
Automatic Annotation of Confidential Data in
Java Code

Iulia Bastys1, Pauline Bolignano2, Franco Raimondi3, and Daniel Schoepe2

1 Chalmers University of Technology
bastys@chalmers.se

2 Amazon Prime Video
{pln,schoeped}@amazon.com

3 Amazon Prime Video and Middlesex University
frai@amazon.com,f.raimondi@mdx.ac.uk

Abstract. The problem of confidential information leak can be ad-
dressed by using automatic tools that take a set of annotated inputs
(the source) and track their flow to public sinks. Unfortunately, manu-
ally annotating the code with labels specifying the secret sources is one
of the main obstacles in the adoption of such trackers.
In this work, we present an approach for the automatic generation of
labels for confidential data in Java programs. Our solution is based on
a graph-based representation of Java methods: starting from a minimal
set of known API calls, it propagates the labels both intra- and inter-
procedurally until a fix-point is reached.
In our evaluation, we encode our synthesis and propagation algorithm
in Datalog and assess the accuracy of our technique on seven previously
annotated internal code bases, where we can reconstruct 75% of the pre-
existing manual annotations. In addition to this single data point, we also
perform an assessment using samples from the SecuriBench-micro bench-
mark, and we provide additional sample programs that demonstrate the
capabilities and the limitations of our approach.

1 Introduction

A number of information flow trackers for automatically detecting leaks of con-
fidential data have been developed for roughly every programming language:
Joana [14] or the Checker framework [1] for Java, JSFlow [15] for JavaScript,
TaintDroid [13] for Android apps are just a few examples of such tools. Whether
they operate dynamically, statically, or in a mixed fashion, the trackers usually
require the manual intervention of the developer for explicitly marking the vari-
ables that contain confidential information (the secret sources) and the methods
that output on public channels (the public sinks). Then, based on these anno-
tations, the trackers automatically detect any (explicit or implicit) information
flow from the secret sources to the public sinks.

Confidential data leak issues are difficult to catch by standard engineering
testing strategies. Therefore, at first glance, information flow trackers seem to be

2 Iulia Bastys, Pauline Bolignano, Franco Raimondi, and Daniel Schoepe

the ideal solution to the problem of detecting such leaks. However, in practice,
a different picture is displayed. Developers are burdened with an error-prone,
manual task of figuring out what is sensitive, adding annotations to their code
to highlight it, and keeping them up-to-date in a consistent way. As previously
highlighted [11], this manual process of annotating (or labelling) the code is
one of the main obstacles in the adoption of programming analysis tools at
large scale. Furthermore, annotations generate risks of their own, as they may
introduce compilation issues due to lack of support for them in the future. In a
number of cases, these factors tip the balance between benefit and risk in favour
of avoiding the use of automated tools that require manual annotation.

In this paper, we describe a method for automatically detecting and annotat-
ing confidential data in Java code. Once annotated, the code can be passed on to
an information flow tracker for detecting data leaks. By employing an automatic
labelling mechanism, we reduce the burden for developers and remove the risk
associated with code changes.

More in detail, our approach is based on a graph-based representation of
Java programs and consists of rules that characterise confidentiality. We refer
to these rules as the confidentiality policy. For example, the policy includes
the assumption that if a variable is encrypted, then it is highly likely that is
confidential and it should be labeled as such. Our analysis is parametric in the
confidentiality policy, so the policy can be extended or modified for different
application domains.

Naturally, without any input from the developer, not all confidential data
will be annotated. For example, variables that are not encrypted, or that do not
match our algorithm’s “selection” criteria will not be detected. Developers can
still extend the policy with other cases, or even resort to manual annotations.

The paper is structured as follows: we introduce background material on
graph-based representations for Java programs and the underlying Datalog-
based solver in Section 2. Our method is described in Section 3, while details
about its implementation and evaluation are reported in Section 4. A discussion
on its limitations and possible extensions is presented in Section 5, while related
work is discussed in Section 6. Finally, we conclude in Section 7.

2 Background: graph-based representations for Java

Several graph-based representations of Java objects have been used in the past
and their variations have appeared under different names such as Groums (Graph-
based Object Usage Models) [21], BigGroums [19], and AUGs (API Usage
Graphs) [7]. These representations are typically directed acyclic graphs captur-
ing control and data flows, and interactions within and between objects, such as
object instantiations, method calls, and data field accesses. While previous work
has focussed mainly on detecting mis-uses of APIs [19, 7], our aim is slightly
different: we employ the graph-based representation to construct a set of po-
tentially sensitive variables based on their usage in the code. We also extend

Automatic Annotation of Confidential Data in Java Code 3

previous representations by introducing inter-procedural edges (Section 3.4). For
simplicity, we further refer to our graphs as Groums.

In the following, we give a brief overview of Groums, and for more details we
refer the reader to the original work [7, 19, 21].

Definition 1 (Groum). A Groum is a directed acyclic multi-graph with a sin-
gle entry node and a single exit node. Nodes can be of three types: action, control,
and data. Edges can be of two types: control- and data-flow.

Nodes. There are three types of nodes in a Groum: action, control, and data.
Data nodes (depicted as ellipses) denote the program literals and variables, con-
trol nodes (depicted as diamonds) denote the instructions altering the control
flow of the program (such as conditional and loop statements, but also excep-
tion raising), and action nodes (depicted as boxes) denote all other instructions,
such as method invocation (MI), assignments, etc. As a convention, each Groum
has a single start and exit node, which have no corresponding instruction in the
program they model, and are represented as data nodes.

Edges. A Groum has two types of edges: data flow and control flow. Data flow
edges (depicted as directed dotted edges) are either outward edges connecting
to an action or control node if the literal or variable they represent is used in
that action or control statement, or inward edges if the data they represent is
a result of an action, such as method return. Control flow edges (depicted as
directed solid edges) connect action and control nodes and denote the order of
instruction execution in the program.

Data flow edges are refined further, as follows: condition (cond) between a
data node and a control node denoting the result of expression guarding the
conditional or loop statement or the exception raised, definition (def) between
an MI action node and a data node, parameter (param) between a data node
and an MI action node, and receiver (recv) between a data node depicting an
instance of a class object and a method of that class.

Control flow edges are also refined further, as follows: dependence (dep) be-
tween two action nodes or between an action node and a control node (not
necessarily in that order) denoting the order of instruction execution in a pro-
gram, exception throwing (throw) between an MI action node and a control node
representing a try statement or catch clause, true/false (T/F) between a control
node denoting the guard of a conditional or loop statement and the action/con-
trol node denoting the instruction to be executed after the guard evaluation.

An example of Groum, together with the corresponding Java code it models,
is depicted in Figure 1.

3 The Algorithm for Automatic Annotations

In our implementation, we extend the code developed for AUGs in [7], which is
publicly available [4]. Since the Groum extraction algorithm has been designed

4 Iulia Bastys, Pauline Bolignano, Franco Raimondi, and Daniel Schoepe

5 ...

6 public String myMethod() {

7 String high = getData();

8 String low = encrypt(high);

9 return low;

10 }

Fig. 1: Java method and its corresponding Groum.

with an interest only in intra-procedural analysis, a separate Groum is extracted
for every method and no support for inter-procedural analyses is provided. In
this section we describe in more detail our extension which allows for an inter-
procedural analysis on Groums.

We employ Datalog and the tool Soufflé as the underlying reasoning engine
for our approach. Datalog is a declarative, Prolog-style programming language
“introduced as a query language for deductive databases in the late 70s”, and
Soufflé [6] is an open-source engine for Datalog that has been employed suc-
cessfully for, among other things, static analysis of Java [2] and vulnerability
detection [3].

Our algorithm employs three stages, as depicted in the diagram of Figure 2.
Grey boxes represent external programs, while white boxes refer to our imple-
mentation. Initially, a Groum is generated (a) for every method in the Java code
base. Additional details on the extraction step can be found in previous work [21,
7]. Also here, the Datalog generator (b) encodes the Groums as Datalog facts.

Automatic Annotation of Confidential Data in Java Code 5

Fig. 2: Stages of our method.

Next, we send these facts to Soufflé, along with the Datalog-based data flow
analysis (DDFA) (c), and a confidentiality policy (d) used for specifying the
confidentiality criteria. Soufflé evaluates (e) the rules of the DDFA based on the
given facts and policy, and outputs the data to be labeled (6).

The last step deals with the actual labelling of the confidential data in the
Java source code. Currently, we implement this final step manually, presenting
results to developers in textual form.

3.1 Datalog facts extraction

For our purposes, we create a hierarchy of Datalog relations for the Groum nodes,
edges and methods for which a Groum is constructed: at the top level, we define
relations GroumNode, GroumEdge, and Groum respectively. We use the information
contained in GroumNode and GroumEdge to create more specific relations concerning
the nodes and edges. E.g., relation GroumDefinitionDFEdge captures def edges,
and GroumMethodCallActionNode represents an MI action node. In this way, we
build a one-to-one correspondence between the AUG representation from [7]
described in Section 2 and a set of Datalog relations.

3.2 Confidentiality policy

The automated process for deciding which data to label needs some heuristics to
base its decisions on. A reasonable indication that a piece of data is confidential
is whether it is encrypted, or if it is the result of a decryption method. This
represents what we refer to as the confidentiality policy.

As such, in our confidentiality policy we include Java APIs implementing
cryptographic methods for encryption and decryption. These are methods that
either have confidential parameters (encryption APIs) or confidential returns
(decryption APIs). The policy can be extended by the developer with other
cryptographically-related APIs or even with other methods known to return
confidential data (e.g., getDeviceId()) or to have arguments referring to confi-
dential data (e.g., processUserOrder(userId)).

6 Iulia Bastys, Pauline Bolignano, Franco Raimondi, and Daniel Schoepe

Our algorithm further employs the confidentiality policy to detect the start-
ing nodes for the DDFA (Section 3.3). A forward annotation propagation phase
detects the data nodes influenced by these initial nodes (Section 3.4).

3.3 Initial data annotation phase

As described in Section 2, a Groum contains parameter param and definition def

data flow edges. These are the edges whose connecting data nodes we target,
depending on whether the adjacent action nodes correspond to calls of methods
contained in the confidentiality policy. As a result, in the phase of the DDFA
for initial data annotation we retain all data nodes connected via a param edge
to an MI action node denoting an encryption method invocation. The Datalog
relation ConfidentialVarsFromMethodParams captures this.

Listing 1.

ConfidentialVarsFromMethodParams(method, id) ←
MethodWithConfidentialParams(method, from),

ParameterDFEdge(method, to, from).

Further, we retain all data nodes connected via a def edge to an MI ac-
tion node representing a call to a decryption method. The Datalog relation
ConfidentialVarsFromMethodReturn captures this.

Listing 2.

ConfidentialVarsFromMethodReturn(method, id) ←
MethodWithConfidentialReturn(method, to),

DefinitionDFEdge(method, from, to).

For example, in the code below, h is annotated by our algorithm as confiden-
tial as it is the argument of encryption function encrypt.

String h = getData();

String l = encrypt(h);

Observation. The cryptographic methods (or methods added by the developer in
the confidentiality policy) whose implementation is part of the codebase under
investigation are treated differently, as a Groum is generated for them. This is in
contrast with the case when the methods are just API calls and hence no Groum
is generated. In the former case, we do not use the intra-procedural def and
param edges to mark the data nodes denoting confidential data, but instead the
inter-procedural data flow edges InputParamEdge and OutputParamEdge which we
describe in more detail in paragraph Inter-procedural DFA of the next subsection.

Automatic Annotation of Confidential Data in Java Code 7

3.4 Data annotation propagation phase

In order to evaluate our approach we also implement a forward propagation of
the labels, as not all taint trackers support this step. The nodes retained during
the initial data annotation phase are used as starting nodes for propagating the
confidential labels forward in the graph, by following the data flow paths.

Put rather simply, Groums are control flow graphs extended with data nodes
and contain no explicit data flow edges, i.e., there are no edges connecting data
nodes with other data nodes. However, this is exactly what we need for our
second stage of the DDFA—data annotation propagation through the data flow
path.

Hence, we extend Groums with additional edges connecting data nodes, both
intra- and inter-procedurally. Thus, two data nodes are connected (intra- or
inter-procedurally) if there is a data dependence relation between the from node
and the to node, i.e., the value of node from flows-to or influences the value of
node to.

We discuss each case of dependence, intra- and inter-procedurally separately,
starting with the former.

Intra-procedural DFA. At the moment, we support the intra-procedural cases
listed below. Note we also model data flows via exceptions (not listed in the
rules below).

Listing 3.

IntraDFEdge(method, from, to) ←
(ReceiverDFEdge(method, from, recv),

DefinitionDFEdge(method, recv, to))

;

(ParameterDFEdge(method, from, m),

DefinitionDFEdge(method, m, to),

¬IsGroum(method, m))

;

(ConditionDFEdge(method, from, cond),

ControlFlowBlock(method, cond, join),

cond < id <= join,

DefinitionDFEdge(method, id, to)).

Observe from the last case of relation IntraDFEdge that our analysis takes
into account control dependencies, whereas typical taint analyses consider only
data dependencies for tainting. This means that a control flow block (such as
conditional branches or loops) guarded by confidentially-labeled data will taint
everything (re-)defined inside it. More specifically, assuming h is marked as con-
fidential in the program below, l will be marked as confidential as well, as their
corresponding data nodes will be connected through an IntraDFEdge.

if (h > 0) { l = 1; } else { l = 0; }

8 Iulia Bastys, Pauline Bolignano, Franco Raimondi, and Daniel Schoepe

In this regard, our analysis performs an over-approximation, as in the exam-
ple which follows, a slight variation of the previous one, l is marked as confiden-
tial, although at runtime it will be influenced by h only if h > 0.

if (h > 0) { l = 1; }

Inter-procedural DFA. Unfortunately, the original implementation of Groums
in [7] does not provide support for inter-procedural analyses, as a separate graph
is generated for every method of the program being analysed and no relation
between them is provided. Thus, there are no inter-procedural (data flow) edges,
and no call-graph is given.

In order to capture inter-procedural data flows, we extend the initial Groum
analysis with three new types of edges that connect previously disconnected
Groums by creating three new Datalog relations:
– CallDependenceEdge — between an MI action node in the caller Groum and

the start node of the corresponding callee Groum of the method invoked in
the action node.

– InputParameterEdge — between a data node denoting a parameter to an MI
action node in the caller Groum and its corresponding argument node in the
callee Groum of the method invoked in the action node.

– OutputParameterEdge — between a return action node in the callee Groum
and the data node defined by an MI action node in the caller Groum denoting
the method depicted by callee Groum.

Further, based on these new edges, we define relation InterDFEdge for con-
necting data nodes in different Groums:

Listing 4.

InterDFEdge(caller, from, callee, to) ←
(InputParameterEdge(caller, from, callee, param),

DefinitionDFEdge(callee, param, to))

;

(OutputParameterEdge(caller, to, callee, return),

ParameterDFEdge(callee, from, return)).

Annotation propagation. We obtain all data nodes originating in the nodes com-
puted during the initial phase by following the data flow paths obtained from
relations IntraDFEdge and InterDFEdge (a path is defined as the transitive closure
of an edge relation). The relation ConfidentialDFPath is responsible for this.

Listing 5.

ConfidentialDFPath(caller, from, callee, to, cxt) ←
(DFPath(caller, from, callee, to, cxt),

NodeFromInitialPhase(caller, from)

;

ConfidentialDFEdge(caller, from, callee, to, cxt)

;

Automatic Annotation of Confidential Data in Java Code 9

1 public void backwardInter(String s) {

2 String h1 = "high";

3 String l = myMethod(h1);

4 }

5

6 public String myMethod(String h2) {

7 return encrypt(h2);

Fig. 3: Inter-procedural example.

ConfidentialDFPath(caller, from, m, id, cxt),

DFPath(m, id, callee, to, _)),

¬IsDeclassified(callee, to).

Note that not all data nodes belonging to a data flow path originating in
the data nodes returned by the initial phase of DDFA may require annotations.
Assume the following code:

enc = encrypt(pwd);

DDFA will rightfully mark pwd as in need of annotation, as it is the argu-
ment of an encryption method. In addition, the DDFA will create a data flow
edge between the parameter node pwd and the defined variable enc. Since pwd is
annotated, enc would become annotated as well, although there is no need for
it, as encryption methods act as declassifiers and no information can be learned
about the encrypted value.

This is the role of relation IsDeclassified called during the creation of a
ConfidentialDFPath, to check whether a data node should be marked as declas-
sifier. If a node is marked as such, then all the nodes on the data flow path are
discarded and as consequence, not marked for receiving annotations.

This backward step also works inter-procedurally. For example, in function
backwardInter in Figure 3, h1 is properly marked as confidential, because it is
used as a parameter of myMethod, and the parameter of myMethod is marked as
confidential as an argument of a sanitiser function.

Observe relation ConfidentialDFPath takes a 5th argument—cxt, which is
used to distinguish between different calls to a certain callee method taking
place in the same caller method. E.g., our analysis is able to distinguish between
the two calls to the method foo in the snippet below:

int x = foo(a);

int y = foo(b);

4 Evaluation

We have implemented the DDFA analysis in Datalog. The actual Datalog code
for the deduction rules consists of approximately 650 lines of code. The Datalog

10 Iulia Bastys, Pauline Bolignano, Franco Raimondi, and Daniel Schoepe

protected void doGet(HttpServletRequest req, HttpServletResponse

resp) throws IOException {

String name = req.getParameter(FIELD_NAME);

Object o1 = name;

Object o2 = name.concat("abc");

Object o3 = "anc";

PrintWriter writer = resp.getWriter();

writer.println(o1); /* BAD */

writer.println(o2); /* BAD */

writer.println(o3); /* OK */

}

Fig. 4: Test case Aliasing4 from SecuriBench-microbenchmark.

facts generator is implemented on top of the existing AUG Java implementation
from [7] and consists of approximatively 350 additional lines of code. In this
section we report results obtained in two scenarios: using a publicly available
benchmark and on previously annotated Java code within Amazon code bases.

4.1 SecuriBench

In addition to programs extending the basic structure of the examples de-
scribed in the previous sections, our analysis was tested on the SecuriBench-
microbenchmark [5]. SecuriBench-microbenchmark contains minimal test cases,
each of them checking a specific ability of the static analyser. For example, Alias-
ing4 (depicted in Figure 4) checks for simple aliasing with casts. The test case
is annotated with ”BAD” or ”OK”, indicating what should be flagged or not.
In this case, our analysis behaves correctly, it detects the two illicit outputs but
not the last one which is valid.

Note that this benchmark is not designed for assessing how precise the la-
belling is performed, it only evaluates the label propagation. For example, in
Aliasing4, we have marked req.getParameter as being a method with confidential
return. Therefore the labelling part of our algorithm marks name as confidential,
and the label propagation part then propagates it forward.

The results of our analysis are shown in Table 1, by reporting on 12 categories.
The first column presents the category, the second the number of true positives
(TPs) detected by our analysis compared to the total, while the last column
depicts the false positives (FPs) given by our analysis.

Our analysis was able to flag most of the aliasing (10/12) and basic (54/60)
cases, with only 2 FPs. 5 of the missed cases and the 2 FPs are due to lack
of field and array sensitivity, other 3 are due to the fact that we do not mark
constructors, such as new FileWriter as public sinks. These results show that our
DDFA analysis is able to handle complex control flows such as the one in example

Automatic Annotation of Confidential Data in Java Code 11

Table 1: SecuriBench-micro benchmark

Category TP/Total FP

Aliasing 10/12 0
Arrays 2/9 1
Basic 54/60 2
Collections 0/14 1
Data Structures 0/5 0
Factory 3/3 0
Inter 8/16 0
Pred 3/3 4
Sanitizer 3/4 3
Session 0/3 0
Strong Updates 0/1 0

Table 2: Reconstructed annotation

Service Found/Total Analysis time (s)

S1 0/1 5.53
S2 1/1 3.85
S3 1/2 3.86
S4 2/2 3.71
S5 1/1 3.72
S6 2/2 3.99
S7 2/3 4.11

Basic28, in which there are 39 branchings, nested in various combinations up to
9 times deep.

4.2 Reconstructing existing annotations

A further data point for the evaluation of our approach is provided by considering
code that has been previously annotated with labels to characterise confidential
information. In particular, we have considered 7 existing software packages im-
plementing Amazon services and we have extracted the Java implementation
of classes that contained annotated variables using the Checker framework [1].
Overall, we identified seven files containing 12 annotated variables. Our analysis
was able to find 9 out of the 12 annotated variables.

Table 2 reports the number of annotations found by our algorithm versus the
total number of annotations present and the execution time (all the experiments
have been performed on a standard 2019 Macbook laptop with 16 Gb of Ram).
The size of each class ranges between 60 and 426 lines of code; the names of
services have been anonymised.

12 Iulia Bastys, Pauline Bolignano, Franco Raimondi, and Daniel Schoepe

5 Discussion and limitations

One key feature of our method resides in working with a graph-based represen-
tation of the program, and its modeling in Datalog. This renders our approach
(almost) language-independent. Once a Groum conversion is applied to a pro-
gram expressed in a language other than Java, our Datalog analysis would require
minimal interventions before it could annotate those programs as well.

5.1 Limitations

Our analysis is work in progress and, as discussed below, it cannot provide
completeness guarantees and it does not deal with persistent memory storage.
However, as seen in the preliminary results discussed in the previous section,
it already shows some promising results. There are several limitations worth
mentioning.

First, with the exception of the backward propagation of declassifiers, our
framework performs a forward analysis only, so it misses to label data when
backwards steps are required. For instance, in the program below, the DDFA
will label as confidential the return value of foo(pwd), but not pwd.

encryptedPassword = encrypt(foo(pwd));

Second, when performing the backward step for detecting the arguments
of encryption methods, our analysis only looks at the last definition of those
arguments, and it does not inspect how they were formed. For example, in the
program below, our analysis only annotates h2.

String l1 = "Something_Public";

String h1 = "Something_Secret";

String h2 = l1 + h1;

String l2 = encrypt(h2);

The analysis could be extended to cover this case by performing a backwards
analysis as well, but without additional information provided by the developer,
it would lead to additional false positives. E.g., in the program above, it would
falsely annotate l1.

Consider again function backwardInter from Figure 3. Although myMethod is
considered a declassifier, as it returns the encryption of its argument, due to
our computing of the transitive closure of the edge relations, l ends up falsely
marked as confidential.

The approach presented in this paper targets Java and therefore we support
dynamic memory allocation, even if we are not fully precise in terms of context
sensitivity. For instance, adding call-sensitivity context would further improve
DDFA’s precision. Consider the program below:

String userId = getUserId();

String l1 = foo("abc");

String h = foo(userId);

String l2 = foo("xyz");

Automatic Annotation of Confidential Data in Java Code 13

First, the user ID (returned by method with confidential returns getUserId)
is stored in variable userId, then method foo is invoked three times each with
parameters "abc", userId, and "xyz" respectively, and its results are stored in
variables l1, h, and l2 respectively. The analysis should only label as confiden-
tial h, but it labels as confidential l2 as well, as the returned value of method
foo is marked as confidential in its Groum due to the dependency to confiden-
tial userId.

Finally, as we previously mentioned, our analysis does not currently support
field sensitivity.

5.2 Other approaches

Improving precision. As discussed in the previous sections, our algorithm uses a
single Groum for every method invoked and encodes additional information to
capture context-call sensitivity and to distinguish between different invocations
of the same method.

Another approach would be to use a Groum for every method invocation.
The resulting inter-procedural graph may explode, but the algorithm’s precision
would improve. An investigation on how the performance may be affected in this
case would also be required. The implementation of this variant, as well as an
analysis on the trade-offs between the two approaches is left for future work.

Upgrade to information flow analysis tool. A natural extension of our algorithm
is to transform it into an information flow analysis tool, by expanding the con-
fidentiality policy to include methods that should be considered as public sinks.
Then, we could get an information flow analysis by extending the algorithm
with a relation which simply checks that no annotated nodes in the graph are
parameter nodes of the public methods.

6 Related Work

There is a substantial body of work in this area. In this section, we discuss and
compare our method with some of the related work.

Automatic labelling of confidential data. Merlin [18] infers information-flow spec-
ifications in .NET code using a data propagation graph to model inter-procedural
data flows. In contrast to our approach, Merlin uses probabilistic constraints,
potentially resulting in an exponential number of constraints that are then ap-
proximated to achieve scalability. Zhu et al. [27] present an approach to infer
confidentiality annotations for library calls without the corresponding source
code being available, but still assumes other sources and sinks in the program
to be annotated.

14 Iulia Bastys, Pauline Bolignano, Franco Raimondi, and Daniel Schoepe

Groums. Groums (Graph-based Object Usage Model) [21], which form the basis
of our approach, were initially designed for automatically inferring API usage
patterns from an API’s usage in a code base. Groums were later also used for
detecting API-misuse [7].

Information-flow control. Information-flow control [16, 23] is an active area of
research focused on detecting information leaks in programs providing stronger
security guarantees than taint trackers. There exist both dynamic and static
approaches to information-flow control for many languages, such as Jif [20],
Joana [14], and Paragon [9] as extensions of Java, LIO [10, 26] and FlowCaml [22]
for languages in the ML family, as well as JSFlow [15], a dynamic information-
flow tracker for EcmaScript [12]. All of the above approaches require some
amount of user annotation to indicate which inputs to a program are confi-
dential. The approach presented in this paper can be used to automate this
annotation process, assuming the availability of Groums, and can potentially
simplify the use of information-flow control in practice.

Taint tracking. Taint tracking is a practical approach to information-flow con-
trol that intentionally ignores [24] some information leakage resulting from less
explicit features of program semantics such as control-flow, termination, and
concurrency. Taint tracking can be applied both statically [17] as well as dy-
namically [25]. Similar to the approach here, Li et al. [17] present a static taint
tracking system based on program dependency graphs (PDGs), which have sim-
ilarities with Groums. This representation would allow an approach similar to
the one presented here to automate the labelling of confidential inputs and out-
puts. Many taint-tracking systems have been applied to real-world applications:
TaintDroid [13] and FlowDroid [8] are taint-tracking systems for Android ap-
plications. The Checker Framework [1] allows building custom type checking
extensions for Java programs and includes support for taint tracking. Similar to
information-flow control approaches, such systems typically require manual an-
notation to indicate which sources and sinks are confidential. The approach here
can be used to lessen the annotation burden to developers, potentially enabling
an easier use of taint tracking on real world software.

7 Conclusion

We have presented a method for automatically annotating confidential data in
Java programs. Our method uses a graph-based program representation based on
Groums to mark the data nodes denoting the confidential information, based on a
confidentiality policy. This policy is designed to mark as confidential data which
either is encrypted or results from decryption operations. The confidentiality
policy also allows for developer extensions to capture more cases of interest.
We have implemented our approach using Datalog and we have assessed the
current features and limitations against publicly available examples. We have
also validated the approach using existing internal code bases, reproducing 75%
of the existing annotations.

Automatic Annotation of Confidential Data in Java Code 15

We see our work as an initial step in the construction of a fully automated
tool to generate annotations for confidential data, with the long-term goal aim
of enabling zero-touch information flow analysis.

Acknowledgments. This work was partially supported by the Wallenberg AI,
Autonomous Systems and Software Program (WASP) funded by the Knut and
Alice Wallenberg Foundation.

References

1. Checker framework. https://checkerframework.org/manual/

2. Doop framework. https://bitbucket.org/yanniss/doop/src/master/

3. Java Vulnerability Detection. https://labs.oracle.com/pls/apex/f?p=labs:

49:::::P49_PROJECT_ID:122

4. MUDetect. https://github.com/stg-tud/MUDetect

5. SecuriBench-micro. https://github.com/too4words/securibench-micro

6. Soufflé. https://souffle-lang.github.io

7. Amann, S., Nguyen, H.A., Nadi, S., Nguyen, T.N., Mezini, M.: Investigating next
steps in static API-misuse detection. In: MSR 2019, 26-27 May 2019, Montreal,
Canada (2019)

8. Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Traon, Y.L.,
Octeau, D., McDaniel, P.D.: Flowdroid: precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. In: PLDI ’14, Edinburgh, United
Kingdom - June 09 - 11, 2014. pp. 259–269 (2014)

9. Broberg, N., van Delft, B., Sands, D.: Paragon - practical programming with in-
formation flow control. J. Comput. Secur. 25(4-5), 323–365 (2017)

10. Buiras, P., Vytiniotis, D., Russo, A.: HLIO: mixing static and dynamic typing for
information-flow control in haskell. In: Proceedings of the 20th ACM SIGPLAN
International Conference on Functional Programming, ICFP 2015, Vancouver, BC,
Canada, September 1-3, 2015. pp. 289–301 (2015)

11. Christakis, M., Bird, C.: What developers want and need from program analysis:
An empirical study. In: Proceedings of the 31st IEEE/ACM International Confer-
ence on Automated Software Engineering. p. 332–343 (2016)

12. ECMA International: Standard ECMA-262 - ECMAScript Language Specification.
5.1 edn. (June 2011)

13. Enck, W., Gilbert, P., Chun, B., Cox, L.P., Jung, J., McDaniel, P.D., Sheth, A.:
Taintdroid: An information-flow tracking system for realtime privacy monitoring
on smartphones. In: 9th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2010, October 4-6, 2010, Vancouver, BC, Canada, Proceed-
ings. pp. 393–407 (2010)

14. Hammer, C., Snelting, G.: Flow-sensitive, context-sensitive, and object-sensitive
information flow control based on program dependence graphs. International Jour-
nal of Information Security 8(6), 399–422 (Dec 2009)

15. Hedin, D., Birgisson, A., Bello, L., Sabelfeld, A.: JSFlow: Tracking Information
Flow in JavaScript and its APIs. In: SAC (2014)

16. Hedin, D., Sabelfeld, A.: A perspective on information-flow control. In: Software
Safety and Security - Tools for Analysis and Verification, pp. 319–347 (2012)

16 Iulia Bastys, Pauline Bolignano, Franco Raimondi, and Daniel Schoepe

17. Li, B., Ma, R., Wang, X., Wang, X., He, J.: DepTaint: A Static Taint Analysis
Method Based on Program Dependence. In: Proceedings of the 2020 4th Interna-
tional Conference on Management Engineering, Software Engineering and Service
Sciences. pp. 34–41 (2020)

18. Livshits, V.B., Nori, A.V., Rajamani, S.K., Banerjee, A.: Merlin: specification in-
ference for explicit information flow problems. In: PLDI 2009, Dublin, Ireland,
June 15-21, 2009. pp. 75–86 (2009)

19. Mover, S., Sankaranarayanan, S., Olsen, R.B.P., Chang, B.E.: Mining framework
usage graphs from app corpora. In: 25th International Conference on Software
Analysis, Evolution and Reengineering, SANER 2018, Campobasso, Italy, March
20-23, 2018 (2018)

20. Myers, A.C., Zheng, L., Zdancewic, S., Chong, S., Nystrom, N.: Jif 3.0: Java in-
formation flow (July 2006), http://www.cs.cornell.edu/jif

21. Nguyen, T.T., Nguyen, H.A., Pham, N.H., Al-Kofahi, J.M., Nguyen, T.N.: Graph-
based mining of multiple object usage patterns. In: ESEC/FSE, 2009, Amsterdam,
The Netherlands, August 24-28, 2009 (2009)

22. Pottier, F., Simonet, V.: Information flow inference for ML. In: Conference Record
of POPL 2002: The 29th SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, Portland, OR, USA, January 16-18, 2002. pp. 319–330
(2002)

23. Sabelfeld, A., Russo, A.: From dynamic to static and back: Riding the roller coaster
of information-flow control research. In: Perspectives of Systems Informatics, 7th
International Andrei Ershov Memorial Conference, PSI 2009, Novosibirsk, Russia,
June 15-19, 2009. Revised Papers. pp. 352–365 (2009)

24. Schoepe, D., Balliu, M., Pierce, B.C., Sabelfeld, A.: Explicit secrecy: A policy for
taint tracking. In: IEEE European Symposium on Security and Privacy, EuroS&P
2016, Saarbrücken, Germany, March 21-24, 2016. pp. 15–30 (2016)

25. Schwartz, E.J., Avgerinos, T., Brumley, D.: All you ever wanted to know about
dynamic taint analysis and forward symbolic execution (but might have been afraid
to ask). In: 31st IEEE Symposium on Security and Privacy, S&P 2010, 16-19 May
2010, Berleley/Oakland, California, USA. pp. 317–331 (2010)

26. Stefan, D., Russo, A., Mitchell, J.C., Mazières, D.: Flexible dynamic information
flow control in haskell. In: Proceedings of the 4th ACM SIGPLAN Symposium on
Haskell, Haskell 2011, Tokyo, Japan, 22 September 2011. pp. 95–106 (2011)

27. Zhu, H., Dillig, T., Dillig, I.: Automated inference of library specifications for
source-sink property verification. In: APLAS 2013, Melbourne, VIC, Australia,
December 9-11, 2013. pp. 290–306 (2013)

