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Abstract 

This research aims to develop Hierarchical Bayesian models for road accident 

counts that take account of the spatial dependency in the neighbouring areas 

or sites. The Poisson log-linear model is extended by introducing a second 

level of random variation that includes a conditional autoregressive (CAR) 

component. Both models for accidents at the area level and models for acci

dents on a road network are developed. Areal models are fitted using data for 

counties and districts in England covering two different periods and data for 

wards in the West Midlands region in 200l. Network models are fitted to link 

data for the MI motorway and to junction data for the city of Coventry. 

Results show that, in most cases, adding a spatial (CAR) component to con

ventional models produces better estimates of the expected number of acci

dents in an area or at a site. Signs of the coefficients for explanatory variables, 

including level of traffic and road characteristics, are consistent with expecta

tion. Levels of the spatial effects in a CAR model reflect the relative influence 

of the unknown or unmeasurable explanatory variables on the expected num

ber of accidents. Results from models at the local authority level in the 2000s 

show that spatial effects are positive in London boroughs and are negative in 

most metropolitan districts. For accidents at the ward level in the West Mid

lands, the performance of the CAR model is similar to that of the non-CAR 

model which includes log-normal random effects and metropolitan county ef

fects. For models of accidents on the MI, several links are identified to have 

positive and fairly large spatial effects. For Coventry junction accidents, the 

CAR model does not perform better than the non-CAR model. Approaches 

to including temporal effects in spatial models when data cover two or more 

periods and jointly modelling different types of accidents are also proposed 

and examined. 
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Two applications of the CAR models developed in this research are intro

duced. The first application is about predicting the number of accidents in a 

local authority in a new year based on previous years' data. One advantage 

of using the CAR model is that it produces more precise predictions than the 

non-CAR model. The second application of the CAR model is a new ap

proach for site ranking. The sites selected by such a criterion are those with 

high risks caused by some unknown or unmeasured factors (for instance, cur

vature or gradient of roads) which are spatially correlated. Further on-site 

investigation will be needed to identify such factors. 
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Chapter 1 

Introduction 

1.1 Background 

Every year in the world, road accidents cause injury and death, and result in a serious 

economic burden. Although in Great Britain the numbers of people killed and seriously 

injured have been reducing year by year, road safety still remains a serious problem. There 

were 280,840 casualties and 200,700 reported road accidents involving personal injury in 

Great Britain in 2005 (Department for Transport, 2006c). The total cost-benefit value of 

prevention of road accidents in 2005 was estimated to be over £18 billion (Department 

for Transport, 2007 a). 

Against this background, in March 2000 a new road safety strategy 'Tomorrow's 

Roads-Safer for Everyone' was published by the government (see Department for Trans

port, 2001). It establishes challenging casualty reduction targets to be achieved by 2010. 

Compared with the baseline averages for 1994 to 1998, it aims to achieve: 

1. a 40% reduction in the number of people killed or seriously injured in road acci

dents; 

2. a 50% reduction in the number of children killed or seriously injured; 

3. a 10% reduction in the slight casualty rate. 

While good progress has been made towards the government targets, further reductions 

in casualties are needed. Numbers of casualties are closely related to the numbers of road 
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accidents that involve injuries. Therefore, any reduction in casualties is associated with 

a reduction in injury accidents. In order to reduce annual road accidents at the national 

level, similar targets for reductions in accidents are set at the regional level, for instance 

for local authorities. In addition, to improve road safety, causes of road accidents and the 

relationship between numbers of accidents and relevant factors, such as the level of traffic 

and road geometry, need to be investigated and studied. 

As described by Ogden (1996), road traffic may be considered as a system that consists 

of various components. These components, such as the human, the vehicle and the roads, 

interact with each other. An accident may be considered as a failure in the system. The 

UK Department of Transport (Department of Transport, 1986) defines an accident as 'a 

rare, random and multi-factor event always preceded by a situation in which one or more 

persons have failed to cope with their environment'. Whether motivated by a humanitar

ian, public health or economic concern, the analysis of previous accident data is needed 

in road safety research. Statistical methods have been used in this area for a long time. 

With the development of the theory of generalized linear models (McCullagh and NeIder, 

1989), improved methodologies for analysing road accidents become available. However, 

researchers face more challenges today. The number of journeys and the volume of traffic 

on the road become greater and greater especially in the developing countries. The road 

network structure becomes more complicated. There are more interactions between road 

users and the road environment. All these situations generate more information and more 

complex road user behaviour for researchers to cope with. 

The approach to modelling of numbers of road accidents has experienced several 

stages in the development of statistical technique. Many statistical models have been 

developed to relate the accident count to demographic characteristics, road geometry and 

traffic characteristics (see, for instance, Jarrett et aI., 1989; Miaou, 1994; Milton and Man

nering, 1998). The response variable is usually an accident frequency, that is, the total 

number of accidents of a particular type (for instance, determined by severity) in a wider 

geographical area (for instance, a local authority) or at a site (for instance, a link or a 

junction) during a fixed period of time. It is usually assumed to be Poisson distributed. 
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However, the mean of the Poisson distribution can vary from area to area or from site to 

site and depends on the characteristics of the area or site, such as the level of traffic and 

road geometry. In order to relate the accident count to such explanatory variables, con

ventional approaches usually apply generalized linear models, fitted by maximum like

lihood. Maher and Summersgill (1996) give a broad review of the statistical methodol

ogy for accident models. The Poisson log-linear model and the negative binomial model 

are two well-known forms of model in road safety research. They are special instances 

of generalized linear models. The former does not perform well when the data display 

over-dispersion, that is the residual variance is larger than the fitted Poisson mean. Such 

over-dispersion can be taken account of by introducing an extra level of random effects 

that follow a gamma distribution in the Poisson mean. This leads to a negative binomial 

model that is much used in recent road safety research. 

Models of accidents at different spatial levels should be used for different research 

purposes. In this thesis, models of accidents at the local authority or ward level are called 

areal models and models of accidents at sites in a road network are called network models. 

Areal models can be used to study the relationship between accident frequencies and 

factors like road conditions and economic development. They can also be used to compare 

accident frequencies in different administrative areas, such as local authorities, during the 

same period or to study changes in accident frequencies in an area in different years. See 

for instance Jarrett et al. (1989)~ Levine et al. (1995b)~ Miaou et al. (2003). Network 

models look at road accident frequencies at a more local level (on links or at junctions) 

and are usually developed to investigate the relationship between accident frequencies and 

contributory factors such as traffic flow and features of road geometry like road width, 

number oflanes and type of junction (see, for instance, Layfield et aI., 1996~ Summersgill 

et aI., 1996, 2001 ~ Walmsley, Summersgill and Payne, 1998). They can also be used 

for prediction (see, for instance, Greibe, 2003~ Mountain et aI., 1996; Qin et aI., 2003). 

Moreover, they can be applied to identify high-risk sites and to evaluate the effectiveness 

of engineering treatments on selected sites (see, for instance, Hauer, 1997; Miaou and 

Song, 2005; Mountain et aI., 1995a). 
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The performance of areal models and network models with respect to the above men

tioned research purposes depends on how precisely the expected accident frequency in an 

area or at a site can be estimated, which in tum is determined by the explanatory power 

of the statistical models. In principle, if all the contributory variables for road accidents 

could be identified and measured, and if the correct form of the model were known, the 

expected accident frequency would be estimated well. However, in practice, variables like 

traffic levels cannot be measured precisely and there are other contributory factors that are 

difficult to measure or even not known. In addition, a 'true' model for accident counts is 

not known. Therefore, a great challenge in road safety research is to improve statistical 

models for road accidents by taking account of contributory factors that are not directly 

measured by the explanatory variables. Under such circumstances, there are several ways 

to think about the problem. 

First, if data for some contributory factors are not available, is it possible to find vari

ables that can be measured and used as proxies for the contributory factors? Sometimes, 

the answer will be yes. For instance, Bailey and Hewson (2004) and Noland and Quddus 

(2004) use employment and resident population as proxies for traffic levels. However, 

proxy variables cannot be found for all the contributory factors. Moreover, one limitation 

of using the proxies is that they are not best approximations to true explanatory variables 

and so will introduce measurement error bias (see Maher and Summersgill, 1996). 

Another way to account for the unobserved or unmeasurable contributory factors is 

to consider the information that accident data contain. Accidents can be categorised by 

features like severity or road class. When multiple response models are developed for 

different types of accidents (for instance, determined by severity), it is possible that there 

are some common contributory factors for different types of accidents. When such factors 

are not included in the model, the correlation in the multiple response variables will not 

be fully explained by the model. But since the common contributory factors may have 

similar influence on the expected numbers of accidents of different types, the variation in 

the response variables due to such factors could be partly explained by introducing some 

random effects in the Poisson means that model the correlation in the expected numbers 
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of accidents of different types. Studies that jointly model different types of accidents 

include Tunaru (2002) and Song et al. (2006), both of which use a Bayesian modelling 

approach. 

A further way of thinking about the effects of the unobserved or unmeasurable contrib

utory factors is to consider the characteristics of accident models. Both areal models and 

network models of road accidents are a type of spatial model because the observational 

unit is a location. Spatial data are collected and aggregated over space and likely to be 

spatially correlated. For areal models, factors like the extent of development and urban

ization are more likely to be similar in neighbouring areas. For network models, factors 

such as traffic levels and road geometry (for instance, curvature and gradient) are likely 

to be spatially correlated for neighbouring sites. When such factors are not measured 

perfectly or are unmeasurable, variation in the response variables cannot be completely 

explained. However, since such factors are often spatially correlated, by introducing some 

appropriate form of spatial random effects in the models, variation in the response vari

ables due to these factors can be partly explained (see Besag, in his contribution to the 

discussion of McCullagh, 2002). Therefore, better estimates of the expected numbers of 

accidents in different locations can be achieved. 

The spatial correlation in the contributory factors indicates that the means of the Pois

son distributions for different areas or sites should also be spatially correlated. However, 

conventional models with random effects treat these Poisson means as independent. Such 

models do not take account of any spatial effects. They ignore the possible spatial de

pendence between different areas or sites, especially between neighbouring areas or sites, 

and therefore may not fully account for the spatial variation in the response variable

residuals from the model may be spatially auto correlated especially when not all the spa

tially correlated contributory factors are included in the models. For areal models, areas 

that share common boundaries are unlikely to be spatially independent. Moreover. in 

the context of road accidents, traffic moves on the roads, accidents occur on the roads and 

adjacent areas always have some common roads passing between them. For network mod

els, the road network itself displays a spatial structure that defines the spatial dependency 
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among the sites. Both of these features indicate that the spatial independence assumption 

is not appropriate. In order to remove the spatial correlation in the residuals caused by 

the incomplete inclusion of spatially correlated contributory factors, one approach is to 

borrow spatial information implied by a geographical map (for areal models) or a road 

network (for network models) and introduce spatial effects in the models. Such spatial 

random effects need to be spatially structured (correlated). 

In general, when models include some complicated form of spatial effects, compu

tation is difficult using the frequentist approach. The Bayesian approach facilitates the 

inclusion of different random effects by formulating them in different layers via a hi

erarchical structure. Recent progress in Markov Chain Monte Carlo methods and their 

computer implementation make the computation of Bayesian models more convenient 

and faster. Studies adopting the Bayesian approach in recent road safety research include 

Tunaru (2002), MacNab (2003), Miaou et al. (2003), and Bailey and Hewson (2004). 

Models with spatial effects are expected to produce better estimates of accident fre

quencies. This will benefit researchers and engineers in the following ways. First, more 

reliable conclusions about the reduction of accident frequencies over time can be made. 

Secondly, better predictions of accident frequencies in the future can be obtained. More

over, high-risk sites identified using spatial effects, will help safety engineers to find 

further insights of road network design and urban planning on the occurrence of road 

accidents. 

1.2 Aims of the research 

As explained above, for areal models and network models the spatial correlation in the 

expected numbers of road accidents in neighbouring areas or at neighbouring sites needs 

to be considered. However, very little work has been done on this aspect. Therefore, the 

main aim of this research is to develop accident models with spatial effects. A Bayesian 

modelling approach is adopted. Generally speaking there are two reasons for using this 

approach. First, the inclusion of spatial and temporal random effects makes the models 

complicated and difficult to fit by the frequentist approach. Second, Bayesian models 
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used in disease mapping have been well developed to take account of spatially structured 

random effects (see Best et aI., 2005). However these models need to be modified in order 

to make them more appropriate for accident data. In this research, both areal models and 

models for accidents on a road network have been developed. 

For areal models, the main objectives are: 

• to develop univariate spatial models for accident frequencies that include spatially 

structured random effects; 

• to study the effects of adding spatial effects to the conventional models-this in

cludes the comparison of conventional models and spatial models according to 

measures of model performance and the results from residual analysis; 

• to develop univariate spatio-temporal models for accident frequencies over two or 

more years that take account of both spatial effects and temporal effects; 

• to extend these univariate models to multivariate models that, for example, jointly 

model accidents of different severities; 

• to study the relationship between accident frequencies and variables like traffic vol

ume and road lengths. 

For models at the road network level, the objectives are: 

• to examine the extent of spatial correlation in the accident data for a road network; 

• to develop spatial models for accidents on a road network, considering spatial cor

relation in neighbouring sites; 

• to study the effects of the inclusion of spatial effects. 

From the point of view of road safety research, this research aims to give better pre

dictions of the numbers of certain types of accidents in a location in the future, based on 

the spatial models developed in this thesis. It also aims to provide further methods for site 

ranking-for instance, ranking sites according to the unobserved spatial effects estimated 

in the spatial models. 
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This research will contribute to the research methodology in road safety and provide a 

better modelling approach for accident data by considering spatial effects. It is expected 

to benefit the government to make decisions on safety policies, road network design and 

site selection for engineering treatment. 

1.3 Overview of the thesis 

Chapters in this thesis are organised as follows. The thesis first introduces the research 

background and reviews the conventional approaches to modelling accident counts. Based 

on the examination of several types of spatial model used in other disciplines, it then 

explains how conventional accident models can be improved and proposes the modelling 

approach in this research. This is followed by applications that fit models using some real 

datasets. Finally, it illustrates how models that are developed in this thesis can be used in 

practice with a summary of the findings and the contribution that the research has made. 

Chapter 2 reviews the literature about statistical models for road accidents. Statistical 

models play an important role in road safety research, so the general aims of road safety 

research and why the statistical modelling approach is important are explained. In Great 

Britain, road accident data are recorded in a national road accident collection system and 

database known as STATS 19 (Department for Transport, 2005), which provides informa

tion for each recorded accident at a very detailed level. This allows for different types of 

analysis of accident data. Therefore, the main features of accident data are described. The 

next part of the chapter reviews conventional statistical models for accident frequencies 

and some existing methods that analyse the spatial aspects of accident data. Limitations 

of conventional methods are discussed and how they can be improved are explained. A 

Bayesian modelling approach is adopted in this study. The remainder of the chapter aims 

to give some details of Bayesian methods for data analysis, including Bayesian computa

tion, estimation of parameters and model comparison. A simple form of Bayesian model 

for accident frequencies is used to explain how to specify priors and hyper-priors in the 

Bayesian context. 

As discussed in Chapter 2, the independence assumption on the response variables in 
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accident models is not appropriate. In order to take account of the spatially dependent re

lationship in the response variables, a suitable modelling approach is needed. Therefore. 

Chapter 3 explores some existing modelling approaches for spatial data and suggests ap

propriate models that can be applied to accident data. Spatial modelling approaches have 

been extensively developed and studied in the area of disease mapping. Two usual forms 

of spatial models are the conditional autoregressive (CAR) model and the spatial moving 

average model. The structure and properties of these models are introduced, in each case 

followed by a discussion of the possibility of applying such models to road accident data. 

In addition, this research aims to extend univariate spatial models for road accidents to 

multivariate models, that jointly model accidents of different types (for instance, fatal, 

serious and slight accidents), and include temporal effects as well. Therefore, some rel

evant approaches in disease mapping are reviewed next. A statistic of measuring spatial 

correlation in the data, namely Moran's I is introduced at the end of the chapter. 

Chapter 4 and Chapter 5 constitute the methodology part of this thesis. Based on the 

discussion in Chapter 3 about which modelling approach is appropriate for taking account 

of spatial effects in accident models, Chapter 4 proposes the modelling approach used in 

this research. Models are developed in order of increasing complexity. Starting from 

a univariate model without any random effects, the simplest Poisson log-linear model 

is extended to more complicated models by including different types of random effects. 

Choices of the neighbours list and the weighting schemes for the spatial CAR models are 

explained for areal models and network models respectively. Later, software used to fit 

the models and general rules for model fitting and checking are described. How Moran's 

I statistic might be used in a Bayesian framework is discussed in the end of the chapter. 

The first section of Chapter 5 explains what types of explanatory variables need to be 

included in accident models and how they are normally measured. The second section 

of the chapter introduces details of the data used in this research, including the choice 

of explanatory variables, the sources of data and how the data are restructured or trans

formed. For areal models, three datasets were used. Two of them include data for local 

authorities in England during different periods. One is from 1983 to 1986 and the other is 
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from 2001 to 2005. Another set of data is for wards in the West Midlands in 200 1. Two 

datasets were used to develop models for accidents on a road network. One is for annual 

link accidents on a motorway in England from 1999 to 2005 and the other is for accidents 

at major junctions aggreg~ted for five years in Coventry. 

After the introduction of the modelling approach and the data used in this research in 

Chapters 4 and 5, results of the model fits for areal models and models of accidents on a 

road network are presented in Chapter 6 and Chapter 7 respectively. The first two datasets 

are used to fit the models at the local authority level. Both spatial and temporal effects are 

considered in the models. Multivariate models are fitted using the more recent dataset. 

Multivariate models with spatial effects are fitted at the ward level using the third dataset. 

Network models fitted in this research include models for link accidents and for junction 

accidents. In all cases, coefficients of explanatory variables are studied and the influence 

of including spatial effects in models are examined. Comparisons of different forms of 

models are made based on a number of statistical measures, the analysis of residuals 

and appropriate forms of maps that visualize problems rising from some models and the 

progress of modelling. 

Advantages of models developed in this research compared with conventional models 

are demonstrated in Chapters 6 and 7. Chapter 8 aims to suggest how these models can 

be used in practice. It uses two examples to show the possibilities. The first example 

explains how the models at the local authority level developed in Chapter 6 can be used to 

predict numbers of accidents in the future. Predictions of accident counts in 2006 based 

on a conventional model and a CAR model are compared with the observed accident 

counts obtained from the STATS 19 data in 2006. Another example gives details of how 

to rank sites based on the spatial models for road accidents on a road network. Links on 

the motorway for which spatial models are developed in Chapter 7 are ranked. High-risk 

sites selected by the spatial models and the conventional approaches are compared, and 

implications from the result using different selection criteria are discussed. 

The last chapter summarizes the conclusions from this research. Findings and their 

contributions to the methodology in road safety research are discussed. Limitations of 
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this research are explained and possible ways to extend this research in the future are 

suggested. 
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Chapter 2 

Statistical models for road accident data 

Much research has been done in the past in order to understand the causes of traffic acci

dents and to improve road safety. Investigation at the scene can provide detailed informa

tion of an individual accident (see Ogden, 1996, Chapter 6). However, an incident such 

as traffic accident is a random event, so an individual accident may be just a special case. 

For this reason traffic engineers or policy makers may be more interested in understanding 

the relationship between accident frequencies and factors such as traffic levels and road 

geometry, and predicting the total number of accidents in particular areas or on particular 

roads. These aims can be achieved by using appropriate statistical methods. A number 

of statistical models have been proposed in the literature. The choice of the analysis ap

proach is mostly determined by the research question and the availability of the data for 

the accident and other relevant factors. 

In this chapter, the general aims of road safety research and the importance of using 

a statistical modelling approach are discussed in Section 2.1. How accident data are col

lected and recorded in the UK and how the data can be made to be suitable for statistical 

models are introduced in Section 2.2. Section 2.3 reviews conventional statistical models 

for accident frequencies and limitations of these models are discussed in Section 2.4. Pre

vious studies on spatial analysis of road accidents are reviewed in Section 2.5. Section 2.6 

introduces the Bayesian modelling approach that is used in this study. How this approach 

can be applied to develop accident models is briefly explained in Section 2.7. 
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2.1 The role of statistical models in road safety research 

No matter how much is known about the possible generating mechanisms of road acci

dents, to predict exactly where, when, and to whom the next accident will occur seems 

to be not practical. However, the total number of accidents during a period, within an 

area, and of a particular kind may behave with a relatively constant frequency in the long 

run. Therefore, accident frequencies in the future can be predicted and the relationship 

between the accident frequencies and some contributory factors can be studied by using 

appropriate statistical methods. 

In order to investigate the causes of road accidents and achieve safer roads by effec

tive means, researchers in road safety may be interested in one or more of the following 

problems: 

• analysing the characteristics of road accidents, including the examination of the 

association among different characteristics of accidents (for instance, Barker et aI., 

1998 and Tunaru, 2001); 

• identifying spatial clusters of accidents (for instance, Maher and Mountain, 1988 

and Flahaut et aI., 2003); 

• investigating the association between accident frequency, traffic and road geometry 

(for instance Miaou, 1994, Milton and Mannering, 1998 and Taylor et aI., 2002); 

• predicting the number of accidents (for instance, Maher and Summersgill, 1996, 

Mountain et aI., 1996 and Greibe, 2003); 

• ranking the sites in order of priority for engineering treatment (for instance, Hauer 

et aI., 2004 and Miaou and Song, 2005); 

• evaluating safety programmes and engineering treatments (for instance. Wright 

et aI., 1988 and Hirst et aI., 2005) 

Previous studies in road safety using a statistical approach mainly fall into these cate

gories. In terms of the unit of analysis, there is a difference between the first two types of 
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studies and the others. To identify spatial clusters and examine the association between 

different accident characteristics, the unit of analysis is an individual accident. For other 

types of studies mentioned above, the unit of analysis is usually an area or a location. 

The statistical modelling approach is the most popular approach applied in such studies. 

In this, the response variable is normally the total number of accidents in an area or at a 

location during a fixed period. Therefore accidents need to be aggregated over space and 

time. How the aggregation can be done will be introduced in the next section. 

2.2 General description of the STATS19 data 

Many national governments have a department to operate and maintain a national database 

for road accident data. In order to make statistical analyses of accident data, it is impor

tant to understand how the accident data is collected and organised in the database. For 

instance, in Great Britain, the main source of accident data is the national road accident 

collection system known as STATS19 (Department for Transport, 2005). Local police 

forces are responsible for collecting STATS 19 data and, in some cases jointly with local 

authorities, for validating and reporting data to the Department for Transport (DIT). Only 

accidents involving personal injuries are reported. The STATS 19 data consist of three 

subsets of data, including data of every reported accident, data of every vehicle involved 

in the accidents and data of every injured individual involved in the accidents. The three 

datasets are linked to each other via some key variables. The STATS 19 data provide in

formation for each recorded accident at a very detailed level and can be used to achieve 

different research objectives in road safety by appropriate statistical methods. 

As explained earlier, when using a statistical modelling approach to analyse accident 

data, accident data usually need to be aggregated over space and time. The temporal 

information of each recorded accident consists of year, month, date, day of week and time 

of day. The spatial information of each accident includes local authority code, location 

by 10-digit grid references, 1 st road number and for junction accidents 2nd road number. 

After the aggregation of accident data at an appropriate level, the comparison of accident 

frequencies in different scales of geographical units can be made and also the variation in 
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the accident data with month of year, day of week, or time of day can be studied. 

There are some variables in STATS 19 that describe the attributes of the road section 

on which the accident occurs, for instance number of carriageways, speed limit and type 

of junction. These variables are needed for accident aggregation when the research in

terest is to investigate accident frequencies on different road segments, such as junctions 

and road links. In STATSI9, a junction accident is defined as an accident that occurred 

within 20 metres of a junction. If an accident is coded as a junction accident, the type of 

the junction at which the accident falls into one of the following main categories: round

about, crossroads, T- or staggered junction, and multiple junction. Crossroads are defined 

in STATS 19 as 'four arm junctions where the alignments of both roads are uninterrupted 

whatever the angle of the crossing, and the arms are not staggered'. What are categorised 

as T-junctions also include '3 arm junctions at which 2 roads join at an acute angle (pre

viously known as 'Y' junction),. Staggered junctions are 'junctions where several roads 

meet a main road at a slight distance apart so that they do not all come together at the same 

point'. Multiple junctions are 'junctions with more than 4 arms (except roundabouts),. 

Another important variable in STATS19 is the severity variable that has three levels 

of severity-fatal, serious and slight. It is determined by the severity of the most severely 

injured casualty. Sometimes, accidents aggregated over space and time need to be dis

aggregated according to different severities. The extent of association between accident 

frequencies and exposure variables, such as traffic and population, may be different for 

accidents of different severities. For instance, Jarrett et al. (1989) developed models for 

accidents of different severities at the local authority level. Their result shows that the 

estimated coefficients for the explanatory variables can be different when the response 

variables are for fatal accidents, fatal or serious accidents and accidents of all severity 

respectively. Therefore, separate models for accidents with different levels of severity are 

often preferred. 
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2.3 Statistical models for accident frequencies 

Many statistical models have been developed to establish the relationships between ac

cident frequencies, the road environment, traffic levels, and other relevant explanatory 

variables. For instance, research undertaken by the UK Transport Research Laboratory 

(TRL) investigated accidents at different types of junction or link in order to detennine 

how accidents are related to vehicle and pedestrian flows, and to the layout and features 

of junction and road link. Models have been developed for a variety of junctions such 

as four-ann roundabouts (Maycock and Hall, 1984), rural T-junctions (Pickering et aI., 

1986), four-ann single carriageway urban junctions with traffic signals (Hall, 1986), three

ann single carriageway urban junctions with traffic signals (Taylor et aI., 1996), four-ann 

priority junctions (Layfield et aI., 1996) and three-ann priority junctions on urban single

carriageway roads (Summersgill et aI., 1996). Link models have been developed for dif

ferent types of roads such as urban single-carriageway roads (Summers gill and Layfield, 

1996), rural single-carriageway roads and dual-carriageway trunk roads (Walmsley, Sum

mersgill and Binch, 1998; Walmsley, Summersgill and Payne, 1998). Using some of these 

studies as examples, Maher and Summersgill (1996) gave a comprehensive methodology 

for the development of predictive accident models. Some technical problems in modelling 

numbers of accidents were discussed in their paper and solutions to tackle the problems 

were explained. 

When modelling numbers of road accidents, in order to choose an appropt:iate form 

of model, the characteristics of accident data should be considered. Generally speaking, 

the response variable y in a model is the number of accidents at a site, for example a 

junction, or in a geographical area, for example a county, over a fixed period of time. 

This indicates that several things need to be considered in order to choose an appropriate 

fonn of model. First, the response variable y is an integer and always non-negative. Sec

ond, road accidents are random and fairly rare events. Therefore, appropriate forms of 

probability distribution should be included in models to account for this. Moreover, some 

factors, such as road-user behaviour and other unmeasured or possibly unrecognized fac

tors, cannot be quantitatively measured, but are believed to affect road safety. Thus. using 
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appropriate forms of probability distribution can help to take account of the unexplained 

variation caused by unmeasurable or unrecognised factors. 

2.3.1 Poisson model 

The Poisson distribution is well-known to describe discrete variables that represent the 

counts of random events. Therefore, a Poisson model is a natural choice to model numbers 

of road accidents. Suppose that the number of road accidents at a site (or in a geographical 

area) in a given period is y, which is Poisson distributed with mean).,: 

y rv Pois().,) ()., > 0), (2.1) 

where)., is the expected number of road accidents at the site in the given period and it 

varies from site to site. Then, the probability function of y is given by 

e-A).,,, 
p (y) = , (y > 0). 

y. 

However, such a model without any explanatory variable does not have any explana-

tory power. Factors like traffic levels and road geometry contribute to road accidents. 

Therefore, it is straightforward to extend the model in 2.1 to a Poisson regression model 

by introducing some relevant explanatory variables. This can be achieved by using the 

method of generalized linear models (McCullagh and NeIder, 1989). Assume that the 

numbers of accidents y at different sites are independently Poisson distributed with means 

A that depend on features of the sites. For simplicity, suppose that there is only one ex

planatory variable x, which measures the characteristics of the site. Then the model for 

numbers of road accidents at a site in a given period can be formulated as: 

y rv Pois()"), where 

log)., = f30 + f31X. (2.2) 

This is a Poisson log-linear model, which is a special case of a generalized linear model. It 
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has been widely used in the statistical literature and has been found to be flexible in fitting 

different types of count data (e.g. McCullagh and NeIder, 1989). Additional explanatory 

variables can be included in equation (2.2) and usually are traffic levels, road lengths, 

etc. It should be noted that for accident models a multiplicative structure of A has been 

broadly favoured in the literature (Jarrett et aI., 1989), therefore the explanatory variables 

to be included are usually in logarithmic forms. 

Many previous studies in road safety research, especially those in the 1980s, ap

plied Poisson log-linear models. For instance, Maycock and Hall (1984), Pickering et al. 

(1986), and Hall (1986) studied road accidents on different types of junctions; Jovanis and 

Chang (1986) examined the relationship between vehicle accidents and vehicle miles of 

travel; Saccomanno and B uyco (1988) related vehicle accident rates with different traffic 

volumes, truck types and other relevant factors; Jarrett et al. (1989) compared accident 

rates between local authorities. There are also some more recent studies applying this 

type of model (for instance Berhanu, 2004). 

One limitation of using the Poisson model is that it assumes that var(y) = E(y) = 

A. In other words, the variance of y should equal the expected value A. But in many 

applications, count data have been found to display extra variation or over-dispersion. 

That is, the residual variance from the fitted model is often larger than the fitted value. 

Some possible sources of the over-dispersion in road accident studies were discussed by 

Miaou and Lum (1993): 

• some variables that may have influences on the occurrences of accidents are not 

included in the model; 

• road environment and traffic conditions may not be homogeneous on each road 

section during a sample period. 

Maher and Summers gill (1996) have similarly commented on the occurrence of, and rea

sons for over-dispersion. If there is an over-dispersion problem, the estimates of the model 

parameters will still be consistent. In other words, they will converge to the true values 

when the sample size increases. However, their variances will tend to be under-estimated 

(see McCullagh and NeIder, 1989). 
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There are a number of ways in which a Poisson model may be modified to take account 

of over-dispersion. One way to relax the very restricted rule of equal mean and variance 

is to introduce an additional parameter 'r, which makes var(y) = rE(y), in the model. 

This is known as a quasi-Poisson model (see Wedderburn, 1974). As discussed by Maher 

and Summersgill (1996), the parameter estimates resulting from the quasi-Poisson model 

are identical to those from the Poisson model, but their standard errors are inflated by a 

factor of ft. There are some limitations of using a quasi-Poisson model. For instance, 

the variance is restricted to be proportional to the mean; it needs to be estimated by the 

method of quasi -likelihood. 

2.3.2 Negative binomial (NB) model 

Another standard way of modelling over-dispersion is to introduce another level of ran-

dom variation in A, modelled by an appropriate probability distribution. Suppose that the 

value of the true mean A varies amongst the population of sites according to a gamma 

distribution. The probability density function of the gamma distribution is defined by 

where 1C > 0 is the shape parameter of gamma distribution and v > 0 is the inverse scale 

parameter. The mean and variance of A are 1C / v and 1C / v2 
. 

Under the assumptions that y has a Poisson distribution with mean A, while A follows 

a gamma distribution f(A), the variability of y over all sites in the population is described 

by the probability distribution obtained by integrating out A: 

q(y) = 10
00 

p(yIA)f(A)dA. (2.3) 

This results in a negative binomial distribution with parameters 1C and v (see Gelman 
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et aI., 2004, section 17.2), with probability density function 

r( K' + y) ( 1 ) ( v ) k 
q (y) = y !r( K') 1 + v 1 + v 

Its mean is E(y) = K'/v and variance is 

K' K' 
var(y) = -+

v v2 

=~(1+~). 

(2.'+) 

(2.5) 

The negative binomial distribution allows the mean and variance to be fitted separately. 

Since both K' and v are positive, the variance of the negative binomial distribution is al

ways larger than the mean. Therefore, the negative binomial model provides an approach 

for modelling over-dispersion. 

The above mentioned negative binomial model can be extended to a negative binomial 

regression model in which the expected number of accidents Ai at a site depends on its 

characteristics. In the Poisson log-linear model (2.2), an explanatory variable is linked to 

the Poisson mean via a log-linear model. Remember that more explanatory variables can 

be included. An extra level of random variation can be introduced in the Poisson mean by 

including a gamma random effect as expressed in the following equation: 

(2.6) 

where T]i rv Gamma(K', v). Therefore, Ai = T]iei, where ei = ef30+f3JXi. If the Poisson mean 

only depends on ei that captures the influence of the explanatory variable, we need the 

mean of T]i to be 1. Since T]i rv Gamma(K', v), we have K'/v = 1. In this, K' is fixed and 

does not vary with i. Therefore, according to equation (2.5), var(Yi) = ei + e? / K'. 

A more general kind of NB regression model might be obtained by assuming that 

)'j rv NB(K'j, Vi)' where K'j or Vi might depend on Xi (see Joseph, 2007). Taking K'j to be 

a constant but allowing Vi to depend on Xi leads to a model equivalent to that deriwd 

from the multiplicative gamma term (see model (2.6») with \'ar(y) = ei + ep / K'. In this, 
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2.3 Statistical models for accident frequencies 

the variance of y is a quadratic function of the mean. This is the usual form of NB 

model in applications to road accident data, and belongs to the family of generalized 

linear models. If Vi is a constant and 1(i depends on Xi, var(y) = rei, where r = 1+ l/v. 

In other words, there is a linear relationship between the variance and the mean. Therefore 

if Vi is fixed, the NB model is equivalent to the quasi-Poisson model introduced earlier 

though the former one is estimated by the method of maximum likelihood and the latter 

one is estimated by the method of quasi -likelihood. 

With the advantage of overcoming the over-dispersion problem in the Poisson models, 

the negative binomial models have been used in many previous studies in road safety 

research. For instance, Maher and Summersgill (1996) and Milton and Mannering (1998) 

used them to model the effects of various highway geometric and traffic characteristics on 

annual accident frequency on sections of principal arterials in Washington State; Abdel

Aty and Radwan (2000) used them to relate accident occurrence on a principal arterial 

in Florida with traffic and road geometric characteristics; Berhanu (2004) used them to 

relate numbers of accidents with road environment and traffic flows on 54 road links in 

Addis Ababa. 

2.3.3 Empirical Bayes methods 

The negative binomial model is also known as the Poisson-gamma model. Parameters of 

a negative binomial distribution 1( and V can be estimated using the method of maximum 

likelihood by fitting the negative binomial distribution to the observed accident distri

bution for a group of sites. The estimate of the expected number of accidents, Ai, for 

site i with a given Yi, can be obtained using the empirical Bayes method. Suppose that 

Ai rv Gamma( 1(, v) over all sites and no explanatory variable is taken account of. Using 

Bayes' Theorem, the posterior density of Ai can be derived: 

1\,+1('-1 -(v+1)k 
=11.:' e '. 

I 
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2.3 Statistical models for accident frequencies 

This is proportional to the Gamma( 1(', v') density, where 1(' = I( + )'i and v' = v + 1. 

This means by using a gamma distribution on Ai, the posterior distribution of Ai will 

follow another gamma distribution. Therefore, the gamma distribution is the conjugate 

family for the Poisson likelihood (see Gelman et al., 2004, Chapter 2). The posterior 

distribution f(lldYi) reflects the uncertainty about the value of Ai after taking into account 

the fact that Yi accidents have occurred at the site. It can be regarded as describing the 

variation in Ai amongst those sites at which Yi accidents occurred. 

It follows that the mean of the new gamma distribution f(AiIYi) is 

This can be expressed as 

This is known as the empirical Bayes estimate of A. It is a weighted average of the 

observed count Yi in the site and the overall expected accident frequency 1(/ v for all the 

similar sites in the population. By using the empirical Bayes method, the local mean of 

the accident count shrinks towards the global mean. 

The empirical Bayes estimate introduced above is based on a negative binomial model 

without any explanatory variable. In a negative binomial regression model, as described in 

(2.6) in the previous section, Ai = l1iei, where l1i '" Gamma( 1(,1() and ei = ef30~f3lxi (more 

explanatory variables can be included). In this case, Ai '" Gamma( 1(,1(/ eJ Therefore, 

the empirical Bayes estimate of Ai based on a negative binomial regression model can be 

written as 

The empirical Bayes method has been used in studies that evaluate the engineering 

treatment at high-risk sites (Abbess et al., 1981; Hauer et al., 2002; Jarrett et al.. 1982: 
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Wright et aI., 1988). This method takes account of the regression-to-mean effect. It 

improves the conventional approach to comparing accident frequencies at a site before 

and after a treatment, which can be misleading. There are random fluctuations in accident 

frequencies. Even if a treatment at a site is not successful, the number of accidents after 

the treatment might still fall because of the regression-to-mean effect. 

2.4 Limitations of conventional models 

Similar forms of Poisson log-linear model and the negative binomial model introduced in 

the previous section have been used by many researchers. However, these models do not 

take account of the possibility that the response variables might be correlated. Suppose 

Yikt is the number of road accidents of type k (k = 1. 2, ... , K), for instance determined by 

severity, at site i (i = 1,2, ... ,N) in year t (t = 1,2, ... ,T). Then, Yilt, ,Vi2t, ... , YiKt could be 

correlated. In other words numbers of accidents of different types (for instance, accidents 

with different severities) at the same site and in the same year could be correlated. This 

type of correlation exists because Yilt, Yi2t, ... , YiKt will share some common contributory 

factors. If any of these factors is unmeasured or unobserved, the correlation will not be 

fully explained by the model. On the other hand, some unmeasured contributory factors 

might be almost constant over time, therefore numbers of road accidents of type k at site 

i Yikl, Yik2, ... ,YikT could be correlated. This is known as temporal autocorrelation. When 

both the temporal correlation and the correlation between different types of accident ex

ist, more complicated correlation would be introduced, for instance, there should be a 

correlation between the numbers of accidents of different types in different period at site 

i, Yill and Yi22. Moreover numbers of road accidents at different sites, namely i and j, 

but of the same type k and in the same year t, which are Yikt and Yjkt, could be correlated. 

This is known as spatial autocorrelation. Some contributory factors tend to have simi

lar levels of values at neighbouring sites. Therefore, they are often spatial correlated. If 

any of these factors is unmeasured or unobserved, the spatial correlation in the response 

variables will not be fully explained by the model. The spatial correlation is more com

plicated to take account of than the temporal correlation. This is because the temporal 
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Figure 2.1: Rectangular grids for areal models. 

correlation is one-dimensional while the spatial correlation is usually two-dimensional. 

Compared with the other two types of correlation, spatial autocorrelation has not been 

considered much in accident models in the past. However, it needs to be taken account of 

in both areal models and network models for accidents. Further details of why it exists 

and needs for consideration are explained below. 

For areal models, the shapes of local authorities or wards are usually irregular. How

ever, in order to illustrate the spatial information implied by the geographical maps, rect

angular grids are used here to represent the locations and the connectivity of the areas. 

Suppose the accident counts Yi (i = 1, ... ,9) during a fixed period at 9 areas are known. 

These areas correspond to the 9 numbered grids in Figure 2.1. Yi is often assumed to 

be Poisson distributed with a mean~. Conventional accident models treat the accident 

means Ai in different areas as independent and ignore the spatial information in the maps. 

However, areas especially those that share common boundaries are not spatially indepen

dent. The extent of development and urbanization for adjacent areas is more likely to 

be similar. In addition, in the context of road accidents, traffic moves on the roads, ac

cidents occur on the roads and adjacent areas always have some common roads passing 

between them. Therefore, the assumption of independent accident means is not appro

priate for areal models. A node-link graph has been plotted over the rectangular grids in 

Figure 2.2. It illustrates the dependence relationship in the 9 grids. Grids whose centroids 

are connected via a direct link are treated as neighbours. The accident means Ai for neigh

bouring grids is assumed to be correlated. The correlation between different grids can be 
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Figure 2.2: Spatial dependency among the grids. 
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Figure 2.3: A node graph for junctions. 

expressed as cor( Ai, Aj) = Pi), and in a simple case we might assume Pi) > 0 if i and j 

are neighbours and is 0 otherwise. Moreover, when modelling numbers of road accidents 

on a road network, the spatial structure of the road network and the spatial dependence 

within the road network were seldom considered in previous studies. Suppose the nodes 

in Figure 2.3 represent a certain type of junctions on a road network. Conventional mod-

els for junction accidents treat the accident means at different junctions as independent 

(so cor(Ai' Aj) = 0) and ignore the spatial information implied by the road network. How-

ever, numbers of road accidents at neighbouring sites in a road network are more likely 

to be correlated than those at non-contiguous sites, especially when neighbouring sites 

have some common physical and environmental features, such as similar road geometry 

and traffic flow. In other words, previous research in studying road accidents at the road 

network level does not take full account of the structure of the existing road network, and 

therefore, may lose a chance to find further insight of the effect of road network design 

and urban planning on the occurrence of road accidents. When the spatial structure of the 

road network is considered, the spatial dependence relationship in the sites can be identi-
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Figure 2.4: Spatial dependency among the nodes. 

fied. In Figure 2.4, any link connecting the nodes represents there is a direct road between 

the junctions. Nodes that are connected directly via a link are defined as neighbours and 

are spatially correlated. Such a link-node graph illustrates the spatial dependency among 

the junctions. This spatial information can be used to introduce the spatial correlation 

in the expected numbers of accidents for the neighbouring sites, expressed as P ()"i , Ai)' 

Similarly, when developing models for link accidents, account should also be taken of the 

spatial dependency among neighbouring links. 

Failure to take account of the temporal autocorrelation and the spatial autocorrela

tion may cause some problems for model estimation. Schabenberger and Gotway (see 

2005, section 1.5) have a general discussion on the effects of autocorrelation on statisti

cal inference. First, when autocorrelation in the data is ignored, the evidence against the 

null hypothesis that the coefficient is zero can be overstated-the test rejects more often 

than it should. This is because the variability of the coefficient is under-estimated. After 

taking account of the correlation in a linear model, the estimator can be more variable 

(less precise) than the estimator for independent data. Secondly, the effect of positive 

autocorrelation is that n correlated samples provide less information than n independent 

samples. 

Normally, if any type of the correlation introduced above exists while the model does 

not take it into consideration, some problems can be identified by checking the residuals 

from the model. For instance, Jarrett et al. (1989) developed statistical models for acci

dents in 4 years. A study of residuals from their models showed that there was significant 

correlation both in time and in space. When spatial or temporal correlation is found in 

26 



2.5 Spatial analysis of road accidents 

the residuals from the models, it will indicate that the original model needs to be im

proved by considering the correlation (that is not explained by the explanatory variables) 

in the response variables. This implies a multivariate model is needed. However, there is 

no natural Poisson multivariate model to achieve this. A straightforward approach is to 

assume that Yikt!Aikt (the number of road accidents Yikt given the mean AiA(1) are indepen

dently Poisson distributed but that the Aikt are correlated. If the Poisson log-linear model 

2.2 is used, then introducing some appropriate forms of correlation in the second level 

of the model is straightforward. This can be done by including some random effects in 

the model. The structure of such random effects should reflect the appropriate dependent 

relationship in the Aikt. For instance, to model the spatial autocorrelation, spatially corre

lated random effects should be included. Using the conventional frequentist approach to 

fit such models with random effects is very difficult, especially when more than one type 

of correlation present and the structure of the random effects is very complicated. There 

are some recent studies that use a Bayesian modelling approach, which is explained in 

a later section, and take account of different types of correlation discussed above. For 

instance, Tunaru (2002) developed multivariate models for accidents of different types; 

Miaou et al. (2003) included both spatial effects and temporal effects in their models. 

2.5 Spatial analysis of road accidents 

Accident data are spatial data, and include locational information such as a geographical 

grid reference. This type of information enables the spatial analysis of accident data. Pre

vious studies that consider the spatial aspect of the accident data include the identification 

of locations where accidents clustered and developing models that take account of spatial 

correlation in neighbouring areas like local authorities or neighbouring sites like junctions 

or links. 
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2.5.1 Spatial cluster identification 

Some work has been done in spatial analysis of road accidents using methods of studying 

spatial point processes. These aim to investigate whether the distribution of road accidents 

follows some systematic process so as to form a clustered or regular pattern and therefore 

identify areas or road segments where accidents cluster. This kind of areas and road 

segments are also known as blackzones, high-risk sites or hotspots. 

A variety of methods for point pattern analysis have been used to study accident 

data. To test the existence of general clustering in a point pattern, the nearest neigh

bour distances and the K-function are two usual approaches (see Schabenberger and Got

way, 2005, section 3.3). The approach of nearest neighbour distances compares the ob

served nearest neighbour distance with the distance under complete spatial randomisa

tion. Levine et a1. (1995a) used it to study the spatial patterns of motor vehicle accidents 

in Honolulu. The K-function measures how many events (for instance, accidents) occur 

within a certain distance of other events. Jones et al. (1996) used K-function to deter

mine the degree of clustering exhibited by the residuals from a spatially referenced logit 

model constructed to ascertain the factors influencing the likelihood of death in a road 

traffic accident. Their study aims to test if there was some systematic geographical factor 

influencing the outcome not adequately controlled for in the model. More recently, Ok

abe and Yamada (2001) proposed a network K-function method that extends the ordinary 

K-function to a network space, where locations of events are restricted to a network and 

distances are measured as a network distance. Yamada and Thill (2002) compared the or

dinary and the network K-function in traffic accident analysis. Their result indicates that 

the planar K-function tends to over-detect clustering patterns which are random patterns 

in the sense of network K-function. 

To investigate the presence for and locations of local clusters, a kernel density function 

(see Silverman, 1997) can be used. It requires a band width that determines the size of 

the kernel and the overall smoothness of the resulting estimate. Flahaut et a1. (2003) 

studied locations of black zones in a particular road in Belgium based on the kernel density 

function approach. Anderson (2007) used the kernel density estimation to create a density 
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surface for visualizing the hotspots in London. Like the planar K-function, this approach 

ignores the network structure and might over-detect clusters. 

2.5.2 Models with spatial aspects 

One common limitation of the studies introduced above is their constraint to a descripti\'e 

analysis instead of a statistical modelling approach. Although the statistical approach to 

modelling the accident counts has been available for a long time, conventional models 

seldom take account of any spatial aspects that are based on the structure of the road 

network or the contiguity of the geographical areas. However, as explained in Section 2.4. 

there are some reasons to believe that the counts will not be statistically independent 

especially at neighbouring sites. 

Maher (1987) suggested that spatial autocorrelation between the mean accident fre

quencies at neighbouring sites may account for the apparent migration of road accidents 

from treated sites to untreated sites, as observed by Boyle and Wright (1984). Loveday 

and Jarrett (1991, 1992) attempted to measure the amount of spatial autocorrelation in 

some real data sets for road networks in different regions of England. Moran's I (Upton 

and Fingleton, 1985), which measures the amount of spatial autocorrelation between data 

on a mapped network, was used to estimate the correlation between the accident frequen

cies (and hence between the AS) at neighbouring sites on a road network. The extent 

of spatial correlation in the accident data was very different for road networks in differ

ent regions. The studies suggested that the magnitude of the autocorrelation appeared to 

depend on the complexity and density of the road network. 

These studies indicate that there might be spatial correlation in the observed accident 

counts at sites on a road network. Therefore, the mean of the accident frequencies at 

neighbouring sites might be correlated. Loveday and Jarrett (1992) gave some possible 

reasons for the existence of the spatial correlation. Firstly, the level of traffic flowing 

through neighbouring sites will not vary markedly. Accident frequencies are related to 

traffic flow, so one would expect mean accident frequencies at neighbouring sites to be 

related. This means that cor(Ai' A)) = Pi} could be high when sites i and j are close. 
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Secondly, the physical characteristics of the road environment itself have a degree of 

similarity between neighbouring sites, and so the accident potential tends to be less varied 

than it is between distant sites on the network. This implies that there is less variability in 

the mean accident frequencies between neighbouring sites than between sites chosen at 

random from the network. Including explanatory variables, such as traffic levels and road 

geometry, in the models may explain some of the spatial correlation in the accident data. 

But it is still possible that there are other unmeasured or unobserved features of the sites 

that are related to accident frequencies left out of the models. If these unmeasured features 

are similar for the neighbouring sites, the spatial correlation in the accident data may 

not be fully explained by such models. This may result in spatially correlated residuals. 

Similar problems can occur for models of accidents at the area level. 

Loveday and Jarrett (1992) illustrated a way to take account of the spatial correlation 

in a linear network by moving average models. Consider the linear network shown in 

Figure 2.5. The network represents a simple road network with each node representing 

a junction and each link representing a road link. Suppose again the observed count of 

accidents at a junction or on a link is Poisson distributed with mean Ai. Ui and \'i are 

the random effects associated with each node and each link respectively. If these random 

effects are gamma distributed, the mean Ai for node i can be modelled as 

(2.7) 

This model implies that the expected number of accidents at node i is the sum of the 

random effect at the node itself and the random effects at the adjacent nodes and links. 

It is a discrete form of moving average model (see Best et aI., 2005). With the same 

idea, a model for accidents on a link can also be developed. More random effects should 

be included in the moving average model 2.7 when the linear network in Figure 2.5 is 

extended to a grid network. The moving average models suggested by Loveday and Jarrett 

(1992) have some limitations. First, no explanatory variable was considered. Secondly, a 

road network is more complicated than the regular networks assumed in their study. 

Levine et al. (1995b) developed a spatial lag model at the census block level to ex-
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link D node 

Figure 2.5: A linear network. 

amine the relationship of motor vehicle accidents to population, employment and road 

characteristics. In their model, the response variable Yi is determined not only by the ex

planatory variables but also by the other Yj, where site j is site i's neighbour. However 

their model is based on an assumption that the accident count is normally distributed, 

which is a serious limitation. 

Miaou et al. (2003) developed spatial models for traffic crashes in Texas at the county 

level. Later, they extended their study to multivariate models (Song et aI., 2006) which 

model different types of accidents jointly. The models in both of their studies consider 

the spatial dependency in the counties. Their approach to taking account of the spatial 

dependency is known as the conditional autoregressive (CAR) model. It is also the most 

important technical concept in this thesis. Its definition, why it is appropriate to be applied 

to models for road accidents and how it can be added to the conventional models to take 

account of the spatial correlation in the Poisson accident means will be introduced in the 

next chapter. Although the two studies introduced above successfully use the CAR model 

to develop models for the accident count, they have a few limitations. First, the studies 

only include a limited number of explanatory variables, which are actually surrogate vari

ables. Second, Texas counties have more regular boundaries than is the case in England, 

which simplifies some of the spatial modelling. Last, their papers do not show any result 

of residual analysis for models with and without spatial effects. 
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2.6 Bayesian methods for data analysis 

As shown in the end of Section 2.4, multivariate models for accidents of different type 

and models with spatial or temporal effects are complicated and difficult to formulate and 

fit to data in the context of the frequentist approach. Fortunately, the Bayesian approach 

provides an effective solution and comprehensive framework to solve this problem. Two 

principal approaches to inference that guide the modern data analyst are the frequentist 

approach, and the Bayesian approach. 19th century science was broadly Bayesian in 

its statistical methodology, while frequentism dominated 20th Century scientific practice 

(Bradley, 2005). The frequentist evaluates procedures based on repeated sampling, imag

ining an infinite replication of the same inferential problem and evaluating properties over 

this repeated sampling framework for fixed values of unknown parameters. The Bayesian 

requires a sampling model and, in addition, a prior distribution on parameters. Unknown 

parameters are considered random and all inferences are based on their distribution con

ditional on observed data, which is known as the posterior distribution. 

The Bayesian approach permits the use of previous knowledge or subjective opinion 

in specifying a prior distribution. Therefore, frequentists often criticise Bayesian proce

dures for their loss of objectivity by using specific priors. Noninformative priors with 

densities that can be described as vague, fiat or diffuse, are some Bayesians' response. 

Bayesian statistics has seen a strong movement away from subjectivity towards objective 

uninformative priors in the past 20 years (Bradley, 2005). 

For complicated models, the Bayesian approach facilitates the inclusion of several 

random effects by formulating them in different layers via a hierarchical structure. Recent 

progress in Markov Chain Monte Carlo method and the computer implementation of it 

make computation of Bayesian models more convenient and faster. 

2.6.1 Applying Bayes' Theorem 

In the Bayesian approach, in addition to specifying the model for the observed data 

)' = (YI,)'2, ... ,)'n) given a vector of unknown parameters e = (e l . (h, .... ed, e is sup

posed to be a random quantity having a prior distribution n( e 117)· where 17 is a vector 
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of hyperparameters. Inference concerning 8 is then based on its posterior distribution 

p( 8 Iy, 11), given by 

p(8IY,11) = p(y,8111) = p(y,8111) _ p(YI8)Jr(8/11) 
P(yl11) J p(y, 8111 )d8 J p(yl 8)Jr( 8117 )d8. (2.8) 

This formula is referred as Bayes' Theorem (Carlin and Louis, 1996). The result of the 

integral in the denominator is actually the marginal distribution of the data \' aiven the 
. b 

value of the hyperparameter 17. If 17 is unknown, the proper Bayesian solution would be 

to quantify this uncertainty in a second stage prior distribution. Denoting this prior dis

tribution by h( 11), following Carlin and Louis (1996), the posterior for 8 is now obtained 

by marginalizing over 17, 

p(8Iy) = p(y, 8) = J p(y, 8, 17)d17 
p(y) J Jp(y,8,17)d17d8 

J p(YI 8)Jr( 8117 )h( 17 )d17 
(2.9) J J p (y 1 8) Jr ( 8 117 ) h ( 17 ) d 17 d 8 . 

Alternatively, 11 can be replaced by an estimate r, obtained as the value which max

imizes the marginal density of P(YI17). Inference is now based on the estimated poste

rior distribution p( 8 Iy, r, ). Such an approach is often referred to as empirical Bayesian 

analysis. Section 2.3.3 has explained how to get empirical Bayes estimate of the mean 

frequency of road accidents at a site. 

The hyperprior for 11 can also depend on a collection of unknown parameters resulting 

in a generalization of expression (2.9) featuring another stage of prior. This procedure of 

specifying a model over several levels is called hierarchical modelling, with each new 

distribution forming a new level in the hierarchy. However, when models get complicated 

via a hierarchical structure, difficulties in computation rise at the same time. 

2.6.2 Bayesian computation 

Implementation of the Bayesian approach requires the calculation of posterior distribu

tions. The calculation often involves complex and high-dimensional integrals like those in 

expression (2.9), in which 8 and 17 are usually vectors. The most popular computing tools 

in modem Bayesian analysis are Marko\' Chain Monte Carlo (MCMC) methods. t\lCt\lC 
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methods make Bayesian computation relatively easy by reducing the high-dimensional in

tegration problem to a series oflower-dimensional problems. MCMC is essentially .Monte 

Carlo integration using Markov chains. The original Monte Carlo integration was devel

oped by physicists to use random number generation to compute integrals (Gilks et al., 

1996). Its characteristics make it popular in Bayesian analysis to approximate posterior 

distributions. Monte Carlo integration draws samples from the required distribution, and 

then forms sample averages to approximate expectations. With a similar idea, MCMC 

methods approximate posterior distributions based on samples generated by running one 

or more Markov chains. The idea of Markov Chain simulation is to simulate a process, 

which will converge to a stationary distribution after a long enough period of time. 

There are many ways of constructing the required Markov chains, but the most popu

lar algorithms are the Gibbs sampler and the Metropolis-Hastings algorithm. Suppose a 

model features k parameters, e = (e], ... , ek)'. The Gibbs sampler requires that samples 

can be generated from each of the full conditional distributions p( eil ej#i'Y)' i = 1, ... , k. 

Under mild conditions, the collection of full conditional distributions uniquely determine 

the joint posterior distribution p( ely) (see Banerjee et al., 2004, section 4.3.1). The Gibbs 

sampler is easy to implement, but sometimes one or more of the full conditional distribu

tions may not be available in a closed form. If this is the case, the Metropolis-Hastings 

algorithm can provide a solution. Now samples will be drawn from a joint posterior dis

tribution p( ely) rather than any full conditional distribution. The algorithm requires a 

rejection step from a particular candidate density at each iteration. Based on a ratio of 

probabilities (see Banerjee et al., 2004, section 4.3.2), either the new simulated value is 

used for the current state or the value in the previous state remains. 

For both of the algorithms, enough time is needed until convergence to the target sta

tionary distribution of parameters can be achieved. This time period is often known as 

burn-in period. Samples in the bum-in period will not be used to produce the estimates 

of parameters. Convergence diagnosis is a very important step in Bayesian analysis using 

MCMC methods. However, it is difficult to decide when it is safe to stop the simulation 

and summarize the output. If the simulated Markov chain has not converged to thl' sta-
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tionary distribution, the inference can be wrong. The most common approach is to run 

several parallel chains simultaneously, starting from different initial points (Spiegelhalter 

et aI., 2003). These chains are then plotted together against the axis that represents num

ber of iterations. These trace plots are usually used to monitor the status of convergence 

of simulated chains by observing the extent of overlapping in these chains. But there are 

some problems with this approach. For instance, the process of monitoring requires a 

subjective judgment by the observer. Some existing convergence diagnostic statistics can 

provide more formal approaches for convergence diagnosis. If convergence is attained 

then the empirical distribution of each chain should be almost identical to the empirical 

distribution obtained by pooling all the chains together. If convergence is not reached, the 

variations within each chain are smaller than the variation within the pooled chain. Based 

on this idea, Gelman and Rubin (1992) developed the Gelman-Rubin statistic, which cal

culates a ratio regarding to the between-chain variance and within-chain variance. When 

the simulated Markov chain converges to the stationary distribution, the Gelman-Rubin 

statistic should approach 1. Later, this statistic is modified by Brooks and Gelman (1998) 

by calculating a ratio of lengths of between-chain interval and within-chain intervals, 

which is considerably simpler than the original method. Calculation of this ratio, namely 

ft., is implemented in both WinBUGS (Spiegelhalter et aI., 2003) and the R2WinBUGS 

(Sturtz et aI., 2005) package for R. WinBUGS is the Windows version of BUGS (Bayesian 

inference Using Gibbs Sampling) for fitting Bayesian models. 

2.6.3 Estimation of parameters and model comparison 

As suggested by Carlin and Louis (1996), for a typical Bayesian data analysis, we might 

summarize our findings on estimated parameters by reporting (1) the posterior mean, 

(2) several important posterior percentiles (for instance, at the levels 0.025, 0.50, and 

0.975), (3) a plot of the posterior itself if it is multimodal, highly skewed, or otherwise 

badly behaved, and possibly, (4) posterior probabilities of the form P( e > clY) , where e 
represents a parameter and c is some important reference point that arises from the context 

of the problem. 
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As in the frequentist approach, a plot of predicted values against observed values can 

help to illustrate the fit of a model. A good fit would show the points evenly scattered 

around the line with a 45 degrees slope. Examining the posterior distributions for pa

rameters of interest and hyperparameters are also very helpful for model checking. For 

instance, suppose y is the response variable. In order to check the fit of a model to data , 

we could draw simulated values from the posterior distribution of y* (y* is the predicted 

value of y using the model) and compare these samples to the observed data (for example, 

to examine the probability that the samples contain the observed data). This is known as 

posterior predictive check (see Gelman et al., 2004, Chapter 6). 

Moreover, examination of residual helps to identify any problems with the model, for 

instance, temporal or spatial correlation. However, the approach to calculating residuals is 

more complicated in a Bayesian context. Suppose, a linear model with response variable 

y is fitted using N observations. In a frequentist context, residuals are y - y*, where y* 

are fitted values, and have N values. If a Bayesian approach is used, for each observation, 

y* will have a posterior distribution depending on values saved from each simulation. 

Therefore, if M simulations are saved for model estimation, we will have a N x M matrix 

for y* therefore will obtain a N x M residual matrix. Albert and Chib (1996) name the 

elements of this matrix Bayesian residuals and suggest using these to examine the fit of 

binary response regression models. In Chapter 4, it is shown how models can be checked 

by examining the extent of spatial correlation in these residuals. 

In addition to the above mentioned methods for model checking, some formal ap

proach is needed to measure the performance of the candidate models and choose those 

that perform better. There exist some well-known criteria for Bayesian model comparison. 

A natural approach is to compare models based on the posterior probability of the model 

given the data. This can be achieved by calculating the ratio of the observed marginal den

sities for two candidate models. The ratio is known as the Bayes factor and it indicates 

which model is favoured by the data (Banerjee et al., 2004, section 4.2). However, the 

Bayes factor is often difficult to calculate and not suitable for high dimensional models. 

Akaike (1974) introduced a criterion for models comparison in a frequentist framework, 
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namely Akaike Information Criterion (AlC). The formula is 

AlC = -210g(maximized likelihood) + 2p, 

where p is the number of estimated parameters. The model with the smallest Ale is 

preferred. An alternative to AIC is the Bayesian Information Criterion (BIC) (Schwarz, 

1978). BIC adjusts AIC by including the sample size n in the calculation as 

BIC = -210g(maximized likelihood) + plogn. 

Both of AIC and BIC are penalized model choice criteria, since they penalize a model 

by its complexity measured by the number of parameters in the model. However, under 

the condition of using any noninformative prior, none of these model comparison criteria 

may be appropriate (Banerjee et aI., 2004, section 4.2). 

Spiegelhalter et al. (2002) proposed the use of the Deviance Information Criterion 

(DIC), which is a natural generalization of AIC. The generalization is based on the pos

terior distribution of the deviance D( 8) (McCullagh and NeIder, 1989), which is defined 

as -2 times the log-likelihood (logp(yI8)) plus a constant, where 8 are parameters of 

the models. The posterior expectation of the deviance, denoted by D , is calculated us

ing D = J D(8)p(8Iy)d8. The effective number of parameters PD is a measure of the 

complexity of the model and is defined by 

PD = D - D(Eejy[8J) 

= D-D(e). 

In this, D equals the sample mean of the simulated values of D(8) and D(e) is the de

viance calculated by replacing 8 with its posterior expectation e. The DIC is defined as 

DIe = D + PD , which combines a measure of fit together with the effective number of 

parameters. Therefore, like AIC and BIC, DIC is a criterion based on a trade-off between 

the fit of the data to the model and the complexity of the model. The model with the 
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smallest DIC is estimated to be the model that would best predict a replicate dataset of 

the same structure as that currently observed. This suggests that any reduction in DIC is 

desirable, but it is difficult to judge what would constitute an important difference in DIC. 

Spiegelbalter et al. (2003) suggest that 'differences of more than 10 might definitely rule 

out the model with the higher DIC, differences between 5 and 10 are substantial, but if the 

difference in DIC is, say, less than 5, and the models make very different inferences, then 

it could be misleading just to report the model with the lowest DIC'. The advantage of 

DIC over other criteria, for Bayesian model selection, is that the DIC is easily calculated 

from the samples generated by a Markov chain Monte Carlo (MCMC) simulation. 

2.7 Bayesian models for numbers of road accidents 

Consider again the Poisson log-linear model in 2.2, within the Bayesian framework. The 

model can be completed in the form of 

Yi rv Pois(Ai) , 

log Ai = f30 + f31 xi, 

f3j rv independent N(O, cr2
), j = 0, 1. 

(2.10) 

This formulation using a sequence of parameters and priors constitutes a Bayesian hier

archical model. Under a fully Bayesian framework prior distributions for the parameters 

have to be set up. For f30 and f31' a normal prior of mean 0 and variance cr2 is applied. 

Normally, cr2 is set to be very large like 10000 to ensure the priors on the parameters are 

noninformative. More explanatory variables can be included in the model with indepen

dent normal priors on their coefficients. 

Additional random effects Ci can be included in the Poisson mean Ai. If Ci is the log of 

a gamma-distributed variable as shown in equation (2.6), then the marginal distribution for 

Yi is negative binomial. Therefore, the model is the same as a negative binomial regression 

model introduced in Section 2.3.2. It is a Bayesian version of the negative binomial 

regression model, with normal priors on the regression coefficients. However, this model 
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is difficult to be extended to a more complicated form, for instance multiple response 

models that jointly model different types of accidents. In such circumstances, a log

normal random effect is usually preferred. In this, ei is normally distributed. The marginal 

distribution of Yi is then Poisson-lognormal that is analytically intractable therefore cannot 

be solved using maximum likelihood method. This is not a problem in a Bayesian context 

by using Markov Chain Monte Carlo methods (see Section 2.6.2). 

When ei is normally distributed, it is often formulated as 

ei rv N(O, (Ji) 

(Ji rv hO, 

where hO is an appropriate hyper-prior distribution for (Ji. Various noninformative prior 

distributions have been suggested for hO in the Bayesian literature, including an improper 

uniform prior and an inverse-gamma prior. Gelman (2006) explores and makes recom

mendations for prior distributions for variance parameters in the hierarchical model. He 

also suggests that care should be taken when the inverse gamma prior is used since the 

resulting inferences will be sensitive to the choice of the parameters in the gamma prior. 

ei is an unstructured random effect. Some structured random effects can also be in

cluded in the model. Tunaru (2002) developed multivariate models that allow for cor

relations between mean accident frequencies for different severity. The correlation was 

introduced in the variance-covariance matrix for the random effect. Miaou et al. (2003) 

employed hierarchical Bayesian models similar to those in disease mapping to build risk 

maps for area-base traffic crashes in Texas at the county level. Their models consid

ered spatial correlation in the counties by introducing spatially structured random effects. 

More recently, Bailey and Hewson (2004) applied a multivariate modelling method to 

model a range of traffic safety performance indicators simultaneously. Some approaches 

to taking account of spatial and other types of random effects in Bayesian models will be 

introduced in the next chapter. 
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Chapter 3 

Bayesian models for spatial data 

Limitations of conventional models for accident frequencies have been discussed in the 

previous chapter. These models assume independence between different sites or areas. 

Spatial correlation either in the road network or between adjacent geographical areas is 

not well considered in these models. Accident data are spatial data. Researchers in areas 

such as ecology and epidemiology have shown particular interest in applications with 

spatial data. A variety of spatial models have been developed in these areas. Some of these 

models can be applied to road accident data, but the models may need some modification 

in order to make them more appropriate for accident data. 

This chapter aims to explore some existing approaches to the development of statis

tical models for spatial data and to explain which of these approaches are appropriate 

to model accident frequencies. How univariate spatial models can be extended to multi

variate models and to include temporal effects will be discussed. Moran's I statistic and 

the influence of ignoring edge effects in spatial models will be introduced at the end of 

chapter. 

In order to find an appropriate approach to account for spatial effects in the con

ventional models, recall the Poisson log-linear model with log-normal random effects 
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introduced in Section 2.7: 

Yi r-v Pois(Ai) , where 

log Ai = f30 + {3xi + £i. 

The £i are unstructured random effects and independent in space. Spatial correlation can 

be introduced by replacing £i with spatially structured random effects that can express 

spatial dependence in all the sites. 

Previous studies that develop accident models based on this idea are very few. This is 

because the recent development of spatial modelling approaches in other areas have not 

been widely used in road safety research. Therefore, in the following section, some exist

ing statistical modelling approaches for spatial data will be introduced and the possibility 

of generalizing these approaches to model road accident frequencies will be discussed. 

3.1 Bayesian spatial models 

3.1.1 General introduction of spatial data analysis 

In the previous chapter, the general approach for Bayesian modelling has been explained. 

Some applications in Bayesian analysis involve data with additional spatial information, 

for instance, geographically referenced data. Such data are known as spatial data. Re

searchers in areas such as ecology and epidemiology have shown particular interest in this 

type of data. Based on applications with different purposes, Banerjee et al. (2004) classify 

spatial data sets by three basic types, namely point-reference data, areal data and point 

pattern data. 

In the case of point-referenced data, the response variable Y is a vector that measures 

values of some factor at some locations in a study region. The value of this factor should 

vary continuously by location. One example is to model the amount of some pollutant in 

the air monitored in a number of sites in an area. When data for n locations are available, 
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a general model can be: 

yip, e rv Nn(,U,L), 

where Nn denotes the n-dimensional normal distribution, J.1 is the mean level and I. is 

the variance-covariance matrix for y. L describes the spatial correlation in different lo

cations. The simplest approach to identifying L is to make it depend on the distance 

between locations. Banerjee et al. (2004) give a variety of choices to produce distance

based variance-covariance matrix. Many studies in this area aim to predict some values 

at unobserved locations based on observed data in several known locations. 

Banerjee et al. (2004) call the second type of spatial data areal data. When the whole 

area of interest can be partitioned into a finite number of areal units (of regular or irregular 

shape) with well-defined boundaries, models can be developed at the geographical area 

level. Many studies in disease mapping belong to this category of application. Best 

et al. (2005) compared a class of Bayesian spatial models for disease mapping. In their 

study, models are grouped in three categories, namely models with correlated normal 

random effects, semi-parametric spatial models and spatial moving average models. The 

first type of model includes models with joint normal priors and models with conditional 

autoregressive (CAR) priors. Many applications in areas such as disease mapping use 

such models. The second type of model assumes the whole study region can be partitioned 

into k clusters of areas. There are some methods to choose cluster locations and allocate 

areas to clusters. For instance, k areas are randomly chosen as cluster centres and the 

remaining areas are allocated to a cluster if this cluster centre is closer than others in 

terms of the minimal number of area boundaries that have to be crossed to reach it. k is 

treated as unknown and the relative disease risk in each cluster is constant. The relative 

risk for each cluster is then modelled by a gamma distribution or a log-normal distribution. 

The last type of models are spatial moving average models. They have been developed 

primarily for continuous processes. Best et al. (2000) proposed a discrete version of the 

gamma moving average model and applied it to model a kind of illness. In such models. 

it needs to specify a number of grid cells that define the latent process in order to model 
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the spatial dependence structure. 

The last type of Banerjee et al. (2004),s classification is spatial point pattern data. 

Here, the response variable y often represents the occurrence of an event. The location of 

the event is assumed to be random. The main interest with data of this kind is to identifv 

locations where some specific events cluster. 

The three types of applications using spatial data, introduced above, cover a wide 

range of spatial data analysis. It is worth thinking about how accident data fit into this 

classification. The first type of application based on point-referenced data may be not 

appropriate for accident data, since it needs the response variable to vary continuously 

in the space. However, the last two types of applications are relevant for accident data. 

Models for accidents at the area level, such as local authority and ward, use a kind of 

areal data. Methods to analyse point pattern data can be used to identify clusters of road 

accidents. Some relevant studies in this area have been reviewed in Section 2.5.1. 

Since this study aims to develop accident models that take account of spatial effects, 

the remaining part of this section will emphasise the introduction of two spatial modelling 

approaches that are used in disease mapping, namely the conditional autoregression model 

and the spatial moving average model. 

3.1.2 Conditional autoregressive (CAR) model 

Research in disease mapping often uses areal data. Generally, disease mapping aims to 

explain the geographical distribution of disease rates, and to identify areas with low or 

high rates. Bayesian methods are currently much applied in this area. Ghosh and Rao 

(1995) conducted a comprehensive review of hierarchical Bayesian methods and found 

them favourable for dealing with small area estimation problems when compared with 

other statistical methods. The conventional approach does not take account of any spatial 

dependency in disease. In other words, the response variables in different areas are treated 

as independent. In disease mapping (e.g. Mollie, 1996), the response \'ariable Yi is often 

the number of deaths or specific disease cases. It is assumed to be Poisson distributed with 

a mean EiTj. In this, Ej is the expected number of deaths or cases based on the age-sex. 
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distribution of area i and standard rates for the event or condition. ri is the relatiye risk 

for area i, linked to one or more explanatory variables via a log transformation. When 

only one explanatory variable Xi is available, the model can be expressed as log(ri) = 

f31 x i + ci, where Ci is supposed to be independently and normally distributed with mean 

zero and constant variance (J'2. This model is very similar to the Poisson model with a 

log-nonnal random effect for the accident count that has been introduced in Section 2.7 in 

the previous chapter. The variance-covariance matrix of the £ has the form V = (J'2 I. The 

independence assumption will be violated when the error terms are autocorrelated. This 

problem frequently happens for spatially located data as well as for data arranged in time 

sequence. For instance, in disease mapping, geographically close areas may tend to have 

similar disease rates. The variance-covariance matrix will then have nonzero off-diagonal 

elements reflecting dependence between the outcomes of neighbouring areas. There are 

two approaches to modelling the dependence between neighbouring areas. One is the 

simultaneous autoregressive model (SAR), in which spatial outcomes are expressed in 

tenns of a joint density function for area i and its neighbours together. Another approach 

is to express the spatial structure via a conditional autoregressive model (CAR). In the 

absence of any explanatory variable for each area, suppose log(ri) = ei. Then, by the 

CAR specification, the conditional distribution of each ei given all the other ej(j =I- i) 

depends only on its neighbours. Banerjee et al. (2004) give some reasons why using the 

CAR model to formulate spatial dependency structure shows more advantages than using 

the SAR model in the Bayesian context. The CAR model is computationally convenient 

by Gibbs sampling, which is, like the CAR model, based on full conditional distributions. 

Moreover, in practice a SAR specification is not used in conjunction with a generalized 

linear model. In disease mapping, a Bayesian estimate of the disease rate in an area, based 

on a CAR model, not only shrinks to the global mean as an empirical Bayes estimate 

introduced in Section 2.3.3 but also shrinks towards a local mean, according to the rates 

in the neighbouring areas. 

The intrinsic Gaussian autoregression model is one way of formulating a CAR model 

for irregular maps. In this context, the conditional mean and variance are defined in terms 
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of a square matrix of non-negative weights W = { Wi}} that describe the association in the 

observed areas. The simplest choice for W is Wi} = 1 if areas i and j are neighbours, and 

Wi} = 0 otherwise. The conditional distribution of each ei is then given by 

(3.1) 

where Wi+ = 'LJ=l wi} and 're is a scale parameter; j E N[i] means j is a neighbour of 

i. 're /Wi+ is the conditional variance. It is inversely proportional to Wi+, that is the 

total number of neighbours for area i if the 1-0 weighting scheme is used. Although in 

this formulation the conditional distributions ei I ej , j =1= i are proper, the corresponding 

joint distribution p( e) is improper, whose integral is infinite. This indicates that this 

intrinsic Gaussian model can be used only as a prior in a Bayesian analysis. However, the 

impropriety of the joint distribution can be remedied by introducing an extra parameter 

p, which will make the conditional distribution of ei become 

N ( " Wi) e. ~) p ~ J' . 
}EN[iJ Wi+ Wi+ 

(3.2) 

But is the proper CAR formulation better than the improper CAR? The answer may be 

no. Banerjee et al. (2004) give some of the reasons. Firstly, in a proper CAR model, the 

mean of ei is not an average of its neighbours, but some proportion of this average. Does 

this make any sensible spatial interpretation? Moreover, proper CAR models can make 

the range of spatial pattern restricted while improper CAR models may enable a wider 

scope for posterior spatial pattern. Therefore, the choice between two types of CAR 

models is ambiguous. However, care should be taken when including improper CAR 

priors because it can make the posterior joint distribution improper, so that the resulting 

posterior distribution makes Bayesian inference impossible. The propriety of the posterior 

joint distribution, when improper priors are included in the models, has been studied by 

many researchers. For instance, Ghosh et al. (1998) as well as Sun et al. (1999) pro\'ided a 

sufficient condition to gain a proper joint posterior with a uniyariate CAR prior for spatial 

random effects. It needs that the response variable y is always positive. This will not be 
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a problem for areal models of accidents as long as the area is large enough. However, for 

network models, especially when only one year's data are used, number of accidents at a 

junction or on a link could be zero. Therefore, further research is needed for examinin a 
c 

the propriety of the posterior joint distribution when the response variable contains zero. 

The formulation of ei only based on a CAR model implies a high degree of spatial 

interdependence. It may be modified to allow for a mixed or compromise scheme where 

some variation is explained by an unstructured term, which describes unstructured het

erogeneity in the relative risks. This can be expressed as: 

where're and 'rE are the variance parameters for the spatially structured random com-

ponent e and unstructured random component c. Such a model, incorporating both the 

spatial random effects and the unstructured random effects on the log relative risks, is 

called a convolution Gaussian model (Besag and Mollie, 1989; Besag et aI., 1991). As 

described by Mollie (1996), 're and 'rE control the strength of ei and Ci respectively. If 

'rEI're is close to W, the average value of Wi+ in equation (3.1), Vi and ei have the same 

importance. If 'rEI're is larger than W, then unstructured heterogeneity dominates; if it is 

smaller, spatial structured variation dominates. Depending on the relative strength of un

structured as against spatially structured variation, individual area risks will be smoothed 

towards the global or neighbourhood averages. 

The above mentioned existing method used in disease mapping is straightforward and 

very suitable to apply for modelling of road accidents at the geographical area level, for 

instance local authority or ward. 
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3.1.3 Spatial moving average models 

The CAR model is an extension of the Poisson log-linear model by including spatially 

structured random effects. Best et al. (2000) proposed a form of Poisson regression model 

with identity link instead of the logarithmic link. Their approach allows for incorporating 

spatial dependence via a spatial moving average model for the latent random effects. This 

is similar with the moving average models proposed by Loveday and Jarrett (1992) to 

model accidents on a road network as introduced in Section 2.5.2. Best et al. (2000) used 

a Poisson-gamma spatial moving average model to analyse traffic-related air pollution 

and respiratory illness in children living in the Huddersfield region of northern England. 

The study region was partitioned in two ways, namely census enumeration districts and 

regular grid cells. The general models in their study are: 

ri = f30 + f31 x i + f32 [.kijy}. 
j 

(3.3) 

For each area i, Yi is the number of cases of self-reported frequent cough amongst children 

aged 7-9, Ni is the estimated population of 7-9 year old children and Xi is the average 

annual nitrogen dioxide concentration. The Yj are gamma random variables, where Yj rv 

Gamma(K"j, v), that can be thought of as latent unobserved risk factors associated with 

sub-regions or locations indexed by j. These sub-regions or locations are typically defined 

by the user. In this example, they can be either the same areal partition as the disease 

outcome data or an arbitrary partition of the area using grids. The kij are elements of 

the kernel matrix and measure the relative contribution of the latent variables Yj to the 

random effect in area i. Best et al. (2000) assume a stationary Gaussian kernel function 

with kij = I /27r</>2exp( -dl/2</>2), where dij represents the Euclidean distance between 

the centroid of area i of the study region and the location of the jth latent factor and 0 

is the spatial range parameter governing how rapidly the influence of the latent gamma 

random variables on the area specific excess risk declines with distance. Independent 
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gamma prior distributions are assumed for the parameters /30, f31, f32 and Yj as this enables 

the MCMC sampler to exploit conjugacy with the Poisson likelihood. The specification 

of these priors has been discussed in detail by Best et al. (2000). 

Although the spatial moving average model is relatively easy to apply to spatial data. 

it has some limitations to use in practice. Normally, latent grids are chosen to represent a 

partition of the region that is appropriate for capturing unmeasured spatial variation in the 

disease rate. But there is no general rule to guide how to define the latent grid. Best et al. 

(2000) suggested that, for the Poisson-gamma spatial moving average modeL the output 

areas of the study region and the grids for the latent process need not be regular grid cells. 

However, according to the concept of the moving average model, this type of model is 

more appropriate to be used for a region that is partitioned into regular grids. Accidents 

are seldom studied at the grid level. This is possibly because the data for the explanatory 

variables are often not available at the grid level. Such data are normally collected for 

each areal unit that is defined by a particular type of boundary, such as local authority 

and ward. Moreover, analyses based on grid cells imply the arbitrary partition of the road 

network. Therefore, areal models for road accidents are most likely to be developed at the 

area level like local authority and ward. 

3.2 Extensions of univariate CAR models 

3.2.1 Multivariate CAR models 

The CAR model introduced in the previous section models accidents of one particular 

type. It can be extended to model accidents of different types jointly. There are several 

possible ways to extend univariate CAR models to multivariate CAR models. An obvious 

choice would be to use several separate univariate CAR models, each of which with a 

common scale parameter r for the spatial random effect ei. If the variation in ei is different 

for accidents of different types, different r's should be applied. However, the response 

variables, for instance, numbers of fatal and serious accidents, could be correlated since 

they may share some same risk factors. Therefore, a multivariate CAR modeL which 
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takes account of not only the spatial dependence between neighbouring areas but also the 

correlation in the mean frequencies for different types of accident, is more appropriate. It 

is expected to improve the estimate of the mean number of a particular type of accident at 

location i by not only borrowing information from neighbouring locations but also using 

information from other types of accidents. 

Tunaru (2002) developed Bayesian models for multiple count data. These models 

take account of the correlation in the Poisson means of different types. Suppose that 

the unstructured random effects in area i are eli, ... , epi, where p describes the accident 

type. They are distributed with a multivariate normal distribution N p' whose variance

covariance matrix takes account of the relationship in different types of accident and is 

modelled via a Wishart distribution. It is straightforward to extend Tunaru's models to 

multivariate CAR models by including additional random components that capture spa

tial correlation in the response variables. Several formal multivariate CAR models have 

been proposed in the literature. Kim et al. (2001) proposed a "twofold CAR" model 

for modelling two types of disease over each areal unit. However, their method is lim

ited to bivariate data and is difficult to generalize to a large number of diseases. Based 

on Mardia (1988)'s fundamental theory for multivariate Gaussian Markov random fields 

(GMRF) , Gelfand and Vounatsou (2003) and Carlin and Banerjee (2003) suggested a 

class of multivariate proper CAR models. Jin et al. (2005) proposed generalized mul

tivariate conditional autoregressive (GMCAR) models for areal data, in which the joint 

distribution for the multivariate spatial process is defined through simple conditional and 

marginal forms. 

Generally, multivariate CAR models can be formulated using a similar idea to the 

univariate CAR model. Suppose the spatial effect 8i in area i now is a p-dimensional 

vector, which corresponds to p types of incidents. Analogous to the univariate CAR case, 
W" I 

the full conditional distributions of 8i given 8j' where j -# i, are Np([jEN[i II':~ 8j, Wi+ [), 

which is a multivariate Gaussian distribution with p dimensions. The p x p matrix ~ is 

positive definite and represents the conditional variance-covariance matrix with the pth 

diagonal element representing the conditional variance of the pth component of 8i and 
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off-diagonal elements representing the conditional covariances between each pair of the 

p elements of ej • 

3.2.2 Models with spatio-temporal effects 

In disease mapping, when longitudinal data are available, models can include both spatial 

effects and temporal effects. Most of the Bayesian methods extend the CAR model of 

Besag et al. (1991) to a spatio-temporal model. Bernardinelli et aI. (1995) suggest a 

model of the following form: 

a is the intercept (overall rate). e has an intrinsic Gaussian auto-regressive prior with 

variance (j~. Ci is normally distributed with mean 0 and variance cri. Oit models a linear 

trend t with the coefficient Oi depending on i. Oi can either be taken as an overall av

erage growth rate 8 or modelled via an intrinsic Gaussian prior with variance crg if the 

trend is expected to have a spatial structure. The latter choice introduces spatio-temporal 

interactions in the model. 

Waller et al. (1997) use a model like that of Besag et al. (1991), but apply it to each 

time point separately. The model allows that the scale parameter of the spatial component 

varies in different years. 

Knorr-Held and Besag (1998) adopt the following model, 

where ar follows a random walk and eit = ei for all t = 1, ... , T. They use the same 

spatial random effect in all the years for each observational unit. Their model also allows 

coefficients of the explanatory variables to vary in time. However. the model combines 

temporal and spatial effects additively and does not allow for space and time interactions. 

Most of the recent studies in disease mapping develop their spatio-temporal models 

based on one of the approaches introduced above. More recently, Knorr-Held (2000) 
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introduces four types of space and time interaction in his models. The number of deaths 

Yit in county i during year t is assumed to have a binomial distribution with parameters 

nit and leit· nit is the number of persons at risk and leit is modelled with a logit link as 

l1it = In (leit / (1 - leit )). l1it decomposes additively into time- and space- dependent effects 

as 

where ar is a temporal effect modelled by a random walk, Yt is an unstructured temporal 

effect, Bi is a spatial effect modelled by a CAR prior, Ci is an unstructured spatial effect 

and <Pit describes the spatio-temporal interaction. Four types of interaction were consid

ered by Knorr-Held (2000) by interacting two temporal effects with two spatial effects 

respectively. They are the interaction between the unstructured temporal effect Yr and the 

unstructured spatial effect Ci, the interaction between the random walk effect at and the 

unstructured spatial effect Ci, the interaction between the unstructured temporal effect Yr 

and the spatially structured effect Bi and the interaction between the random walk effect 

ar and the spatially structured effect Bi . 

The most up-to-date study for Bayesian multivariate models with spatio-temporal ef

fects is by Richardson et al. (2006). In their study, the joint pattern of the spatio-temporal 

variation of males and females lung cancer risks in four periods is analysed at the ward 

level. Their models extend the shared component spatial models by Knorr-Held and Best 

(2001). Let Ylit and Y2it represent the observed number of cases of lung cancer in males 

and females, respectively, for ward i and time period t. As usual, they are assumed to be 

Poisson distributed with mean Elitrlit and E2itr2it. Elit and E2it are the expected number 

of lung cancer cases calculated on the basis of average age-sex specific incidence rates 

for the region. Without considering any explanatory variables, Richardson et al. (2006) 

propose the following models to account for shared temporal and spatial components in 

males and females, differential temporal and spatial effects in males and females, space-
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time interaction terms and heterogeneity terms in the relative risk rl' and r2' . 
It It • 

rlit = eiD + ~t 1( + 11it + ¢lit 

ei ~t 
r2it = 8 + K + Vi + lift + 11 it + ~it· (3.4) 

In these models, ei represent the shared spatial pattern in males and females, Vi represent 

the spatial pattern in females that is different from that in males, ~t is a shared time 

trend, lift is the female differential from the male time trend, 11it captures the space-time 

interaction. Improper CAR priors as formulated in 3.1 are used for the spatial random 

effects e i and Vi· The first order random walk priors are assumed for the time trends St and 

lift· The authors use the CAR priors to formulate these temporal effects by identifying the 

neighbour structure according to time. The heterogeneity terms (¢lit, ~it Y are assigned a 

zero-mean multivariate normal distribution to allow for the correlation between the male 

and female disease process in each space-time unit. 

3.3 Moran's I statistic 

Moran's I is often used as a measure of the spatial correlation in the data. A standard 

formulation of Moran's I in data y (see Upton and Fingleton, 1985) is 

where y is the mean of data and Wi} is the spatial weight between location i and j. More

over, a spatial correlogram shows changes of spatial correlation in the data when distance 

or order of neighbours is increased. In general, the spatial correlation should drop with 

the increase of distance or order of neighbours. 

The randomization procedure that is broadly favoured in testing the significance of 

spatial correlation can be replaced by the normality approach if the data to be examined 

are residuals from regression models. There is a procedure in the R 'spdep' package 

(Bivand, 2004) for testing Moran's I when it is calculated from residuals from a linear 
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regression. But for residuals from a generalized linear model, no ready to use adjusted 

method can be found for Moran's I. Ge and Zhang (2006) did some simulations to exam

ine the performance of different type of residuals from a Poisson log-linear model in the 

Moran's I test and suggest the use of Pearson residuals, defined as 

Yi - ).,i 

1\' (3.5) 

where ).,i is the estimate of the Poisson mean using method of maximum likelihood. It 

is found to perform better than the regression residual Yi - ).,i in a number of different 

conditions for generalized linear models. 

In a Bayesian context, a simple approach to examining the spatial correlation in resid

uals could be to calculate Moran's I, by using the posterior mean of Ai for ).,i in equa

tion (3.5). However, as mentioned in Section 2.6.3, in a Bayesian context, Bayesian 

residuals are more appropriate to be used for model checking. Especially in the case of 

examining spatial correlation in residuals, only residuals obtained from Ai saved from the 

same simulation will completely reflect the real spatial pattern in residuals. However, 

no available approach is found in the literature that examines the spatial correlation in 

Bayesian residuals. Gelman et al. (2000) proposed a general approach for model checking 

using posterior predictive simulations. This suggests examining the posterior distribution 

of Moran's I. In this case, more computations will be needed. A general introduction to 

Gelman's approach and how it can be applied to Moran's I statistic for model checking 

are explained in the next chapter. 

3.4 Edge effects 

In disease mapping, spatial analyses are usually undertaken within a region that is con

tained within a boundary. Data for the areas outside the boundary are often missing. 

Therefore, estimates for areas close to the edge can only be based on available data within 

the study region and could be statistically biased. Vidal Rodeiro and Lawson (2002) ex-
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plored how the estimation of the relative risk from a disease at or near boundaries can 

be affected by the level of the missing data for areas outside the edge by fitting a num

ber of models, including the Poisson-gamma model, Poisson log-normal model, intrinsic 

CAR model and convolution CAR model, with some simulated data. Vidal Rodeiro and 

Lawson (2002) also reviewed some effective solutions that have been used to remove or 

compensate for edge effects. Constructing an external buffer zone is one of the most 

popular approaches for accommodating edge effects. If observations within the buffer 

zone are available, it is straightforward to fit models with the whole data covering both 

the study region and the buffer zone. If no data are observed in the buffer zone, ordinary 

methods for the missing data problem can be used. 
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Chapter 4 

Methodology: Spatial models for 

accident frequencies 

Conventional statistical approaches for modelling numbers of road accidents have been 

reviewed in Chapter 2. The Poisson log-linear and negative binomial models are widely 

used in road safety research. One limitation of these models is the spatially independence 

assumption. Possible reasons for the existence of the spatial correlation in the accident 

frequencies have been discussed in Section 2.5.2. However, there are relatively few stud

ies that have considered spatial correlation in their models. 

Spatial models have been developed and extensively studied by researchers in areas 

such as disease mapping. One approach to taking account of spatial dependence is to use 

the CAR model, which has been introduced in Section 3.1.2. The very similar context 

for disease and road accidents indicates that this approach can be used for road accident 

models. 

In this chapter, the approach to modelling the number of road accidents is proposed. 

Models are introduced in order of increasing complexity. The univariate models inc1 ude 

the Poisson model with log-normal random effects, the Poisson model with log-normal 

random effects and fixed regional effects, the Poisson model with log-normal random ef

fects and spatially structured random effects modelled by a CAR prior and the Poisson 

model with log-normal random effects, spatially structured random effects and temporal 
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effects. For CAR models, possible choices for the neighbours list and the spatial weight

ing scheme in the context of accident models are discussed in detail. Later, the univariate 

models are extended to multivariate models that model numbers of different types of road 

accidents jointly. Methods for model checking are described at the end. 

4.1 Univariate models 

A simple form of model for accident data is the Poisson log-linear model. This model can 

be extended to more complicated models. In the following subsections, univariate models 

will be proposed. Based on a simple version of the Poisson log-linear model, unstructured 

random effects, spatial effects and temporal effects will be introduced. Notation used in 

this chapter is defined below: 

• Yi is the total number of a particular type of road accidents at site i in a fixed period; 

• /30 is the intercept; 

• Xi is an explanatory variable which measures some characteristics of the site in 

the same period; /31 is the coefficient for it. For simplicity, only one explanatory 

variable is used when models are introduced. But in practice more explanatory 

variables can be added by extending /31xi to Ej=1 {3jXij, where p is the number of 

explanatory variables. 

4.1.1 Poisson log-linear model 

A Poisson log-linear model can be formulated as: 

Yi rv POiS(Ai), 

10gAi = /30 + {31 x i, 
( .. L I) 

where Yi are independent over space given Ai. As introduced in Section 2.3.1, for count 

data like numbers of accidents, the residual variance is often larger than the mean. How

ever, a Poisson model requires that the variance equals the mean and therdore cannot 
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take full account of the variation in the accident data. One way to improve the model is 

to introduce extra variation in the Poisson mean. 

4.1.2 Poisson regression model with log-normal random effects 

As explained in Section 2.3.2, the negative binomial model can provide a solution for 

the overdispersion problem by introducing an extra level of random effects, that follow a 

gamma distribution, in the Poisson mean. However, it is difficult to be extended to a more 

complicated form of model (see Section 2.7), for instance, multivariate models or models 

with spatial random effects. A Poisson regression model with log-normal random effects 

is more flexible in this context. It can be expressed in the following form: 

Yj rv independent Pois(Aj) 

10gAi = f30 + !31xi + ci, (4.2) 

where the Cj are independently and normally distributed with mean 0 and constant vari

ance cr'f. This model assumes the Ai over all areas or sites are independent. However, 

this may not be true. Possible reasons are discussed in Section 2.4. Therefore, this model 

needs to be modified in order to take account of the spatial dependency among the areas 

or sites. 

4.2 Univariate spatial models 

4.2.1 Poisson regression model with regional (fixed) effects 

One way to take account of the spatial dependency is to introduce spatial fixed effects 

in model (4.2). When the data used to fit the model are at the areal level like local au

thority or ward, the data normally cover contiguous areas that are located in the whole 

study region. The region could consist of several sub-regions by which the areas can be 

grouped. For instance, suppose the whole study region is the West Midlands region of 

England (not including rural areas) and the areal units are wards. Then the sub-regions 
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are the metropolitan districts Birmingham, Dudley, Sandwell, Solihull, Walsall, Wolver

hampton and Coventry. With this information about sub-regions, a factor represented by 

dummy variables can be created and included in the model to measure the regional effects. 

Suppose that there are M sub-regions. M dummy variables can be defined as: 

1 ifiESL,whereL= 1,2, ... ,M 

o otherwise, 

where Sl, S2, ... , SM represent identified sub-regions. i E SL means area i is in SL. These 

variables will capture the fixed regional effects. However, only M - 1 dummy variables 

will be needed in a model. Based on model (4.2), an extra term Er==-11 aLDiL can be added 

in the right hand side of the second line. aL is the coefficient of the dummy variable DiL. 

The fixed regional effects can account for the spatial dependency among the areas 

on their sub-regions therefore introduce spatial dependency at a relatively wide level. 

For better explaining the spatial dependency, a method for taking account of the spatial 

correlation among the areas at a more local level is needed. 

4.2.2 Poisson regression model with spatial random effects 

The intrinsic Gaussian prior, introduced in Section 3.1.2, can be used at this stage to for

mulate a model for spatial random effects that takes account of the spatial dependency in 

the neighbouring areas or sites. It should be noted that in the context of disease mapping, 

based on the same distribution assumption (Poisson distribution) of the response variable, 

the log-linear model is for the relative risk Ti for area i, where Yi rv Pois(EjTj). Ej is the 

expected number of disease cases based on the age-sex distribution of area i. But when 

the response variable is the accident count, such a formulation is not appropriate. This is 

because the age-sex distribution is not a very appropriate indicator of the expected num

ber of road accidents in an area. It might be appropriate for models of road casualties 

since some particular population groups, for instance school children, might be high-risk. 

For such models casualties at the area level could be aggregated in two ways in terms of 
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the casualty's home location or of the accident location. Hewson (2005) used the CAR 

model to study child pedestrian injuries at the ward level in Devon County. He found 

evidence that data aggregated in terms of the casualty's home location cannot be assumed 

to be spatially independent. Conversely, data aggregated in terms of the accident location 

were found to be spatially independent. The spatial dependence in the casualty home ag

gregation data can be understood as implying that casualties tend to have accidents near 

their home, given estimates of the distance between home and accident location of around 

600m, but not necessarily within their home ward. 

Some researchers like Miaou et al. (2003) use a traffic variable to take place of Ei and 

treat ri as the accident rate in models for accident count. However, this approach can be 

questioned because the approach is based on the assumption that the expected number of 

accident in an area is proportional to the amount of traffic. This assumption could be too 

strict. It is more reasonable to include the traffic variable in the log-linear model like other 

explanatory variables. 

The spatial CAR model used in this research is formulated as: 

(4.3) 

where, as explained in Section 3.1.2, Wi+ = EJ=l Wij and 're is a scale parameter; j E 

N(i] means j is a neighbour of i. As shown in the previous chapter, the formulation of 

model (4.3) implies a high degree of spatial interdependence and may be modified to allow 

for a mixed or compromise scheme where some variation is explained by an unstructured 
. 1 

term Ci, which is normally distributed with mean 0 and constant vanance (Ji· 

The CAR model defined above is improper so it can only be used as a prior distribu

tion for the spatially distributed random effects. It is often convenient to assume that such 

random effects have sum to zero mean. Besag and Kooperberg (1995) show that con

straining the random effects to sum to zero and specifying a separate intercept term with 
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a location invariant Uniform( -00, +00) prior is equivalent to the unconstrained parame

terisation with no separate intercept. In WinBUGS, the improper CAR model includes 

a sum-to-zero constraint on the spatial random effects therefore an intercept with an im

proper uniform prior is needed. This can be done by assigning the intercept with the 

dflat() distribution (used in WinBUGS), which corresponds to an improper fiat prior on 

the whole real line. This means that in model (4.3) f30 r-...; dflat(). 

A prior distribution for the overall variance parameter 're needs to be specified. In 

WinBUGS, the inverse variance parameter, also known as the precision parameter, is used 

when a CAR model is specified. A prior distribution needs to be assigned to it. A gamma 

prior is usually used. As suggested by Spiegelhalter et al. (2003), one option is to use a 

gamma distribution with shape and inverse scale parameters both equal to 0.01. It has a 

mean of 0.01/0.01 = 1 and a large variance of 0.01/(0.01? = 100. This tends to place 

most of the prior mass away from zero for the standard deviation of the spatial random ef

fects. When the true spatial dependence between areas or sites is negligible (for instance, 

the standard deviation is close to zero), this may induce artefactual spatial structure in the 

posterior. Kelsall and Wakefield (1999) suggest an alternative Gamma(0.5,0.0005) prior 

for the precision parameter of the spatial random effects in a CAR model. This expresses 

the prior belief that the random effects standard deviation is centred around 0.05 with a 

I % prior probability of being smaller than 0.01 or larger than 2.5. This prior is adopted 

to specify the prior distribution for the inverse variance parameter in a CAR model in this 

research. 

4.2.3 Spatial neighbours list and weighting choice 

4.2.3.1 Neighbours list 

Using a conditional autoregressive model to formulate the spatial random effect as in 

model (4.3) requires an appropriate specification of the spatial neighbours list and the 

weighting scheme. 

For geographical areas, neighbours of area i can be defined as other areas that share at 

least one common boundary with it. Both GeoBUGS (Thomas et al.. 200..+). \vhich is an 
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add-on in WinBUGS, and the 'spdep' package (Bivand, 2004) in R are able to work out the 

neighbours list based on this definition. In R, a neighbours list is identified by examining 

regions with contiguous boundaries. Under the 'queen ' condition (Upton and Fingleton, 

1985), a single shared boundary point meets the contiguity condition. GeoBUGS includes 

a tolerance zone of 0.1 metres when it examines the contiguity condition. There will be 

no problem if the units of analysis, such as local authorities , in the study region are com-

pletely contiguous. However, if, for instance, a river passes between two local authorities 

and there is no shared boundary point for the local authorities , they will not be identified 

as neighbours. 

Figure 4.1: Incomplete map of London boroughs 

Figure 4.1 shows part of London, including the boundary lines between borough 

(M "d' ™ and the layout of A-roads, based on the Meridian 2 Ordnance Survey data en Ian 

2007). The grey lines correspond to the boundaries and the black tines plot the la out of 

the A-roads. Hammersmith and Fulham, Kensington and Chelsea, We tmin ter the Cit 

of London and Tower Hamlets are on the north side of River Thames while Wand orth, 

Lambeth, Southwark and Lewisham are on the outh ide of the ri er. The borough n 
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the different sides of the river will not be identified as neighbours in GeoBUGS and the 

'spdep' package in R because their boundary lines are separated by the river. Using such a 

neighbours list implies that the boroughs on one side of the river are independent from the 

boroughs on the other side of the river. However, this may not be true when the response 

variables are numbers of road accidents. Some A-roads are found to cross the river from 

one borough to another. For instance, there are two roads connecting Hammersmith and 

Fulham with Wandsworth; City of London is connected to Southwark by three roads. 

Under these circumstances, the underlying means of number of the road accidents in 

these boroughs may not be independent because some traffic could move between them 

through the roads that connect them. With some minor changes in the neighbours list 

produced by GeoBUGS or R, the modified list, based on the connectivity by roads, is 

more reasonable to be used in a CAR model to describe the spatial dependency. 

Neighbours found by a contiguity condition are first order neighbours. Second or

der neighbours or even higher order neighbours can be included in the neighbours list. 

Generally, if area j is a first order neighbour of area i, then the first order neighbours 

of j (excluding those that are also first order neighbours of i) are defined as the second 

order neighbours of i. Higher order neighbours are defined in the same sense. High order 

neighbours can be used in a CAR model especially when the unit of analysis is relatively 

small area like a ward. 

There are also other types of neighbour definition. For each area in the study region, 

the approach of k nearest neighbours finds the closest k areas as its neighbours. The 

distance based approach finds neighbours within some given distance. Euclidean distance 

between the centroids of the two areas are often used. However, these two approaches are 

more suitable for regular maps. Therefore, they are not considered here. 

The approaches to identifying a neighbours list discussed above are for geographical 

areas. For models of accidents on a road network, a neighbours list should be determined 

by the structure of the road network. Figure 4.2 plots an artificial road network. ~lajor 

roads are plotted in black and minor roads are plotted in grey. The points correspond to 

the location of some accidents. A standard approach to identifying a neighbours list for 
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A 

/1 B 

Figure 4.2: Accidents on a road network. 

such a road network is to replace it with a node-link-cell system. The network is normally 

defined by major roads, and nodes are intersections between the roads, or possibly points 

on a road where there is a change in the speed limit or number of carriageways. Links 

are the sections of road between nodes. Accidents on the main roads are then allocated 

to a node or a link:. Accidents allocated to a node are normally junction accidents, which 

are conventionally defined as those occurring within 20 metres of a junction . Accidents 

on minor roads are allocated to a cell of the network. Figure 4.3 illustrates the result 

for the network of Figure 4.2. Numbers in the figure correspond to total numbers of 

the accidents allocated to a node, a link or a cell. When only junction accidents are 

considered, a neighbours list needs to be identified for the five nodes, namely A, B C 

D and E. Nodes i and node j are first order neighbours if they are connected by a direct 

link. For instance, nodes Band E are first order neighbours for node A. When only link 

accident are considered, two links can be defined as first order neighbours if they join in 

a same node. For instance, links AB and BC are neighbours becau e they join in a arne 

node B. When both junction accidents and link: accidents are con idered the ne ighb ur 
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Figure 4.3: A node-link-cell system. 

list for the whole road network will be more complicated. Under these circumstances, 

the first order neighbours for a node include other nodes that are connected by a direct 

link with this node and the links that join in this node; the first order neighbours for a 

link include other links that have a common node with this link and the nodes that are 

on each end of this link. Using this definition of neighbours, node A has 4 first order 

neighbours, namely nodes Band E and links AB and AE; link AB also has 4 first order 

neighbours, namely links Be and AE and nodes A and B. Higher order neighbours can 

also be considered in the neighbours list for a road network. 

As illustrated in Figure 4.3, cells are areas bounded by the major roads. Therefore, 

neigbours for a cell consist of cells that share a common major road with it. However, 

no previous study is found to analyse accidents at the cell level. This could be due to the 

reason that explanatory variables at this level are difficult to obtain. 
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4.2.3.2 Weighting choice 

In order to specify a CAR prior, the simplest choice for the weight matrix W is Wi} = 1 

if areas or sites i and j are neighbours, and Wi} = 0 otherwise. When areal models are 

considered, an alternative for the weights is to let them depend on the Euclidean distance 

between the centroids of the neighbouring areas, the smaller the distance, the larger the 

weight. In network models, the distance based weights are more appropriate for models of 

junction accidents. In these, the weights depend on the distance, measured by the length 

of the road link between the neighbouring junctions. For areal models, it is also possible 

to use the percentage of shared boundary for area i with its neighbours to determine the 

weight, but this is difficult to work out in GIS software. 

In areal models, the above weighting choices do not take account of the spatial struc

ture of the road network and therefore may lose some valuable information to determine 

the spatial weights. Traffic moves on roads and road accidents occur on the roads. Traffic 

is the most significant factor to explain the variation in accident frequencies. However, it 

is very difficult to obtain a perfect measurement of traffic. This implies that even mod-

els that include traffic variables can leave some unmeasured quantity due to the difficulty 

in measuring traffic. Such an unmeasured quantity may be partly explained by a CAR 

model with a suitable weighting plan. As explained earlier, the spatial layout of roads can 

be used to complement the neighbours list and make the definition of neighbours more 

appropriate in the context of modelling the number of road accidents. This information 

can be also considered to determine the spatial weights that reflect the extent of spatial 

correlation. The greatest the number of common roads that cross two neighbouring areas, 

the higher should be the correlation in the traffic volume in the areas. A reasonable expla

nation for this is, with more common roads passing through the neighbouring areas, there 

will be more traffic movement between the areas. Therefore, for area i, a higher weight 

can be given to its neighbour j if there are more common roads passing through i and j. 

The amount of the weight can be determined by the total number of common roads. 

Figure 4.4 is a map of part of Southern England in the 1980s showing both the lo

cal authority boundaries and the main road network. Blue lines represent motorway-;. 
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Figure 4.4: Map of part of Southern England in 1980's. 

Green lines represent trunk roads. Red lines represent other A-roads other than trunk 

roads. Wiltshire lies in the middle of the map. Based on the common boundary rule , the 

first order neighours of Wiltshire are Oxfordshire, Berkshire, Hampshire, Dorset, Som

erset, Avon and Gloucestershire. The spatial weights of these neighbours on Wiltshire 

can be determined by the road network. This can be done by observing the number of 

common roads passing between Wiltshire and its neighbours by different road type. For 

instance, considering the hierarchy, the function and traffic level of different road type ' , a 

motorway (dark blue) could be given the highest weight 2, a trunk road (green) could be 

weighted 1 and a A-road (red), not trunk road, could be weighted 0.5. Taking Berkshire 

and Oxfordshire as examples, there is one motorway (dark blue) crossing the boundary 

between Wiltshire and Berkshire, therefore, getting a weight 2. In addition, there are two 

A-roads (red), not trunk roads, crossing the two counties, weighting 1 (2 x 0.5 ). There

fore , the total weight of Berkshire on Wiltshire should be 3. There are only one trunk road 

(green) and one A-road (red) crossing the boundary between Wilt hire and 0 ford:hire . 

The weight of Oxfordshire on Wilt hire hould be 1 + 0.5 = 1.5. 
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4.3 Univariate models with temporal effects 

When longitudinal data are available, the response variable is denoted by Yit, which is the 

total number of accidents of a particular type at area or site i in time t. There are a number 

of ways to take account of temporal effects in the model. Based on model (4.2), temporal 

effects can be introduced by including a linear trend variable or by using different constant 

terms POt in different time periods. 

Sometimes, temporal effects may have some specific structure such as temporal cor

relation. One way to model this correlation is to use an autoregressive model which 

introduces correlation between successive observations. Since one observation can only 

depend on previous observations but not future observations, a model that considers tem

poral correlation by using a first order autoregressive model can be formulated as: 

Y it r-v Pois ( Ait ) 

log Ait = {3o + (31 Xit + Cit 

Cit = PCi(t-l) + Vit 

Vit r'V N(O, cr;), 

where P models the extent of correlation between successive observations. 

(4.4) 

There are some studies that model the temporal effects as a random walk (see Richard

son et aI., 2006). The random walk is formulated by a CAR prior. In order to formulate 

the CAR prior, the neighbours list needs to be identified. The first order neighbours for a 

period, excluding the first and the last period, are its previous period and the period next 

to it. The neighbour for the first period is the second period and the neighbour for the last 

period is its previous period. 

4.4 poisson model with spatio-temporal effects 

A Poisson model with spatio-temporal effects can be developed by joining a model with 

temporal effects and a model with spatial effects. However, the formulation of the spatial 
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random effect using a CAR prior is more complicated because the data now cover several 

time periods. Suppose the neighbours list is fixed in time. For spatial random effects 

in different periods, the scale parameter will be ret. There are possibly two choices to 

decide it. One choice is to consider reI = ... = reT = re, in other words, treat the scale 

parameters all the same in time. Under this circumstance, the spatial random effects can 

be specified using a CAR prior in two ways according to the following two assumptions. 

Firstly, the spatial random effect eit in area or at site i is constant over time. Secondly, the 

spatial random effect eit in area or at site i varies over time but the scale parameter for the 

CAR prior is constant. In order to predict accident count in area or site i in the future, the 

first assumption is required. Alternatively, different scale parameters for the CAR prior 

can be used for different years. This implies that the spatial random effects vary over time 

as well as the extent of spatial dependency. 

When different scale parameters are used for the CAR prior in different periods, some 

temporal effects will be introduced in the model. However, these temporal effects do 

not describe the correlation structure in time. Therefore, temporal effects described in 

Section 4.3 can be included in model (4.3). For instance, if a linear trend variable t is 

included, spatial effects are assumed to be constant in time, and a first order autoregressive 

prior is chosen to model temporal random effects, then a model with both temporal effects 

and spatial effects can be written as 

Yit '" Pois (Ait ), where 

Vit '" N(O, a;). (-+.5) 

Both the temporal correlation and the spatial correlation in the residuals are expected to 

be removed after including both spatial effects and temporal effects in the model. 
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4.5 Multivariate models 

All the models in the previous section are specified for only one type of road accident or 

for accidents of all types. If more than one type of accident are modelled jointly, say two, 

a Poisson model with log-normal random effects for the accident frequencies might be: 

Yli rv POiS(A1i) 

Y2i rv Pois ( A2i) 

log Ali = 1301 + f311xi + Eli 

log A2i = 1302 + f312 Xi + E2i, 

(4.6) 

where Eli and E2i are assumed to be independent. This is a multiple response model. 

It can be noticed that the intercept term and the coefficient of the explanatory variable 

are different for different types of accidents. This model assumes that Eli and E2i are 

independent. However, in the same area i, one type of accident could be correlated with 

another type of accident. As described in Section 3.2, this type of correlation can be 

introduced by assigning Eli and E2i with a multivariate normal distribution Np(O,R). Here 

p = 2 because two types of accidents are considered here. The variance-covariance matrix 

R reflects the extent of correlation between different types of accident. 

To include spatial structured random effects and unstructured random effects in a mul

tiple response model, suppose there are only two types of road accidents and the Poisson 

means of them in each area i and in year t are Alit and A2it. The multivariate spatial model 

can be written as 

log A2it = 112 + /32xit + (hi + E2it, (-t.7) 

where 8lit and (hit are spatially structured random effects, and Elit and E2it are unstruc

tured random effects. 
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One simple way to formulate these random effects is to treat eli and £hi as indepen

dent and let them have different scale parameters 're. The correlation between Alit and 

A2it can be introduced by the unstructured random effect cl it and C2it. This can be done 

by using a bivariate nonnal dishtnbution[, S:£:hat

r

:::,]C2it rv N2(0.R), where R is the 2 x 2 

vanance-covanance matnx, w lch IS where 'rEI and 'rE2 are the condi-
'rE2l 'rE2 

tional variances of Cl and C2 respectively. The within-area correlation between Clit and 

C2it, is therefore "eE121 y"eEl "eE2. This is a measure of correlation in the two types of acci

dents. 

The correlation between Alit and A2it can also be introduced in the spatial random ef

fects elit and e2it . A univariate CAR model can be extended to a multivariate CAR model 

in a number of ways (Jin et aI., 2005), as introduced in Section 3.2. A straightforward 

approach is to use a multivariate normal distribution to handle the conditional distribution 

of the spatial random effects for different type of accidents. For model (4.7), suppose 

Wh::~ s:~:::~:n:ecCa:v::a:::r:::X :,or[th:es~at::l:o]m::r:;ore, ilie within-Mea 

're2l 're2· 

conditional correlation between the spatial components elit and £hit is 're121 y'rel 're2 

(Spiegelhalter et aI., 2003). Combining both the multivariate spatial effects and the mul

tivariate unstructured random effects, the conditional correlation between total random 

effects for the two types of accidents can be worked out. It is ('re 12 + 'rE 12) I (J!el + 

~) ( y'r(i2 + ~). Moreover, the shared-component models with a similar form of 

the model in 3.4 can be used to develop multivariate CAR models. 

A multivariate model with spatio-temporal effects can be developed by adding a form 

of temporal effects, suggested in Section 4.3, in the model (4.7). 
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4.6 Model fitting and checking 

All the models in this thesis were fitted in WinBUGS. Codes for selected models used 

in this research are included in Appendix F. More recently, WinBUGS can be called 

from R. This provides a more convenient way of model fitting and analysis of results. 

Other R packages used in this paper are 'spdep' (Bivand, 2004) and 'maptools' (Lewin

Koh and Bivand, 2004). In order to make the parameters reach convergence fast all the 

explanatory variables after taking logarithms were standardized (by subtracting the mean 

and dividing by the standard deviation). For each model, two chains were simulated. For 

each chain, 10,000 to 20,000 iterations were generated. The last 2,000 iterations of each 

simulation chain for each parameter were kept for calculating the posterior mean. Under 

the simulation monitoring tool in WinBUGS, the convergence of the parameters can be 

visually examined. The R statistic introduced in Section 2.6.2 was used to confirm the 

status of convergence. R close to 1 indicates good convergence. 

Methods introduced in Sections 2.6.3 and 3.3 can be used for model checking and 

comparisons. The Deviance Information Criterion (DIC) is usually used to compare the 

performance of models in different forms. A model with a lower DIC performs better. As 

a model becomes more complicated by taking account of spatial or temporal effects, the 

DIC is expected to decrease. 

Moreover, examination of residuals helps to identify any problems with the model, 

for instance, the existence of temporal or spatial correlation. In the remaining part of the 

thesis, unless stated otherwise residuals used for model checking are Pearson residuals, 

defined as (Yi - ).,i) / fi, (where ).,i is the posterior mean of Ai). Moran's I statistic, which 

was introduced in the previous chapter, can be used to examine the spatial correlation 

in the residuals. A positive Moran's I indicates a positive correlation. The solution for 

this is to include appropriate spatial effects in the model, so borrowing infonnation from 

the neighbouring areas. Positive and significant spatial correlation in residuals is likely 

to be obtained from models without any spatial effects. After accounting for the spatial 

dependency by including spatial effects, Moran's I in residuals is expected to drop and 

to become not significant. Upton and Fingleton (1985) state that the tests for residual 
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spatial autocorrelation are not valid when the model contains an autoregressive compo

nent. However, the models considered here contain an additional level of Poisson random 

variation. The residuals are defined as (Yi - Ai) / VXj, where it is the model for the loga

rithms of the Ai that contains the CAR component. In the absence of a more appropriate 

procedure, Moran's I is used here as an approximate indicator of the extent of spatial 

correlation in the residuals from the CAR models. The main problem of using Moran's 

I to examine spatial correlation in a Bayesian context is the replacement of Ai by its pos

terior mean in the calculation of residuals. As mentioned in Section 2.6.3, in a Bayesian 

context, Bayesian residuals are more appropriate for model checking especially for ex

amining spatial correlation in residuals. How Moran's I statistic should be obtained for 

residuals in a Bayesian context and be applied for model checking are introduced in the 

next section. 

Moreover, residuals from the areal models can be plotted over the geographical map. 

Residual maps help to visualize concentrations of different ranges of residuals which 

thereby exhibit the influence of spatial correlation. These also show the progress in mod

elling the spatial correlation when spatial effects are included in the models. For instance, 

a map of residuals from a CAR model is expected to show fewer apparent clusters. In 

addition, for a CAR model, the posterior distribution of spatial random effects in an area 

or at a site can be obtained. An examination of such distribution will show whether an 

area or a site is associated with a positive (or negative) spatial effect. A map of spatial 

effects will help to identify areas with positive or negative spatial effects. 

When models are fitted to longitudinal data, if no temporal effect is considered in 

the model, residuals from the model may display temporal autocorrelation. In order to 

examine the temporal correlation in the residuals, the residuals need to be separated into 

T groups, where T is the total number of years. Then the Pearson correlation coefficient 

can be worked out to check the extent of temporal correlation in the residuals. If the 

correlation is high, the indication could be there is temporal correlation in the data and 

this should be considered in the model. In this context, spatial correlation needs to be 

examined in the residuals for different time periods. Models with appropriate forms of 
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temporal effects are expected to reduce the temporal correlation in the residuals compared 

with models without including any temporal effect. 

4.7 Posterior distribution of Moran's I 

As explained earlier, if there are N observations used to fit a Poisson regression model 

with means As and M simulations are saved for model estimation, then we will have a 

N x M matrix of simulated values for As, with element A?) representing the estimate of 

Poisson mean for area or site i in the jth simulation. Therefore the Bayesian residuals 
(j) 

also form a N x M matrix, with element YR . For residuals from each simulation the 
~w ' 

I 

value of Moran's I can be calculated. Therefore, we will have M values of Moran's 1 

that compose a posterior distribution of I. If there is a significant level of positive spatial 

correlation in Bayesian residuals, most values of I should be positive and large enough to 

be statistically significant. This is a better approach to examining the spatial correlation 

in residuals than using residuals calculated from the posterior mean of Ai, because only 

residuals obtained from Ai in the same simulation will completely reffect the real spatial 

pattern in residuals. 

Gelman et al. (2000) proposed a general approach for model checking using posterior 

predictive simulations. Let y denote the observed data and y(j) denote predicted values 

from a model based on a vector of parameters f3 in the jth simulation. A statistic T (.I', f3) 

can be chosen to compare the difference between realized and predicted values with the 

statistical significance of the test summarized by a p-value, p = Pr(T(/j) ~ f3) > T(y, f3) 1.1')· 

This is a one-sided p-value. A two-sided p-value will be 2 min(p, 1 - p). If M simulations 

are used, p-value can be summarized by E~l = H jIT (yU),{3»T(y.{3/M, whereHj = 1 if the 

condition is true and 0 otherwise. For a two-sided test, a very small p-value, say smaller 

than 0.05, will indicate large and systematic differences between realized and predicted 

values and therefore a misfit of the model to the data. 

Gelman's approach explained above can be used for model checking by using Moran's 

I statistic as the T (y, f3) statistic. We will calculate a p-value for 1 (y(j) , )Jj)) > 1 (y. A (j)), 

where A (j) are fitted poisson means in the jth simulation and 10 calculates the value of 
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Moran's 1 in the residuals. If there is a significant level of positive spatial correlation in 

Bayesian residuals, the posterior distribution of Moran's 1 should contain enough number 

of significant values of I. However, the 1 statistic for residuals y(~j) where y(j) are 
AU) , . 

simulated as y(j) rv Pois (A (j)), should output small values of Moran's 1 that are expected 

to be nonsignificant. In such a case, a very small p-value will be obtained and will suggest 

that the model is not fitted well and spatial correlation needs to be taken account of in the 

model by an appropriate approach. On the contrary, if the spatial correlation has already 

been considered in a model, the posterior distribution for values of Moran's 1 in residuals 

based on true values y should have most values to be small and nonsignificant. So as 

for the 10 statistic for the predicted values y(}). Therefore, by comparing two posterior 

distribution of I, a p-value around 0.5 would suggest a proper fit of the model. 

The above method is proposed based on Gelman's approach for diagnostic check us

ing posterior predictive simulations. How well this method works for model checking 

using Moran's 1 statistic in this research is examined in the latter chapters. However, 

for simplicity, examining the value of Moran's 1 in Pearson residuals based on the poste

rior mean of Ai is still used as a main approach for investigating the existence of spatial 

correlation in the residuals. 



Chapter 5 

Methodology: Variables and data 

Statistical models for road accidents can be used to explain the variation in accident data, 

study the relationship between the number of road accidents and variables that describe 

traffic levels, road characteristics and other relevant factors and predict the accident fre

quency in the future. Therefore, it is important to decide how to choose the explanatory 

variables that should be included in a model. The choice of explanatory variables depends 

on both the understanding of the factors that contribute to road accidents and the avail

ability of the data. In practice, data are not available for all the desired variables, and even 

if they are available, their quality are not always good. 

In this chapter, some existing problems with accident data and the choice of the re

sponse variables are discussed first. Then, what types of variables need to be included 

in accident models and how they can be measured are explained. Later, how explanatory 

variables were chosen and how the data were collected in this research are introduced. 

5.1 Accident data and response variables 

The main source of accident data in the UK is STATS19. Section 2.2 has given a general 

introduction to the STATS 19 data. As shown earlier, using statistical models to anal yse 

accidents, accident data need to be aggregated over space. To be more specific, for areal 

models, they need to be aggregated at the area level like local authority; for network mod

els, accidents at junctions or on links need to be aggregated. Whether the true number 
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of total accidents in an area or at a site can be obtained from the STATS 19 data partially 

depends on the accuracy of the location information in STATS 19. However, location in

formation like the grid references was sometimes wrongly recorded. This may cause a 

problem for spatial aggregation of accidents, especially when the total number of acci

dents at a junction or on a link needs to be obtained. Moreover, accidents involving no 

personal injury are not recorded in STATSI9. Therefore such accidents cannot be taken 

account of in the analysis. 

Most accident models in the literature use the accident count in an area or at a site as 

the response variable. There are some studies that modelled casualties at the area level 

rather than the accident counts (see, for instance, Noland and Quddus, 2004). In dis

ease mapping, the response variable is usually the number of persons that have a certain 

kind of disease. Each incidence of the occurrence of the disease is associated with only 

one individual. In the context of road accidents, each accident may involve a number of 

injured individuals. This creates an internal link among the casualties from the same ac

cident. These casualties are not independent. Therefore, areal models for road casualties 

are more complicated. It is more straightforward to model accident counts and to identify 

factors contributing to high accident frequencies. In this research, the response variable is 

the number of a particular type of accident at an area, such as a local authority or a ward, 

or the number of accidents at a site, such as a junction or a link, during a period of time. 

5.2 Choice and measurement of explanatory variables 

As explained in previous chapters, accident data, such as STATS 19, need first to be ag

gregated by location and time in order to fit statistical models. For areal models, such as 

models for local authorities, the response variable is the total number of road accidents 

in an area during a fixed period. Therefore all the explanatory variables should be avail

able at the same geographical level. Similarly, for accidents on links or junctions, the 

explanatory variables should be available for the corresponding spatial unit. According to 

the different type of factors that contribute to accidents, the explanatory variables can be 

grouped into several categories. They are now introduced in tum. 
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5.2.1 Traffic and road characteristics 

Road accidents occur because there is traffic on the roads. Therefore, two most obvious 

factors that contribute to road accidents are exposure to traffic and road characteristics. 

Exposure to traffic depends on traffic levels that are often measured by annual average 

daily flows (AADF), which is used in models for accidents on links or junctions, or annual 

traffic volume (vehicle-km), which is often used in areal models. The Department for 

Transport website explains how national traffic estimates are made (see Department for 

Transport, 2004). The calculation of both AADF and traffic volume uses information from 

manual and automatic traffic counts (Department for Transport, 2004). For major roads 

(motorways and A-roads) in England, the traffic on most links is manually counted at a 

statistically random point at regular intervals. This is done mostly in so-called 'neutral' 

weeks, namely most weeks in March, April, May, June, September and October, avoiding 

main holiday periods. For minor roads, complete coverage of the road network is not 

practical. Minor roads can be grouped into three road classes, namely class B, class C and 

unclassified roads. Roads can also be categorised as urban and rural roads. Urban roads 

are defined as those within the boundaries of the Urban Area polygons for settlements 

of 10,000 population or more, based on the 2001 Population Census (see Department 

for Transport, 2004). On the outskirts of urban areas, bypasses are normally treated as 

rural even if part of the road may lie within the urban area polygon. Conversely, roads 

between urban areas with short lengths outside the polygons are normally treated as urban. 

However, before 8 May 2003, roads were instead classified as built-up and non built-up. 

Built-up roads were those with a speed limit of 40mph or less. Non built-up roads were 

those with a speed limit higher than 40mph. 

For each of these road types, the average flow is measured by carrying out a number 

of counts along them. One limitation of manual counts is that the traffic is counted for 

only 12 hours on each visit. Thus the counts give no information about traffic at night, 

at weekends, over public holiday periods, and little information about the non-neutral 

months. Therefore, to get reliable estimates of traffic flow, data obtained from automatic 

counters are used. For both the manual count and the automatic count, the traffic is 
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counted by different vehicle types, such as car or bus. 

An estimate of the AADF at a site is then calculated by mUltiplying the manual count 

data at the site by factors derived from the automatic counts on similar roads in the same 

year. The annual traffic estimates for a major road or for roads of a particular category in 

each local authority can be obtained after taking account of the road length for the relevant 

road category. For instance, a major road link of length 2km with an AADF of 50,000 has 

a traffic volume of 100,000 vehicle-kilometres (2 x 50,000 per day). This equates to 36.5 

million vehicle-kilometres a year. 

Road characteristics are important factors related to accident frequencies. As ex

plained above, in order to obtain the annual traffic estimates, road lengths of different 

types of road are needed. Moreover, the road length itself is often included in a model 

as an explanatory variable. Traffic levels and the density of the road network can be very 

different for different road types. Therefore, lengths of roads are often dis aggregated by 

factors like road class. Other road characteristics include the curvature and the gradient 

of the road, number of carriageways, number of lanes in the road, road width, etc. 

The AADF can be used directly in models for junctions and links on major roads. But 

for areal models, the annual traffic estimates are often used. The choice of the level at 

which the road lengths and the annual traffic estimates should be disaggregated depends 

on the attributes of the response variable. In other words, it depends on the level at which 

the accident data are disaggregated. For instance, if the response variable is the number 

of the accidents on urban A-roads in a local authority, ideally, the traffic variables need 

to be traffic estimates for urban A-roads, possibly together with traffic estimates of other 

types of roads, and the road length variables need to be lengths of urban A-roads, perhaps 

together with lengths of other types of roads. 

The complexity of a road network can be measured by the number of junctions per 

unit road length. A junction can be a roundabout, a T-junction, a crossing or other types. 

Theoretically, more junctions lead to more traffic conflicts, in turn leading to greater risk 

of road accidents. Therefore the junction density in each local authority can be used as an 

explanatory variable in the areal model. 
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5.2.2 Proxy variables for traffic 

Traffic estimates such as AADF or annual traffic estimates cannot measure traffic per

fectly. Especially for small areas, such as wards, traffic levels are difficult to obtain. 

Using proxy variables for traffic, which are available at the desired geographical level, 

can be a solution. Resident population and employment are two general forms of proxy 

variables for traffic. The more population and employment, the more activities and trips 

are generated on roads. For instance, Bailey and Hewson (2004), and Noland and Quddus 

(2004) use employment and resident population as proxies for traffic levels. Moreover, 

the population by mode of travel to work could be even better proxies for the traffic since 

they include more information about the composition of the local traffic. 

5.2.3 Characteristics of the geographical area 

For areal models, the characteristics of the area are often considered. The economic 

conditions and extent of urban development can be different for metropolitan districts and 

more rural areas. Both of these variables, such as unemployment rate and housing density, 

can be indicators of road conditions and traffic characteristics. Other data relevant to the 

characteristics of the geographical area includes how large it is. 

Some studies (for instance, Noland and Quddus (2004)) use variables like population 

density and road density rather than total population and road length. When the Poisson 

log-linear model as described in model 2.2 is used, including the two density variables is 

a special case of including three variables-area, population and road length expressed in 

logarithmic form. 

5.3 Data collection and preparation 

Variables that are often included in the areal model have been discussed in the previous 

section. Three areal datasets have been used to fit the spatial models proposed in the last 

chapter. The first dataset is from a previous research project (see Jarrett et ai., 1989). 

These data were used to fit models with spatial random effects at the local authority level. 
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The second dataset includes accident data for a five year period and other variables most of 

which cover the same period. These data were used to fit the multivariate spatio-temporal 

models at the local authority level. The third dataset consists of accident data and other 

data at the ward level in the West Midlands. It was used to fit the multivariate CAR 

models. Two sets of data were used to fit models for accidents on a road network. Some 

of the geographical data, for instance the boundary map and the road characteristics, were 

restructured and prepared in ArcView 3. Other data were structured and transformed in R , 

SPSS and Excel. Details about how these data were obtained and prepared are explained 

now. 

5.3.1 Data for local authorities in England from 1983 to 1986 

In order to develop spatial models for road accidents at the local authority level and to 

investigate how models with spatial effects can improve conventional models that do not 

take account of spatial effects, some data used in a previous research for TRL by Jarrett 

et al. (1989) were used. These data include accident data in England from 1983 to 1986 

at the local authority level. There were 108 geographical units during that period, which 

were 39shire counties, 36 metropolitan districts in 6 former metropolitan counties, and 33 

London boroughs. Table A.l in Appendix A gives a full list of names of the local author

ities. The accidents were disaggregated according to severity, road class and speed limit. 

Only accidents on built-up A-roads were used to fit the models developed in this thesis. 

Here, built-up roads are defined as roads with speed limit 40 mph or less. The original 

data include other variables, such as traffic, road length and population. In this study, for 

models of accidents on built-up A-roads, five variables were chosen to be included in the 

models. Since the response variable is the number of accidents of different severity on 

built-up A-roads, explanatory variables regarding to road length and traffic volume are for 

built-up A-roads only. Other explanatory variables include popUlation, geographical area 

and number of licensed vehicles. 

In order to construct the neighbours list for the CAR models and explore the spatial 

distribution of residuals, a geographical boundary map of England was created in A.r-
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c View. Boundary maps of England by different administrative division during different 

periods can be downloaded in an Arc View-readable form from UKBORDERS (EDINA, 

2007). The boundaries of metropolitan districts and London boroughs were obtained 

based on the district map in 1991. These were combined with the boundaries of other 

counties that were extracted from the county map in 1991. 

To take account of the fixed spatial effects in the models (see Section 4.2.1), two 

types of factors were used. The first type of factor was represented by two dummy vari

ables that describe whether a local authority is a shire county, a metropolitan district 

or a London borough. Another type of factor was represented by 7 dummy variables 

that describe which metropolitan county (including London) a borough or a metropolitan 

district belongs to, namely London, Great Manchester, Tyne and Wear, West Yorkshire, 

South Yorkshire, Merseyside, and West Midlands. 

In order to model structured spatial effects by a CAR prior, the spatial neighbours list 

and the spatial weights are needed. Based on the discussion of constructing a neighbours 

list and a weighting choice in Section 4.2.3, three different spatial neighbours lists and 

three different weighting schemes were used for this dataset. For the neighbours list, the 

first choice is based on the definition of neighbours as local authorities that share at least 

one common boundary. For the second choice, local authority j is defined as a neighbour 

of local authority i if there is at least one common boundary between them, and at the 

same time at least one of the following conditions is satisfied: (a) there is at least one 

common motorway going through i and j; (b) i and j are in the same metropolitan county 

(including London) and there is at least one common trunk road through them. The last 

choice is slightly different from the second one. In this, local authority j is defined as 

a neighbour of local authority i if there is at least one common boundary between them, 

and at the same time there is at least one common motorway or trunk road through local 

authority i and j. 

Three different weighting schemes were used. For the first type of neighbours list,a 

1-0 scheme and weights defined by Euclidean distance are both used. For the second type 

of list, only a 1-0 scheme is used. For the third list, the weights are determined by the 
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number of common roads that crossed the neighbouring local authorities as explained in 

Section 4.2.3. 

5.3.2 Data for local authorities in England from 2001 to 2005 

This dataset consists of data covering a five year period. During the 1990s in England, 

some cities, large towns and groups of neighbouring towns became unitary authorities. 

Unitary authorities in England are typically defined as any authority which is the sole 

principal council for its local government area (see Secretary of State for the Environment, 

1994). Therefore, a boundary map that is different from the one used for the first dataset 

needs to be created when modelling the number of road accidents at the local authority 

level from 2001 to 2005. Based on boundary maps of counties and districts in 2001 

obtained from UKBORDERS (EDINA, 2007), a boundary map of local authorities was 

created in Arc View. 149 geographical units were identified, including shire counties, 

metropolitan districts, unitary authorities and London boroughs. Table A.2 in Appendix 

A gives a full list of names of the local authorities. One problem with the district boundary 

map in 2001 is that the map does not show the rivers that are available in the district map 

in 1991. This can influence the result of the neighbours list. If a river separates two local 

authorities and there are no roads crossing the river between the two local authorities, 

they are not considered as neighbours. However, using a boundary map without river 

lines, these two local authorities appear to have a common boundary and be neighbours. 

Therefore, the boundary map of local authorities in 2001 was modified according to the 

administrative area boundaries and river lines obtained from Meridian 2 which is a type 

of Ordnance Survey datasets (see Meridian™, 2007). 

Five years' accident data were obtained from STATS 19 (Department for Transport, 

2007b). Based on the 149 local authorities identified in the boundary map, the local 

authority code variable in STATS 19 was recoded in order to aggregate accidents at the 

right geographical level. The total accidents in each local authority were disaggregated 

by accident severity. They were not disaggregated by road class because, for the traffic 

variable, only total traffic estimates are available. Both the traffic data and the road length 
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data were obtained from the Department for Transport. Traffic data measured by vehicle

kilometres are available for both the car traffic and all vehicle traffic from 2001 to 2005 

(Department for Transport, 2007d). Therefore, two variables were chosen to describe 

traffic, namely the traffic for cars and the traffic for other vehicles. The second one was 

obtained by subtracting the traffic for cars from the traffic for all vehicles. 

The Department for Transport published the data of road length at the local authority 

level for different road categories. However, the data are available only for the year 2004. 

Therefore they were used for all the 5 years, which is a limitation of the data. According 

to how the road length is disaggregated by road categories in the original dataset, three 

variables were constructed. The length of A-roads is the sum of the lengths for the rural 

trunk roads, urban trunk roads, principal urban roads and principal rural roads. The length 

of B-roads is the sum of the lengths for the rural B-roads and urban B-roads. The length 

of other minor roads is the sum of the lengths for the rural and urban C-roads and rural 

and urban unclassified roads. 

As explained earlier, the number of junctions in an area can be an indicator of the 

complexity of the road network and a measurement of the number of potential traffic 

conflicts. The total number of all types of junctions in each local authority was obtained 

by counting the number of nodes, corresponding to junctions, obtained from Meridian 2 

(Meridian™, 2007). 

Other variables are geographical area (in km2) and the population (in thousands). Both 

of them were obtained from the National Statistics website (see Office for National Statis

tics, 2001). Population estimates are available for the whole study period. 

Two types of factors were used to take account of the fixed regional effects. Defi

nitions of these factors are the same as those used for data in the 1980s introduced in 

the previous subsection. For the CAR model, only one type of neighbours list was used, 

which defines neighbours based on the condition of sharing at least one common bound-

ary. 
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5.3.3 Data for wards in the West Midlands in 2001 

This set of data includes accident data and other relevant variables in the West Midlands. 

The metropolitan areas of the West Midlands consist of 7 districts, namely Birmingham, 

Coventry, Dudley, Sandwell, Solihull, Walsall and Wolverhampton. Due to the limitation 

of the availability of data for other variables, only accidents in 2001 were considered. 

These data were used to develop multivariate CAR models. 

Most of these data were obtained from the SPECTRUM database developed by Mott 

MacDonald (SPECTRUM, 2007). SPECTRUM is a web-based geographic information 

system (GIS) supplying road, traffic, accident and census data of the 7 Metropolitan Bor

ough Councils in the West Midlands. The geographic and road data in SPECTRUM come 

from products of the Ordnance Survey (Ordnance Survey, 2007), including Boundaryline, 

MasterMap, and Ordnance Survey Centre Alignment of Roads (OSCAR) Asset Manager. 

Based on boundary lines of census wards in 2001, there are in total 162 wards in the West 

Midlands. Table A.3 in Appendix A gives a full list of names of the wards. 

SPECTRUM Accidents is a module within the SPECTRUM core system. Accident 

data in SPECTRUM are based on the 'Collision Report' forms collected by the West 

Midlands police. They include all the information available in the STATS 19 data. One 

difference between the two collecting systems is the precision of the accident location. 

In the STATS 19 form, the location of an accident is recorded by a IO-digit grid reference 

with 5 digits for the easting reference and 5 digits for the northing reference. The fifth digit 

of northing and easting defines a IO-metre unit. The West Midlands 'Collision Report' 

uses a 12-digit grid reference which locates accidents at the I-metre level. This may locate 

road accidents on a road network more precisely. However, when an accident occurs, it 

is difficult to decide the location of it as precisely as 1 metre because even one vehicle 

is more than 1 metre long. The number of road accidents with a particular type in each 

ward can be obtained by using an aggregating function in SPECTRUM. They can then be 

dis aggregated within each ward by severity. 

SPECTRUM contains data for major roads in the West Midlands, including motor-

ways, A- and B- roads based on the OSCAR data, a product of the Ordnance Survey. The 
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OSCAR data are based on vector data in a link-node structure. For OSCAR data, a road 

is made up from a series of links and a link can be a section of road between two adjacent 

junctions or changes in carriageway type. Links are defined by road centrelines with some 

additional attributes attached. The attributes include road name, road number, length of 

the link, and road type, for instance, dual carriageway, single carriageway or roundabout. 

In this study, OSCAR data for different classes of roads were exported from SPECTRUM 

and imported into ArcView. For minor roads, including C-roads and unclassified roads, 

the data were obtained from other layers of roads in SPECTRUM. The total length of 

the roads in a ward was calculated by adding up lengths of all the links within the ward 

by road class. There are some links that cross the boundaries or neighbouring wards. 

They were split at the intersection between the link and the boundary line in Arcview. 

Three explanatory variables were constructed for the length of roads. They are length of 

A-roads, B-roads and minor roads. A junction is defined by a node in OSCAR. Unfor

tunately, node data are not available in SPECTRUM. Therefore, node data for junctions 

in the West Midlands were extracted from Meridian 2. The number of junctions in each 

ward was calculated by counting the total number of nodes within a ward polygon. 

Other explanatory variables were extracted from the 2001 Census at the ward level. 

The area of a ward is measured in hectares. The average size of the wards in the West 

Midlands is about 555 hectares, with the smallest being 167.7 hectares and the largest 

being about 5836.6 hectares. 

One limitation of the West Midlands data is that the traffic volume data are not avail-

able at the ward level. Therefore populations travelling to work by different transport 

means were used as proxies for traffic. Four variables were chosen from the Census data. 

They are population travelling to work by car as driver, population travelling to work by 

car as passenger, population travelling to work by bus, population travelling to work on 

foot. These variables were selected because all these travel means will generate traffic on 

roads. 

Moreover, the West Midlands consists of 7 metropolitan districts. In order to examine 

the effects of the districts, a factor represented by 6 dummy variables was constructed to 
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be included in the models with fixed regional effects. For the CAR model , the neighbours 

list is still detennined by the condition of boundary sharing. However, both first order 

neighbours and higher order neighbours are considered for the ward data because a ward 

is relatively small. When higher order neighbours are considered, the weights are cho-

sen to be inversely proportional to the Euclidean distance between the centroids of the 

neighbouring wards. 

5.3.4 Data for the Ml 

The Ml extends approximately in a north-south direction. It passes through the outer 

London, East of England, East Midlands and Yorkshire & the Humber traffic regions . 

Figure 5.1 plots the layout of the motorways in England with the Ml plotted in black. 
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Figure 5.1: Layout of the motorways in England. 
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Accident data were obtained from STATSI9. Accidents on the Ml from 1999 to 2005 

were selected in SPSS by using variables of 1 st road class and 1 st road number. Accidents 

that are coded as junction accidents in STATS 19 were excluded from the analysis. The 

accident data were imported into the geographical information system (GIS) software 

ArcView in a separate layer in addition to the other layers including the local authority 

boundary map, the Ml road, other motorways (obtained from Meridian 2). 

The traffic flow data were obtained from an online traffic database (Department for 

Transport, 2006a). This traffic database provides annual average daily flow (AADF) of 

traffic for all major roads in UK. In this the roads are broken up into a series of links. 

Each link comprises a stretch of major road between two consecutive junctions with other 

major roads. A link may also start or end at a local authority boundary or an urban/rural 

area boundary. A traffic count takes place on each link of the major road network. The 

variables in the data include a unique reference for the road link and the grid reference for 

the traffic count point. Therefore, the data can be imported to Arc View and the location 

of the traffic count point can be plotted in a separate layer. There are 77 observations of 

the AADF for the Ml in every year from 1999 to 2005. There are some adjacent links 

that are separated by the local authority boundary. However, there is no junction between 

the links, therefore the AADF is the same for these links. For such links, they are treated 

as a single link in the analysis. After combining this type of link, 59 links were identified 

on the Ml. Therefore, the 'shapefile' of the MI was edited in ArcView to produce 59 

equivalent links, each of which was assigned with a unique link ID. 

Accident data were aggregated for each link by using the 'Spatial Join' option of the 

'GeoProcessing' extension in ArcView. For each point data, this option assigns the ID of 

the nearest link and the nearest distance to it. Therefore, the point data can be aggregated 

by using the ID variable. However, for some accidents, their distance to their nearest link 

is extremely high. After checking these accidents, it was found that there are errors in the 

location variables, measured by grid reference, for them. For some of them, the location 

variables have missing values. Some of them have zero for the locations while some of 

them have only 4 digits that are clearly wrong. For these accidents, the following criteria 
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were set to assign them to a correct link ID or to exclude them from the data. There is a 

variable in the accident data for the local authority code. This variable was used to check 

the correct local authority that an accident occurred. If there is only one link of the Ml 

in this local authority, the ID of this link was assigned to this accident. If there are two 

or more links of the Ml in this local authority, the accident was excluded from the data. 

If there is no link of the Ml in the local authority, the accident was excluded from the 

data. Many of these accidents with incorrect location records are found to be in the South 

Yorkshire according to the local authority code. 

It is relatively easy to identify the structure of neighbours for a single long road like the 

Ml. As described in Chapter 4, a road network can be represented by a node-link graph. 

Figures 5.2 presents the MI in a node-link graph. Each node in the graph corresponds 

to a motorway junction. Each link between two nodes represents a road link. 59 links 

have been identified. Each link is numbered from the left to the right by a link ID using 

numbers 1 to 59. There are 4 spurs from the main road each represented by a vertical or 

a sloping link in the plot. The length of each horizontal link is scaled based on the true 

length of the road link, but not for the spurs because they are short and cannot be visually 

shown if the same scale ratio is applied. The axis at the bottom measures the length of the 

Ml. The total length of the MI, excluding the four spurs is about 307 km. 
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Figure 5.2: Node-link graph for the MI. 
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Figures 5.2 shows that most links have two neighbours and the link on the far right has 

only one neighbour. The 'sloping' links join the main motorway at restricted junctions. 

Therefore, the first spur is a neighbour only of the link on its right and the fourth spur is 
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a neighbour only for the link on its left. The two 'vertical' links are neighbours for both 

the links on their left and the right because their traffic can join or leave from both sides. 

Therefore, the links that are next to a vertical link have three neighbours and each vertical 

link has two neighbours. 

5.3.5 Data for junctions in Coventry 

Data used to analyse accidents at junctions were obtained from the SPECTRUM database 

which was introduced in Section 5.3.3. Coventry was chosen to be the study region be

cause its road network is not as complicated as that of Birmingham but still shows enough 

level of complexity. The study network consists of A- and B-roads, with junctions the in

tersections of these roads. Data about roads and accidents at major junctions from 2002 

to 2006 were downloaded from SPECTRUM and imported to Arc View in a number of 

layers. There are 30 roundabouts and 25 junctions of other types. Positions and shapes 

of roundabouts in Coventry are available in the road data. Therefore, roundabouts were 

identified first. For each roundabout, it has a unique ill which is consistent with the 

junction ID variable in the accident data. Therefore, the total number of accidents at a 

roundabout is easy to obtain by matching the ID variables in the data of roundabouts and 

accidents. However, for other types of junctions, there is no such ID variable. Since a 

junction accident is defined as an accident occurring within 20 metres from a junction, for 

junctions of other types, the total number of accidents at each junction was obtained by 

searching all the point events that represents locations of accidents within 20 metres from 

the junction and getting the total count. 

In order to study the spatial correlation in the junction accidents, neighbours of a 

junction needs to be defined. Figure 5.3 is a node-link graph displaying the connectivity 

between junctions. It shows an approximate illustration about how major junctions spread 

out over the road network in Coventry. Each node represents a junction. A link between 

two nodes means there is a road joining the nodes. Nodes at each end of a link are 

regarded as neighbours. The spatial weights that reflect the extent of spatial dependence 

were chosen to be inversely proportional to the length of the road sections between the 
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neighbouring nodes. 

Figure 5.3: Neighbours structure of major junctions in Coventry. 

Although the SPECTRUM database provides traffic count data for some locations 

in Coventry, the counts were made at different times in different locations. Traffic was 

counted before 2000 in some of the locations while in other places it was counted after 

2000. Therefore it is difficult to obtain the traffic levels that can be used as an explanatory 

variable in the junction models . Moreover, traffic levels at a junction depend on the traffic 

movement on all the arms of the junction. However, locations of the traffic counts are rel

atively sparse in Coventry. Therefore only one explanatory variable, namely the junction 

type, was used. A junction can be a roundabout, a crossing or a T junction. The road data 

from the SPECTRUM provides information for the roundabouts. For other junctions, the 

types of them were identified by observing the road layouts in ArcView. A categorical 

variable represented by two dummy variables was used to describe the type of a junction. 
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Chapter 6 

Areal models for accident frequencies 

Reasons for the need to include spatial random effects in the conventional accident mod

els have been discussed in Chapter 2. Based on the examination and the comparison of 

several possible approaches to taking account of such spatial effects, the method to de

velop spatial accident models has been proposed in Chapter 4. Such models also consider 

temporal effects and the correlation between accidents of different severity. This chap

ter aims to explain how these models are fitted using some real datasets. Details of the 

datasets were described in Chapter 5. The first two datasets contain data at the local au

thority level and cover several years. For these data, models with both spatial effects and 

temporal effects are studied. Moreover, multivariate models that jointly model accidents 

of different severity are developed for the second dataset. The last dataset is used to fit 

multivariate CAR models at the ward level. Results of models using different datasets 

will be shown in tum, including the comparisons of different forms of models and the 

interpretation of the results. 

6.1 General description 

The approach adopted to develop and extend models is to start from a simple model and 

then make it more complicated by including extra terms in the models. Details of different 

types of models used in this research have been introduced in Chapter 4. Recall the second 
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line in the univariate model (4.5) in Section 4.4. 

(6.1) 

This model is extended from a Poisson log-linear model that includes only the explanatory 

variable. In addition to the explanatory variable Xit, it includes a linear time trend t, a 

spatially correlated random effect 8j and a random effect that is spatially independent but 

temporally correlated. When fixed spatial effects instead of random spatial effects are 

assumed, 8j will be replaced by Lr==-/ aLDiL (see Section 4.2.1). Moreover, based on the 

univariate model, multivariate models can be built-up. Two forms of multivariate models 

are fitted in this chapter. They are multivariate CAR models and shared component CAR 

models. Details of these models have been explained in Sections 4.5 and 3.2. 

By gradually introducing spatial effects and temporal effects in the Poisson log-linear 

model, the influence and the importance of including such effects can be examined. This 

can be achieved by a number of ways. For instance, comparing the DICs; checking the 

existence of spatial or temporal autocorrelation in Pearson residuals. Pearson residual 

is defined in this thesis as (Yit - iit) /~, where ~ is the posterior mean of Ai (see 

Section 3.3). Moreover, the estimates of the coefficients in equation (6.1) can be studied. 

For instance, a positive median or mean of /31 indicates a positive effect of the explanatory 

variable Xit on the expected number of accidents Ait. In other words, a local authority that 

has a larger Xit will have a higher expected number of accidents compared with other 

local authorities that have similar values for other explanatory variables. In addition, 

in a Bayesian context, a p-value is seldom used to make a conclusion of whether an 

explanatory variable is significant or not. A credible interval, normally 95%, is usually 

preferred to examine the contribution of an explanatory variable in a model. A general 

rule is to check whether the credible interval includes zero. If it does, especially when the 

median is close to zero, this indicates that the explanatory variable does little to explain 

the variation in the response variable. 

In order to make comparisons of different models more convenient, a unique name 

will be given to a model with a specific structure that describes what terms are included at 

92 



6.2 Models for accidents at the local authority level in England from 1983 to 1986 

the right hand side of equation (6.1). How a model is named, depending on its structure, 

is explained below. Based on the simplest form of a Poisson log-linear model denoted 

by PL, if appearing in a model name, 'fe' means the inclusion of the fixed effects that 

describe the type of a local authority (shire county, metropolitan county or London bor

ough); 're' corresponds to the inclusion of the metropolitan county effects; 'N' means 

log-normal random effects are included; 'tr' means a linear time trend variable is in

cluded; 'temp' indicates the inclusion of random temporal effects. For instance, model 

PLNre will correspond to a Poisson log-linear model with log-normal random effects and 

metropolitan county effects. When a CAR (conditional autoregressive) model is used, 

the name of the model will start from either ICAR (the intrinsic CAR which includes 

only spatially structured random effects) or CCAR (the convolution CAR which includes 

both spatially structured and unstructured random effects) and may include a footnote that 

describes how the neighbours list and the spatial weights are defined. 

6.2 Models for accidents at the local authority level in 

England from 1983 to 1986 

The dataset used to fit the models here was obtained from previous research. Details of 

the data have been introduced in Section 5.3.1. Five explanatory variables are included 

in the models. They are area, population, length of built-up A-roads, traffic volume on 

built-up A-roads and number of licensed vehicles. In a Poisson log-linear model, the log

arithm of Ai, the expected number of accidents in a local authority, is linked to a linear 

combination of the explanatory variables in logarithmic forms. A scatter plot matrix for 

all the variables in logarithmic forms will help to examine the relationships between these 

variables. Figure 6.1 illustrates the relationship between the response variables (for acci

dents of different severity) and selected explanatory variables in 1986. Such plots for the 

other years show similar results therefore are not included here. Figure 6.1 suggests three 

implications. Firstly, the explanatory variables are positively correlated with the response 

variables-counts of a particular type of accident. Secondly, the explanatory variables are 
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positively correlated. Finally, the response variables are also positively correlated. More

over, an outlier is observed at the left bottom comer of most scatter plots . It corresponds 

to the city of London , where values of the explanatory variables were the smallest in the 

108 local authorities. 
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Figure 6 .1: Relationships between the variables in logarithmic forms for accidents in 
1986: 'Fatal' for fatal accidents; 'Selious' for serious accidents; 'Slight' for slight acci
dents ' 'Traffic ' for traffic volume in million vehicle-km; 'Road' for road length in km; , 
' Vehicle' for number of registered vehicles in thousand. 

6.2.1 Models for accidents in a single year 

In order to find out to what extent the conventional model s for road accident can be 

improved by including a CAR prior, before u ing four year' data to fit the mod 1 . a 

study based on only one ear's data wa made fir t. Here, model were de\ eloped for 
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fatal and serious accidents separately. Tables 6.1 to 6.3 show some of the results from the 

models. 

Table 6.1: Summary of the model fits for fatal accidents in 1986 

Model Metropolitan DIC Moran's! 

effects value p-value 

PL without 621.3 0.10 0.07 
PLre with 616.9 0.03 0.56 
PLN without 617.9 0.01 0.12 
CCAR without 685.0 -0.04 0.59 

As explained in Section 4.6, a model with a lower DIC performs better. Table 6.1 

shows that, for fatal accidents, the Poisson log-linear model with metropolitan county ef

fects (PLre) and the Poisson log-linear model with log-normal random effects (PLN) have 

similar DICs. Their DICs are not very different from that of the Poisson log-linear model 

(PL). The DIC of the CAR model is the highest. These indicate that a CAR model is not 

appropriate here. In order to examine the spatial correlation in the residuals, Moran's I 

statistic was obtained for each model. A p-value less than 0.05 indicates that the spatial 

correlation in the residuals is significant. According to the table, all the p-values are larger 

than 0.05. Therefore, the spatial correlation in the residuals for fatal accidents is not sig-

nificant. This result can be interpreted in two ways. First, it suggests that fatal accidents 

at the local authority level may not tend to be spatially dependent throughout the whole 

geographical area (for instance, a country). Secondly, the non-significant correlation may 

be just because numbers of fatal accidents at the local authority level in one year are too 

few. Therefore, using accident data in a longer period may lead to a different result. When 

using the total number of fatal accidents in 4 years as the response variable, the residuals 

from the models without considering any spatial effect were found to be spatially corre

lated. The spatial correlation can be removed by using a CAR model that also improves 

the DIC. This indicates that the nonsignificant spatial correlation in the residuals from the 

earlier models for fatal accidents in only one year is just due to the reason of sparse data. 

Table 6.2 summarizes the results of models for serious accidents without a CAR com-

ponent. The inclusion of metropolitan effects (see model PLre) greatly improves the DIe 

of the Poisson log-linear model (PL) and causes Moran's I to drop. For the Poisson-
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Table 6.2: Summary of the model fits for serious accidents in 1986, excluding CAR 
models 

Model Metropolitan DIC Moran's I 

effects value p-value 

PL without 2097.3 0.25 0.00 
PLre with 1800.3 0.13 0.02 
PLN without 935.1 0.29 0.00 
PLNre with 929.3 0.14 0.01 

regression model with log-normal random effects (PLN), this inclusion does not improve 

the DIC much(see model PLNre), but does cause Moran's I to drop although I is still 

significant and positive. The positive Moran's I indicates that there is positive spatial 

autocorrelation in the residuals and suggests that the spatial correlation in the accident 

means across local authorities is not completely explained by the explanatory variables. 

Table 6.3: Summary of the model fits for CAR models for serious accidents in 1986 

Model definition of length of choice of DIC Moran's I 

neighbour neighbours list weights value p-value 

ICARnbl common 550 I-D 934.6 -0.19 0.00 
boundary 

CCARnbl common 550 1-D 931.2 -0.15 0.01 
boundary 

ICARnbldist common 550 Euclidean 944.3 -0.74 0.00 
boundary distance 

CCARnbldist common 550 Euclidean 934.2 -0.21 0.00 
boundary distance 

ICARnb2 motorways and 238 I-D 990.7 -0.09 0.36 
trunk roads 

CCARnb2 motorways and 238 I-D 934.6 -0.16 0.05 
trunk roads 

Table 6.3 summarizes the results of some CAR models. For spatial models that use a 

CAR prior, models with names beginning with 'lCAR' correspond to the intrinsic CAR 

models that do not include the unstructured random effects in the models and those with 

names beginning with 'CCAR' correspond to convolution CAR models that include both 

the spatially structured random effects and the unstructured random effects. The sub

script in the model names describes how the neighbours list is defined and what weighting 

scheme is adopted. 'nb I' means that the neighbours are defined as local authorities that 

share at least one common boundary. 'nb2' means that the neighbours list is defined by 

using the spatial layout of the motorways in England and the trunk roads in metropoli-
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tan districts. 'nb3' means the neighbours are identified based on the road network of the 

trunk roads in England. 'dist' means the spatial weights are computed based on the Eu

clidean distance between the centroids of the neighbouring local authorities; otherwise, 

1-0 weights are used. Detailed information about the choices for the neighbours list and 

spatial weights has been introduced in Section 5.3.1. 

The 'length of neighbours list' is the sum of the numbers of neighbours for each local 

authority. The lengths of the neighbours lists for models ICARnb2 and CCARnb2 are 

the shortest. The length of the boundary-based neighbours list is 550 while the length 

of the neighbours list determined by the road network is 238. Their neighbours lists are 

determined by the layout of the motorways in England and the trunk roads in metropolitan 

districts. 

According to the values of the DICs, none of the models in Table 6.3 perfonns bet

ter than model PLNre in Table 6.2. According to the Moran's I statistic, only model 

ICARnb2 shows a nonsignificant result. Moran's I for other models is still significant, but 

turns negative. A possible reason is that too many spatial effects were introduced. As is 

shown in Table 6.3, the absolute values of Moran's I in models CCARnbl and CCARnbldist 

drop when including the unstructured random effects compared to models ICARnbl and 

ICARnbldist. This indicates that adding unstructured random effects to an intrinsic CAR 

model provides a compromise scheme for models of spatially correlated data especially 

when a high degree of spatial dependent structure is used. For the intrinsic CAR models 

ICARnbl and ICARnb2, values of Moran's I are -0.19 and -0.09 respectively. This may 

indicate that using a neighbouring structure that defines more neighbours could introduce 

more spatial effects and sometimes could even over-introduce the spatial effects. There

fore, an appropriate definition of the neighbours list for a CAR model is very important. 

Results for models ICARnb2 and CCARnb2 in Table 6.3 show some positive evidence that 

the spatial layout of the road network is useful to identify the spatial dependent relation

ships in the accident means. 

Residual maps in Figure 6.2 plot the standardized residuals from models PLNre, 

CCARnbl, and CCARnb2 respectively. Details for London boroughs are shown in Fig-
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Figure 6.2: Maps (England) of standardized residuals for serious accidents: (a) model 
PLNre (Poisson model with log-normal random effects and metropolitan effects); (b) 
model CCARnb I (convolution CAR model whose neighbours list is determined by the 
boundaries); (c) model CCARnb2 (convolution CAR model whose neighbours list depends 
on the layout of the road network). 

• < -1 0 0-05 
o -1 - -0.5 0 0.5 - 1 
o -0.5 - 0 > 1 
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Figure 6.3: Maps (London boroughs) of standardized residuals for serious accidents -

using the same models as in Figure 6.2. 

ure 6.3. In order to distinguish the positive and negative residuals clearly, the re idual 

plots adopt the diverging palettes based on the Hue-Chroma-Luminance (HCL) colour 

scheme suggested by Zeileis and Hornik (2006). This can be implemented by u ing the 

package 'vcd' in R (Meyer et al., 2007) . In the last two map in Figure 6. 3. node in the 

maps correspond to the centroids of the areas. Link , which connect node ' , ill u ' trate the 
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structure of the neighbours list. Local authorities that are connected by a direct link are 

defined as neighbours. These maps give a quick view of the changes in the concentrations 

of residuals with similar values when different models are used. Thus, they exhibit the 

progress in modelling the spatial correlation. The last two maps in both Figures 6.2 and 

Figure 6.3 indicate that the inclusion of a CAR component leads to a more random pattern 

in the residual map. The lack of apparent clustering, compared with the first map in both 

Figures 6.2 and Figure 6.3, indicates that CAR models perform successfully to account 

for the existing spatial correlation in the accident means. 

The result from models using only one year's data shows that the inclusion of a CAR 

prior in the model for serious accidents removes the positive spatial correlation in the 

residuals from the models that do not consider the spatial random effects. Therefore, data 

in other years were used together to fit similar forms of models. 

6.2.2 Models for four years' data 

6.2.2.1 DIe and spatial correlation 

Models were developed for accidents of different severity separately. Tables 6.4, 6.5 

and 6.6 show some measures of the model performance and the spatial correlation in the 

residuals for some selected models. 

For fatal accidents, Moran's I test is significant for residuals from model PL and PLfe 

in 1984 and 1986. When the metropolitan effects are included in the models, Moran's I 

for these two years become nonsignificant. The DICs are gradually improved by adding 

additional fixed or random effects in the Poisson log-linear model, which is shown in Ta

ble 6.4. However, model PLNtr, which includes a linear time trend variable, has a poor 

DIC. Its expected deviance and effective number of parameters are the highest among all 

the models. Using a CAR prior to take account of spatial random effects does not improve 

the DIC compared with model PLNre, which corresponds to the Poisson log-linear model 

with metropolitan county effects. The best performing model is PLNre&temp2, which 

extends model PLNre by including the temporal effects modelled by a first order autore

gressive prior (see model (4.4) in Section 4.3). Using a random walk, formulated by a 

99 



6.2 Models for accidents at the local authority level in England from 1983 to 1986 

eAR prior (see Section 4.3), to model the temporal effects does not improve the ole. 

Table 6.4: Summary of the model fits for fatal accidents (1983-1986) 

Model Length of DIC Expected Effective number Moran's I 

neighbours list deviance of parameters 1983 1984 1985 1986 

PL 2482 2476 6 0.03 O.l2( *) 0.01 0.08e-) 
PLfe 2462 2454 8 0.02 0.11(-) -0.02 0.08( *) 
PLre 2436 2423 13 0.00 0.03 -0.03 0.02 
PLN 2394 2242 152 0.00 0.11(*) -0.01 0.07 
PLNre 2375 2240 135 0.00 0.03 -0.04 0.01 
PLNtr 2724 2240 484 0.00 0.11(*) -0.01 0.07 
CCARnbl 550 2392 2243 149 0.00 0.04 0.00 0.05 

CCARnb3road 452 2386 2239 147 0.03 0.02 -0.02 0.02 
PLNre&templ 2377 2235 142 0.00 0.11H -0.01 0.07 
PLNre&temp2 2325 2213 112 0.00 0.10(*) -0.01 0.06 

*: significant at the 5% level 

Table 6.5: Summary of the model fits for serious accidents (1983-1986) 

Model Length of DIC Expected Effective number Moran's I 

neighbours list deviance of parameters 1983 1984 1985 1986 

PL 8687 8681 6 0.23(.) 0.23(*) 0.43(.) 0.44(.) 

PLfe 7938 7930 8 0.28( *) 0.24(*) 0.37H 0.35( ~) 

PLre 7768 7755 13 0.22( *) 0.17(-) 0.33(*) 0.31(*) 

PLN 3699 3308 391 0.21(*) 0.23(-) 0.40(*) 0.32(*) 

PLNre 3693 3307 386 0.19( *) 0.18(*) 0.28( *) 0.21(*) 

PLNtr 3732 3310 422 0.21(*) 0.24(*) 0.41(*) 0.32(*) 

ICARnbl 550 3734 3364 370 -0.08 -0.07 -0.04 -0.11 

ICARnb2 238 4021 3699 322 -0.08 -0.04 -0.06 -0.10 

ICARnb3 452 3725 3356 369 -0.20( *) -0.13 -0.11 -0.23(*) 

ICARnbldist 550 3749 3367 382 -0.32( *) -0.29(*) -0.53H -0.42(*) 

ICARnb3road 452 3732 3364 368 -0.24(*) -0.20(*) -0.15(*) -0.28(*) 

CCARnbl 550 3683 3305 378 0.03 0.01 0.07 -0.01 

CCARnb2 238 3683 3307 376 0.04 0.04 0.08 0.00 

CCARnb3 452 3679 3302 377 -0.07 -0.02 -0.02 -0.15 

CCARnbldist 550 3686 3297 389 -0.19(*) -0.16(*) -0.31(*) -0.37(.) 

CCARnb3road 452 3673 3298 375 -0.04 -0.03 0.00 -0.14(.) 

CCAR(t)nb3road 452 3614 3303 311 -0.28(*) -0.13(*) -0.34(*) -0.16(.) 

CCAR(t)nb3road templ 452 3673 3297 376 -0.05 -0.03 0.01 -0.15(*) 

CCAR(t)nb3road temp2 452 3617 3291 326 -0.04 -0.05 0.05 -0.14(*) 

*: significant at the 5% level 

For serious accidents, by adding fixed spatial effects to describe the local authority 

type (model PLfe) and metropolitan county effects (model PLre) in the Poisson log-linear 

model PL, the DIes decrease gradually (see Table 6.5). The inclusion of a time trend 

variable again gives a worse ole. For all the models that do not include spatial random 

effects, the Moran's I is large and positive, especially in year 1985 and 1986. Results 

indicate that the amount of the spatial correlation in the residuals for serious accidents is 

higher than that for fatal accidents. The inclusion of the fixed spatial effects can make 

Moran's I drop for all the years, but Moran's I is still large and significant. The ole is 
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much improved when log-normal random effects are included (see model PLN). None of 

the intrinsic CAR models that include only the spatially structured random effects perform 

better than model PLNre. At the same time, most of the values of Moran's I turn nega

tive. The same problem has risen in the study using only one year's data in the previous 

subsection. The empirical work of Cliff and Ord (1981) shows that if the autoregressive 

model residuals are substantially the same as the OLS regression residuals, then they will 

probably turn out to be significantly negatively autocorrelated as measured by Moran's I. 

This may explain why a significant negative Moran's I is obtained after including a CAR 

component in the model in this study. Another possible reason of obtaining negative value 

of Moran's I is that too many random spatial effects were introduced. After taking ac

count of both the spatially structured random effects and the unstructured random effects, 

the absolute values of Moran's I for most of the CCAR models in Table 6.5 are smaller. 

However, for some of these CCAR models, the values of Moran's I are still negative and 

large especially in year 1986. This is consistent with the earlier result using only data for 

serious accidents in 1986. 

The DICs of all the CCAR models are close. In the last three CAR models, neighbours 

are defined based on the layout of the trunk roads in England (see Section 4.2.3). The 

best performing CCAR model is model CCAR(t)nb3road according to the DIe. The spatial 

weights for it are based on the number of the common roads that crossed the neighbouring 

local authorities. However, spatial correlation in the residuals measured by Moran's I 

from this model is negative and significant for all the years. This indicates that too many 

spatial effects might be introduced. Moreover, the model assumes that the variance of 

the spatial random effects varies in time. When a constant variance parameter was used 

during the study period, the convergence of several parameters is poor. 

The last two CAR models in Table 6.5 include temporal effects. By using a random 

walk to model the temporal effects (model CCAR(t)nb3roadtempl), the DIC of the model is 

worse than that of model CCAR(t)nb3road· Applying an autoregressive prior to model the 

temporal effects (model CCAR(t)nb3roadtemp2) results in a similar DIC compared with 

that of model CCAR(t)nb3road· By using this model, the spatial correlation in the residuals 
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for most years is nonsignificant. This indicates that, after taking account of the temporal 

autoregressive effects, more appropriate level of spatial effects was introduced. 

Table 6.6: Summary of the model fits for slight accidents (1983-1986) 

Model Length of DlC Expected Effective number Moran's I 

neighbours list deviance of parameters 1983 1984 1985 1986 

PL 24316 24310 6 0.38( *) 0.33(*) 0.28H 0.32(*) 
PLfe 16598 16590 8 0.27(*) 0.23(*) 0.21H 0.24(.) 
PLre 15678 15665 13 0.27( *) 0.23( *) 0.22(*) 0.24(*) 
PLN 4303 3880 423 0.19(*) 0.22(*) 0.21 (x) 0.21(*) 
PLNre 4305 3876 429 0.20( *) 0.08( *) 0.11(*) 0.14(.1 
PLNtr 4353 3880 473 0.17(*) 0.21C*) 0.21(*) 0.19(*) 
CCAR(t)nbl 550 4295 3879 416 -0.05 0.01 -0.03 -0.03 

CCAR( t)nb3road 452 4289 3878 411 -0.06 -0.04 -0.02 -0.08 

CCAR(t)nb3roadtempl 452 4291 3879 412 -0.06 -0.04 -0.02 -0.08 

CCAR(t)nb3roadtemp2 452 4252 3867 385 -0.01 -0.03 -0.02 0.01 

*: significant at the 5% level 

As is shown in table 6.6, the influence of including fixed and random spatial effects 

to the Poisson log-linear models for slight accidents is similar to that for serious acci

dents. Moran's I is significant when spatial random effects are not included in the mod-

els. For the CCAR models, Moran's I is all negative and nonsignificant. The last model 

CCARnb3roadtemp2 with temporal effects, modelled by a first order autoregressive prior, 

performs best. 

As introduced in Section 3.l.2, the variance of the spatially structured random ef

fects Cre) and the variance of the unstructured random effects Cre) control the strength of 

their effects respectively. Table 6.7 shows the result of these variance and their ratios for 

selected CAR models. Different variance parameters are used for the spatial effects in dif

ferent years. The results of their estimates show they are similar. Therefore, the mean of 

the variances is used in the table. Ratio of '!'e and '!'e will reflect the relative strength of the 

spatial random effects against the unstructured heterogeneity. All the ratios are smaller 

than the w-the average number of neighbours for each local authority. This indicates 

that the unstructured heterogeneity dominates the spatially structured random effects. 

Residual maps for selected models are shown in Figures 6.4 to 6.11. Details for Lon

don boroughs are plotted separately. These maps not only give a quick view of the im

provement of the models by including extra fixed and random effects but also show the 

changes of concentrations of different values of residuals from models without and with 
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Table 6.7: Summary of the variance parameters in selected CAR models 

Model Severity Te te w te/Te 

CCARnbl Serious 0.16 0.40 5.1 2.57 
CCARnb3road Serious 0.17 0.44 9.5 2.64 
CCARnb3roadtemp2 Serious 0.17 0.23 9.5 1.36 
CCARnb1 Slight 0.18 0.43 5.1 2.36 
CCARnb3road Slight 0.13 0.53 9.5 4.17 
CCARnb3roadtemp2 Slight 0.15 0.24 9.5 1.55 

a CAR component. Thus, they exhibit the progress in modelling the spatial correlation. 

For fatal accidents, by using models PL and PLNre, no apparent clusters of residuals 

with similar values are found in the England maps and the London maps (see Figures 6.4 

to 6.7). This is consistent with the low value of Moran's I in the residuals for fatal acci-

dents as shown in Table 6.4. When the metropolitan county effects and the unstructured 

random effects are included in the model, corresponding to model PLNre, some areas in 

the map are plotted in a lighter colour (see Figures 6.5 and 6.7). This indicates that bet-

ter estimates are obtained and the performance of the models are improved. For serious 

accidents, Figures 6.8 and 6.9 show the residual maps for model PLNre. In some parts 

of England, some apparent clusters of the residuals of similar values are identified in par

ticular years. For instance, in 1983, positive residuals are clustered in the middle part of 

England. The east part of this cluster remains in 1984. However, no apparent clusters are 

found in the same region in 1985 and 1986. In the maps of London boroughs, negative 

residuals have shown in most outter boroughs in 1983. Positive residuals are clustered in 

inner London and extend to the north-west and the south-east in 1984. This cluster ex-

pands in 1985. The spatial pattern of residuals in 1986 is similar to that in 1984. Figures 

6.10 and 6.11 show the residual plots for model CCAR(t)nb3roadtemp2. The cluster of 

positive residuals in the middle of England in 1983 and 1984, when using model PLNre, 

are more or less broken after adopting the CAR model as shown in the plots. In London 

boroughs, the residuals also exhibit a more random pattern. 

For slight accidents, residuals from a CAR model again exhibit a more random pattern 

in a map than those from a non-CAR model. Overall, the inclusion of the spatial random 

effects in the models can lead to a more random pattern in the residual maps. The lack 
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of apparent clustering indicates that CAR models perform successfully to account for the 

existing spatial correlation in the accident means . 
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Figure 6.4: Residual maps for model PL (Poisson log-linear model): fatal accidents . 
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Figure 6.5: Residual maps for model PLNre (Poisson model with log-normal random 
effects and metropolitan county effects): fatal accidents . 

1983 

1985 

• c: -1 
o -1 - -0 .5 
o -0.5 - 0 
o 0 - 0.5 
o 0.5- 1 

> 1 

1984 

1986 

Figure 6.6: Residual map of London boroughs for model PL: fatal accident ' . 
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Figure 6.7: Residual maps of London boroughs fo r model PLNre : fatal accidents . 
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Fiaure 6.8 : Residual maps for model PLNre (Poi on model with log-normal random 

effects and metropolitan county effects): eriou accident. 
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Figure 6.9: Residual maps of London boroughs for model PLNre: serious accidents. 

6.2.2.2 Estimated parameters of the explanatory variables 

Summaries of the estimated parameters for selected models can be found in tables In 

Appendix B. The tables include the estimated coefficients for the explanatory variab les, 

namely area, population, number of licensed vehicles, road length and traffic respectively. 

As explained in Chapter 3, for Bayesian models , the estimates of the parameters can be 

given by their posterior medians and 2.5 % and 97.5 % percentiles. R, measuring the con-

vergence status for each parameter, is also included in the tables. Within 20,000 to 40,000 

iterations, according to the values of R, all the parameters of interest have sati sfactori ly 

converged. As shown earlier, the sign of the coefficients for the explanatory variables tells 

whether the relationships between the response variables and the explanatory variable are 

positive or negative. According to the scatter plots in Figure 6.1 , the explanatory variable ' 

are positively correlated with the response variables. However not all the e timated medi-

ans of the coefficients are positive. Figures 6.12 to 6.18 show the 95 % credible inter aL' 

of the coefficients for selected models . The signs of the po terior median and \-vh th r 

the credible intervals include zero are clearly shown in these figure . 

For fatal accidents, as shown in Table 6.4, model PLNre&temp2 perform, b ,' t. It i: a 
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Figure 6.10: Residual maps for model CCAR(t)nb3roadtemp2 (convolution CAR model 
with temporal effects, modelled by a first order autoregressive prior and its neighbours 
list depends on the layout of the road network) : serious accidents. 

Poisson model with log-normal random effects, metropolitan county effects and temporal 

effects modelled by a first order autoregressive prior. Figure 6.12 show that none of the 

intervals for the coefficients of the explanatory variables includes zero except for road 

length. The medians for population, road length and traffic volume are all positive while 

those for area and number of licensed vehicles are negative. The negative coefficient for 

area can be explained as if the total road length is fi xed, then the road density is less when 

the area is larger. Therefore, there could be less accidents. The coefficient for number 

of licensed vehicles is negative and has large variation. This could be due to the high 

correlation between it and other explanatory variables. The intervals of the coefficient 

for the metropolitan effects (see Figure 6.13 ) show that most inter al contain zero. For 

Merseyside, the interval include only negati e value and how large variation. The -e 

may indicate that the metropolitan county effect do not contribute much to explain the 
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Figure 6.11: Residual maps of London boroughs for model CCAR(t)nb3road fem p2: sen
ous accidents. 

variation in the response variable. Therefore, no particular districts in a metropolitan 

county are likely to be associated with larger numbers of accidents. 

For serious accidents, Figures 6.14 and 6.15 show the credible interval of the co-

efficients for model PLN and one of the best performing models CCAR(t)nb3roadtemp2. 

Model PLN includes log-normal random effects. Model CCAR(t)nb3road temp2 is a con-

volution CAR model whose neighbours list depends on the layout of the road network. It 

also includes temporal effects modelled by a first order autoregressive prior. The credible 

intervals in the two figures look similar except for the variable populati on. The inter-

val of the coefficient for area contains only negative values while those for number of 

licensed vehicles, road length and traffic volume contain only pos itive values. The rea-

son for obtaining negative coefficient for area has been explained earlier. The interval 

of the coefficient for population in model PLN contains only negati ve value . In model 

CCAR(t)nb3road tem p2 , it contains both positive and negative values with it median cIo -e 

to zero, indicating that the variable population does little to explain the variation in the re-

sponse variable. When the metropolitan effects are included model PL . all the int [\ aL 

of the coeffic i nts for the m tropolitan effects contain zero (see Figure 6.16). Thi - may 
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suggest that no particular metropolitan counties are associated with high or low accident 

frequencies. 
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Figure 6.12: 95% credible intervals of the coefficients for the explanatory variables in 
model PLNre&temp2 for fatal accidents. 
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Figure 6.13: 95% credible intervals of the coefficients for dummy variables in model 
PLNre&temp2 for fatal accidents: 'Lon' for London boroughs; 'Man' for Great Manch
ester; 'Mer' for Merseyside; 'SYork' for South Yorkshire'; 'T&W' for Tyne and Wear; 
'WMid' for West Midlands; 'WYork' for West Yorkshire. 

Figures 6.17 and 6.18 show the credible intervals for slight accidents adopting the 

same models used for serious accidents. The interval of the coefficient for traffic only 
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Figure 6.14: 95% credible intervals of the coefficients for the explanatory variables in 
model PLN: serious accidents, 
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Figure 6.15: 95% credible intervals of the coefficients for the explanatory variables in 
model CCAR(t)nb3roadtemp2: serious accidents. 

contains positive values for both models. For other variables except for area in the CAR 

model, their coefficients either have large variation in their estimates or have both positive 

and negative values in their credible intervals, suggesting that they do not contribute much 

to explain the variation in the response variable. 
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Figure 6.16: 95% credible intervals of the coefficients for the dummy variables in model 
PLNre: serious accidents (for full names of metropolitan counties, see Figure 6.13). 
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Figure 6.17: 95% credible intervals of the coefficients for the explanatory variables in 
model PLN: slight accidents. 

6.2.2.3 Temporal correlation 

In order to examine the use of including temporal effects, Pearson correlation coefficients 

were calculated for the four years' residuals from the selected models. They are shown in 

Tables 6.8 to 6.12 

When no temporal effects are included in the models. the temporal correlation in the 
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Figure 6.18: 95% credible intervals of the coefficients for the explanatory variables in 
model CCAR(t)nb3roadtemp2: slight accidents. 

residuals is positive for all types of accidents. Table 6.8 shows that the correlation coef-

ficients of temporal correlation are not high for the fatal accidents. For serious accidents, 

the correlation matrix shown in Table 6.9 indicates there is large temporal correlation in 

the residuals. The temporal correlation in the residuals for slight accidents shown in 6. 10 

is even larger. This indicates that the inclusion of temporal effects to take account of the 

spatial correlation is necessary for serious and slight accidents. Tables 6.11 and 6.12 show 

the correlation matrix in the residuals from models that include both the spatial random 

effects and the temporal effects modelled by a first order autoregressive prior. The val-

ues of the correlation coefficients become smaller but some of them are negative. This 

may indicate that the temporal correlation is over-introduced in the models. The posterior 

median of parameter p, which accounts for the temporal correlation (see model (4.-+) in 

Section 4.3), is 0.98 and 0.99 for serious accidents and slight accidents respectively. 

Table 6.8: Temporal correlation coefficients for residuals from model PLNre for fatal 

accidents 

Year 1983 1984 1985 1986 

1983 0.29 0.18 0.30 
1984 0.29 1 0.26 0.35 
1985 0.18 0.26 1 0.35 
1986 0.30 0.35 0.35 
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Table 6.9: Temporal correlation coefficients for residuals from model CCAR(t)nb3road for 
serious accidents 

Year 1983 1984 1985 1986 

1983 1 0.76 0.66 0.60 
1984 0.76 1 0.78 0.69 
1985 0.66 0.78 1 0.80 
1986 0.60 0.69 0.80 

Table 6.10: Temporal correlation coefficients for residuals from model CCAR(t)nb3road 

for slight accidents 

Year 1983 1984 1985 1986 

1983 1 0.82 0.83 0.80 
1984 0.82 I 0.83 0.84 
1985 0.83 0.83 1 0.90 
1986 0.80 0.84 0.90 I 

Table 6.11: Temporal correlation coefficients in residuals for serious accidents from 

model CCAR(t)nb3roadtemp2 

Year 1983 1984 1985 1986 

1983 1 0.04 -0.07 -0.05 
1984 0.04 1 -0.35 -0.19 
1985 -0.06 -0.35 1 -0.38 

1986 -0.05 -0.19 -0.39 1 

Table 6.12: Temporal correlation coefficients in residuals for slight accidents from model 

CCAR(t)nb3roadtemp2 

Year 1983 1984 1985 1986 

1983 1 0.14 0.20 -0.08 

1984 0.14 1 -0.20 0.05 

1985 0.20 0.20 1 -0.70 

1986 -0.08 0.05 -0.70 
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6.3 Models for accidents at the local authority level in 

England from 2001 to 2005 

In the previous section, models were fitted using data in 1980s. There are two main find

ings for the effect of including a CAR prior to take account of the spatial dependency in 

the local authorities. Firstly, the DIC is improved. Secondly, the positive spatial auto

correlation in the residuals from the non-CAR models, observed from both the Moran's 

I statistic and the residual maps, is removed. These suggest that for areal models the in

clusion of a CAR prior is important. In this section, some up-to-date data are used to tit 

similar forms of models. In addition, more complicated models are considered. They take 

account of the correlation in different types of accidents. 

The two response variables are the number of fatal and serious accidents, and the 

number of slight accidents in a local authority in a year. Eight explanatory variables are 

included in the models. They are area, population, length of A-roads, length of B-roads, 

length of other roads, number of junctions, car traffic and traffic of other vehicles. How 

the data for these variables were obtained has been explained in Section 5.3.2. Figure 

6.19 shows the relationship of the response variables and selected explanatory variables in 

2001. All the variables are in logarithmic forms. The tigure shows that the two response 

variables are positively correlated and both of them are positively correlated with the 

explanatory variables. In addition, there are also high positive correlations between the 

explanatory variables. For other years, the relationship of the variables looks similar. 

The national casualty reduction strategy in 2000 (see Department for Transport, 200 I) 

established a road safety target in ten years. In order to achieve the final target, a gradual 

reduction in the casualties in each local authority is expected. This is closely associated 

with the reduction in the total number of accidents over time. Figures 6.20 to 6.21 show 

the trend in fatal and serious accidents, and slight accidents at the local authority !eyel 

from 2001 to 2005. The drop in fatal and serious accidents during the period is particularly 

big for some local authorities. Figure 6.22 shows the trend in these local authorities. A 

search on the relevant statistics and reports published in their council websites shows that 
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3 4 567 579 357 6 8 10 

Figure 6.19: Relationship of the variables for fatal and serious accidents. 

significant reduction in the accidents and casualties were claimed by the councils during 

the same period and the published statistics are consistent with the data obtained in this 

research. 

6.3.1 Description of the models 

Forms of the models for accidents at the local authority level in the 2000s are imilar to 

the models used in the previous section. For models that do not include spatial random 

effects, a time trend variable and fixed spatial effects are added . For spatial CAR model 

three types of models are examined. They are CAR models that have independent patial 

random effects for accident of different severity CAR model that have patial random 
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Figure 6.20: Trend in the fatal and serious accidents: 2001-2005. 
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Figure 6.21: Trend in the slight accidents: 2001-2005. 
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effects which are correlated for different types of accidents, and spatial shared compo-

nent CAR models. Moreover, temporal effects are considered and formulated with a first 

order autoregressive prior. Details of the forms of these models have been explained in 
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Figure 6.22: Trend in the fatal and serious accidents for selected local authorities: 1. 
Lambeth; 2. Devon; 3. Lincolnshire; 4. Oxfordshire; 5. Hertfordshire; 6. Hampshire; 7. 
Kent 

Chapter 4. Only one neighbouring structure is used here. It defines neighbours based on 

the condition of sharing at least one common boundary. Only the 1-0 weighting scheme 

is considered. 

6.3.2 DIe and spatial correlation 

Table 6.13 summarIses the model fits. The table shows that the DICs of the models 

Table 6.13: Summary of the multivariate models for accidents in England in the 2000s 

Model DIC Expected Effective number Severity Moran's I 

deviance of parameters 2001 2002 2003 2004 2005 

PLtr 41474 41454 20 fatal and serious 0.29( .) 022 1-) 0.16(0) 0.02 0.05 
slight 0.29(-1 0.15(- \ 0.131-) 0.D3 0.D4 

PLtr-re 38225 38189 36 fatal and serious 0.18(- \ 0.12(-) 0.09(0) 0.03 0.12(-) 
slight o 22(-! 0.09(- 0.08(0) 0.02 0.05 

PLNtr 19394 19072 322 fatal and serious 0.06 am 0.05 0.03 0.08 
slight am -0.03 O.Q.I 0.D4 0.10(·, 

CCAR(t)tr 14424 13095 1329 fatal and senous -0,06 -0.05 0.00 -0,09 0.00 
slight 0.03 -0.01 O.Q.I 0.02 0.00 

CCAR(t)tr.temp 14n4 12930 1344 fatal and serious -0.05 -O.Q.I 0.00 -0.09 0.00 
slight 0.03 -0.02 0.03 0.01 0.00 

MVCCAR(t)tr.temp.mv 14234 12915 1319 fatal and serious -0.09 -0.08 0,00 -0.09 -0.02 
slight 0.00 -0.03 0.03 0.00 -O.Q.I 
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are gradually improved from model PL to model PLtr-re by including the trend variable 

and the metropolitan county effect variables. The DIC is greatly improved by adding 

random effects in the models. Model CCAR(t)tr.temp includes both the spatial effects 

and the temporal effects and assumes that the spatial random effects are independent for 

accidents of different severity and are different over time. This has two implications. 

Firstly, it indicates that the extent of spatial correlation in neighbouring local authorities 

for two types of accident (fatal and serious accidents, and slight accidents) is different. 

Secondly, it suggests that spatial random effects are not constant over time. Model MVC

CAR(t)tr.temp.mv takes account of the correlation between two types of accidents by 

using a multivariate normal prior to model the correlation between the two unstructured 

components and using a multivariate CAR prior to model the correlation between the two 

spatial components. Its DIC is the lowest and reduces the DIC of model CCAR(t)tr.temp 

that does not take account of the correlation between different types of accidents by 40. 

However, compared with the level of DIC that is over 10,000, this reduction is not much. 

Without the inclusion of extra random effects in the models (see models PL and PLtr

re), Moran's I in the residuals for both types of accidents is significant from 2001 to 2003. 

However, Moran's I is not significant in most cases for the years 2004 and 2005. This 

indicates that the extent of the spatial correlation in the residuals could vary with time. 

This suggests that different variance parameters might be used to formulate the CAR prior 

in different years or in different periods. When the same variance parameter was used for 

the CAR prior in all the study period, for some parameters, convergence of the MCMC 

iterations was found to be very poor. After applying different variance parameters, all the 

parameters appear to converge satisfactorily as indicated by R (see Appendix C). Values of 

Moran's I on residuals from the CAR models are all nonsignificant. Moreover, the spatial 

correlation in residuals from model PLNtr in most years, that includes log-normal random 

effects, is also found to be nonsignificant. But the DIC of this model is approximately 

5000 larger than the DICs of the CAR models. 

Table 6.14 shows the estimated variance !e for the spatial component in a CAR model 

(model CCAR(t)tr.temp). The variance for fatal and serious accidents is larger than that 
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for slight accidents. For both types of accidents, the variance is likely to drop over time. 

The posterior mean of variance parameter 'Tf for the unstructured effects is 0.02, which is 

small compared with the variance of spatial random effects for fatal and serious accidents. 

As used previously, ratio of 'Te and 'Tf reflects the relative strength of the spatial random 

effects against the unstructured heterogeneity. The average weight, equivalent to the av

erage number of neighbours, for each local authority, is 4.9 (length of neighbours list 

(728)/number of local authorities (149)). The ratios for fatal and serious accidents vary 

from 5 to 3 over time and are equal or less than 2 for slight accidents. This suggests that 

for fatal and serious accidents the spatial heterogeneity and the unstructured heterogeneity 

have similar strength while for slight accidents the unstructured heterogeneity dominates 

the spatial heterogeneity. 

Table 6.14: Summary of the variance parameter 'Te for the spatial component in a CAR 
model 

Model Severity 2001 2002 2003 2004 2005 

CCAR(t)tr.temp Fatal and serious 0.10 0.09 0.07 0.06 0.06 
Slight 0.04 0.04 0.03 0.02 0.02 

Model MYCCAR(t)tr.temp.mv takes account of the within-area (conditional) correla-

tion between the two unstructured components of variation (one for each response vari-

able) and between the spatial components of variation. The conditional correlation im

plied by the multivariate normal prior is 0.42. Different variance parameter is used for 

the spatial component in different years. The conditional correlation between the spatial 

components for the five years are estimated to be 0.78, 0.78,0.63,0.69 and 0.54. This in

dicates that the correlation between the spatial components is fairly large. For the formula 

used to calculate the correlation, see Section 4.5. 

6.3.3 Maps of spatial effects 

In the previous section, when accident data in the earlier years were studied, clusters of 

residuals with similar values were found in a residual map if a non-CAR model was used. 

After a CAR model was used to take account of the spatial random dfects, no apparent 

120 



6.3 Models for accidents at the local authority level in England from 2001 to 2005 

clusters of residuals were exhibited. The formulation of a CAR model implies that the 

spatial random effects should be spatially correlated. In other words, they should have 

similar values in neighbouring areas. Maps of spatial random effects are expected to 

show apparent clusters. Such maps can show the influence of the spatial effects on the 

expected number of accidents in each area according to the sign and the level of them. 

During model estimation, the spatial random effect eit in area i in year t in a CAR 

model can be estimated and saved in each iteration. Therefore, the posterior distribution 

of eit can be obtained. Figure 6.23 illustrates the 95% credible intervals of the spatial 

random effects estimated from model CCAR(t)tr.temp in each local authority in 2001. 

It shows that almost all the credible intervals of the spatial random effects in London 

boroughs contain only positive values for both fatal and serious accidents, and slight 

accidents. Districts in South Yorkshire, West Yorkshire, Merseyside, Great Manchester 

and Tyne and Wear are more likely to have negative spatial effects for both types of 

accidents. There are also other local authorities in which the 95% credible intervals of the 

spatial effects contain only positive or negative values. However, they are difficult to be 

identified in such a figure. In this case, a map of spatial effects is more useful. 

Figures 6.24 and 6.25 show maps of the spatial effects that were estimated from model 

CCAR(t)tr.temp. Local authorities in which the 95% intervals of the spatial effects contain 

only positive values or negative values are plotted using two different colours. Other 

local authorities are in white. The figures do not show the level of the spatial effects 

but only show the sign of them. They give a quick look at the areas that have positive 

or negative spatial effects. Since the spatial effects are assumed to vary over time in 

model CCAR(t)tr.temp, different values of these effects were obtained in different years. 

Considering only their signs,they are found to have similar distribution in the maps in 

the first three years (2001-2003) as well as in the last two years (2004-2005). Therefore, 

maps of the spatial effects for each type of accident in 2001 and in 2005 are given here. 

Signs of the spatial effects suggest the relative influence of the unobserved or unmea

sured contributory factors on the accident frequencies. Such factors are assumed to be 

spatially correlated and are taken account of by the CAR prior. One implication of this 
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is that the expected number of accidents in a local authority depends on not only the ex

planatory variables but also the level of the spatial effect. A positive spatial effect in an 

area is associated with a larger expected number of accidents in the area compared with an 

area which has similar values for the explanatory variables and a zero or negative spatial 

effect. Similarly, a negative spatial effect in an area is associated with a smaller expected 

number of accidents in the area compared with an area which has similar values for the 

explanatory variables and a zero or positive spatial effect. 

The estimated medians of the level of spatial effects are not as large as those found in 

spatial epidemiology. Richardson et al. (2006) studied the level of spatial effects modelled 

by the shared component CAR models. The estimated medians of the spatial effects 

in their studies are over 1 in many locations. This reflects the strong influence of the 

spatial effects on disease rates. In disease mapping, except for using population to adjust 

the relative disease risk in an area, models usually do not include explanatory variables. 

Therefore, the variation in the response variable is mainly explained by random effects 

like spatial effects. This could be the reason for obtaining larger estimates of the spatially 

structured effects in Richardson et al. (2006) than those found in this research. 

6.3.4 Temporal correlation 

For models without temporal correlation, high correlation is identified in the residuals for 

different time periods. The first order temporal correlation in the residuals is around 0.85 

for both types of accidents as shown in tables 6.15 and 6.16. 

After using a first order autoregressive prior to take account of the temporal effects, 

the temporal correlation in the residuals drops for both types of accidents as shown in 

Tables 6.17 and 6.18. The above analysis of the temporal correlation in the residuals 

indicates that the first order autoregressive prior has successfully explained the temporal 

correlation in the residuals from models that do not include the temporal random effects. 
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Table 6.15: Temporal correlation coefficients for residuals from model CCAR(t)tr for 
fatal and serious accidents 

Year 2001 2002 2003 2004 2005 

2001 1 0.88 0.85 0.81 0.77 
2002 0.88 1 0.87 0.80 0.73 
2003 0.85 0.87 1 0.85 0.76 
2004 0.81 0.80 0.85 1 0.86 
2005 0.77 0.73 0.76 0.86 

Table 6.16: Temporal correlation coefficients for residuals from model CCAR(t)tr for 
slight accidents 

Year 2001 2002 2003 2004 2005 

2001 1 0.89 0.84 0.78 0.75 
2002 0.89 1 0.88 0.83 0.75 
2003 0.84 0.88 1 0.86 0.80 
2004 0.78 0.83 0.86 1 0.86 
2005 0.75 0.75 0.80 0.86 

Table 6.17: Temporal correlation coefficients for residuals from model CCAR(t)tr.temp 
for fatal and serious accidents 

Year 2001 2002 2003 2004 2005 

2001 1 0.26 0.07 0.08 0.01 
2002 0.26 1 -0.07 -0.14 -0.04 
2003 0.07 -0.07 1 -0.43 -0.15 
2004 0.08 -0.14 -0.43 1 -0.60 
2005 0.01 -0.04 -0.15 -0.60 

Table 6.18: Temporal correlation coefficients for residuals from model CCAR(t)tr.temp 

for slight accidents 

Year 2001 2002 2003 2004 2005 

2001 1 0.35 0.07 -0.02 0.01 

2002 0.35 1 -0.23 -0.02 -0.05 

2003 0.07 -0.23 1 -0.48 -0.06 

2004 -0.02 -0.02 -0.48 1 -0.64 

2005 0.01 -0.05 -0.06 -0.64 

6.3.5 Estimated coefficients 

Explanatory variables included in the models are area, population, length of A-roads, 

length of B-roads, length of minor roads, traffic by cars, traffic by other vehicles and 

number of junctions (represented by nodes). Accidents occurs because there is traffic. 

Traffic is generated by people and is carried by roads of different classes. Therefore. 

accident frequency is expected to be positively associated with level of traffic. population 
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and road length. Moreover, suppose that the total length of roads in a local authority is 

fixed. The road network will become more complicated if there are more junctions. So a 

positive correlation is also expected between accident frequency and number of junctions. 

Figures 6.26 to 6.29 show the estimated medians and 95% credible intervals for the 

coefficients of all the explanatory variables in models PLNtr (a Poisson linear model with 

log-normal random effects and with a linear trend) and CCAR(t)tr.temp (a CAR model 

with temporal effects formulated by a first order autoregressive prior) for the two types 

of accidents. There is smaller variation in the estimates of the coefficients from model 

PLNtr than that from the CAR model. For fatal and serious accidents, the main difference 

in the coefficient estimates between two models is found to be with two variables, length 

of minor roads and B-roads. The credible interval of the coefficient for variable length 

of minor roads in model PLNtr contains only negative values but contains only positive 

values in model CCAR(t)tr.temp. Therefore, different relationship between length of mi

nor roads and the expected number of fatal and serious accidents is obtained from the two 

models. For model PLNtr, the credible interval of the coefficient for variable length of 

B-roads covers both positive and negative values and its median is close to zero. This 

indicates that this variable does not contribute much to explain the variation in fatal and 

serious accidents at the local authority level. However, in model CCAR(t)tr.temp, the 

credible interval of the coefficient for variable length of B-roads contains only positive 

values. Therefore, it indicates that this variable is useful to account for the variation in fa

tal and serious accidents. Comparing with the expected relationship between the response 

variables and variables for road length discussed earlier, results from the CAR model 

are more reasonable. The credible intervals for variables, namely population, length of 

A-road, traffic by other vehicles and number of node, contain only positive values. The 

result suggests that a larger number in one of these variables holding others constant will 

be associated with a larger expected number of fatal and serious accidents at the local au

thority level. The credible intervals for variables, namely area and traffic by cars, contain 

only negative values for both of the models. This suggests that there is a negative relation

ship between the expected number of fatal and serious accidents with the two variables. 
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For slight accidents, the credible intervals of the coefficients for variables length of B

roads and length of minor roads contain some negative values in model PLNtr but contain 

only positive values in model CCAR(t)tr.temp. These again suggest that estimates from 

the CAR model are more reasonable. As found in models of fatal and serious accidents , 

there is a negative relationship between the expected number of slight accidents with area 

and traffic by cars. 
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Figure 6.26: Credible intervals of the coefficients in model PLNtr for fatal and serious 
accidents: explanatory variables from the left to the right are area, population, length of 
A-roads, length of B-roads, length of minor roads , traffic by other vehicles, traffic by cars 

and number of nodes. 

A positive correlation between the expected number of accidents with road length, 

population and number of junctions is consistent with the expectation. However, for 

the two traffic variables, a negative coefficient is obtained for car traffic and a positive 

one is obtained for traffic of other vehicles. Suppose that the coefficient for traffic of 

other vehicles is a (a > 0) and the coefficient for car traffic i -b (b > 0). If on l th e 

two variables denoted by X l and X2, are included in the model and the con tant term i 
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Figure 6.27: Credible intervals of the coefficients in model CCAR(t)tr.temp for fatal and 
serious accidents: same explanatory variables as in Figure 6.26. 

ignored, we will have 

log A = a lOgxI - b logx2 · 

After taking anti -log, the following equation can be obtained: 

(6 .2) 

Suppose the total traffic is T = X l + X2 and the percentage of traffic by other vehi cles is 

p (0 < p < 1). Therefore, Xl = T p and X2 = T ( 1 - p). Equation (6.2) can be rewritten a 

A = (Tpt[T ( l - p)rb 

= T (o- b) p0(1 - p)- b. (6. ) 
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Figure 6.28: Credible intervals of the coefficients in model PLNtr for slight accidents: 
same explanatory variables as in Figure 6.26. 

The credible intervals in the figures show that the absolute value of the coefficient for 

traffic of other vehicles is larger than that for car traffic . Therefore, a - b > O. Equation 

(6.3) suggests that there is positive correlation between the expected number of accidents 

A and the total traffic T . However, there is also a relationship between A and f(p) = 

pa (1 - p) - b, a function of the percentage of traffic of other vehicles. The derivative of 

f(p) is ap(a- l) (1 - p) -b + pab(1- p)( -b-l ) . It is always larger than 1 because a > 0 and 

b > O. Therefore, f(p) is monotonically increasing. This suggests that when two local 

authorities have same level of total traffic , the local authority that has a higher proportion 

of traffic by other vehicles is expected to have a larger expected number of accident than 

that in the other local authority. 

Moreover, a downward trend was identfied for both types of acci dent in model with 

a linear trend. For instance, in model CCAR(t)tr. temp, the po terior median. denot d b 

8 for the coefficient of the trend variable for fatal and eri ou accident i -0.09 ith , 
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Figure 6.29: Credible intervals of the coefficients in model CCAR(t)tr.temp for sli ght 
accidents: same explanatory variables as in Figure 6.26. 

the 95% credible interval to be [-0.11 , -0.06] . For slight accidents, it is -0.05 with the 

95% credible interval to be [-0.07 , -0.03]. This may indicate that the expected number 

of accidents at the local authority level decreases by some rate over time. According to 

the form of accident models used in this thesis, the posterior median of the decreasing 

rate should be exp( 8) and therefore is approxmiate to 10% for fatal and serious acciden ts 

and 5% for slight accidents . However, what this trend represents or explains is difficult to 

identify. 

A dummy variable was also included in some models to represent the effect of uni-

tary authorities. For fatal and serious accidents, in model CCAR(t)tr.temp, the posterior 

median of the coefficient for this variable is 0.12 with the 95 % credible interval to be 

[0 .06,0.18] . This indicates that there are more fatal and serious accident in an uni tary 

authority than in other types of local authorities if they have simi lar value of explanator 

variables. But there is no evidence that there are more light accident in unitary authori-
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ties than in other local authorities. The 95% credible interval of the coefficent for unitary 

authority contains both positive and negative values. 

6.4 Models for accidents at the ward level in the West 

Midlands in 2001 

In the previous two sections, models were fitted at the local authority level. Such models 

can also be used to study the relationship between the accident frequency and other vari

ables as well as the effect of the inclusion of spatial random effects at a more local level, 

such as ward. In this section, similar forms of models in the previous sections are fitted 

using the West Midlands data in 2001. Details of the response variables and explanatory 

variables were introduced in Section 5.3.3. 

6.4.1 Relationships of the variables 

Nine explanatory variables were included in the accidents models for the West Midlands. 

They are population, area, length of major roads, length of minor roads, number of junc

tions, population travelling to work by bus, population travelling to work by car as a 

driver, population travelling to work by car as a passenger and population travelling to 

work on foot. The response variables are the number of fatal and serious accidents in a 

ward and the number of slight accidents in a ward. Figure 6.30 shows the relationships of 

these variables. All the variables are in logarithmic form. The figure shows that both of 

the response variables are positively correlated with each explanatory variable. 

6.4.2 Description of the models 

Log-normal random effects, fixed metropolitan distric effects and spatially structured ran

dom effects were added in the Poisson log-linear models (PL) in tum. These models are 

denoted by PLN, PLNre, CCAR, MVCCAR and MVCCAR.mv. The last two models are 

multivariate CAR models. Three structures of the neighbours list were used. The first 
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o 2 369 2 4 6 5.0 6.5 5.0 70 

Figure 6 .30: Relationships of selected variables in logarithmic form: 'FS' for the fata l 
and serious accidents; 'SL' for the slight accidents; 'Major' for the length of major roads; 
'Minor' for the length of minor roads; 'Junction' for the number of junctions; 'Travell ' 
to 'TraveI4' for population travelling to work by car as driver, by car as passenger, on foot 

and by bus respectively. 

one includes only the first-order neighbours , the second one includes both the hrst-order 

neighbours and the second-order neighbours and the last one consider all the other ward 

in the West Midlands as neighbours . For the first order neighbours, 1-0 weights were 

used. For higher order neighbours , the spatial weights determined by Euclidean di tanee 

were used . 
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Table 6.19: Summary of the model fits for accidents in the West Midlands 

Model DIC Expected Effective number Severity Moran's I 
deviance of parameters 

PLN 2034 1855 179 fatal and serious 0.11 (*) 
slight 0.08 

PLNre 1992 1851 141 fatal and serious 0.D7 
slight 0.02 

CCAR 1994 1841 153 fatal and serious 0.01 
slight 0.03 

MVCCAR 1993 1841 152 fatal and serious -0.01 
slight -0.09 

MVCCAR.mv 1998 1828 170 fatal and serious 0.00 
slight -0.06 

*: significant at the 5% level 

6.4.3 Models comparison and interpretation 

Table 6.19 summarises the fit of selected models. The spatial correlation in the response 

variables are 0.48 for fatal and serious accidents and 0.62 for slight accidents. The extent 

of spatial correlation in the residuals from the Poisson log-linear models with log-normal 

random effects, denoted by PLN in the table, is not very high for either type of accident. 

This indicates that the high spatial correlation in the response variables are mostly cap

tured by the explanatory variables. However, Moran's I is still significant for fatal and 

serious accidents. 

The inclusion of metropolitan county effects (corresponding to model PLNre) causes 

the value of Moran's I to drop for both types of accident and improves the DICs. By using 

a CAR prior to take account of the spatially structured random effects, model CCAR has 

a similar DIC as model PLNre. Moran's I is not significant for either type of accident and 

is very small. These results suggest that models with metropolitan district effects (PLNre) 

and models with spatial random effects (CCAR) perform similarly for this dataset. CAR 

models including higher order neighbours were also considered. However, they do not 

perform better than the one just including first order neighbours. 

The variance parameter of the unstructured random effect is 0.02. For the spatially 

structured random effect in model CCAR, the overall variance parameter is 0.16 for fa

tal and serious accidents and 0.l3 for slight accidents. Divided by the average number 

of neighbours for each ward, which is about 5.4. the variance of the spatially structured 

effect for each ward is about 0.03 for fatal and serious accidents and 0.02 for ~light acci-
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dents. Therefore, the ratio between the variances of two types of random effects is about 

1.5 for fatal and serious accidents and 1 for slight accidents. This suggests that the un

structured random effects and the spatially structured random effects included in the ward 

models have the similar importance although for fatal and serious accidents the spatially 

structured effects are a little stronger. 

Model MVCCAR takes account of the within-area correlation in the spatially struc

tured random effects for the two types of accident. Its DIC is very close to models CCAR. 

The correlation in the spatial components for accidents of different severities is estimated 

to be 0.67. This suggests that the correlation in the spatially random effects for the two 

types of accidents, namely fatal and serious accidents and slight accidents is fairly high. 

Model MVCCAR.mv takes account of the within-area correlation in the two types 

of accident for both spatially structured random effects and unstructured random effects. 

Its DIC is higher than the previous three models. But this is caused by using more pa

rameters. Its expected deviance is the lowest among all the models. The within-area 

correlation between the spatial effects is about 0.68. The within-area correlation between 

the unstructured random effects is about 0.61. 

6.4.4 Estimated coefficients 

Summaries of parameter estimates for selected models are listed in Appendix D. Figures 

6.31 and 6.33 plot the 95% credible intervals of the coefficients for the explanatory vari

ables in model PLN. Figures 6.32 and 6.34 plot the credible intervals for the coefficients 

in model MVCCAR. There is not much difference in the credible intervals for the esti

mated coefficients from the two models. Results from model CAR and MVCCAR.mv are 

also very similar. 

For fatal and serious accidents, all the medians of the coefficients are positive except 

for the one for population travelling to work by car as driver. However, the credible 

interval of the coefficient for this variable covers both positive and negative values and 

its median is close to zero. The same result is found for the coefficient of length of 

minor roads except that its median is positive but also close to zero. These indicate that 
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population travelling to work by car as driver and length of minor roads do not contribute 

much to explain the variation in fatal and serious accidents at the ward level. For other 

explanatory variables, the credible intervals for the coefficients mostly contain positive 

values. These variables are population, area, length of major roads, number of nodes, 

population travelling to work by bus, population travelling to work by car as passenger 

and popUlation travelling to work on foot. The result suggests that a larger number in 

one of these variables holding others constant will be associated with a larger expected 

number of fatal and serious accidents at the ward level. 

For slight accidents, the medians ofthe coefficients for variables, namely length of mi

nor roads, number of nodes, population travelling to work by car as driver and population 

travelling to work by bus are negative. For the first three variables, the credible intervals 

for the coefficients contain only negative values. This suggests that a larger number in 

one of these variables holding others constant will be associated with a smaller expected 

number of slight accidents at the ward level. For other variables including population, 

area, length of major roads, population travelling to work by car as passenger and popu

lation travelling to work on foot, the credible intervals for the coefficients mostly contain 

positive values. This suggests that a larger number in one of these variables holding others 

constant will be associated with a larger expected number of slight accidents at the ward 

level. 
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6.4 Models for accidents at the ward level in the West lVIidlands in 2001 

6.4.5 More on the spatial effects 

Figures 6.35 and 6 .36 plot maps of the posterior medians of the spatially tructured ran

dom effects in model MVCCAR. Results show that, for fatal and serious accident. the 

three districts lying in the east of the West Midlands, namely Birmingham, Solihull and 

Coventry from left to right, have positive spatial effects in most of their wards. The 

spatial effects corresponding to wards in the most northern di stricts, namely Walsall and 

Wolverhampton, are all negative. These consequently result in apparent clusters of pos-

itive values and negative values. The distribution pattern of the spatial effect for slight 

accidents looks different from that for fatal and serious accidents. Its extent of clusteling 

is less strong. These maps can help to identify wards with higher spatial effects that are 

caused by some unknown or unmeasurable factors . Levels of these spatial effects reflect 

the relative influence of such factors on the expected number of accidents at the ward 

level. 

• <-02 0 0 -0 .1 
o -0.2--0 .1 0 0.1 - 0.2 
o -0.1 - 0 > 02 

F· 635' Map of the posterior medians of the spatially structured random effect ~ in Igure . . 
model MVCCAR: fatal and serious accidents. 
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Figure 6.36: Map of the posterior medians of the spatiall y structured random effects in 
model MVCCAR: slight accidents. 

6.5 More on residual spatial autocorrelation 

In the previous three sections, the residuals used for examining Moran's / were Pearson 

residuals calculated based on the point estimates of the As - the posterior mean of A. 

As shown in Section 4.7, in a Bayesian context, a more appropriate approach is to use 

Bayesian residuals for model checking. Using the local authority models in the 2000s a 

an example, the following analysis shows how an Bayesian approach is used to examine 

spatial correlation in residuals. For each model , A s for 149 local authorities in 1000 im-

ulations were saved when the model s were fitted. Suppose that the estimate of Pois on 

mean in area i in the jth simulation is A/i ). Then Bayesian residuals for the jth imulation 

are y:;:(~) . The value of Moran 's 1 for Bayesian residuals in each simulation wa exam

ined. As shown in Section 4.7 , Values of the response variable}' could be predicted from 

A(j) by simulating y (j) from the Poisson distribution Pois (A(j)) . Re idual ba ed on the 

v (j ) - A (;) U' f . 1 ( '1 ) h I I ' -predicted values of y are . JIG) ' SlOg unctIOn }'. /\.. to repre ent t e ca cu atJon of 

Moran 's 1 for re iduals, the probability that l (y (j ). A (j )) > l (y. A (j ) i a mea ur to heck 

whether a model is mi sfi tted. 
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Figure 6.37: Values of Moran's I in Bayesian residuals from model PLtr: (a) based on 
true y; (b) based on predicted values for y. 

Figures 6.37 to 6.39 show values of Moran's I on residuals for fatal and serious ac-

cidents in models PLtr, PLNtr and CCAR(t)tr.temp (see Table 6.13) from year 2001. In 

these figures, Histogram (a) illustrates values of Moran's I for Bayesian residuals based 

on the true y (l(y, ).,(j))), and Histogram (b) shows values of Moran's I for Bayesian resid

uals based on the predicted values of y (l(YU),)., (j))). The dash line in Histograms (a) 

corresponds to the value of Moran's I for residuals based on the posterior means of AS. 

Histograms (a) in Figures 6.37 and 6.38 suggest that when no spatial structured random 

effects are included in the model, the spatial correlation in the residuals is all positive. 

The spatial correlation is statistically significant in the Poisson log-linear model PLtr, 

but nonsignificant in model PLNtr that includes log-normal random effects. The spatial 

correlation is nonsignificant for residuals based on predicted y* for both models. The two

sided p-value for I(y(j) ,A(j)) > Ie\" A(j)) for model PLtr is 0 and is 0.02 for model PLNtr. 
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Figure 6.38: Values of Moran's I in Bayesian residuals from model PLNtr: (a) based on 
true y; (b) based on predicted values for y. 

These indicate a misfit of the two models. When spatially structured random effects are 

included in the model (see Figure 6.39), values of Moran's I are centred at zero and non

significant. The two-sided p-value for I(y(j) , A (j)) > I(y, A (j)) is 0.99. This indicates that 

the fit of model is fine. 

Using the local authority model in the 2000s as an example, the above analysis sug-

gests that results of Moran's I statistic on Bayesian residuals and on point estimates of 

residuals (residuals based the posterior mean of A) are consistent. 

6.6 Conclusion 

In this chapter, three datasets were used to fit accident models at the area level. Results 

show that adding a spatial CAR component to conventional models to take account of spa-
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Figure 6.39: Values of Moran's I in Bayesian residuals from model CCAR(t)tr.temp: (a) 
based on true y; (b) based on predicted values for y. 

tial random effects has two main contributions. Firstly, the model performance, measured 

by DIC, is improved. This indicates that the inclusion of spatial random effects better 

explains the variation in the response variable at the area level. Secondly, the significant 

spatial correlation in the posterior means of residuals is mostly removed. The spatial 

random effects are expected to take account of those contributory factors for accident fre-

quencies that tend to have similar levels of values in neighbouring areas. Therefore, a 

map showing the spatial distribution of the spatial effects often exhibits clusters of simi

lar values. Levels of these spatial effects reflect the relative influence of the unknown or 

unmeasurable contributory factors on accident frequencies. 

Another finding from the CAR models at the area level is, when longitudinal data 
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6.6 Conclusion 

were used, the best performing models assumed the spatial effect in an area is not con

stant over time. One implication from this is the unknown or unmeasurable explanatory 

variables captured by the spatial component may vary over time therefore their effects on 

the response variable change over time. However, ,this introduces difficulty in applying 

such models for predicting numbers of accidents at the area level in the future. 

By taking account of the correlation in different types of accidents, multivariate mod

els were not found to improve the models' DIC much. Their deviances are all less than 

those for univariate models. However, there are more effective parameters used to esti

mate the models. Therefore, their DICs are higher. 

The shared component CAR models as introduced in Section 3.2.2 were also fitted. 

However, the convergence of parameters was poor and the performance of the models was 

not good. This indicates that such models are not appropriate for accident data used here. 

Normally in models for disease rates, only a limited number of explanatory variables are 

included. The shared spatial component for different response variables will mostly cap

ture the effects caused by unknown or unmeasurable factors that are spatially correlated. 

Such effects are shared by different response variables in an appropriate form. In accident 

models, such effects are probably mostly captured by the available explanatory variables 

that are common for both types of accidents. Therefore, very little effect will be left 

to be taken account of by a shared CAR component. This may explain why the shared 

component CAR models used in disease mapping do not perform well here. 

The inclusion of temporal effects using a first order autoregressive prior is found to 

improve the models' DIC. Such temporal effects are expected to capture the contributory 

factors that are not included in the models but are constant over time. 
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Chapter 7 

Models of accidents on a road network 

In the previous chapter, models with spatial and temporal effects were developed for 

accidents at the local authority level and at the ward level. Spatial CAR models are 

found to be successful to take account of the spatial random effects that are spatially 

autocorrelated. According to the value of DIC, CAR models perform better than non

CAR models. This chapter aims to study how spatial CAR models can be applied to 

road accidents on a road network and to what extent they can improve the performance 

of models and explain the spatial correlation in the response variable. Data analysis and 

models for accidents on the M 1 from 1999 to 2005 are introduced first. Both spatial and 

temporal effects are considered. Secondly, models for junction accidents in Coventry are 

examined. 

7.1 Models for accidents on Ml 

7.1.1 Some descriptive statistics 

For the 59 links on the Ml, both accident data and traffic data are available for 7 years. 

How these data were obtained and prepared have been explained in Chapter 4. Figure 7.1 

shows the spread of the accident data for each year using box plots. In order to take 

account of the different lengths of the links, the variable used in the plot is the accident 

count per kilometre. 
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Figure 7.1: Box plots for the accident data from 1999 to 2005. 

The figure indicates that for most links the accident count per kilometre is less than 

10 in every year. The digits plotted beside the outliers correspond to the link IDs. Links 

7, 8, 10 and 11 often appear to be outliers. They are neighbouring road links of the M 1 

in Hertfordshire and a very small part of Bedfordshire that intersect with the M25, MI0, 

A4147 and A5183. There are two spurs on this road section, namely links 9 and 12 each 

of which has merging traffic with the A414 and AI081 respectively. 

Reasons for the existence of spatial correlation in the accident data for a road network 

have been discussed in the previous chapters. The extent of the spatial correlation in this 

set of accident data for the Ml was examined. Spatial correlograms (see Section 3.3 for 

definition) for the accident data are shown in Figure 7.2 and 7.3. These figures show the 

changes of spatial correlation when the order of neighbours is increased. Neighbours up 

to order 10 are considered. 

In order to filter out other relevant factors that may influence the value of Moran's I 

in accident data, link length and traffic flow are taken into account when producing the 

spatial correlograms over time. These correlograms show that the value of Moran's I for 

first order neighbours is high. Generally speaking, as the lag of neighbours increases, 

there is a downward trend for the Moran's I. For the accident count per kilometre, the 
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Figure 7.2: Spatial correlograms for the accident count per kilometre on the Ml. 
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Figure 7.3: Spatial correlograms for the accident count per vehicle-kilometre on the Ml. 

value of Moran's I for first order neighbours is between 0.4 and 0.6. Figure 7.3 shows 

that the value of Moran's I for first order neighbours is still high even after taking account 

of the level of traffic. This indicates that the conventional models without spatial effects 
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7.1 Models for accidents on M1 

may not fully explain the spatial correlation in the accident data even after including 

explanatory variables like traffic flow and link length. Therefore such models may not 

perform well and may result in spatial correlated residuals. 

Similar spatial correlograms are plotted in 7.4 for the level for traffic flow. Again, 

the value of Moran's I for first order neighbours is fairly high. Since traffic moves on 

the roads, the existence of spatial correlation in the traffic level for links on a road is 

reasonable. For higher order neighbours, Moran's I is low in most cases. 
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Figure 7.4: Spatial correlograms for the AADF on the MI. 

Figure 7.5 shows the relationship between accident count, traffic flow and road length 

in 1999. All the variables are in logarithmic forms. There are some links that have no 

accidents. Therefore, the accident count for each link is adjusted by adding 1. The figure 

shows that the three variables are positively correlated. 

7.1.2 Fit of the models 

A number of models have been developed for the M 1 data. They are models PL (Poisson 

log-linear model), PLN (by adding log-normal random effects to model PL), PLNtr (by 

adding a linear time trend to model PLN), PLNtr&re (by adding fixed regional effects to 
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Figure 7.5: Relationship between variables 

model PLNtr) and CCARtr (the convolution CAR model with a linear time trend) . Two 

explanatory variables have been included in the models. They are the AADF and the link 

length. Table 7.1 shows the DIC and Moran 's I statistics on the residuals for these models. 

According to the values of DIC in the table, the Poisson log-linear model (PL) has the 

Table 7.1 : Summary of the model fits for accidents on the M 1 from 1999 to 2005 

Mode l DIC Expected Effec ti ve number Moran's I 

devi ance of parameters 1999 2000 2001 2002 2003 2004 2005 

PL 4598 4595 3 0.51 (*) 0.53 (*) 0.55 ( .. ) 0.39(*) 04 7(*) 0.47 (0) 045 (A) 
PLN 2420 2 132 288 0.26( *) 0.23 (*) 0.42(*) 0.19 0.34(* ) 0.42 (. ) 0.22(*) 
PLNtr 2422 2 133 289 0.24 0.25 ( *) 0.42(*) 0.19 0.35 H 040(*) 0. 19(*) 
PLNtr&re 2378 2 123 255 0. 13 0.07 -0.03 0.07 0.05 0.20 -0.0 
CCARtr 2282 2 164 117 -0.05 -0.02 -006 0.09 0.0 1 0.1 -0.02 

*: signifi ani at the 5% leve l 
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7.1 Models for accidents on Ml 

highest DIC, over 4500, therefore is the worst model. After including log-normal random 

effects (model PLN) in the model, the DIC has been greatly improved. Model PLNtr 

includes a linear time trend in model PLN. Its performance is not better than that of the 

model without a linear time trend. When the regions where links belong to, represented 

by several dummy variables, are considered in the model (PLNtr&re), the DIC is more 

improved. The best performing model according to the DIC is the CAR model (CARtr) 

that includes both the unstructured random effects and the spatially structured random 

effects. Values of Moran's I in the table shows that without considering any spatial effects, 

either fixed or random, the first three models result in spatially correlated residuals as 

indicated by significant Moran's I in all the years. After taking account of the spatial 

effects in the last two models, none of the spatial correlation in the residuals is significant. 

This indicates that the high spatial correlation in the residuals is successfully removed 

by including either the regional effects or the spatially structured random effects. Higher 

order neighbours were also considered to construct the neighbours list to be used in the 

CAR models. But according to the values of DIC, none of CAR models using higher 

order neighbours perform better than using the first order neighbours. 

7.1.3 Estimates of the parameters 

For all the models, the mean of the coefficients for the explanatory variables-AADF and 

link length are both positive. The mean of the coefficient for the trend variable is negative 

but small. This indicates that there is a downward trend in the accidents on MI. For model 

PLNtr&re, the mean of the coefficients for the regional effect in London, East Midlands 

and Yorkshire & the Humber are all negative, regarding East of England as the baseline. 

This indicates that there could be less accidents on M 1 links that are in these regions. 

For model CCARtr, the variance parameter for the spatial random effect is 0.191 and is 

0.013 for the unstructured random effect. The ratio of the spatial random effects against 

the unstructured random effects is over 14. It is much larger than the average number 

of neighbours for each link (length of neighbours list (l20)/number of links (59) = 2). 

This indicates that for the M 1 data the spatially structured heterogeneity dominates the 
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unstructured heterogeneity. 

7.1.4 More on residual spatial autocorrelation 

In the previous chapter, values of Moran's I in Bayesian residuals were obtained for the 

local authority model. The result is consistent with that found in the point estimates 

of residuals (residuals calculated from the posterior mean of A). A similar approach is 

used here to examine the spatial correlation in Bayesian residuals and to check the fit of 

models. AS for 59 links in 1000 simulations were saved when the models were fitted. 

Suppose that the estimate of Poisson mean in area i in the jth simulation is A/f). Then 

Bayesian residuals in the jth simulation are y:;:(~). Spatial correlation should then be 

examined for residuals in each simulation. 

Without taking account of spatial dependency in neighbouring links, residuals from 

a non-CAR model were expected to be spatially autocorrelated. The extent of spatial 

autocorrelation in Bayesian residuals from model PLN (Poisson log-linear model with 

log-normal random effects) was firstly examined. The following analysis and discussion 

use residuals in year 1999 as an example. Figure 7.6 is a histogram of values for Moran's 

I in the 1000 simulations. It shows that most values of Moran's I fall in the interval 

between -2 and 2 and are statistically nonsignificant. However, as shown in Table 7.1, 

the value of Moran's I in the Pearson re/:liduals, based on the posterior mean of Ai, is 0.26 

(illustrated by the dash line in the figure) and is significant. These suggest that contrary 

conclusions may be drawn when different types of residuals are used for examining spatial 

correlation. This result is different from what has been found for the local authority model 

in the previous chapter. Reasons for this are not clear at this stage and needs further 

investigation. Since a Bayesian approach is adopted in this research, results based on 

Bayesian residuals are more reliable. However, if no spatial correlation exists in Bayesian 

residuals from model PLN, this will suggest that the spatial correlation in the response 

variables has been fully explained by the model. In such a case, would a CAR model be 

still needed? 

Model PLN includes log-normal random effects that are not spatially structured. These 
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Figure 7.6: Values of Moran's I in Bayesian residuals from model PLN. 

unstructured random effects capture the heterogeneity of individual site and therefore ex

plain some extent of spatial variation. In order to examine the level of these effects, 

simulated values of them were saved. Figure 7.7 illustrates the 95% credible intervals of 

these random effects. It shows that the posterior median of the random effects for many 

links is close to zero. Moreover, there are a number of links whose credible intervals for 

the random effects contain only positive values and some of these links are neighbouring 

links. This figure suggests that some level of spatial variation over the links has been taken 

account of by the unstructured random effects. This could be a reason for obtaining non-

significant Moran's I on Bayesian residuals. Therefore it suggests examining the spatial 

correlation in residuals from a Poisson log-linear model without extra random effects. 

Values of Moran's I for Bayesian residuals from model PL in Table 7.1 are straight-

forward to be obtained. Moreover, values of the response variable y could be predicted 

from A (j) by simulating y(j) from the Poisson distribution Pois (A (j)). Therefore, resid-

d· d I f y(j)-A,(J) U· f . I( ') uals based on the pre lcte va ues 0 y are /.D7T' smg unctIOn y, /l, to represent 

the calculation of Moran's I for residuals, the probability that I(y(j) , A (j)) > ler, A (j)) 

for selected models could be obtained and suggests whether a model is misfitted. Fig-

ure 7.8 shows these results. Histogram (a) illustrates values of Moran's I for Bayesian 
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Figure 7.7: 95% credible intervals of log-nonnal random effects (v) from model PLN. 

residuals based on the true y, that corresponds to function I(y,}.,(j)) in Section 4.7. It 

suggests that spatial correlation in Bayesian residuals is larger than 0.4 and significant. 

This result is consistent with the result in Table 7.1. By using predicted values for the 

response variable y, histogram (b) shows that most values of Moran's I (l(y(j),)., (j))) fall 

within the interval between -2 and 2 and are nonsignificant. Therefore, the p-value for 

I(y(j),}" (j)) > I(y,}., (j)) is O. It indicates a misfit of the model. 

Significant spatial correlation in residuals is identified for model PL from the above 

analysis. Moreover, results from model PLN suggest that the inclusion of unstructured 

random effects has explained a level of spatial variation in the response variable and resid-

uals from such a model are not spatially correlated. Another approach for taking account 

of spatial variation is to include spatially structured random effects. In order to compare 

the power of unstructured random effects and spatially structured random effects to ex

plain the spatial variation, an intrinsic CAR model, that includes only spatially structured 

random effects, was fitted. Figure 7.9 shows values of Moran's I on residuals from this 

model. Again, both true values and predicted values of y were used to calculate residuals. 

Both histograms suggest that spatial correlation in Bayesian residuals is nonsignificant. 

The two-sided p-value for I(y(j).}., (j)) > ICv,}" (j)) is 0.90. It indicates that the fit of model 
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Figure 7.8: Values of Moran's I in Bayesian residuals from model PL: (a) based on true 
y; (b) based on predicted values for y. 

is fine. Figure 7.10 shows the 95 % credible intervals of the spatial effects in the intrinsic 

CAR model. Compared with Figure 7.7, there are more links with positive effects. More-

over, several links are found to have negative effects. The DIC of the intrinsic CAR model 

is 2307, which is approximately 100 smaller than the DIC of model PLN. This suggests 

that for the M1 data, models with spatially structured random effects perform better than 

model with unstructured random effects. 

The contribution of the spatially structured random effects and unstructured random 

effects on explaining extra spatial variation was examined individually. When both of 

them are included in the model, their relative strengths can be compared. Figures 7.11 

and 7.12 illustrate the 95% credible intervals of spatially structured random effects and 

of unstructured random effects in model CCARtr. The estimates of spatially structured 

random effects in the convolution CAR model (in Figure 7.11) look similar to those in 
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Figure 7.9: Values of Moran's I in Bayesian residuals from the intrinsic CAR model: (a) 
based on true y; (b) based on predicted values for y. 

the intrinsic CAR model (in Figure 7.10). However, the level of the unstructured random 

effects in the convolution CAR model (in Figure 7.12) is lower than that in the Poisson 

log-linear model with log-normal random effects (in Figure 7.7). The posterior medians 

of these effects in the CAR model are close to zero for all the links. Therefore, the level of 

spatially structured random effects is much higher than the level of unstructured random 

effects. These results indicate that when both types of random effects are included in a 

model, they will compete to explain the spatial variation in the response variable, that 

are not explained by the explanatory variables. For the M 1 data, the examination of 

the levels of these random effects suggests that the spatially structured random effects 

dominates the unstructured heterogeneity. This is consistent with the finding based on 

the comparisons of the variances for these effects in Section 7.1.3. Moreover, values 
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Figure 7.11: 95% credible intervals of spatially structured random effects (8) from model 
CCARtr. 

of Moran's I for residuals based on the true values and predicted values of y were also 

obtained and compared. The histograms are similar to those in Figure 7.9 for the intrinsic 

CAR model therefore are not presented here. The two-sided p-value for levU). A (j)) > 

I (y, A (j)) is 0.92, therefore suggests a proper fit of the model. 
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Figure 7.12: 95% credible intervals of unstructured random effects (v) from model 
CCARtr. 

The above analysis and discussion are based on residuals in year 1999. Results using 

residuals in other years are very similar therefore are not presented here. 

7.2 Junction accidents in Coventry 

The study network consists of A- and B-roads in Coventry, with junctions the intersections 

of these roads (defined as major junctions in this thesis). Neighbouring junctions are 

defined as junctions joined by a common road link. Using the 1-0 weighting scheme, the 

value of Moran's I in the accident data is about 0.04 which is very small. When the spatial 

weights are determined by the shortest road sections between neighbouring junctions, the 

value of Moran's I is marginally significant. It has a value of 0.173 with a p-value of 0.06. 

These results suggest that very little spatial correlation is in the accident data. 

Figure 7.13 shows the distribution of the accident data grouped by junction types. It 

suggests that roundabouts are likely to have more accidents than other types of junctions. 

However, previous studies find that roundabouts are usually associated with less accidents 

than other types of junction. Result here could be just a special case. 

Four models were developed for junction accidents. The first three models do not 
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Figure 7.13: Accident counts by junction types 

include the explanatory variable junction type but include a constant term and random ef

fects only. They are namely the Poisson model with log-normal random effects (PLN), the 

CAR model (CCAR) and the proper CAR model (PCAR) (specified as expression (3.2) 

in Section 3.1.2). For the two CAR models, the spatial weights depending on the distance 

between the neighbouring junctions were used. The spatial correlation in the standardized 

residuals from model PLN is small and not significant. The DICs of the three models are 

all around 317. It indicates that the inclusion of spatial random effects does not improve 

the model. This result has been expected in advance because the spatial correlation in 

the accident data is small. In model CCAR, the variance parameter of the unstructured 

random effects is 0.15 and is much larger than that for the spatially structured random 

effects, which is 0.02 . This indicates that the unstructured heterogeneity strongly domi-

nates the spatially structured heterogeneity. The correlation parameter p in model peAR, 

which measures the strength of spatial correlation is estimated to be 0.26. This is another 

indication of the small spatial correlation in this dataset. 

The last model includes the junction type as the explanatory variable in model PLN. 

Two dummy variables were constructed representing three types of junctions. namely 

roundabout, crossing and T-junction. The DIC is still around 317. The medians of the co

efficients for roundabouts and crossings are 1.12 and 0.62. This indicates more accidents 
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tend to occur at roundabouts and crossing than at T-junctions. 

7.3 Conclusion 

In this chapter, the analysis of MI link accidents and Coventry junction accidents shows 

very different results. Measured by Moran's I statistic, the spatial correlation in link 

accidents on the Ml is very high even after controlling for the level of traffic. But the 

junction accidents in Coventry do not display much spatial correlation. One possible 

reason for the small spatial correlation is that only major junctions were selected in this 

study and they may be too far away from each other. The extent of spatial correlation 

between two major junctions are weak because of the existence of several minor junctions 

and links between them. Therefore, a study that includes all the junctions in Coventry may 

give a very different result. 

Results show that for MI link accidents the inclusion of a CAR prior improves the 

DIC, and successfully removes the high spatial correlation in the residuals. Since both 

the traffic level and the link length have been considered in the Ml model, the spatial 

random effects modelled by the CAR prior are likely to capture the similarity in the road 

characteristics (for instance, the curvature and the gradient) of the neighbouring sites. 

Moreover, the Bayesian approach to examining spatial correlation in the residuals, intro

duced in Section 4.7, was used for the MI models. Results suggest that different results 

for Moran's I can be obtained for the model with log-normal random effects when using 

different types of residuals - Bayesian residuals and residuals based on the posterior mean 

of A.. For Coventry junction accidents, the CAR models does not perform better than the 

non-CAR models. 
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Chapter 8 

Applications of the models 

Areal models and models for road accidents on a road network have been developed 

in this research. Results from these models show the importance and the influence of 

the inclusion of the spatial and the temporal effects. In most cases, the inclusion of the 

spatially structured random effects modelled by a CAR prior improves the performance 

of the models. When such spatial effects are not included in the models, significant spatial 

correlation in the residuals has been identified for models using different datasets. The 

main use of CAR models is to take account of the contributory factors (for the response 

variables) that are unknown or unmeasurable but are spatially correlated. The inclusion 

of the temporal effects can successfully remove the highly positive temporal correlation 

in the residuals when longitudinal data are used to fit the models. 

In this chapter, some possible applications of the models developed in the previous 

chapters are suggested. General approaches for using these models will be explained. 

Models developed in this research can be used to predict the expected number of accidents 

in the future. Moreover, the spatially structured random effects can be estimated. Based 

on them, local authorities or road sites (links or junctions) can be ranked. 

8.1 Prediction of accident counts 

This section aims to show how spatial models developed in this thesis can be used to 

predict numbers of accidents in the future. Data for traffic and population in 2006 were 
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8.1 Prediction of accident counts 

obtained from Department for Transport (Department for Transport, 2007d) and National 

Statistics (Office for National Statistics, 2007). Based on the estimates of parameters 

in areal models fitted by data from 2001 to 2005 (see Section 6.3), numbers of fatal and 

serious accidents at the local authority level in 2006 are predicted. Since STATS 19 data in 

2006 (Department for Transport, 2007 b) are available, comparisons between the predicted 

number of accidents and the ~bserved number in each local authority can be made. 

In an areal model, the response variable is the number of a particular type of acci

dents in a local authority in one year. In order to estimate or make a prediction of the 

expected number of accidents in a year, several conditions must be guaranteed. Firstly, 

the explanatory variables in the year for prediction need to be available. Secondly, the 

neighbours list should be unchanged. This means that for areal models the boundaries 

should not be changed in the year for prediction. Thirdly, the random effects, such as the 

spatially structured random effects, the unstructured random effects and the temporal ef

fects, need to be predicted. This is straightforward only if spatial effects are constant over 

time. However, results from areal models developed in this research shows that, when the 

spatial effects over time are assumed to be constant, models do not fit well. The param

eters do not converge. This introduces difficulty for predicting the number of accidents 

at the local authority level. As shown in Section 6.3.3, the distribution of and the level 

of spatial effects in an England map is similar in the first three years (2001-2003) as well 

as in the last two years (2004-2005). Therefore, a compromise approach is to divide the 

time in two periods and to assume that the spatial effects are constant in each period and 

assume spatial effects in 2006 are same as in 2004-2005. 

Prediction using statistical models in a Bayesian framework can be treated as a miss

ing data problem (see Gelman et aI., 2004, Section 21). In the application of predicting 

accident counts in 2006 using areal models, data for explanatory variables from 2001 to 

2006 and accident data from 2001 to 2005 were used to fit the models. Data for the re

sponse variable y (number of fatal and serious accidents) in 2006 were treated as missing 

values. Two models were used to make predictions here. In addition to the explanantory 

variables, the non-CAR model includes a linear time trend, a dummy variable to iden-
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8.1 Prediction of accident counts 

tify unitary authorities, first order autoregressive temporal effects and log-normal random 

effects. The CAR model extends the above model by including a CAR prior to capture 

spatial random effects. For the reason discussed earlier, in this CAR model, the extent of 

spatial effect in each local authority is assumed to be constant from 2001 to 2003 as well 

as from 2004 to 2005. Results from predictions are discussed below. 

Figure 8.1 compares results from predictions using two models based on the posterior 

medians of AS, the Poisson means. The solid line in each graph is a 45 degree line. If there 

is no bias in the predictions, equivalent numbers of points should lie over and below the 

45 degree line. The figure suggests that, by using a non-CAR model, there are many more 

points lying over the line than those below the line. By using a CAR model, although 

there are still more points lying over the line, the problem is not as serious as that for the 

non-CAR model. 

However, in a Bayesian context, A is random and has a posterior distribution. There

fore, prediction of y in a local authority should be made based on the posterior predicted 

values of A. In this application, for each local authority, 1000 simulations of A in 2006 

were saved. For each simulated value of A, a y* was simulated from Pois(A). For each lo

cal authority, 1000 predicted values of y* were obtained. They formed a posterior predic

tive distribution of y*. This was compared with the true value of y according to STATS 19 

data in 2006. 

Figures 8.2 to 8.5 show the results from predictions using the CAR model for London 

boroughs, metropolitan districts, unitary authorities and other local authorities. In each 

figure, local authorities are ordered by the posterior median of y*. Here, the 9590 credible 

interval (CI) of y* is used to summarize the predictive distribution of y*, illustrated by a 

horizontal line in the figures. The true y, number of fatal and serious accidents in 2006, is 

represented by a point. Figure 8.2 shows that the true y is significantly under-estimated for 

the City of London and for Westminster. Figure 8.3 suggests that the true y is contained 

by the 95% credible interval of y* for all the metropolitan districts. Figure 8,4 shows 

prediction results for unitary authorities. It suggests that the true y is significantly under

estimated for the following unitary authorities: Bracknell Forest, Milton Keynes, York, 
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Figure 8.1: Comparisons of prediction results from the non-CAR model and the CAR 
model by using the posterior median of A. 

Darlington, Blackpool , Brighton and Hove, and Redcar and Cleveland. Prediction results 

for other local authorities are illustrated in Figure 8.5. According to the figure , the true y 

is significantly under-estimated for East Sussex, West Sussex and Lancashire. 

Results from predictions suggest that most significantly under-estimated y* s are for 

unitary authorities. As shown in Section 6.3.5, unitary authorities were found to have 

more fatal and serious accidents than other local authorities . Here, in the prediction mod-

els, the coefficient for the dummy variable that identifies unitary authorities is also pos-

itive. This means that the effect of unitary authorities has been taken account of in the 

model. Therefore, reasons for significantly under-estimating number of fatal and serious 

accidents in some unitary authorities may need further investigation. 

Figure 8.6 illustrates the trend of fatal and serious accidents in the unitary authorities 

where y is significantly under-estimated in 2006. It shows that there is a big jump in 

2006 from 2005 in these unitary authorities . Traffic volumes and population in these 

areas were found to slightly increase or be stable in 2006 compared with 2005 except for 

Blackpool unitary authority where the traffic volume slightly decreased in 2006. If the ·e 

variables were measured cOlTectly, the result will suggest that the large increa e in number 

of accidents cannot be fully explained by the changes in traffic and population. Although 

as a Poisson distributed variable, y has some extent of random variation, the variation for 
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Figure 8.2: Predictions for London boroughs. 

the seven unitary authorities shown in Figure 8.6 seems too large. 

300 

Figures showing prediction results from the non-CAR model are included in Ap

pendix E. The main difference between the prediction results using different models is 

that the variation in y* (predictive values for y) is much smaller from the CAR model than 

that from the non-CAR model. This suggests that the estimates are more precise from 

the CAR model. The smaller variation in y* from the CAR model is due to the smaller 

variation in the A, from which y* was simulated (y* i"'.J Pois(A )). In a CAR model, the 

estimate of A in an area depends on not only the coefficients of explanatory variables but 

also the spatial random effect in the area that shrinks towards a local mean depending on 

its neighbours. This shrinkage may be a possible reason to explain the smaller variation 

in the estimates of A from a CAR model. 

According to the comparisons of prediction results using different models based on the 
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Figure 8.3: Predictions for metropolitan districts. 

predictive distribution of y*, which model is better for prediction is hard to say. If consid-

ering local authorities in which accident numbers are significantly under-estimated, seven 

local authorities were identified using the non-CAR model while twelve local authori

ties were identified using the CAR model. Therefore, there are fewer local authorities 

in which accident numbers are significantly under-estimated using the non-CAR model 

although the difference is small (only five). However, as shown earlier, larger variation 

in the predicted A was found for the non-CAR model. Therefore, the posterior predictive 

distribution of y* for each local authority obtained from the non-CAR model contains 

more values and has a wider range compared with that obtained from the CAR model. 

This possibly explains why there are fewer number of local authorities being significantly 

under-estimated by using the non-CAR model. If the prediction for the number of acci-

dents in a local authority significantly under-estimates the true value, further research may 
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Figure 8.4: Predictions for unitary authorities. 

260 

be needed to find out possible reasons. One advantage of using the CAR model in this 

application is that it produces more precise predictions than the non-CAR model. That 

is the variation in predictive values y* is much smaller from the CAR model than those 

from the non-CAR model. If the predictive distribution of y* has a very wide spread, 

as obtained for the non-CAR model, the prediction may not be very helpful in practice. 

From this view, the CAR model is better for prediction. 

The above method for accident prediction is explained using an example of areal mod-

els. The same method can be used for predicting number of accidents on a road network, 

for instance, using the M 1 models developed in the previous chapter. However, the traffic 

flow data for the MI are not currently available for a new year. Therefore. this cannot be 
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Figure 8.5: Predictions for other local authorities. 

achieved in this research. 

8.2 Ranking the sites 

8.2.1 Background 

There is a long history of site ranking in the context of road safety research. The main aims 

of site ranking are to identify sites with high accident risks and select sites for engineering 

treatment. There are a number of methods to rank the sites. Most of them are based 

on the measurements of the accident risk include raw accident rates (observed accident 

count per vehicle-km) and model-based accident rates (accident means divided by the 
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Figure 8.6: Trend of fatal and serious accidents in unitary authorities where y is signifi
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traffic volume) (Hauer et aI., 2004, see). Model-based ranking studies in road safety often 

use the empirical Bayes estimates of the accident means to compare sites (for instance, 

Hauer et aI., 2004, 2002). Some researchers have adopted the full Bayesian method to 

estimate the accident means and make comparisons of sites (for instance, Miaou and 

Song, 2005; Tunaru, 2002). Miaou and Song (2005) discussed the advantages of using the 

estimates based on the full Bayesian models. The full Bayes estimates take full account 

of the uncertainty associated with the estimates of the parameters and can provide exact 

measures of the uncertainty. Three criteria have been much used to rank sites in the 

literature. They are: 

• Ranking by the posterior means or medians 
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• Ranking by the posterior distributions of ranks 

• Ranking by the probability that a site is the worst 

8.2.2 Model-based ranking 

Models that have been developed in this research take account of the spatial correlation 

in the accident means. These models have been found to produce better estimates of 

the accident means therefore ranks based on these models can be more reliable. The 

straightforward method to rank the sites is to rank the estimated accident means)., of all 

the sites. But to compare the risks of the sites, accident rates f based on the)., are more 

appropriate to be used. When longitudinal data are used, the mean accident rates need to 

be calculated. Consider the Ml data used to fit the link models in Chapter 7, the mean 

accident rate at link i can be expressed as: 

(8.1) 

where AADFit is the traffic flow in link i in year t and LENGTHi is the length of link 

i. Ranks based on the mean or the median of Pi can be obtained. However, ranks are 

uncertain and the uncertainty associated with them are important to be examined. There-

fore, several researchers have adopted the posterior distribution of the ranks based on the 

posterior distribution of A (for instance, Miaou and Song, 2005; Tunaru, 2002). 

In addition to rank the sites based on the accident rates, the spatial models developed 

in this research provide an additional measure to compare the sites. The spatial random 

effects, which are used to take account of the spatial correlation in the accident means 

at different sites, can be estimated from the models. They measure the amount of the 

spatial effects that are spatially correlated but have not been explained by the explanatory 

variables. Therefore, ranks by the random spatial effects can be used to identify sites with 

high risk caused by some unobserved factors which are spatially correlated. The worst 

sites selected by such a criterion need special attention because factors that influence the 

safety of the sites are not clear. Further on-site investigation may be needed to find out 
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the causes of high accident risk. 

By adopting the above mentioned methods to rank the sites, links on the Ml have been 

ranked based on the estimates from the link models developed in Chapter 7. The raw 

accident rates, accident rates based on a non-CAR model and accident rates on a CAR 

model have been obtained using equation 8.1. Figures 8.7 and 8.8 show the difference 

in ranks using different measurements of the accident rates. Figure 8.7 plots the ranks 

based on the estimates from a CAR model (model CCARtr in Table 7.1 in Chapter 7) 

against the ranks by the raw accident rates. Figure 8.8 plots the ranks based on the CAR 

model against the ranks based on the estimates from a non-CAR model (model PLNtr&re 

in Table 7.1). The figures show that the ranking results can be different when different 

types of accident rates are used. For instance, in Figure 8.7, the two points lying furthest 

away from the 45 degree line correspond to the two spurs represented by the two vertical 

links in the node-link graph in Figure 5.2 in Chapter 5. Using the raw accident rates, their 

ranks are higher than 20. However, they are ranked 7th (the left one) and 6th (the right 

one) based on the CAR models and 12th and 18th based on the non-CAR models. 
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Figure 8.8: Comparisons of ranking results: B. 

model. The last 1000 iterations on the A when fitting the models have been saved and 

used to produce this plot. For each link on the M 1, the median of its rank (plotted by 

a dot) and the lowest and the highest rank (represented by edges) are shown in the plot. 

According to the plot, links 7, 8, 10 and 11 are identified as the worst links. They are 

neighbouring road links between junction 6A and Junction lOon the M 1 in Hertford-

shire and a very small part of Bedfordshire that intersect with the M25, M 1 0, A4147 and 

A5I83. Other links whose ranks are high and have small variation include links 13,35,36 

and 37. Link 13 is in Bedfordshire. The last three links are road sections between junction 

27 and junction 30 on the Ml. Link 35 crosses the boundary between Nottinghamshire 

and Derbyshire. Links 36 and 37 are in Derbyshire. 

As introduced earlier, the estimates of the spatial random effects in a CAR model 

allow for another way to rank the sites. Figure 8.10 illustrates the 95% credible interval 

of the estimated spatial random effects for each link on the MI. The figure shows that 

the spatial random effects are strong for links 7, 8, 10 and 11. The medians for them are 

over 1. Because the spatial effect is an additive term linked to the log Poisson mean, the 

expected number of accidents at a site with spatial random effects estimated to be I \\ill 
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Figure 8.9: Posterior ranks by the accident rates. 

be 2.7 times of that at a site with very small random effects (say zero). This suggests that 

the spatial random effects relating to these links can have great influence on the risk of 

these links . 
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Figure 8.10: Spatial random effects for the M 1 links. 
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Figure 8.11 plots the posterior ranks of the sites by the spatial random effects. For 

some of sites, there is much variation in their ranks. Links 7, 8, 10 and 11 are again 

identified as the worst links. Ranking results from the raw accident rates, the model-

Figure 8.11: Posterior ranks by the spatial random effects for the M1links. 

based accident rates and the spatial random effects show that the links (7, 8, 10 and 11) 

between junction 6A and junction 10 on the Ml have been ranked in the very top positions 

by different ranking approches. This suggests that these links need special attention. 

In addition to use the estimated random effects to rank sites on a road network, this ap-

proach can also be applied to rank local authorities. Recall Figure 6.23 in Chapter 6 which 

illustrates the 95% credible intervals of the spatial random effects estimated from model 

CCAR(t)tr.temp in each local authority in 2001. Figure 8.12 illustrates the posterior ranks 

by the spatial random effects for fatal and serious accidents at the local authority level. 

The variation in the ranks is large. Local authorities 30 - 54 are found to rank in the top 

positions according to their median ranks. They are actually London boroughs. Names of 

these boroughs can be found in Table A.2 in Appendix A. 
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8.2 Ranking the sites 

8.2.3 More on the Ml links 

The ranking results for the links on the MI suggest that links 7, 8, 10 and 11 between 

junctions 6A and junction 10 have high accident risk. If the traffic levels have been 

measured precisely and included in the models, ranks based on the spatial random effects 

may indicate that there are other factors that are associated with the high accident rates 

on these links. These links are neighbouring links. The physical characteristics of the 

neighbouring links, for instance the curvature or gradient, are more likely to be similar. 

Moreover, these links experience long delays at peak times. When high speed roads 

are overloaded, the erratic changes in speed are quite dangerous. Therefore, congestion 

could also be a relevant factor to explain the high risk identified in these links. Since no 

variables relating to the road characteristics were included in the MI model, the unknown 

contributing factors captured by the spatial random effects are expected to be something 

relating to the road characteristics. This suggests that road construction or treatment 

projects on this section of the MI need special attention regarding to the road safety 

aspect. 

The MI is a strategic link connecting London, the Midlands and the North. It is one 

of the busiest motorways with serious delays in some sections. Currently, there are some 

ongoing widening projects on different sections of the MI. More widening projects in 

the future for the MI have been planned (see Highways Agency, 2007). The section be

tween Junctions 6A and 10 on the MI carries heavy traffic each day with long delays 

experienced at peak times and high accident rates (see Highways Agency, 2005). Works 

to widen this section commenced in March 2006 and are expected to be completed by Au

tumn 2008 (see Highways Agency, 2006). Work will be carried out on both carriageways 

of the M I between junctions 6A and 10 to bring it up to a full standard four lane motorway 

with continuous hard shoulders. The purpose of this project is to reduce congestion and 

improve both safety and journey time reliability. This widening scheme will be followed 

with an implementation of the Pilot High Occupancy Vehicle (HOV) lane between junc

tions 7 and 10 (see ATKINS, 2006). HOV lanes are intended for use solely by vehicles 

with more than one occupant. They have been used extensively and successfully in the 
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USA, but only been implemented in the UK on a small number of short sections of dual 

carriageway (in Leeds and South Gloucestershire). HOV Lanes are aimed at changing 

travel behaviour to reduce congestion through making better use of the available car

riageway. One concern with the HOV lane is its impact on the road safety. Although 

there are some studies that found the decrease in the accidents after the implementation 

of the HOV lanes, the report about the Ml HOV lane pilot 'before' monitoring study by 

ATKINS (2006) cites some previous studies that found the HOV lanes can increase injury 

accidents. The report suggests that the increase in the accidents can be explained by the 

speed difference between the two lanes. Therefore the impact of the HOV lanes on the 

safety needs special attention. The report says 'although the site was not the preferred site 

in terms of predicted economic return, the programmed widening scheme between J6a 

and J 10 of the M 1 would provide the most realistic option for a pilot study in the short 

term.' It defines the safety objective of the project as follows: 

• to have no negative impact on the number and severity of casualties between Junc

tions 6A and 10; 

• the HOV scheme should not cause an increase in risk regarding lane changing acci

dents on that section when compared to a similar dual4-lane motorway. 

These suggest that when the road sections, especially those with high accident rates in the 

past, are planned to include HOV lanes, factors associated with the high accident rates 

need to be investigated before the pilot project and the impact of the HOV lanes on the 

safety need to be monitored during the project. Moreover, the choice of appropriate road 

sections to include HOV lanes can be important. From this view, accident prediction 

models and model-based ranks can be very useful in practice. 
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Chapter 9 

Conclusion 

9.1 Summary of the thesis 

This research has aimed at developing spatial models for road accidents. These models 

take account of the spatial autocorrelation between neighbouring areas or sites. When the 

response variable is the accident count in an area, such as a local authority, the spatial 

autocorrelation is the correlation between the neighbouring areas, which are often defined 

as areas that share at least one common boundary. When the response variable is the acci

dent count at a site, such as a junction or a road link, the spatial autocorrelation may exist 

for neighbouring sites that are usually determined by the layout of the road network. Such 

autocorrelation can be introduced in a conventional accident model, such as a Poisson re

gression model with log-normal random effects, by including spatially structured random 

effects. The conditional autoregressive (CAR) model was used in this research to take 

account of such spatial effects. Besag, in his contribution to the discussion of McCullagh 

(2002), suggests the main reason for including spatial effects in a model is to absorb an ap

propriate level of spatial variation, rather than produce a spatial model with scientifically 

interpretable parameters. He also views the use of the CAR model in spatial epidemiol

ogy as a mainly exploratory approach to account for unknown explanatory variables that 

are spatially correlated. But if and when such variables are known and are included in the 

models, a spatial formulation using a CAR prior may not contribute much improvement 

to the model. In the context of modelling road accidents, there are at least two reasons to 
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consider spatial effects in the models. First, traffic levels, road geometry and other impor

tant variables are difficult to measure perfectly and data for these variables are not always 

available. When the spatial variation in the explanatory variables is not fully captured by 

the observed data, the inclusion of spatial effects at least can partly take account of the 

remaining spatial variation. Secondly, there can be some unknown factors that contribute 

to accident frequencies. If such factors have similar values in neighbouring areas or at 

neighgouring sites, models with spatially structured random effects can better explain the 

variation in the response variables. Both variables like traffic levels and road geometry, 

and those unknown factors are very likely to be spatially correlated. This is why a CAR 

model is appropriate to be used in this research. 

Both areal models and network models have been developed in this research. The 

spatial dependency among areas like local authorities and wards can be obtained from the 

corresponding boundary map while the spatial dependency among sites on a road network 

is decided by the spatial structure of the road network. Such spatial information is needed 

for forming a CAR model. Moreover, approaches to including temporal effects in spatial 

models when data cover two or more periods and jointly modelling different types of 

accidents have been proposed and examined. Areal models were fitted using data for 

local authorities in England covering two different periods (one in the 1980s and the other 

in the 2000s) and data for wards in the West Midlands in one year. Numbers of accidents 

were disaggregated by severity for all areal models. Network models were fitted to the 

M 1 link data and Coventry junction data. Fitted results from non-CAR models and CAR 

models were compared and the influence of including spatial effects were examined. They 

show that adding a spatial CAR component to a conventional accident model has at least 

one of the following two effects: 

• improving the DIC, a measure of the model performance; 

• removing the significant spatial correlation in the residuals calculated based on the 

posterior expectation of A (the Poisson mean). 

Based on these features, CAR models are believed to produce better estimates of the 

expected number of accidents in an area or at a site. Moreover, the extent of spatial 
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random effects modelled by a CAR prior can be estimated. These suggest that spatial 

models developed in this research will be valuable in practice. Two types of applications 

of such models were introduced in this thesis. The first one is about predicting the number 

of a particular type of accident in a local authority in a new year. The second one is to use 

the estimates of spatial effects to rank high-risk sites or local authorities. 

9.2 Findings from the analyses 

For areal models, results from residual maps show that residuals from non-CAR models 

are more likely to be spatially clustered and the inclusion of a CAR component may lead 

to a more random spatial pattern of residuals. CAR models that take account of higher 

order neighbours and use distance-based spatial weights do not perform better than those 

considering only first order neighbours and adopting a 1-0 weighting scheme. The DIC 

for these models are no better than, and sometimes even worse than, the DIC for models 

that use simpler weights. 

When longitudinal data were used, the best performing models were those that assume 

the spatial effect in an area is not constant over time. This indicates that the unknown 

or unmeasurable explanatory variables captured by the spatial component may vary over 

time. Therefore their influences on accident frequencies, measured by the extent of spatial 

effects, change over time. When spatial effects are assumed to vary over time in a CAR 

model, the model will not be straightforward to use for predicting accident counts in 

the future. However, if how these spatial effects change over time could be found and 

modelled, such a model could be used for prediction. 

The variance and estimates of spatial random effects are two ways of measuring the 

strength of such effects and their influence on accident frequencies. The ratio of the vari

ance of spatially structured random effects against the variance of unstructured random 

effects measures their relative strength to explain the variation in the response variables. 

As discussed earlier, the main use of the CAR model is to account for unknown or un

measurable explanatory variables that are spatially correlated. Therefore, if the strength 

of spatially structured random effects is found to be fairly strong, it may indicate the exis-
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tence of such explanatory variables (unknown or unmeasurable and spatially correlated) 

and the effect of using the CAR model to take account of them. On the contrary, if the 

strength of spatially structured random effects is found to be weak, it may indicate that 

most spatially correlated explanatory variables are known and have already been included 

in the model. Therefore there is not much left for the CAR model to take account of. 

For accidents at the local authority level between 1983 and 1986, results suggest that 

the unstructured heterogeneity dominates the spatial heterogeneity for both serious and 

slight accidents. For accidents between 2001 and 2005, the spatial heterogeneity and the 

unstructured heterogeneity have similar strength for fatal and serious accidents but the 

unstructured heterogeneity dominates the spatial heterogeneity for slight accidents. For 

ward models, the spatial heterogeneity and the unstructured heterogeneity have similar 

strength for both types of accidents. 

The estimate of the spatial random effect in an area can be summarized by the 95% 

credible interval of its posterior distribution. Maps of these effects were found useful 

for identifying areas having positive or negative spatial effects. In local authority mod

els using data from 2001 to 2005, for both types of accidents, districts in metropolitan 

counties were found more likely to have negative spatial effects except for those in the 

West Midlands. London boroughs often appeared to have positive spatial effects. Signs 

of the spatial effects suggest the relative influence of the unknown or unmeasured con

tributory factors, captured by a CAR prior, on the accident frequencies. An area with 

a positive spatial effect will have a larger expected number of accidents compared with 

the number in an area which has a zero or negative spatial effect, but similar values of 

all the explanatory variables. Similarly, an area with a negative spatial effect will have a 

smaller expected number of accidents compared with the number in an area which has a 

zero or positive spatial effect, but similar values of all the explanatory variables. These 

indicate that conventional models without any spatial effects can over- or under-estimate 

the accident frequencies. 

When correlation between different response variables, representing different types of 

accidents, was considered in CAR models, the expected deviance became smaller. How-
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ever, there were more parameters used in multivariate CAR models therefore the model 

DIC was not much improved. For models at the local authority level, the within-area cor

relation between the spatially structured effects for the two types of accidents was found 

to be fairly high in some years. The within-area correlation between the unstructured ran

dom effects was not as high as that between the spatial effects. For ward models, such 

correlations for the spatially structured effects and the unstructured random effects were 

similar. 

The shared component spatial models that are much used in disease mapping to jointly 

model two types of diseases were found not suitable for accident data. Normally in models 

for disease rates there are not many explanatory variables. The shared spatial component 

for different types of diseases will mostly capture the effects caused by unknown or un

measurable factors that are spatially correlated. Such effects are shared by both types of 

diseases. In accident models, such effects are probably mostly captured by the available 

explanatory variables that are common to both types of accidents. This suggests that very 

little effect will be left for a shared CAR component to capture. 

The estimated coefficient for each explanatory variable in a model can be summarized 

using the 95% credible interval of its posterior distribution. The sign of a coefficient indi

cates the form of relationship between the explanatory variable and the expected number 

of accidents. Using CAR models at the local authority level for serious accidents on 

built-up A-roads in the 1980s, the number oflicensed vehicles, length of built-up A-roads 

and traffic volumes on built-up A-roads were found to be positively associated with the 

expected number of accidents while area has a negative association with the number of 

accidents. For slight accidents, variables other than traffic volume were found not to 

contribute much to explain the variation in the expected number of accidents. For CAR 

models using data between 2001 and 2005, the expected numbers of both types of acci

dents were found to be positively associated with population, length of A-roads, length of 

B-roads, length of minor roads and number of junctions, but negatively associated with 

area. Moreover, if two local authorities have the same level of total traffic, the local au

thority that has a higher proportion of traffic by cars is expected to have fewer accidents 
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than that in the local authority with a higher proportion of traffic by other vehicles. The 

estimates of coefficients from a CAR model were found to have larger variation than that 

in the estimates from a non-CAR model. This is consistent with what Schabenberger and 

Gotway (2005) suggested - the variability of the coefficients could be under-estimated if 

autocorrelation in the data is ignored. Moreover, a small and negative linear trend has 

been identified for both types of accidents. This suggests that accident frequencies at the 

local authority level decrease over time and models without the trend do not explain this 

decrease. However, what this trend represents or explains is difficult to identify. For ward 

models, variables found to be positively associated with both types of accidents are the 

area, length of major roads, population travelling to work by car as passenger and popu

lation travelling to work on foot. The number of junctions is positively associated with 

fatal and serious accidents but negatively associated with slight accidents. The population 

travelling to work by bus is positively associated with fatal and serious accidents but has 

no apparent effect on slight accidents (the 95% credible interval of its coefficient contains 

both positive and negative values). Moreover, the length of minor roads is negatively 

associated with slight accidents but has no apparent effect on fatal and serious accidents. 

For accidents on a road network, the analysis of link accidents and junction accidents 

showed very different results. Measured by Moran's I statistic, the spatial correlation 

in link accidents on the MI was very high even after controlling for the traffic levels. 

But the junction accidents in Coventry did not display much spatial correlation. One 

possible reason for this small spatial correlation is that only major junctions were selected 

in this study and they may be too far away from each other and therefore the spatial 

correlation may spread out over the minor junctions and links between them. It may 

also be possible that the the extent of spatial correlation is different for motorways and 

urban A- and B- roads. Results show that for motorway link accidents the inclusion 

of a CAR prior much improved the DIC and successfully removed the positive spatial 

correlation in the residuals. But there was no apparent influence of spatial effects for 

Coventry junction accidents. Since both traffic levels and road lengths were included in 

the link models, the spatial random effects modelled by the CAR prior are most likely 
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to capture the similarity in the road characteristics (for instance, the curvature and the 

gradient) of the neighbouring sites. 

Models at the local authority level were used to predict the number of fatal and serious 

accidents in each local authority in 2006, based on previous years' data. One advantage of 

using the CAR model compared with the non-CAR model for prediction is that it produces 

more precise predictions than the non-CAR model. That is, the variation in predicted 

values y* (predicted numbers of accidents) is much smaller from the CAR model than that 

from the non-CAR model. The smaller variation in y* from the CAR model is due to the 

smaller variation in the A, from which y* was simulated (y* ~ Pois(A ). In a CAR model, 

the estimate of A in an area depends on not only the coefficients of explanatory variables 

but also the spatial random effect in the area that shrinks towards a local mean depending 

on its neighbours. This shrinkage may be a possible reason to explain the smaller variation 

in the estimates of A from a CAR model. By using the CAR model, the predicted numbers 

of accidents under-estimated the true values in several unitary authorities. An examination 

of the trend of fatal and serious accidents showed that there was a big jump in 2006 from 

2005 in these unitary authorities. Further research may be needed to find out why the 

observed numbers of accidents are higher than predicted in these areas. 

The other main application of the spatial models is a new approach for ranking high

risk sites. This is based on the posterior ranks of the estimates of spatial random effects. 

Such ranks can identify sites with unmeasured or unknown factors that are associated 

with higher accident rates. Although such factors are often hidden, at the same time they 

are very likely to be spatially correlated. Therefore, by observing and comparing the 

characteristics and the conditions of these sites, further contributing factors are possible 

to be found. This approach is also suitable to rank local authorities and to identify areas 

with positive spatial random effects. Further research is needed to investigate reasons for 

obtaining positive spatial effects in these areas and what they explain. 

183 



9.3 Limitations of the research 

9.3 Limitations of the research 

There are a number of limitations of this research. They can be grouped into three main 

categories: limitations of the data, limitations of the methods, and limitations for practical 

use. 

The main source of accident data in the UK, the STATS 19 database, has some limita

tions. It contains only accidents involving personal injuries. Therefore, accidents without 

personal injuries cannot be taken account of in the analysis of accident data. Moreover, 

STATS 19 does not include unreported accidents. This affects the analysis of both ac

cidents and casualties. It is not a major problem for fatal accidents, because very few 

fatal accidents do not become known to the police. However, 'Road Casualties Great 

Britain 2006' (Department for Transport, 2007c) suggests that "there is evidence that an 

appreciable proportion of non-fatal injury accidents are not reported to the police" and 

"the police tend to underestimate the severity of injury because of the difficulty in distin

guishing severity at the scene of the accident". These could cause problems for models of 

serious and slight accidents because the accident data used for the response variable could 

have measurement error. In addition to these problems, accidents involving some types 

of road user like pedal cyclist are particularly likely to be under-reported (see Department 

for Transport, 2007 c, Section 6), estimates from the models could be biased. Moreover, if 

there were a systematic change in the levels of reporting and misc1assification, this would 

cause a more serious problem in monitoring trends in numbers of accidents and casualties. 

The above problems with STATS 19 are common with most accident research in the UK. 

However, STATS 19 remains the best and most complete source of national accident data 

for research. One approach for assessing the level of under-reporting in STATS 19, used 

by the Department for Transport, is to compare STATS19 data with other sources of data, 

for instance, the Hospital Episodes Statistics database held by the NHS (Department for 

Transport, 2006b). Further research is needed to assess the effect of under-reporting on 

road accident models. 

To obtain data of good quality and for all desired explanatory variables is difficult. 

All the data used in this research are secondary data most of which were obtained from 
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the Department for Transport, th~ Office for National Statistics, and the Ordnance Survey. 

The availability of data has a large impact on which explanatory variables were chosen 

to be included in the models. The response variable used for areal models during 200 I 

and 2005 is the number of accidents dis aggregated by severity at the local authority level 

for all road classes. However, traffic levels are different for different road classes and 

the extent of the association between accident frequencies and traffic levels for different 

road classes may be different. Therefore, ideally it will be more appropriate to develop 

models for numbers of accidents disaggregated by road class. This will need data of traffic 

volume for different road classes in each local authority to be known. For models at the 

ward level, no traffic variable was included in the models because traffic data were not 

available at the ward level. In order to take account of the variation in traffic levels in the 

wards, some proxy variables (populations by mode of traveling to work) were used. For 

junction models in Coventry, the only known explanatory variable is the junction type (a 

roundabout, a crossing or a T-junction). The traffic flow data at the junctions were not 

available. Therefore the analysis based on the Coventry dataset is relatively simple and 

the spatial models for junction accidents have not been extensively studied. 

Considering methods used in this research, there are three main limitations. The ap

proach to taking account of spatially structured random effects in this research is to adopt 

the CAR model. Comparisons of it and conventional accident models were made. How

ever, there are also other possible modelling approaches to account for spatial effects, 

for instance, the moving average model and the simultaneous autoregressive model. Al

though their limitations were discussed, how they actually perform for accident data com

pared with the CAR model was not studied. 

The second limitation is that edge effects were not considered for either areal models 

or network models. For areal models at the local authority level, this should not be a 

major problem because the study region is the whole of England. However for models of 

accidents in the West Midlands at the ward level, this can cause some problems. Wards 

close to the boundaries of the West Midlands may also be spatially dependent on areas 

outside the boundaries. This can influence the estimates of accident means especially for 
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the wards close to the boundaries. For models of accidents on a road network, there is also 

a need to consider the edge effects. For instance, the Ml intersects with other motorways 

and A-roads. Therefore, neighbouring links for a link on the Ml should include not only 

its adjacent links on the Ml but also links on another road that intersects with this lin1e 

This will make the models more complicated. For areal models, constructing an external 

buffer zone is one of the most popular approaches for accommodating edge effects. If 

observations within the buffer zone are available, it is straightforward to fit models with 

the whole data covering both the study region and the buffer zone. For network models, 

more complicated methods might be needed to take account of edge effects. 

The last limitation is the method used for examining spatial correlation in residuals. 

Moran's I statistic is appropriate for examining the spatial correlation in a spatial dataset 

and can be generalized to examine spatial correlation in the residuals from a linear model. 

However, there has been little work in the past to study how well it works for residuals 

from a generalized linear model. In the absence of a more appropriate procedure, Moran's 

I statistic was used for Pearson residuals instead of raw residuals in this research. Value 

of Moran's I was calculated for Pearson residuals that were based on a point estimate 

(the posterior mean) of the expected number of accidents (A) for all the models. Results 

show that in most cases it was statistically significant (evidence of the existence of spatial 

correlation) for non-CAR models and nonsignificant for CAR models. However, using 

the M 1 data as an example, the posterior distribution of values of Moran's I suggests that, 

for a Poisson regression model with log-normal random effects, values of Moran's I in 

Bayesian residuals were not as big as that in residuals calculated using the posterior mean 

of A and were nonsignificant. This is different from what was obtained for one of the areal 

models, in which Moran's I test leaded to consistent conclusions by using both types of 

residuals. These indicate that in some occasions results of significance tests for spatial 

correlation could be very different by using two types of residuals. In a Bayesian context, 

the examination of Bayesian residuals seems more appropriate. Further research will be 

needed to understand why results are so different by using these two types of residuals. 

One main application of the CAR models is to predict numbers of accidents in the 
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future. This is straightforward only if spatial effects are constant over time. However, 

models at the local authority level suggest that the best performing models assume spatial 

effects vary over time. In the example, in order to make predictions based on previous 

data, spatial effects were assumed to be constant in two periods of time. The spatial 

effects for the predicted year were assumed to be same as those in the latter period. But 

the most appropriate approach would be to investigate how the changes of spatial effects 

over time can be modelled. Moreover, in the areal models, an additional dummy variable 

was included to account for the effect of unitary authority. Results show that unitary 

authorities had more fatal and serious accidents than other local authorities. However, 

some unitary authorities are urban areas while some are quite rural areas. The approach to 

treating them as the same in the models by including the dummy variable seems not very 

appropriate. Reasons for the positive effect of unitary authority on accident frequencies 

need further investigation. 

9.4 Main contributions of the research 

The spatial aspects of road accidents and road networks were not extensively considered 

in the past in road safety studies using a statistical modelling approach. This research is 

expected to achieve a further step in modelling of the spatial distribution of road accidents. 

According to the author's knowledge, this research is the first study trying to use 

the spatial layout of road networks to develop CAR models for road accidents. Since 

traffic moves on roads and road accidents happen on the roads, the spatial layout of road 

networks provides additional information to aid modelling of the spatial distribution of 

road accidents. This information deserves further consideration to identify and measure 

the extent of spatial dependence in accident frequencies. 

Models developed in this research take account of both spatial effects and temporal 

effects and therefore fill a gap in the literature. Better estimates of mean accident fre

quencies are expected to be achieved from these models. This will benefit policy makers 

and local authorities in the following ways. First, more reliable conclusions about the 

reduction of accident frequencies over time can be made. Secondly, better predictions of 
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accident frequencies in the future can be obtained therefore more useful safety policies 

can be made. In particular, models with spatial effects have other practical uses. For 

instance, the pattern of spatial distribution of the spatial effects, shown in a map or road 

network may help to identify the unobserved factors that are associated with high acci

dent frequencies. These models also provide an alternative approach for ranking sites 

with high risk. Moreover, high-risk sites identified using spatial effects will help safety 

engineers to find further insights of road network design and urban planning on the oc

currence of road accidents and to decide appropriate engineering treatments on selected 

sites. According to the author's knowledge, using the CAR model for accident prediction 

and site ranking were proposed here for the first time in road safety research. 

9.5 Suggestions for further research 

Some problems where further research is needed were highlighted in Section 9.3. There 

are a number of further directions in which this research might be developed. The method 

to take account of spatial dependency in accident models has been developed and exam

ined. It was used in areal models and network models. Areal models studied accidents 

at the local authority level in England and at the ward level in the West Midlands. The 

next step of the research for areal models could be to use them for accidents at the district 

level and the ward level in England. The main problem in achieving these will be the 

difficulty in obtaining traffic data. For network models, only one motorway and major 

junctions in an urban area were studied. In the future, the CAR model could be used to 

study accidents on roads of other classes, for instance A- and B- roads, and at junctions 

on road networks in other locations. The effects of taking account of spatial dependency 

in the models for these classes of roads and junctions could be studied. Again, the main 

problem for achieving these is the difficulty of getting traffic data. For instance, traffic 

data are usually not available for individual links on B- roads and minor roads. Moreover, 

a road network is composed of junctions and links. Junction models and link models were 

developed separately in this research. The approach to jointly modelling junction and link 

accidents will be investigated. Not only the neighbouring junctions can be spatially cor-
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related and the neighbouring links can be spatially correlated, but also a junction can be 

spatially correlated with its neighbouring links and a link can be spatially correlated with 

its neighbouring junctions. Therefore by borrowing information from both neighbouring 

junctions and links, a better estimate of the accident mean at a site could be achieved. 

When using a statistical modelling approach, accident data need to be aggregated 

over space first. The spatial unit for aggregation is usually a local authority, ward, link 

or junction. There is another type of spatial unit that may be appropriate for analysing 

accident data. Figure 9.1 has appeared in Chapter 4 to illustrate how a road network can 

be represented by a node-link graph and how a neighbours li st can be identified for such a 

road network. Areas bounded by the black lines, representing the major roads, are known 

as cells. Methods to model accidents in such cells needs to be considered. How accident 

frequencies in neighbouring cells can be spatially correlated and how they can be related 

to accident frequencies on the major roads that bound the cells need to be studied in the 

future. 

• 

• 
• 

• 

• 

/s 

Figure 9.1: Accidents on a road network. 

How the CAR model can be used to rank high-risk sites ba ed on the e timate of 

spatial effects was introduced. Suppose that some high-ri k site identified by th i ap-
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9.5 Suggestions for further research 

proach had been selected for engineering treatment. By using data for accidents and other 

explanatory variables in the year after the treatment, spatial effects at all sites could be 

estimated. How they would vary before and after the treatment at treated sites as well 

as at untreated sites, especially those close to treated sites, would be an interesting ques

tion to be answered. If the treatment is successful, the level of spatial effects is expected 

to become small at treated sites and not to increase at untreated sites that are close to 

treated sites. If the level of spatial effects becomes small at treated sites but the level of 

spatial effects is found to be much larger at their neighbouring untreated sites after the 

treatment, this may indicate an accident migration problem. Therefore, further research 

will be made for investigating the practical use of the CAR model to examine the effect of 

engineering treatment and to provide a better understanding of accident migration. How

ever, there are some difficulties to achieve this in practice. Firstly, an appropriate road 

network needs to be selected and it should contain several high-risk sites identified by 

the approach proposed in this research. Secondly, on-site investigation will be needed to 

confirm contributory factors for high spatial effects at these sites and to decide remedial 

measures on the selected sites. Thirdly, the treatment needs to be agreed by the local au

thority who takes the responsibility of the road network. Lastly, the road network needs to 

be monitored over a period of time and all necessary data need to be recorded both before 

and after the treatment. 

With regard to statistical methods, there are at least two aspects that need to be consid

ered or further developed in the future. Firstly, a better approach or an improved approach 

based on Moran's I statistic needs to be developed for examining spatial correlation in the 

residuals from a generalized linear model. Secondly, methods for posterior predictive 

checks of Bayesian models need to be further developed, especially those for examining 

spatial models. Previous applications of Bayesian models, including those in spatial epi

demiology, seldom seem to have done such model checking. However, it is an important 

procedure to examine the validity of the model. 

Spatial statistics and modelling approaches have a long developing history and have 

been well implemented in some research areas. Although models with spatial effects 
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can be complicated, the computation is relatively easy by using the Bayesian approach. 

Recent development of geographic information systems (GIS) provides a powerful tool 

to integrate different types of spatial data. These give better opportunities to study the 

spatial distribution of road accidents. 
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Appendix A 

Lists of local authorities and wards 

Table A.l: Lists oflocal authorities in Englands in the 1980s 

Index Local authority Metropolitan county 

Lincolnshire 

2 Cumbria 

3 North Yorkshire 

4 Northumberland 

5 Cornwall 

6 Devon 

7 Somerset 

8 Dorset 

9 East Sussex 

10 Wiltshire 

11 Hampshire 

12 Berkshire 

13 Hereford and Worcester 

14 Gloucestershire 

15 Oxfords hire 

16 B uckinghamshire 

17 Warwickshire 

18 Kent 

19 Hertfordshire 

20 Northamptonshir 

21 Cambridgeshire 

22 Essex 

23 Suffolk 

24 Shropshire 

25 Leicestershire 

Continued on next page ... 
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Table A.l - Continued 

Index Local authority Metropolitan county 

26 Staffordshire 

27 Derbyshire 

28 N ottinghamshire 

29 Cheshire 

30 Lancashire 

31 Norfolk 

32 Durham 

33 Isle of Wight 

34 West Sussex 

35 Avon 

36 Surrey 

37 Bedfordshire 

38 Cleveland 

39 Wigan Greater Manchester 

40 Kirklees West Yorkshire 

41 Calderdale West Yorkshire 

42 Bradford West Yorkshire 

43 Doncaster South Yorkshire 

44 Leeds West Yorkshire 

45 Wakefield West Yorkshire 

46 Gateshead Tyne and Wear 

47 Liverpool Merseyside 

48 Sefton Merseyside 

49 Dudley West Midlands 

50 Solihull West Midlands 

51 Birmingham West Midlands 

52 Walsall West Midlands 

53 Coventry West Midlands 

54 Bromley Greater London 

55 Richmond upon Thames Greater London 

56 Hillingdon Greater London 

57 Havering Greater London 

58 Knowsley Merseyside 

59 St Helens Merseyside 

60 Trafford Greater Manchester 

61 Manchester Greater Manchester 

62 Salford Greater Manchester 

63 Tameside Greater Manchester 

64 Sheffield South Yorkshire 

65 Rotherham South Yorkshire 

Continued on next page ... 
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Table A.l - Continued 

Index Local authority Metropolitan county 

66 Bolton Greater Manchester 

67 Bury Greater Manchester 

68 Oldham Greater Manchester 

69 Rochdale Greater Manchester 

70 8arnsIey South Yorkshire 

71 Sunderland Tyne and Wear 

72 South Tyneside Tyne and Wear 

73 Wirral Merseyside 

74 Wolverhampton West Midlands 

75 Sandwell West Midlands 

76 Kingston upon Thames Greater London 

77 Sutton Greater London 

78 Hounslow Greater London 

79 Merton Greater London 

80 Wands worth Greater London 

81 Croydon Greater London 

82 Lambeth Greater London 

83 Southwark Greater London 

84 Lewisham Greater London 

85 Greenwich Greater London 

86 Ealing Greater London 

87 Hammersmith and Fulham Greater London 

88 Brent Greater London 

89 Harrow Greater London 

90 Barnet Greater London 

91 Islington Greater London 

92 Hackney Greater London 

93 Newham Greater London 

94 Barking and Dagen Greater London 

95 Haringey Greater London 

96 Enfield Greater London 

97 Waltham Forest Greater London 

98 Redbridge Greater London 

99 Bexley Greater London 

100 Stockport Greater Manchester 

101 Newcastle-upon-Tyne Tyne and Wear 

102 North Tyneside Tyne and Wear 

103 Kensington and Chelsea Greater London 

104 Westminster, City of Greater London 

105 Camden Greater London 

Continued on next page ... 
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Table A.l- Continued 

Index Local authority 

106 Tower Hamlets 

107 City of London 

108 Humberside 

Metropolitan county 

Greater London 

Greater London 
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Table A.2: Lists of local authorities in Englands in the 2000s 

Index Local authority Metropolitan county 

Lincolnshire 

2 Cumbria 

3 North Yorkshire 

4 Northumberland 

5 Cornwall 

6 Devon 

7 Somerset 

8 Dorset 

9 East Sussex 

10 Wiltshire 

11 Hampshire 

12 Gloucestershire 

13 Oxfords hire 

14 Warwickshire 

15 Dudley West Midlands 

16 Soli hull West Midlands 

17 Birmingham West Midlands 

18 Walsall West Midlands 

19 Coventry West Midlands 

20 Wolverhampton West Midlands 

21 Sandwell West Midlands 

22 Bromley Greater London 

23 Richmond upon Thames Greater London 

24 Hillingdon Greater London 

25 Havering Greater London 

26 Kingston upon Thames Greater London 

27 Sutton Greater London 

28 Hounslow Greater London 

29 Merton Greater London 

30 Wands worth Greater London 

31 Croydon Greater London 

32 Lambeth Greater London 

33 Southwark Greater London 

34 Lewisham Greater London 

35 Greenwich Greater London 

36 Ealing Greater London 

37 Hammersmith and Fulham Greater London 

38 Brent Greater London 

39 Harrow Greater London 

40 Barnet Greater London 

Continued on next page ... 
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Table A.2 - Continued 

Index Local authority Metropolitan county 

41 Islington Greater London 

42 Hackney Greater London 

43 Newham Greater London 

44 Barking and Dagenham Greater London 

45 Haringey Greater London 

46 Enfield Greater London 

47 Waltham Forest Greater London 

48 Redbridge Greater London 

49 Bexley Greater London 

50 Kensington and Chelsea Greater London 

51 Westminster Greater London 

52 Camden Greater London 

53 Tower Hamlets Greater London 

54 City of London Greater London 

55 Kent 

56 Hertfordshire 

57 N orthamptonshire 

58 Cambridgeshire 

59 Essex 

60 Suffolk 

61 Shropshire 

62 Leicestershire 

63 Staffordshire 

64 Derbyshire 

65 N ottinghamshire 

66 Cheshire 

67 Lancashire 

68 Doncaster South Yorkshire 

69 Sheffield South Yorkshire 

70 Rotherham South Yorkshire 

71 Bamsley South Yorkshire 

72 Kirklees West Yorkshire 

73 Calderdale West Yorkshire 

74 Bradford West Yorkshire 

75 Leeds West Yorkshire 

76 Wakefield We,t Yorkshire 

77 Norfolk 

78 North Lincolnshire (UA) 

79 East Riding of Yorkshire (UA) 

80 Durham 

Continued on next page ... 
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Table A.2 - Continued 

Index Local authority Metropolitan county 

81 Isle of Wight (VA) 

82 West Sussex 

83 North Somerset (VA) 

84 Bristol and City of (VA) 

85 West Berkshire (VA) 

86 Wokingham (VA) 

87 B uckinghamshire 

88 Herefordshire (VA) 

89 Worcestershire 

90 Surrey 

91 Bedfordshire 

92 Peterborough (VA) 

93 Telford and Wrekin (VA) 

94 Wirral Merseyside 

95 Liverpool Merseyside 

96 Sefton Merseyside 

97 Knowsley Merseyside 

98 St. Helens Merseyside 

99 Wigan Greater Manchester 

100 Trafford Greater Manchester 

101 Manchester Greater Manchester 

102 Salford Greater Manchester 

103 Tameside Greater Manchester 

104 Bolton Greater Manchester 

105 Bury Greater Manchester 

106 Rochdale Greater Manchester 

107 Oldham Greater Manchester 

108 Stockport Greater Manchester 

109 Gateshead Tyne and Wear 

110 Sunderland Tyne and Wear 

III South Tyneside Tyne and Wear 

112 Newcastle upon Tyne Tyne and Wear 

113 North Tyneside Tyne and Wear 

114 Plymouth (VA) 

115 Torbay (VA) 

116 Blackpool (VA) 

117 Poole (VA) 

118 Boumemouth (VA) 

119 Southampton (VA) 

120 Portsmouth (VA) 

Continued on next page ... 
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Table A.2 - Continued 

Index Local authority Metropolitan county 

121 Brighton and Hove (VA) 

122 Bath and North East Somerset (VA) 

123 South Gloucestershire (VA) 

124 Swindon (VA) 

125 Bracknell Forest (VA) 

126 Reading (VA) 

127 Windsor and Maidenhead (VA) 

128 Slough (VA) 

129 Milton Keynes (VA) 

130 Leicester (VA) 

131 Rutland (VA) 

132 Medway (VA) 

133 Thurrock (VA) 

134 Luton (VA) 

135 Southend-on-Sea (VA) 

136 Stoke-on-Trent (VA) 

137 Halton (VA) 

138 Warrington (VA) 

139 Derby (VA) 

140 Nottingham (VA) 

141 Blackburn with Darwen (VA) 

142 York (VA) 

143 North East Lincolnshire (VA) 

144 Kingston upon Hull and City of (VA) 

145 Darlington (VA) 

146 Stockton-on-Tees (VA) 

147 Middlesbrough (VA) 

148 Hartlepool (VA) 

149 Redcar and Cleveland (VA) 
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Table A.3: Lists of wards in the West Midlands 

Index Ward District 

Acock's Green Birmingham 

2 Aston Birmingham 

3 Bartley Green Birmingham 

4 Billesley Birmingham 

5 BournvilJe Birmingham 

6 Brandwood Birmingham 

7 Edgbaston Birmingham 

8 Erdington Birmingham 

9 Fox Hollies Birmingham 

10 Hall Green Birmingham 

II Handsworth Birmingham 

12 Harborne Birmingham 

13 Hodge Hill Birmingham 

14 Kingsbury Birmingham 

15 King's Norton Birmingham 

16 Kingstanding Birmingham 

17 Ladywood Birmingham 

18 Longbridge Birmingham 

19 Moseley Birmingham 

20 Nechells Birmingham 

21 Northfield Birmingham 

22 Oscott Birmingham 

23 Perry Barr Birmingham 

24 Quinton Birmingham 

25 Sandwell Birmingham 

26 Selly Oak Birmingham 

27 Shard End Birmingham 

28 Sheldon Birmingham 

29 Small Heath Birmingham 

30 Soho Birmingham 

31 Sparkbrook Birmingham 

32 Sparkhill Birmingham 

33 Stockland Green Birmingham 

34 Sutton Four Oaks Birmingham 

35 Sutton New Hall Birmingham 

36 Sutton Vesey Birmingham 

37 Wash wood Heath Birmingham 

38 Weoley Birmingham 

39 Yardley Birmingham 

40 Bablake Coventry 

Continued on next page ... 



Table A.3 - Continued 

Index Ward District 

41 Binley and Willenhall Coventry 

42 Cheylesmore Coventry 

43 Earlsdon Coventry 

44 Foleshill Coventry 

45 Henley Coventry 

46 Holbrook Coventry 

47 Longford Coventry 

48 Lower Stoke Coventry 

49 Radford Coventry 

50 St. Michael's Coventry 

51 Sherbourne Coventry 

52 Upper Stoke Coventry 

53 Wainbody Coventry 

54 Westwood Coventry 

55 Whoberley Coventry 

56 Woodlands Coventry 

57 Wyken Coventry 

58 Amblecote Dudley 

59 Belle Vale and Hasbury Dudley 

60 Brierley Hill Dudley 

61 Brockmoor and Pensnett Dudley 

62 Castle and Priory Dudley 

63 Coseley East Dudley 

64 Coseley West Dudley 

65 Gornal Dudley 

66 Halesowen North Dudley 

67 Halesowen South Dudley 

68 Hayley Green Dudley 

69 Kingswinford North and Wall Heath Dudley 

70 Kingswinford South Dudley 

71 Lye and Wollescote Dudley 

72 Netherton and Woodside Dudley 

73 Norton Dudley 

74 Pedmore and Stourbridge East Dudley 

75 Quarry Bank and Cradley Dudley 

76 St. Andrews Dudley 

77 St. James's Dudley 

78 st. Thomas's Dudley 

79 Sedgley Dudley 

80 Wollaston and Stourbridge West Dudley 

Continued on next page ... 
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Table A.3 - Continued 

Index Ward District 

81 Wordsley Dudley 

82 Abbey Sandwell 

83 Blackheath Sandwell 

84 Bristnall Sandwell 

85 Charlemont Sandwell 

86 Cradley Heath and Old Hill Sandwell 

87 Friar Park Sandwell 

88 Great Barr Sandwell 

89 Great Bridge SandweII 

90 Greets Green and Lyng Sandwell 

91 Hateley Heath Sandwell 

92 Langley Sandwell 

93 Newton Sandwell 

94 OIdbury Sandwell 

95 Old Warley Sandwell 

96 Princes End Sandwell 

97 Rowley Sandwell 

98 St. Pauls Sandwell 

99 Smethwick Sandwell 

100 Soho and Victoria Sandwell 

101 Tipton Green Sandwell 

102 Tividale Sandwell 

103 Wednesbury North Sandwell 

104 Wednesbury South Sandwell 

105 West Bromwich Central Sandwell 

106 Bickenhill Soli hull 

107 Castle Bromwich SoIihuII 

108 Chelmsley Wood SoIihulI 

109 EImdon Solihull 

110 Fordbridge Solihull 

111 Kingshurst Solihull 

112 Knowle Solihull 

113 Lyndon Solihull 

114 Meriden Solihull 

115 Olton Solihull 

116 Packwood Solihull 

117 St. Alphege Solihull 

118 Shirley East Solihull 

119 Shirley South Solihull 

120 Shirley West Solihull 

Continued on next page ... 
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Table AJ - Continued 

Index Ward District 

121 Silhill Solihull 

122 Smith's Wood Solihull 

123 Aldridge Central and South Walsall 

124 Aldridge North and Walsall Wood Walsall 

125 Bentley and Darlaston North Walsall 

126 Birchills Leamore Walsall 

127 Blakenall Walsall 

128 Bloxwich East Walsall 

129 Bloxwich West Walsall 

130 Brownhills Walsall 

131 Darlaston South Walsall 

132 Hatherton Rushall Walsall 

133 Paddock Walsall 

134 Palfrey Walsall 

135 Pels all Walsall 

136 Pheasey Walsall 

137 Pleck Walsall 

138 St. Matthew's Walsall 

139 Short Heath Walsall 

140 Streetly Waisall 

141 Willenhall North Walsall 

142 Willenhall South Walsall 

143 Bilston East Wolverhampton 

144 Bilston North Wolverhampton 

145 Blakenhall Wolverhampton 

146 Bushbury Wolverhampton 

147 East Park Wolverhampton 

148 Ettingshall Wolverhampton 

149 Fallings Park Wolverhampton 

150 Graiseley Wolverhampton 

151 Heath Town Wolverhampton 

152 Low Hill Wolverhampton 

153 Merry Hill Wolverhampton 

154 Oxley Wolverhampton 

155 Park Wolverhampton 

156 Penn Wolverhampton 

157 St. Peter's Wolverhampton 

158 Spring Vale Wolverhampton 

159 Tettenhall Regis Wolverhampton 

160 Tettenhall Wightwick Wolverhampton 

Continued on next page ... 
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Table A.3 - Continued 

Index Ward 

161 Wednesfield North 

162 Wednesfield South 

District 

Wolverhampton 

Wol verhampton 
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Appendix B 

Parameter estimates for selected areal 

models (1983 - 1986) 

Table B.l: Parameter estimates for fatal accidents 

Parameter 2.5% Median 97.5% R 

Model PL 

Intercept 2.27 2.30 2.34 1.001 

Area -0.48 -0.35 -0.23 1.003 

Population 0.33 0.50 0.67 1.007 

Vehicle -0.43 -0.22 -0.05 1.011 

Road 0.05 0.20 0.36 1.021 

Traffic 0.23 0.36 0.49 1.031 

Model PLfe 

Intercept 2.06 2.18 2.30 1.000 

Area -0.40 -0.28 -0.15 1.006 

Population 0.49 0.71 0.92 1.002 

Vehicle -0.66 -0.43 -0.19 1.003 

Road 0.12 0.27 0.43 1.004 

Traffic 0.18 0.31 0.44 1.009 

Metropolitan district -0.11 0.05 0.21 1.000 

London borough 0.12 0.34 0.55 1.000 

Model PLre 

Intercept 2.22 2.35 2.49 1.011 

Area -0.51 -0.37 -0.23 1.000 

Population 0.70 0.95 1.19 1.002 

Continued on next page ... 



Table B.l- Continued 

Parameter 2.5% Median 97.5'lc R 

Vehicle -0.86 -0.62 -0.36 1.006 

Road 0.04 0.19 0.36 1.000 

Traffic 0.17 0.29 0.43 1.004 

London borough -0.18 0.06 0.31 1.009 

Greater Manchester -0.44 -0.23 -0.01 1.016 

Tyne and Wear -1.10 -0.75 -0.42 1.006 

West Yorkshire -0.10 0.07 0.24 1.013 

South Yorkshire -0.33 -0.12 0.09 1.002 

Merseyside -0.52 -0.25 -0.01 1.005 

West Midlands -0.33 -0.13 0.07 1.004 

Model PLNre 

Intercept 2.21 2.37 2.53 1.019 

Area -0.53 -0.35 -0.19 1.002 

Population 0.63 0.91 1.23 1.022 

Vehicle -0.97 -0.62 -0.31 1.016 

Road -0.02 0.17 0.35 1.016 

Traffic 0.15 0.32 0.47 1.002 

London borough -0.3 0.01 0.29 1.005 

Greater Manchester -0.54 -0.28 -0.03 1.037 

Tyne and Wear -1.18 -0.79 -0.43 1.060 

West Yorkshire -0.14 0.06 0.28 1.033 

South Yorkshire -0.40 -0.11 0.14 1.038 

Merseyside -0.61 -0.30 0.02 1.090 

West Midlands -0.44 -0.20 0.03 1.009 

0) 0.15 0.20 0.25 1.008 

I cr
v

: standard deviation of unstructured random effects. 
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Table B.2: Parameter estimates for serious accidents 

Parameter 2.5% Median 97.5% R 

ModelPL 

Intercept 4.84 4.85 4.86 1.005 

Area -0.35 -0.32 -0.29 1.011 

Population -0.39 -0.33 -0.29 1.033 

Vehicle 0.72 0.77 0.82 1.027 

Road 0.09 0.14 0.18 1.015 

Traffic 0.22 0.25 0.29 1.012 

Model PLfe 

Intercept 4.73 4.77 4.80 1.008 

Area -0.31 -0.28 -0.24 1.002 

Population -0.03 0.04 0.09 1.011 

Vehicle 0.33 0.39 0.45 1.013 

Road 0.23 0.27 0.32 1.000 

Traffic 0.13 0.17 0.21 1.000 

Metropolitan district -0.15 -0.11 -0.06 1.013 

London borough 0.27 0.33 0.39 1.001 

Model PLre 

Intercept 4.80 4.84 4.88 1.000 

Area -0.31 -0.26 -0.23 1.000 

Population 0.13 0.19 0.26 1.019 

Vehicle 0.09 0.17 0.25 1.007 

Road 0.21 0.25 0.30 1.000 

Traffic 0.16 0.20 0.23 1.000 

London borough 0.18 0.24 0.32 1.000 

Greater Manchester -0.39 -0.32 -0.26 1.000 

Tyne and Wear -0.43 -0.34 -0.25 1.000 

West Yorkshire -0.17 -0.12 -0.06 1.007 

South Yorkshire -0.37 -0.29 -0.23 1.002 

Merseyside -0.46 -0.38 -0.30 1.000 

West Midlands -0.10 -0.04 0.01 1.000 

Model PLN 

Intercept 4.77 4.80 4.82 1.000 

Area -0.39 -0.27 -0.16 1.098 

Population -0.82 -0.59 -0.43 1.093 

Vehicle 0.71 0.89 l.l1 l.l27 

Road 0.05 0.18 0.31 l.l15 

Traffic 0.19 0.31 0.44 1.098 

O"v 0.28 0.31 0.33 1.004 

Continued on next page ... 
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Table B.2 - Continued 

Parameter 2.5% Median 97.5% R 

Model ICARnb1 

Intercept 4.78 4.79 4.80 1.001 

Area -0.28 -0.18 -0.08 1.029 

Population -0.12 0.07 0.25 1.026 

Vehicle -0.01 0.16 0.38 1.021 

Road 0.11 0.24 0.36 1.05 

Traffic 0.18 0.28 0.39 1.08 

O"tl1! 0.44 0.52 0.62 1.001 

O"e2 0.46 0.55 0.64 1.000 

O"e3 0.45 0.52 0.60 1.005 

O"e4 0.45 0.52 0.62 1.000 

Model CCARnb1 

Intercept 4.78 4.79 4.81 1.000 

Area -0.24 -0.16 -0.05 1.000 

Population -0.31 -0.07 2.32 1.216 

Vehicle -0.02 0.29 0.54 1.192 

Road 0.10 0.22 0.35 1.012 

Traffic 0.22 0.31 0.41 1.022 

O"v 0.12 0.16 0.19 1.001 

O"e! 0.29 0.40 0.52 1.004 

O"e2 0.31 0.43 0.54 1.000 

O"e3 0.32 0.41 0.52 1.001 

O"e4 0.34 0.43 0.54 1.000 

Model CCARnb3road 

Intercept 4.78 4.79 4.81 1.005 

Area -0.26 -0.17 -0.06 1.019 

Population -0.19 .03 0.23 1.003 

Vehicle 0.07 0.29 0.58 1.009 

Road 0.10 0.21 0.33 1.010 

Traffic 0.15 0.25 0.37 1.010 

O"v 0.14 0.17 0.20 1.005 

O"e1 0.33 0.44 0.57 1.000 

O"e2 0.35 0.47 0.62 1.002 

O"e3 0.36 0.46 0.57 1.001 

O"e4 0.38 0.48 0.62 1.007 

1 CJ"e: standard deviation of spatially structured random effects 
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Table B.3: Parameter estimates for slight accidents 

Parameter 2.5% Median 97.5% R 

Model PL 

Intercept 6.17 6.18 6.19 1.000 

Area -0.38 -0.37 -0.35 1.017 

Population -0.55 -0.52 -0.50 1.004 

Vehicle 0.61 0.64 0.67 1.007 

Road 0.01 0.03 0.05 1.007 

Traffic 0.55 0.57 0.58 1.015 

ModelPUe 

Intercept 6.39 6.41 6.43 1.005 

Area -0.50 -0.49 -0.47 1.005 

Population 0.26 0.30 0.32 1.019 

Vehicle -0.30 -0.27 -0.23 1.025 

Road 0.18 0.21 0.23 1.000 

Traffic 0.48 0.49 0.51 1.000 

Metropolitan district -0.67 -0.64 -0.62 1.004 

London borough -0.13 -0.10 -0.07 1.007 

Model PLre 

Intercept 6.39 6.41 6.42 1.038 

Area -0.55 -0.53 -0.51 1.011 

Population 0.21 0.24 0.28 1.020 

Vehicle -0.16 -0.12 -0.08 1.028 

Road 0.15 0.17 0.19 1.003 

Traffic 0.44 0.46 0.48 1.004 

London borough -0.15 -0.12 -0.08 1.035 

Greater Manchester -0.53 -0.51 -0.47 1.038 

Tyne and Wear -0.89 -0.85 -0.80 1.044 

West Yorkshire -0.60 -0.57 -0.54 1.013 

South Yorkshire -0.58 -0.54 -0.51 1.028 

Merseyside -0.54 -0.51 -0.46 1.023 

West Midlands -0.87 -0.83 -0.80 1.017 

Model PLN 

Intercept 6.11 6.14 6.17 1.034 

Area -0.26 -0.16 0.15 1.041 

Population -1.05 -0.70 -0.16 1.282 

Vehicle -0.08 0.56 0.77 1.172 

Road -0.49 -0.09 0.12 1.01 

Traffic 0.65 0.76 1.15 1.074 

<Jv 0.31 0.33 0.38 1.016 

Continued on next page ... 
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Table B.3 - Continued 

Parameter 2.5% Median 97.50/[ R 

Model CCARnb3road 

Intercept 6.12 6.14 6.15 1.002 

Area -0.26 -0.19 -0.07 1.004 

Population -0.39 0.11 0.27 1.256 

Vehicle -0.06 0.08 0.39 1.211 

Road -0.12 0.07 0.16 1.029 

Traffic 0.41 0.48 0.66 1.070 

Civ 0.10 0.13 0.16 1.11 

Ciel 0.44 0.53 0.64 1.024 

Cie2 0.41 0.51 0.63 1.004 

Cie3 0.43 0.54 0.66 1.008 

Cie4 0.40 0.50 0.61 1.006 
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Appendix C 

Parameter estimates for selected areal 

models (2001 - 2005) 

Table C.l: Model PLtr 

Parameter 

Intercept (fsl) 

Intercept (sI2) 

Trend (fs) 

Trend (sl) 

Area (fs) 

Area (sl) 

Population (fs) 

Population (sl) . 

A-road (fs) 

A-road (sl) 

B-road (fs) 

B-road (sl) 

Minor road (fs) 

Minor road (sl) 

Other traffic (fs) 

Other traffic (sl) 

Car traffic (fs) 

Car traffic (sl) 

Junction (fs) 

Junction (sl) 

I 'fs': fatal and serious accidents. 
2 'sl': for slight accidents. 

2.5% Median 

5.08 5.09 

6.87 6.87 

-0.07 -0.07 

-0.05 -0.04 

-0.16 -0.13 

-0.24 -0.23 

0.68 0.71 

0.51 0.52 

0.45 0.48 

0.23 0.24 

0.06 0.08 

0.04 0.05 

-0.47 -0.44 

-0.03 -0.02 

0.36 0.40 

0.22 0.23 

-0.39 -0.36 

-0.08 -0.07 

-0.02 -0.01 

0.15 0.16 

97.5% R 

5.10 1.002 

6.87 1.000 

-0.07 1.001 

-0.04 1.002 

-0.10 1.000 

-0.22 1.002 

0.73 1.005 

0.53 1.005 

0.51 1.008 

0.25 1.004 

0.09 1.000 

0.06 1.000 

-0.41 1.003 

-0.01 1.003 

0.43 1.001 

0.25 1.003 

-0.32 1.001 

-0.06 1.003 

0.01 1.006 

0.17 1.000 

211 



Table C.2: Model PLtr-fe 

Parameter 2.5% Median 97.5% R 

PLtr-fe 

Intercept (fs) 4.90 4.92 4.05 1.000 

Intercept (sl) 6.79 6.80 6.81 1.003 

Trend (fs) -0.07 -0.07 -0.06 1.001 

Trend (sl) -0.05 -0.04 -0.04 1.000 

London borough (fs) 0.40 0.44 0.48 1.002 

London borough (sl) 0.16 0.18 0.20 1.003 

Metropolitan district (fs) -0.07 -0.04 -0.01 1.005 

Metropolitan district (sl) -0.02 -0.01 -0.001 1.002 

Unitary authority (fs) 0.19 0.22 0.26 1.002 

Unitary authority (sl) 0.05 0.06 0.08 1.001 

Area (fs) -0.17 -0.14 -0.11 1.003 

Area (sl) -0.25 -0.24 -0.23 1.002 

Population (fs) 0.45 0.48 0.51 1.012 

Population (sl) 0.41 0.42 0.43 1.000 

A-road (fs) 0.35 0.38 0.41 1.011 

A-road (sl) 0.18 0.19 0.20 1.00 

B-road (fs) 0.12 0.14 0.17 1.003 

B-road (sl) 0.07 0.08 0.09 1.002 

Minor road (fs) -0.13 -0.09 -0.05 1.024 

Minor road (sl) 0.12 0.14 0.15 1.000 

Other traffic (fs) 0.36 0.40 0.44 1.003 

Other traffic (sl) 0.21 0.23 0.24 1.008 

Car traffic (fs) -0.27 -0.24 -0.20 1.003 

Car traffic (sl) -0.03 -0.01 0.002 1.012 

Junction (fs) 0.13 0.15 0.16 1.003 

Junction (sl) 0.21 0.22 0.22 1.002 
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Table C.3: Model PLtr-re 

Parameter 2.5% Median 97.5% R 

Trend (fs) -0.07 -0.07 -0.06 1.001 

Trend (sl) -0.04 -0.04 -0.04 1.002 

Intercept (fs) 4.93 4.96 4.99 1.002 

Intercept (sl) 6.79 6.81 6.82 1.001 

London borough (fs) 0.37 0.41 0.46 1.002 

London borough (sl) 0.18 0.19 0.21 1.000 

West Midlands (fs) -0.04 -0.00 0.04 1.000 

West Midlands (sl) 0.04 0.06 0.08 1.001 

Greater Manchester (fs) -0.31 -0.27 -0.23 1.000 

Greater Manchester (sl) -0.04 -0.03 -0.01 1.003 

West Yorkshire (fs) -0.08 -0.04 -0.01 1.000 

West Yorkshire (sl) -0.07 -0.05 -0.04 1.002 

South Yorkshire (fs) -0.12 -0.07 -0.03 1.000 

South Yorkshire (sl) -0.04 -0.02 -0.01 1.004 

Merseyside (fs) 0.01 0.05 0.10 1.001 

Merseyside (sl) -0.03 -0.01 0.00 1.002 

Tyne and Wear (fs) -0.33 -0.28 -0.22 1.005 

Tyne and Wear (sl) -0.20 -0.17 -0.14 1.000 

Area (fs) -0.18 -0.14 -0.11 1.008 

Area (sl) -0.25 -0.24 -0.23 1.007 

Population (fs) 0.37 0.40 0.43 1.008 

Population (sl) 0.36 0.37 0.39 1.003 

A-road (fs) 0.34 0.37 0.40 1.044 

A-road (sl) 0.19 0.20 0.22 1.002 

B-road (fs) 0.14 0.16 0.18 1.000 

B-road (sl) 0.07 0.08 0.09 1.002 

Minor road (fs) -0.09 -0.04 -0.01 1.010 

Minor road (sl) 0.16 0.17 0.19 1.001 

Other traffic (fs) 0.34 0.38 0.41 1.001 

Other traffic (sl) 0.19 0.20 0.22 1.010 

Car traffic (fs) -0.22 -0.18 -0.14 1.002 

Car traffic (sl) 0.01 0.02 0.04 1.005 

Junction (fs) 0.17 0.19 0.21 1.000 

Junction (sl) 0.24 0.25 0.26 1.007 
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Table C.4: Model PLNtr 

Parameter 2.5% Median 97.5% R 

Intercept (fs) 5.08 5.11 5.14 1.000 

Intercept (sl) 6.86 6.88 6.91 1.000 

Trend (fs) -0.09 -0.08 -0.07 1.000 

Trend (sl) -0.06 -0.05 -0.04 1.000 

Area (fs) -0.25 -0.17 -0.09 1.039 

Area (sl) -0.38 -0.30 -0.23 1.042 

Population (fs) 0.48 0.52 0.57 1.040 

Population (sl) 0.31 0.35 0.39 1.048 

A-road (fs) 0.51 0.57 0.65 1.013 

A-road (sl) 0.28 0.33 0.41 1.032 

B-road (fs) -0.04 0.02 0.08 1.059 

B-road (sl) -0.04 0.01 0.06 1.088 

Minor road (fs) -0.46 -0.36 -0.28 1.085 

Minor road (sl) -0.02 0.07 0.14 1.081 

Other traffic (fs) 0.51 0.59 0.66 1.062 

Other traffic (sl) 0.36 0.42 0.48 1.077 

Car traffic (fs) -0.50 -0.43 -0.35 1.006 

Car traffic (sl) -0.22 -0.16 -0.09 1.015 

Junction (fs) 0.02 0.06 0.10 1.089 

Junction (sl) 0.17 0.21 0.25 1.081 

0:21 0.03 0.04 0.04 1.003 
v 

I a}: variance of unstructured random effects. 
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Table C.5: Model CCAR(t)tr.temp 

Parameter 2.5% Median 97.5% R 

Intercept (fs) 5.00 5.10 5.23 1.025 

Intercept (sl) 6.73 6.87 7.03 1.089 

Trend (fs) -0.10 -0.09 -0.07 1.015 

Trend (sl) -0.07 -0.05 -0.03 1.092 

Unitary authority (fs) 0.06 0.11 0.18 1.006 

Unitary authority (sl) -0.01 0.03 0.07 1.000 

Area (fs) -0.35 -0.24 -0.14 1.019 

Area (sl) -0.33 -0.26 -0.20 1.060 

Population (fs) 0.16 0.22 0.28 1.025 

Population (sl) 0.10 0.16 0.20 1.919 

A-road (fs) 0.40 0.49 0.57 1.139 

A-road (sl) 0.14 0.20 0.27 1.378 

B-road (fs) 0.02 0.08 0.13 1.004 

B-road (sl) 0.D2 0.06 0.10 1.098 

Minor road (fs) 0.13 0.25 0.38 1.071 

Minor road (sl) 0.36 0.46 0.59 1.717 

Other traffic (fs) 0.24 0.36 0.48 1.027 

Other traffic (sl) 0.25 0.33 0.42 1.570 

Car traffic (fs) -0.36 -0.23 -0.1:? 1.028 

Car traffic (sl) -0.17 -0.07 -0.01 1.458 

Junction (fs) 0.19 0.25 0.32 1.017 

Junction (sl) 0.34 0.38 0.43 1.735 

a; (fs) 0.019 0.026 0.032 1.008 

a; (sl) 0.014 0.017 0.021 1.237 

a~l (fs, 2001) 0.065 0.106 0.159 1.000 

a~ (fs, 2002) 0.055 0.094 0.146 1.003 

a~ (fs, 2003) 0.039 0.070 0.115 1.002 

a~ (fs, 2004) 0.032 0.063 0.101 1.012 

a~ (fs, 2005) 0.029 0.061 0.104 1.022 

a~ (sl, 2001) 0.021 0.038 0.062 1.066 

a~ (sl, 2002) 0.020 0.041 0.067 1.075 

a~ (sl, 2003) 0.015 0.032 0.058 1.118 

a~ (sl, 2004) 0.010 0.024 0.044 1.027 

a~ (sl, 2005) 0.011 0.025 0.044 1.073 

I (j~: overall variance of spatially structured random effects. 
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Table C.6: Model MVCCAR(t)tr.temp.mv 

Parameter 2.5% Median 97.5% R 

2 
av./s 0.013 0.022 0.031 1.008 

a;sl 0.008 0.012 0.016 1.006 

av.j s av.s! 0.003 0.007 0.011 1.002 

a~./s (2001) 0.072 0.112 0.163 1.000 

a~.s! (2001) 0.027 0.044 0.067 1.000 

ae./sae.s! (2001) 0.032 0.055 0.084 1.000 

a~.js (2002) 0.060 0.102 0.154 1.007 

a~.sl (2002) 0.027 0.047 0.072 1.006 

ae.jsae.s! (2002) 0.029 0.054 0.082 1.010 

a~.js (2003) 0.042 0.075 0.118 1.002 

a~.s! (2003) 0.022 0.039 0.064 1.003 

ae./sae.sl (2003) 0.014 0.034 0.059 1.000 

a~.j s (2004) 0.041 0.076 0.124 1.003 

a~.sl (2004) 0.017 0.034 0.056 1.003 

ae.jsae.s! (2004) 0.014 0.035 0.062 1.000 

a~.j s (2005) 0.036 0.070 0.115 1.000 

a~.s! (2005) 0.018 0.034 0.058 1.000 

ae.jsae.s! (2005) 0.007 0.026 0.051 1.001 
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Appendix D 

Parameter estimates for selected ward 

models (West Midlands) 

Table D.I: Model PLN 

Parameter 2.5% 

Intercept (fs 1) 1.79 

Intercept (sI2) 3.78 

Population (fs) -0.05 

Population (sl) 0.07 

Area (fs) 0.03 

Area (sl) -0.09 

Major road (fs) -0.02 

Major road (sl) 0.10 

Minor road (fs) -0.27 

Minor road (sl) -0.02 

Junction (fs) 0.01 

Junction (sl) - 0.01 

Bus (fs) -0.03 

Bus (sl) 0.06 

Car (driver) (fs) -0.40 

Car (driver)(sl) -0.31 

Car (passenger)(fs) -0.17 

Car (passenger) (sl) -0.23 

Foot (fs) 0.08 

Foot (sl) 0.13 

Continued on next page ... 

I 'fs': fatal and serious accidents. 
2 'sl': for slight accidents. 

Median 

1.87 

3.83 

0.18 

0.22 

0.20 

0.03 

0.07 

0.16 

-0.05 

0.12 

0.14 

0.06 

0.12 

0.16 

-0.25 

-0.21 

-0.04 

-0.14 

0.21 

0.21 

97.5% R 

1.95 1.001 

3.88 1.001 

0.39 1.001 

0.38 1.011 

0.37 1.001 

0.15 1.001 

0.17 1.001 

0.21 1.001 

0.18 1.002 

0.27 1.001 

0.29 1.004 

0.13 1.002 

0.26 1.002 

0.25 1.001 

-0.11 1.001 

-0.12 1.000 

0.10 1.002 

-0.05 1.000 

0.33 1.008 

0.28 1.002 
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Table D.1 - Continued 

Parameter 2.5% Median 97.59c R 

0.22 0.26 0.30 1.001 

Table D.2: Model PLNre 

Parameter 2.5% Median 97.59c R 

Intercept (fs) 1.79 1.87 1.95 1.001 

Intercept (sl) 3.78 3.83 3.88 1.001 

Population (fs) -0.17 0.07 0.35 1.001 

Population (sl) 0.11 0.30 0.47 1.007 

Area (fs) -0.03 0.14 0.32 1.002 

Area (sl) -0.04 0.07 0.18 1.015 

Major road (fs) 0.02 0.11 0.20 1.000 

Major road (sl) 0.09 0.15 0.21 1.000 

Minor road (fs) -0.27 -0.04 0.20 1.002 

Minor road (sl) -0.01 0.10 0.24 1.005 

Junction (fs) 0.01 0.14 0.29 1.005 

Junction (sl) 0.00 0.Q7 0.15 1.001 

Bus (fs) -0.18 om 0.20 1.019 

Bus (sl) 0.13 0.25 0.38 1.020 

Car (driver) (fs) -0.35 -0.23 -0.09 1.000 

Car (driver)(sl) -0.30 -0.21 -0.12 1.000 

Car (passenger)(fs) -0.19 -0.03 0.12 1.005 

Car (passenger) (sl) -0.28 -0.18 -0.08 1.008 

Foot (fs) 0.09 0.21 0.34 1.002 

Foot (sl) 0.13 0.21 0.29 1.005 

0', 0.21 0.25 0.29 1.007 

Birmingham (fs) 0.00 0.57 1.17 1.050 

Birmingham (sl) -0.72 -0.33 -0.01 1.040 

Coventry (fs) 0.17 0.53 0.91 1.013 

Coventry (sl) -0.29 -0.06 0.17 1.007 

Sandwell (fs) 0.00 0.31 0.60 1.007 

Sandwell (sl) -0.20 -0.02 0.18 1.003 

Solihull (fs) -0.03 0.34 0.72 1.000 

Solihull (sl) -0.24 0.00 0.22 1.004 

Dudley (fs) -0.35 0.00 0.31 1.004 

Dudley (sl) -0.10 0.11 0.31 1.001 

Continued on next page ... 

10'1': standard deviation of unstructured random effects 
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Table D.2 - Continued 

Parameter 

Walsall (fs) 

Walsall (sl) 

2.5% M.edian 97.5% R 

-0.28 0.02 0.31 1.012 

-0.38 -0.20 0.01 1.008 

Table D.3: Model MVCCAR.mv 

Parameter 2.5% Median 97.5% R 

Intercept (fs) 1.79 1.87 1.94 1.003 

Intercept (sl) 3.78 3.83 3.88 1.001 

Population (fs) -0.16 0.10 0.33 1.010 

Population (sl) 0.00 0.17 0.32 1.037 

Area (fs) -0.01 0.18 0.36 1.004 

Area (sl) -0.06 0.04 0.15 1.002 

Major road (fs) 0.00 0.10 0.20 1.004 

Major road (sl) 0.10 0.16 0.22 1.005 

Minor road (fs) -0.27 -0.04 0.20 1.003 

Minor road (sl) 0.00 0.13 0.24 1.003 

Junction (fs) 0.03 0.17 0.33 1.002 

Junction (sl) 0.02 0.09 0.17 1.003 

Bus (fs) -0.01 0.16 0.34 1.016 

Bus (sl) 0.08 0.20 0.32 1.040 

Car (driver) (fs) -0.35 -0.20 -0.03 1.001 

Car (driver)(sl) -0.29 -0.19 -0.09 1.009 

Car (passenger)(fs) -0.23 -0.07 0.07 1.001 

Car (passenger) (sl) -0.26 -0.16 -0.07 1.000 

Foot (fs) 0.09 0.21 0.33 1.002 

Foot (sl) 0.13 0.21 0.28 1.009 

2 
av,fs 0.01 0.05 0.11 1.002 

a;sl 0.01 0.04 0.07 1.014 

av,f s av.sl 0.00 0.03 0.06 1.005 

2 
ae,fs 

1 0.03 0.11 0.34 1.015 

a~.sl 0.02 0.08 0.20 1.008 

ae,fs ae .sl 0.00 0.06 0.21 1.013 

1 (Je: standard deviation of spatial random effects 
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Appendix E 

Predictions using the non-CAR model 
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Figure E.1: Predictions for London boroughs. 
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Figure E.2: Predictions for metropolitan districts. 
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Figure E.3: Predictions for unitary authorities. 
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Figure E.4: Predictions for other local authorities. 
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Appendix F 

WinBUGS codes for selected models 

F.l Areal models (1983 - 1986) 
model ( # Poisson regression model with log-normal random effects 

# Accidents on built-up A-roads disaggregated by severity from 1983 to 1986 

for(tin 1:4){ 

for (i in I : 108) ( 

y[i,t] ~ dpois(lambda[i,t]) 

log(lambda[i,t]) <- betaO + beta I * AREA[i,t] + beta2 * POP[i,t] + beta3 *VEH[i,t] 

+ beta4 *ROAD[i,t]+betaS *TRAFFIC[i,t] + v[i,t] 

v[i,t] ~ dnorm(O,tau.v) #Unstructured random effects 

betaO '" dnorm(O,O.OOOl) 

betal ~ dnorm( 0.0, 0.0001) 

beta2", dnorm( 0.0, 0.0001) 

beta3 '" dnorm( 0.0, 0.0001) 

beta4 '" dnorm( 0.0, 0.0001) 

betaS '" dnorm( 0.0, 0.0001) 

tau.v '" dgamma(O.Ol,O.Ol) 

sigma.v<- l/sqrt(tau.v) 

model (# Poisson regression model with metropolitan county effects 

for(t in 1:4){ 

for (i in I : 108) ( 

y[i,t] '" dpois(lambda[i,t]) 

log(iambda[i,t]) <-betaO + alphal *LON[i.t] + alpha2*MAN[i,t] + alpha3*TYNE[i,t] + alpha4*WYORK[i,t] + alphaS*SYORK[i,t] + 

alpha6*MER[i,t] + alpha7*MID[i,t] + 

betal * AREA[i,t] + beta2 * POP[i.t] + beta3 *VEH[i.t] 

+beta4 *ROAD[i,tj+betaS *TRAFFIC[i,t] 



betaO rv dnorm(O,O.OOOl) 

betal rv dnorm( 0.0, 0.0001) 

beta2 rv dnorm( 0.0, 0.0001) 

beta3 rv dnorm( 0.0, 0.0001) 

beta4 rv dnorm( 0.0, 0.0001) 

betaS rv dnorm( 0.0, 0.0001) 

alpha1 rv dnorm(O.O, 0.0001) 

alpha2 rv dnorm(O.O, 0.0001) 

alpha3 rv dnorm(O.O, 0.0001) 

alpha4 ~ dnorm(O.O, 0.0001) 

alphaS rv dnorm(O.O, 0.0001) 

alpha6 rv dnorm(O.O, 0.0001) 

alpha7 ~ dnorm(O.O, 0.0001) 

model {# convolution CAR model 

for(t in 1:4){ 

for (i in 1 : 108) { 

y[i,t] rv dpois(lambda[i,t)) 

F.l Areal models (1983 - 1986) 

log(\ambda[i,t)) <-betaO + beta1 *AREA[i,t] + beta2 * POP[i,t] + beta3 *VEH[i,t]+ 

beta4 *ROAD[i,t]+betaS *TRAFFIC[i,t] + v[i,t] + theta[t,i] 

v[i,t] rv dnorm(O,tau.v) 

# CAR prior for spatial random effects: 

theta[t,1: 108]rv car.normal(adj[], weight[], num[], tau.theta[t)) 

betaOrvdftatO 

beta1 rv dnorm( 0.0, 0.0001) 

beta2 rv dnorm( 0.0, 0.0001) 

beta3 rv dnorm( 0.0, 0.0001) 

beta4 rv dnorm( 0.0, 0.0001) 

betaS rv dnorm( 0.0, 0.0001) 

for (t in 1:4){ 

tau.theta[t] rv dgamma(0.5, 0.0005) 

sigma.theta[t] <- sqrt(1 / tau.theta[t)) #calculate variance 

tau.v rv dgamma(0.5, 0.0005) 

sigma. v <- sqrt(1 / tau.v) } 



F.2 Areal models (2001 . 2005) 

F.2 Areal models (2001 - 2005) 

model (#Poisson regression model with log-normal random effects and a linear time trend 

for(t in 1:5){ 

for (i in I : 149) ( 

yl[i,t] '" dpois(lambda1[i,t]) 

y2[i,t] '" dpois(lambda2[i,t]) 

log(lambda1[i,t]) <-betaO[l] + delta[1]*(t-1) + 

beta 1 [1]* AREA[i] + beta2[1]* POP[i,t] + beta3[1] * AROAD[i] + 

beta4[1]* BROAD[i] + beta5[l] * MROAD[i] + beta6[1] * TROTHER[i,t] + 

beta7[1]* TRCAR[i,t]+ beta8[1]*NODE[i] + v[i,t] 

log(lambda2[i,t]) <-betaO[2] + delta[2]*(t-l) + 

betal [2]* AREA[i] + beta2[2]* POP[i,t] + beta3[2] * AROAD[i] + 

beta4[2]* BROAD[i] + beta5[2] * MROAD[i] + beta6[2] * TROTHER[i,t] + 

beta7[2]* TRCAR[i,t]+ beta8[2]*NODE[i] + v[i,t] 

v[i,t] '" dnorm(O,tau.v) 

tau.v '" dgamma(0.5,0.0005) 

sigma.v <- lItau.v 

for (i in 1 :2){ 

betaO[i] '" dnorm(O,O.OOOl) 

betal[i] '" dnorm( 0.0,0.0001) 

beta2[i] rv dnorm( 0.0, 0.0001) 

beta3[i] rv dnorm( 0.0, 0.0001) 

beta4[i] rv dnorm( 0.0, 0.0001) 

beta5[i] '" dnorm( 0.0, 0.0001) 

beta6[i] rv dnorm( 0.0, 0.0001) 

beta7[i] rv dnorm( 0.0, 0.0001) 

beta8[i] rv dnorm( 0.0, 0.0001) 

delta[i] '" dnorm(O,O.OOO1) 

} } 
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model (# CAR model with temporal effects 

for(tin 1:5){ 

for (i in 1 : 149) ( 

yl[i,t] "" dpois(lambdal[i,t)) 

y2[i,t] "" dpois(lambda2[i,t)) 

log(lambdal [i,t]) <-betaO[I] + delta[I]*(t-l) + alpha[I]*unitary[i]+ 

betal [1]* AREA[i] + beta2[I]* POP[i,t] + beta3[I] * AROAD[i] + 

beta4[1]* BROAD[i] + beta5[I] * MROAD[i] + beta6[1] * TROTHER[i,t] + 

beta7[1]* TRCAR[i,t]+ beta8[1]*NODE[i]+ theta.fs[t,i] + u.fs[i,t] 

log(iambda2[i,t)) <-betaO[2] + delta[2]*(t-l) +alpha[2]*unitary[i]+ 

betal[2]*AREA[i] + beta2[2]* POP[i,t] + beta3[2] *AROAD[i] + 

beta4[2]* BROAD[i] + beta5[2] * MROAD[i] + beta6[2] * TROTHER[i,t] + 

beta7[2]* TRCAR[i,t]+ beta8[2]*NODE[i] + theta.sl[t,i] + u.sl[i,t] 

#assume a first order autoregressive prior for temporal effects 

u.fs[i,t] "" dnorm(v.fs[t],tau.u.fs) 

u.sl[i,t] "" dnorm(v.sl[t],tau.u.sl) 

theta.fs[t,l: 149] "" car.normal(adj [], weight[], num[], tau.theta.fs[t]) 

theta.sl[t,1:l49] "" car.normal(adj[], weight[], num[], tau.theta.sl[t]) 

} # specify first order autoregressive prior 

for (t in 2:5) ( 

v.fs[t]<-rho[l] *v.fs[t-l] 

v.sl[t]<-rho[2] *v.sl[t-l] 

v.fs[l] <- kl 

v.sl[l] <- k2 

kl "" dnorm(O,tau.u.fs) 

k2 ~ dnorm(O,tau.u.sl) 

rho[l] "" dunif(-l,l) 

rho[2] "" dunif( -1, I ) 

tau.u.fs"" dgamma(0.S,0.0005) 

sigma.u.fs <- lItau.u.fs 

tau.u.sl "" dgamma(0.5,0.000S) 

sigma.u.sl <- l/tau.u.sl 

for (t in 1 :S){ 

tau.theta.fs[t]~ dgamma(O.S, O.OOOS) 

tau.theta.sl[t] "" dgamma(0.5, O.OOOS) 

sigma. theta. fs[t]<-l Itau.theta.fs[t] 

sigma.theta.sl[t]<-l/tau.theta.sl[t] 

for (i in 1:2) ( 

betaO[i] "" dflatO 

delta[il~dnorm(O,O.OOO 1) 

alpha[i] "" dnorm( 0.0, 0.(001) 

F.2 Areal models (2001 - 2005) 
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beta 1 [i] '" dnonn( 0.0, 0.(001) 

beta2[i] '" dnonn( 0.0,0.(001) 

beta3[i] '" dnonn( 0.0, 0.(001) 

beta4[i] '" dnonn( 0.0, 0.(001) 

beta5[i] '" dnonn( 0.0,0.0001) 

beta6[i] '" dnonn( 0.0, 0.0001) 

beta7[i] ~ dnonn( 0.0, 0.0001) 

beta8[i] '" dnonn( 0.0, 0.0001)} } 

F.2 Areal models (2001 - 2005) 
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model (# multivariate CAR model with temporal effects 

for(t in 1:5){ 

for (i in 1 : 149) ( 

yl[i,t] '" dpois(lambdal[i,tJ) 

y2[i,t] '" dpois(lambda2[i,tJ) 

log(lambdal[i,t]) <-betaO[I] + delta[I]*(t-l) + alpha[I]*unitary[i]+ 

beta 1 [1]* AREA[i] + beta2[1]* POP[i,t] + beta3[l] * AROAD[i] + 

beta4[1]* BROAD[i] + beta5[l] * MROAD[i] + beta6[1] * TROTHER[i,t] + 

beta7[l]* TRCAR[i,t]+ beta8[1]*NODE[i]+ xi[i,t,l] + theta[t,l,i] + u.fs[i,t] 

log(lambda2[i,tJ) <-betaO[2] + delta[2]*(t-l) +alpha[2]*unitary[i]+ 

beta 1 [2]*AREA[i] + beta2[2]* POP[i,t] + beta3[2] *AROAD[i] + 

beta4[2]* BROAD[i] + beta5[2] * MROAD[i] + beta6[2] * TROTHER[i,t] + 

beta7[2]* TRCAR[i,t]+ beta8[2]*NODE[i] + xi[i,t,2] + theta[t,2,i] + u.sl[i,t] 

xi[i,t,I:2] '" dmnorm(zero[], tau.xi[,J) #specify a multivariate normal prior 

u.fs[i,t] '" dnorm(v.fs[t],tau.u.fs) 

u.sl[i,t] '" dnorm(v.sl[t],tau.u.sl) 

F.2 Areal models (2001 - 2005) 

# use a wishart distribution as the prior for the inverse variance-covariance matrix 

tau.xi[1 :2, 1 :2] "" dwish(Q[,],2) 

#calculate the variance-covariane matrix 

sigma.xi[I:2, 1:2] <- inverse(tau.xi[, J) 

Q[I,I]<-O.1 #priorforQ 

Q[2,2]<-O.l 

Q[I,2] <- 0 

Q[2,1]<- 0 

# specify spatial prior for each year 

theta[I,1:2, 1:149] "" mv.car(adj[], weight[], num[], tau.spatial.l[,J) 

theta[2, 1 :2, 1: 149] "" mv.car(adj [], weight[], num[], tau.spatial.2[ ,J) 

theta[3,1:2, 1: 149] '" mv.car(adj [], weight[], num[], tau.spatial.3[ ,J) 

theta[ 4,1:2, 1: 149] "" mv.car(adj I], weight[], num[], tau.spatial.4[ ,J) 

theta[5,1:2, 1:149] '" mv.car(adj[], weight[], num[], tau.spatial.5[,J) 

# specify prior for the inverse variance-covariance matrix for the spatial effects 

tau.spatial.l [1 :2, 1:2] '" dwish(R[ , ], 2) 

tau.spatia1.2[1 :2,1:2] '" dwish(R[ , ], 2) 

tau.spatial.3[1:2,l :2] '" dwish(R[ , ], 2) 

tau.spatial.4[ 1 :2, 1 :2] "" dwish(R[ , ], 2) 

tau.spatial.5[1 :2,1 :2] '" dwish(R[ , ], 2) 

R[l,l]<-O.1 

R[2,2]<-O.1 

R[1.2] <- 0 

R[2.1]<- 0 

# calculate the variance-covariance matrix 

sigma.spatial.l [I :2. 1 :2] <- inverse(tau.spatial.1 [,]) 
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sigma.spatia1.2[1:2, 1:2] <- inverse(tau.spatial.2[,]) 

sigma.spatiaI.3[1 :2, 1 :2] <- inverse(tau.spatial.3[,]) 

sigma.spatiaI.4[l:2, 1:2] <- inverse(tau;spatial.4[,]) 

sigma.spatial.5 [1 :2, 1 :2] <- inverse( tau.spatial.5[,]) 

tau.u.fs '" dgamma(0.5,0.0005) 

sigma.u.fs <- l/tau.u.fs 

tau.u.sl '" dgamma(0.5,0.0005) 

sigma.u.sl <- l/tau.u.sl 

for (t in 2:5) ( 

v.fs[t]<-rho[I]*v.fs[t-l] 

v.sl [t]<-rho[2]*v.sl[t-l] 

v.fs[1] <- kl 

v.sl[l] <- k2 

kl '" dnorm(O,tau.u.fs) 

k2 '" dnorm(O,tau.u.sl) 

rho[l] '" dunif(-I,I) 

rho[2] '" dunif(-I,l) 

for (i in 1 :2)( 

betaO[i] ,...., dflatO 

delta[i],....,dnorm(O,O.OOOl) 

alpha[i] ,...., dnorm( 0.0, 0.0001) 

betal [i] '" dnorm( 0.0, 0.0001) 

beta2[i] ,...., dnorm( 0.0, 0.0001) 

beta3[i] ,...., dnorm( 0.0, 0.0001) 

beta4[i] ,...., dnorm( 0.0, 0.0001) 

beta5[i] ,...., dnorm( 0.0, 0.0001) 

beta6[i] ,...., dnorm( 0.0, 0.0001) 

beta7[i] ,...., dnorm( 0.0, 0.0001) 

beta8[i] ,...., dnorm( 0.0, 0.0001) 

F.2 Areal models (2001 - 2005) 
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F.3 Ward models (West Midlands) 

F.3 Ward models (West Midlands) 
model 

( # Poisson regression model with log-normal random effects 

for (i in I :162) 

y 1 [i] '" dpois(lambdal [iD # fatal and serious accidents 

y2[i] '" dpois(lambda2[iJJ # slight accidents 

log(lambdal[iD <- betaO[l] + beta1[lJ*popl[i] + beta2[1]*areal[i] + 

beta3[1]*major1[i] +beta4[1]*minorl [i] + beta5[l]*nodel[i] + beta6[1]*busl [i]+ 

beta7[1]*carll[i]+ beta8[1]*car21[i]+ beta9[1]*footl[i] + v[i,l] 

log(lambda2[iD <- betaO[2] + betal[2]*popl[i] + beta2[2] * areal [i) + 

beta3[2]*majorl[i] + beta4[2]*minorl [i) + beta5[2]*nodel [i) + beta6[2]*busl [i]+ 

beta7[2]*carl1 [i]+ beta8[2]*car21 [i]+ beta9[2]*footl [i) + v[i,2] 

v[i,I] '" dnorm (O,tau.v) 

v[i,2] '" dnorm (O,tau.v) 

tau.v""dgamma(O.OI,O.OI) 

sigma.v<-l/sqrt(tau.v) 

for (i in 1 :2) ( 

betaO[i]""dnorm(O.O,O.OOOI) 

betal[i] "" dnorm( 0.0, 0.0001) 

beta2[i] "" dnorm( 0.0, 0.0001) 

beta3[i] "" dnorm( 0.0, 0.0001) 

beta4[i] "" dnorm( 0.0, 0.0001) 

beta5[i] "" dnorm( 0.0,0.0001) 

beta6[i] "" dnorm( 0.0, 0.0001) 

beta7[i] rv dnorm( 0.0, 0.0001) 

beta8[i] rv dnorm( 0.0, 0.0001) 

beta9[i] rv dnorm( 0.0, 0.0001) 

model 

( # Poisson regression model with metropolitan county effects 

for (i in I : 162) 

yl [i) rv dpois(lambdal[i]) # fatal and serious accidents 

y2[i] rv dpois(lambda2[i]) # slight accidents 

log(lambda 1 [i]) <- betaO[1] + 

alphal[l]*birmingham[i] + aJpha2[I]*coventry[i] + alpha3[l]*sandwell[i] + 

alpha4[ l]*solihull[i]+ alpha5[ 1 ]*dudley[i] + alpha6[ 1 ]*walsall[i]+ 

betal[I]*popl[i] + beta2[l]*areal[i] + beta3[l]*majorl[i] + beta4[l]*minorl[i] + 

beta5[ l]*node 1 [i] + beta6[ I]*bus I [i]+ beta7[ l]*carll [i]+ beta8[1]*car21 [i]+ 

beta9[1]*footl[i] + v[i.l] 
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F.3 Ward models (West Midlands) 

log(lambda2[i]) <- betaO[2J + 

alphal[2J*binningham[iJ + alpha2[2J*coventry[iJ + alpha3[2J*sandwell[iJ + 

alpha4[2]*solihull[iJ+ alpha5[2]*dud1ey[i] +alpha6[2J*walsal1[i]+ 

betal [2]*pop1 [i] + beta2[2]*area1[i] + beta3[2]*major1[i] + beta4[2]*minor1[i] + 

beta5[2]*nodel [i] + beta6[2]*bus1[i]+ beta7[2]*carll [i]+ beta8[2]*car21 [i]+ 

beta9[2]*foot1[i] + v[i,2] 

for (i in 1:2) { 

alpha 1 [i] rv dnonn( 0.0, 0.0001) 

alpha2[iJ rv dnonn( 0.0, 0.0001) 

alpha3[iJ rv dnonn( 0.0, 0.0001) 

alpha4[i] rv dnonn( 0.0, 0.0001) 

alpha5[i] rv dnonn( 0.0, 0.0001) 

alpha6[i] rv dnonn( 0.0, 0.0001) 

betaO[i] rvdnonn(O.O,O.OOOl) 

beta1 [i] rv dnonn( 0.0, 0.000 I) 

beta2[i] rv dnonn( 0.0, 0.0001) 

beta3[i] rv dnonn( 0.0, 0.0001) 

beta4[i] rv dnonn( 0.0, 0.0001) 

beta5[i] rv dnonn( 0.0, 0.0001) 

beta6[i] rv dnonn( 0.0, 0.0001) 

beta7[i] rv dnonn( 0.0, 0.0001) 

beta8[i] rv dnonn( 0.0, 0.0001) 

beta9[i] rv dnonn( 0.0, 0.0001) 
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F.3 Ward models (West Midlands) 

model { # multivariate CAR models 

for (i in 1 :162) ( 

yl[i] rv dpois(1ambdal[i]) 

'y2[i] rv dpois(1ambda2[i]) 

log(1ambdal [i]) <- betaO[I] + 

beta1 [1]*popl [i] + beta2[I]*areal [i] + beta3[I]*majorl [i] + beta4[1]*minorl [i] + 

beta5[I]*nodel[i] + beta6[1]*busl[i]+ beta7[1]*carl1[i]+ beta8[1]*car21 [i]+ 

beta9[1]*footl[i] + v[i,l] + theta[l,i] 

log(1ambda2[i]) <- betaO[2] + 

betal [2]*popl [i] + beta2[2]*areal [i] + beta3[2]*majorl [i] + beta4[2]*minorl [i] + 

beta5[2]*nodel [i] + beta6[2]*bus 1 [i]+ beta7[2]*carll [i]+ beta8[2]*car21 [i]+ 

beta9[2]*footl [i] + v[i,2] + theta[2,i] 

v[i, 1 :2] rv dmnorm(zero[], tau.v[,]) #multivariate normal prior 

# use a wishart distribution as the prior of the inverse variance-covariance matrix 

tau.v[1:2, 1 :2] rv dwish(Q[,],2) 

sigma.v[1 :2, 1 :2] <- inverse(tau.v[ , ]) # calculate the variance-covariance matrix for v 

Q[l,I]<-O.l # initial values for Q 

Q[2,2]<-0.1 

Q[I,2] <- a 
Q[2,1]<- a 
# multivariate CAR prior 

theta[I:2, 1:162] rv mv.car(adj[], weight[], num[], tau.theta[,]) 

tau.theta[1 :2, 1 :2] "" dwish(R[ , ], 2) 

sigma.theta[1 :2, 1 :2] <- inverse(tau.theta[,]) # calculate the variance-covariance matrix for theta 

R[l,l]<-0.1 # initial values for R 

R[2,2]<-0.1 

R[1,2] <- a 

R[2,1]<- a 
for (i in 1:2) ( 

betaO[i]rvdftatO 

beta1 [i] rv dnorm( 0.0, 0.0001) 

beta2[i] rv dnorm( 0.0, 0.0001) 

beta3[i] rv dnorm( 0.0, 0.0001) 

beta4[i] rv dnorm( 0.0, 0.0001) 

beta5[i] rv dnorm( 0.0, 0.0001) 

beta6[i] rv dnorm( 0.0, 0.0001) 

beta7[i] "" dnorm( 0.0, 0.0001) 

beta8[i] rv dnorm( 0.0, 0.0001) 

beta9[i] "" dnorm( 0.0, 0.000 1) 
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F.4 Link models for the 1\11 

F.4 Link models for the Ml 
model {# Poisson regression model with log-normal random effects and a linear time trend 

for (i in 1 :S9){ 

for (t in 1 :7){ 

y[i,t] ~ dpois(lambda[i,t]) 

log(lambda[i,t]) <- betaO + delta*(t-l) + 

betal * aadfti,t] + beta2 * length[i] + v[i,t] 

v[i,t] rv dnorm(O,tau.v) 

)} 

tau.v ~ dgamma(O.Ol,O.Ol) 

sigma. v <- l!sqrt(tau.v) 

betaO rv dnorm(O,O.OOOl) 

betal rv dnorm(O,O.OOOl) 

beta2 rv dnorm(O,O.OOOl) 

delta ~ dnorm(O,O.OOOl) 

model { # convolution CAR model with a liner time trend 

for (t in 1:7) { 

for (i in 1 :S9) ( 

y[i,tl ~ dpois(lambda[i,tJ) 

log(lambda[i,tJ) <- betaO + delta*(t-l)+ 

betal * aadfti,t] + beta2 * length[i] + v[i,t] + theta[i] 

v[i,t] rv dnorm(O,tau.v) 

) ) 

# assume spatial effects to be fixed over time 

theta[l:S9]~ car.norma1(adj[], weight[], num[], tau.theta) 

tau.theta rv dgamma(O.S, O.OOOS) 

sigma. theta <- l!sqrt(tau.theta) 

betaO rv dftatO 

tau.v rv dgamma(O.S,O.OOOS) 

sigma. v <-l!sqrt(tau.v) 

betal rv dnorm(O,O.OOOl) 

beta2 rv dnorm(O,O.OOOl) 

delta ~ dnorm(O,O.OOOl) 
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F.S Junction models for Coventry 

F.5 Junction models for Coventry 
model{ #convolution CAR model 

for(i in 1:5S) ( 

y[il~dpois(lambda[i]) 

10g(lambda[i])<-betaO + theta[i] + vEil 

vEil ~ dnorm(O,tau.v) 

theta[l:SS] ~ car.normaJ(adj[], weight[], num[], tau.theta) 

betaO ~ dfiatO 

tau. theta ~ dgamma(O.S,O.OOOS) 

sigma. theta <- sqrt(l/tau.theta) 

tau.v ~ dgamma(O.S,O.OOOS) 

sigma.v<-sqrt(lItau.v) 

model (# proper CAR model 

for(i in 1 :SS){ 

y[i]~dpois(lambda[i]) 

log(lambda[i])<- betaO + theta[i] + vEil 

# m[i] the diagonal element of the conditional variance matrix, assumed to be inversely proportional to the number of neighbours for 

junction i 

m[i]<-l/num[i] 

M[i] <- alpha #the mean for junction i 

v[i]~ dnorm(O,tau.v) 

theta[1:SS]~car.proper(M[], weight[], adj[], num[], m[], tau. theta, gamma) 

alpha ~ dnorm(O, 0.0001) 

tau. theta ~ dgamma(O.S, O.OOOS) # prior on precision 

sigma. theta <- l/tau.theta # variance 

gamma ~ dunif(gamma.min, gamma. max) # overall degree of spatial dependence 

gamma. min <- min.bound(C[], adj[], num[], m[]) #lower bound 

gamma.max <- max.bound(C[], adj[], num[], m[]) # upper bound 

tau.v~ dgamma(O.Ol,O.OOl) 

sigma. v<-l/sqrt(tau.u) 

betaO ~ dnorm(O,O.OOOl) 
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F.6 Areal model for prediction 
model ( # CAR model 

for(t in 1:6){ 

for (i in 1 : 149) ( 

y[i,t] ~ dpois(iambda[i,t]) 

log(iambda[i,t]) <-betaO + delta*(t-l) + alpha*unitary[i] + 

betal * AREA[i] + beta2* POP[i,t] + beta3 * AROAD[i] + beta4* BROAD[i] + 

beta5 * MROAD[i] +beta6 * TROTHER[i,t] + beta7* TRCAR[i,t]+ 

beta8*NODE[i]+ theta.fs[t,i] + u.fs[i,t] 

#assume a first order autoregressive prior for temporal effects 

u[i,t] ~ dnorm(v[t],tau.u) 

for (t in 2:6)( 

v[t]<-rho*v[t-l] 

v[IJ<-k 

k ~ dnorm(O,tau.u) 

rho'" dunif( -1,1) 

tau.u ~ dgamma(0.5,0.0005) 

sigma.u <- I/tau.u 

for(i in 1: 149){ 

for(t in 1:3){ 

#assume spatial effects are fixed in the first period 

theta.fs[t,i]<-theta.fs.l [i] 

for(t in 4:6) ( 

#assume spatial effects are fixed in second first period 

theta.fs[t,i]<-theta.fs.2[i] 

theta.fs.l[I:149] ~ car.normal(adj[], weight[], num[], tau.fs.1) 

theta.fs.2[I:l49] ~ car.normal(adj[], weight[], num[], tau.fs.2) 

tau.fs.l ~ dgamma(0.5, 0.0005) 

tau.fs.2 ~ dgamma(0.5, 0.0005) 

betaO~ dftatO 

betal ~ dnorm( 0.0, 0.0001) 

beta2 ~ dnorm( 0.0, 0.0001) 

beta3 '" dnorm( 0.0, 0.0001) 

beta4 ~ dnorm( 0.0, 0.0001) 

beta5 '" dnorm( 0.0, 0.0001) 

beta6 ~ dnorm( 0.0, 0.0001) 

beta7 '" dnorm( 0.0, 0.(001) 

beta8 '" dnorm( 0.0, 0.(001) 

F.6 Areal model for prediction 
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alpha"-' dnorm( 0.0, 0.0001) 

delta "-' dnorm( 0.0, 0.0001) 

#save prediction results for 2006 

for (i in 1: 149){ 

pred[iJ<-fs[i,6J #predicted y 

pred.lambda[iJ<-lambda[i,6J #Poisson mean 

} } 

F.6 Areal model for prediction 
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