4, n ≥ l + 1, is similar, in that there are two components of dimensions 
2(l−1)(n +1) and ln + l2−1 intersecting in a subvariety of dimension at most ln + l2−1. 
So the separating variety is not connected in codimension k for some

k ≤ 2(l − 1)(n + 1) − (ln + l2 − 1) = ln− l2 + 2l − 2n

and by Proposition 1.11 we have that any separating set for C[V]G has cardinality at 
least

ln− l2 + 1 + (ln− l2 + 2l − 2n) = (2l − 2)n− 2(l2 − l)

as claimed. This completes the proof of Theorems 1.12 and 1.15.

3. 2 × 2 matrix semi-invariants

In this section we specialise to the case l = m = 2. Thus, we set V := Mn
2,2 for 

some n > 0 and G = SL2(C) × SL2(C). A generic element A ∈ V will be written as 
(A1, A2, . . . , An) where

Ai =
(
ai bi

)
.

ci di
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A generic element (A, A′) ∈ V × V will be written with A as above and A′ =
(A′

1, A
′
2, . . . , A

′
n) where

A′
i =

(
a′i b′i
c′i d′i

)
.

Throughout we write g · A for the action of g = (g1, g2) ∈ G on A ∈ V. We use the 
notation h �A for the commuting action of h ∈ GLn.

Our aim is to use (8) to decompose SG,V . We begin by identifying non-stable points:

Lemma 3.1. Let A ∈ V. Then A is not stable if and only if there exists g ∈ G such that 
g ·Ai is simultaneously upper-triangular for all i = 1 . . . , n.

Proof. Every 1-parameter subgroup in SL2(C) is a maximal torus. Since the maximal 
tori are all conjugate in SL2(C), each is conjugate to the diagonal group

T := {
(
t 0
0 t−1

)
: t ∈ C∗}.

It follows that every 1-parameter subgroup in G is conjugate to a group of the form

Tr,s : {λr,s(t) :=
((

tr 0
0 t−r

)
,

(
ts 0
0 t−s

))
: t ∈ C∗}

where r, s ∈ Z.
For A ∈ V we have

λr,s(t) · A =
(

tr+sa tr−sb
t−r+sc t−r−sd

)
.

It follows that A is not stable for T if and only if at least one of a, b, c, d is zero. However 
it’s clear that the sets of matrices with each of these entries zero lie in the same G-orbit, 
so A is not stable for G if and only if it is in the same G-orbit as an n-matrix A′ with 
c′ = 0 as required. �

Let W denote the set of upper-triangular n-matrices in V. Then the set U of non-stable 
points is G · W. In the notation of Equation (8) we have

SG,V,U = SG,V,G·W = (G · W)2 ∩ SG,V = G2 · SG,V,W (10)

where SG,V,W = W2∩SG,V , the set of pairs of upper triangular n-matrices not separated 
by invariants, and the action of G2 is separately on the two arguments. We have the 
following somewhat surprising description of SG,V,W :
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Lemma 3.2. There exists an isomorphism of algebraic varieties

Φ : SG,V,W ∼= NG,V ×C2n.

Proof. Let (A, A′) ∈ W2. Define an n-matrix B = (B1, . . . , Bn) ∈ V as follows:

Bi =
(
−ai a′i
−d′i di

)
.

Then set Φ(A, A′) = (B, b, b′). We claim that B ∈ NG,V if and only if (A, A′) ∈ SG,V . 
This proves the result, since we may freely choose b and b′ without affecting B.

Now it follows from [4, Corollary 3.3] that the set of invariants in C[V]G with degree 
at most two form a zero-separating set. Therefore, we have B ∈ NG,V if and only if

det(Bi) = 0 for all 1 ≤ i ≤ n

and

〈Bi|Bj〉 = 0 for all 1 ≤ i < j ≤ n.

We now see that

det(Bi) = −aidi + a′id
′
i = 0 ⇔ det(Ai) = det(A′

i),

and

〈Bi|Bj〉 = aiaj − a′id
′
j − d′ia

′
j + didj − (di − ai)(dj − aj) = −a′id

′
j − d′ia

′
j + aidj + diaj = 0

⇔ −a′id
′
j − d′ia

′
j = −aidj − diaj

⇔ aiaj + didj − (ai + di)(aj + dj) = a′ia
′
j + d′id

′
j − (a′i + d′i)(a′j + d′j)

⇔ 〈Ai|Aj〉 = 〈A′
i|A′

j〉.

This shows that B ∈ NG,V whenever (A, A′) ∈ SG,V,W , and that if B ∈ NG,V we have 
f(A) = f(A′) for all f ∈ C[V]G with degree ≤ 2. To complete the proof it remains only 
to establish that ξ(Ai, Aj , Ak, Al) = ξ(A′

i, A
′
j , A

′
k, A

′
l) whenever B ∈ NG,V . Now since 

A, A′ ∈ W and ξ(Ai, Aj , Ak, Al) is the coefficient of eiejekel in the determinant

∣∣∣∣ eiAi ejAj

ekAk elAl

∣∣∣∣
=

∣∣∣∣∣∣∣
eiai eibi ejaj ejbj
0 eidi 0 ejdj

ekak ekbk elal elbl

∣∣∣∣∣∣∣
0 ekdk 0 eldl
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=

∣∣∣∣∣∣∣
eiai ejaj eibi ejbj
ekak elal ekbk elbl

0 0 eidi ejdj
0 0 ekdk eldl

∣∣∣∣∣∣∣
= (eielaial − ejekajak)(eieldidl − ejekdjdk)

we have

ξ(Ai, Aj , Ak, Al) = −aialdjdk − ajakdidl,

and therefore

ξ(Ai, Aj , Ak, Al) = ξ(A′
i, A

′
j , A

′
k, A

′
l)

⇔ aialdjdk + ajakdidl − a′ia
′
ld

′
jd

′
k − a′ja

′
kd

′
id

′
l = 0.

Now we note that

aialdjdk + ajakdidl − a′ia
′
ld

′
jd

′
k − a′ja

′
kd

′
id

′
l

= (akdl + aldk)(aidj + ajdi − a′id
′
j − a′jd

′
i)

+(ajdl + aldj)(aidk + akdi − a′id
′
k − a′kd

′
i)

−(aidl + aldi)(ajdk + akdj − a′jd
′
k − a′kd

′
j)

−(ajdk + akdj)(aidl + aldi − a′id
′
l − a′ld

′
i)

+(aidk + akdi)(ajdl + aldj − a′jd
′
l − a′ld

′
j)

+(aidj + ajdi)(akdl + aldk − a′kd
′
l − a′ld

′
k).

= 〈Ak|Al〉(〈Ai|Aj〉 − 〈A′
i|A′

j〉)

+〈Aj |Al〉(〈Ai|Ak〉 − 〈A′
i|A′

k〉)

−〈Ai|Al〉(〈Aj |Ak〉 − 〈A′
j |A′

k〉)

−〈Aj |Ak〉(〈Ai|Al〉 − 〈A′
i|A′

l〉)

+〈Ai|Ak〉(〈Aj |Al〉 − 〈A′
j |A′

l〉)

+〈Ai|Aj〉(〈Ak|Al〉 − 〈A′
k|A′

l〉)

= 0

since 〈Ai|Aj〉 = 〈A′
i|A′

j〉 for all 1 ≤ i < j ≤ n. �
The decomposition of NG,V , where G = SLl(C) × SLm(C) acts in the usual way on 

V = Mn
l,m was studied by Burgin and Draisma [2]. In the special case l = m = 2, 

Theorem 1 in [2] gives the following:
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Proposition 3.3. The nullcone NG,V decomposes as

NG,V = Dr ∪ Dc

where

Dr = {
(

a b
λa λb

)
∈ NG,V : a,b ∈ Cn, λ ∈ C}

and

Dc = {
(

a λa
c λc

)
∈ NG,V : a, c,∈ Cn, λ ∈ C}.

The sets Dr and Dc are closed and irreducible.

Now using equation (10) and Lemma 3.2 we obtain a decomposition of SG,V :

SG,V = ΓG,V ∪G2 · Cr ∪G2 · Cc (11)

where

Cr := Φ−1(Dr) = {
((

a b
0 λd′

)
,

(
λa b′

0 d′

))
∈ SG,V : a,b,b′,d′ ∈ Cn, λ ∈ C}

and

Cc := Φ−1(Dc) = {
((

a b
0 λa′

)
,

(
a′ b′

0 λa

))
∈ SG,V : a,a′b,b′ ∈ Cn, λ ∈ C}.

We claim that G2 · Cc and G2 · Cr are closed (if so, it’s clear they are also irreducible, 
being the orbit of a connected group on a vector space). We will need the following 
lemma, which seems to be well-known and was shown to me by Harm Derksen. For lack 
of a good reference we provide a proof:

Lemma 3.4. Let G be a linear algebraic group over k and B ≤ G a Borel subgroup. Let V
be a vector space over k on which G acts linearly and let W be a subspace of V . Suppose 
B ·W ⊆ W . Then G ·W is closed.

Proof. Consider the set Z := {(gB, v) : g−1v ∈ W} ⊆ G/B×V . Let π be the projection 
G/B × V → V . Then G ·W = π(Z). As G/B is a projective, hence complete, variety, 
the map π is projective and takes closed sets to closed sets. Clearly Z is closed, so G ·W
is closed as required. �

Now an easy direct calculation shows that Cr and Cc are stable under the action of 
B2. Since this is a Borel subgroup of the linear algebraic group G2, the claim is proved.
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The dimension of both Cc and Cr is 4n + 1. Since dim(B2) = 8 and B2 is in fact the 
stabiliser of both, we get that the dimension of G2 · Cr is

dim(G2) + dim(Cr) − dim(B2) = 12 + (4n + 1) − 8 = 4n + 5

and similarly for G2 · Cc. There are now two possibilities. The first is that G2 · Cr and 
G2 · Cc are contained inside ΓG,V , and hence SG,V = ΓG,V is irreducible. In that case, 
our methods tell us nothing about the minimum size of a separating set. The second 
is that one or both of these components is not contained in ΓG,V . In that case, SG,V
has at least two components of different dimensions, one of which has dimension smaller 
than 4n + 6 = 2 dim(V ) − dim(k[V]G). In that case, the smaller component has codi-
mension strictly greater than k[V]G and, by Proposition 1.9, no polynomial separating 
set exists.

Note that for n ≤ 3 we must have SG,V = ΓG,V . This is because for n ≤ 3, k[V]G is 
a polynomial ring, so it certainly contains a polynomial separating set, ruling out the 
second option.

So the final step in our argument is to describe G2 · Cr ∩ ΓG,V and G2 · Cc ∩ ΓG,V . 
Note that since G2 preserves ΓG,V this is the same as describing G2 · (Cr ∩ ΓG,V) and 
G2 · (Cc ∩ ΓG,V).

Now we claim:

Lemma 3.5. Let (A, A′) ∈ SG,V,W . Define a 6 × n matrix as follows:

mA,A′ =

⎛
⎜⎜⎜⎜⎝

a
b
d
a′

b′

d′

⎞
⎟⎟⎟⎟⎠ .

Then (A, A′) ∈ ΓG,V if and only if rk(mA,A′) ≤ 3.

Proof. ⇐: Recall that the diagonal commuting action of GLn(C) on V preserves ΓG,V , 
so it is enough to show that there exists h ∈ GLn(C) such that (h � A, h � A′) ∈ ΓG,V . 
Suppose mA,A′ has rank ≤ 3 and (A, A′) /∈ ΓG,V . Write B = h � A = (B1, B2, . . . , Bn), 
and B′ = h � A′ = (B′

1, B
′
2, . . . , B

′
n). Now if rk(mA,A′), then there exists h ∈ GLn(C)

such that Bi = B′
i = 0 for i > 3. So by restricting to the first three arguments we obtain 

a pair

(B,B′) ∈ SG,M3
2,2

\ ΓG,M3
2,2

.

By the discussion preceding this Lemma, that is impossible.
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⇒: This is trivial if n ≤ 3, so assume n > 3. Suppose (A, A′) ∈ ΓG,V . This means 
that there exist functions A(t), A′(t) : C∗ → V and g(t), g′(t) : C∗ → SL2(C) such 
that

• A′(t) = (g(t), g′(t)) ·A(t) for all t ∈ C∗;
• limt→0 A(t) = A, limt→0 A′(t) = A′.

Write

g(t) =
(
w(t) x(t)
y(t) z(t)

)
, g′(t) =

(
w′(t) x′(t)
y′(t) z′(t)

)

and

A(t) =
(

a(t) b(t)
c(t) d(t)

)
,A′(t) =

(
a′(t) b′(t)
c′(t) d′(t)

)

where throughout we abuse notation by using the same letter for a function and its limit.
Then

mA,A′ = lim
t→0

mA(t),A′(t)

and

mA(t),A′(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a(t)
b(t)
d(t)

w(t)w′(t)a(t) + w(t)y′(t)b(t) + x(t)y′(t)d(t)
w(t)x′(t)a(t) + w(t)z′(t)b(t) + x(t)z′(t)d(t)
y(t)x′(t)a(t) + y(t)z′(t)b(t) + z(t)z′(t)d(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

It is clear that rk(mA(t),A′(t)) ≤ 3 for all t ∈ C∗, since the last three rows are linear 
combinations of the first three. Since the set of 6 ×n matrices over C with rank bounded 
above by some fixed number is closed, it follows that rk(mA,A′) ≤ 3. �
Remark 3.6. For n > 3, one can easily give examples of elements of Cr or Cc such that 
rk(mA,A′) = 4. Such elements will not lie in ΓG,V . Thus we have shown that for n > 3, 
SG,V contains two components with dimension strictly less than 2 − dim(k[V]G), i.e. 
codimension > k[V]G. This shows that for n > 3, no polynomial separating set for k[V]G

exists.
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To every element of (A, A′) ∈ Cr we associate a 4 × n matrix

mr
A,A′ =

⎛
⎜⎝

a
b
b′

d′

⎞
⎟⎠ .

Similarly to every element of (A, A′) ∈ Cc we associate a 4 × n matrix

mc
A,A′ =

⎛
⎜⎝

a
b
b′

a′

⎞
⎟⎠ .

Now from Lemma 3.5 we obtain:

Corollary 3.7.

(a) (A, A′) ∈ ΓG,V ∩ Cr if and only if rk(mr
A,A′) ≤ 3;

(b) (A, A′) ∈ ΓG,V ∩ Cc if and only if rk(mc
A,A′) ≤ 3.

Consequently the dimension of ΓG,V ∩ Cr is [3(n − 3) + 12] + 1 = 3n + 4: we choose 4 
vectors a, b, b′, d′ spanning a subspace of Cn with dimension 3, and are left with a free 
choice of λ to fix a′ and d. The dimension of ΓG,V ∩ Cc is the same for similar reasons. 
Since the stabiliser of either is B2 we have

dim(ΓG,V ∩ (G2 · Cr)) = dim(ΓG,V ∩ (G2 · Cr)) = 3n + 8.

In addition we note that

Cr ∩ Cc = {
((

a b
0 μλa

)
,

(
λa b′

0 μa

))
: a,b,b′ ∈ Cn, λ, μ ∈ C}

with dimension 3n + 2. It follows that

dim(G2 · Cr ∩G2 · Cc) = 3n + 6.

Furthermore, rk(mA,A′) ≤ 3 for all (A, A′) ∈ Cr ∩ Cc, so that by Lemma 3.5 we get 
Cc ∩ Cr ⊆ ΓG,V . Consequently we have (G2 · Cc) ∩ (G2 · Cr) ⊆ ΓG,V also. This completes 
the proof of Theorem 1.16.
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The structure of the separating variety is described in the following “Venn” diagram:

ΓG,V

4n + 6

G2 · Cr

4n + 5

4n + 5

G2 · Cc

3n + 8

3n + 8 3n + 6

3n + 6

In the diagram above, the number in a given region represents the dimension of 
the smallest intersection of the components containing that region. The analogous con-
struction to the usual set-theoretic Venn diagram would have the numbers in a region 
representing the dimension of that region, but that does not make sense because not all 
regions in the diagram represent varieties.

One can see from the diagram that for n > 3, SG,V is not connected in codimension 
n − 3. Applying Proposition 1.11 we find that the minimum possible size of a separating 
set for k[V]G is then

dim(k[V]G) + n− 3 = 4n− 6 + n− 3 = 5n− 9.

This completes the proof of Theorem 1.13. The table below compares this lower bound 
with the size of the separating set Sn given in Proposition 1.2:



488 J. Elmer / Linear Algebra and its Applications 674 (2023) 466–492
n dim(C[Mn
2,2]

G) |Sn| Lower bound
2 3 3 3
3 6 6 6
4 10 11 11
5 14 20 16
6 18 36 21

In particular, our results show that no polynomial separating set for C[Mn
2,2]G exists 

when n ≥ 4. Further, for n ≤ 4 the given generating set is a minimum separating set, 
but for n ≥ 5 it may not be.

4. Quiver interpretation

A quiver is a quadruple Q = (Q0, Q1, t, h), consisting of two ordered sets Q0 (vertices) 
and Q1 (arrows), along with two functions t, h : Q1 → Q0 (tail and head respectively). 
It is usually visualised as a directed graph with a node for each element of Q0, and for 
each a ∈ Q1 a directed edge leading from t(a) to h(a).

Let k be any field. A representation V of the quiver Q over k with dimension vector 
α is an assignment to each vertex x ∈ Q0 of a vector space V (x), and to each arrow 
a ∈ Q1 of a linear map V (a) : V (t(a)) → V (h(a)), where we write α = (α(x) : x ∈ Q0)
and α(x) = dim(V (x)) for all x ∈ Q0.

Let V be a representation of the quiver Q with |Q0| = k, |Q1| = n. By choosing a 
basis of each vector space V (x), we may identify V with the n-tuple of matrices

A = (A1, A2, . . . , An)

where Aj ∈ Mα(t(aj)),α(h(aj)) for all j is the matrix representing V (aj) with respect 
to the chosen basis, and a pair of representations is said to equivalent if the matrices 
associated to them can be made the same by choosing different bases for the V (x). 
Choosing a different basis is tantamount to replacing A with

g · A := (gt(a1)A1g
−1
h(a1), gt(a2)A2g

−1
h(a2), . . . , gt(an)Ang

−1
h(an))

where

g = (gx1 , gx2 , . . . , gxk
) ∈ GLα(k) := Πk

i=1 GLα(xi)(k)

is the k-tuple of change of basis matrices where gxi
describes the change of basis on 

V (xi). Thus, we have an action of GLα(k) on

Vα := Πn
i=1Mα(t(ai)),α(h(ai))

and a pair of n-tuples of matrices A, A′ ∈ Vα represent equivalent representations of Q
if and only if they lie in the same GLα(k)-orbit.
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There is a natural notion of direct sum for representations of a given quiver: if V and 
W are representations of Q over k with dimension vectors α and β respectively, then 
V ⊕W is the representation of Q over k with dimension vector α + β ∈ Zk defined by

(V ⊕W )(x) = V (x) ⊕W (x)

for all x ∈ Q0 and

(V ⊕W )(a) = V (a) ⊕W (a)

for all a ∈ Q1. A representation is said to be indecomposable if it cannot be written as a 
direct sum of two non-trivial representations. Q is said to have:

(1) finite representation type if Q has only finitely many inequivalent indecomposable 
representations;

(2) tame representation type if the inequivalent indecomposable representations of Q in 
each dimension vector occur in finitely many one-parameter families;

(3) wild representation type otherwise.

We recommend [6] as a good source for learning more about the representation theory 
of quivers and its connection with invariant theory.

Now let G denote the subgroup SLα(C) := Πk
i=1 SLα(xi)(C) of GLα(C). The algebra 

C[Vα]G is called the algebra of semi-invariants associated to Q with dimension vector 
α. A remarkable result linking representation type of quivers and invariant theory is the 
following (see [31] for proof):

Proposition 4.1 (Skowronski-Weyman). Let Q be a quiver. Then the following are equiv-
alent:

(1) Q has tame representation type;
(2) C[Vα]G is a polynomial ring or hypersurface for each dimension vector α.

Along similar lines, Sato and Kimura [29] showed that if Q has finite representation 
type then C[Vα]G is polynomial for all dimension vectors α. We make the following 
conjecture generalising Proposition 4.1:

Conjecture 4.2. Let Q be a quiver. Then the following are equivalent:

(1) Q has tame representation type;
(2) C[Vα]G contains a polynomial or hypersurface separating set, for each dimension 

vector α.
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Here a hypersurface separating set is a separating set generating a hypersurface, i.e. 
with cardinality dim(C[Vα]G + 1). Since generating sets are separating sets, the forward 
direction is known. To prove the conjecture, it remains to show that if Q has wild 
representation type, then there exists a dimension vector α for which |S| > dim(C[Vα]G+
1) for every separating set S ⊆ C[Vα]G.

Example 4.3. Representations of the quiver Qn with diagram

...

with n arrows and dimension vector (l, m) over C can be identified with n-tuples of 
l × m matrices, i.e. elements of Mn

l,m(C), and two such are isomorphic if they lie in 
the same GLl(C) × GLm(C) orbit, where the action is by simultaneous left- and right-
multiplication. The quiver is of finite type for n = 1, tame for n = 2, and wild for n ≥ 3. 
Let G = SLl(C) ×SLm(C). Theorem 1.13 shows that the algebra of invariants C[Mn

2,2]G
does not contain a hypersurface separating algebra if n ≥ 5, while C[Mn

2,2]G is known to 
be a polynomial algebra for n ≤ 3, and a hypersurface for n = 4. To verify the conjecture 
for this quiver it remains to show that, for some dimension vector α = (l, m) and n = 3
or n = 4, C[Mn

l,m]G does not contain a polynomial or hypersurface separating set.

Example 4.4. Representations of the quiver Qn

n

where the n represents n separate arrows and α = l can be identified with n-tuples of 
l× l matrices, i.e. elements of Mn

l,l, with a pair of such representations equivalent if and 
only if those n-matrices are simultaneously conjugate under the action of GLl(C). Let 
G = SLl(C). The semi-invariant rings of such actions were studied in [16]. The quiver 
Qn is of tame type if n = 1 and wild otherwise. Theorem 1.4 in [16] shows that C[Mn

2,2]G
does not contain a hypersurface separating set for n ≥ 4, and C[Vn

2,2]G is known to be 
polynomial if n = 2 and a hypersurface if n = 3. Thus to verify the conjecture for this 
quiver it remains to show that, for some dimension l and n = 2 or n = 3, C[Mn

l,l]G does 
not contain a polynomial or hypersurface separating set.
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