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Abstract — This paper presents improvements in image 
gap restoration through incorporation of edge-based 
directional interpolation within multi-scale pyramid 
transforms. Two types of image edges are reconstructed; 
(a) the local edges or textures, inferred from the gradients 
of the neighbouring pixels and (b) the global edges between 
image objects or segments, inferred using Canny detector.  
Through a process of pyramid transformation and down-
sampling, the image is progressively transformed into a 
series of reduced size layers until at the pyramid apex the 
gap size is one sample. At each layer an edge ‘skeleton’ 
image is extracted for edge-guided interpolation. The 
process is then reversed; from the apex, at each layer, the 
missing samples are estimated (an iterative method is used 
in the last stage of up-sampling), up-sampled and 
combined with the available samples of the next layer. 
Discrete cosine transform and a family of discrete wavelet 
transforms are utilized as alternatives for pyramid 
construction. Evaluations over a range of images, in 
regular and random loss pattern, at loss rates of up to 
40%, demonstrate that the proposed method improves 
PSNR by 1 to 5 dB compared to a range of best published 
works.   

Index Terms—Error concealment, multi-scale DCT/DWT 
pyramid, edge detection, image gap recovery, packet loss 
concealment. 

 

I. INTRODUCTION 

mage gap restoration have a wide range of applications 
that includes in-painting of missing or damaged segments 
in still images or the replacement of image data packet lost 
in transmission. Further examples of applications and 

environments where image gap restoration can be usefully 
applied are enhancement of distorted biomedical signals [1], 
restoration of archived damaged images [2] and packet loss 
concealment over internet protocol (IP) networks [3]. 

A main current application of image gap restoration is packet 
loss concealment. Packet loss errors may occur due to network 
congestions or due to signal loss in mobile devices. IP 
networks are best-effort environments [4,5] where the packet 
delivery is not guaranteed. The rapid growth in demand for  

 
 
 

relatively high bandwidth image/video streaming applications 
over IP networks motivates the need for packet loss recovery 
and concealment in order to provide more reliable network 
services and more acceptable user experience [6].  

There are three broad approaches for mitigating the loss of 
quality in received images due to packet loss: (a) automatic 
request for retransmission (ARQ) of the lost packets, (b) error 
control via forward error correction (FEC) methods and (c) 
error concealment (EC) methods. The first method retransmits 
a copy of the damaged/lost packet and results in an increase in 
bandwidth and delay proportional to error rate [5]. This 
method can be used on request for retransmission in networks 
where there is an interaction between sender and receiver. The 
second category of methods, FEC, employs error correction 
coding to recover lost pixels from the received information. 
This implies that the pixel values in successive blocks of 
images would be coded, combined and/or spread over several 
successive packets. This method also involves an increase in 
bandwidth and delay [4-6]. The third category of methods, 
EC, is receiver-based signal processing methods that aim to 
replace the lost packets with estimates obtained from the 
received packets. To recover lost packets from the 
neighbouring pixel values, EC methods utilise the observation 
that images often contain high spatial structures, correlations 
and recurring textures and patterns   [7-16]. 

Among the three solutions listed above for packet loss 
recovery, an effective EC would be most beneficial as it does 
not require an increase in bandwidth, in contrast 
retransmission and FEC requires additional bandwidth and 
perhaps delay. Furthermore, retransmission and FEC 
techniques are not immune to errors. In addition, EC methods 
can be coded as stand-alone apps and deployed in networks or 
used as embedded applications on the receiver 
handsets/terminals; they do not require an international 
telecommunication union (ITU) approved standard. Therefore, 
spatial EC image gap restoration is the category of solution 
explored in this paper. 

At their core, image EC computation algorithms often involve 
two distinct processes: (a) image transformation and (b) 
extrapolation or interpolation of missing gaps. 

For selection of the domain in which image is interpolated, the 
common choices vary from direct interpolations over raw 
spatial domain pixels [8,18], to methods which operate on 
transformation of images using discrete cosine transform 
(DCT) [7] or discrete wavelet transforms (DWT) [17]. EC 
methods using combination of spatial and frequency domains 
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are investigated in [20, 21, 26]. In this paper image restoration 
is investigated within a pyramid structure that lends itself to 
the use of the DCT or various families of DWT as the kernel 
function. 

The main justification for the choice of pyramid as the 
framework for interpolation is one of pragmatic; a relatively 
large gap at the base is reduced to a single sample at the apex 
which can be conveniently interpolated. The result can then be 
progressed downwards towards the pyramid base through a set 
of repeated and scaled-up operations [7,19]. In [22] a hybrid 
image reconstruction (HIR) algorithm is developed that the 
modeling strength of the parametric and nonparametric 
techniques are combined within a multiscale framework. 

For EC interpolation methods, the choice is between non-
directional methods such as bilinear interpolation [7,10,12,16 
,23,27] and directional interpolation [8,11,13-15]. However, 
each method has some drawback. Bilinear and non-directional 
techniques are able to recover the smooth area but fail to 
restore the visually important edge information. An example 
of non-directional is basic spatial interpolation methods which 
use a weighted average of the neighbouring pixels to recover 
the lost gap. Although in this way satisfactory result is 
achieved in the smooth areas, the performance around the 
edges can be blurred [12]. More recently, Zhai et al. [7] 
proposed a method which is a combination of a Bayesian 
framework and a DCT transform on a multi-scale EC 
platform. A further Bayesian estimation method based on an 
adaptive linear prediction put forward by Liu et al. [23]. 
Missing pixels are reconstructed sequentially, pixel by pixel, 
utilising linear prediction, with the order of the predictor being 
determined by adopting a Bayesian information criterion 
(BIC). 

On the other hand while directional interpolation methods do 
well in recovery of the edges, they suffer from leaving stripe-
shaped artifacts in the smooth part of the image. Such as, 
Edge-oriented directional interpolations, that have been 
investigated in [13-15]. Asheri et al. [8] proposed an algorithm 
called novel adaptive Gaussian process (NAGP). The missing 
areas are divided into different sections based on multiple 
hypothesized edges. Then, each section is restored separately 
with adaptive kernel functions. Although some edge distortion 
are avoided, but the difficult process of division of missing 
block may introduce false borders. Multiple edges are also 
addressed in [38], where several directional interpolations are 
combined according to the visual clearness (VC) of the edges. 
Even though complicate edges can be reconstructed, it is hard 
to accurately determine the location and the VC of the edges. 
In [24] an adaptive method is proposed to develop an EC 
algorithm that benefits from a combination of directional and 
non-directional methods. Two steps are involved in this 
technique; at the first stage the type of the error block (EB) is 
detected and classified into one of the three; uniform, texture 
or edge groups. Then, a suitable EC method is applied to each 
category.  

A further approach to SEC is block-matching based, described 
in [16] searches for the best similar macro-block (MB) in the 
image to replace the missing MB, using a technique called 
best neighbourhood matching, but the computational 

complexity of this technique is quite high. In [25] vector-
valued image regularization based on variations methods and 
partial differential equation are introduced for image 
enhancement and in-painting. Another major group of error 
concealment technique is based on sparse linear predictions 
[26]. In [27] a linear predictor is used to restore the missing 
MB areas sequentially. An adaptive procedure, which is a 
combination of sparsity and a missing data imputation 
approach, utilized to compute the coefficients. From the 
analysis above, it is been observed even though a lot of 
attempts have been made to preserve edges in the corrupted 
blocks along with texture, these proposed algorithms often fail 
when more than one edge is involved or a successive sequence 
of blocks are corrupted. Therefore it is evident to obtain high 
quality image restoration results, it is of paramount importance 
to include the image edge information.  

The preliminary idea of the proposed method suggested in 
[42], a complete version and more results is proposed in this 
paper. The main contribution of this work are: (1) 
improvements in multi-scale image gap restoration obtained 
through incorporation of the local texture interpolation and 
global edge-guided interpolation based on Canny edge 
detector, (2) introduction of edge ‘skeleton’ layers within 
pyramid transform structures, (3) Comparison of DCT and 
families of DWT as the basis for pyramid transformation and 
(4) use of iterative methods for improving various layers of 
pyramid reconstruction.  

The remainder of this paper is organized as follows. In section 
II, the theory and implementation of the proposed multi-scale 
edge-guided image restoration method is introduced. The 
experimental evaluation results and comparison with 
published works are presented in section III. Finally section 
IV presents concluding remarks. 

II. THE PROPOSED IMAGE GAP CONCEALMENT  

A.  Multi-Scale Pyramid Discrete Cosine and Wavelet 
Transforms 

The multi-scale pyramid processing method, illustrated in Fig. 
1 (DCT) and Fig. 2 (DWT) progressively decomposes image 
macro-blocks (MB) into four spectral quadrants; LL, LH, HL, 
HH where L and H denote low and high frequency halves of 
the spectrum respectively. After the first stage of 
decomposition, at each subsequent down-sampling and 
decomposition stage, the LL quadrant is further decomposed 
into four spectral quadrants until the macro-block is reduced to 
a single pixel as shown in Fig. 1. For a MB of size 8 × 8, three 
stages of decomposition and down-sampling reduces the MB 
to one pixel. The pyramid transformation can be expressed as: 

𝑓𝑝,𝑞
𝑖 =  ∑ ∑ 𝑓𝑚,𝑛

𝑖−1

𝑁𝑖−1

𝑛=0

∅(𝑚, 𝑛, 𝑝, 𝑞)  𝑖 = 1, … , 𝑁      
𝑀𝑖−1

𝑚=0

(1) 

where 𝑓𝑝,𝑞
𝑖  is the transformation layer 𝑖 and the function ∅ is 

the transformation kernel - at the pyramid base level for layer 
0, 𝑖 = 0, 𝑓𝑚,𝑛

0 = 𝑖𝑚𝑎𝑔𝑒(𝑚, 𝑛).  

For example the DCT pyramid layers are obtained as: 
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𝑓𝑝,𝑞
𝑖 = 𝐼𝐷𝐶𝑇2 (𝐷𝐶𝑇2 (𝑓𝑚,𝑛

𝑖−1))                    (2) 

 where for an 𝑀𝑖 × 𝑁𝑖  matrix, at the 𝑖𝑡ℎ layer is defined as: 

𝑓𝑝,𝑞
𝑖 = 𝑎𝑝𝑎𝑞 ∑ ∑ 𝑓𝑚,𝑛

𝑖−1

𝑁𝑖−1−1

𝑛=0

cos
𝜋(2𝑚 + 1)𝑝

2𝑀𝑖−1
cos

𝜋(2𝑛 + 1)𝑞
2𝑁𝑖−1

𝑀𝑖−1−1

𝑚=0

 

(3) 

for a block size of 8 × 8,  𝑖 = 0 ⋯ 3, 𝑀𝑖 = 𝑁𝑖 = 8
2𝑖  , 0 ≤ 𝑝 ≤

𝑀𝑖 − 1, 0 ≤ 𝑞 ≤ 𝑁𝑖 − 1 and 𝑎0  = 1 √𝑀𝑠⁄ ,    𝑎1…𝑀𝑖 =
√2 𝑀𝑖⁄ .  

For a 8 × 8 MB at base level 0, the DCT coefficients of the 
layers 0 to 3 are defined in terms of the base layer DCT 
coefficients as: 

Pyramid base layer 0 MB is raw image 𝑓𝑝,𝑞
0  p=0:7, q=0:7. 

Pyramid layer 1 extracted from the base layer 0: 

             𝑓𝑝,𝑞
1 =  𝐼𝐷𝐶𝑇2 (𝐷𝐶𝑇2(𝑓𝑝,𝑞

0 ))     p=0:3, q=0:3     (4) 

Pyramid layer 2 coefficients extracted from the layer 1: 

      𝑓𝑝,𝑞
2 =  𝐼𝐷𝐶𝑇2 (𝐷𝐶𝑇2(𝑓𝑝,𝑞

1 ))     p=0:1, q=0:1      
Pyramid layer 3, the apex coefficients extracted from layer 2: 

𝑓𝑝,𝑞
3 =  𝐼𝐷𝐶𝑇2 (𝐷𝐶𝑇2(𝑓𝑝,𝑞

2 ))     p=0, q=0 

Note that, as shown in Fig. 1, the down-sampling by a factor 
of two is performed by simply retaining a quarter of the      
low-frequency index coefficients, the LL quadrant, and 
discarding the remaining three quarters, higher index, 
coefficients.  As above, a set of similar equations can be 
defined for discrete wavelet transforms. 

During the re-construction stages, starting from the apex of the 
multi-scale pyramid, image up-sampling by a factor of two is 
performed by a combination of a process of zero-padding of 
the 2D-DCT/DWT coefficients and the subsequent application 
of inverse 2D-DCT/DWT. 

 
Fig. 1.  Block diagram of a three-stage DCT pyramid image decomposition 

and its application to Foreman image. Down-sampled sub-images are 
extracted from LL quadrant of DCTs. 

 
Fig. 2. (a) block diagram of the three-stage DWT pyramid image 

decomposition and its application to Lena image. Equivalence: cA=LL, 
cH=LH, cV=HL, cD=HH. 

B. Image Gap Concealment Using Pyramid Transform 

The proposed method for MB gap restoration, illustrated in 
Fig. 3, (Fig. 4 shows the subjective result) is as follows: 

1) Decompose image macro-blocks into a DCT/DWT 
pyramid structure, with the apex of the pyramid 
representing the last stage where each MB of size 
8 × 8 is reduced to one pixel only. 

2) Starting from the pyramid apex interpolate the 
decimated gap using the local edge information from 
neighbouring pixels. 

3) Using an edge detector, track the global edges in the 
interpolated images and produce edge skeleton layer.  

4) Enhance the interpolated gap estimates using the 
global edge information. 

5) Up-sample the enhanced interpolated image, via 
zero-padded inverse transform, and combine/merge 
with the available received samples of the same layer 
of up-sampling. 

6) Go to step (2) and repeat the process for each 
intermediate stage of up-sampling. 

The details of these sub-processes are described next. 

 
Fig. 3.  Three-stage DCT/DWT pyramid image decomposition,                              

(D-Interp=Directional Interpolation). Top row is pyramid apex, bottom row is 
the raw corrupted/enhanced image (details: three coefficient parts). 
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Fig. 4. Application of the proposed pyramid method to restoration of 

corrupted image of Lena with 25% of 8×8 block loss. Left top corner is the 
pyramid apex. Each row represents a layer which is up-sampled at the point of 

reentry to the next lower layer. 

C. Local Edge-Guided Image  Gap Interpolation 

The proposed multi-scale gap restoration method preserve the 
local edge or texture information at each scale of the 
reconstruction process. Therefore, applying the edge based 
enhancement prevents the blurring distortions of textures and 
provides improved interpolation at a local texture level and in 
particular at the boundaries of the available and the missing 
samples. Note that the local edges may not show up at the later 
stage of detection of the global main edges after thresholding 
out the insignificant edges. 

The main advantage of inclusion of local edge or texture 
within pyramid image restoration is that global edge detection 
would be erroneous without first interpolating the gaps with a 
local texture interpolator as an initial approximation. Hence, 
the benefits of local texture interpolation are: 

1) Interpolation of textures within segmented homogenous 
regions; 

2) Pre-processing for subsequent edge-guided interpolation 
across ‘global’ segments; 

3) Can be used in strategies that combined local and global 
interpolations. 

At each multi-scale level, spatial gap concealment interpolates 
the missing block by using the edge information obtained from 
the surrounding neighbours. Preserving the texture edges is 
important for successful error concealment. In this respect 
several observations are instructive: 

1) Along the direction of an edge, the differences of pixel 
values are relatively small; 

2) Across the direction of an edge the differences of pixel 
values are relatively large; 

3) On either side of a gap, the differences of pixel values 
across an edge are consistent and of similar sign, with the 
possible exception of the gap coinciding with the end-
points of an edge segment.  

The estimate for the missing pixel at the final level of 
decomposition, i.e. at the pyramid apex, is an edge-weighted 
mean of the neighbouring pixels with consistent edges. At the 
successive levels where an 𝑀 × 𝑀 block replaces a gap, 
directional edge-guided interpolation are used to fit the 
missing blocks with the edge patterns of the available 
neighbouring pixels. 

As illustrated in Fig. 5, the directional interpolation preserves 
the following three types of local edges: 

1) Horizontal edges above and below the missing pixels, 
Fig. 5.a. 

2) Vertical edges to the left and right of the missing pixels, 
Fig. 5.b. 

3) Cross edges across four directions, Fig. 5.c. 

 
                 (a)                    (b)                          (c) 

Fig. 5. Local-edge guided directional interpolation for each missing pixel at 
the apex of multi-scale pyramid (in eight possible directions). Black pixels 

represent the missing pixel.  The direction of edge at each surrounding pixel 
(shown by dot circles) is computed by using the information of surrounding 

pixels shown by two arrows with the same colour.  

At the apex of the pyramid, where an MB is reduced to one 
pixel, the edge-enhanced estimation of the missing sample is 
given by the following expression. 

𝑓𝑚,𝑛 = ∑ ∑ 𝑤𝑚+𝑘,𝑛+𝑙(𝑓𝑚+𝑘,𝑛+𝑙+𝐸𝑚+𝑘,𝑛+𝑙)
𝑘,𝑙𝐻,𝑉,𝐶∈𝑅𝐼

              (5) 

where E=edge and 𝐸(𝑚 + 𝑘, 𝑛 + 𝑙) is a local estimation of the 
edge obtained separately in each of horizontal (H), vertical (V) 
and cross directions (C) depicted in Fig. 5 and RI is the 
Region of Interest which for local interpolation, on un-
segmented image,  includes information from all neighbouring 
pixels.  The edges along the directions (𝑚, 𝑛)  →
(𝑚 + 𝑘, 𝑛 + 𝑙) are obtained from the average of all the 
available edges of the same direction in the immediate 
neighbourhood of the missing sample. For example, at the 
apex level, where the gap is reduced to one sample, for the 
horizontal direction (Brown dot and corresponding brown 
arrows which represent the direction and neighbouring pixels, 
respectively), 𝐸(𝑚 − 1, 𝑛), may be obtained as: 

 𝐸𝑚−1,𝑛 = {
0  𝑖𝑓 𝐸𝑚−1,𝑛−1 × 𝐸𝑚−1,𝑛+1 < 0 

  0.5(𝐸𝑚−1,𝑛−1 + 𝐸𝑚−1,𝑛+1)   𝑒𝑙𝑠𝑒   
       (6) 

As can be seen in Equation 6, if both estimates of edges for 
 𝐸𝑚−1,𝑛−1 and 𝐸𝑚−1,𝑛+1 are not in the same direction, the 
value of 𝐸𝑚−1,𝑛, is set to zero, otherwise  𝐸𝑚−1,𝑛 is set to the 
average value of the estimates. In order to make an estimate 
consistent with the most distinct neighbourhood edges, the 
edge combination weights can be expressed as a function of 
the intensity of the edges, as: 

𝑤𝑚+𝑘,𝑛+𝑙 =
𝐸𝑚+𝑘,𝑛+𝑙

∑ 𝐸𝑚+𝑘,𝑛+𝑙𝑘=−1:1,𝑙=−1:1 𝑘,𝑙≠0
               (7) 

 Note that ∑ 𝑤𝑚+𝑘,𝑛+𝑙𝑘=−1:1,𝑙=−1:1 𝑘,𝑙≠0 = 1. 
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After interpolation of the apex sample, at the subsequent 
stages of interpolation, for blocks of size 2 × 2, 4 × 4 and 
8 × 8 a strategy similar to that described above is used. 
Staring from the outer boundaries of the MB, the missing 
pixels are progressively replaced towards the center, using, the             
edge-guided interpolation, for an estimate consistent with the 
neighbouring edges in each of the horizontal, vertical and 
cross directions. 

D. Global Edge-Guided Image  Gap Interpolation 

From the literature it is observed that preserving the local 
edges mitigates blurring distortions of textures and provides 
improved interpolation at a local texture level and in particular 
at the boundaries of the available and the missing samples. For 
further improvement where the missing blocks contain 
significant edges, the global edge information, not necessarily 
evident within the lost macro-blocks, need to be utilised. 

The global edges are used in a manner as to avoid 
blurred/smeared interpolation across the significant edges; the 
main cause of large interpolation errors and visible distortions. 
Hence with the availability of the boundary traces of the 
edges, it is possible to segment the pixels within and in the 
neighborhood of missing blocks and to confine the available 
samples used for interpolation of a missing sample to within a 
relatively homogeneous region on each side of the edge or 
onto the edge itself as required.  

After edge-based segmentation, the interpolation Equation 5 
will have its regions of interests (RI), for estimation of the 
edges, 𝐻, 𝑉, 𝐶 ∈ 𝑅𝐼, confined to edge-segmented regions 
composed of relatively homogenous textures.  

Note from Fig. 3 that the global edge-guided interpolation is 
performed after local edge interpolation in order to mitigate 
the impact of the missing samples on the edge detection. For 
estimation of the main edges in the image, we investigated the 
application of a popular edge detection method namely the 
Canny edge detector. 

D.2 Canny Edge Detector 

Canny detector is a multi-stage algorithm for detection and 
tracing of the edges in images. The variance of the Gaussian 
filter and the maximum and minimum thresholds of the 
significant edges can be varied to change the sensitivity of the 
Canny detector. Fig. 6 shows the application of a Canny 
detector to multi-scale Lena and Pepper with image scale 
progressively down sampled by 2:1, in three stages, from size 
512 × 512 to 64 × 64. 

 

 
Fig. 6. Canny edge detector output for multi-scale Lena and Peppers at scales 

from left to right: (a) 5122, (b) 2562, (c) 1282, (d) 642. 

Incorporating Global Edge-guided Interpolation in an 
Iterative Loop 

At the base level of the process, an iterative pruning strategy is 
applied for edge detection. This relies on varying the two 
parameters of a Canny detector, the variance of the Gaussian 
filter and the threshold of the significant edges, at each 
iteration in order to achieve improved results. As shown in 
Fig. 8, the experiment starts the process by using a higher 
level of Canny edge details at the first iteration, and then 
reduces the amount of details. Simulation results, Fig. 7, show 
the overall PSNR obtained by fixing the Gaussian filter 
variance at an empirically obtained optimal value and then 
varying the threshold in the range 0.01-0.05. Note that starting 
from a thresh value of 0.01 the best PSNR is obtained at the 
4th iteration after three discrete -step increase in the threshold 
value (therefore, the number of iteration set to four). 

 
Fig. 7. Performance variation with increasing threshold in the range 0.01-0.05 

for a loss rate of 25%  on Lena for the last stage of image reconstruction. 

 
Fig. 8. Lena edge layers, from the left to right, four stages of iteration for 

increasing values of threshold. 

III. EXPERIMENTAL RESULTS 
For performance evaluation results the proposed algorithm has 
been tested on a number of standard test images namely; Lena, 
Peppers, Man, Boat, Elaine and Baboon. The image sizes are 
512×512 pixels, with each grey-scale or one of the primary 
colours represented by 8 bits per pixel in unsigned integer 
format with a range of 0-255. The size of the missing macro-
blocks is set to 8×8 and 16×16 pixels. Three types of missing 
MBs are evaluated; regular missing MB ≈ 25% loss rate, (Fig. 
9 and Fig. 10), random 8×8 missing MB ≈ 10% loss rate (Fig. 
12), ≈ 25% and ≈ 40% loss rate (Fig. 11), regular and random 
16×16  missing MB (Fig. 13, Fig. 14). The choice of the 
percentage loss is guided by our desire to compare our results 
with available seventeen results reported in the literature 
[7,23,28,30]. The PSNR results of restored images are given in 
Tables I–VI. As can be observed from the tables, the proposed 
EC algorithm achieves the best performance for all types of 
loss. 

The performance measure criteria used for assessment of the 
quality of image recovery is the widely employed             
Peak-Signal-to-Noise-Ratio (PSNR) defined as: 

𝑃𝑆𝑁𝑅 = 20 log10
𝑀𝐴𝑋𝐼

𝑅𝑀𝑆𝐸
      dB                            (8) 

35.5
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35.7
35.8
35.9

36
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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N

R 
(d
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where 𝑀𝐴𝑋𝐼 = 255 for a pixel value represented in unsigned 
integer format and the root mean squared error (RMSE) 
function is defined as: 

 𝑅𝑀𝑆𝐸 = √1
𝑁

∑ (𝑓(𝑚, 𝑛) − 𝑓𝑟(𝑚, 𝑛))2
𝑑𝑜𝑚𝑎𝑖𝑛             (9) 

where 𝑓 and 𝑓𝑟 are the clean test image and restored image 
respectively and the domain over which the RMSE is 
calculated may include only the missing samples or it may 
alternatively include the entire image samples composed of 
the missing and the available samples and 𝑁 is the total 
number of samples used in calculation of the RMSE. 

A. Evaluation Case 1- Image with Regular Missing MBs 

The proposed method is applied to images of Lena, Man 
peppers, Boat and Elaine. The PSNR results are compared to a 
set of published work in total representing a number of 
methods that employ Bayesian and/or edge information for the 
recovery of regular lost macro-blocks. The results are 
displayed in three different tables. Table I and Table II 
represents comparison with published results, where the PSNR 
are averaged over the whole image including the available 
samples and Table III represents comparison with published 

results where the PSNR are averaged over the missing pixels 
only. 

Table I illustrates the performance of the several methods 
(values are taken from [30]). As displayed in Table I, the 
proposed method performs better than the alternatives 
considered and there is an improvement of 0.79 in DCT case 
and 0.85 dB in DWT case to compare with the best average 
performance when the PSNR are computed from whole image. 
In addition, in Table II (values are taken from [23]) fourteen 
well-known published works are compared with the proposed 
method. The proposed method’s outcomes remarkably surpass 
the best result among them by 0.36 dB. Table III (values are 
taken from [7,28]) includes results between six published 
techniques and the proposed method on Lena, and there is an 
increase of 1.27 dB and 1.32 dB for DCT and DWT 
respectively, compared with the best result among all 
methods.  

To better represent the improved performance of the proposed 
method subjective quality comparisons are given in Figs. 9–
10. Fig. 9. illustrates the performance comparison between the 
proposed method and six classical published works on the 
Man image.  

 

 
Fig. 9.  Experiment on block size of 8 8 pixels of the “Man” image. (a) Original 512 512, (b) damaged image with 25% missing blocks. Restoration using the 
methods of :(c) [35] (PSNR = 25:47 dB), (d) [29]  (PS PSNR = 27:25 dB), (e) [37]  (PSNR = 27:65 dB), (f) [36]  (PSNR = 27:44 dB),  (g) [21] (PSNR = 27:94 

dB), (h) [30] (PSNR = 29:87 dB),  (I) Proposed  method (31.61 dB). 

(a) (c)(b)

(d) (e) (f)

(g) (h) (i)
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Fig. 10. From left to right; the original images, the image with 25% regular pattern loss and the restored images for Lena, Pepper and Man. 

 
Fig.11. Top from left to right; the original Peppers  image, the image with 25% random loss and the restored image, bottom the original Peppers, the image with 

40% random loss with PSNR of 33.84 dB and 30.95 dB respectively, and the restored image. 
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Fig. 12. From left to right; the original Lena, Man and Elain images, the image with 10% random loss and the restored image. 

Table I 
Performance comparisons for regular pattern loss rate 25%, MB size= 8×8, 

PSNR calculated over whole image on Lena: proposed 1, with the DCT. 
Proposed 2, the DWT. 

 

Methods PSNR (dB) 
Lena Man Pepper Boat Elaine Ave. 

[35] 28.68 25.47 27.92 26.33 29.84 27.65 

[29] 29.99 27.25 29.97 27.36 30.95 29.10 

[36] 31.69 27.44 31.72 29.22 32.10 30.43 

[37] 31.86 27.65 31.83 29.36 32.07 30.55 

[21] 31.57 27.94 32.76 30.11 31.92 30.86 

[30] 34.65 29.87 34.20 30.78 34.63 32.83 

[11] 34.91 30.62 35.18 31.40 35.63 33.55 
Proposed 
DCT 36.08 31.59 36.23 31.76 36.08 34.34 

Proposed  
DWT 36.12 31.61 36.35 31.79 36.13 34.40 

 
Severe blocking artifacts are observed (Fig. 9) using [35], 
[29], and [37]. Although the blocking artifacts are smaller in 
[36], [21] and [30], they produce blurred and lumpy 
boundaries, as shown around the shoulder of Man. 
Furthermore, the outcomes show that the proposed method 
improved the PSNR result by 1.74 dB when compared with 
the best performance among all the other methods. Moreover, 

Table II 
Performance comparisons for MB loss rate of 25%, MB size= 8×8, PSNR 

calculated over whole image for Lena. 
 

Methods 
Image Lena 

Methods 
Image Lena 

PSNR (dB) PSNR (dB) 

[29] 29.99 [30] 34.65 

[35] 28.68 [39] 34.45 

[36] 31.69 [11] 34.91 

[37] 31.86 [24] 34.07 

[21] 31.57 [23] 35.70 

[40] 32.05 [27] 33.74 

[28] 35.70 [38] 34.79 

Proposed DCT  36.08 

Proposed DWT  36.12 

 
Fig. 10 demonstrates the original, erroneous and reconstructed 
images after applying the proposed error concealment method 
and it can be seen that the result is not blurry, with the shape 
having been recovered correctly. In addition, Fig. 13 illustrates 
the performance comparison between the proposed method 
and three previously published methods for 16×16 missing 
block size on Lena, and the proposed method performs better. 
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Fig. 13. Experiment on block size of 16×16 pixels of the Lena image. (a) Original image 512×512, (b) damaged image blocks. Restoration using 
the methods of: (c) [41] (PSNR = 33.62 dB), (d) [28] (PSNR = 37.48 dB), (e) [11] (PSNR = 37.37 dB), (f) Proposed DWT (PSNR = 37.65 dB). 

Table III 
Performance comparisons for regular  loss rate 25% MB size= 8×8, PSNR 

calculated just for region of missing block on Lena: proposed 1, with the DCT. 
Proposed 2, the DWT. 

 

Methods Image Lena 
PSNR (dB) 

[7] 28.51 

[10] 22.97 

[30] 26.00 

[39] 28.11 

[27] 27.43 

[28] 28.25 

Proposed DCT 29.78 

Proposed DWT 29.83 

B. Evaluation Case 2 – Image with Random Missing MBs 

The random loss pattern involves missing macro-blocks at 
random position that may include a random sequence of 
adjacent horizontal and/or vertical losses. Therefore, in the 
random model of packet  loss  there  is no  specific  pattern  of 
loss and two or more lost MBs could be adjacent. As the 
positions of the missing macro-blocks are random and distinct 
in each evaluation test and therefore, the program is applied 
for a number of iterations to find the mean PSNR distortion. 

Table IV  
Performance comparisons for random loss rate of 10% (MB size = 8×8) on 

Lena rerun five times (DWT). 

Table IV shows the number of iterations and the average of 
those results on Lena (the same process are done for each 
image to find the mean PSNR distortion).Table V shows the 
proposed approach performs better than the rest for random 
MB loss rate of size (8×8), and there is an improvement of 
0.16 dB (in DCT case) compared with the best average 
performance among all results, and also there is an 
improvement of 0.25 dB (in DWT case) compared with the 
best average performance among all results. The `performance 
of the algorithm is tested in case of 16 × 16  block loss, and 
Table VI (values taken from [23]) shows the results on Lena, 
Baboon and Elain. The average gain over the best performance 
along all published works is over 0.29 dB and 0.40 dB in DCT 
and DWT cases, respectively. 

Table V 
Performance comparisons for MB loss rate random 10%, MB   size= 8×8, 

PSNR calculated over whole image for Lena, Man and Elain. 
 

Methods PSNR (dB) 
Lena Man Elain AVG. 

[29] 32.32 32.17 34.20 32.89 

[40] 35.06 34.40 36.79 35.41 

[39] 35.09 33.95 36.73 35.25 

[24] 35.11 34.14 36.38 35.21 

[27] 36.82 34.63 38.48 36.64 

[38] 37.54 35.82 39.16 37.50 

[36] 37.84 35.70 39.44 37.66 

[28] 38.58 35.59 39.73 37.96 

[23] 38.63 36.36 40.03 38.34 

Proposed DCT 39.08 36.32 40.11 38.50 

Proposed DWT 39.16 36.42 40.21 38.59 

(d) (e) (f)

(a) (c)(b)

       Image 
Result 

Lena 

1 2 3 4 5 AVG. 

PSNR (dB) 39.11 39.06 39.35 38.73 39.58 39.16 
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Fig. 14. From left to right; the original images, the image with random 

consecutive 16 × 16 MB loss and the restored images for Baboon. 

In order to evaluate the subjective performance result for the 
random block loss the application of the proposed method to 
Lena, Man and Elain images, are shown in Fig. 12. Moreover, 
Fig. 11 shows the results for 25% and 40% random missing 
blocks on the Peppers image. Even though many missing 
blocks are included in each process, the proposed method is 
able to reconstruct the edges and texture within the image 
Furthermore, random block loss of 16 × 16 is tested on 
Baboon image (Fig. 14). It clearly shows that the proposed 
algorithm completely recovers the boundaries along with 
the texture. Fig. 15 demonstrates the performance of the 
proposed method in the case of various random loss rates of 
10%, 25% and 40% for Lena, Man, and Elain images. Fig. 15 
shows that the average amount of the proposed method 
surpassed the average of the best published method. It is been 
observed that by increasing the loss rate the performance 
decreased, but it is still convincing. 

 
Fig. 15. The performance (PSNR) of the proposed method in the case of 

various random loss rate (10%, 25%, 40%) for Lena, Man and Elain images. 

Fig. 16. From left to right original Lena image, corrupted and restored image 
with DCT top and DWT down. 

Table VI 
Performance comparisons for MB loss rate random size= 16×16, PSNR 

calculated over whole image for Lena, Baboon and Elain. 
 

Methods PSNR (dB) 
Lena Baboon Elain AVG. 

[29] 31.68 30.26 32.27 31.40 

[40] 34.75 30.95 34.88 33.52 

[39] 35.17 31.06 34.11 33.44 

[24] 34.66 29.88 33.63 32.72 

[27] 37.87 30.31 36.89 35.02 

[38] 38.57 31.72 36.64 35.64 

[36] 37.24 31.73 36.36 35.11 

[28] 38.44 30.74 37.33 35.50 

[23] 39.15 31.91 37.93 36.33 

Proposed DCT 38.54 33.56 37.78 36.62 

Proposed DWT 38.62 33.68 37.91 36.73 
 
Run-Time Comparison 

To compare the run time of different EC algorithms, test 
512×512 images (Lena, Baboon and Elaine) are tested. The 
averaged run time for different loss pattern is presented in 
Table VII. The computation time reported in the table is 
obtained with non-optimized MATLAB implementations with 
Intel CORE i5, 2.3 GHz CPU and 4 GB memory.2 We can see 
that the proposed algorithm is much faster (especially in the 
proposed DCT method) than the recently proposed 
[23,27,28,38] algorithms. Although the proposed algorithm 
requires longer time than some methods, its advantages over 
other methods are obvious in terms of objective and subjective 
evaluations, as shown in previous Sections. 

Table VII 
Average run time in second comparison for 512×512 images, different MB 

loss rate for Lena, Baboon and Elain. 
 

Methods 
Run Time (second) 

Regular 
8×8 

Random 
8×8 

Random 
16×16 

[29] 4.82 1.91 2.59 

[40] 0.10 0.08 0.07 

[39] 1.28 0.57 0.59 

[24] 4.59 2.81 9.09 

[27] 79.75 29.84 124.68 

[38] 426.59 170.88 89.16 

[36] 9.05 3.56 3.24 

[28] 90.28 33.66 29.44 

[23] 155.30 63.22 53.30 

Proposed DCT 53.62 43.32 45.71 

Proposed DWT 65.19 56.98 58.13 

22

27

32

37

42

1 2 3

PS
N

R
   

(d
B

) 

Loss Percentage (1:10%, 2:25%, 3:40%) 

Lena

Man

Elain

Ave. Proposed
Method
Ave. Best
Published Method
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Fig. 16 shows there is a slight improvement of details in DWT, 
compared with DCT, but the run time is higher for DWT 
(Table VII) as it was expected from previous works [43]. 

IV. CONCLUDING REMARKS 

In this paper we have proposed a method for restoration of lost 
macro-blocks in digital images. The proposed algorithm 
includes combination of multi-resolution transforms, 
directional interpolation and edge-guided enhancement 
capable of restoring missing blocks including the edges. The 
main contribution of this work is the incorporation of local and 
global edge-guided interpolators within a pyramid structure in 
an iterative loop at the last stage. Two types of pyramid 
transformation were evaluated namely DCT and wavelets. The 
methods were evaluated on a number of different test images 
in a range of loss rates for regular and random pattern of 
losses. The results for DCT and wavelets are similar (with a 
slight improvement of details in DWT) and achieve better 
performance than other state-of-the-art methods in terms of 
objective and subjective evaluation. The incorporation of local, 
global edges and iterative process improves interpolation. The 
results obtained from DCT pyramid are comparable with those 
obtained from wavelets with the DCT offering a slight 
advantage in computation time. The experimental results 
demonstrate that significant improvement in the quality and 
PSNR of the restored images are obtained by the proposed 
edge guided image restoration method. An interesting aspect 
of this work is the use of iterative methods for improving 
various layers of pyramid reconstruction including the image 
and the edge, or skeleton, layers. This is an area of research 
where further work may be fruitful. Moreover, to extend the 
proposed methodology it will apply into the colour and 
moving images. 
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