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Abstract 

ABSTRACT 

The shoreface, the 'buffer zone' between the land and sea, is one of the most important 
coastal regions directly influencing the coastal sediment budget through its role as a 
sediment sink or source. It therefore has a potentially significant impact upon large-scale 
(10 km; decades) shoreline movement. However, knowledge of shoreface activity over the 
medium- (I km; years) and, more particularly, the large-scale remains scarce, primarily as 
a consequence of data limitations. 

This empirical thesis extends existing knowledge to the large-scale through the observation 
of the temporal and spatial characteristics of shoreface morphodynamic behaviour over a 
32 year period. It takes a data-orientated approach using the unique JARKUS data set 
which is composed of cross-shore bathymetric profiles covering the entire Holland coast to 
a maximum offshore distance of 3 km (approximately 16 m depth). The observations 
made are also used to i) evaluate the ability of existing models to predict shoreface 
morphodynamic behaviour; and ii) examine the evolution of shoreface activity beyond the 
data limits. 

It is shown that not only is there a cross-shore limit to significant depth change on the 
upper shoreface (as previously observed in short-scale studies), but over the longer 
temporal periods (2: 10 years), the middle and lower shoreface typically undergoes 
significant erosion. These observations are forthwith named the 'shoreward depth of 
closure' and 're-opening zone', respectively. The observed shoreface activity has also 
been classified as a function of the cross-shore extent of the activity as either 'non-', 
6partially-' or 'fully-active'. Shoreface activity is strongly spatially- and temporally- 
dependant, such that i) the Holland coast can be divided into two longshore provinces of 
similar morphodynamic characteristics; and ii) after 100 years, the north Holland shoreface 
is predicted to become fully active i. e. there is no cross-shore limit to the activity. 
Shoreface processes are under the control of internal dynamics e. g. the nearshore bar 
system, and external forcing e. g. hydrodynamics. The relative significance of these 
forcings is temporally-dependent; for example the nearshore bar system has a greater 
relevance on the upper shoreface activity over the shorter time periods. 

Although most readily applicable to wave-dominated coastlines with similar characteristics 
to the Holland coast e. g. a nearshore bar system, the fundamental ideas arising from this 
work could also be applied to coasts with different environmental conditions e. g. tidally- 
dominated. Essentially this study shows that shoreface activity is more widespread in the 
cross-shore than previously appreciated. One consequence is that there will be a greater 
sediment volume in transport than formerly acknowledged and accounted for in, for 
example, sediment budgets. 
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1) INTRODUCTION 

1.1) BACKGROUND TO STUDY 

The coastline forms the boundary between the marine and terrestrial environments. It is a highly 

dynamic zone within which changes, primarily resulting from interactions between the lithosphere, 

atmosphere, hydrosphere and biosphere, can take place over a range of temporal periods. The 
dynamic nature of the coast is such that it is vitally important that its changing behaviour', through 
time and space, is understood and can be predicted. The changes which do occur within the coastal 

system could have a potentially significant impact upon both the ecological and human 

environments; for example coastal erosion will lead to land loss and possibly the destruction of 

properties. The classic case study of this is the cliff erosion at Hallsands,, Devon, UK in 1912 due 

to anthropogenic influences. Loss of the feed of shingle to the beach resulted in the removal of 

protection to the cliff foot, ultimately causing severe cliff erosion and the collapse of Hallsands 

village into the sea. An understanding of the coastal environment and its complexities, as attained 
by coastal scientists, should therefore improve the coastal managers and engineers ability (cf. 

Environmental Transport Regions, 1998) to install schemes with more confidence and success. 

It is that region between the beach and shelf which should be taken to represent the 'transition 

zone', or 'buffer zone' between the land and sea; it is here that the waves have a significant direct 

impact upon the sea floor through, for example, shoaling. Seaward of this area there are relatively 
few influences which will have an effect upon the coastline. This zone is most commonly referred 
to as the shoreface (e. g. Vincent et al, 1983; Stive et al, 1990; Wright et al, 1991; Van Rijn, 1995; 
Walstra et al, 1998) and'is illustrated in Figure 1.1 using an example of a cross-shore profile from 

the Holland coast. Other terms used to describe this region are i) the inner shelf (e. g. Wright, 1995) 

and ii) the offshore (e. g. Komar, 1998). For the purpose of this study the tenn shoreface is used as 
it has been shown (e. g. Van Rijn, 1997) to be practical for the study area; indeed most, if not all, 

studies of this coastline (the Holland coast) useJhe term 'shoreface'. Hence the terminology of this 

study will be in keeping with that of existing ones on the Holland coast. The definition of the 

shoreface, as used here, is given in Box I. I. The shoreface makes an important long-term 

contribution to the coastal sediment budget as it will be acting as either a sink or source of sediment 
from/to the active zone; for example the dominant onshore transport of the Holland coast (Walstra 

et al, 1998) means that this shoreface acts as a sediment source for the active zone. However, the 
dominant longshord transport also means that the majority of this sediment is 

or the morphodynamic result of the interaction between the existing morphology, hydrodynamics and 
sediment transport of the coastal system (see Box 1.3) 
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transported northwards (Van Rijn, 1995) and so does not act as nourishment for the active zone. It 

should be noted that if there was no shoreface feed then it is probable that the active zone (and 

beach) would erode at a greater rate than at present. The role of the shoreface also means that it 

can potentially act as a control upon the long-term shoreline movement. 

Box 1.1, The definition of the shoreface as used in this study: 

'thefixed offshore zone bound on the landward side by the seaward 

slope of the outer breaker bars and bound on the seaward side by 

the transitionfrom a concaveprofile to a nearly horizontal bottom' 

(Houwman and Hoekstra, 1994). 

It is important that the response of the coastal region, especially the shoreface, to different forcings 

can be anticipated over all scales; "in addition to being fundamental to understanding the 

morphodynamics of beaches, the spatial and temporal behaviour of the beach profile has direct 

application in coastal engineering projects involving beach nourishment and the siting of coastal 
structures" (Larson and Kraus, 1994). It is becoming increasingly obvious that information of long- 

term coastal behaviour is vital, especially with the increasing pressure placed upon this 

environment. An example of such a pressure is -that of climate change which leaves as one of its 

signatures rising sea levels; the global rise is predicted to be approximately 0.2 m by 2030 
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(regional variations will exist) (Houghton, 1991). However, this does not mean that there is any 
less requirement for smaller scale information; upscaling of knowledge over the small- and 

medium-scales (Table 1.1) i. e. process- knowledge, provides useful details for understanding and 

prediction over the large-scale. The interaction between these scales, defined within the Large 

Scale Coastal Evolution concept of Stive et al (1990), is given in Figure 1.2. 

SCALE 
DESCRIPTION 

MORPHODYNAMIC (LONGSHORE) 
LENGTH SCALE 

TIME 
SCALE 

Geological-Scale 100 km centuries 
Large-Scale 10 km decades 

Medium-Scale 1 km years 
Short-Scale 100 m storms-seasons 

Table 1.1. Description of the three scales adopted from the Large Scale Coastal Evolution concept 

of Stive et al (1990) in addition to the geological-scale. These are illustrated in Figure 1.2. 

time decades 
scale 

years 

days 

LSCE 
mean trend 

fluctuating and 
asymptotic evolutions 

MSCE I 
damping and cyclic 

evolutions 

SSCE 
(rhythmic 
fluctuations 

surf zone inlet coastal cell 

space scale 

Figure 1.2. Coastal evolution scales (taken from Stive ct al, 1990) 

At present there is little information available of coastal behaviour over the mediurn- and large- 

scale. This is primarily the result of a lack of good quality, long-term data sets which are required 

not only 1) to allow the observation of coastal behaviour, but also iii) to validate and calibrate 
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models which attempt to reproduce and predict this behaviour. Typically, long-term data sets are 
derived from maps discovered in archives and used to determine long-term changes in shoreline 

position. Though useful in calculating shoreline change, they should be used with caution as the 

accuracy of the data source is difficult to determine. Long-term data sets should, ideally, include 

high quality bathymetric and hydrodynamic data. In addition, such data sets should be available at 

a number of different locations with sufficient resolution in time and space. The number of these 
data sets are limited, although expanding (Table 1.2). One of the largest data sets of this kind 

exists for the low-lying, densely populated Netherlands coast where a coastal morphodynamic 

monitoring system has been in operation since 1963. This extensive data set is called JARKUS, an 

acronym for annual soundings (in Dutch 'JAaR]ijkse KUStlodingen' ( Ruessink, 1998)). The 

JARKUS data set was primarily collected for coastal zone management purposes (RIKZ 2) but has 

also proven useful to coastal scientists investigating coastal behaviour e. g. nearshore bar behaviour 

(Wijnberg, 1995). In the former case, analysis of the bathymetric data led to the implementation of 

the 1990 'dynamic preservation policy' which aimed to fully control erosion until 1995 and 

consequently resulted in 10 6 million cubic meters of sediment being placed on the coast (Louisse 

and Kirk, 1990). The most important aspect of this policy was that the shoreline of the Netherlands 

be maintained at its 1990 position 3 (de Ruig, 1998). 

Large-scale coastal behaviour is also poorly understood as significant questions exist regarding the 

behaviour beyond that observed in the data i. e. when using predictive techniques. These questions 
have arisen from the work of De Wend (1991 and 1998b, respectively): 

is the long-term coastal behaviour inherently unpredictable, as suggested by the strong non- 
linearity of the natural system; 

2. do different forcings have significant impacts over different scales e. g. is turbulence more 
important over the smaller scales and climate change over the longer term; 

3. what is the interaction between the different forcings e. g. the hydrodynamics and 

morphodynamics; and 
4. variations in external forcings have and will continue to occur. 

These questions are examined in more detail in Chapter 2. The conclusion drawn is that, in 

combination with data limitations, they have resulted in a large knowledge gap as it has proven 

2 RIKZ or Rijkswaterstaat, the Dutch National Institute for Marine and Coastal Management 
3A review of this coastal defence policy in 1995 showed that it was successful; considerable dune and beach 
loss no longer occurs (de Ruig, 1998). 
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hard to upscale process knowledge4 to change on a longer timescale (cf. De Wend, 1993). This 

problem has been concentrated upon over the past 15 years: an example of a recent research project 
is the EU MAST-III PACE (Prediction of Aggregated-scale Coastal Evolution) project (De Wend, 

1997a; 1998a). 

SITE LINCON- JARKUS JARKUS LUBIATOWO SYLT 
SHIRE (Netherlands) (Netherlands (Poland) ISLAND 
(UK) (short) (e tended) (Germany) 

LENGTH OF 38 500 500 2.7 35 
COAST (km) 

NO. 18 2500 500 5 to 28 70 
PROFILES 

LONGSHORE 1000 to 200 to 250 1000 100 500 
SPACING (m) 2000 

CROSS- intertidal dune & coastal dune to -5 m dune to 
SHORE (80 m beach(1000 profile(2.5to (800 m MLW 

DISTANCE offshore) m offshore) 5km offshore) 
ffshore) 

__ DURATION 31 36 32 35 114 
(yrs) 

DATES 1959 to 1963 to 1999 1965 to 1997 1964 to 1999 1870 to 
1990 1 1 1984 

TIME 1 month 1 year 3 to 5 years 6 months I 5 to 10 
INTERVAL I years 

Table 1.2. Examples of the largest-scale profile and bathymetric data sets (taken from Hamm, 

1999). 

It is the aim of this coastal science thesis (Box 1.2; 1.3) to expand upon the limited knowledge of 

medium- and large-scale coastal behaviour by concentrating on the morphodynamic (Box 1.3) 

activi of the Dutch shoreface6. Temporal and spatial resolutions, in combination with 

accessibility, led this author to use the JARKUS data set to achieve this aim (Chapter 3). This data 

exists for the entire Netherlands coast, covering both tidally- and wave-dominated environments. 
However, in order to avoid the complication of inlet processes, and to encourage comparision 
between the bulk of research on shoreface morphodyanmics, it is the Holland coast (Figure 1.3) 

which is studied here. In particular it is the shoreface between Callantsoog and Schevingen which 

4 as observed from short-term field experiments 
5 morphodynamic activity is identified by significant depth changes, where 'significant' is dependant upon 
the criterion selected to identify the depth change 6 as already stated the shoreface is an extremely important part of the coastal region due to its role i) as a 
'buffer zone'; ii) in sediment budgets; and iii) in shoreline movement. 
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constitutes the study area. Hence the large-scale behaviour of a wave-dominated, uniform coast 

uninterrupted by tidal inlets can be accurately ascertained; inclusion of more northern and southern 

profiles of the Holland coast will include tidal effects from the Marsdiep inlet and the Rotterdam 

Waterway (these features are all shown in Figure 1.3). The results from this study can: 

1. be compared with the majority of existing research on this topic; 

2. be integrated with the short-scale knowledge already available on other, similar, coastlines; 

and 

3. . act as a 'bridge' between the short-/medium- and geological-scale shoreface knowledge which 

exists for this environment. 

Box 1.2, the aim of this study: 

determine the spatial- and temporal-characteristics of shoreface 

morphodynamic behaviour over the medium- and large-scales,. 

paying particular attention to the latter. 

In more detail, this investigation of large-scale shoreface behaviour will provide invaluable 

information on the different timescales of shoreface response to forcings. At present the general 

assumption that the shoreface response is temporally dependent-is based upon medium-ten-n data 

sets (e. g. Wright et al, 1985) and modelling work (e. g. Stive and De Vriend, 1995). By using the 

JARKUS data set, this research will either confirm or reject this assumption based upon 32 years 

worth of field data. In addition, it is hoped that not only will the results i) support the output of 

existing long-term models e. g. the Advection-Diffusion Model (Niedoroda et al, 1985); but also 

provide details of shoreface morphodynamic behaviour for application to generic shoreface studies. 
For example not only should the concepts obtained be useful to other coastal researchers who have 

limited information on the morphodynamic behaviour of a shoreface of similar characteristics but it 

should also prove invaluable to coastal managers who wish to further understand the temporal- and 

spatial-development of 'their' shoreface (again with similar characteristics to the Holland 

shoreface). 
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Box 1.3, definitions of the key words used in Box 1.2 : 

Shoreface : thefixed offshore zone bound on the 
landward side by the seaward slope of the 

outer breaker bars and bound on the seaward 

side by the transitionfrom a concaveprofile 
to nearly horizontal bottom (Houwman and 
Hoekstra, 1994) (as given in Box 1.1). 

Morphodynamic: theform and structure of the coastal 
system 

Behaviour: the morphodynamic result ofthe interaction 

between the existing morphology, 

hydrodynamics and sediment transport of the 

coastal system 
Medium-scale : temporal period greater than years; 

morphodynamic length scale greater than I 

km (Stive et al, 1990) 

Large-scale : temporal period greater than 10 years; 

morphodynamic length scale greater than 10 

km (Stive et al, 1990) 
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Figure 1.3. The study area : the Holland coast (adapted from Wijnberg, 1995). Distance is 

measured from the north to the south as indicated. 
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1.2) THE COASTAL SYSTEM 

Coastal behaviour is typically studied by considering the coast as a system which is itself 

composed of several parts, or compartments 7 (e. g. Ruessink, 1998), each of which have a distinct 

temporal and spatial scale. Changes occur within these compartments at a wide range of scales, 
from individual grain motions through to development on the geological scale, as shown in Figure 

1.4. (This is discussed in more detail in Chapter 2. ) Within each compartment, a morphodynamic 

system exists composed of the sub-systems of hydrodynamics, morphology and sediment transport. 

The coastal morphodynamic system is complicated involving feedback between these three main 

sub-systems. It can be represented simply by Figure 1.5, in which the water motion is induced by 

the energy input into the system in the form of waves and currents. This in turn induces sediment 

transport and hence morphological change and so spatial and temporal gradients exist linking the 

boundary morphology with the hydrodynamics. A close mutual dependence also exists between 

the hydrodynamics and the large- and small-scale morphological features of the seabed and shore. 
An example of this is the interaction between the sandy seabed and propagating, weakly-dispersive, 
weakly non-linear free low-frequency waves. A morphological model developed to describe this 

interaction shows that changes in the flat bed to shoreface bars causes changes in the waves, and 

vice-versa (Hulscher, 1998). A more detailed diagram illustrating the coastal morphodynamic 

system is shown in Figure 1.6. Here, for example, the small-scale influence of the benthic biology 

is shown. Burrowing activities and the associated sediment mixing will affect sediment transport 

as the altered sediment composition may have a larger or smaller critical threshold of motion 
iniation. 

As stated in Box 1.2, it is that part (or compartment) of the coastal system known as the shoreface 
(Box 1.1; Figure 1.1)) which is studied here. Data restrictions (section 1.1) are such that, whilst 

short-scale knowledge is gained from field experiments e. g. Beaver et al (1999), large-scale 

information is typically derived from modelling efforts e. g. Buijsman et al (1998b). In the latter, 

validation can be made with data of coastal deposits obtained from core borings (e. g. Cleveringa 

and Spek, 1998). Such data typically shows the coastline development through the position of 

coastal deposits within thý core. Of the short-scale shoreface studies, the majority have focused 

upon differences in wave- and tidal-currents and sediment transport between fair-weather and 

7 the definition of compartment is a section of the coastal system which has a distinct temporal and spatial 
scale e. g. the shoreface, tidal inlets, beach, active zone (see glossary). The concept of the compartment is 
adopted in the ASMITA model which consists of three parts; the tidal basin; ebb-tidal delta; and adjacent 
coast (Buijsman et al, 1998b) 

30 



Decadal morphodynarnic behaviour of the Holland shoreface 
I) Introduction 

storm conditions (e. g. Vincent et al, 1983; Wright et al, 1986; Snedden et al, 1988; Gracia et al, 
1998; Beaver et al, 1999). These have shown that the initiation of sediment transport only occurs 
during extreme events ii. e. storms. The most significant large-scale modelling efforts have been 

made using behaviour-orientated models (BOM) which are able to predict the shoreface and shelf 
behaviour over periods from decades to millennia (Cowell et al, 1995; Niedoroda et al, 1995; Stive 

and De Vriend, 1995; Buijsman and Stive 1998). Validation between model results and field data 

generally agree although some discrepancies do still exist. For example the Advection-Diffusion 

Model (ADM) of Niedoroda et al (1995) tends to underestimate the Holocene progradation of the 

beach at Haarlem, The Netherlands (Buijsi-nan et al, 1998a). All the models suggest that the 

shoreface is active over the large-scale. (These results are discussed further in Chapter 2). The 

shoreface behaviour of the Holland coast, as observed in this study, was primarily identified using 

the morphological concept of 'depth of closure' (Box 1.4). 
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Figure 1.4. Scale range in coastal morphology (De Vriend, 1998). 
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Figure 1.5. The coastal morphodynamic system which is found within each of the compartments of 
the coastal system (taken from Ruessink et al, 1998). It comprises hydrodynamic processes, the 

resulting sediment transport and hence morphological change linked by the feedback changing 

morphology has on the hydrodynamic processes. 
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Figure 1.6. Flow diagram illustrating the idealised elements and linkages in a coastal 

morphodynamic system (taken from Wright, 1995). 
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Box 1.4, the working definition of depth of closure : 

the seaward limit ofsignificant depth change but not the absolute 
limit to cross-shore sediment transport (Nicholls et al, 1996). 

Here 'significant' is dependant upon the criterion selected to 
identify the depth change; larger change criterion e. g. 0.25 m, allow 

a greater margin of change than a smaller change criterion e. g. 0.06 

m and so Dc will typically be located at a more shoreward position. 

Depth of closure (Figure 1.7) has been previously studied at short- and medium-scales as a result 

of data limitations (see section 1.1). It is typically found on the upper shoreface i. e. in water 
depths less than 8 in. A specific example is that of the Ebro Delta where Dc is found at 6.5 in 
depth over a4 year period (Garcia et al, 1998). Closure is shown to be temporally-dependant 

over these scales i. e. as the time period increases, then the depth of closure also increase. In 

addition it has been shown that different forcings, in the form of bar dynamics and wave action, 

act as controls upon closure, in which the latter is constrained by the former (e. g. Hinton and 
Nicholls, 1998). This study, through the investigation of the large scale morphodynamic 
behaviour of the shoreface, also investigates the behaviour of depth of closure over the large- 

scale, as it is an integral characteristic of the shoreface. 

Mean sea level 

Dc: dependant on 
criterion selected 

bed envelope ý, mýdepth 'change 
over time t 

CrI morphodynamfically criterion 
inactive morphodynamically active 

Figure 1.7. Zonation of a cross-shore profile over time t where Dc represents the seaward limit of 

significant depth change using the depth change criterion shown(after Hallermeier, 1978). 
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1.3) RESEARCH OBJECTIVES 

As already stated, the aim of this research to expand existing knowledge of coastal behaviour, 

especially over the large-scale (Box 1.2). This is achieved by focusing on the morphodynamic 
behaviour of the Holland shoreface using the large-scale JARKUS data set. Based on the 

preceding sections, the following four research objectives have been formulated : 

1. Determine the temporal and spatial variability of the morphodynamic behaviour of the Holland 

shoreface, over the medium- and large-scales (years to decades). 

Can the depth of closure be identified on the shoreface? If so, what is 

the nature of its temporal and spatial evolution? 

If the depth of closure is identified, can its working definition (Box 1.4) 

be applied to the shoreface over all scales? If not, what is a more 

appropriate description f6r the significant (and insignificant) depth 

changes observed on the shoreface? 

Is the middle and lower shoreface a morphodynamically active region? 

Over what temporal and spatial scales, if any, can activity be observed? 

How does the morphodynamic activity of the middle and lower 

shoreface influence the coastal sediment budget i. e. the relative role of 

shoreface erosion versus accretion? 

2. Determine the causes and controls upon the shoreface morphodynamic behaviour along the 

Holland coast over the medium- and large-scales. 

What morphodynamic and hydrodynamic controls exist upon the 

shoreface behaviour? What is the interaction of these controls over the 

scales investigated? 

Do anthropogenic influences act as a control upon the morphodynamic 

activity? In particular does the largest engineering intervention, the 
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Umuiden harbour moles (Figure 1.3) influence morphodynamic 

activity? If these controls are relevant, how do they influence the 

shoreface activity? 

3. Evaluate the ability of existing models to predict shoreface morphodynamic behaviour. 

Can the medium- and large-scale depth of closure be predicted using the 

time-dependent analytical Hallermeier (1977,1978) model (Chapter 2)? 

What are the limitations, if any, of this model? 

Can a process-based model (UNIBEST-TC; Chapter 5) designed for the 

short-term evolution of a cross-shore profile be used to identify 

shoreface behaviour over this and larger scales? What are the limitations 

of upscaling a short-term model in this way? 

4. Examine how the shoreface behaviour may evolve beyond the data limit. 

What timescales are inferred for shoreface evolution using extrapolation 
techniques? 

These research questions are addressed using a strategy incorporating both data. - and model- 

orientated approaches, as shown in Figure 1.8. Initially the data was examined for evidence of the 
depth of closure and subsequently morphodynamic behaviour over the entire cross-shore profile, to 

the data limits (approximately 16 m water depth). Using the observed results as validation, the 

models could then be tested for their ability in reproducing specific parts of the shoreface 
behaviour. Extrapolation of the trends calculated from the observations were also made. The 

details of the data-oriented and model-orientated approaches of this study, based upon the 
JARKUS data set, are clearly illustrated in Figure 1.9. Within this thesis three shoreface zones are 
identified (Chapter 2), ultimately resulting in the upper shoreface being separated from the middle 

and lower for ease of description. It is important to note that the shoreface zones are linked within 
feedback systems which interact at different scales and in practise must not be considered as 
separate entities. 
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validate/calibrate 

MODEL II DATA 

process knowledge 
extend data/fill in gaps 

Figure 1.8. Links between data- and model-approaches within coastal research. 

1.4) THESIS OUTLINE 

It is intended that this thesis presents a detailed evaluation of the shoreface behaviour of the 

Holland coast. The following outlines each of the chapters : 

The background to this research is introduced in Chapter 1. This includes not only the importance 

of large-scale coastal behaviour in today's research but also how this thesis aims to expand upon 

existing knowledge. Hence the approach that this study takes and the expected outcomes are also 

discussed. 

Before an investigation can proceed it is vital that all existing research relevant to the study is 

known and understood. There are three main topics which are relevant here; i) large-scale coastal 
behaviour; ii) morphodynamic shoreface behaviour; and iii) the processes which control this 
behaviour. Each are thoroughly discussed in Chapter 2 after introduction in Chapter 1. 

Chapter 3 discusses the large-scale bathymetric data set used in this study; the JARKUS data set. 
Calculations of the resolution through time and space and measurement accuracy have been made. 
Consequently, the methods of measurement used since 1963 are also described. 

The Holland coast is particularly uniform, both hydrodynamically and morphodynamically. 
Localised morphodynamic features do exist e. g. natural terraces. In addition, due to the coastal 

vulnerability to erosion, numerous anthropogenic influences have occurred here e. g. beach 

nourishment schemes. All are described in Chapter 4. 
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The large temporal and spatial extent of the JARKUS data set, in addition to its resolution means 

that a huge amount of bathymetric data is available for analysis. Therefore the methods used here 

have been selected due to their ability to i) sufficiently analyse the data; and also ii) adequately 
deal with the large quantity of data. These methods are described and critically analysed in 

Chapter 5. In addition the selected predictive tools are described along with their appropriate 

limitations. 

Observations of the spatial and temporal variability of the shoreface behaviour derived from the 

analysis of the JARKUS data set are discussed in Chapter 6. The observations are sub-divided 
into those concerned with i) the depth of closure; and ii) the middle and lower shoreface behaviour. 

All are described as a function of both time and- space (alongshore and cross-shore) for the 

medium- and large-scale. 

The potential causes and controls of the observed shoreface behaviour are investigated in Chapter 

7. These take the form of both the hydrodynamics and morphodynamics. Also* examined is the 

possible influence of the largest anthropogenic feature, the Umuiden harbour moles. 

Predictive techniques are important to provide knowledge beyond data limits (in this instance 32 

years 8) or where data is limited e. g. for a coast where only 2 years of bathymetric data exists. 

Therefore predictive techniques are tested which are potentially useful in both circumstances. The 

results derived from the use of three methods are described in Chapter 8. The methods used are; 
i) the analytical Hallermeier (1977,1978) model; ii) the process-based UNIBEST-TC model; and 
iii) extrapolation based upon observed trends. 

The use of the JARKUS data set, both as a source of observations of shoreface behaviour and as a 

predictive tool, has resulted in a wealth of knowledge, the majority of which has not been 

previously available. It is important to provide links between the observed feedback and potential 
forcings; although some of this has not been possible in a quantitative sense because, for example 
long-term near-bed current measurements do not exist for the middle/lower shoreface, hypothesis 

can be suggested and tested qualitatively. Comparisons between predictions and observations have 

also been made and lead to conclusions concerning the potential of the tested techniques. Both the 

observations and predictions, with reference to all relevant studies, are discussed in Chapter 9. In 

addition future work is suggested. 

8 32 years represents the temporal limit of that section of the JARKUS data set used here; the extended 
JARKUS data set (Table 1.2; Chapter 3). 
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Chapter 10, discusses the conclusions which can be made from this study in addition to the 

limitations of this work. 
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2) THE SHOREFACE: TIMESCALES; PROCESSES AND 
MORPHODYNAMIC BEHAVIOUR 

2.1) GENERAL INTRODUCTION 

As stated in Chapter 1, this thesis will help fill the knowledge gap between the short- and 
geological-scales (Table 1.1) that presently exists for the shoreface (Box 1.1); it is important to 

understand the behaviour of this region over all scales due to its direct contribution to the coastal 
sediment budget and the potential control upon long-term shoreline movement (section 1.1). This 
is to be achieved by investigating the morphodynamic behaviour of the Holland sh(ýeface over the 

medium- and large-scales (Box 1.2). Hence there are three topics pertinent to this research; i) 
large-scale coastal behaviour; ii) the morphodynamic behaviour of the shoreface; and iii) the 

processes which control this behaviour. This chapter therefore reviews the existing literature in the 

context of this study (section 1.3). 

2.2) LARGE-SCALE COASTAL BEHAVIOUR 

Coastal behaviour is generally studied by considering the coast as a system in which numerous 
compartments exist. Within each compartment there is a morphodynamic system (composed of 
hydrodynamics; morphology; and sediment transport) (see section 1.2). The systems' development 
is temporally- and spatially-dependant and is often positively coupled i. e. the time scale increases 

with the spatial scale; a result of the sediment quantities to be displaced and the depths at which 
this occurs (Wijnberg, 1995). This is related to the assumption of the 'primary-scale relationship' 
(Figure 2.1. ) (De Vriend, 199 1): 

44 a process ofa certain scale will be in dynamic interaction with 

coastal behaviour within a certain scale". 

Outside this scale, the process is noise for coastal behaviour on a larger scale and is an extrinsic 
factor (boundary condition) for coastal behaviour on a smaller scale. Therefore at different scales, 
a different energy input becomes significant. When simplified the primary-scale relationship 

suggests that, for each scale level, a different morphodynamic system exists. The implications of 
this are that different aspects of the hydrodynamics, morphodynamics and sediment transport will 
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be important at different scales, suggesting that the morphological development of a system 

through time and space is controlled by: 

1. the scales of variation in the forcing energy input i. e. the hydrodynamics; and 
2. the scales of variation in the boundary condition, which are in turn controlled by the 

morphodynamic system on the larger-scale (Wijnberg, 1995). 

process scale 

. 
Ili 

I 

dynamic 

interaction 

0ý- - -. - --, . --. 

Figure 2.1. Primary scale relationship (De Wend, 199 1). 

This relationship is a logical deduction if one considers the forcing and feedback of the coastal 

system over the short-, medium- and large-scale. For example profile changes over a small time 

period e. g. I day, can be explained using hourly hydrodynamic and water level data. Such changes 

over a longer period e. g. 5 years, are more likely to result from the overall hydrodynamic climate 
than individual waves. 

The concept behind the primary-scale relationship forms the basis for the coastal-tract cascade 

which also takes as its assumption the idea that coastal processes and behaviour can be separated 
on the basis of scale (Cowell et al, 2000). The coastal tract was primarily devised to aid the 

modelling of low-order (10 2 to 10 3 years) coastal change. It is discussed in more detail in section 
2.3.5. 

Large-scale coa: stal behaviour is both poorly understood and difficult to predict (Chapter 1). The 

lack of long-term data sets (Table 1.2) means that the i) observation of long-term trends; and ii) 

calibration and validation of long-term models, are difficult to achieve to a high degree of 
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accuracy. Additionally, uncertainties exist within the coastal behaviour beyond that observed in 

the data, such as those shown in Table 2.1. Hence predictability limits exist : 

"central to such an effort' is the evaluation of the degree of 

uncertainty related with theprediction, andparticularly with the 

time and space scale ofsuch prediction. When such uncertainty 

exceed a certain threshold to be defined with reference to the 

specific application, then we can argue that the limit of 

predictability has been reached' (Capobianco, 1998). 

turbulent motion unpredictable 
turbulence mean flow 
sediment motion unpredictable 
grain motion transport 
small bedforms unpredictable 
bedforms roughness 
nearshore bars unpredictable 
bars mean profile 

Table 2.1. Examples of inherent uncertainties which could occur in a deten-ninistic sense (De 

Wend, 1998). Taking the example of the sediment motion; grain motion can be used to determine 

sediment transport over the small-scale but, because the sediment motion is inherently 

unpredictable over the large-scale, grain motion cannot be used to predict sediment transport over 

this scale. (The predictability limits of these examples are also shown in Figure 2.3; see later) 

The uncertainties which exist are now discussed in more detail : 

1. is the long-term behaviour inherently unpredictable as suggested by the strong, non-linearity of 
the system? 

simply, non-linearity is such that a small variation at t=I may grow into a large 

variation at t= 100. The non-linearity leads to inherent uncertainties (De Vriend, 

1998) as : 

I the effort being the prediction of long-tenn coastal behaviour 
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i) inherent unpredictability, or chaotic behaviour. This indicates that 

seemingly random behaviour exists in the coastal system, which cannot be 

solved from equations. Recent work does suggest that it is possible to 

gain information directly from data, which otherwise suggest a chaotic 

system, rather than indirectly from modelling. This is done using 'strange 

attractors' which exist in phase space where the dimensions can have any 

physical quality 2 (Pool, 1989). (However, for long-term behaviour, this 

will obviously require long-teffn data sets which are, as already stated, 

scarce); 

ii) uncertainty in model parameters. If it is uncertain which processes are 

significant over the scale x, then there must be uncertainties concerning 

which parameters are required in the model, for example grain size; and 

iii) uncertainties in the forcing (see points 2) and 3)). 

2. do different forcings have significant impacts over different scales (De Wend, 1991) ? 

if confirmed, then forcings which are negligible on the smaller scales may be 

significant over the larger scales. Indeed, it has been shown (Wright et al, 1985) 

that the state, profile configuration and sand storage of the beach and surf zone 

system results from the time-integration of numerous processes which have 

different spatial- and temporal-scales. 

39 
3. what is the interaction between external forcings and internal dynamics . 

forcings can be divided into external forcings e. g. hydrodynamics, and internal 

dynamics e. g. morphodynamics. It has been suggested (Hinton and Aarninkhof, 

1998) that the relative contribution of each not only differs between scales, but 

that those which occur on the macro-scale act as global forcing, or boundary 

conditions to the meso-scale, as illustrated in Figure 2.2. Non-linear dissipative 

systems can be maintained in states far from equilibrium due to self-organisation 

2 taking the example of Pool (1989), to describe the weather one may look in phase space with the 
dimensions of temperature and wind velocity. To represent how weather changes with time, one would draw 
a curve in phase space where each point on the curve is indicated by the temperature and wind velocity at a 
particular time. It should be noted that there is no restriction on the number of dimensions which the phase 
system can have, for example a four-dimensional phase space may encompass temperature, pressure, wind 
velocity and humidity. 
3 see glossary for precise definitions 
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i. e. the scales or perturbations which evolve upon the unstable basic state are 

controlled by the internal dynamics of the system, rather than the applied forcing 

(Swart and Falquds, 1998). The 'balance' between external forcing and internal 

dynamics has been investigated on short- and medium-scales and the interaction 

between them is shown to vary depending on the scenario. For example the 

behaviour of the two most inner bars of a three bar nearshore system is controlled 
by the internal dynamics of this system, in the form of the outer bar. 

Morphological changes in the outer bar are, however, controlled by hydrodynamic 

forcings (Hinton and Aaminkhof, 1998). 

Macro-scale 
forcing 

I 'global' 

Meso-scale 
forcing 

1 'global' 

Micro-scale 
forcing 

Coastal cell 
Strong I Weak 

constraints? + constraints? 

Surfzone dynamics 
DeDth of closure 

Forced response? 

Free behaviour? 
Weak 
constraints 

Bed dynamics 
micro o Free behaviour 

Figure 2.2. Schernatised dynamics of a coastal system at various spatial/temporal scales. 

On the macro-scale level, the forcing can be, for example, sea-level rise and large-scale 

structures i. e. harbour moles. On the meso-scale level, forcings are waves and tides. The 

micro-scale forcing represents local, often anthropogenic, effects. Each of these forces can 

act as a global force on the lower scale level. (Hinton and Aaminkhof, 1998). 

4. variations in external forcings have and will continue to occur 
It has been shown that the non-linearity of the coastal system can lead to difficulty 

in understanding long-term coastal behaviour. However, the 'ease' with which 

observed non-linear trends e. g. exponential trends, can be used to predict 
behaviour beyond the data limits is fundamentally dependant upon the variation 

within these trends i. e. how much deviation from the mean trend line occurs? An 

additional point which needs to be considered here is whether future variations are 
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predictable. The forcings which need to be considered are both natural and 

anthropogenic. One example of the former is given in the following: , 

a key topic in today's researcif is climate change and variability. 
Work within this field is reviewed by the IPCC 4 and incorporates many 

areas of research which both influence and are affected by the climate 

change for example increasing greenhouse gases (Houghton, 1991) and 

coastal zone management (Eid and Hulsbergen, 199 1). Consideration of 

all possible influences has lead to the conclusion that "there is nofirm 

evidence that the global climate has become more variable over the last 

few decades" (Houghton, 1991). However, other studies show that local 

variability does occur "what is clear is that the North Sea and northeast 

Atlantic region is liable to bigger variation of its climate than have 

hitherio been appreciated" (Lamb, 1985). The difference in opinion 

could result not only from the different study areas (and so the different 

data bases) but also the techniques used, for example Lamb (1985) uses a 

recorded history of sea flood disasters over the last few centuries whilst 

the IPCC typically concentrates upon indicators of sea-level change e. g. 

tidal gauges. Climate variability can be observed through storminess, here 

an increase represents an increase in wave intensity. It is shown that over 

the last 500 years there has been variations of storminess in the northeast 
Atlantic over time periods from years to decades (Lamb, 1991). However, 

it has also been concluded that, although a roughening in the storm 

climate has occurred in the last 40 years (cf. Carter and Draper, 1988), the 

present intensity of the climate is comparable with that observed at the 

beginning of this century (WASA, 1998). 

Hence, within the natural coastal system the variation of forcings are shown to be either constant or 

changing through time. 

One way in which the predictability limits can be extended is to use the idea of a 'scale cascade' 
(De Vriend, 1997). As illustrated in Figure 2.3a each feature of the cascade (as determined by its 

scale) has a predictability limit through time and space. Long-term prediction through modelling 

could therefore, in theory, be obtained through the aggregation of models through each step i. e. 

IPCC = International Panel for Climate Change 
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through upscaling, Figure 2.3b. However, such an approach is still in its infancy and the 

predictability limit not yet determined . 

spatial scale 

cells 

bars 

aggr. 5 

aggr. 41 

3 step 

ssp 

aggr. 

gr aggr. 2 step 

tep, 
turb. II 

deterministic predictability 
limit 

step 
time scale 

Figure 2.3a. Scale cascade Figure 2.3b. Scale cascade and 
(De Vriend, 1997). modelling (De Wend, 1997). 

2.3) MORPHODYNAMIC BEHAVIOUR OF THE SHOREFACE 

2.3.1) INTRODUCTION 

It is the aim of this section to review all existing literature which is important to our understanding 

of the shoreface, as it relates to this study. The format taken is therefore to discuss not only 

existing process-knowledge but also i) the short- to long-term morphodynamic behaviour of the 

shoreface (including the depth of closure concep t5) ; and ii) the geological scale morphodynamic 
behaviour of the shoreface. 

3 see section 1.2 for introduction 
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2.3.2) SHOREFACE PROCESSES 

The shoreface is most commonly divided into three zones (Figure 1.1), the boundaries of which are 
distinguished using depth values largely dependent upon the wave climate of the shoreface of 
interest (values used in this study relate to the Holland coast). These zones are : 

1. the upper shoreface. In this study the upper shoreface has as its seaward boundary the seaward 

slope of the outer breaker bars and its seaward boundary at 8m water depth. Other studies e. g. 
Stive et al, 1990, take the first dune row as the shoreward boundary and tenn this zone the 

active zone. This zone is the most dynamic and profile changes can be observed from 
bathymetric measurements over a short period; 

2. the middle shoreface. This zone extends from the 8m to 12 m water depth and is where 
transports are typically wave-dominated. The morphodynamic changes in this, and the lower 

s6reface, are weakly varying i. e. response times are much slower than on the upper shoreface 
(cf. Wright et al, 1985); and 

3. the lower shoreface. The shoreward boundary is located at 12 m water depth and the seaward 
boundary by the transition from a concave profile to a nearly horizontal bottom. The depth of 
the seaward boundary is approximately 20 m. The morphodynamic characteristics are similar 
to the middle shoreface, though the transports are typically tidally-dominated, particularly at 
the seaward boundary. 

Cross-shore divisions of the shoreface have also been made according to the dominant processes, 

as described in Table 2.2. These divisions (Niedoroda et al, 1985) are illustrated in Figure 2.4 and 

are such that the most seaward division, the geostrophic zone, occurs seaward of the Dutch 

shoreface. 

The sediment transport processes which occur on the shoreface are well-documented, especially on 
the short-scale (Niedoroda et al, 1985; Brink, 1987; Wright, 1995). They differ from the three 

zones (upper; middle; and lower shoreface) such that wave-related transport is more significant on 
the upper shoreface and tide-related transport important on the lower shoreface (Table 2.3). Indeed 

"the processes which dominate the sediment transport at different 

times andplaces on the shoreface should be afunction of the 

relative wave and current action " (Niedoroda et al, 1985). 
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ZONE DESCRIPTION 
friction-dominated friction forces are greater than the scale of the 

Coriolis effect. Typically extends from the surf 
zone to 10 m water depth. 

transition is the gradation zone between the friction and 
geostrophic zones. Typically extends from 10 

to 20 rn water depth. 
geostrophic zone surface and bottom Ekman boundary layers 

are separated by a region of unaffected 
geostrophic flow. Typically does not extend 

shoreward of 20 to 40 m water depths. 

Table2.2. Division of the shoreface according to Niedoroda et al (1985). 
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FRICTION 
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TRANSITION 
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PRESSURE 
GRADIENT IMPORTANT 

FRICTION IMPORTANT 

CORIOLIS EFFECT IMPORTANT 

-50M 

Figure 2.4. Schematic of the major dynamic zones and layers of' the coastal boundary layer 

(Niedoroda et al, 1985). 
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REGION OF SHOREFACE DOMINANT PROCESS 
Upper Breaking waves 

Wind-induced currents 
Longshore drift 

Middle Wave shoaling 
Wave asymmetry 

Upwelling/downwel ling 
(Tidal currents) 

Lower (Wave asymmetry) 
Upwelling/downwelling 

T 

_ 
Tidal currents 

Table 2.3. Simplified list of sediment transport processes which occur on the shoreface as a result 

of hydrodynamic forcing (adopted from Stive et al, 1990). The processes in brackets are less 

significant in the appropriate shoreface region. 

The waves typically act as a stirring mechanism to the sediment whilst the mean currents control 
the sediment transport direction; Wright et al (199 1) examined four factors which were considered 

of consequence in the mobilisation and transportation of shoreface sediments during four scenarios; 
fair-weather; moderate energy; swell-dominated; and storm. Oscillatory currents were found to be 

the primary control upon bed agitation and uni-directional currents of primary importance in the 
determination of the direction of sediment transport. 

In the shallower water depths i. e. the upper and more shoreward section of the middle shoreface, 
transport processes are wave-dominated. Sediment transport is generally concentrated near the bed 

and typically occurs as bedload transport. This occurs in close interaction with small bedforms e. g. 
ripples, and tends to be dominant where mean currents are relatively weak compared to ýthe wave 
motion (Walstra et al, 1998). Suspended transport is to be expected when the turbulence-related 

mixing capacity of the tide- and wind-driven mean currents increase and is observed during storms 
on the Dutch shoreface (Walstra et al, 1998). Ripple-related vortices can also induce suspended 
sediment transport. 

In the deeper water depths, transport processes are tidally-dominated. This is because the 

symmetrical nature of waves in deeper water means that, in wave-dominated environments, net 
sediment transport by oscillatory motion is small in depths greater than 10 to 15 m (Niedoroda and 
Swift, 198 1; van Rijn, 1995,1997). Additional middle and lower transport processes are 
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upwelling and downwelling; coast parallel winds cause surface layers to 'deflect' away from the 

coastline resulting in shore-normal slopes of the mean surface level. Water therefore comes from 

below the surface to replace the water deflected'away, so satisfying the equation of continuity (cf. 

Pond and Pickard, 1983). 

It is morphodynamical theory rather than process knowledge that long- and geological-scale 

models take as their basis (see sections 1.2; 2.3.5) e. g. Niedoroda et al (1985). This is due to a lack 

of observations over these scales. However, it has been concluded that the long-term sediment 

transport is under the greatest influence of fairly large, but not too infrequent, waves, in 

combination with tidal currents between mean neap and maximum spring tide (Soulsby, 1987). 

2.3.3) SHORT- TO MEDIUM-TERM MORPHODYNAMIC BEHAVIOUR OF THE 

SHOREFACE 

The shoreface is shown to be an important compartment within the coastal system (see Chapter 1); 

for example there is concern that severe erosion of the Holland coast could leadi in the extreme, to 

the undermining of the coast. As outlined in Chapter 1, data limits are such that the study of 

shoreface behaviour (both as process and form) based upon observations is restricted to the short- 

and medium-scales. 

There are essentially two techniques used to observed the shoreface behaviour. The first is through 

the deployment of instruments 6, these are typically used to measure current flow rates and sediment 

concentration, and so provide process-knowledge. However the time period of instrument 

deployment is typically short due to restrictions etiforced by i) temporal lengths of recording 

equipment; ii) destruction due to severe environmental conditions e. g. storrns; and iii) interference 

by, for example, fishermen. Hence this method is mainly used for event- and short-term field 

experiments. The second technique is to compare, or aggregate, bathymetric profiles, this has a 

greater potential for understanding behaviour over longer time periods i. e. the large-scale. 

However, the number of long-term data sets of this kind are limited (Table 1.2) and so previous 

studies remain focused on the short- and medium-scales. It should be noted that the aggregation of 

profiles will reveal shoreface behaviour, not the acting processes. 

6 examples of today's instrumentation are i) the optical backscatterance (OBS) sediment concentration meters 
(Wright et al, 1986); and ii) ENDECO current meters, which are axial-flow-inducted impellor devices 
capable of recording mean current speed and direction (Snedden et al, 1988). 
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The instrumentation-based experiments show that short-term shoreface activity is only observed 

during high-energy events and not during fair-weather7 periods. The most prominent studies which 

have lead to this conclusion are based upon the US Atlantic coasts' shoreface and are summarised 

below: 

1. at 10 m water depth on the Long Island shoreface little sand transport is observed during fair- 

weather conditions, whilst during storm conditions the sediment transport is significant and has 

a large onshore component (Vincent et al, 1983); 

2. at 8 rn water depth on the shoreface at Duck, N. Carolina the range of elevation change 

amounted to greater than 15 cm during a 10 day northeaster 8; 'The amplitude of bed response 

over the mid shoreface to a typical northeaster maybe appreciable' (Wright et al, 1986); 

3. at 12,18,34,74 and 140 m water depth on the central Texas shelf, current meters indicated 

that the threshold for sand transport was not exceeded during fair-weather periods and during 

this time sediment entrainment was limited to water depths less than 10 rn (Figure 2.5). 

However, the sediment transport threshold was exceeded at 12,18 and 34 rn water depth during 

storm conditions (Snedden et al, 1988); and 
4. instrumentation at 13 m water depth was pushed 2 km to the shore by benthic processes during 

a storm at Duck, N. Carolina (Wright, 1993). 

Observations of storm-induced morphodynamic activity also exist for the shelf environment; Smith 

and Hopkins (1972) placed current meters at 3 m. above the bed in water depths of 50 m and 80 in 
for aI year period. It was found that significant sediment transport only occurred during storms; 

current speeds up to 60 cm s" were observed to transport approximately 6m3 hf, I m7l of the shelf 
length during these times. 

7 fair-weather is the term used to describe low energy conditions. 8 northeaster distinguishes the extra-tropical storm from the hurricane 
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Figure 2.5. Boundary shear stress induced by wave-orbital motion versus water depth for four 

different wave conditions. Case A represents the significant deep-water wave height and period 
typical of fair-weather conditions; Case B is the measured wave parameters for the September 1984 

storm; Case C is Hurricane Allen (1980); Case D is Hurricane Carla (1961). The dashed line is the 

threshold of motion for 68-micron sand. The intersection of the dashed line and the stress curve 

represents the maximum water depth where waves of a particular event are capable of entraining 
the 68-micron sand (taken from Snedden et al, 1988). 

Studies based upon the aggregation of bathymetric profiles suggest that, over the small- and 
medium-scales, no significant 9 activity occurs on the middle or lower shoreface (e. g. Garcia et al, 
1998; Hinton and Nicholls, 1998; Hinton et al, 1999). For example, Garcia et al (1998) observed 
that significant 10 depth changes are restricted to a maximum depth of 6.5 in over a4 year period at 
the Ebro Delta, Spain. These depth values are typical of those at which activity has been observed 
during the experiments previously described. Indeed the two conclusions at first appear to 

contradict each other; the event-dependant cross-shore limit to significant depth change is observed 
at 4m NGVD 11 at Duck, N. Carolina using surveyed bathymetric profiles before and after 
Hurricane Felix (August, 1995). However, sonar altimetry recorded II±2 cm of accretion at 8m 

over the same period (Beaver el al, 1999). This can be deemed the result of differing techniques; 

9 according to the change criterion selected 10 according to the change criterion of 0.1 m II NGVD = National Geodetic Vertical Datum =8 cm below Mean Sea Level (MSL) (Nicholls et al, 1998a). 
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the first set of experiments described are point-experiments i. e. they have a stationary space but 

moving time window whilst the bathymetric ones are stationary in both time and space i. e. they are 

a snapshot of the cross-shore profile. The point-experiments may purely indicate a bedform 

moving through the view-frame, or could represent instrumentation displacement due to, for 

example, scour. However, if they do show significant sediment transport it is clear that the 

resulting bed elevation change is not observed through the comparison of bathymetric plots. 
Hence, individual events i. e. irregular ston-ns, whilst iniating sediment transport are not frequent 

enough to induce significant bathymetric change over the small- and medium-scales. This suggests 

that cumulative regular events may be of more importance. Indeed, Soulsby (1987) concluded that 

it is regular events rather than extreme conditions, such as the infrequent storm, are relatively 

unimportant contributions to long-term sediment transport. This is due to the fact that, although 

the transport potential is high during extreme events, the frequency. is too low to result in 

significant bathymetric changes. 

The cross-shore limit to the significant depth change, as observed using bathymetric profiles, is 

known as the depth of closure (Dc) (Figure 1.4). It does not represent the absolute boundary to 

cross-shore sediment transport and is a morphological not a sedimentological concept. This point 

is to be remembered when considering the meaning and implications of Dc. For example if one 

was to assume that closure represents the absolute limit to cross-shore sediment transport, as in the 

case of Pilkey et al (1993) "the depth beyond which no net offshore or onshore transportation of 

sediment occurs", one could expect to observe Dc on the shelf and not the upper shoreface (over 

the short-scales). However, the observation made in existing studies that the short-term Dc is on 

the upper shoreface (< 8m depth), coupled with the idea of Pilkey et al (1993), could lead to doubt 

in the validity of the concept : 

"there is indisputable evidence against the existence ofclosure 
depth " (Pilkey et al, 1993). 

The above conclusion of Pilkey et al (1993) only holds in light of the corresponding Dc definition, 

which is itself more alike to definitions of the geological concept of wave base (Table 2.4). 

Evidence exists which shows Dc (as defined in Box 1.4) to be a valid concept over the short- and 

medium-scales, as discussed more thoroughly in the next section. 
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2.3.4) THE MORPHODYNAMIC CROSS-SHORE LIMIT TO SIGNIFICANT DEPTH CHANGE 

ON THE SHOREFACE: SHORT- TO MEDIUM-TERM 

2.3.4.1) INTRODUCTION 

The Dc concept was primarily introduced by Bruun . (1962) where it was used as the seaward 
boundary in a shoreline change model in response to rising sea level. Since 1962, closure has been 

i) calculated as a function of that wave height exceeded 12 hours per annum 
(therefore defining Dc on an annual basis) (Hallen-neier, 1977; 1978); 

ii) identified from bathymetric profiles over different scales (e. g. Everts, 1978; 

Birkemeier, 1985; Nicholls et al, 1996; Rozynski, 1998); 

iii) further used as a seaward boundary in coastal models (e. g. Edelman, 1968; Willis 

and Price, 1975; per comm. Blanco, 1999); and 
iv) adapted for sediment budgets and associated coastal engineering applications 

(e. g. Hands and Allison, 199 1; Davison et al, 1992). 

This section will discuss the Dc concept including not only its evolution but also its characteristics 

and the controls which act upon it. 

2.3.4.2) DEPTH OF CLOSURE DEFINITIONS 

Dc has evolved from the geological concept (Table 1.1) of wave base which represents the 

maximum depth of wave action over this scale (Table 2.4). Closure is used in preference to wave 
base in today's coastal research and management because of its greater relevance i. e. it is more 
useful to know the cross-shore limit of significant depth change over medium- and large-scales 

(coastal management scales) than over geological scales. 

The first definition of Dc, as used by Bruun (1962) was: 

'limiting depth between predominant nearshore and offshore 

material and littoral drift characteristics' 

This definition has been refined since this as a result of increased knowledge of the concept Le. 

concerning its characteristics and the controls which act upon it. Dc definitions, used since 1962 to 
the present, are given in Table 2.5. It can be seen that, with one exception, they all are 
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essentially based upon the same idea. This exception is that of Pilkey et al (1993), here is the one 

case where an absolute limit to the cross-shore sediment transport is included in the definition. 

This definition can be seen to be on par with the wave base concept and as shown in section 2.3.3 

suggests that closure is located in great depths e. g. on the shelf. It is also apparent from more 

recent work on the time-dependence of Dc that values associated with these definitions must be 

accompanied by a corresponding time-period (this is discussed in the following section). 

AUTHOR DATE DEFINITION 
_ Gulliver 1899 'ultimate depth of a platform of marine 

abrasion' 
Fenneman 1902 'depth to which wave action ceases to 

I stir the sediments' 
Rich 1951 'greatest depth to which the bottom is 

stirred by waves during storms' 
Dietz and 1968 'downward limit to which waves can 
Fairbridge move bottom particles' 

Table 2.4. Early definitions of 'wave base'. 

2.3.4.3) CONTROLS UPON DEPTH OF CLOSURE 

The most significant contribution to understanding, and predicting, Dc was by Hallenneier (1977, 

1978). This method of prediction has been a dopted in studies of micro-tidal, wave-dominated sites, 
for example Duck, N. Carolina, US. 

liallermeier (1977,1978) defined two cross-shore zones: 

1. the littoral. zone, characterised by increasing bed stresses and sediment transport, caused by 

waves near breaking and induced flui d circulations; and 
2. the offshore zone in which wave shoaling is the dominant process and bed agitation is 

relatively moderate. 
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AUTHOR DATE DEFINITION 
Edelman 1968 'depth of effective motion' 

Willis and Price 1975 'the depth below which beach 
changes resulting from alongshore 

transport are negligible' 
Hallermeier 1977 'maximum water depth for nearshore 

erosion by extreme waves 
conditions, as exceeded 12 hours 

perannum' 
Dean 1983 'depth of effective motion/limit of 

offshore adjustment' 
Birkemeier 1985 'minimum water depth at which no 

measurable change in bottom 
elevation occurs' 

Inman et al 1993 'the asymptotic merging of summer 
and winter profiles' 

Pilkey et al 1993 'the depth beyond which no net 
offshore or onshore transportation of 

sediment occurs' 
Nicholls et al 1996 'seaward limit of significant depth 

change' 
_ Capobianco et al 1997 'seaward limit of the profile 

envelope' 

Table 2.5. Definitions of the 'depth of closure' concept through time. 

The boundary between the two zones marks the seaward limit of intense bed agitation by shoaling 

wave action, d, , (Dc) and can be described by a critical sediment entrainment factor (ýj in the 

form of a Froude number, Eq. 2.1 : 

2 
Ub 

y'ged 
(Eq. 2.1) 

where Ub = maximum horizontal fluid velocity at water depth d according to linear 

wave theory; 

d= water depth; 

y'= ratio of density difference between sediment and fluid to fluid density; 

g= acceleration due to gravity; and 

c= number less than unity. 
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The assumptions that c=0.03 and ýc =I for the onset of intense wave agitation for fine sands are 

taken. Therefore Eq. 2.1 becomes Eq. 2.2 : 

2 

= 
!L 

oc 
= 0.03 

,v gd 
(Eq. 2.2) 

The critical value makes the assumption that d, generally lies seaward of the surf zone implying 

that the peak near bottom fluid kinetic energy per unit sediment grain volume is sufficient to raise 

an immersed grain a distance 0.015d above the bed. Taking the above assumptions and the linear 

theory for shoaling waves, Eq. 2.2 can be analytically approximated. This produces an expression 
for the calculation of Dc, Eq. 2.3. 

2 

68.5(; 
L, 

d, = 2.28H 
er 

(Eq. 2.3) 

where d, = maximum water depth for nearshore erosion by extreme (12 hrs per annum) 

wave conditions, or Dc; 

H, = the non-breaking (significant) wave height that is exceeded 12 firs per annum; 
T= associated wave period; and S 

acceleration due to gravity. 

Results from Eq. 2.3 were tested against laboratory measurements of water depth at an erosive wave 

cut into 'beach slopes'. The correlation coefficient showed a linear relationship between DC and 
the wave cut at the 99.9% confidence level, Figure 2.6. Eq. 2.3 was also tested through comparison 

with observed values of Dc from three published field studies; the Gold Coast, Australia; Torrey 

Pines, California, USA; and Avondale, Florida, USA (Table 2.6). 
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Figure 2.6. Measured profile cut depth, dc, versus the calculated limit depth, ds (taken from 

Hallertneier, 1978). 

Hallenneier's (1977,1978) model of the cross-shore profile was extended through division into 

three shore-parallel zones (Hallenneier, 198 1), Figure 2.7; 

1. the littoral zone, extending to the seaward limit of intense bed activity caused by extreme near- 
breaking waves and breaker-related currents; 

2. shoal zone, a buffer zone where surface wave effects have an immediate effect (sand transport 

processes result in the deposition of sand from flanking zones); and 
3. offshore zone, which has relatively deep water with respect to surface wave effects on the bed. 
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Unlike the model of 1977 and 1978, this model has not been completely validated with laboratory 

or field results. Although the boundary between the littoral and shoal zone, represented by Dc, has 

been tested (as already discussed) the boundary between the shoal and offshore zone remains 

untested. It can be suggested that this boundary, representing the maximum water depth for motion 

iniation by median wave conditions, is similar to the depth known as wave base (Table 2.4). 

LOCATION/ OBSERVED CALCULATED 
PROFILE LINE Dc(m) Dc(m) 

Gold Coast, Australia: 
Letitia 8.7 
Greenmount >7.8 
Thigan 7.8 8 
Palm 9 
Broadbeach 10.5 
The Spit 9.3 
Avondale, Florida, USA: 
The Pier 4.5 - -4.1 
Torrey Pines, California, USA: 
North 6.9 
Indian 7.6 -7.3 
South 7.6 -- 

Table 2.6. Observed vs. calculated Dc for three tield sites (adopted fi-om Hallermeier, 1978) 

Tidal Range Seasonal 
onge of 

Meon 5ei7 teyel Sand Level 
dt 

d;, 000 

OF pi 

-Mean Sand Level 

OFFSHORE SHOAL LITTORAL 
ZONE ZONE ZONE 

Figure 2.7. Proposed annual zonation ofseasonal beach prol-Ile, di i's the maximurn water depth for 

motion iniation by median wave conditions and dl is the maximurn water depth for nearshore 

eros I on by extreme ( 12 lirs per annum) ýýa%e conditions (take ii from IIaII ernic I er, 198 1 
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This work clearly shows that wave characteristics are the major control upon depth of closure; 
Wave height and wave period have long been recognised as the dominant forces in beach processes 
(King, 1951; Hallenneier, 1977; Sunamura and Kraus, 1983). In developing the relationship 
between wave height and period and Dc (Eq. 2.3), several variables were not found to be important 

in acting as controls; grain size; beach slope; tank water depth; Stokes number; wave non-linearity; 
and wave number. Additional field testing of selected variables from this list was performed in 

recent investigations; slope control was shown to have no effect upon Dc at Duck, N. Carolina 

(Nicholls and Birkemeier, 1998). However the slope at Duck is relatively low (0.006 to 0.01) and 
it may be that on profiles with steeper slopes this variable does act as a control. Indeed, doubt is 

placed upon rejecting the local controls of beach slope and grain size (Capiobianco et al, 1998). 

The control of volume change upon Dc has also been examined over the annual period at Duck, 

N. Carolina (Nicholls and Birkemeier, 1997). Here all observed annual residual 12 closure values 13 

greater than 3 rn (relative to MLW 14 ) were compared with the corresponding annual volume 

changes. A significant negative relationshiP(95% confidence) was found between the two variables 

suggesting that on eroding profiles Eq. 2.3 overestimates Dc whilst on accreting profiles it 

underestimates closure. However this control has only been investigated for i) two cross-shore 

profiles; ii) a maximum volume change of -ý± 300 m3 m7 1; and over an annual period. Increases in 

spatial and temporal scale in addition to investigation on a more/less active coast may produce 
different results. 

Studies on micro-tidal, wave-dominated coasts over the small- and medium-scales'5 show that the 

waves are not the only control upon De. Though it does act as the primary control, the response of 
Dc to this variable is 'regulated' by the morphodynamics of the nearshore bar system (Hinton and 
Aaminkhof, 1998; Hinton and Nicholls, 1998; Marsh et al, 1998; Nicholls and Birkemeier, 1997; 

Nicholls et al, 1998b). The controls upon closure therefore take the form of external forcings and 
internal dynamics (section 2.2), as shown in Figure 2.8, such that: 

"the response to the waveforcing is constrained by the internal 
dynamics ofthe morphological system" (Nicholls et al, 1998b) 

12 residual closure = calculated closure (using Eq. 2.3) - observed closure 13 when using change criteria of 6 cm and 30 cm 4 MLW (Mean Low Water) = 0.42 m below NGVD :S 

scale restriction results from data limitations, as previously discussed 
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Figure 2.5. A conceptual model showing the major controls on closure at short- and medium- 

scales (adopted from Nicholls et al, 1998). 

As already discussed, these controls have been determined for micro-tidal, wave-dominated, sandy 

coastlines. Although these coasts do compose the majority of the worlds coasts (cf. Davis, 1984), 

coasts with different environmental settings do exist e. g. southern England has a tidally-dominated, 

shingle coastline. Application of these results to such sites should be carried out with caution. 

2.3.4.4) EVALUATION OF THE HALLERMEIER (1977,1978) MODEL 

In order that Eq. 2.3 can be used with confidence, agreement must exist between calculated and 

observed values. Much research has been performed into this on small- and medium-scales and the 

results are reviewed here. 

An altered version of Bruun's (1962) shoreline change model was used to investigate processes of 

shore erosion at the Great Lakes (Hands, 1983). It was found that the ultimate shore erosion was 

equivalent to Dc, which was determined from accurate repetitive profiling over 7 years. Eq. 2.3 

was also applied to the Great Lakes and the calculated values found to act as a offshore limit to the 

observed Dc. The overprediction of Dc for erosive cases has been observed elsewhere e. g. 
Nicholls and Birkemeier (1997) (this section). 

Birkemeier (1985) also tested Hallermeier's (1978) work using data collected at Duck, N. Carolina, 
US over a2 year period. Here it was found that Eq. 2.3 overestimated the observed Dc 
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by, on average, 1.4 m. As a result, an alternative expression derived empirically (Eq. 2.4) was 

produced through linear approximation. As would be expected from such an approach, Eq. 2.4 

yielded a higher degree of accuracy between observations and predictions; on average 0.4 m. 

2 

1.75H, -57.9( ; ýý *' (Eq. 2.4) 
L7 

ý- 7) 

e 

where H, = nearshore stonn wave height exceeded 12 hrs per annum; 
T, = associated wave period; and 

g= acceleration due to gravity. 

By adopting the same approach, Eq. 2.4 was further simplified to Eq. 2.5. Using only H, an average 

difference of 0.5 rn between observations and predictions was yielded. 

1.57H, (Eq. 2.5) 

It should be noted here that Birkemeier's (1985) equations (Eq. 2.4 and Eq. 2.5) are simply the result 

of site specific adjustment of Hallen-neier's (1977,1978) (Eq. 2.3) and so should be used with 

caution for sites other than Duck, N. Carolina, US. 

In the majority of cases, calculated values from the Hallenneier (1977,1978) model prove to act as 

an offshore limit to the observed value, Table 2.7. The exception is for the event-scale accretional 

cases when Eq. 2.3 tends to underpredict closure as a result of the domination of onshore transport 

and accretion in the active zone (Nicholls et al, 1998a). However, it can be argued that this is not a 

significant problem as accretional cases result in a positive sediment budget in the nearshore 

region. 

The method of prediction, as described here, does have one major limitation (Nicholls et al, 1996; 

1998a); it has been derived for wave-dominated study sites e. g. Duck, N. Carolina, USA. It can 

therefore be hypothesised that, in those situations e. g. the UK coastline, where factors other than 

waves e. g. tides, are the dominant physical process, the Hallermeier (1977,1978) model will not be 

applicable. It would be expected that terms describing the threshold of sediment movement under 
tidally-induced currents will need to be incorporated in such predictive expressions for those tidally 
dominated shorelines, whilst in other instances wave-current interactions will need to be accounted 
for. 
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OBSERVED CALCULATED TEMPORAL SITE/ AUTHOR 
Dc(m) Dc(m) PERIOD 

Duck, N. Carolina, 
4.8 6.3 event - erosional USA/ 

Birkemeler (1985) 
4.0 2.4 event - accretional 
4.1 5.9 event - erosional Duck, N. Carolina, 
6.4 10.0 1 yr USA/ 
6.8 9.2 2 yr Nicholls et al 
7.0 9.3 4 yr (I 998a) 
8.0 10.0 8 yr 

Terschelling, The 
5.5 9.3 1 yr Netherlands/Marsh 

et al (1998) 

Table 2.7. Examples of observed and calculated values of 
6c for different time periods from three 

locations clearly showing that the Hallermeier (1977,1978) model overpredicts closure observed 

using a variety of change criterion; for example the Dc at Duck is observed using a 0.06 rn change 

criterion whilst that at Terschelling, The Netherlands a 0.25 m change criterion. The values 

represent the mean value of all published values for the appropriate temporal period. 

2.3.4.5) ALTERNATIVE METHODS TO DETERMINE DEPTH OF CLOSURE 

The Hallermeier (1977,1978) model remains, to date, the most frequently used predictor of Dc. 

Alternative methods have been proposed (Hallermeier, 1981) which enable the prediction of 

closure through the observation of other features of coastal behaviour. However the testing of 

these methods with field observations typically produce uncertainties regarding their reliability. It 

therefore appears that Eq. 2.3 remains the most accurate predictor of Dc. The alternative methods 

are : 

1. Geometric limits: 
The transition from irregular to regular bathymetric contours could be expected to 

mark the depth of closure. Here the transition would be the result of the depth limit to the effective 

action of waves on the bed. This method was proposed by Dietz (1963) and tested by Everts 

(1978) using 49 different profiles from the Atlantic and Gulf coasts. However, problems arose; for 

example 14 % of profiles had contours shore-parallel at the cross-shore limit (30.5 krn). 

An additional geometric limit is the junction between two characteristic cross- 

shore profile sections; the curved shoreface and the plane ramp (Figure 2.9). This junction is taken 

to represent the cut-off region of significant active modification of the profile by the 
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hydrodynamic climate. As with the previous geometric limit problems do exist; the main 

complication is that the two sections join asymptotically and on a very gradual slope (Everts, 

1978). Comparison between results from the two methods show that the depth values do not agree. 

Everts (1978) concluded that the shoreface-ramp, transition is the more consistent method; depths. 

are in the range of 5 to 20 metres. 

Zzo 

Z20 

z 

x 

Figure 2.9.. Definition sketch of an idealised lineaý cbritinental shelf profile showing the planar, 

seaward dipping ramp sector and concave-up shoreward sector (taken from Everts, 1978) 

2. Sediment characteristics: 
Cross-shore variation in grain size is apparent (Komar, 1999). Generally, the 

coarser grain sizes are located in the zone of most intense wave activity and the finer towards 

deeper water and shoreward across the active zone. Distinct breaks in grain characteristic could 

therefore be used as an indicator of the importance of wave-dominated transport. Studies have 

shown that this is the case; Pilkey and Frankenburg (1964) reported a boundary between recent and 

relict sediments at a depth of approximately II rn on the Georgia Continental Shelf, USA; similarly 
Gordon and Roy (1977) report a relict-recent boundary at a depth of approximately 18 metres in 

the Newcastle Bight, Australia. 

An additional sediment characteristic is that of heavy mineral concentration. It has 

been shown (Koomans et al, 1998) that on the shoreface of the Dutch Island Ameland a maximum 

concentration of heavy minerals is located at 7.5 rn water depth, decreasing to a depth of II rn and 

remaining constant towards deeper water (Figure 2.10). This coincides with the long- 
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term range of Dc from 7.5 to 10.5 m, as calculated using- Eq. 2.3 for the adjacent island of 

Terschelling (Marsh, 1998). 

Figure 2.10. Heavy mineral concentration over water depth of' measurements bel'Ore the coast of 

the Dutch Island Arneland. The line represents a running average through the data points (adopted 

from Koomans, 1998). 

3. Null-point hypothesis. 

Another proposed alternative approach is, to combine wave and sediment processes 

in the form of' wave energy, grain size and beach slope. These are combined in the null-point 

hypothesis (Cornaglia, 1977); each grain size has a position of dynamic equilibrium at which the 

forces acting upon it (waves causing onshore motion and gravity causing offshore motion) are 

balanced. It is argued that the null-point will be located in deeper water for larger wave energy. 

bottom slope or smaller sediment density and size (Cornaolia, 1977). 11mvever, many other 

predictions of this model have been proven to be incorrect (flor example the prediction that coarser 

grains move offshore and finer grains onshore) and so it should be used with much care (Koinar. 

1998). 
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2.3.4.6) SCALE DEPENDENCE OF DEPTH OF CLOSURE 

Data set limitations (Chapter 1) clearly influence the spatial and temporal scales of an investigation. 

Spatial scales are typically more restricted than the temporal; for example four cross-shore profile 
lines are measured at Duck, N. Carolina over the medium-term (Lee et al, 1995). The study of Dc 

through time at any site, however limited, will nevertheless give insight into its behaviour. 

Prominent investigations are those which study event-dependant closure (as erosional and 

accretional cases) and time-interval closure (as periods of I years) using data from Duck, 

N. Carolina, USA (Larson and Kraus, 1994; Nicholls et al, 1996; Nicholls and Birkemeier, 1997; 

Nicholls et al, 1998a; Nicholls et al, 1998b). 

Studies which have concentrated upon closure on the event-scale have shown that, of those 

measurable cases, Dc is generally deeper during erosive periods (here the profile change is 

classified as erosional when the nearshore bars moved offshore) (Nicholls et al, 1998a). During 

these periods it was also concluded that the deepest Dc is observed during the most energetic wave 

events 16 in addition to profile translation. The range of observed Dc values and the corresponding 

controls are : 

1. erosive cases show Dc to be in the range 2.7m to 7.8m below NGVD (using a6 cm criterion) 

and under the control of pre-storm morphology; 
2. accretional Dc is in the range 2.1m to 5.2m below MLW 17 (using a6 cm criterion) and is under 

the primary control of shoaling, rather than breaking, waves; and 
3. annual closure has a range of 5m to 8m below MLW and represents an integration of 

accretional and erosional processes. 

It has been found that the temporal-dependence of closure is such that as the temporal period 
increases, Dc increases. This is illustrated in Table 2.8 which shows that percentage of cases which 
close over a time period of t years (within the cross-shore data limits); a decrease in the closing 

cases suggests that fewer cases exhibit Dc within the data limits i. e. it moves offshore. 

16 as would be expected from the Hallenneier (1977,1978) model 17 MLW = Mean Low Water = 42 cm below NGVD 
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TIME 
PERIOD (yrs) 

% CASES CLOSING 
(using 6 cm criterion 

1 65 
2 60 
4 44 
8 3 

Table 2.8. Percentage of time-interval Dc at less than 8m water depth, for two cross-shore profiles 

located at Duck, N. Carolina, USA, as a function of time interval (from Nicholls et al, 1998). 

It is therefore shown that Dc is temporally-dependent. To allow calculation of Dc over t years 
Eq. 2.3 has been developed, producing an analytical expression, Eq. 2.6 (Stive et al, 1992): 

d,,. 
t = 2.28H,,, - 68.5( (Eq. 2.6) 

where d,,, = the Dc over t years; 
H,. t= the non-breaking significant wave height that is exceeded 12 hours per t 

years, (100/730t)% of the time; 

T,.,, = the associated wave period; and 

g= the acceleration due to gravity. 

Our understanding of the De concept has therefore evolved substantially in the last decade; it is 

now apparent that the time-dependence of Dc cannot be ignored and values are worthless unless 

accompanied by a corresponding time period. 

2.3.4.7) PRACTICAL APPLICATIONS OF THE DEPTH OF CLOSURE CONCEPT 

There are numerous applications of Dc in the field. The four main ones are discussed below: 

1. Beach nourishment projects. 
This is perhaps the most common the use of Dc. One of the major considerations to be 

taken when designing such a project is the determination of the required volume of material; 

sufficient volume must be placed to nourish both the sub-aerial and sub-aqueous beach (Davison et 
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al, 1992). It is therefore necessary to know the depth to which the profile will develop after the fill 

material is deposited. The lower limit of the active profile is given by Dc, and it is important that 

the depth is as accurate as possible as subtle differences will result in large differences in fill 

material volume; for every Im difference in Dc there is approximately a9 to 12% variation in the 

beach fill estimate (Hansen and Lillycrop, 1988). De is incorporated in a translation method in 

which the volume of material required is calculated by 'translating' the entire representative profile 

seaward by a dimension equal to the desired berm width. The seaward boundary of the translation 

is given as Dc. The minimum fill material volume is therefore the volumetric difference between 

the original and translated profile. When using the translation method over the standard design an 

approximate increase of 60% in fill material is required, hence showing the importance of the 

incorporation of an accurate value of Dc in such projects (Hansen and Lillycrop 1988). It should 

also be noted that the development of the profile in the seaward direction will slow down with time, 

though it is not yet possible to accurately predict when the process will stop. 

Beach nourishment is also carried out by the construction of mounds at depth. It has been 

found that there are two positions at which they can be placed; active and stable. Placement in the 

active zone provides material for onshore feed. The use of Hallermeiers (1981) zonation of the 

sub-aqueous profile has enabled a conservative estimate of these two positions to be determined, 

allowing coastal protection schemes which use mounds to have a more beneficial effect than has 

been the case in previous years (Hands and Allison, 199 1). 

2. Coastal models. 
As previously mentioned, the deten-nination of shore response to changing sea-level can be 

performed using a model based on the Bruun model (1962). Hands (1981) predicted a response of 

the profiles to the changing water levels of the Great Lakes where Dc was shown to represent the 

depth to which the profile no longer responded to these changes; at Lake Michigan profile response 

was evident to a depth of 9m over a6 year period (Hands, 1977). An estimation of the height of 

the profile response was obtained through the summation of Dc and the average backshore height. 

Other examples of the inclusion of Dc in coastal models are: 

1. the small-scale beach response model of Edleman (1968). This model is based on pre- and 

post-storm profiles from the Holland coast and equated Dc (see Table 2.5) to the breaking 

depth; and 
2. the medium-scale beach plan shape model of Willis and Price (1975). Dc (see Table 2.5) was 

found, from wave basin studies, to be approximately equal to twice the breaking depth. 
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However, Dc was shown to be constant in practise 18 and so was assumed to be constant in this 

model i. e. independent of wave height. 

It is important that the Dc value used in the model is as accurate as possible, so requiring precise 

bathymetric surveying/ prediction techniques. If the Dc in such a model as used on the Great Lakes 

was to be inaccurate then the profile response of the shoreface to changing water levels would be 

over/under-estimated. 

3. Extraction of marine aggregates. 
Extraction of marine aggregates is a growing industry, in addition its reverse, marine 

disposal, could be seen to increase in intensity as land fill sites are used up. It is therefore 

important that any activities of this kind are conducted sufficiently seaward of Dc so that the 

natural processes which act within the coastal system are unaffected. Examples of the processes 

which could be affected are: 

sediment transport, both on- and offshore. The removal of marine aggregates within the active 

littoral zone could result in a reduction of natural feed for the shore which in turn will result in 

coastal retreat; 
2. wave refraction. This would result in a wave shadow shoreward of a hole and wave 

concentration at elevated regions; and 

3. wave reflection. This would tend to shelter the shore contained in the wave shadow of either a 
hole or mound. 

All these effects will act not only upon the immediate shore but also that surrounding it; a well- 
known example of the effect of the reduction of natural marine feed to the coast line is that of 

Hallsands, South England, in which the whole village fell to the sea (see section 1.1). The effect of 

these two industries can be minimised by restricting the activity to areas seaward of Dc. 

Field surveys of the inactive/active zone 
The application of Dc also extends to the location of nearshore wave gauges and similar equipment. 

It would be advisable to place the gauge seaward of Dc as almost all surface waves will be 

19 e. g. experiments performed at Worthing Beach, UK revealed that shingle movement did not occur seaward 
of the 10 rn water depth during winter periods (short-scale). The authors took the assumption that if 
sediment was not moved during these high-energy periods, then this depth limit could be used over all 
scales. As the results of this study and work after 1975 indicate such an assumption is dangerous and 
invalid. 
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unbroken here and so waves incident to the littoral zone will be accurately measured, in addition 
the equipment will not be influenced by significant changes in bottom elevation. The concept also 
becomes important when planning hydrographic surveys, both near- and off-shore. For those 

nearshore, the survey should extend out to DC so that complete coverage of the active zone is 

obtained, whilst for those offshore, equipment should be sufficiently sensitive to detect small 

changes in the bathymetry so that the survey data is of high enough accuracy. 

2.3.5) LONG- AND GEOLOGICAL TERM MORPHODYNAMIC BEHAVIOUR OF THE 

SHOREFACE 

It has been shown using modelling techniques (Stive and De Vriend, 1995; cf. Wright, 1995) that 

over scales equal to and greater than the large-scale, the entire shoreface profile is active. However 

the response of the dynamic profile will take place at different temporal scales; the lower shoreface 
has a longer response time than the upper. This implies (Cowell and Roy, 1998) that the lower 

shoreface controls macro-scale problems which are important to coastal management issues e. g. 

shoreline position. It is therefore important that knowledge of the large- and geological-scale 

shoreface behaviour exists. However, bathymetric and process-based data sets are such that 

shoreface characteristics over these scales can not be observed. Rather, they can be inferred from 

existing knowledge used in conjunction with geological measurements e. g. core borings, and large- 

scale modelling efforts. 

The most promising models for this task (cf. Buijsman et al, 1998a) are the behaviour-orientated 

models (BOM) listed below: 

1. the Advection Diffusion Model (ADM) of Niedoroda etal(1995); 

2. the Panel model of Stive and De Wend (1995); 
3. the Aggregated Scale Morphological Interaction between a Tidal inlet system and the Adjacent 

coast model (ASMITA) of Stive et al, 1997); and 
4. the Shoreface Translation Model (STM) of Cowell etal(1995). 

The characteristics of these models both differ, for example the STM is a continuum model whilst 
the ASMITA a box model, and correlate, for example the ADM and ASMITA have the same three 

transport terrns (advection; diffusion; slope-dependent). These long-term models take different 

assumptions when calculating the coastal evolution over 10 to 10 3to6 years. For example Stive and 
De Wend (1995) take the assumption that the shoreface zones respond to the forcings at different 
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rates, as inferred by Wright (1995). Meanwhile the ASMITA (Stive et A 1997) takes the 

assumption that each of the morphological elements within it have a beginning equilibrium state 

which after disturbance (by, for example, sea-level rise) will subsequently be re-attained. 

Although comparisons between observed evolutions 19 and that computed are not in 100% 

agreement, these models add invaluable knowledge to our understanding of the long-term 

shoreface behaviour as they provide confidence in the processes which are used to predict the 

observed behaviour. Examples of the differences which exist are : 

1. the ADM underestimates the Holocene beach progradation at Haarlem, The Netherlands; and 

2. the Panel model overestimates the middl4f shoreface slope of the Subboreal/Subatlantic 

evolution. 

In order to further improve the model results it is important that the parameters, if changed, are 

done so to a realistic setting and are based upon sensible assumptions. This is because, although 

final results may be correlate more closely with observations, the new parameters may not be valid 

in practise. Indeed, any model can be improved by changing its values and relative importance of 

dynamics and inputs; for example a study validating four coastal dynamic models found that all the 

results agreed well with the chosen 20 observed shoreline behaviour after the values of model 

settings were changed (cf. Symytkiewicz et al, 1997). This danger has been avoided in at least one 

of the models; although the Panel model (Stive and De Wend, 1995) did not agree 100% with 

observed evolutions (see earlier), changes to the model dynamics and inputs were not made 

because the authors were concerned about the lack of relevant data. 

All the models show that the shoreface is active over the long- and geological-scales in response to 

various forcings. For example the ADM shows that the cross-shore profile i) straightens with an 
increasing rate of sea-level rise and hydrodynamic forcing; and ii) exhibits more curvature with an 
increase in sediment input and grain size. 

The use of these models to predict the long-term morph6dynamic behaviour of the shoreface has a 

potential impact upon the understanding of Dc. As already discussed (section 2.3.3 and 2.3.4) 

knowledge of this morphodynamic concept is concentrated upon the short- and medium-scales as a 

result of data limitations. This understanding could be extended to the long- and geological-scales 

19 as determined from, for example, historical waterline position data and 14C gradients (Stive and De Vriend, 
1995) 
20 the two harbours of Kolobrzeg and Wladyslawowo, Poland. 
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not only through the analysis of long-term data sets (e. g. the JARKUS data set) but also through the 

use of models such as the ADM. Indeed, preliminary investigations have been performed on the 

evolution of Dc from time scales of I year to 10 000 years (Nicholls et al, 1998c). Three 

environmental inputs (sea-level rise; hydrodynamic intensity; sediment input) have been changed 

over this time period and the resulting effects upon the Dc of an equilibrium profile analysed. It is 

shown that for all three scenarios, as the time period increases then so does Dc such that, after 100 

years, the profile is active to, at a minimum, the lower shoreface, as illustrated in Figure 2.11. 

After 10 000 years the profile is active to the shelf This reinforces the previous conclusions that 

De is a time-dependent concept (see section 2.3.4). 

A new approach to the problem of long-term coastal modelling has been derived taking as its basis 

the concept behind the primary-scale relationship (De Vriend, 1991) (section 2.2). It is termed the 

$coastal tract cascade' and provides a 'framework for the aggregation of process and spatial 

dimensions in modelling low-order (10 2 to 10 3 years) coastal change" (Cowell et al, 2000). The 

aim of the cascade is to enable the correct application of existing BOM (see earlier) by 

distinguishing those processes significant to the modelling of coastal change and those which act as 
boundary conditions or noise. The coupling of the knowledge of the important processes and the 

models characteristics will potentially result in the more widespread, correct application of BOMs. 

Although the cascade does not significantly aid towards the extension of existing predictability 
limits the comprehensive combination of spatial- and temporal-concepts has produced a protocol 
for model application to site-specific coastal problems. 
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Figure 2.11. Closure evolution's following changes in three environmental inputs of the ADM 

model. The inputs are; sea-level rise (SLR); hydrodynamic intensity (HYD); and sediment supply 
(SED) (taken from Nicholls et al, 1998c). 
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3) THE DATA SET: JARKUS 

3.1) INTRODUCTION 

As stated in Box 1.2, it is the aim of this thesis to deten-nine the medium- and large-scale 

characteristics of the shoreface morphodynamic behaviour through time and space. In order to 

achieve this, a large-scale data set, with sufficient temporal and spatial resolution was required. 
Accessibility and resolution details led to the use of the large-scale JARKUS data set (Table 1.2) 

which contains cross-shore bathymetric profiles for the entire Netherlands coast. The JARKUS 

data set was initially collected by RIKZ for coastal zone monitoring and management purposes, so 

ensuring adequate coastal defence policies were implemented e. g. the 1990 'dynamic preservation 

policy' (de Ruig, 1998; "section 1.1). The qualities of this data set e. g. measurement accuracy, has 

subsequently resulted in its incorporation in many coastal research projects (e. g. WiJnberg, 1995; 

van Rijn, 1995; 1997; Marsh et al, 1998). All the details of the JARKUS data set are now 
discussed. 

3.2) TEMPORAL AND SPATIAL RESOLUTION 

3.2.1)INTRODUCTION 

The spatial and temporal resolution of a data set is one of its most important characteristics and 

could pose a problem over all scales. For example poor temporal resolution represents few 

measurements through time within the measurement period and will result in an inadequate data 

set. Similarly a poor spatial resolution could also incur problems; two measurements across a cross- 

shore profile at for example, the shoreline and I km offshore over a time period t, will,, whilst 

providing information about the evolution of these two points, not enable details to be derived 

concerning the characteristics across the entire shoreface. 

The JARKUS data set is one of the few available long-term data sets (Table 1.2) which, for the 

purpose required in this study, has a good spatial and temporal resolution. This data set has two 

sections, both of which have a shoreward cross-shore boundary represented by the fore-dune. The 
difference between them is a result of the cross-shore distance from the shoreward to seaward 
boundary and the spatial and temporal resolution. Details of both sections are given in Table 3.1. 
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Examples of the two sections are given in Figure 3.1, where the difference in the seaward boundary 

is clearly shown. It should be noted that preliminary investigations within this study, focusing 

upon the identification of the depth of closure (Dc; Box 1.4) led to the dominant use of the 

extended profiles. These investigations found that the short profiles did not extend sufficiently 

seaward to identify Dc I. 

TE MPORAL SPATIAL 
EXTENT RESOLUTION EXTENT*' CROSS-SHORE 

LONGSHORE 
RESOLUTION *2 

SHORT 1963- 1 year dune to 5m near waterline 
PROFILES present minimum 20 m remaining 
(JARKUSs) 0.8 km shoreface/ 

offshore 0.25 km 
EXTENDED 1965- 5 years to cluneto 5m near waterline 

('DOORLODINGEN') 1997 1990 minimum 20 m upper/mid 
PROFILES 3 years to 2.5 km shoreface 
(JARKUSE) 1997 offshore 40 rn lower shoreface/ 

I I I 1km 

*1 The details of the spatial extent give the minimum distance offshore. The more recent 

profiles extend beyond this for example measurements of the extended profiles do occur up to 4 krn 

offshore. 
*2 The resolution details are for the majority of profiles. There is however a general trend 

that the more recent profiles have a greater cross-shore resolution over the shoreface e. g. 10 to 20 

in cross-shore spacing. 

Table 3.1. Details of the JARKUS data set. 

I when using the sddc self-selecting tail method; Chapter 5 
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Figure 3.1. Examples of the two sections of the JARKUS data set for profile kin 77; a) the short 

data; and b) the extended (doorlodingen) data. Data is from 1970. 

3.2.2) TEMPORAL RESOLUTION 

The temporal resolution of the JARKUS data set ranges from I to 5 years; annually for the short 

profiles and 3 to 5 yearly for the extended profiles (Table 3.1).. As this research focuses upon the 

medium- and large-scale, the lack of short-scale resolution does not pose a problem. Indeed, such 
information regarding the morphodynamic behaviour of a wave-dominated shoreface can be 

obtained from existing short-scale studies (e. g. Snedden et al, 1998; Chapter 2). However, a 

preliminary investigation into the short-scale morphodynamic behaviour of the Holland shoreface 

was undertaken using a process-based model (Chapter 5 and 8). 

The cross-shore bathymetric profiles are typically surveyed (relative to NAP 2) in the spring and 

summer months, as illustrated in Figure 3.2. This implies that there is a potential for seasonal bias 

as it is generally accepted that, in wave-dominated environments, the spring and summer months 

are typically less stormy than the autumn and winter months, (Komar, 1998; Lee et al, 1998). This 

2 NAP = Normal Amsterdams Peil which is approximately equal to Mean Sea Level. 
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is shown in Figure 3.3 which gives the significant wave height for a mean year between 1979 and 
1991, as recorded at one of the wave stations off the Holland coast. Additionally profiles which 
have been surveyed in a more than average stormy spring could resemble those surveyed in a less 

than average stormy winter. However, as the focus of this work is on the medium- and large- 

scales, seasonal bias should not play a role in the trends observed over these scales; the 

morphodynamic behaviour investigated occurs over temporal periods greater than seasonal 

changes. In addition, preliminary investigations showed that the profiles undergo steady 

morphodynarnic changes over these time periods, rather than abrupt ones indicating that there is no 

seasonal effects. Even if seasonal bias were to be a factor the methods chosen to analysis the data 

(Chapter 5) will remove it. 

3.2.3) SPATIAL RESOLUTION 

The spatial resolution of JARKUSs, E 
3 (Table 3.1) needs to consider both longshore and cross-shore 

spacing. The longshore spacing of the cross-shore profiles is marked by a permanent base of beach 

poles known as the RSP ('Rijks Strand Palen lijn') reference line. The poles are numbered relative 

to their distance from Den Helder (Figure 1.4) and within this study each profile is labelled 

according to this distance. For example km 81 represents the profile located 81 krn south of Den 

Helder at Noordwijk aan Zee. JARKUSE profiles longshore spacing of I km is sufficiently 

adequate to investigate the shoreface morphodynamic behaviour of the Holland coast between 

Callantsoog (krn 16) and Schevingen (krn 97) (see Chapter I and 4). 

As shown in Table 3.1, the cross-shore resolution varies from the waterline (5 m) to the seaward 
boundary (40 m) of the profile. In order that all profiles have the same cross-shore spacing, 

selected at 20 m, between consecutive measurements, the interpolation method of cubic splining 
has been used. The cross-shore spacing has proven to be adequate for identifying the shoreface 
behaviour, particularly on the middle and lower shoreface where a horizontal change of 20 m 

typically represents a vertical change of no more than 0.1 m. 

3 JARKUS,.,,, = short and extended data sets 
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year 
km 65 70 75 80 85 90 93 97 65 70 75 80 85 90 93 97 

16 5 5 2 5 7 5 8 10 76 4 8 10 7 5 3 8 
17 5 5 2 5 7 8 8 10 77 5 8 10 7 5 3 8 
18 5 5 2 5 7 8 8 10 78 5 8 10 7 5 3 8 
22 4 5 2 6 7 8 9 79 5 8 10 7 5 3 8 
23 4 5 2 7 7 8 9 80 5 8 10 7 5 3 8 
24 4 5 2 7 7 8 9 81 6 8 10 7 5 3 8 
25 4 5 2 10 7 8 9 82 10 8 10 7 5 3 8 
27 4 5 2 10 9 8 7 83 10 8 10 7 5 3 8 
28 4 5 2 10 9 8 7 84 10 8 8 7 5 3 8 
29 4 5 2 10 9 8 6 85 10 8 8 7 5 3 8 
30 4 5 2 10 9 8 6 86 10 8 8 7 5 3 8 
31 3 5 2 10 9 8 6 87 6 8 8 6 5 3 8 
32 3 5 2 10 9 8 6 88 6 8 8 6 5 3 8 
33 3 5 2 10 9 8 6 89 9 8 8 6 5 3 8 
34 3 5 2 10 9 8 6 90 6 8 8 6 5 3 8 
35 3 5 2 10 9 8 6 91 6 8 8 6 5 3 8 
36 3 5 2 10 9 8 6 92 6 8 8 6 5 3 8 
37 3 5 2 10 9 8 6 93 6 8 8 6 5 3 7 
38 3 5 2 10 9 8 6 94 6 8 8 6 5 3 7 
39 3 5 2 10 9 8 6 95 6 8 8 6 5 3 7 
40 3 5 2 10 9 9 6 96 6 8 8 6 5 3 7 
41 3 5 2 10 9 9 4 3 97 6 8 8 6 5 3 7 
42 3 5 2 10 9 9 4 3 
43 3 5 2 10 9 9 4 3 
44 3 5 2 10 9 9 4 3 
45 3 5 2 10 9 9 4 3 
46 3 5 2 10 9 9 4 3 
47 3 5 2 10 9 9 4 3 
48 3 5 2 10 9 9 4 3 
50 3 5 2 10 9 9 4 3 
51 4 5 2 10 9 9 4 3 
52 4 5 2 10 9 9 4 3 
53 4 5 2 10 9 9 4 3 KEY : 
57 4 5 2 9 10 9 3 3 
58 4 5 2 9 7 9 3 3 
59 3 5 2 9 7 9 3 5 jan 
60 3 5 2 9 7 9 3 5 2 feb 
62 3 5 2 9 7 10 3 7 3 mar 
63 3 5 2 9 7 10 3 7 4 apr 
64 3 5 2 9 7 10 3 7 5 may 
65 3 5 2 9 7 10 3 7 6 jun 
66 3 5 2 9 7 10 3 7 7 jul 
67 3 5 2 9 7 10 3 7 8 aug 
68 3 5 2 9 7 10 3 7 9 sept 
69 3 5 2 9 7 10 3 7 1u Oct 
70 3 5 2 9 7 10 3 7 11 nov 
71 3 5 2 9 7 10 3 7 dec 
72 - 4 8 10 10 5 3 7 
73 4 8 10 10 5 3 9 no data 
74 4 8 10 7 5 3 9 
75 4 8 10 7 5 3 9 

Figure 3.2. The month of surveying for each profile for the period 1965 to 1997. The shadings are 

made according to the season of surveying. It can be observed that the majority of measurements 

are taken in the spring and surnmer months. 
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.............. 

6 10 12 
month 

Figure 3.3. The mean annual significant wave height for the period 1979 to 1991. Taken from 

station YM6 (see Section 4.3). It is clear that the spring and summer months are generally least 

stormy and the winter is highly stormy. 

3.3) MEASURING TECHNIQUES AND MEASUREMENT ACCURACY 

The cross-shore bathymetric profiles of JARKUSSIE are composed of both sub-aerial and sub- 

aqueous parts. The former covers the dune and beach whilst the latter the active zone and 

shoreface (this study only uses the sub-aqueous parts). Details of the measurement techniques and 

the resulting measurement accuracy have been taken from discussion with users of the data set 
(Wijnberg, 1999) and in the case of the latter from translated Dutch reports and the summaries of 
Wijnberg and Terwindt (1995). 

3.3.1) MEASUREMENT TECHNIQUES 

The nature of the sub-aerial and sub-aqueous environments demands that different techniques are 

used to measure the bathymetry. These methods have evolved since 1963 in step with 
technological advances. The techniques used in the two cross-shore parts are : 

1. Sub-aerial. Levelling was initially used until 1977. Since this time, until very recently, 

photogrammetry was employed. Laser altimetry is now used after tests and evaluation proved 

successful; and 
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2. Sub-aqucous. Ship-based echo-sounding has been used since 1963. However the original 

DECCA4 positioning system has been replaced with GP Sý, 5. 

It should be noted that a new measurement technique is currently being tested at Egmond aan Zee 

(krn 42) as part of the KUST 2000 projece. This technique is capable of measuring both the sub- 
7 

aerial (from the dune foot) and the sub-aqueous (to a maximum depth of approximately 6m). It is 

known as the WESP ('Water En Strand Profiler') (Plate 3.1) and has the potential of producing 
highly accurate bathymetric measurements (approximately 0.02 m). The WESP can be regarded as 

the European sister of the American CRAB (Coastal Research Amphibious Buggy) (Birkemeier 

and Mason, 1984). 

3.3.2) DATA SET ACCURACY 

It is important that the measurement accuracy of the JARKUS data set is known so that not only 

can one be sure that the correct analysis is being used, but also so that one can be confident that a 

real bathymetric change has occurred. 

The measurement accuracy of JARKUSs+,, is documented to be 0.25 m. This has been derived 

from both analysis of the JARKUS data set and the stochastic and systematic errors which arise 
from the measurement techniques. These errors (Table 3.2) were used in the study of Nanninga 

(1985) to calculate a measurement accuracy of 0.25 m. It has also been shown that the sounding 

accuracy of the depth values is approximately 0.15 m which increases to 0.25 m when ship- 
dependant errors are taken into account, for example errors such as those which arise when 
detennining the sea surface elevation relative to NAP (Wijnberg and Terwindt, 1995). 

The measurement accuracy has also been calculated within this study (Chapter 5) using a differeni 

approach; the standard deviation value of all the bathymetric measurements of one cross-shore 

profile i. e. 1965 to 1997, was calculated. This was repeated for all longshore profiles. The 

resulting standard deviation value was less than, or equal to, 0.25 m, and consistent with a vertical 

measurement accuracy of 0.25 in; bathymetric changes of this value represent a 66 % confidence 
that a real change has occurred in the bathymetry. 

4 DECCA = positioning system based upon the triangulation of long-wave radio signals 3 GPS = Global Positioning System based upon satellite technology 
6 KUST 2000 = the research project of RIKZ which aims to improve morphodynamic knowledge of the 
Dutch coast 
7 depending on the wave height at the time of measurement 
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ERROR EXPLANATION 
water level measured and calculated from ordnance level to the 

water surface at the ship position 
squat result of falling water around a moving ship 

zero line difference between transducer and sea bottom 
waves and swell 

incorrect positioning 

Table 3.2. Stochastic and systematic errors, as included in the study of Nanninga (1985). 

3.4) SUMMARY 

The spatial and temporal resolution and extent of the accurate (0.25 m) JARKUS data set has 

meant that it is particularly suitable for this study. The analysis of 81 km of cross-shore 
bathymetric profiles has enabled the shoreface morphodynamic behaviour (to a depth of 
approximately 15 m) of the Holland coast to be investigated over a 32 year period. 
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* 

Plate 3.1. The 'WESP' (Water En Strand Profiler) 
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4) THE STUDY AREA: THE HOLLAND COAST 

4.1) GENERAL INTRODUCTION 

One of the few large-scale data sets in existence is the JARKUS data set (Table 1.2; Chapter 3). 

The accessibility of this data, in combination with its temporal and spatial resolutions and extent, 
led to its selection for use in this study. The JARKUS data set covers the entire Netherlands coast 

which is essentially divided into three sub-systems (Figure 4.1) each of which has distinct 

characteristics : 

1. the northern Dutch Wadden Sea coast which is made up of a series of barrier islands, large 

inlets and active tidal delta regions; 
2. the central 'closed'(i. e. uninterrupted by tidal inlets) Holland coast; and 

3. the* southern Delta Region coast which is made up of large active and inactive tidal delta 

regions due to the natural and anthropogenic opening and closing of the coast. 
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Figure 4.1. The Netherlands coast (taken from Dijkman el al, 1990). 
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It is the second sub-system, the closed Holland coast (Figure 1.3) which is studied here (section 

1.1). It is bound in the north by the Marsdiep, a tidal inlet which has considerable influence on 

coastal behaviour due to the presence of a large ebb tidal shoal, from km 0 to, approximately, krn 

12, as observed from bathymetric profiles. In the south, the Rotterdam Waterway acts as a 
boundary between the closed coast and Delta Region; the Waterway causes the deposition of 

sediment directly to the north in the dune, breaker and active zones due its interruption to longshore 

drift (De Ruig and Louisse, 1991; Van Rijn, 1995a, 1995b). This concave coast faces the southern 

part of the North Sea. At present the Holland coast is prograding in the centre and retreating in the 

north and south. The progradation is interpreted to be the result of onshore sedi ment exchange 

from the shelf and shoreface to the surf zone (Wiersma and Van Alphen, 1988; Stive, 1987,1989, 

1990). Regradation in the north is due to sediment loss through the Marsdiep Inlet to the Wadden 

Sea and in the south due to net northward longshore losses enhanced by the Rotterdam Waterway 

(Dijkman et al, 1990; Stive et al, 1990; Van Rijn, 1995a, 1995b). 

More specifically it is the shoreface between Callantsoog (krn 16) and Schevingen (krn 97) which 

is taken as the study area (Chapter 1). Hence the shoreface of a wave-dominated, uniform 

coastline backed by dunes and uninterrupted by tidal inlets (e. g. the Marsdiep Tidal Inlet) is 

investigated. Major morphologic characteristics are; i) multiple bars located along the coastline 

obliquely to the shore and; ii) shoreface-connected ridges found in the centre of the coastline (krn 

35 - 65). Anthropogenic features are the Hondsbossche and Pettermer seawall (km 20 - 26) and 

limuiden harbour moles (krn 55156), in addition to relatively minor beach nourishment's. This 

chapter aims to describe all relevant characteristics of the study area, as outlined above. 

4.2) GEOLOGICAL HISTORY: HOLOCENE EVOLUTION 

The Holocene evolution of the Holland coast, as surnmarised in Figure 4.2, is described below. 

At the end of the last ice age, the melting of the ice sheets induced the rapid sea-level rise which 

ultimately resulted in the fast transgression of the coastal barrier. The North Sea began to flood 

reaching the Dutch coastline around 7500 BP'. The coastline at this time was located 

approximately 25 km west of its present position (Zitman et al, 1990). Subsequently, east- and 

south-ward migrating back-barrier lagoons were established which were separated from both i) the 

precursor of the present Wadden Sea by a Pleistocene high (the Texel High) and ii) the southern 

I BP = Before Present 
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Delta Region by the Rhine-Meuse Delta (de Boer et al, 1997). These features are assumed to have 

acted as sediment divergence points upon which longshore transport was superimposed (Stive et al, 
1999b). During this sea-level rise the coastline retreated. 

Around 5000 BP the rate of sea-level rise gradually decreased, reaching its present value. At the 

same time the rate of sediment supply became constant resulting in the sedimentation of the tidal 

basin. Tidal inlets progressively closed from north to south, until 3200 BP when the last major inlet 

(the Bergen Inlet) closed, ending the east-west directed tidal flow. At this time, the sediment 

supply to the back-barrier lagoons ceased and the barrier began to prograde into an 8 krn wide 

'closed' (see 4.1) system upon which the Older Dunes were formed. These changes caused 

shoreface steepening (Beets et al, 1992); a process argued to still be continuing today (Stive et al, 

1990) (Figure 4.3). Simultaneously to barrier progradation was the retreat of the two headlands by 

erosion; since 2000 BP the Rhine-Meuse no longer acted as a sediment source. In addition, 

washovers and breakthroughs caused the Texel High to develop into a sink for the south and a. 

source for the Wadden Sea (Stive et al, 1999a). From 1000 to 400 BP (Zitman et al, 1990) the 

Younger Dunes, which today back the present coastline, were formed on top of the Older Dunes. 

The main events in the late Holocene evolution were therefore; 

the transformation from an open, tidally-dominated coast to a closed, wave-dominated coast in 

the Subboreal; and 

2. the change in the barrier movement from transgressive to regressive in the late Atlantic/early 

Subboreal (Beets et al, 1992). 

This evolution was controlled by the interaction of i) hydrodynamics, which determined rate and 

direction of sediment transport; ii) rate of sea-level rise; and iii) the morphology of the 

transgressional surface. The combination of ii) and iii) primarily determined the location of 

sediment sources and sinks (Beets et al, 1992). 
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GEOLOGICAL TIME YEARS YEARS SEA- EVENT IN COASTAL 
BP AD LEVEL EVOLUTION 

PLEISTOCENE 

10000 

PREBOREAL 

9000 -25m 8700 BP: S. North Sea 
formed 
8300 BP: connection 

H BOREAL between S&N North Sea 

8000 -15m 5500 
7800 BP: coastline 

0 BC 
approx. 25 krn west of 
present location 

7000 
on average, L coastline retreats 

ATLANTIC & barrier isles 
6000 formed in east of 

country 

5000 -4.5m 
_j 
5000 BP: interconnection 

3850 of barrier isles in east; 
BC formation of old dunes; 

mouth of Rhine active; 
coastline 8 krn east of 

4000 -3. Om present location & 

SUBBOREAL advancing 

3200 BP: closure of 
Bergen Inlet 

3000 
1 100 -1.7m coastal advance 
BC to end & retreat 

begins; Rhine 
2000 mouth inactive 

-1.0m AD 
+ 500 AD: breakthrough 
of dunes in south 

SUBATLANTIC 1000 +I 100 AD: breakthrough 
of dunes in north-west 
+ 1000 - 1600 AD: 
formation younger dunes 

0 1987 NAP 

Figure 4.2. Time table with the main events in the development of the Dutch Coast 

(Zitman et al, 1990) 
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Figure 4.3. Typical behaviour of the shoreface showing the processes of shoreface steepening 

(taken from Stive et al, 1990). 

4.3) PRESENT HYDRODYNAMIC CHARACTERISTICS 

4.3.1)BACKGROUND 

Tile hydrodynamic climate of the Netherlands (from the Wadden Sea to the Delta Region) has been 

monitored since 1979: 

I. wind direction and speed have been measured at hourly intervals and are available for the 

period 1979 to 1995; and 

2. wave parameters (direction; height; period) have been measured at 3-hourly intervals and are 

available for the period 1979 to 199 1. 

There are three stations which are relevant to this study; 1) ELD (Eierland); 2) MPN (Meetpost 

Noordwijk); and 3) YM6 (Umulden-06). Their positions along the Holland coast are shown in 

Figure 4.4. The second station originally used wave poles (which measure ýýater level fluctuations 

using ail array of vertical sensors) whilst ELD and YM6 used latter wave-rider buoys, all were 

replaced by directional wavec buoys between 1985 and 1989. Wind data is only mailable Ior NA16 

and is measured at a land station. The details of the three stations are given in Table 4.1. 
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Figure 4.4. Position of-the three measurement stations used in this study (as shown by the stars). 
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EIERLAND IJMUIDEN06 MEETPOST 
(ELD) (YM6) NOORDWIJK (MPN) 

MEASUREMENT waverider/ waverider/ wave pole/ 
DEVICE wavec wavec wavec 

WATER DEPTH 26 m 21 m 18 m 
RECORD 1979- 1979- 1979- 

LENGTH WAVE 1991 1991 1991 
CLIMATE 
RECORD 1979- 1979- 1979- 

LENGTH WIND 1995 -1995 1995 
CLIMATE 

WIND STATION De Kooy/Den Umuiden MPN 
Heider (land . semaphore (offshore 

station) (land station station) 

Table 4.1. Some properties of the data sources of the presented wave and wind climate (after 

Wijnberg, 1995). 

4.3.2) WIND CLIMATE 

The mean speed (1979 to 1995) suggests that the wind speed is greatest in the winter season 
(November to February) (Figure 4.5) and the dominant wind direction is from the south-west 

(Figure 4.6). The analysis of wind data (1905 to 1980) from three Dutch light vessels revealed that 

the i) annual wind climate (direction; velocity) has changed slightly; ii) wind direction has changed 
by a few degrees to the north and; iii) wind velocity has increased by approximately I ms". In 

addition, the frequency of occurrence of onshore winds has decreased by a few degrees, whilst the 
highest percentage of occurrence of the Beaufort Scale has increased from 3 to 4 (Hoozemans, 

1990). 

- 120 
Ch E 

80 

40 

c 
3r 

0 20 time (weeks) 40 60 

Figure 4.5. Mean annual wind speed for the period 1965 to 1995, taken from station YM6. It can 
be seen that the wind speed is greatest in the autumn and winter months. 
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Figure 4.6. Wind direction for the station YM6 a) for the period 1979 to 1995; and b) the nlean of 
the period 1979 to 1995. Tile dominant wind direction can be seen to be from the south-west. 

4.3.3) WAVE CLIMATE 

The wave environment is mainly controlled by the wind climate (Figure 4.7). The annual mean 

wave height is 1.2 m (associated wave period 5 sec. ) whilst the extreme annual wave height is 5.3 

m (associated wave period 7.7 sec. ) (Roskani, 1989). The wave climate is similar alongshore-, 

deviations in wave height from north to south are in the order of 0.2 ill (Figure 4.8). Waves mainly 

approach the coast from the south-west and north-north-west (Figure 4.9a); this directional 

spectrum is similar alongshore (Figure 4.9 b and c). 
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Figure 4.7. Tile relation between tile mean annual wave height and wind speed for the period 1979 

to 1990/5, taken from the station YM6. It can be seen that the wa\ e climate is mainly controlled by 

the wave cliniate . 
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cu 

4 month 

Figure 4.8. The mean annual wave height for the period 1979 to 1991 taken for all three stations, 

ELD; YM6; and MPN. 

Seasonal variation is apparent in the wave chniate; wave height is greatest in the winter montlis 

(Novernber to February) than in the surnmer (April to ALIgLISt); 1.63 in and 0.87 in respectively 

(station YM6). 
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Swell is present in the wave climate as energy found in the low-fi-equency part of' the spectrum 

(0.03 to 0.10 Hz) and forms approximately 20% of the wave energy spectrurn. In addition, the 

contribution of swell to the wave climate is a little greater in the north (Figure 4.10) and there is a 

decrease in swell conditions to the South (per. comm. Roskarn, 1998). 
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Figure 4.9a. Directional wave spectf-U111 for station YM6 for a) all years in the period 1979 to 

1991 ý and b) the mean of the years 1979 to 1991. It can be seen that waves mainly approach the 

coast from the SOLIth-WeSt and north-north-vvest. 
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Figure 4.9b. Directional wave spectrUrn lor station ELD for a) all years in the period 1979 to 1991, 
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Figure 4.9c. Directional wave spectrum for station MPN for a) all years in the period 1979 to 

1991; and b) the rnean of the years 1979 to 1991. It can be seen that waves mainly approach tile 

coast from tile south-west and north-north-west. 
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Figure 4.10. Mean annual low-frequency wave height (swell) for the period 1979 to 1990 taken 
from the stations ELD, YM6 and MPN. It can be seen that the largest waves are observed in the 

autumn and winter months. In addition, the contribution of swell to the overall wave climate is 

greatest in the north of Holland, decreasing to the south. 

4.3.4) TIDES 
I 

The Holland coast is micro-tidal; the tidal range varies alongshore decreasing from 1.7 m in the 

south to 1.4 m in the north. Tidal currents are generally orientated parallel to the coastline 
(Wiersma and Van Alphen, 1988). Flood currents in the north dominate slightly over the ebb 

currents in the south; approximately 0.8 ms" and 0.7 ms" respectively resulting in residual 

velocities of the order of 0.1 ms-1 directed to the north (Van Rijn, 1997). Tidal currents are 

asymmetric alongshore, although the character of the asymmetry does vary (Figure 4.11). 

4.3.5) SEA-LEVEL CHANGE 

It is shown that there is currently a sea-level rise at a rate of 0.20 rn per century. Predicted 

scenarios give an expected rise of 0.60 rn per century and a pessimistic rise of 0.85 rn per century 
(Louisse and Kirk, 1990). 
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Figure 4.11. Tidal curves along the Holland coast for the stations of MPN and YM6 (taken from 

Wijnberg, 1995). 

4.4) PRESENT MORPHOLOGICAL AND SEDIMENTARY CHARACTERISTICS 

4.4.1) INTRODUCTION 

As described in Section 4.3, the Holland coast has a particularly uniform hydrodynamic 

environment in the longshore. Similarly it has a uniform morphodynarnic and, to a smaller extent, 

sedimentological environment. This environment consists of a sand barrier system which is fronted 

by the beach and active zone which contains a nearshore bar system composed of 2 to 3 bars 

(Short, 1992). However, unlike the hydrodynamic environment, localised features do exist. This 

section will discuss all features, taking the most shoreward first. 

4.4.2) THE SUB-AERIAL SYSTEM 

4.4.2.1) DUNES 

The most dominant feature of this part of the Holland coast is the dune system which acts as a 
barrier between the sea and low-lying land. With the exception of the coastal stretch dominated by 
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the Hondsbossche and Pettertner seawall (km 20 - 26), the entire Holland coast is backed by dunes. 

The dune system width varies from 0.1 km to more than 5 km and a mean maximum height of 20 

to 30 m (although an extreme height of 50 m has been recorded). It has been shown (Stive et al, 
1996) that the decadal behaviour of the dune/beach interface is correlated with both the 

reoccurrence frequency of the migratory nearshore bar system (see section 4.4.3) and the 

cumulative effects of the episodic wave events. 

The majority of the dunes are under the influence of anthropogenic controls which act to stabilise 

and so decrease sediment loss (cf. de Ruig, 1998). One example of dune stabilisation is that of the 

planting of dune grass. In addition, schemes have been implemented where inlets are created within 

the dunes and a lagoon formed (Helmer et al, 1996; Waten-nan et al, 1998); such an experimental 

scheme has been introduced at km 3 1. 

4.4.2.2) BEACH 

The beach system is typically- defined as including both the sub-aerial beach and the active zone 

(Short, 1992). The latter contains the nearshore bar system, which' is the most significant 

morphodynamic feature of the beach system and is described in Section 4.4-3. The state of the sub- 

aerial beach is, as with the active zone, controlled by the wind waves generated in the North Sea. It 

is typically 43 rn wide and has a mean slope of 1: 15 (Stive et al, 1996). Sediment budget studies 

(see section 4.4.4) have shown that the beach acts as a sediment source in Noord-Holland and a 

sediment sink in Zuid-Holland. 

4.4.3) THE SUB-AQUEOUS SYSTEM 

4.4.3.1) THE ACTIVE ZONE: THE NEARSHORE BAR SYSTEM 

Multiple bars are present along the entire alongshore distance of the Holland coast (with the 

exception seaward of the Umuiden harbour moles (km 55156)) and extend to a maximum depth of 

approximately 8 rn. (Figure 4.12). The shape and number (two to five) of bars vary alongshore; it 

appears that a gentle beach slope results in a greater number of bars (De Vroeg el al, 1998). It has 

been suggested (Bakker et al, 1998) that the relative distance between the breaker bars is regulated 
by the resonance systems of long-periodic waves; surf beat 2 (Symonds et al, 1982). 

2 Breaking of alternating high and low waves results in a shoreward directed pulse of varying strength. The 
surf zone water reacts by an oscillation of the wave group period resulting in the generation of standing 
waves whose amplitude increases shoreward. The oscillation amplitude depends on whether the surf beat 
period agrees with the resonance frequency to which the breaker bar system is tuned. 
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Hence the breaker bars react more to the wave climate than the instantaneous wave characteristics. 
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Figure 4.12. Bathyrnetry of active zone showing breaker bars. 

The bar system passes through a three stage cycle during its existence which has also been 

observed at other locations e. g. Terschelling, The Netherlands (Ruessink, 1998): 
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1. generation close to the shoreline, during which the bar may remain within the inner 0.3 km of 
the nearshore bar system for several years; 

2. net seaward propagation through the active zone up to 1.3 krn offshore. The seaward 

propagation of the bar results in the cross-shore redistribution of sediment, and is orientated 

obliquely to the shoreline at a small angle (De Vroeg, 1987). Mathematical analysis of coastal 
behaviour, which takes the breaker bars to be seaward propagating sandwaves with straight 

crests, has enabled the derivation of some characteristic values for breaker bars as shown in 

Table 4.2 (Bakker and De Vroeg, 1988); and 
I degeneration at the seaward boundary of the active zone. Degeneration is an irreversible 

process and can be observed through the lowering of the bar crest rather than the infilling of 

the landward located trough. This stage of the cycle appears to act as the iniation of a new 

cycle i. e. experiments at Terschelling show that when the mean water depth over the crest of 

the outer bar is greater than approximately 5.5 m, the most inner bar enters Stage 2 of the cycle. 

COASTAL MAX DISTANCE PERIOD MEAN PROPAGATION 
AREA AMPL MAX. AMPL. (yrs) DISTANCE VELOCITY 

FROM BETWEEN (m/yr) 
COASTLINE CRESTS (angle) 

(m) (m) 
Bergen - 0.90 400 ca. 20 400 < 28 
Urnuiden (00)1 

Zandvoort - 0.65 330 4 225 57 
Noordwijk I I_ _(20)2 Noordwijk - 0.50 250 5 300 62 

Scheveningen 
1 

(00)1 

I: measured perpendicular to the crest (seaward is positive) 
2: positive angle = opening to the south 

Table 4.2. Average calculated characteristic values for breaker bars for some coastal areas (from 

Bakker et al, 1998) 

Morphologic analysis of available cross-shore profile data (JARKUSs) has also revealed 

alongshore differences in the decadal morphologic behaviour of the bars; five regions were 
distinguished bound by anthropogenic structures (Wijnberg, 1995). The investigation, performed 

using the data-reduction technique of eigenfunction analysis, showed i) different time scales of bar 

96 



Decadal morphodynamic behaviour of the Holland shoreface 
4) The Study Area 

migration; and iii) the along- and cross-shore migratory patterns. The two main multiple bar 

regions observed in the study area of this research (kni 5- 55 and krn 57 - 100) (Figure 4.13) both 
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Figure 4.13. The two main multiple bar regions along the Holland coast observed usifIL! 

eigenfunction analysis (taken from Wijnberg, 1995). 

97, 

co ID 10 -D I ýo 10 
a) ý! TTTa, T ýn - 

(jeaA) awil (JeaA) awil 



Decadal morphodynamic behaviour of the Holland shoreface 
4) The Study Area 

undergo the three stage cycle described earlier, however they do migrate offshore at different rates. 
The morphological cycle repeats every 15 years in Noord-Holland (krn 5- 55) and every 4 years in 

Zuid-Holland (km 57 - 100). This three stage behaviour over these time scales has also been 

observed in the nearshore bar zone of Terschelling, The Netherlands (Ruessink and Kroon, 1994). 

The mechanism of the cyclic behaviour contains a strong morphologic feedback indicating that no 

cyclic external forcing is required; it is hypothesised that the cyclic behaviour is governed by the 

outer bar. This has been observed in model simulations of coastal behaviour investigating the 
differing influences of forcing induced behaviour and internal dynamics (Aarninkhof el al, 1998; 

Hinton and Aarninkhof, 1998). 

4.4.3.2) THE SHOREFACE: CHARACTERISTICS 

The shoreface (Box 1.1; Figure 1.1) is an important section of the coast (Chapter 1). The sediment 

transport processes which occur upon it are wave-dominated at the shoreward boundary and 

tidally-dominated at the seaward boundary (see section 2.3.2). The position of the shelf/shoreface 
boundary dictates the shoreface slope and varies alongshore, decreasing from approximately 10 

km offshore in the north and south to 2.5 krn in the centre. Therefore, the mean shoreface slope is 

steepest in the central Holland coast; gradients are of the order of 1: 200 as compared to those of 

1: 700 in the north and south (Van Alphen and Damoiseaux, 1989). Long-term studies (e. g. Stive et 

al, 1990) have inferred that the shoreface slope is increasing and this has led to concern that this 

could ultimately result in the unden-nining of the Holland coast. Sediment budget studies (see 

section 4.4.4) have shown that the shoreface acts as a sediment source for, the Holland coast; 
however the net longshore transport means that this sediment is ultimately transported northwards. 

4.4.3.3) THE SHOREFACE: THE SHOREFACE-CONNECTED RIDGES 

Shoreface-connected ridges are located offshore from the central Holland coast (Appendix 4.1). 

The ridges are located at the transition between the inner shelf and shoreface in water depths 

typically from 14 to 15 m (NAP). The height of the ridges varies between I and 6 m, the 

wavelength between I and 4 km and ridges are typically between 10 and 35 km long. 

The shoreface-connected ridges slowly migrate in the direction of the flood current (northwards) at 

a rate of approximately I myf" (Van de Meene, 1984), and are associated with the large-scale (see 
Table 1.1). It has been suggested, from studies based upon other, similar, shorefaces, that the 
individual ridges have a direct effect on shoreline behaviour in the vicinity of the intersection of the 

ridge with the shoreface over the long-term (Everts, 1985; Rine and Ginnsburg, 1985). It has been 

shown, through observational and modelling techniques, that the ridges are of a sufficient 
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morphodynamic scale to influence the flow around them. Over the large-scale, the residual pattern 
is dominated by the northwards directed dominant flood current and a persistent density-driven, 

shoreward directed residual current flow close to the bed (Van de Meene, 1984). 

4.4.3.4) THE SHOREFACE: THE NATURAL TERRACES 

A localised shoreface characteristic is that of two natural terraces 3 located at krn 15 approximately 
0.6 krn seaward and extending to 3 krn offshore (Figure 4.14). The terraces are found at water 
depths of 10 and 13 rn (NAP), the shallowest of which is called the 'Pettermer Polder'. It is 

suggested that they are produced by a 4000 year old erosion- resistant clay and peat layer deposited 

during the Holocene evolution of the Holland coast (Bakker et al, 1998). Surface sediment 

samples show the terrace to be covered by relatively coarse sand (Eisma, 1968; Wiersma and Van 

Alphen, 1988). Strong currents (> 20 cms' are required to erode both these sediment classes 

(Graf, 1971). 

4.4.4)SEDIMENT CHARACTERISTICS AND BUDGET 

4.4.4.1) SEDIMENT CHARACTERISTICS 

The shoreface sediments are non-cohesive, medium- to well-sorted and have a median grain size of 

0.150 to 0.300 mm (Eisma, 1968; Van Alphen el al, 1990; RGD, 1998). The upper Im of 

sediment is generally f iner to the north of Umuiden (0.150 to 0.2 10 mm) than to the south (0.2 10 to 

0.300 mm) (RGD, 1998), as shown in Appendix 4.2 which shows the upper Im of sediment along 

the Holland coast. This main grain size boundary coincides with i) a general change in grain size 
in the sands on the shelf seaward of the shoreface; ii) a decrease in beach gradient to the north; and 
iii) the presence of the harbour moles. Points i) and ii) suggest that south of Umuiden only small 

amounts of reworked sands are present, with most sands coming from the sea (Eisma, 1968). An 

area of relatively coarse sands (0.5 to 2 mm) is found seaward of Petten; the Pettermer Polder 

(Wiersma and Van Alphen, 1988). 

3 Here a terrace is defined as an almost flat area attached to the shoreface, with a minimum surface area of I 
km and standing proud of the adjoining slope on its seaward side by more than several metres (Van Alphen 
and Damoiseaux, 1989). 
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Within the two sub-sections of the Holland coast (north and south of Umuiden) there appears to be 

no distinct alongshore trend of sediment characteristics, as observed in previous studies e. g. Short 
1 

(1992). Detailed analysis of cross-shore transects at six locations (km 23; 45; 53; 66; 81; 100) 

from 1964 indicate that there is a cross-shore trend. The grain size decreases from the surf zone to 

deeper water until at a depth of 10 to 13 m (NAP). Here a zone of bimodal, finer sands exist 

parallel to the coastline. Below 15 m (NAP) the bottom sands become coarser (Wiersma and Van 

Alphen, 1988). This grain size pattern has been explained using two hypothesis; i) as a result of 

the eroding shoreface (Wiersma and Van Alphen, 1988), and ii) as a result of the winnowing effect 
in the breaker zone and intense tidal currents concentrating the coarser material on the upper and 
lower parts respectively, and rip-current 'fall-out' concentrating the finer material in the middle 

parts (Eisma, 1968; Swift, 1976). 

Comparison of samples taken from the same location at different times clearly show- seasonal 

variation in grain size (Figure 4.15). This could also go some way to explaining the differing 

sediment characteristics north and south of Umuiden; the detailed grain size distribution map of the 

RGD is composed of cores ragging over the last 40 years (per. comm. RGD). The relatiyýlyjarge 

variation in grain size could also be related to the fact that the analysed samples are surface samples 

which are largely influenced by the local hydrodynamic climate. 
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Figure 4.15. Temporal variation of the median grain size in the cross-shore direction (taken from 

Wijnberg, 1995). 

4.4.4.2) SEDIMENT TRANSPORT AND ASSOCIATED BUDGET 

The studies discussed in the following are those relevant to this study as they focus on the 

medium/large-scale shoreface behaviour. It should be noted that the majority of these studies are 
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written in Dutch, and so where translation has not been possible summaries are taken from the 

reports of Van Rijn (1995) and Wijnberg (1995). 

Sediment transport and the associated sediment budget of the Holland coast, has been the subject of 
much research over the last decade. These investigations based upon the sediment transport of the 
closed coast have shown that the dominant cross-shore transport is onshore-directed and the 
dominant long-shore transport is northwards-directed (Roelvink et al, 1990; Van Rijn, 1995; 
Walstra et al, 1998). An important conclusion which can be drawn from such work is that the 

shoreface acts as a significant source of sediment to the active zone in which the majority of the 
longshore transport occurs. It should also be noted that the northward longshore transport also 
occurs in deeper water resulting from tidal currents, for example net annual rates 

* 
at depths of 

approximately 20 rn vary in the range 25 to 73 in 3 M" I yf" (depending on the location along the 

coast) (Walstra et al, 1998). Transport rates are greater in shallower waters; there is a sharp 
increase in cross-shore transport towards the 8 rn depth contour as a result of increasing wave- 
induced streaming and short-wave asymmetry. The longshore transport also increases here, 

resulting from wave-domination in the form of breaking waves (Roelvink et al, 1990). 

A number of studies have been carried out on the sediment budget and associated changes along 
the Holland coast, as shown in Table 4.3. It is not possible to compare the detailed results of these 

studies, only the general ones; for example the erosive/accretionary behaviour of different sections 

along the coast. This is the result of different along- and cross-shore boundaries being used to 

identify the control volume; for example Ruig and Louisse (1991) divided the cross-shore into 

three zones (dune and beach, breaker and shoreface) whilst Van Vessem and Stolk (1990) 

considered the cross-shore profile as a single unit. 

The general trends which are drawn from past studies are surnmarised below: 

1. the dune region is generally gaining sediment, through entrapment by dune management 

activities, although north of Umuiden they also undergo erosion over short distances; 

2. the beach region undergoes accretion south of Urnuiden and erosion in the Noord- Holland; 

3. the active zone exhibits alternating accretory/erosive behaviour along the coast (a result of it 
being the most active zone); and 

4. the shoreface undergoes net erosion along the entire Holland coast. 
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STUDY BASIS CORREC LONG- CROSS-SHORE RESULTS 

-TION* 9 SHORE ZONES 
AREAý 

De Ruig JARKUS yes krn 0 -118. km. 0- 118 = balance 
(1989) database(') calculation dune & beach - accretion 

1963-86: km s every I surf (0 - 0.8 km - 0 erosion(*) 
0-102 km offshore) 

1975-86 : km shoreface (0.8 - 
(0) 0 erosion 

102-118 2.5 krn offshore) C) accretion km 50 - 
60) 

Van JARKUS yes kmO-118 upper boundary km 0- 118 balance 
Vessem database(') divided maximum km. 0- 55 erosion 
& Stolk 1965-1984 into measured height km 56 - 118 accretion 
(1990) km, 0- 55 in year 

km 56 - lower boundary 
118 maximum 

measured depth in 
year 

De Ruig JARKUS yes kmO- 118 upper boundary = km 0- 118 =balance 
& database( 1)(2) 

most landward km 0- 40 = erosion 
Louisse 1963-1990 measurement km 40 - 90 = accretion 
(1991) lower boundary = km 90 - 118 = erosion 

most seaward 
measurement 

also : 
dune & beach accretion 

breaker erosion 
lower shoreface erosion 

Van JARKUS yes kmO-118 beach&surf(+3- km 0- 118 for beach& 
Rijn database(') -3 m) surf = erosion 

(1997) 1964-1992 middle shoreface km, 0- 50 = erosion 
(-3 - -8 m) krn 50 - 60 = accretion 

lower shoreface km 60 - 108 = erosion 
8- -20 m) km 108 - 118 = 

I I accretion 
Hinton JARKUS yes km 16 - 97 km 16 - 97 = erosion 
(1998) database (1)(2). dune (I st dune to - P- accretion 

1970-1990 +3 m) 
beach (+3 - -1m) 
surf (4 - -8 m) erosion 

middle shorcface 
(-8 - -12m) 

lower shoreface 

Key : (1) = annual data set; (2) = five-yearly data set; *= correction for beach nourishment 
Table 4.3. Summary of sediment budget studies of the Holland coast. 
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Considerable accretion has also been shown to be occurring immediately north and south of the 

Umuiden harbour moles, whilst in neighbouring sections erosion is apparent. 

4.5) ANTHROPOGENIC INFLUENCES 

4.5.1) COASTAL PROTECTION 

The Holland coast has been influenced by numerous hard and soft coastal protection schemes since 
the 16 th century, (as shown in Figure 4.16) in an attempt to ensure that i) the low-lying land (much 

of which is under sea level) remains free from flooding; and ii) the coastline remains at its 1990 

position (de Ruig, 1998). 

4.5.1.1) THE HONDSBOSSCHE AND PETTERMER SEAWALL (km 20 - 26) 

This is the largest hard protection scheme and was originally built in the middle of the 16'h century. 
It has since been relocated to a more landward position due to the erosion of the adjacent dune 

system; the last relocation was in 1823 (Wijnberg, 1995). Bathymetric measurements show that the 

seawall protrudes 0.1 km seaward from the present coastline. 

4.5.1.2) GROYNES 

Groynes have been built on eroding parts of the coastline. Within the study area they are found 

both seaward of and attached to either end of the Hondsbossche and Pettermer seawall. These were 

constructed from the late I 91h century to early 20"' century. The groynes have a length of 

approximately 0.2 km and are found with a typical alongshore spacing of 0.2 km. Integration of 

the mean erosion of protected and unprotected coastal stretches of erodin g beaches which become 

more and more protected with groynes, show that the building of the groynes reduced coastal 

erosion (Bakker et al, 1998). However, those groynes seaward of the seawall are ineffective in 

directly influencing sediment transport due to their location relative to the natural beach line (Short, 

1992). 
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Figure 4.16. Location of coastal protection sclie"Ies. 
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4.5.1.3) BEACH NOURISHMENT 

With the demand for more environmentally friendly coastal defences, coupled with technical 

developments in the dredging industry and groyne and seawall schemes becoming more expensive 

than sand fills, artificial beach nourishment has become the most important coastal defence 

measure in the Netherlands since the 1950's (Roelse, 1990). Beach nourishment projects along the 

Holland coast commenced in 1969. For the period 1969 to 1997, twenty-seven beach nourishment 

projects having a total volume of 17.74 x 10 6 rn 3 have taken place. The details of these schemes are 

shown in Table 4.4. 

LOCATION PROFILE VOLUME YEAR/ 
NAME LOCATION (106 M3) PERIOD 

Callantsoog km 10 - 14 0.05 1969 
0.35 1976-1977 
0.47 1979-1980 
1.3 1986 
1.0 1991 
0.7 1994 

Zwanenwater km 13 - 19 3.2 1986 
1.85 1987 

Petten km 20 - 26 1.89 1971 
0.01 1987 
0.2 1993 

Bergen aan Zee km 32 - 34 0.01 1982 
0.1 1989 

0.45 1990 
Egmond aan km 37 - 39 1.5 1976 

Zee 0.87 1977 
0.33 1985 
0.2 1988 

0.32 1990 
0.56 1992 

Wijk aan Zee km 37 - 39 0.22 1991 
Bloemenclaal km 62 - 63 0.26 1990 

aan Zee 0.5 1995 
Zandvoort km 65 - 67 0.2 1994 

0.8 1996 
Noordwijk aan km 80 - 81 0.2 1997 

Zee 
Wassenaar_ km 96 0.2 1996 

Table 4.4. Nourishment projects in Holland 1969 - 1997 (taken from Roelse (1990) and 

unpublished data of RIKZ (1999)). 
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4.5.2) OTHER ENGINEERING WORKS 

The closed Holland coast is interrupted by one major anthropogenic structure; the Umuiden 

harbour moles (km 55/56), as shown in Plate 4.1, act to 'cut' the coast into two distinct sections. 
The aim of these moles is to prevent sedimentation in the shipping channel. The 1.5 km long 

moles were first constructed in the period 1865 to 1879. In the period 1962 to 1967 the northern 
mole was extended by a further I km and the southern by 1.5 km. Since construction, the coastal 

region to the north and south of the harbour moles has undergone considerable accretion as a result 

of interruption to the northwards longshore transport. Plans have been developed (Waterman et al, 
1998) which accelerate the sediment accretion to the south of the harbour moles by creating a new 
dune and beach system. These plans also include the development of a large yachting marina, 
tourism and recreation centre, fresh water lake and a new nature reserve (as shown in Figure 4.17). 

LAND SEA 

freshwater lake 

residential area 

car park 
new beach system 
backed by dunes 

tourist and 
recreation centre 

yachting marina 

southern harbour 
mole 

Figure 4.17. Schernatisation of the recent plans to develop south of the Umuiden harbour moles 
(taken from De Ruig, 1998). 

(1 
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h 

considerable accretion 
due to interruption of 
northwards longshore 
transport 

Plate 4.1. The Umuiden harbour moles (km 55/56) 

northwards 
longshore 
transport 
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5)METHODOLOGY 

5.1) INTRODUCTION 

The JARKUS data set comprises a vast quantity of bathymetric data (Chapter 3) for example, at a 

minimum, one cross-shore profile will have a total of 960 values. Hence methods need to be 

selected which can : 

1. adequately deal with the large quantity of data without producing results which are biased by 

outlying values; 

2. reduce the data to a manageable size; 
3. produce results indicative of shoreface morphodynamic behaviour; and 
4. allow for an understanding of the driving processes to be reached. 

The results from the analysis undertaken should therefore enable research objective one and two 

(section 1.3) to be achieved : 

Determine the temporal and spatial variability of the 

morphodynamic behaviour of the Holland shoreface, over the 

medium- and large-scales (years to decades). 

Determine the causes and controls upon the shoreface 

morphodynamic behaviour along the Holland coast over the 

medium- and large-scales. 

However, there also exists a need to develop techniques capable of predicting the observed 
behaviour. This need is greatest when i) a coastline has little bathymetric data with which to 

observe behavioural trends; and ii) predictions are required beyond existing data limits. Therefore 

this study also tests available techniques for the prediction of shoreface behaviour in order to meet 

research objective three (section 1.3): 

Evaluate the ability of existing models to predict shoreface 

morphodynamic behaviour 
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In addition observed trends are projected beyond the data limit (32 years) i. e. from the large- to 

geological-scale so that the fourth research objective (section 1.3) can be met: 

Examine how the shoreface behaviour may evolve beyond the data 

limit 

This chapter describes and critically analyses all the methods used in this research. ' They are 
divided into two categories; i) observation techniques; and ii) predictive techniques. 

5.2) OBSERVATION TECHNIQUES 

5.2.1) INTRODUCTION 

These techniques were primarily selected to identify depth of closure and so significant depth 

changes on the upper shoreface (Box 1.4; Figure 1.8). As preliminary results emerged, this 

research developed into a study of the entire shoreface (within the data limits) meaning that the 

techniques must also be successful in identifying middle'and lower shoreface behaviour. 

For the purpose of this study shoreface behaviour is 'defined within this study as either active or 
inactive. This categorisation of shoreface behaviour is dependent upon the change criterion 

selected e. g. if the bathymetric change from to to tj was less than the selected change criterion, x, 

then the shoreface behaviour is inactive. The change criteria are selected according to the 

measurement accuracy, so whilst activity could be observed if using a smaller change criterion, it 

will could result from measurement error rather than actual bathymetric change. 

Two methods have been selected to identify shoreface behaviour and are discussed in the following 

sections. (Further evaluation of these methods is given in Appendix 5.1). The analysis was 

performed for all available profiles over a range of temporal periods; 5,10,15,20,25,28 and 32 

years within the period 1965 to 1997. 

5.2.2) STANDARD DEVIATION OF DEPTH CHANGE METHOD 

The standard deviation of depth change, or sddc, method originated from the work of Kraus and 
Harikai (1983) who used it to identify the depth of closure at Oria Beach, Japan. It is a simple 

method particularly effective in dealing both with large data sets and removing bias from outlying 
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values. The effectiveness of the method increases as the number of profiles increase, reducing the 

error influence e. g. an sddc calculation over 20 years uses five sets of years (1965; 1970; 1975; 

1980; 1985) whilst over 5 years two sets (1965; 1970) are used. In order to eliminate errors the 

maximum number of sddc values are calculated for each temporal period and the average taken in 

order to eliminate errors. This is illustrated in Table 5.1 which gives the combination of years 
used for each temporal period in order to produce the maximum number of sddc values. Hence 

errors which may be introduced through the use of a small number of years in one calculation (e. g. 

the period of 5 years) will be reduced through the calculating the mean of the maximum number of 

combinations of years (e. g. the period of 5 years has a maximum combination of 5 sets of years). 
Alternatively, errors which may be introduced by only using one combination of years (e. g. the 

period of 20 years has a maximum combination of I set of years) will be reduced by including a 
large number of years in one calculation (e. g. the period of 20 years has 5 sets of years in one 

calculation). 

TEMPORAL 
PERIOD 

(yrs) 

YEAR COMBINATION (Y. C. ) SDDC 
VALUE 
USED 

5 1965-1970; 1970-1975; 1975-1980; 1980-1985; 1985-1990; (F, (Y. C. ))/ 
10 1965-1975; 1975-1985; 1970-1980; 1980-1990 (E(Y. C. ))/4 
15 1965-1980; 1970-1985; 1975-1990. (F, (Y. C. ))/3 
20 1965-1985; 1970-1990. (E(Y. C. ))/2 
25 1965-1990. (l(Y. C. ))/l 
28 1965-1993. (Y. (Y. C. ))/l 
32 1965-1997. (F, (Y. C. ))/l 

Table 5.1. The combination of years used for each temporal period in order to produce the 

maximum number of sddc values. The final sddc value is calculated from the mean of the all the 

available sddc values (calculated from the combination of years above). 

The sddc method is implemented by calculating the 'variation in the standard deviation of elevation 

... as a function of the cross-shore distance for x number of profiles from the same alongshore 
location'. This is illustrated in Figure 5.1. 
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CROSS-SHORE YEAR STANDARD 
DISTANCE DEVIATION (m) 

65 70 75 80 85 90 20 years 

100 (A) xxxxx S13100 = (A + B) 
(B) xxxxx 2 

200 (A) xxxxx SD 200 (A + B) 
(B) xxxxx 2 

2500 (A) xxxxx SD2500 (A + B) 
(B) xxxxx 2 

Figure 5.1. The principle of the sddc analysis. Sddc values are calculated from the appropriate 

years within the chosen temporal period, in this instance 20 years. They are calculated for each 

possible combination at each cross-shore location. The sdde value used to observe the shoreface 
behaviour is calculated form the mean of the combinations. 

Once the sdde values were calculated, it then, remained for the locations of 'activity' and 
'inactivity' to be identified. This was performed by plotting all sddc values in the cross-shore and 
then applying two identification techniques: 

1. a seýr-selecting, constant yet non-zero tail, Figure 5.2a. When this tail is observed, it is 

concluded that the shoreface is inactive. However, the point at which the shoreface is observed 

to become inactive could be argued to be subjective and so a second method was used, as 
described below; 

a fixed standard deviation value, Figure 5.2b. Inactivity is identified when the standard 
deviation falls below a fixed value; in the example given a value of 0.25 in is used which 

represents a 66% confidence that a real change in the bathymetry has occurred. This takes the 

assumption that the data measurement errors are normally distributed with a standard deviation 

of 0.25 m (section 3.3). Two additional values have been used; 0.5 m and 0.75m which 

respectively represent a 95% and 99% confidence that a real bathymetric change has occurred. 
It is important that more than one criterion is used as it will ensure that a real bathymetric 

change is observed. However, the 0.75m cases were not investigated further after preliminary 
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analysis showed that in the majority of cases, even the active nearshore bar system would be 

considered inactive using this value (Figure 5.3). 

0.9 < AC11VE INACTIVE 
0.8-- 

closure b) 
0.7-- 

_0.6 

., 0.4-- 
W 0.3-- 

0.2 ------------------- --- - -- --- ------- -- 
0.1 

0t 
0 0.5 1 1.5 2 2.5 

distance seaward (km) 

Figure 5.2. The two identification techniques used in conjunction with the sddc analysis are 
illustrated here using two examples of profiles along the Holland coast. a) is the self-selecting, 

constant yet non-zero tail and b) the fixed standard deviation value. 

The observed variation in standard deviation in the nearshore zone mainly relate to bar 

morphodynamics whilst those further offshore equate to shoreface morphodynamics. 
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0.8-- fixed tail value 
------- --------- --------------------------- 

EO. 6 
'00.4 

0.2 - 

0- ----1iII 
0 0.5 distaInce seaw arlým) 

2 2.5 

Figure 5.3. The use of the standard deviation fixed tail value 0.75 m results in the majority of 

profiles being defined as inactive. 

5.2.3) FIXED DEPTH CHANGE METHOD 

The fixed depth change, or fdc, method was originally used in studies to identify depth of closure 
(e. g. Nicholls et al, 1996). It was easily adopted in this study to identify shoreface 

activity/inactivity. Two profiles are taken from the same location, but different years, and when the 
depth variation between them is less than, or equal to, the selected criterion then the shoreface 
behaviour is classified as inactive. This is illustrated in Figure 5.4. The three change criterion of 
the sddc fixed standard deviation value were used here; 0.25 m; 0.5 m; and 0.75m (see Section 

5.2.2). 

Though this method has proved successful in identifying the shoreface behaviour, as shown 

through the comparison of the sddc and fdc results, it does have two major drawbacks. The first 

originates from the fact that it depends upon comparison between only two profiles; an error in one 

or both can result in an inaccurate classification of the profile behaviour. Although the impact of 
this error is reduced by using the maximum number of combinations of years for each temporal 

period, and then taking the mean, this problem cannot be entirely eradicated. The second drawback 

is that as this method is highly sensitive to the depth values of the two profiles, each combination 

may produce different depths which are active/inactive. This problem is overcome by classifying 
the behaviour based upon the activity of the majority of profiles. 
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Figure 5.4. Example of the use of the fixed depth change method 

5.3) PREDICTIVE METHODS 

5.3.1) INTRODUCTION 

The ability of two existing models designed to predict shoreface morphodynamic behaviour has 

been tested within this study. This has been done through the comparison of observed (as derived 

using the methods of Section 5.2) and calculated values of activity/inactivity. In addition the 

observed behaviour is projected beyond the data limits. The techniques used are discussed in the 
following sections. 

5.3.2) HALLERMEIER (198 1) MODEL 

The analytical Hallermeier (1981) model is used to calculate one particular part of shoreface 
behaviour, the depth of closure. It was developed from a critical sediment entrainment factor in the 

form of a Froude number in order to calculate the maximum water depth for nearshore erosion by 

extreme wave conditions, or Dc. The development of this model is shown in Section 2.3.4 and it is 

the time-dependent form, Eq. 2.6 which is used in this study. 

The hydrodynamic input required for the model takes the form of i) the non-breaking significant 

wave height that is exceeded 12 hours per t years (100/730t)% of the time; and ii) the associated 

wave period. This data was taken from three hydrodynamic measurement stations off the Holland 
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coast; ELD; YM6; and MPN (see Section 4.3). Preliminary analysis using the routine of Westlake 

(1995) and the data of YM6 showed that it is not necessary to transform the data to a shallow water 
(near breaking) time series according to linear wave theory; Figure 5.5. 

year 
C) CD C'4 r, - Co Co 00 Co viý Co (000 Pco 

Co cc, 0,0 Co C» (» - 
-E- 

C» mmm C) C» C» C» C» 

0 

-10 

with ccrrecdm 
wWmLt cciTecäcn 

-11 ....... dfference 

Figure 5.5. Comparison between the output of the Hallenneier (1977,1978) model for two 

scenarios; with (solid line) and without (dot-dashed line) the shallow water correction for the 

annual period. It can be seen that there is little difference between the outputs (black line). 

Calculations of Dc are made for three temporal periods; 1; 5; and 10 years. As with the sddc 

method, the maximum number of combinations possible are used for each temporal period and then 
the mean calculated; this is illustrated in Figure 5.6 which takes the example of the 10 year 
temporal period. DcI, 5 and 10 values were calculated for each of the three stations and then 

alongshore smoothing was performed. This produced a Dc value for each alongshore profile so 

allowing the observed value of Dc for each profile to be compared with a predicted value of Dc for 

the corresponding time period. 
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TIME PERIOD Dcio Dcio VALUE 
USED 

1979-1988 >a 
1980-1989 >ba+b+c+d 
1981-1990 >C4 
1982-1991 >d 

Figure 5.6. The method of calculation for the Hallenneier (1981) model. Values are calculated 
from the appropriate years within the chosen temporal period, in this instance 10 years. They are 

calculated for each possible combination. The Dc value used is then calculated from the mean of 
the combinations. 

5.3.3) UNIBEST-TC MODEL 

UNIBEST-TC is a process-based model capable of reproducing the short-term evolution of cross- 

shore profiles, from the shoreline to the offshore boundary. Examples of the integral parts of the 

evolution are bathymetric changes and sediment transport (both cross-shore and longshore). The 

model consists of five sub-models as shown in Figure 5.7 and summarised in Appendix 5.2. 

The model's ability to predict the short- to large-scale evolution of a single (real) cross-shore 

profile was tested here through the comparison with the profile's 'observed evolution (as defined 

using the categories of 'activity' and 'inactivity'). The evolution of the selected profile (krn 8 1; see 
later section) was performed for ten 10 year periods. The bathymetric output for 12 temporal 

periods (I month; 0.5 year; I year; 1.5 years; 2 years; 2.5 years; 3 years; 3.5 years; 4 years; 5 years; 
7.5 years; and 10 years) was taken and the sddc (fixed standard deviation value) analysis 

performed. However, as the runs were observed (through comparison with the JARKUS data) to 
incorrectly predict (as illustrated in Figure 5.8) the evolution of the middle and lower shoreface this 

analysis was only performed for the upper shoreface i. e. it was only used to identify the depth of 
closure. After performing the sddc analysis comparisons between the observed Dc and calculated 
Dc for periods greater than I year were made using both the annual and extended data sets. The 

results from the analysis for the periods less than I year were used as an indication of how Dc 

evolved from the short-scale. 
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Figure 5.8. An example of the observed and calculated evolution of km 81, highlighting the 
disagreement between the evolution at the middle and lower shoreface. 
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LTNIBEST-TC does have some limitations which must be considered before conclusions can be 

-made. In addition it is important to note the model set-up and the calibrations performed. These 

are discussed below. 

5.3.3.1) MODEL LIMITATIONS 

The predictive abilities of models such as UNIBEST-TC over the long term remain relatively 

untested. Uncertainties exist regarding the quality of output if the model were to be run on the long 

term. This is the result of a lack of knowledge regarding coastal morphological development due 

to i) the strong non-linearity of the system; ii) the interaction between forcing at different scales; 

and iii) the interaction of forcing and internal dynamics of the system (see Section 2.2). In 

addition, process-based models designed on the short- and medium-term have a number of inherent 

errors. This is the result of the equations which make up the model being applicable on the short- 

term. Though insignificant on the time scales for which they have been designed, they become 

larger and more significant over the long-term. Projects, for example NICOP, are currently 
investigating the use of such models to predict long-term behaviour. 

5.3.3.2) MODEL SET-UP: HYDRODYNAMIC INPUT 

5.3.3.2. I)WAVE CLIMATE 

A 12-year (1979 - 1991) wave climate (Roskam, 1988) was used derived from 3-hourly wave 

measurements taken from the wave station MPN (see section 4.3). Different time series were 

generated, taking in to account the frequency of occurrence of various wave height classes and 
directional sectors as observed from the Roskarn climate. Consequently, the resulting realisations 
have the same statistical properties, even though the sequence of the wave conditions differs. The 

time series includes information not only on wave height and angle of incidence, but also on the 

associated wave period and storm surge level. Time series have only been calculated for wave 

angles within the incoming 180" sector. When translating the deep water time series to the seaward 
boundary of the model (at 3.5 krn offshore, equivalent to 15 m water depth), the effects of shoaling 

and refraction were taken into account. 

5.3.3.2.2) TIDE 

Tidal influences were not included in this study, although this exclusion is unrealistic in the 'real' 

world, their inclusion would have resulted in a proliferation of model runs. The expected 

morphological effects of ignoring the tide is a greater erosion close to the waterline and the 
formation of a steep berm (Southgate, 1995). 
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5.3.3.2.3) MODEL SET-UP: MORPHODYNAMIC INPUT 

Profile km 81 was used. The model grid starts at -14.9 m (NAP) and continues to +5 in (NAP). 

The horizontal grid spacing decreases towards the shore so that a higher resolution is reached in the 

active zone. This yields a total of 147 grid points. 

5.3.3.2.4) MODEL CALIBRATION 

The model has been calibrated in previous studies with emphasis placed on replicating nearshore 
behaviour (Reniers and Roelvink, 1995) through, for example comparison between predicted and 

observed behaviour. The default values within each of the sub-models have been derived from 

experiments at Terschelling, the Netherlands. For this investigation settings have been used which 

reproduce the characteristic 4 year cyclic bar behaviour observed at km 81 and reasonable 

morphologic changes across the shoreface. 

In addition, a series of computations were made to determine what time step should be used in 

order to optimise both the accuracy of results and the computational time. Time steps tested were; 
0.0625; 0.125; 0.25; 0.5; 1; 2 and 4 days. As the boundary conditions for these computations were 

sampled at 4 day intervals, chronology effects are absent and all differences attributed to numerical 

effects. As a result, aI day time step was selected for the long-term(10 years) runs. 

5.3.4) EXTRAPOLATION BEYOND THE DATA LIMITS 

Extrapolation has been used to extend the observations made of the shoreface morphodynamic 
behaviour beyond the 32 year limit of the JARKUS data set. Although this method is relatively 

simple it will enable orders of magnitude of shoreface evolution to be determined e. g. when closure 

exists on xOlo of profiles along the Holland coast. 

The assumption taken here is that: 

the large-scale coastal behaviour over temporal periods greater 

than the 32 years will not deviate from the trends observed over 

periods less than, or equal to, the 32 years. 
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Potential violations of this assumption are : 

1. variation in the future hydrodynamic climate. As introduced in Chapter 2, there are two 

schools of thought on this topic; one believes that evidence points towards an increased 

variation in the hydrodynamics, particularly in the form of storminess (e. g. Carter and Draper, 
1988) whilst the other concludes that there is no such evidence (e. g. Houghton, 199 1); 

2. variation in sea-level rise. Current. rates of sea-level rise for the Holland coast are i) at present 

0.20 rn per century; ii) expected 0.60 m per century; and iii) pessimistic 0.90 m per century 
(Louisse and Kirk, 1990); 

3. declining sediment supply from shoreface. The reduction of this supply would suggest that the 

profile would be reaching equilibrium, although it is unlikely that this will occur as current 

evidence shows variability in forcings; a condition which must be removed if equilibrium is to 

be reached. Existing investigations show that the Holland shoreface acts as a sediment supply 
(e. g. Walstra et al, 1998), changes in the supply could result in changes in the morphodynamic 
behaviour of the shoreface (e. g. a decline would result in increased shoreface steepening). 
Under these circumstances the projections made within this chapter would become void; and 

4. the occurrence of a future major anthropogenic influence. An example of such an 

anthropogenic influence is that of the 'Island-In-The-Sea', one of the options being researched 

as a new location for Schipol Airport. 

5.4) SUMMARY 

The methods discussed here, both for the obseryation and prediction of shoreface morphodynamic 
behaviour, have been successfully used in previous studies (e. g. Marsh et al, 1998). They are used 
in this research with a clear understanding of both positive and negative characteristics e. g. 
UNIBEST-TC was primarily developed for the short-term profile evolution. 
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6) OBSERVATIONS ON THE DECADAL BEHAVIOUR OF THE 
HOLLAND SHOREFACE 

6.1) INTRODUCTION 

This chapter analyses the observations of the shoreface morphodynamic behaviour of the Holland 

coast (Figure 6.1). It focuses upon research objective one (section 1.3) : 

Determine the temporal and spatial variability ofthg- 

morphodynamic behaviour ofthe Holland shoreface over the 

medium- and large-scales 

by addressing the research questions below. 

Can the depth of closure be identified on the shoreface? If so, 

what is the nature of its evolution through time and space? 

Is the concept of the depth of closure meaningful to describe the 

morphodynamic behaviour of the shoreface? 

Is the middle and lower shoreface a morphodynamically active 

region? Over what temporal and spatial scales, if any, can 

activity be observed? Is there a scale-dependency? What does 

the morphodynamic behaviour represent? 

) 
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BATHYMETRIC CROSS-SHORE PROFILES 
(taken from the JARKUS short and 

extended data sets) 
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Figure 6.1. Flow diagram showing the data-orientated approach. Analysis of the JARKUS data set 

was carried out over the medium- and large-scales. The shoreface was observed to be either active 
(fully or partially) or inactive. 

The analysis techniques used upon the JARKUS data set are such that the shoreface 

morphodynamic behaviour is defined as either 'active' or 'inactive' (Chapter 5). Previous work 
based upon the aggregation of bathymetric profiles (e. g. Nicholls et al, 1996; Garcia et al, 1998) 

suggests that there is a seaward I imit to significant depth change, or activity (Dc) on the upper 
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shoreface over the small- and medium- scales (Chapter 2). The examination of this study's results 

clearly show that this is not the case; indeed over the 5 year period, a minimum of 85%, of profiles 

exhibit closure (see section 6.2.3 for further details). This is especially true over the long-term 

(Hinton et al, 1999). In some instances, not only does the profile 1) become inactive at some 
distance x from the shore on the upper shoreface, but then 2) becomes active, usually exhibiting 3) 

inactivity towards its seaward boundary. This behaviour can be seen most clearly using the sddc 

results as illustrated in Figure 6.2. These phenomena are hereafter classified as : 

1. the shoreward closure (Dcj. The limit to significant depth change, but not the absolute limit to 

cross-shore sediment transport, as located on the upper shoreface (in water depths of 8m or 
less); 

2. the re-opening point (Ro) and associated re-opening zone; the shoreward point of significant 
depth changes which occur on the middle/lower shoreface is known as the 're-opening point'. 
The cross-shore zone in which these changes can be observed is known as the re-opening zone; 

and 
3. the middlellower shoreface closure (D,,, /, ). The seaward limit to the re-opening zone, observed 

within the data limits. 
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Figure 6.2. Standard deviation of depth change plot which clearly shows re-opening and the 
subsequent closure for time periods of 15 and 25 years (km 69). 
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The identification of the 're-opening zone' has led to the classification of four types of shoreface 
behaviour which are observed to exhibit both spatial and temporal patterns (as shown in Figure 

6.3): 

1. an inactive shoreface. No morphodynamic activity is observed seaward of Dc,; 

2. a shoreward partially-active shoreface. The shoreface is active until the middle/lower 

shoreface; 

3. a seaward partially-active shoreface. The shoreface exhibits re-opening i. e. the profile must 
first exhibit a Dc, in order to re-open and may exhibit closure towards the seaward limit of the 

profile; and 
4. a fully-active shoreface. Morphodynamic activity occurs along the entire shoreface i. e. the 

profile does not exhibit a shoreward closure. 

1.6 

1.2 

0.8 

0-4 

inactive 
o 

0 1 seaw ard distance (k, ) 2 

inactive 

-shoreward partially active 

-seaward partially active 
fully active 

fixed tail 
?w0.25 m 

3 

Figure 6.3. Sddc plot illustrating the four classifications of shoreface activity used in this study. 

The above classification is observed using both methods (sddc; fdc), the change criteria (0.25 m; 
0.5 in; 0.75 m) and is used throughout the remainder of this thesis. The outline of this chapter is 

as follows. Section 6.2 presents the results concerning the upper shoreface behaviour i. e. the 

existence, or not, of the depth of closure. Both temporal and spatial characteristics are given. 
Details are also given of the compatibility of the annual and extended sections of the data set. The 

spatial and temporal characteristics of the middle and lower shoreface behaviour are given in 

Section 6.3, including all four types of shoreface activity in addition to the seaward boundary of 

activity. The final section discusses all the results in the context of the research objective and 

questions given at the beginning of this chapter. 
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6.2) UPPER SHOREFACE BEHAVIOUR: DEPTH OF CLOSURE 

6.2.1) MTRODUCTION 

A depth of closure has been observed on the upper shoreface of the Holland coast. As already 

stated in Section 6.1, it is often preceded in the cross-shore by shoreface activity on the middle 

and/or lower shoreface and has therefore been re-classified as the 'shoreward depth of closure' 
(Dc, ). It is typically the only cross-shore phenomenon (of those stated in the previous section) that 

can be observed over short-temporal periods and the shoreface activity over longer temporal 

periods means that the Dc, may not be observed. Spatial and temporal variations of Dc, are 

apparent within the data set and are discussed in more detail in the following sections. 

6.2.2) SPATIAL BEHAVIOUR 

If one considers the entire Holland coast there is an alongshore gradient of Dc, characteristics 
(Figure 6.4). If this is examined in more detail it can be seen that there is a division of the Holland 

coast into two provinces at km 55/57, over all the temporal periods investigated. Within these 

provinces the Dc, characteristics (depth values; variance around the mean) are similar. The two 

provinces are, as shown in Figure 6.5 : 

1. Noord-Holland; km 16 to 55. This province is further divided into two at kniS5/36; and 
2. Zuid-Holland; km 57 to 97. 

Noord-Holland is the location of the deepest Dc,,; it is on average 3.5 rn deeper than that in Zuid- 

Holland (indeed the deepestvalue within Holland is located in the northern sub-division of this 

province), Table 6.1. The further sub-division of Noord-Holland is based upon the occurrence of 

closure; although depth values are similar2 to both the north and south of krn 35/36, to the north 

there are fewer occurrences of this characteristic, Table 6.2. This indicates that the upper shoreface 

of the most northern part of the studied Holland coast is the most active. The shallowest values of 

Dc., are located in the most southern part of the studied Holland coast (howeverlhe range of values 

within this province is not large). An additional difference between the two provinces is that of the 

variance of Dc.,; the greatest range of the shoreward closure is observed in Noord-Holland. These 

characteristics are quantified in Table 6.1 which clearly shows the differences between the two 
provinces. 

2 the difference in mean values (20 years) between the northern and southern province is 0.9m 
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Figure 6.4. Linear trendlines for Dc, values from each temporal period for the entire Holland 

coast; the longshore gradient is clear. The thick grey line represents the Umuiden harbour moles 

and the division between the two provinces. 

REGION 
NAME 

REGION 
EXTENT 

MEAN DEPTH 
(m) 

STANDARD 
DEVIATION (m) 

Noord-Holland km 16 - 54 7.3 0.8 
Zuid-Holland km 57 - 97 4.9 0.4 

Table 6.1. Characteristics of Dc, over a 20 year temporal period within the two main provinces. 
These values are observed using the sddc method criterion of 0.25 m. 

TEMPORAL 
PERIOD (yrs) 

5 10 15 20 25 28 32 

km 16 - 35/36 67 33 20 20 20 13 7 
km 35/36 - 54 100 94 94 71 53 35 35 

FACTOR 1.5 2.8 4.7 3.5 2.6 2.7 5.3 
_ 

Table 6.2. Occurrence (%) of Dc, in the two sub-provinces of Noord-Holland. It is clear that Dc, 

is 'more common' in the southern sub-province. Note : factor represents the multiplication factor 

from the northern to southern sub-division. These values are observed using the sddc method 

criterion of 0.25 rn. 
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Figure 6.5. Observed Dc, for all temporal periods along the Holland coast using the fixed tail sddc 

method (0.25 m change criterion). A clear division of the Holland coast into two provinces, 
Noord- and Zuid-Holland, can be seen; in the former province values are deeper and more varied 
than in the latter province. Dc, also has a lower occurrence in this region. The dashed line shows 
the division of Noord-Holland into two sub-provinces based upon the occurrence of closure; km 16 

to km 35/36 has a much smaller occurrence of Dc. than in km 35/36 to km 55. The thick line 

represents the Umuiden harbour moles and the division between the two provinces. 

6.2.3) TEMPORAL BEHAVIOUR 

The temporal behaviour of Dc, has been investigated through the examination of both its 

characteristics (i. e. depth values) and occurrence (as a percentage). The division of the Holland 

coast, as described in section 6.2.2, is supported by results concerning the temporal dependence of 

Dc, This dependence is now discussed in more detail. 

6.2.3.1) CHARACTERISTICS DERIVED FROM THE EXTENDED DATA SET (JARKUSE) 

The value of Dc, typically increases with an increasing temporal period, however deviations around 

this trend do occur as illustrated in Table 6.3. The significance of the overall temporal trend is a 
function of the technique used (Table 6.4); a strong temporal dependence of Dc, is shown by the 

correlation values calculated from observations made using the sddc fixed tail method. However 

this trend is clearly less significant when using the results of the fdc technique. 
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The difference between the results of the two methods is a consequence of the greater sensitivity of 
the fdc analysis compared to that of the sddc method (see Chapter 5). 

a) 
METHOD 

5yrs 10yrs 15yrs 20yrs I 25yrs 28yrs 32yrs RANGE OF 
DEPTHS(m) 

sddc 0.25m 8 (8.6) 8.5 (8.9) (9.5) (9.5) (9.8) 1.8 
sddc 0.5m 6.3 6.5 6.5 6.7 6.8 6.8 6.8 0.5 
fdc 0.25m 1 81 8.7 8. 8.2 8.5 (9) (8.6) 1.0 
fdc 0.5m 7.8 8.4 8.5 7.9 8.3 7.8 (8.8) 1.0 
fdc 0.75m 7.7 7.9 7.9 7.8 1 7.7 7.8 7.8 0.1 

b) 
METHOD 

5yrs 10yrs 15yrs 20yrs (25 
yrs) 

28 yrs 32 yrs RANGE OF 
DEPTHS(m) 

sddc 0.25m 4.7 4.7 4.8 4.9 (6.8) 5.2 5.7 1.0 
sddc 0.5m 4 4.1 4.1 4.2 (4.9) 4.4 '4.6 0.6 
fdc 0.25m 5.2 5.2 5.1 1 5.3 1 

_ 
(5.7) 5.1 5.2 1 0.2 

fdc 0.5m 5 5 51 51 (5.4) 4.9 5 0.1 
fdc 0.75m 5.1 5.1 5.1 1 5.1 1 (5.2) 5 5.2 0.2 

Table 6.3. Mean depths of the observed Dc, within each of the two main provinces, using all 

methods. a) = Noord-Holland; b) = Zuid-Holland. It can be seen that the greatest depth increase 

occurs in Noord-Holland. Note tlýat the sudden increase in values in Zuid-Holland after the'25 year 

period results from missing data for this period for profiles km 72 to 97. 

REGION SIDIDC: 
0.25m 

SIDIDC: 
0.5m 

FIDC: 
0.25m 

FIDC: 
0.5m 

FIDC: 
0.75m 

Holland 0.80 0.87 0.44 0.42 0.68 
Noord-Holland 0.97 0.96 0.56 0.31 0.10 
Zuid-Holland 1 0.64 1 0.78 1 0.20 1 0.15 1 0.24 

Table 6.4. Correlation coefficients at the 95 % confidence level between temporal period and 

observed mean Dc., for all methods. 

Although the correlation coefficients typically indicate a strong temporal dependence of Dc,, the 

actual increase in depth over the 32 years is not that large. For example the mean values (derived 

using the fdc change criterion of 0.5 m) for Noord- and Zuid-Holland increase by I rn and 0.1 m 

respectively (Table 6.3). This observation is best illustrated using gradients of the overall trendline 

of which the greatest, as shown in Table 6.5, is -0.09myf 
1. It is interesting to note that 
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the greatest gradients i. e. the largest temporal increases, are observed with the smallest change 

criterion. This is because the largest change criterion allows the greatest margin of change and 
hence Dc, values will always be at the most landward point, regardless of temporal period. 

As previously stated in Section 6.1, both methods give similar results of the observed Dc,; 

differences between them are typically less than Im for each temporal period. This is shown in 

Figure 6.6 which highlights the fact that the profiles in southern Zuid-Holland have the shallowest 
Dc, values; missing data from 1965 for km 72 to 97 means that calculations for the profiles over 
temporal periods 25 and 32 years are not possible. Hence the mean value of Dc, is greater than that 

of 20 and 28 years. This is more apparent when comparing values of 25 years as after 32 years all 
the Dc, values will have increased more than after the 28 years. The temporal trends also indicate 

similar behaviour of Dc, for each method (Table 6.6). Depths and trends are generally of a lower 

value when a greater change criterion is used i. e. 0.75 m. The largest change criterion allows a 

greater margin of change and as a result the range of Dc, values with increasing temporal period 
decreases. This conclusion is observed throughout the study and will not be highlighted further. 

REGION SDDC: 
0.25 m 

SDDC: 
0.5 m 

FIDC: 
0.25 m 

FIDC: 
0.5 m 

FIDC: 
0.75 m 

Holland -0.09 -0-03 -0.06 -0.04 -0.02 
Noord-Holland -0.07 -0.02 -0.02 -0.04 0 
Zuid-Holland 1 -0.04 1 -0-02 1 0 01 0 

Table 6.5. Gradients (myf") of"the trendlines fitted to values of mean Dc, from 5 and 32 years. 
These illustrate that the temporal increase in Dc, is not great. 

TEMPORAL 
PERIOD (yrs) 

SDDC: 
0.25 m 

SDDC: 
0.5 m 

FDC: 
0.25 m 

FDC: 
0.5 m 

FDC: 
0.75 m 

N Z N IZ N Z N Z N Z 
5 8 4.7 6.3 4 8 5.2 7.8 5 7.7 5.1 

32 9.8 5.7 1 6.8, 1 4.6 1 8.6 5.2 1 8.8 5 7.8 5.2 

Table 6.6. Mean depth values of Dc, for the two provinces using both methods; fixed tail sddc 
(criteria 0.25m and 0.5 in) and fdc (criteria 0.25 in, 0.5 rn and 0.75 m). Here N= Noord-Holland, 
Z= Zuid-Holland. 
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Figure 6.6. Mean values of the shoreward closure for each temporal period using both methods 
(sddc; fdc) and all criteria (0.25m; 0.5m; 0.75m). Mean values are shown Im�, a) kin 16 to 97, b) 

km 16 to 55 (Noord-Holland); kni 57 to 97 (Zuid-Holland). 

#- this sudden increase in Dc, values is a consequence of the missing data from 1965 for kni 72 to 

97. Combined with the slightly (Table 6.1) shallower values (Figure 6.5) for these profiles tile 

resulting mean values of Dcs are deeper than those mean values WIIIC11 include kin 72 to 97. 
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6.2.3.2) CHARACTERISTICS DERIVED FROM THE SHORT (ANNUAL) DATA SET 

(JARKUSS) 

The JARKUSs profiles typically extend seaward a distance of 0.8 km (Chapter 3). Preliminary 

investigations, using the sddc method with a self-selecting constant, yet non-zero tail, showed that 

a depth of closure could not be identified for the majority of profiles. Subsequently the sddc fixed 

tail method (depth change criterion 0.25 in) was used on selected profiles in an attempt to identify 

Dc, over the short-scale, within the data limits. The selected profiles were spaced at 10 km 

intervals in order to cover the maximum possible longshore distance. Dc, was identified over time 

periods from I to 5 years, to the lower limit of the extended data set. The results show that there is 

a positive relationship between Dc. and temporal period; r2 values range from 0.71(95% confidence) (kM 

17,67 and 87) to 0-99(95% confidence) (km 27). However, the increase of Dc, with time period is not 

great and is typically within a range of I metre, as shown in Table 6.7. 

PROFILE 17 27 37 47 57 67 77 87 97 
1 YEAR 7.5 6 5.5 6.2 4.6 4.8 n/c 4.3 3.2 

2 YEARS 8.1 6.1 6.2 6.1 4.6 4.8 4.5 3.6 
3 YEARS 8.1 6.3 6.4 6.1 4.6 4.8 4.5 3.7 
4 YEARS 8.1 6.4 6.6 6.3 4.6 1 4.8 4.5 3.7 
5 YEARS 8.1 6.6 6.7 7.2 4.6 1 4.9 4.5 3.8 

RANGE (m) 0.6 0.6 1.2 1.0 0 0.1 0.2 0.6 
r., 

CORRELATION 
(95% confidence) 

0.71 0.99 0.93 0.75 - 0.71 0.71 0.88 

GRADIENT(myC 
1) -0.12 -0.14 1 -0.28 -0.23 0 

1 
-0.02 -0.0 

Table6.7. Values of Dcs for nine selected profiles as observed using the JARKUSS data set and the 

associated correlation coefficient and gradient between these values with temporal period. There is 

a clear longshore pattern which is that the northern profiles have deeper Dcs values than the 

southern values. (n/c = no Dc, within the data limit (5.1 m)). The gradient is calculated from the 
best fit linear trendline using all values. 

The increase is especially small in Zuid-Holland and is so consistent with that observed over 
temporal periods greater than 5 years. The small temporal increase of Dc, is supported by the 

gradients of the relationship which are typically no greater than -0.14 myfl. The gradients are 

greater than those calculated from observations of Dc, from 5 to 32 years (Table 6.5). This 
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suggests that the increase in Dc, is greatest during the smaller temporal periods i. e. the temporal 

relationship is non-linear (see Chapter 8). 

These results also support the earlier observation (Figure 6.5) that there is a distinct longshore 

pattern of Dc,; the Holland coast can be divided into two at krn 55156, so separating deeper, more 
variable values (Noord-Holland) from the shallower, more constant values (Zuid-Holland). 

6.2.3.3) OCCURRENCE 

The percentage occurrence of the shoreward closure was only calculated over the medium- and 
large-scales for profiles between km 16 to 71 due to missing data from 1965 for the profiles km 72 

to 97. The missing data meant that calculations for the temporal periods 25 years and 32 years 

were not possible and would strongly influence final results. It was found that as the temporal 

period increases the percentage of profiles which exhibit a shoreward closure decreases (Table 6.8, 

Figure 6.7). This relationship is strongly significant at the 95 % confidence level for both methods 
(Table 6.9), although the relative significance decreases as the change criterion increases (see 

earlier sections). Note that those profiles which do not exhibit Dc, over the medium-scales are 

mainly found in Noord-Holland. 

METHOD 0 yrs 5 yrs 10yrs 15yrs 20yrs 25yrs 28yrs 32yrs 
sddc 0.25m 100 85 73 71 60 46 33 30 
sddc 0.5m 100 96 98 98 96 98 93 93 
fdc 0.25 m 100 100 76 52 96 72 16 12 
fdc 0.5m loo 100 96 96 100 . 96 68 1 35 

fdc 0.75m 100 100 100 100 100 100 96 1 84 

Table 6.8. Percentage occurrence of Dc, for krn 16 to 71 for each temporal period using all 

methods. 

sddc : sddc fdc : fdc : fdc : 
0.25M 0.5m 0.25m 0.5m 0.75m 

CORRELATION 
COEFFICIENT 0.93 0.55 0.79 0.73 0.64 

(95% confidence) 

Table 6.9. Correlation coefficients (r 2) for the exponential relationship between percentage 

occurrence of Dc, and temporal period for krn 16 to 71, using all methods. 

133 



Decadal morphodynamic behaviour of the Holland shoreface 

6) Observations on the decadal behaviour ofthe Holland shoreface 

100 1, -8--- 

80 

60 sddc0.25 

--ci- sddc0.5 
40 fdc0.25 

20 A fdc0.5 

0 fdc0.75 

0 
05 10 15 20 25 30 35 

terrporal period (yrs) 

Figure 6.7. Percentage occurrence of the shoreward closure for each temporal period using both 

methods (sddc; fdc) and all criteria (0.25 m; 0.5 m; 0.75 m) between kni 16 and 7 1. The fdc values 

can be seen to fluctuate more than the sddc. This is tile result of the I'dc's greater sensitivity to 
depth changes (see Chapter 5). 

6.2.4) COMPARISON OF OBSERVED Dc, USING THE SHORT (JARKUSS) AND EXTENDED 

(JARKUSE) DATA SETS 

Section 6.2 discusses the results of the analysis of both JARKUSsq;. regarding Dc, characteristics. 
It is important that the Dcs values observed from both data sets agree as not only will this provide 

reliance in the results presented but it will also add to the confidence in the accuracy ofthe annual 

and extended profiles; a large variation in the observed Dc, WOUld suggest that deviations in the 
bathymetric data exists between the two data sets, casting doubt on their reliability. 

Hence a comparison has been made between the observed Dc, values over a5 year period from 1i) 

the annual JARKUS data set; and iii) the extended JARKUS data set. The Dc, values were derived 

using the sddc fixed tail method (change criterion 0.25 rn) and represent a5 year running mean 
through the data from 1965 to 1997. 

The results show (as illustrated in Table 6.10 and Appendix 6.1 ) that of those profiles which close 

within the data limits, 100 % of Dcs values agree Nvithin I m. Ail additional observation is that tile 
data sets of Zuid-Holland have a better agreement (Dcs values agree within 0.3 rn) than those in 
Noord-Holland (Dcs values agree within 0.6 ni). This suggests that, because tile annual and 

extended profiles are not measured at the sarne time, Noord-Holland is more dynamic than ZLIid- 
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Holland. Only two profiles, km 57 and 77, do not show agreement; it is suggested that in the case 

of the former (km 57) this results from the nature of the profile due to its proximity to the Umuiden 

harbour moles (kin 55156). The case of kin 77 is surprising as this is located in a relatively 

morphodynamically inactive region; it is suggested however that the reason why no closure is 

observed with JARKUSs is that there is a larger change within the years (1970; 197 1; 1972; 1973; 

1974; 1975) than between (as used with JARKUSE) the two sets of years (1970; 1975) (Figure 6.8). 

Here Dc, is not observed using one of the data sets. However, because the remaining seven profiles 

show such good agreement the difference in Dc, is the result of an inherent difference resulting 

from the nature and size of the data sets. This investigation shows that one can confidently both 

use and combine the short and extended data sets. 

PROFILE 17 27 37 47 57 67 77 87 97 
ANNUAL Dcs (m): 

sddc 0.25m 8.1 7.6 6.9 7.2 4.6 4.9 n1c 4.5 3.8 
sddc 0.5m 7.5 6.0 5.7 6.3 2.9 4.7 n1c 4.4 3.3 

EXTENDED Dc,, (m): 
sddc 0.25m 8.0 8.3 7.4 7.7 n1c 5.0 4.8 4.2 4.0 
sddc 0.5m 7.6 6.1 1 6.4 6.7 1 n1a 4.9 , 4.4 4.1 , 3.5 

DIFFERENCE (m): 
sddc 0.25m 0.1 0.6 0.5 0.5 - 
sddc 0.5m 0.1 0.1 0.7 0.5 - 

Table 6.10. Comparison between the Dc., of nine selected profiles over a temporal period of 5 

years, as observed from the short and extended JARKUS data sets. n1c = no closure observed 
within the data limits (km 57 = 11.1 m; km 77 = 5.1 m); n1a = no activity observed. 
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Figure 6.8. Examples of the measured profile km 77 for the years 1970 to 1975 using examples 
from both JARKUSS+E. The change within the JARKUSE can be seen to be less than that of 
JARKUS,. This indicates that the changes observed within JARKUSE cannot result from seasonal 
influences. 

6.3) MIDDLE/LOWER SHOREFACE BEHAVIOUR THE ACTIVE 

SHOREFACE? 

6.3.1) INTRODUCTION 

Middle/lower shoreface morphodynamic activity, first observed as a 're-opening zone', has been 

classified into four types. These are listed in Section 6.1 and illustrated in Figure 6.3. Spatial and 

temporal variations of the four types are observed mainly using the sddc fixed tail method (change 

criterion 0.25 m) rather than the fdc method (as the latter often proved too sensitive to depth values 

in the identification of change criteria (Chapter 5)). These are described in the following two 

sections. 

6.3.2) SPATIAL BEHAVIOUR 

Active shorefaces are concentrated N% ithin two main areas; km 16 to 29 and km 40 to 73. 

Additional profiles which exhibit activity are km 34 to 36 and km 79 to 81. Within the two main 

areas, fully-active profiles are located f om km 24 to 29 and kni 57 to 64. They are also found at 

km 80 to 81. The location of shoreface ictivity along the Holland coast is illustrated in Figure 6.9. 
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If one examines the shoreward boundary of activity (i. e. the 're-opening point') for those profiles 

which are partially-active, it is apparent that the Holland coast can be divided into two distinct 

provinces (Figure 6.10). These provinces, as shown in Table 6.11, are the same as those derived 

from Dc, observations. It is clear that the shoreward boundary of shoreface activity (i. e. the re- 
opening point) is deeper in Noord-Holland than Zuid-Holland. However the depth difference 

between the two provinces are typically less than those of Dc, 

REGION REGION 5yrs 10yrs 15yrs 20yrs 25yrs 28yrs 32yrs 
NAME EXTENT 

HOLLAND km 16-97 -8.9 -9.7 -9.9 -8.8 -10.4 -9.1 -8.9 
NOORD- km 16 -54 -10.5 -10.6 -11.3 -10 -10.5 -10.8 -9.8 

D I I 
ZUID- km 57 - -7. T 9.3 - -9.1 -8 I 10.2 -8.4 -7.8 

HOLLAND 97 

Table 6.11. Mean values of the re-opening point for the entire alongshore distance, Noord-Holland 

and Zuid-Holland using the fdc method (change criterion 0.5 m). 

As the observed shoreface behaviour is dependent on both temporal and spatial scales, further 

details of the morphodynamic behaviour are given in the following section. 

6.3.3) TEMPORAL BEHAVIOUR 

Both partial and full shoreface activity is, as shown in Figure 6.9, predominately observed over the 

long-terrn (> 10 years). An alternative method of surnmarising the observations made concerning 
the shoreface evolution is as a transition matrix (Table 6.12a and b). Here the transition from each 

shoreface classification to each classification is given as a percentage of the entire Holland coast. 

Two matrices have been calculated. The first is for km 16 to 71 in order to remove any influence 

from the 1965 missing data. The second is for km 16 to 97 where the assumption that, for km 72 to 

97, the shoreface state of the period 25 years is as for 20 years and that of 32 years is as for 28 

years is taken. The matrices shows that: 

1. the dominant transition is to the same state as the previous temporal period e. g. from a fully- 

active state to a fully-active state; 
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2. the percentage of profiles which transform from a non-active state decreases with increasing 

temporal period i. e. the r2 value for the relationship of profiles remaining inactive through time 
is equal tO -0-95(95% confidence); 

3. the percentage of profiles transforming from an active state to either the same or different 

active state increases temporally; and 
4. once a profile is fully-active it remains fully-active i. e. it does not change its state. 

This shows that as the temporal periods increases then the percentage of profiles which are inactive 

decreases whilst those which are active increases. When the transition is summarised as the change 
to a different state regardless of temporal period, different relationships for the four classifications 
of profiles exhibiting shoreface activity are observed: 

1.12 % primarily remain non-active within the 32 years of observations; 
2.39 % primarily develop from the non-active to seaward partially-active shoreface. Of this 39 

%, 37 % further develop into fully-active profiles; 
1 39% develop from a non-active shoreface to a shoreward partially-active shoreface. 16 % 

further develop into fully-active shorefaces; and 
4.10 %primarily develop from a non-active to fully-active shoreface. 

It is therefore hypothesised that : 

As the temporalperiod increases beyond 32 years, all profiles will 

evolvefrom exhibiting non-active to partially active shorefaces. 
Everyprofile will ultimately becomejully active. 

Although this hypothesis is supported by existing geological data, it is the timescales of change 

which remain unknown. These are investigated further in Chapter 8 through the projection of 

observed trends. 
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Figure 6.9. Spatial distribution of morphodynamic activity along the shoreface of the Holland 

coast for different temporal periods (1965 - 1997). Using the fixed tail sddc method (change 

criterion 0.25 m) 

139 



Decadal morphodynamic behaviour of the Holland shoreface 

6) Observations on the decadal behaviour ofthe Holland shoreface 

terrporal period (yrs) a) 
-5 

10 20 30 40 

-10 
E, 

CL sddc (0.25) 
-0-- sddc (0.5m) 

fdc(O. 25m) 
A fdc(O. 5m) 

-15 0 fdc(O. 75m) 

-5 
0 10 

temporal period (yrs) 

20 30 40 

sddc (0.25) 
-CF- sddc (0.5m) 

-10 
fdc 0.25m) 

0 fdc 0.5m) 

-iý 
A0 fdc(O. 75m) 

0 0 

-15 

-5 
terriporal period (yrs) C) 

0 10 20 30 40 

AA-0 

6A 
/\ 

I& 

-10 0 sddc (0.25) 

sddc (0.5m) 
CL 

0 fdc(O. 25m) 

A fdc(O. 5m) 

-15 0 fdc(O. 75m) 

Figure 6.10. Mean values of the depth at which activity cornmences on the middle/lower shoreface 
(i. e. the 're-opening point) for each temporal period using both methods (sddc; fdc) and all criteria 
(0.25 rn; 0.5 rn; 0.75 ni). Mean values are shown for : a) kni 16 to 97; b) kin 16 to 55 (Noord- 

Holland); and c) km 57 to 97 (Zuid-Holland). 
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TRANSI- 
TION (r2) 

5 yrs 10 yrs 15 yrs 20 yrs 25 yrs 28 yrs 32 yrs 

a b a b a b a b a b a b a b 

N >N (-0.98) 88 88 57 67 41 55 33 47 18 39 16 37 16 41 
>Pa (-0.74) 10 10 12 9 2 1 8 7 6 4 0 0 2 1 
>Pb (-0.48) 2 14 16 11 12 9 4_ 4 4 3 2 11 2 11 
>F (-0.19) 2 13 2 1 12 1 0 0 4 3 2 1 0 0 

1 
Pa>N (0.47) n/a n/a 0 0 0 0 0 0 2 1 4 5 0 0 

>Pa (0.98) 1 1 8 5 18 13 18 13 27 20 27 17 31 23 
>Pb (-0.19) 0 0 2 1 0 0 0 0 01 0 01 0 
>F (0.48) 0 0, 01 0 2 1 21 1 2 1 0 0 

Pb >N (-0.19) 0 0 4 3 0 1 0 0 0 1 0 0 
>Pa (0.34) 0 0 0 0 4. 3 0 0 0 1 2- 1 
>Pb (0.80) 2 1 14 9 16 12 18 16 14 1 11 14 11 
>F (0.58) 1 1 0 3 01 0 8 51 2 0 41 3 41 3 

F>N 0 0 0 0 0 0 0 0 0 0 0 0 
>Pa (0.39) 0 0 0 01 0 0 0 0 4 3 0 0 
>Pb (0.39) 01 0 1 01 11 01 0, 41 71 0 0 

1 >F (0.95) 31 4 51 61 51 16 1 12 1 16 1 11 1 24 1 16 

Table 6.12a. Transition matrix for the observed shoreface activity (1965 to 1995). There are no 

values for the active profiles in the period of 5 years as it is assumed that all profiles at time 0 are 
inactive. Values are as percentages of change of the observed shoreface activity. The ý values are 
for the relationship between the transition (a) and temporal period, at the 95% confidence level. 
Column a) = km 16 to 71 in order to remove any influence from the 1965 missing data; column b) 

= km. 16 to 97 where the assumption that, for km 72 to 97, the shoreface state of the period 25 years 
is as for 20 years and that of 32 years is as for 28 years is taken. Key :N= non-active; Pa = 

shoreward partially-active; Pb = seaward partially-active; F= fully-active. 
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FROM N Pa 
TO N Pa Pb F N Pa Pb 
F, % 181 30 40 10 6 19 2 6 

FROM Pb F 
TO N Pa I Pb N Pa I Pb 

I Fl% 1 41 61 78 1 18 1 01 01 41 

Table 6.12b. Total percentage of cases taken from the transition matrix (Table 6.12a). The values 

represent the sum of all percentages within column (a) for each transformation over all years, 

excluding the 5 year temporal period. The greatest percentages is for transition to the same state. 
Key :N= non-active; Pa = shoreward partially-active; Ph = seaward partially-active; F= fully- 

active. 

As stated in Section 6.2, krn 72 to 97 are missing for 1965 and so observations can not be made for 

these profiles for the temporal periods of 25 and 32 years. This would influence final results, as 

demonstrated in Table 6.13. Table 6.14 therefore shows the percentage occurrence of shoreface 

activity through time (5 to 32 years) for km 16 to 71. The correlation coefficients for these 

relationships are strongly significant at the 95 % confidence level, hence showing that shoreface 
activity is temporally dependent: 

1. r2=0.78(95% confidence) for the seaward-partially active shorefaces and time; 

2. r2 = 0.93(95%,. nfidence) for the shoreward-partially active shorefaces and time; and 

3. r2 = 0.98(95% confidence) for the fully active shorefaces and time. 

The occurrence of both shoreward and seaward partially-active shorefaces rapidly increases until 
the 20 year time period when the rate of increase then slows (Figure 6.11). However, the 

occurrence of fully-active shorefaces continually increases throughout the 32 years. This indicates 

that, as the temporal period increases beyond a critical point (20 years), the percentage of partially- 
active profiles reaches an almost constant value. The observed shoreface activity is the result of 
the profiles which first close on the upper shoreface (Dcj decreasing in occurrence whilst those 

profiles active across the whole shoreface continue to increase in occurrence. 
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TEMPORAL 
PERIOD (yrs) 

% ALL 

0 0 
5 13 
10 35 
15 42 
20 51 
25 78 
28 51 
32 78 

Table 6.13. Percentage occurrence of profiles showing shoreface activity for km 16-97. The 

method used here is the fixed tail sddc method (change criterion 0.25 m). 

TEMPORAL 
PERIOD (yrs) 

% 
P 

% 
Pb 

%F % ALL 

0 0 0 0 0 

5 9 2 2 13 
10 22 1 20 4 

_46 15 22 24 7 52 
20 33 20 15 67 
25 35 22 22 78 
28 30 22 22 74 
32 1 351 17 26 78 

Table 6.14. Percentage occurrence of profiles showing shoreface activity for km 16 -71. The 

method used here is the fixed tail sddc method (criterion 0.25 m). (P. = shoreward partial activity; 
Pb ý seaward partial activity and closure on middle/lower shoreface; F= fully active; ALL = three 

types of activity combined). 

The observed shoreface activity has also been represented using 100 m cross-shore 'blocks'. These 

blocks, coded 3 either active or inactive give a clear indication of the longshore and cross-shore 
distribution of shoreface activity for each temporal period. They also allow the evolution of this 

activity to be observed along the Holland coast. It should be noted that, in the minority of cases, 
blocks may alternatively be active and inactive, though it is typical for these blocks to ultimately 

exhibit activity over the longer time periods. Coded blocks have been plotted for Noord- and Zuid- 
Holland, as shown in Figure 6.12. (A more detailed figure is given in Appendix 6.2). 

3 according to the majority behaviour of the five 20 m components. 
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Figure 6.11. Observed relationship between the percentage occurrence of the three types of 

shoreface activity, for the Holland coast, and temporal period using the fixed tail sddc method 
(criterion 0.25 m). Pa = shoreward partial activity; Pb = seaward partial activity; F= full activity; 
and ALL = Pa + Pb + F. 

As observed for Dc, behaviour, the shoreface activity of Noord- and Zuid-Holland are different. 

These differences are now described : 

1. if it is assumed that at t=0,0% of profiles exhibit shoreface activity and it is shown that, for 
Noord- and Zuid-Holland, at t= 28 years, 67% and 43% of profiles are active, respectively; 

2. Noord-Holland consists of two main regions of shoreface activity within which the evolution 

of the shoreface activity is markedly different. Within km 16 to krn 29 the evolution is 

significantly more variable than km 30 to km 54. This is illustrated in Figure 6.13 which 

shows the evolution of km 25 and km 44. It is clear that the growth of shoreface activity of km 
25 is more random than that of km 44; and 

3. Zuid-Holland has one main region of shoreface activity, km. 57 to 73, which like krn 30 to 54 

has a steady temporal growth. The temporal trend of the shoreface activity from krn 57 to 62 

increases from 5 to 32 years. The increase is mainly in the north-east direction from the end of 

the harbour moles (taking northwards as shorewards). For the remaining profiles (km 63 to 
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73) a zone of shoreface activity is also observed. This zone lies northwest- southeasterly and 
increases both northwards and southwards with increasing temporal period (Figure 6.14). It is 

first observed after 5 years although it is not significant until after 10 years. The central axis of 

the zone lies from 1.75 km offshore at km 63 to 2.3 km offshore at km 7 1. The growth of this 

zone is observed to stop after 25 years; only 3% of the additional activity within this zone is 

observed at timescales of 28 years and 32 years suggesting that there may be a limit to the 

growth of this zone (Table 6.15). In fact, if one examines the activity additional to that of the 

previous temporal period, as shown in Table 6.16, only 9% of additional activity between kin 

16 and 71 results from changes over 32 years. (This may not appear to correlate with the 

percentage occurrence of activity as shown in Table 6.13 because here we are examining 

individual 100 m blocks of activity rather than the whole profile). 

km 25 44 
0.1 
0.2 
0.3 
0.4 KEY: 
0.5 
0.6 nearshore bar zone 
0.7 
0.8 5yrs M15yrs M25yrs M32 
0.9 

1 010yrs M20yrs M28yrs 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 

2 
2.1 
2.2 
2.3 
2.4 
2.5 

Figure 6.13. Temporal development of two profiles, krn 25 and 44, from Noord-Holland. It is 
clear that there is a steady growth of time period of activity in km 44 whilst in km 25 the evolution 

of activity can be considered randorn. 
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km 63 64 65 66 67 68 69 70 71 72 73 
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Figure 6.14. Plan view showing the growth through time of the shoreface activity between km 63 

and 73. The central axis is located based on the first temporal period in which activity is observed. 
The final temporal period is 32 years. 
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TEMPORAL PERIOD (yrs) 151 10 1 15 1 20 1 25 1 28 1 3,2 
ADDITIONAL ACTIVITY(%) 1217 12.211.21 7 10.310.59 

Table 6.15. The percentage of additional activity per year for each temporal period between krn 63 

and 73. 

TEMPORAL PERIOD (yrs 5 10 15 20 25 28 3,2 
ADDITIONAL ACTIVITY (%) 7.2 7.2 3.8 3.4 8 7.7 2.39 

Table 6.16. The percentage of additional activity per year for each temporal period between km 16 

and 7 1. 

6.3.3.1) INFLUENCE OF MISSING DATA 

As observed (Figure 6.11) shoreface activity occurs on a larger percentage of profiles in Noord- 

Holland than Zuid-Holland. It is important to determine that this is the result of the two different 

morphodynamic regimes and not the influence of the data measured in, 1965. In order to do this, 

km 57 to 71 were selected and the sddc fixed tail method (change criterion 0.25 m) used upon data 

from 1970 to 1997. The pattern of activity observed with and without 1965 is similar although not 

identical (Figure 6.15); typically less blocks are active with the exclusion of 1965. Interestingly the 

difference in results increases with increasing temporal period suggesting that the 1965 data 

becomes more important over the longer time periods i. e. bathymetric change is greater between 

1965 and 1990 than 1965 and 1975. However, it does not imply that this data significantly alters 

the temporal behaviour of shoreface activity as highlighted with the correlation coefficients (Table 

6.17). 

rz (95% confidenc 
WITH 1965 DATA 0.98 

WITHOUT 1965 DATA 0.99 

Table 6.17. Correlation coefficients between percentage occurrence of shoreface activity and 

temporal period for two scenarios; with and without profiles 1965 data. 
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Figure 6.15. Shoreface activity in between km 57 and 71 for all temporal periods; a) = with the 

year 1965; b) = without the year 1965. The zone of activity in the two examples is similar. The 

method used is the fixed tail sddc (0.25 m criterion). 
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Figure 6.15 cont. Shoreface activity in between kni 57 and 71 for all temporal periods. c) = 

profiles which are only active in one or the other calculations. The method used is the fixed tail 

sddc (0.25 rn criterion). 

6.4) SEAWARD LIMIT OF SHOREFACE ACTIVITY 

6.4.1) INTRODUCTION 

There exists, In some instances, a seaward boundary to the shoreface activity (Dc,,,,, ). When 

observed it is typically found on profiles classified as i) shoreward partial ly-active; or ii) seaward 

partial ly-acti ve (as illustrated in Figure 6.3). Both methods (Chapter 5) are used to examine the 

spatial and temporal variability of Dc,,, 1, as presented below. 
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6.4.2) SPATIAL BEHAVIOUR 

Dc,, o is investigated based upon the two distinct morphodynamic provinces observed for both Dc, 

and partially-active shorefaces; Noord- and Zuid-Holland. It is seen that there is no distinct 

difference in the Dc .. /I values between the two provinces, over all temporal periods (5 to 32 years) 
as shown in Figure 6.16. Dc,, o is typically located at 12 to 13 m water depth in both Noord- and 
Zuid-Holland. 

10 teryporal ppriod (yrs) 
- 

10 20 30 40 
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A 
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13 cr 
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o SO. 25 

-16 ... *.. SO. 5 

Figure 6.16. Values of the middle/lower shoreface closure through time for three regions; km 16 - 
97; km 16 - 55 (Noord-Holland); and km 57 - 97 (Zuid-Holland). The fixed tail sddc method 
(criteria 0.25 m; 0.5 m) is used. Key: All = km 16 -97; N= km 16 -55; S= km 57 -97. 

6.4.3) TEMPORAL BEHAVIOUR 

The observed DcmA values do not exhibit a temporal trend for i) the Holland coast, and ii) the two 

provinces Noord- and Zuid-Holland. This is shown most clearly by the respective correlation 

coefficients, Table 6.18. The significance and weightings of the coefficients do not agree between 

methods or provinces. 

The occurrence of Dc. /I is temporally dependent, as illustrated in Figure 6.17, in that when the 

temporal period increases, the occurrence of Dcnj significantly decreases (Table 6.19). This 

relationship is to be expected based upon the similar ones of Dc, and partial shoreface activity. It 

suggests that as the temporal period increases, the shoreface behaviour evolves from partially- to 
ftilly-active hence the Dcj is no longer observed within the data limits. 
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REGION SIDIDC 
(0.25 m) 

SIDIDC 
(0.5 m) 

FDC 
(0.25 m) 

FDC 
(0.5 m) 

FDC 
(0.75 m) 

km 16 - 97 -0.39 -0.71 -0.4 0.71 -0.4 
km 16 - 55 0.78 -0.86 -0.7 -0.6 -0.3 
km 57 - 97 0.11 0.7 - 0.98 -0.14 

Table 6.18. Correlation coefficients (95% confidence) between the depth values of' the 

middle/lower shoreface closure and temporal period. 
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Figure 6.17. Percentage occurrence of the middle/lower shoreface closure (Dc,,,, Il) through time; 

observations and associated trendlines. The fixed tail sddc method (criteria 0.25 m; 0.5 ni) is used. 

SDDC 
(0.25 m) 

SDDC FDC 
(0.25 m) 

FDC 
(0.5 m) 

FDC 
(0.75 m) 

rý2(95% confidence) 0.61 0.11 0.73 0.85 0.86 
GRADIENT (%yr-') -1.3 -0.4 -2.8 -1.9 -1.2 

Table 6.19. Correlation coefficients of the exponential trendline between the percentage 

OCCUrrence of middle/lower shoreffice CIOSLire and temporal period. 
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6.5) SUMNURY 

The shoreface morphodynamic behaviour of the Holland coast is spatially- and temporally- 
dependent over medium- and large-scales. Previous studies which have focused upon shoreface 
behaviour have not observed all the behaviour shown in this research. This is fundamentally the 

result of data limitations; for example, the bathymetric data at Duck, N. Carolina only covers the 

upper shoreface'of four cross-shore profiles, over the medium-term (Lee el al, 1995). 

As has been observed in past studies (e. g. Birkemeier, 1985; Garcia el al, 1998; Nicholls et al, 
1996; Rozynski et al, 1998), a seaward limit to significant depth change, or Dc, has been observed 
on the upper shoreface over the medium-scales. In addition, such a limit has also been observed in 

this study over the large-scale. However, it is clear that, over the longer time scales (> 10 years), 
the shoreface is morphodynamically active seaward of the observed depth of closure i. e. on the 

middle and/or lower shoreface. This has not been observed in past studies as the corresponding 
data sets typically do not extend seaward beyond the upper shoreface. Therefore'the seaward limit 

of significant depth change on the upper shoreface has been re-classified in this study as the 

shoreward depth of closure, or Dc, 

The large spatial extent of the JARKUS data set (5 81 km) enables the longshore variability of Dc., 

to be ascertained. Previously it was suggested that the Dc, values of a coastline whose 
hydrodynamic forcing was similar alongshore would also exhibit little 16ngshore variation. This 

statement is derived from the Hallenneier (1977,1978) model which calculates closure based upon 

the 12 hour exceeded wave height (Eq. 2.3). However it is clear from this investigation that this is 

not the case. Observations of Dc, values and deviations around the mean has led to the division of 
the Holland coast into two provinces, even though this coast has a near-constant longshore 

hydrodynamic climate. Of the two provinces, Noord- and Zuid-Holland, the former has more 

variable, deeper Dc, values than the latter (Table 6.1). More recent work (Marsh et al, 1998; 

Nicholls and Birkemeier, 1997; Nicholls et al, 1998b) which has investigated the relationship 
between the internal dynamics and external forcings suggest that the hydrodynamic forcing may 
indeed not be the only control upon Dc, This is examined further in Chapter 7 and 8. 

The temporal dependency of closure observed over the medium-scales at other sites e. g. Duck, 

N. Carolina (Larson and Kraus, 1994; Nicholls el al, 1996; 1998a; 1998b; Nicholls and Birkemeier, 

1997) is also apparent for the DcS" along the Holland coast. Indeed this dependency extends into the 
large-scale; as the temporal period increases then the occurrence of Dc, decreases such that 
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after 32 years 30% of profiles close on the upper shoreface. This can be compared to observations 

of closure in less than 8 in water depth at Duck, N. Carolina where, after 8 years only 3% of cases 

exhibit closure (Nicholls et al, 1998a). The large difference between the two sites is primarily the 

result of i) the JARKUS data set having forty-times more cross-shore profiles than the example 
from Duck, N. Carolina; and ii) the JARKUS profiles having a greater cross-shore extent than those 

at Duck, N. Carolina. However, the details of the temporal dependence of closure are different 

between previous studies and this one. Existing research concludes that as the temporal period 
increases then the closure value also increases, as suggested by the significant decrease in closure 

cases observed at Duck, N. Carolina (Table 2.8) within 8 in water depth. However this study 

concludes that, although the Dc, value increases from the medium- to the large-scale (as shown by 

the correlation coefficients, Table 6.4) the extent of this increase is not large (as shown by gradients 

of the trendlines which are all < 0.1 in per annum, Table 6.5). For example the mean values of 
Noord- and Zuid-Holland increase by I in and 0.5 in, respectively. Again, this is more likely the 

result of differences in the data sets; if the JARKUS data set were to only extend to 8 in water 
depth then perhaps it could be assumed that a decrease in Dc, cases is the result of an increase in 

values beyond 8 in. However, it could also be the result of the morphodynamic behaviour of the 

coast; the more dynamic province (Noord-Holland) shows a greater increase in Dc, than Zuid- 

Holland. 

As the observations of the JARKUS data set clearly indicate, the existence of the shoreward depth 

of closure does not mean that the remainder of the cross-shore profile is morphodynamically 
inactive. Indeed it is shown that, particularly over the long-term (> 10 years) the middle and lower 

shoreface is morphodynamically active. This observation contradicts existing studies on the depth 

of closure which conclude that it is not followed in the cross-shore by morphodynamic activity. 
However this contradiction is only true for the longer time-scales over which existing studies have 

assumed the behaviour to be similar to that observed over the short- and medium-scales. 
Middle/lower shoreface morphodynamic activity has however been observed during high energy 

events within short-scale point experiments e. g. Snedden et al, 1988 (Section 2.3.3). 

The morphodynamic activity of the Holland shoreface has been classified into four types; i) an 
inactive shoreface; ii) a shoreward partially-active shoreface; ii) a seaward partially-active 

shoreface; and iv) a fully-active shoreface (Figure 6.3). Observations show the activity to be both 

spatially-variable and temporally-dependent. 
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Shoreface activity occurs to a greater extent in Noord-Holland than Zuid-Holland; after 28 years 
67% and 43% of profiles are active, in the respective provinces. Noord-Holland has also been 

shown, through the Dc, characteristics, to be more active than Zuid-Holland. Additionally, the 

shoreface activity within Noord-Holland evolves differently between km 16 to 29 and km 30 to 55. 

In the former province the evolution of shoreface activity is more random than in the latter 

province which clearly shows a pattern of cross-shore 'spreading' of activity from the middle/lower 

shoreface. An interesting feature of shoreface activity is also observed south of the Umuiden 

harbour moles (km 55/57). Here a zone of activity exists lying northwest-southeasterl which 
increases both northwards and southwards with increasing temporal period (Figure 6.13). The 

location of this zone correlates with scour holes induced by the harbour moles observed in previous 

studies (e. g. Roelvink et al, 1998). The location of the harbour moles also correlates with the 
longshore position of the majority of the fully active profiles; the influence of this large 

engineering structure upon shoreface behaviour is investigated in more detail in Chapter 7. 

It is clear that, as the temporal period increases, both the occurrence and extent of shoreface 

activity increases such that, based on the observations, one would expect all profiles to ultimately 

become fidly active : 

As the temporalperiod increases beyond 32 years, allproftles will 

evolvefrom exhibiting non-active to partially active shorefaces. 

Everyproftle will ultimately becomefully active. 

In conclusion therefore : 

1. a limit of significant activity has been identified on the upper shoreface of the Holland coast; 
2. however it is typical for further activity to be observed on the middle/lower shoreface. This 

has resulted in the re-classification of the 'depth of closure' to the 'shoreward depth of closure' 
3. the shoreward depth of closure is both temporally-dependent and spatially variable longshore; 

4. in order to adequately describe the shoreface morphodynamic behaviour, the middle/lower 

shoreface activity is classified as; i) a inactive shoreface; ii) a shoreward partially-active 

shoreface; ii) a seaward partially-active shoreface; and iv) a fully-active shoreface; and 
5. the middle/lower shoreface activity is both temporally-dependent and spatially variable 

longshore. 

4 northwards represents shorewards 
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7) CAUSES AND CONTROLS UPON THE MORPHODYNAMIC 
BEHAVIOUR OFTHE HOLLAND SHOREFACE 

7.1) INTRODUCTION 

Chapter 6 presented two major characteristics I of the morphodynamic behaviour of the Holland 

shoreface 

1. the shoreward depth of closure (Dc., ), located on the upper shoreface; and 
2. middle/lower shoreface activity, classified into four types (Figure 6-2). 

The former is more prominent over the smaller time scales and the latter over the longer time scales 
(> 10 years) i. e. both are temporally-dependent. Additionally both exhibit spatial variability 
longshore, and in the case of the middle/lower shoreface activity, also in the cross-shore. 

Questions are therefore raised concerning the factors which result in the observed behaviour. This 
is particularly intriguing in the case of the spatial variability if one considers that, what is typically 

considered as the main coastal forcing - the hydrodynamics, is uniform alongshore. Hence this 

chapter deals with the causes and controls of the morphodynamic behaviour, as observed in 
Chapter 6, by concentrating upon the following research objective : 

Determine the causes and controls up6n the shoreface 

morphodynamic behaviour along the Holland coast over the 

medium- and large-scales 

by addressing the following research questions : 

What, if any, morphodynamic and hydrodynamic controls exist 

upon'the shoreface behaviour? Do internal dynamics and external 
forcings play a role? What is the interaction of these over the 

scales investigated? 

I there is a third morphodynamic characteristic; the middle/lower shoreface closure. However this is not 
always present (Chapter 6) and can be seen to be a function of the partially-active shoreface. 
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Do anthropogenic. influences act as a control upon the 

morphodynamic activity? More specifically does the major 

engineering scheme, the Umuiden harbour moles, induce 

significant morphodynamic activity? If so, what is the nature of 
this human influence? 

The outline of this chapter is as follows. Section 7.2 and 7.3 investigate the potential causes and 

controls upon the shoreward depth of closure and middle/lower shoreface activity respectively. 
Within each section the possible influence of the Umuiden harbour moles is also examined. The 

final section discusses these results in the context of the research questions posed above. 

7.2) UPPER SHOREFACE BEHAVIOUR : THE SHOREWARD DEPTH OF 

CLOSURE 

7.2.1) INTRODUCTION 

The studies of Hallermeier (1977,1978) (Chapter 2) clearly suggest that the major control upon the 

annual depth of closure in a wave-dominated micro-tidal environment is the wave characteristics; 
in particular the extreme wave height (exceeded 12 hours per annum) and the associated wave 

period. More recent studies have validated the time-dependent form of the model (Stive et al, 
1992; Eq. 2.6) over the short- and medium-scales and confirmed the role of extreme waves in 

controlling closure (e. g. Birkemeier, 1985; Nicholls et al, 1998b). In addition, these studies found 

that, with the exception of accretional periods, the Hallermeier (1977,1978) model typically 

overpredicts the observed Dc. Although the hydrodynamics is the major control, the response of 

the short- and medium-scale closure to this forcing was found to be regulated by the 

morphodynamics of the nearshore bar system (Nicholls and Birkemeier, 1997; Nicholls et al, 
1998b). It has also been suggested, based upon research on the annual timescale, that profile 

translation due to volume change acts as an additional control upon closure (Nicholls and 
Birkemeier, 1997). 

The similar characteristics of depth of closure and the shoreward depth of closure suggest that the 
fort-ner's controls should also be investigated for the medium- and large-scale behaviour of Dc,. 

This section primarily looks at the control of the primary external forcing, the hydrodynamics, 
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upon Dc, and then examines the influence of the internal dynamics upon the closure response. The 

potential anthropogenic influence of the Umuiden harbour moles is also investigated. 

7.2.2) EXTERNAL FORCINGS: WAVE CONDITIONS 

The wave climate of the Holland coast is relatively uniform in the longshore; the mean wave height 

from north to south changes by less than 0.2 m (Chapter 4). This simple observation suggests that, 
if this is the primary forcing there is an additional influence acting upon Dcs. However, the major 

control of the hydrodynamics must first be examined before other 6ontrols are investigated. This is 

done using Equation 2.6 over a 10 year temporal period. It should be noted that the use of this 

technique to predict closure is tested in Chapter 8 over a greater range of time periods (within the 
data limits), here it is purely used to determine whether the wave characteristics do indeed act as a 

control upon Dc, 

Values of wave characteristics are taken from the three measuring stations applicable to this study; 
ELD; YM6; and MPN (Chapter 4). Data is available for the period 1979 to 1991, sufficient to 

calculate values of Dc, over two 10 year periods. The calculated value of Dc, which is compared 

with the corresponding observed value, is therefore the mean of these two periods. A correction is 

made to the calculated value as the Hallen-neier (1977,1978) model calculates closure relative to 
MLW (Nicholls et al, 1998a) whilst the input data is relative to NAP; Im is therefore added to the 

model output. The calculated values for the three stations are assumed to vary linearly alongshore 

to enable more realistic comparison with the observed Dc, 2. 

The time-dependent Hallermeier (1977,1978) model clearly provides a seaward limit to the 

observed Dc,, as illustrated in Figure 7.1. In addition, the calculated values reproduce the observed 
longshore trend; the deepest Dc. occurs in the northern region of Noord-Holland and decreases to 
its shallowest values in the southern region of Zuid-Holland (Figure 6.3). However this trend is 

only partly synthesised; the deviations in calculated values between north and south are not as 

great as with the observed values. This is quantified in Table 7.1 and indicates that, whilst the 
hydrodynamics act as a control upon the shoreward depth of closure, there must be an additional 
forcing which regulates its control. 

2 Note that the lack of wave data south of MPN means that the values for profiles kin 84 to 97 are taken from 
the linear regression of the trend between km 57 to 83. 
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Figure 7.1. Alongshore predicted and observed values of closure for the 10 year temporal period. 
Predicted values are calculated using the Hallermeier (1977,1978) model. 

SELECTED PROFILES MEAN VALUES 
krn krn krn 17 NOORD ZUID NOORD 
17 97 minus 97 (krn 16-54) (krn 56-97) minus ZUID 

-(m) (m) 
OBSERVED 8.0 4.0 4.0 7.6 4.7 2.9 

CLOSURE(m) 
PREDICTED 10.4 8.9 1.5 11.1 10.4 0.7 

CLOSURE(m) I I 
DIFFERENCE 2.4 1 4.9 - 3.5 5.7 I - 

(m) I I -I 

Table 7.1. Comparison of predicted. and observed values of the shoreward closure from i) km 17 

and krn 97; and ii) Noord- and Zuid-Holland over a 10 year temporal period. 

The control upon Dc, enforced by the extreme wave height has also been investigated using 

modelling techniques. Here the chronology of the wave climate is examined i. e. does the order in 

which the extreme wave heights occur affect closure or it is only the value of the extreme wave 
height that is important? This work was performed using the process-based numerical model 
UNIBEST-TC (Chapter 5). Here the 10 year evolution of a single profile (krn 8 1) was reproduced 
10 times, each time using a different hydrodynamic time series 3. The bathymetry of the 10 runs 

3 as stated in Chapter 5, the timeseries are based upon measurements taken from MPN and have the same 
statistical properties, but different sequences of wave conditions. 
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after the 10 years was then analysed using the sddc fixed tail (change criterion 0.25 in) method. It 

is clear that, from the small variation in Dc, (Table 7.2), chronology does not play a role in the 

control of closure, it is, as stated in the Hallermeier (1977,1978) model, the value of the 12 hour 

exceeded wave height that is important. 

RUN 1 2 3 4 5 6 7 8 9 10 MEAN SD 
ID 

Dcs 4.9 4.8 5.0 5.0 4.9 5.0 5.2 4.8 4.9 5.0 5.0 0.1 

Table 7.2. Values of Dc. over a 10 year period calculated from UNIBEST-TC output using the 

sddc fixed tail (change criterion 0.25 m) analysis. SD = standard deviation 

7.2.3) INTERNAL DYNAMICS: MORPHODYNAMICS 

The potential influence of the nearshore bar system upon the medium- and large-scale behaviour of 
the shoreward depth of closure is investigated here. The decadal behaviour of the bar system (e. g. 
WiJnberg and Terwindt, 1995), in addition to its influence upon the beach system (e. g. Short, 1992) 
has been the subject of recent studies (Chapter 4). It has been shown, using eigenfunction analysis 
of the nearshore bar system, that two longshore bar regions exist between km 16 and 97 (Wijnberg, 

1995). These two bar regions are divided at krn 55156 (the Umuiden harbour moles) therefore 

corresponding to km 16 to 55 and km 57 to 97. The major difference in the characteristics of these 

two bar regions are their offshore migration rate; 15 years and 4 years respectively (more details 

are given in Chapter 4). It is clear, as shown in Figure 7.2 the longshore location of these two bar 

regions coincides with the two Dc., provinces identified in Chapter 6. This suggests that the 

nearshore bar system could act as a significant control upon Dc, 

This potential influence upon Dc, 4 is investigated using the 'seaward limit (in the cross-shore) of 
the nearshore bar system, or BSL. The morphometric bar parameters of Ruessink and Kroon 

(1994), as shown in Figure 7.3, are used to identify BSL, Within these parameters, the bars are 

classified as that part of the profile which is above the fitted profi le. Therefore BSL is defined as 
that point at which the fitted profile equals the measured one. 

the values of which are taken from the sddc fixed tail analysis (change criterion 0.25 in) 
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Figure 7.2. Alongshore correlation between the (a) 5 year shoreward depth of closure (as defined 

using the fixed tail sddc method (criterion 0.25 rn) and (b) bar behaviour (as defined by 

eigenfunction analysis; Wijnberg, 1995) 
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Figure 7.3. Definition of morphometric bar parameters (adopted from Ruessink and Kroon, 1994). 

Observations of the nearshore bar system using the JARKUSE data set reveal that BSL occurs at 

shallower depths in Zuid-Holland than in Noord-Holland, although it does extend slightly further 

offshore. This is illustrated in Figure 7.4 and correlates with the observed shallower Dc, values in 

Zuid-Holland (Chapter 6). The relationship between the forcing (taking the parameter of BsL) and 

the response (in the form of Dcj was compared using scatter plots, as shown in Figure 7.5. It can 
be seen that there is a strong positive relationship between the two parameters for each temporal 

period, as demonstrated with correlation coefficients at the 95% confidence level; Table 7.3. Two 

additional observations which can be made are : 

as the time period increases, there is a tendency for the r2 value to decrease; and 

as the time period increases, the number of deviations from the m=I line (or outliers) increase 

(Table 7.4). 

If the outliers are removed, the correlation values increase (as would be expected), although the 

variation in the r2 value through time remains the same (Table 7.5). The increased presence of the 

outliers with increasing temporal period suggests that the influence of the nearshore bar system 

upon Dc,, although significant, decreases with increasing time periods. 
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Figure 7.4. Distance offshore of the seaward limit of the nearshore bar zone and the depth at which 
this occurs for each profile alongshore. 
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Figure 7.5. Scatter plots of the observed shoreward depth of closure vs. tile seaward limit of the 

nearshore bar zone. Values of the shoreward closure are derived using the fixed tall sddc method 

(0.25 m criterion). a) = relationship for the 5 year period; b) = relationship for tile 10 year period; 

c) = relationship for the 15 year period; d) = relationship for the 20 year period e) = relationship for 

the 25 year period; f) = relationship for the 28 year period; and g) = relationship Im- the 32 year 

period. . 
The outliers are shown by the open circles. 

TEMPORAL PERIOD (yrs) 5 10 15 20 1 25 1 28 32 
CORRELATION INC. 

OUTLIERS (95% confidence) 
0.83 0.83 0.82 0.79 0.51 0.62 0.71] 

Table 7.3. Correlation coefficients between Dc, and Bsj, using all profiles between kni 16 and 97 

for all temporal periods. 
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M PORAL PERIOD (yrs) 151 10 1 15 1 20 25 28 32 
% OUTLIERS 171 131 13 1 16 28 48 52ý 

Table 7.4. The percentage of outlying values for each temporal period for kni 16 to 97. 

TEMPORAL PERIOD (yrs) 5 10 15 20 25 28 32 
- _ CORRELATION EX. 

OUTLIERS (95% confidence) 
0.95 1 0.95 0.94 0.92 0.89 1 0.96 0.93 

Table 7.5. Correlation coefficients between Dc, and Bs[, for all profiles between krn 16 and 97, 

excluding the outliers, for all the temporal periods. 

7.2.4) INTERNAL DYNAMICS: VOLUME CHANGE 

Volume change was calculated for each profile over two temporal periods; 5 and 10 years (Figure 

7.6. It was derived from 3 to 12 rn water depth, so to include the zone in which closure is typically 

located. As observed during calculations of bathyrnetric change (Section 7.3.2), the Holland coast 
is typically erosive i. e. the net volume change is negative for the maJority of protiles over all tinie 

periods (Hinton, 1998). The major exception is adjacent to the Urnulden harbour moles which act 

as a barrier to the northwards littoral drift, resulting in sedimentation. 

200 

4- loo 

0) 
C0 

0 

a) E 
100 

200 

Figure 7.6. Alongshore volurne changes per cross-shore profile. The lined rectangle represents the 

Uniulden harbour nioles. 
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In order to investigate this potential control, the volume change is compared with the residual 

closure. Residual closure is calculated through the subtraction of observed Dc, from the 

corresponding calculated (using Eq. 2.6) closure. Linear regression between the two variables only 

explains 0.11 and 0.065 of the variance (5 and 10 years respectively). This indicates that, on the 

medium- and large-scale, volume change is an extremely weak control upon closure. 

7.2.5) ANTHROPOGENIC FORCINGS: THE IJMUIDEN HARBOUR MOLES (km 55/57) 

The large-scale (2.5 km cross-shore; I km longshore) of the Umuiden harbour moles in 

combination with their location and the observed boundary between the two Dc, provinces 
(Chapter 6), suggests that they could have a large influence upon the coastal morphodynamic 
system. In order to determine whether the harbour moles do indeed have an impact upon 
surrounding shoreface activity a morphodynamic 'rule-of-thumb' was adopted. This rule-of-thumb 
is an empirical estimation based upon the idea that flow obstruction has a maximum morphological 

effect. It states that the influence of a structure, be it natural e. g. the Marsdiep Inlet (Figure 1.4), or 

anthropogenic e. g. the harbour moles, will extend to seven times its largest dimensions (Van Rijn, 

1998). Therefore the length of the Umuiden harbour moles, 2.5 km, is multiplied by the factor of 

seven and a distance of 18 km either side of the harbour moles highlighted. As a result, the profiles 
km 38 to 74 are treated separately from calculations with the profiles km 16 to 37 and km 75 to 97. 
The occurrence of Dc, for each temporal period (5 to 32 years) was calculated using the sddc fixed 

tail method (change criteria 0.25 m). 

The results obtained produce a strongly significant correlation coefficient at the 95% confidence of 

which there is little difference between the r2 values calculated in km 16 to 37 and km 38 to 74, 

suggesting that the Umuiden harbour moles do not affect the temporal dependence of the 

occurrence of Dc, In addition, the gradients of the temporal relationship clearly show that the 

number of profiles exhibiting closure becomes equal to zero in a shorter temporal period in Noord- 
Holland (km 16 to 37) than between km 38 to 74 suggesting that the Umuiden harbour moles do 

not affect the upper shoreface activity beyond that observed in the 'natural' system of Noord- 
Holland. In addition these results show that Zuid-Holland (km 75 to 97) is the least 

morphodynamic active of the region. All correlation coefficients and gradients are given in Table 

7.6. 

5 at the 95% confidence level 
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NOORD- IJMUIDEN ZUID- 
HOLLAND (km 38 - 74) HOLLAND 

(km 16 - 37) (km 5- 97) 
CORRELATION -0.95 -0.97 -0.72 

COEFFICIENT (95% 
confidence) 

GRADIENT (%y 3.1 2.1 1.4 

Table 7.6. Correlation coefficients and gradients between the occurrence of Dc, and temporal 

period for profiles including/excluding the influence of the Umuiden harbour moles. 

7.3) MIDDLE/LOWER SHOREFACE BEHAVIOUR: THE ACTIVE SHOREFACE 

7.3.1) INTRODUCTION 

It is important to detennine what the nature of the causes upon the middle and lower shoreface 

morphodynamic behaviour is. In this situation this is approached by calculating whether the 

activity is the result of accretional or erosional changes in the shoreface bathymetry. After this has 
been determined, the potential controls upon this activity can then be analysed. As no additional 

process-based measurements are available for use e. g. current readings around the natural terraces 

of Noord-Holland (Figure 4.13), the controls have to be determined through literature research 
(Chapter 2). In addition to the natural controls which could act upon the shoreface, the suspected 

anthropogenic influence of the Umuiden harbour moles is also investigated. 

7.3.2) BATHYMETRIC CHANGES: ACCRETIONAL OR EROSIONAL? 

As shown in Figure 7.7 the observed shoreface behaviour has been correlated with net depth 

changes for the total period of measurements; 1965 to 1997 for km 16 to 71 and 1970 to 1997 for 

km 72 to 97. (To ensure that the net behaviour does not result from measurement error, the periods 
1970 to 1997 and 1965 to 1993 are also examined for km 16 to 71, and 1975 to 1997 and 1970 to 
1993 for km 72 to 97). 
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The shoreface behaviour is typically erosive, as observed in existing studies (van Rijn, 1995; 1997; 

Hinton, 1998), and the resulting sediment is interpreted as being transported onshore as offshore 
transport does not appear plausible. As the net longshore current is northwards (Chapter 4) this is 
the direction in which the bulk of sediment in the active zone is ultimately transported. The 

shoreface behaviour has also been represented using the 'block' technique (Chapter 6), and when 

shown as percentage erosion/accretion per profile, the erosive nature of the Holland coast is clearly 
highlighted (Figure 7.8). Localised zones of accretion do exist; the most prominent is adjacent to 

the Umuiden harbour moles which act as a cross-shore barrier to the northwards littoral drift. 

Accretion also occurs in Noord-Holland although it is only dominant over erosion at two locations; 

kni 35 and kni 44. 

100 

80 

=3 
u 60 

40 

0 20 

0 10 20 30 40 

total % eroded 
tqtal % accreted 
Urnuiden 
harbour rrules 

50 60 70 80 90 100 
profile (km) 

Figure 7.8. Percentage occurrence of accreting and eroding 100 in blocks for each temporal period 

for the total time period ( 1965 - 1997). 

Values of the net depth change are used to compose tile corresponding contours along tile Holland 

shoreface. As shown in Figure 7.9, they mirror the randorn and steady growth of' the observed 

shoreface activity for kni 16 to 29 and kni 30 to 73, respectively (Chapter 6). Details ofthe nature 

of both provinces, as observed using net depth change contours, are given below : 

1. km 16 to 29. This area is mainly erosive, ranging frorn -0.1 to -1.5 In for the 32 years. 
Accretion in this region accounts for 14 % of the change and Is In the range 0.2 to I in per 32 

years; 
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2. km 30 to 5 1. Within this area a 'growth' of net erosion to the west 6 is observed, particularly 

east of km 38 to 40 (Table 7.7). As is most apparent in between km 46 and 5 1, this behaviour 

is concentrated towards the shoreward boundary of the profile (<1.5 km offshore); 
3. km 57 to 62. Net accretion is observed, ranging from 0.1 m to 5.1 m for the 32 year period. 

The greatest accretion is observed at the shoreward limit of those profiles closest to the 
Umuiden harbour moles e. g. 5.1 m accretion per 32 years occurs at 0.7 km offshore at km 57. 

4. km 63 to 73. Here erosion follows the temporal growth of activity northwards and southwards 
from a northwesterly-southeasterly axis offshore (Figure 6.12); the greatest erosion is observed 

in the centre of the zone and decreases northwards and southwards; and 
5. km 79 to 8 1. The net depth change for this area is relatively constant (x = -0.2 m; sd = +0.1 

m). The greatest erosion is located 1.8 to 2.1 km offshore. 
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Figure 7.9a. Contours of net depth change for each profile in the region km 16 to 29. It is clear 
that there is no distinct pattern of erosion/accretion. 

here shorewards is northwards 
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Figure 7.9b. Contours of net depth change in the region km 57 to 81 for the total period (1965 - 
1997). Note that the orientation of Figure 7.9a) and b) are different, allowing the scour hole of b) 

to be seen clearly. Additionally, the legends are different, a result of the increased data points in 

Figure 7.9b). 

PROFILE 30 31 33 34 35 36 37 38 39 40 41 
MEAN NET -0.5 -0.7 -0.4 -0.3 -0.2 -0.5 -0.5 -0.2 -0.3 -0.3 -0.4 

DEPTH 
CHANGE 

PROFILE 42 1 43 44 45 46 47 48 49 50 51 
MEAN NET -0.7 -0.7 - -0.6 -0.6 -0.8 -0.7 -0.7 -0.7 - 

DEPTH 
CHANGE 

Table 7.7. Mean net depth changes per profile for profiles km 30 to 5 1. 

S. -5- 

04.5-5 
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7.3.3) POTENTIAL CONTROLS UPON THE MIDDLE AND LOWER SHOREFACE 

ACTIVITY 

It is assumed that both bi- and uni-directional currents play a role in the induction of the shoreface 

activity observed within this study (Chapter 2). In particular, it is the wave currents that play a 

more prominent role towards the shoreward boundary of the middle shoreface whilst the tidal 

currents are more significant on the lower shoreface, especially towards the shoreface/shelf 
boundary (Stive et al, 1990). The observations made of the shoreface activity (Chapter 6) show 

that the activity increases temporally at an almost steady rate. This suggests that the shoreface 

activity results from cumulative effects i. e. the regular storm, rather than infrequent, extreme events 
i. e. the 50 year storm. This is supported by the conclusion of Soulsby (1987) that extreme 

conditions are relatively unimportant contributions to long-term sediment transport. It would also 
help explain why the event-scale activity observed in point-experiments (e. g. Wright et al, 1986; 

section 2.3.3) is not observed in the short- and medium-scale aggregation of bathymetric profiles 
(e. g. Garcia et al, 1998). 

This section investigates potential influences additional to wave- and current-activity. They take 

the fonn of both natural and anthropogenic controls and are listed below : 

1. shoreface-connected ridges; 
2. offshore terraces; 
3. offshore bars; 
4. shoreface bathymetry;, 

5. Hondsbossche and Pettermer seawall; and 

6. Umuiden harbour moles. 

Another potential control upon the- shoreface activity could be argued to be sand wave migration. 
However, these are not found in water depths less than 14 rn off the Holland coast (Van Alphen 

and Damoiseaux, 1989). In addition, a residual current of greater than 0.5 ms" is required for their 

migration (Stride, 1963) and the residual current off the Holland coast is only 0.1 ms'l (Van Rijn, 
1997). 

The longshore location of the proposed controls are shown alongside those profiles which are 

observed to exhibit active shorefaces in Figure 7.10. It is apparent that there is no obvious relation 
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between the location of the potential controls and shoreface activity, although it is suggested that 
the highly variable growth of shoreface activity between km 16 and 29 results from the interaction 

of the potential controls 2,3,4 and 5. 

The control that each of the six features of the Holland coast could have upon the shoreface 
behaviour, inducing activity are now discussed : 

7.3.3.1) SHOREFACE-CONNECTED RIDGES 

As discussed in Chapter 4, the shorefac6-connected ridges are located within the central Holland 

coast and are mapped at depths of 14 to 15 in (typically the shelf-shoreface boundary). If one 

examines the geomorphological map of the Holland coast (App endix 4.1) it is possible to see that 

the shoreward boundary of the ridges are very abrupt and not to be expected in a natural system. 
Indeed, 3-dimensional bathymetric plots taken from the JARKUSE data set (Figure 7.11) clearly 

show the ridges extending further onshore than suggested by this map. The ridges are associated 

with the large-scale i. e. they interact with the shoreface over the long-term, and are estimated to 

migrate northwards along the Holland coast at a rate of I myf 1 based on relatively limited short- 
terni process measurements and modelling (Van de Meene, 1984). This coincides with the 

timescale over which the observed shoreface activity becomes significant (Chapter 6). At the 
locations where the shoreface-connected ridges interact with the middle to lower shoreface they 

might therefore cause bathymetric activity over the large-scale, although this remains speculative. 

7.3.3.2) OFFSHORE TERRACES 

Two offshore terraces are located in Noord-Holland, at approximately km 15. As shown in the 

bathymetric plot of Figure 7.12 they are prominent features of the shoreface in this province for 

example from its shallowest point the shallower terrace extends southwards by 6 km, deepening by 

8.5 m. There is no known literature on the evolution and erosion of the terraces, or current patterns 

around them; existing studies suggest that they are composed of erosion-resistant sediment (Bakker 

et al, 1998; Chapter 4). This'suggests that they act as an 'interruption' to 'normal' current patterns. 
The combination of steep flanks (this would enhance any gravitational effects) and increased 

current flow could result in long-term changes in the local bathymetry. The author however, feels 

that before the terraces can be related to the observed shoreface activity at this location with 

confidence, further research needs to be performed on what appears to be a relatively unknown 

morphological feature of the Holland coast. 
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Figure 7.10. The alongshore location of possible influences upon the shoreface activity. (The 

shoreface-connected ridges are extended onshore from their position as shown on the 

geornorphological map of Van Alphen and Damoiseaux, 1988). 
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7.3.3,. 3) OFFSHORE BARS 

These features have been observed between km 20 and 28 in water depths ranging from 10 m to 20 

m. The bars are up to several kilometres long and are typically 3 to 6m high (Van Alphen and 
Damoiseaux, 1989). It is possible that their migration could induce shoreface activity, which is 

similar to the activity observed through the offshore migration of the nearshore bars. 

7.3.3.4) SHOREFACE BATHYMETRY 

The shoreface bathymetry has also been examined in order to improve the understanding of the 

observed shoreface activity; bottom contour plots using the JARKUS data have been constructed 
for both Noord- and Zuid-Holland and are shown in Figures 7.13 and 7.14. The features of both 

are now discussed: 

1. Noord-Holland. The natural terraces are clearly seen offshore from km 16 to 25. From km 

26 to 46 the base of an offshore depression exists, the southern flank of which is from km 47 to 
55. The shorewaid side of this depression begins at approximately 1.6 krn offshore. At the 

most seaward extent of this feature, the depth difference between the base and top of the flanks 

to east and west is approximately 8 m, for each year (1965 to 1997). Within this depression, at 
krn 40/41, a ridge is observed and is assumed to be the shoreward edge of a shoreface- 

connected ridge; and 
2. Zuid-Holland. The northwards flank is formed from the accretion of sediment immediately to 

the south of the Umuiden harbour moles (from km 57 to 62) and the southward flank 

commences at km 72. The shoreward flank of the depression commences at approximately 1.7 

km offshore. At the most seaward extent of this feature, the depth difference between the base 

and top of the flanks to east and west is approximately 4.5 m, for each year (1965 to 1997). 

The dimensions of the southern depression, in the x-, y-, and z- axis are typically less than those 

of Noord-Holland, as shown in tigure 7.15. 
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Figure 7.15. Dimensions of the depressions located in Noord-Holland and Zuid-Holland. 

Longshore depths (from all available years) have also been plotted at selected distances (1.4 km; 

1.8 km; 2.2 km; 2.4 km) offshore in both provinces. The location of the observed shoreface activity 

was then overlain, as in Figure 7.16. It is apparent within Noord-Holland that the shoreface activity 
is concentrated on the flanks of the depressions. However the flanks are not completely active; it is 

hypothesised that this is because the shoreface activity is temporally-dependant (Chapter 6) and so 

as the temporal period increases beyond 32 years, more locations on the flanks will become active. 
It is also hypothesised (based upon observations; Chapter 6) that ultimately all profiles will become 

active, however the profiles located on the flanks will exhibit more activity. In Zuid-Holland 

shoreface activity is also concentrated on the depressions flanks. 

However the activity observed for the profiles south of kin 74 does not appear to result from any of 
the factors examined here. Consequently it must be assumed that this act ivity results from wave-, 

wind- and tidally-induced currents. However, there appears to be no reason why profiles kin 79 to 
81 are affected and not, for example, kin 89 to 91. The activity does not result from data 

inaccuracy as it is observed using both methods (sddc; fdc) and all criterion (0.25 in; 0.5 in; 0.75m 

which respectively corresponds to a 66 %; 95 % and 99.5 % confidence that real change has 

occurred). 
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7.3.3.5) HONDSBOSSCHE AND PETTERMER SEAWALL 

The Hondsbossche and Pettermer seawall (km 20 to 26) acts as an anthropogenic headland, 

protruding seaward from the present coastline. The profiles seaward of the seawall are steep, in 

particular the profiles immediately to the north of the seawall are the steepest along the Holland 

coast 1: 0.02 (Chapter 4). This is probably due to shoreface erosion resulting in landward 

translation of the middle/lower shoreface but no landward profile translation in the nearshore due 

to the fixed boundary of the seawall. Alongshore gradients have been associated with shoreface 

activity (see following paragraph) and it is suggested this association can also be made here in the 

cross-shore. Bathymetric plots of the region (Figure 7.17) immediately north and seaward of the 

seawall show steep gradients in both the longshore (km 16 to 19; 1: 0.002) and cross-shore (km 19; 

1: 0.02). It can be expected that sediment iniation readily occurs due to wave- and tidal-currents in 

addition to the enhanced gravitational effects enforced by the Hondsbossche and Pettermer seawall. 

7.3.3.6) IJMUIDEN HARBOUR MOLES 

There is a concentration of observed shoreface activity adjacent to the Umuiden harbour moles 
(Figure 6.10). So, in order to see if the Umuiden harbour moles do, as expected, exert the largest 

influence upon the shoreface behaviour, the occurrence of the three types of shoreface activity 

with time has been calculated for all profiles excluding km 38 to 74 (see section 7.2.5). 

Correlation coefficients were then calculated between the two variables 7 at the 95% confidence 
level. As with the investigation including profiles krn 38 to 74, the relation between temporal 

period and occurrence of shoreface activity, as a combination of the three types, is strong and 

positively correlated. However, if each of the three classifications are examined as a function of 

time, a different evolution arises to that which exists for all profiles (km 16 to 97). This is clearly 

shown using all correlation coefficients, as in Table 7.8. 

The correlation coefficients, calculated without profiles km 38 to 74, indicate that the number of 

profiles exhibiting shoreface activity increases through time. However this is the result of an 
increase in both the shoreward and seaward partially-active profiles rather than in the fully-active 

profiles. Additionally, those profiles exhibiting shoreward partial-activity do not significantly 
increase with time and instead the occurrence remains at a relatively constant value. This would 
suggest that seaward partially-active profiles are more characteristic of the shoreface behaviour of 
the Holland coast. Therefore the effect of the Umuiden harbour moles is to induce shoreface 
activity across the entire cross-shore distance of a profile at temporal periods shorter than under 

7 occurrence of shoreface activity; temporal period 
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natural forcings. So if this anthropogenic influence were not present upon the Holland coast, 

partially-active profiles would be predominant and evolve to fully active profiles at temporal 

periods greater than 32 years. 

The nature of the Umuiden harbour moles control upon the shoreface activity is also supported by 

results from the examination of their influence upon the middle/lower shoreface closure (DcmA). 

Correlation coefficients calculated without profiles km 38 to 74 (section 7.2.4) show that the 

occurrence of DcmA decreases as a function of time. Note that the r2 value calculated using analysis 
based on the change criterion 0.5 in is not as significant as with the 0.25 rn criterion; the larger 

criterion has a greater change margin i. e. the percentage of profiles exhibiting seaward closure 

remains at a more constant value through time (Table 7.9). This suggests that the form of the 

influence of the Umuiden harbour moles is to induce activity across the whole shoreface rather than 
the evolution of partial activity to ftill activity (where partial activity represents both shoreward and 

seaward partial activity). 

WITH IJMUIDEN WITHOUT IJMUIDEN 
INFLUENCE INFLUENCE 

P, Pb F ALL Pý I Pb F I ALL 
CORRELATION 0.93 0.72 0.98 0.95 0.61 0.91 0.93 0.96 

COEFFICIENT (95% 
confidence) 

Table 7.8. Correlation coefficients between percentage occurrence and temporal period (5 to 32 

years). The method used here is the fixed tail sdde method (criterion 0.25 m). (P, = shoreward 

partial activity; Pb = seaward partial activity and closure on middle/lower shoreface; F= fully 

active; ALL = three types of activity combined). 

WITH IJMUIDEN 
INFLUENCE 

WITHOUT IJMUIDEN 
INFLUENCE 

0.25 m 0.5 m 0.25 m 0.5 m 
r, z(95 % 

confidence) 
-0.75 -0.35 

I 
-0.87 -0.4 

Table 7.9. Correlation coefficients between percentage occurrence of the seaward limit of shoreface 

activity and temporal period for two scenarios; with and without Profiles directly affected by the 
Umuiden harbour moles. 
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The effect of the Umuiden harbour moles upon the adjacent shoreface is significant and the 
'mechanism' behind the induction of activity can be equated to the influence of the harbour moles 
upon the local tidal currents. Process-based modelling, based upon the morphodynamic 
development of this area (Roelvink et al, 1998), has been used to reproduce the altered tidal 

currents; the northwards directed longshore current is halted and diverted seawards by the southern 
harbour mole (Roelvink et al, 1998; per comm. Bakker, 1998; per comm. van Rijn, 1998). 
Accelerated transport is thus observed at the end of the mole and is the cause of the sediment 

erosion. A similar situation can be envisaged at the end of the northern harbour mole due to the 
diversion of the ebblidal flow. 

7.4) SUMMARY 

The medium- and large-scale spatial and temporal shoreface behaviour observed in Chapter 6 

raised questions concerning the forcing conditions which relate to this behaviour over the specified 

scales (cf. Cowell et al, 2000). These questions are addressed here. There are two morphodynamic 
features which are focused upon in this chapter; the shoreward depth of closure and middle/lower 

shoreface activity (Figure 6.2). Some of the controls investigated have been recognised in previous 

studies over the short-, and sometimes, medium-scales; data limits have meant that controls over 

the large-scale are derived from assumptions made regarding the smaller scale behaviour. 

A seaward Timit to the observed Dc of wave-dominated coasts has been calculated in short- and' 
medium-scale studies using the Hallenneier (1977,1978) model (e. g. Birkemeier, 1985). This 

model (Chapter 2) takes the 12 hour exceeded wave height to calculate values of closure, and as it 
8 can predict a value of closure similar to, although deeper than , the observed closure the fact that 

the extreme wave height acts as a control upon Dc is reinforced- This study investigates this 

control upon the morphodynamic response of the shoreward depth of closure over the medium- and 
large-scales. The use of the time-dependent form (Eq. 2.6) of the Hallermeier (1977,1978) model 

shows that the extreme wave height does act as a control upon Dc, The observation that it 

calculates a deeper value of Dc, is dealt with in more detail in Chapter 8. In addition, it is also 
shown that it is the value of this wave height which is important and not its location in a sequence 
of wave heights i. e. chronology does not play a role in the control of the shoreward depth of 
closure. 

8 except during accretional events (Nicholls et al, 1998a) 
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Although a typical 0.2 m variation in wave height from Noord- to Zuid-Holland does result in a 
Dc. variation of 1.5 m (krn 17 to krn 97; Table 7.1), it does not explain why there arc two distinct 

provinces of Dc, (Figure 6.3) within Holland. An identical division of the coast is seen using the 

morphodynamics of the nearshore bar region (Figure 7.2; Wijnberg, 1995). This suggests that 
internal dynamics, taking the form of the nearshore bars, play a role in the control of the shoreward 
closure. Indeed, it is seen that there is a strong, positive relation between Dc, and BSL (the seaward 
limit of the nearshore bar region) (Figure 7.5). It is therefore concluded that over the medium- and 
large-scales the response of Dc, to the control of the wave forcing is 'regulated' by the 
morphodynamics of the nearshore bar system i. e. both external forcing and internal dynamics 

control the shoreward closure although it is the former which i) has the greater control; and ii) is 

constrained by the latter. This is in agreement with existing work (Chapter 2) which states that, 

over the short- and medium-scales, : 

"the response to the waveforcing is constrained by the internal 

dynamics ofthe morphological system" (Nicholls et al, 1998b) 

However, it is also apparent that the interaction of these controls is dependent upon the temporal 

period. Figure 7.5 shows that as the temporal period increases from 5 to 32 years, so the 

percentage of outliers9 increases from 7% to 52%. This suggests that the influence of the bar 

system is less significant over the longer time periods (the increased role of the hydrodynamics 

over the longer time periods can not be investigated due to data limitations). 

It was hypothesised that the Umuiden harbour moles would play a role in the occurrence of Dc', 
due to its i) large spatial extent and ii) position relative to the boundary between the two provinces 
of Dc, (Chapter 6) and the nearshore bar system (Wijnberg, 1995). It was surprising therefore to 
find that it had little influence upon the occurrence of Dc,; correlation coefficients(95% confidence level) 
between temporal period and occurrence of Dc, are significant when the profiles 'affected' by the 
harbour moles are both included and excluded (Table 7.6). It is suggested that this is the result of 

many of the profiles which are 'affected' by the harbour moleslo failing under the classification of 

seaward partially-active or fully-active (Figure 6.7) and so do not exhibit a shoreward closure. 

9 as identified by significant variation from the in =I line 
10 according to the 'rule of thumb' of Van Rijn (1998) 
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There is little information available about the causes and controls which act upon the 

morphodynamic behaviour of the shoreface. Of the information that does exist, it is typically for 

the short-term (e. g. Niedoroda et al, 1985; Brink, 1987; Wright, 1995) and usually provides 
information concerning the characteristic sediment transport recorded during event-scale 
experiments (e. g. Snedden et al, 1988). As already stated in this chapter, there are no 
measurements available of the behaviour of the Holland shoreface, hence the controls upon the 
observed behaviour are detennined through literature reviews. 

The activity observed on the Holland shoreface results from erosive processes. This was 
determined from net depth change calculations and agrees with existing sediment budget studies 
We Ruig, 1989; Knoester, 1990; van Vessern and Stolk, 1990; de Ruig and Louisse, 1991; van 
Rijn, 1995; 1997; Hinton, 1999). The contours of net depth change (Figure 7.9) mirror the 

observed growth of shoreface activity in Noord- and Zuid-Holland, in addition (as one would 
expect) the greatest activity is correlated with the greatest quantity of erosion. The shoreface 
erosion is controlled by regular events whose cumulative effects result in the shoreface activity 
steadily increasing through time; irregular, extreme events do not appear to influence the observed 

shoreface activity (cf. Soulsby, 1987). It also appears that bathymetric gradient plays an important 

role. Slopes of greatest cross-shore and longshore gradient correlate with locations of the 

shoreface activity (Figure 7.16) and so it is suggested that these locations are more susceptible to 

sediment erosion by currents". (The entrained sediment is ultimately transported onshore by the 
dominant cross-shore currents). 

It is not possible to produce conclusions about the controls upon the middle and lower shoreface 

activity due to a lack of measurements (e. g. current measurements in the proximity of the natural 
terraces). However, it has been possible within this study to quantitatively determine the influence 

of the Umuiden harbour moles upon the activity and so draw conclusions. Using the van Rijn 

(1998) rule of thumb it has been possible to determine the evolution of the Holland shoreface 

without the influence of the harbour moles. Iý is clearly seen that this large-scale engineering 

structure has a significant impact upon the morphodynamic activity along this coast. Correlation 

coefficientS(95% conridence level for the temporal dependence of the three types of active shoreface are 

strongly significant both with and without the profiles affected by the harbour moles (Table 7.8). 

However differences do exist between the two scenarios which led to the conclusion that the 
Umuiden harbour moles act to induce morphodynamic activity along entire cross-shore profiles at 

II wave currents towards the shoreward boundary and tidal currents towards the seaward boundary 
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time periods less than under natural forcings. This conclusion is also drawn when the same 
investigation is undertaken for the middle/lower shoreface closure (Table 7.9). 

In conclusion therefore : 

1. the shoreward depth of closure is under the control of external forcings, as the 12-hour 

exceeded wave height, and internal dynamics, as the morphodynamics of the nearshore bar 

system. The effect of the former is constrained by the latter and is more significant over the 
longer time periods; 

2. the active middle and lower shorefaces are typically erosive and it is hypothesised to be under 

the influence of a number of factors, the most evident being regular events interacting with 
local increases and decreases in the slope gradients; 

3. the Umuiden harbour moles have a significant impact upon the middle/lower shoreface 
activity, causing it to become fully active at shorter time scales than in a natural system; and 

4. more research, in the form of instrument deployment e. g. current meters, needs to be 

undertaken before the controls upon the shoreface activity can be confidently identified and 

completely understood. 
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8) PREDICTIONS OF THE SHORT-, MEDIUM- AND LONG-TERM 
BEHAVIOUR OF THE HOLLAND SHOREFACE 

8.1) INTRODUCTION 

This study is unique as it has allowed the observation of morphodynamic behaviour of a wave- 
dominated shoreface along 81 krn of shoreline to 15 to 16 m depths over 32 years. There are few 

coastlines for which observations, such as that presented here are available. In the absence of such 
data, predictive techniques and models, are often relied upon to provide the necessary information. 

Yet if there is insufficient knowledge relating to large-scale behaviour, how can one confidently 

predict the appropriate behaviour? A consequence of minimal levels of data and information is 

insufficient calibration of the proposed techniques. It is therefore the purpose of this chapter to test 

existing predictive methods of coastal behaviour. In concurrence with the topic of this research, 

emphasis is placed upon the large-scale shoreface behaviour, although the short- and medium- 

scales are also examined. Additionally, projections are made beyond the JARKUS data limits (32 

years) based upon observations from this study to allow an insight into the timescales of shoreface 

evolution over the very-long-term, including the impacts of human interference upon this 

evolution. Although most of these projections can not be calibrated they will provide useful 
information concerning the potential nature of very-long-term trends; deviations between the 

trends and model outputs should alert the user to possible errors within the model'. The research 

objectives three and four are* focused upon (section 1.3) : 

Evaluate the ability ofexisting models to predict shoreface 

morphodynamic behaviour 

Examine how the shoreface behaviour may evolve beyond the data 

limit 

This is done by addressing the following research questions : 

Can the medium- and large-scale depth of closure be predicted 

using the time-dependent analytical Hallermeier (1977,1978) 

model (Chapter 2), which has already been vigorously tested on 

1 this is a very real concern in present research as many of the existing coastal models are designed for the 
short- to medium-term. Use over the long-term could result in thý inherent errors, which are insignificant 
over the smaller scales, becoming important over the long-term (see Chapter 5 and section 8.2.3). 
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the small-to medium-scale for micro-tidal, - wave-dominated 
coasts? What are the limitations, if any, of this model? 

Can a process-based. model (UNIBEST-TC; Chapter 5) designed 

for the short-term evolution of a cross-shore profile be used to 
identify depth of closure over this and larger scales? What are the 
limitations of upscaling a short-term model in this way? In 

addition, can this model accurately reproduce the observed 
behaviour over the entire shoreface? 

Can projections of the observed behaviour be made beyond the 

data limit? Are the resultant timescales consistent with the results 
of existing models? What are the limitations of such methods? 
Are the assumptions made appropriate? 

It is the characteristics of the shoreward depth of closure and shoreface activity, as previously 

observed (Chapter 6), which are used in this chapter for predictive purposes. Section 8.2 i) tests an 

analytical model used to predict the depth of closure and adopted here for the shoreward depth of 

closure; and ii) investigates the potential use of a process-based model, which is more commonly 

used for the evolution of cross-shore profiles over the short-scale. The third section (8.3) projects 
the observed behavioural trends of both Dc, and three classifications of shoreface activity (the 

partially- and fully-active classifications; Chapter 6). The final section discusses the results 

obtained in the previous sections in the context of the research questions. 

8.2) EVALUATION OF EXISTING MODELS 

8.2.1) INTRODUCTION 

It has been shown (Birkemeier, 1985; Nicholls et al, 1998b; Marsh et al, 1998) that the analytical 
Hallenneier (1977,1978) model calculates a seaward limit to the observed short- and medium-term 
depth of closure for all wave-dominated situations, except those of rapidly accreting or eroding 

profiles (Table 2.7). Chapter 7 clearly shows that this model is important in the prediction of 

closure as it takes as its input the extreme wave conditions; the primary control upon Dc, It is 

therefore imperative that its abilities are tested over all relevant scales, especially those over which 
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many coastal management schemes are being designed for; the large-scale. Hence this section 

primarily tests the ability of Eq. 2.6 to predict Dc, over the large-scale. 

The Hallermeier (1977,1978) model was designed to calculate Dc, therefore it should, as existing 

work suggests, be able to predict reasonably accurate values of Dc. (when compared to the 

observed). Howevei, models also exist whose prime function is not the calculation of Dc. but 

whose output could be used to determine this parameter. One such example is the process-based 

numerical UNIBEST-TC model (Bosboorn et al, 1997; Chapter 5). This model was fundamentally 

designed to predict the short- and medium-term evolution of single cross-shore profiles; 

comparison between its output and corresponding field data revealed that it is capable of fulfilling 

this aim (cf. Roelvink and Broker, 1993). This was encouraging and so the abilities of UNIBEST- 
TC to correctly predict the shoreface characteristics identified in Chapter 6 were tested here. 

8.2.2) THE ANALYTICAL MODEL: HALLERMEIER (1977,1978) 

I The approach used in Chapter 7 (Section 7.2.2) is adopted here, as illustrated in Figure 8.1. The 

only difference is the calculation of an additional two temporal periods; I and 5 years. 

Hence, both JARKUSs ,dF are used for comparative purposes; in the case of the I year period, 

comparisons have been made using observed values taken from the nine selected profiles used in 

Chapter 6. The results are presented in the following order; firstly the spatial variation of the 

calculations are addressed and then the temporal variation within the three time periods is given. 

8.2.2.1) SPATIAL VARIATION 

The calculated Dc, values are deeper in Noord-Holland than Zuid-Holland for all three temporal 

periods as shown in Table 8.1 which gives the mean Dc,,, 5,10 years 
2 for'each wave station. The 

spatial variation calculated by Eq. 2.6 agrees with observations (Chapter 6; Figure 6.3). However, 

as already remarked (Chapter 7), the calculated values do not exhibit as strong a longshore trend as 
the observed values; the difference between Noord- and Zuid-Holland is smaller than one would 

expect based on observations (Figure 8.2; Table 8.2). A result of the 'underestimation' of the 
longshore difference in closure, has resulted in the overprediction of observed values being much 
larger in Zuid-Holland than Noord-Holland. 

2 Dc, = the Dc, value o'ver t years 
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ANALYTICAL HALLERMSER (1977, 
1978) MODEL 

HYDRODYNAMIC 
FORCING 

MEDIUM-TERM LONG-TERM 
(I yr) (10 yr) 

"")k rDEPTH 

OF 
CLOSUR> E? middle shorefacW 
CLOSURE? 

--4, upper shoreface 

PARTIALLY-ACTIVE N 
SHOREFACE: 

cross-shore limit to significant 
depth change identifiable but this 

, mav occur on middle shorefaCz' 

" INACTIVE SHOREFACE: 
absolute cross-shore limit to signific 
1\1 depth change 

Figure 8.1. Flow diagram showing the model-orientated approach of the analytical Hallermeier 

(1977,1978) model over medium- and large-scales. Hydrodynamic data from the Holland coast 

was used as the model input. The calculated values revealed a seaward limit to the significant 

depth change either a) on the upper shoreface, or b) on the middle shoreface. Hence profiles were 

calculated to be either a) inactive, or b) partially-active. 

STATION ELD YM6 MPN 
I yrs 5 yrs 10 yrs 1 yrs 5 yrs 10 yrs 1 yrs 5 yrs 10 yrs 

MEAN 
CLOSURE(m) 

10.1 11.5 11.9 9.6 10.9 10.9 8.6 9.8 10.2 

SD(m) 1.5 0.4 0.6 0.7 0.9 0.5 1 0.9 1 0.6 0.7 

Table 8.1. The mean and standard deviation (sd) of the calculated values for closure at each of the 
three stations. Each mean value represents the average of all possible calculations e. g. Dc, 5y,, = 
((Dc, 1979-1983) + (Dc, 1980-1984) + (Dc, 19SI-1985) + (Dc, 1982-1986) + (Dc. 1983-1987) + (Dc, 1984-1988) + 

(Dc, 1985.1989) + (Dc, 1986-1990) + (Dc, 1987-1991) 19)- 
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Figure 8.2. The observed and calculated values of Dc, over 5 and 10 years for the entire Holland 

coast. Calculated values are taken from the Hallermeier (1977,1978) model. It is clear that, in all 

cases, the Hallermeier (1977,1978) model provides a seaward limit to the observed closure. 

km 17 km 97 RANGE km 17 to 97 
(M) 

1 yrs 5 yrs 10 yrs 1 yrs 5 yrs 10 yrs 1 yrs 5 yrs 10 yrs 
OBSERVED 7.5 8.0 8.0 3.2 4.0 4.0 3.3 4.0 4.0 

CLOSURE(m) 
PREDICTED 8.8 10.1 10.4 7.2 8.3 8.9 1.6 1.8 1.5 

CLOSURE(m) I I I I I I I 

Table 8.2. Comparison of calculated and observed values of the shoreward closure from km 17 

and 97 over 1,5 and 10 years. It can be seen that the difference in observed values from north to 

south is greater than that calculated using the time-dependent Hallermeier (1977,1978) model. 

8.2.2.2) TEMPORAL VARIATION 

For all three temporal periods, Eq-2-6 overpredicts the observed closure i. e. it provides a seaward 
limit. In more detail: 

e all annual observed values from the nine selected profiles are less than the corresponding 

calculated values by a minimum of 1.3 m and a maximum of 4.0 m (Table 8.3); 

e Eq. 2.6 overpredicts; the 5-yearly observed Dc, values for all longshore profiles (Figure 8.3a) by 

a range of 2.1 m to 4.3 m; and 
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the 10-yearly observed Dc, values are overpredicted by Eq. 2.6 along the entire Holland coast 
(Figure 8.3b) by a minimum of 2.4 m and maximum of 4.9 m. 

PROFILE 17 
. 
27 37 47 57 67 77 87 97 

(km) 
OBSERVED 7.5 6 5.5 6.2 4.6 4.8 n1c 4.3 3.2 

Dc. (m) 
PREDICTED 8.8 8.7 8.7 8.6 8.6 8.2 7.8 7.5 7.2 

Dc, (m) I I I I I I I I I I 

Table 8.3. Comparison betwee n the annual observed and calculated values for the nine selected 

profiles along the Holland coast. n1c = no closure. 
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Figure 8.3. Comparison between the observed and predicted values of the shoreward depth of 

closure. Calculated values are derived using the Hallermeier (197.7,1978) model. The 

overprediction of the observed closure is clear for both temporal periods; a) =5 years; b) = 10 

years. 

It is also observed that the temporal growth of the calculated values is greater than that shown by 

the observed values, as illustrated using the example of krn 17 in Table 8.4. 
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km 17 DIFFERENCE 
betwe yrs (m) 

I yrs 15 yrs 10 yrs 1: 5 yrs 5: 10 yrs 
OBSERVED 7.5 8.0 8.0 0.5 0 

CLOSURE(m) 
- 

I 
PREDICTED 8.8 10.1 10.4 T 1.3 0.3 

CLOSURE(m) I - 

Table 8.4. The overprediction of the temporal growth of closure over the 10 years is shown using 
the example of kin 17. Note that this observation is applicable to all Iongshore profiles. 

The final observation which can be made is that the temporal increase of closure is not predicted to 

occur at a steady rate i. e. it is non-linear. This result is not surprising as there are few factors which 
increase linearly with time, for example wave heights do not increase from Im over I year to 10 m 
over 10 years. Indeed the greatest increase is observed over the shorter time periods (Table 8.5; 

Figure 8.4) and is supported by observations of closure which conclude that the temporal 

relationship of Dc, is logarithmic (Section 6.2.3). This suggests that collection of reliable 
hydrodynamic data beyond I yea? will not be of any gain in the calculation of closure as the 

calculated values will remain similar to the value of the previous period (Table 8.4); this is seen 

with YM6 where an increase in temporal period from 5 to 10 years does not correspond with an 
increase in Dc, However, this does assume that the statistics of the hydrodynamic climate will not 

significantly change beyond this critical period. 

CHANGE IN PRE DICTED VALUES (m) 
STATION 1: 5 yrs 5: 10 yrs 

ELD 1.4 0.5 
YM6 1.3 0 
MPN 1.3 0.4 

Table 8.5. Changes in the predicted value of closure between temporal periods for each wave 
station. 

3 note that in order to obtain one years worth of reliable hydrodynamic data it may be necessary to collect 10 
years worth and then calculate the mean in order to remove any variability. If this is not done then there is 
the risk that the annual period of data used represents a year which is unusually cahn/stormy. 
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Figure 8.4. Predicted values of the shoreward depth of closure for various temporal periods. The 

line of best fit is shown here which takes a logarithmic trend. It can be seen that the increase Irom 
I to 5 years is greater than that from 5 to 10 years. Predictions are made using the tinie-dependeW 

Hallermeier (1977,1978) model. 

8.2.2.3) COMPARISON BETWEEN THE OBSERVED AND PREDICTED CLOSURE 

Tile difference between the observed Dc, (m), as calculated using the sddc fixed tail (change 

criterion 0.25 m) analysis, and that predicted using the Hallerrneier model can be used as an 

indication of how much of the predicted change actually occurs on the I lolland coast. This is done 

by taking a best-fit approach between the two variables where a value of zero Ior the predicted is 

equal to zero for the observed (Figure 8.5). The empirical formulae are given below (F(I. 8.1 to 8.6) 

for the two provinces and the entire Holland coast for two temporal periods; 5 and 10 years : 

Noord-Holland 5 years 

10 years 

Zuid-Holland 5 years 
10 years 

Holland 5 years 

10 years 

d, Iý0.72d, l 
d, l = 0.75 d, l 

d, l = 0.52 d, l 
d, l = 0.51 d, l 

d, l = 0.61 d, l 
d, l = 0.62 d, l 

2 
(r 0.02) 

2 
0.13) 

0,56) 

0.29) 

2 
(r 0.39) 

0.29) 

(Fq. S. 1) 

(Eq. 9.2) 

(Eq. 8.3) 

(E q. 8.4) 

(Eq. . 5) 

(I . 8.6) 

(Here d, j = observed shoreward closure; d, j = predicted shoreward closure using Eq. 2.6) 
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Figure 8.5. Relationship between the observed shoreward depth of closure and tile calculated 

shoreward depth of closure (using Eq. 2.6) for Noord- and Zuid-Holland over two temporal periods; 

a) =5 years; b) = 10 years; c) =5 and 10 years combined. Graphs d) to 1) are Im the entire I lol land 

coast over two temporal periods; d) =5 years; e) = 10 years; f) =5 and 10 years combined. 

Therefore, 51% to 75% of the predicted change occurs on the Hol land coast over tile periods 5 to 

10 years. Correlation coefficients at the 95% confidence level show that this relationship is only 

significant for Zuid-Holland over the 5 year period. 

To enable comparison between this study and existing ones, the approach adopted above has also 
been used over the annual scale for the ten profiles previously used (Chapter 6); kni 17; 27; 37,47; 
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57; 67; 87; 97. The plots are shown in Figure 8.6 and the corresponding equations are given below 

Noord-Holland d, j = 0.72 de (r2 = 0.08 (Eq. 8.7) 
Zuid-Holland dTI = 0.54 d, j (r2 = 0.56) (Eq. 8.8) 
Holland dTI = 0.64 d, j (r2 = 0.40) (Eq. 8.9) 

It is clear that this relationship is typically insignificant at the 95% confidence level; and as with 
the empirical fit over the 5 and 10 years it is only significant in Zuid-Holland. However, it is clear 
that 54% to 72% of the change predicted by the Hallenneier model occurs in this examples; this is 
less than that observed at the Duck site where over the annual period, 76% of the change predicted 
occurs (Nicholls et al, 1996). 

The relationship between these two variables (d,,; de 
, j) can also be assessed by calculating the 

empirical formula between the smallest observed Dc, value and the predicted values (Figure 8.6). 
These are given below for the two provinces andthe entire Holland coast for all temporal . periods : 

Noord-Holland I year dT, ý 0.60 del (Eq. 8.10) 

5 years dTl = 0.50 de (Eq. 8.1 1) 

10 years dTl = 0.59d, (Eq. 8.12) 

Zuid-Holland I year dTl = 0.40 de 
,I 

(Eq. 8.13) 

5 years dTI = 0.39 del (Eq. 8.14) 

10 years dTl = 0.35 de (Eq. 8.15) 

Holland I year ,I 
dTl = 0.40 de (Eq. 8.16) 

5 years dTI = 0.40 del (Eq. 8.17) 

10 years dTI = 0.38 del (Eq. 8.18) 

Therefore the minimum values of observed closure represent 35% to 60% of the predicted change 
within the Holland coast. 
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Figure 8.6. Relationship between the observed shoreward depth of closure and the calculated 

shoreward depth of closure (using Eq. 2.6) over the annual temporal period for a) = Noord-Holland; 

b) = Zuid-Holland; c) = the entire Holland coast. 

The over-prediction of closure by Eq. 2.6 has led to the derivation of an empirical formula for the 

calculation of Dc, Rather than using the Hallermeier model as a basis and altering the constants, 

as done by Bir 
* 
kerneier (1985) (see Eq. 2.4), this empirical formula examines the relationship 

between the 12 hour-exceeded wave height and the observed Dc, The wave height represents the 

mean wave height for the appropriate temporal period for each profile and Dc, is taken from the 

sddc fixed tail (change criterion 0.25 m) analysis. It was performed for the Holland coast and the 

two provinces (Noord- and Zuid-Holland) for two temporal periods (5 and 10 years). The 

relationship is more significant at the 95% confidence level for Zuid-Holland, perhaps a 
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consequence of the small variability in Dc, values and increased morphodynamic activity in Noord- 

Holland. When data was taken from the entire Holland coast two populations exist, correlating to 

the two provinces. Additionally, the two temporal periods compose two distinct populations within 
Noord-Holland; the result of differences in the 12-hour exceeded wave height rather than the 

closure values. These points are illustrated in Figure 8.7. The empirical formula which could be 

used to predict closure along the Holland coast (and within its two provinces), over the long-term, 

takes the assumption that when the 12-hour exceeded wave height is equal to zero, Dc, is also equal 

to zero. The formula are given below for the combination of the 5 and 10 year temporal periods: 

Noord-Holland. dTI = -1.20H, 0.07) (Eq. 8.19) 

Zuid-Holland. d, j = -0.85H, 0.52) (Eq. 8.20) 

Holland. dTI = -1.01H, (r2 0.39) (Eq. 8.21) 

(Here He represents the 12-hour exceeded wave height as used in Eq. 2.6). 

Although it has been possible to derive a simple empirical formula between the 12-hour exceeded 

wave height and shoreward depth of closure, it only explains less than 55% of the relationship (see 

respective r2 values). This is due to the strong signature of the nearshore bar system as a control 

upon Dc,, particularly in Noord-Holland (r 2=0.07) where it becomes apparent that there is a need 
for a more detailed understanding of the acting processes. It is therefore recommended that the 

Hallermeier (1977,1978) model is used in closure calculations, especially on shorefaces other than 

Holland, as it will always produce a seaward limit to the actual closure; the underprediction of 

closure is more likely to have negative impacts within for example sediment budget calculations, 

than the overprediction. However, the empirical fon-nula derived above should provide a robust 

value of the shoreward depth of closure when applied to the Holland coast. 
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Figure 8.7. Relationship between the observed shoreward depth of closure and the 12-hour 

exceeded wave height for Noord- and Zuid-Holland over two temporal periods; a) =5 years; b) = 
10 years; c) =5 and 10 years combined. Figures d) to f) are for the entire Holland coast; d) =5 
years; e) = 10 years; f) =5 and 10 years combined. Note that the intercept of the axis are not set at 
zero; the small range of the x-axis means that this is not an option. 

8.2.3) THE PROCESS-BASED MODEL: UNIBEST-TC 

As stated in the introduction to this section, UNIBEST-TC does not specifically calculate the 
location of shoreface activity/inactivity. However, it is possible to analysis the model's 
bathymetric output in order to identify this behaviour. Therefore the model input, output and 

parameters were set as summarised in Table 8.6. The bathymetric output, selected from the twelve 
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temporal periods, was analysed using the sddc fixed tail method (change criterion 0.25 m4). (The 

approach adopted is shown in Figure 8.8). Comparisons were then made between the observed 
(using JARKUSS + E) and calculated values. For comparative purposes, the calculated values of 

closure were rounded up to the nearest metre; the fact that this model is not specifically designed to 

predict Dcs makes it more interesting to see if it is applicable to this task. 

CATEGORY DETAIL 
HYDRODYNAMIC INPUT wave height, wave period, incidence 

angle, storm surge level 
MORPHODYNAMIC INPUT km 81 (-14.9 m to +5 m) 

TIME STEP 1 day 
TYPE OUTPUT bathymetry 

NUMBER OF RUNS 10 
RUN LENGTH To years 

TEMPORAL PERIODS ANALYSED 
1 

1 month, 0.5 yr, 1 yr, 1.5 yr, 2 yr, 2.5 
yr, 3 yr, 3.5 yr, 4 yr, 5 yr, 7.5 yr, 10 yr 

Table 8.6. Summary of the input, settings and output of UNIBEST-TC as used in this study. 

Further details are given in Chapter 5. 

Preliminary comparison between the bathymetric output and JARKUS E clearly showed that 

UNIBEST-TC was unable to correctly predict the middle to lower shoreface evolution (Figure 5.8). 

Therefore this technique was only tested for its ability to predict Dc. '. However, models are 
increasingly being designed to include the shoreface. Due to the limitations imposed by process- 
based models, these tend to be behaviour-orientated (Chapter 2) and are used to describe both the 

shoreface and shelf behaviour over the very-large-scale (decades to millennia). One example of a 

behaviour-orientated model is the Advection-Diffusion Model (ADM) of Niedoroda et al, 1995. 

4 although it could be argued that the output from UNIBEST-TC does not contain measurement error and 
should be analysed using a self-selecting tail, a fixed tail change criterion of 0.25 in is used here. This is 
because not only i) does the input profile contain this error but also ii) all the field data contains this error 
and so comparison between observed and calculated values would not be 100% correct if it were ignored; 
when performing comparisons, as many variables as possible must be kept the same between the data sets. 
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INITIAL MORPHODYNAMIC STATE 
(as profile km 81 from the JARKUS 

extended data set) 

HYDRODYNAMIC 
FORCING 

SHORT-TERM MEDIUM-TERM LONG-TERM 
(storms-seasons) (I yr) (10 yr) 

SHOREFACE 
ACTIVITY? 

yes no 

MVITY ACROSS 
ENTIRE 

SHOREFACE? 

INACTIVE SHOREFACE: ' 
olute cross-shore limit to significant 

depth change 

0 
yes 

NW 

ALY-ACTIVE SHOREFAC 
significant depth changes along 
the entirecross-shore distance 

PARTIALLY-ACTIVE SHOREFACE: 
cross-shore limit to significant depth change 

identifiable but this may occur on middle 
shoreface or, if on upper shoreface, it will 

ble to identify siginificant depth 
changes further offshore 

Figure 8.8. Flow diagram showing the model-orientated approach using the proccss-based 
UNIBEST-TC model over all scales within the Large Scale Coastal Evolution concept of Stive et 

al (1990). Model runs using a single cross-shore profile and hydrodynamic forcing over the 
different scales produced different profile evolution's. These were analysed for a) a seaward limit 

of significant depth change and b) significant shoreface activity (according to the depth change 
criterion selected). 
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8.2.3.1) OBSERVATIONS OF THE MODEL OUTPUT 

The results from the model runs show that significant bathymetric changes do not occur on the 

upper shoreface over periods less than I year, even in the nearshore bar zone. In addition, only one 

profile exhibits closure over the annual timescale; all other profiles are inactive across the cross- 

shore. This is the result of the sddc values of the upper shoreface being less than the selected fixed 

tail change criterion (0.25 in), as shown in Figure 8.9. Therefore the calculated profiles do not 

undergo short-scale significant depth changes on the upper shoreface, according to the change 

criterion used. However, the shoreward depth of closures can be identified in all the runs for time 

periods equal to and greater than 1.5 years. 

distance offshore (m) - mean Z 
0 5 0 m ) - 

C) CD 0 C) C) C) C) 
(D U') CI) C) Cý 

. *ý rr nth 

Cý Cý 
. --mi--0.5yrs 
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.4 lyr 
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:S C CL L 0.3 
fixed tail 0.25m E 

-8 --------------------- ---------------------------------------- - 
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1 '16 - ---- 
=*- . -0 1 

Figure 8.9. Sddc plots of the output of run I of UNIBEST-TC for three temporal periods; I month; 

0.5 years; I year. It can be seen that for each of these the sddc values are less than the fixed tail 

criterion 0.25 in. 

Dc, is predicted to increase with increasing temporal period, as shown in Table 8.7. Using values 

rounded to I decimal place, the predicted increase over the total period is 1.5 m, this is five times 

greater than the corresponding increase in observed values for krn 8 1; 0.3 m. 
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TEMPORAL 
PERIOD (yrs) 

MEAN Dcs 
(m) 

SD Dcs 
(m) 

1 3.5 0 
1.5 3.9 0.3 
2 4 0.2 

2.5 4.4 0.1 
3 4.5 0.1 

3.5 4.3 0.2 
4 4.3 0.3 
5 4.9 0.2 

7.5 5 0.1 
10 1 5 0.1 

Table 8.7. Mean Dc. values derived from the bathymetric output of UNIBEST-TC over a 
maximum temporal period of 10 years. Fixed tail sddc analysis (change criterion 0.25 m) has been 

used. (SD = standard deviation of all values around the mean) 

8.2.3.2) COMPARISON BETWEEN OBSERVED AND CALCULATED VALUES OF 

CLOSURE 

Agreement is very good between the calculated and the corresponding observed values for each 

temporal period, with the exception of the 2 year period (Figure 8.10). In addition, when the 

calculated values of the half-yearly intervals are compared with the observed values of annual 
intervals, a continuation of the existing trends is observed (Table 8.8). These results give 

confidence in the numerical model. 

The greatest temporal increase in the calculated Dc, is seen in the first five years, after which the 
increase slows dramatically (Table 8.9). Therefore, as with the observed values for km 81, the 
temporal dependence of the calculated values is best described using a logarithmic trendline 
(Figure 8.11), for which the associated correlation coefficient is 0-90(95% 

confidence). 
This also agrees 

with the trendlines observed for Dcs characteristics derived from both data sets (JARKUSS+E), as 
described in Section 6.2. 
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Figure 8.10. Predicted versus observed values of the shoreward depth of-closure 11or all temporal 

periods. Predicted values are derived from sddc analysis of UNIBEST-TC Output. It is seen that in 

all cases, with the exception of the 2 year, the Des values agree. 

TIME (yrs) 1 1.5 2 2.5 3 3.5 4 
OBSERVED 4 - 5 - 4 - 4 

CLOSURE(m) 
PREDICTED - 4 - 4 - 4 

CLOSURE(m) 

Table 8.8. Selected values of the shoreward closure showing that the lialf-yearly values do agrec 

with the trend of the yearly observed values. (Values have been rounded up to the nearest metre). 

TEMPORAL INCREASE 1: 5 5: 10 
(yrs) 

CHANGE IN CALCULATED 1.4 0.1 
VALUE (m) 

Table 8.9. Changes in the calculated Dc, value between temporal periods 

211 



Decadal morphodynamic behaviour of the Holland shoreface 
8) Predictions of the short-, medium- and long-term 

behaviour ofthe I lolland shoreface 

-3 
t. erTporal period (y rs) 

2468 10 
0 

-4 

R' 0.5775 

5 
pred 

L 

obs 
R' = 0.9007 

Log. (pred) 

-6 Log. (obs) 

Figure 8.11. The temporal dependence of observed and calculated closure values I'm- kin 81 shown 

using a logarithmic trendline. Calculated values are derived using the process-based UN113F. ST-TC 

model. Both are best fitted with this trendline, although that of UNIBEST-T(' is niorc significant at 
the 95% confidence level. 

8.2.4) COMPARISON BETWEEN THE HALLERMEJER (1977,1978) AND UNIBI'ST-TU 

MODELS 

The predicted temporal behaviour of Dc, using UNIBEST-TC is similar to that observed using the 

time-dependent Hallermeier (1977,1978) model; the temporal increase between the two is 1.5 m 

and 1.7 m respectively. In addition the greatest increase in DC, IS CIlCLI1, ItCd tO OCCLII' In the 1-11-St 

five years (Table 8.4 and 8.8) i. e. both methods predict the Dc, temporal behaviour to be 

logarithmic 5, as suggested by Nicholls ef al (1996) (Figure 8.4 and 8.1 1 ). Howcver It is 
UNIBEST-TC which has proven to predict the more realistic values when compared to file 

observed; Eq. 2.6 calculates values which are, on average, 4.1 ril gi-cater than the observc(l. These 

points are quantified in Table 8.10 and illustrated in Figure 8.12. Thereflore LJNIBFST-TC shows 

promise as the more sophisticated method of predicting the shoreward depth of' closure than the 

Hallermeier (1977,1978) model. However, beflore tills method is applied elsewhere, a more 

rigorous testing procedure should be enforced. 

5 the testing of all possible non-linear trendlines revealed that the logarithmic had the best fit to thc dala 
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TEMPORAL 
PERIOD (yrs) 

OBSERVED Dc, PREDICTED Dc, 
(m) USING 

EQ. 2.6 

PREDICTED Dc, 
(m) USING 

UNIBEST-TC 
1 4.4 7.6 3.5 
5 4.7 8.9 4.9 
10 4.7 9.3 5 

RANGE(m) 1 0.3 1.7 1.5 

Table 8.10. Comparison between observed Dc, values and those calculated froin the use of the 

time-dependent Hal lemleier(1977,1978) model (Eq. 2.6) and UN113EST-TC for kni 81. 

0 terrporal period (yrs) 

2468 10 
[I observed Dcs (m) 

0 predicted Dcs (m) using 
4 Eq. 2.6 

EA predicted Dcs (m) using 
LP UNIBEST-TC 0-6 Log. (observed Dcs (m)) 

-8 Log. (predicted Dcs (m) using 
Eq. 2.6) 
Log. (predicted Dcs (m) using 

-10 UNIBEST-TC) 

Figure 8.12. Comparison between the calculated and observed valucs of closure. Values are 

calculated using the Hallermeier (1977,1978) and UNIBEST-TC models. Both niodcls iiiiinic the 

observed logarithmic increase in closure values, although it is the latter which calculates values 

similar to the observed. 

8.3) EVOLUTION OF SHOREFACE BEHAVIOUR BEYONDTHE DATA LIMITS 

8.3.1) INTRODUCTION 

Observations of shoreface morphodynamic behaviour have been made over the mediuni- and large- 

scales up to the limit of the data (32 years) (Chapter 6). It Would however be usclul to have insight, 

which is currently lacking, into the shoreface evolution over tiniescales up to a minimum of' 100 

years, a period relevant to many coastal management decisions. it will also provide usekil 
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jinforination 
for model development over this period. The morphodynamic JARKUS data set is 

_unique. 
as it provides the opportunity to explore the long-term evolution of the shoreface, so filling 

the gap between the process-knowledge of, for example, Wright et al (1996) and the geological 

scale knowledge of, for example, Stive and De Wend (1995). Therefore projections are made 
based upon the trends 6 of the shoreward depth of closure and shoreface activity, as previously 
observed. The assumption taken and potential violations are given in Chapter 5. 

8.3.2) THE SHOREWARD DEPTH OF CLOSURE 

8.3.2.1) CHARACTERISTICS 

The conclusions whicý have been made concerning the Dc, characteristics are taken from Chapter 

6 and surnmarised below: 

1. Noord-Holland has deeper values of closure than Zuid-Holland; 

2. Dc, increases at a slower rate in Zuid-Holland than Noord-Holland; and 
3. the temporal relationship is logarithmic. 

Based upon the above conclusions, logarithmic trendlines and the associated equation were 

calculated using mean values of closure derived using each method (sddc; fdc) and all change 

criteria (0.25 m; 0.5 m; 0.75 m), as shown in Figure 8.13. The projected values were then 

calculated every 10 years for a maximum temporal period of 100 years. This was performed for 

the Holland coast and the two provinces (Noord- and Zuid-Holland). All projected trends are 
shown in Figure 8.14. 

It is clear that the lower limit, or deepest values, of Dc, are given by the fixed tail sddc method 
(change criterion 0.25 m) whilst the upper limit is given by the same method, but the change 
criterion of 0.5 m. All values calculated using the observations derived using the fdc analysis are 
therefore typically found within these limits. It is projected that the greatest Dc, values exhibit the 
largest temporal increase and vice versa, however the increase through time is not large (Table 

8.11). The minimum and maximum values calculated for each province through the extrapolation 

of observed results are shown in Figure 8.15. Though the projected values are widely spread in the 

cross-shore, particularly in the more morphodynamically active province of Noord-Holland, the 

upper and lower limits provide a useful guideline for the shoreward depth of closure up to 100 

6 trends take the form of both characteristics and occurrence of the behaviour 
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years. However projections of the fully-active profiles (as discussed in section 8.3.3) mean that the 

predicted Dc, values beyond the 80 year period should only be used for illustrative purposes. The 

limits every 10 years are given in Table 8.11. 
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Figure 8.13. Logarithmic behaviour of the temporal dependence of the depth of closure and 

associated equations. The two provinces (Noord- and Zuid-Holland) and the entire data set (ALL 

= km 16 to 97) are shown. 
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Figure 8.14. Predicted values of the shoreward closure from 0 to 100 year temporal periods based 

on the extrapolation of observed results. The two provinces (Noord- and Zuid-Holland) and the 

entire data set (All = km 16 to 97) are shown. 
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NOORD-HOLLAND ZU ID-HOLLAND 
TEMPORAL 

PERIOD 
(yrs) 

UPPER 
LIMIT 
(m) 

LOWER 
LIMIT 
(m) 

RANGE UPPER 
LIMIT 
(m) 

LOWER 
LIMIT 
(m) 

RANGE 

0 0.0 0.0 0.0 0.0 0.0 0.0 
10 6.5 8.5 2.0 4.1 5.2 1.1 
20 6.7 9.1 2.4 4.4 5.4 1.0 
30 6.8 9.5 2.7 4.5 5.7 1.1 
40 6.9 9.8 2.9 4.7 5.9 1.2 
50 6.9 10.0 3.0 4.7 6.0 1.3 
60 7.0 10.2 3.2 4.8 6.2 1.4 
70 7.0 10.3 3.3 4.9 6.3 1.4 
80 7.1 10.4 3.3 4.9 6.4 1.5 
90 7.1 10.5 3.4 5.0 6.4 1.5 
100 7.2 10.6 3.5 5.0 6.5 1.5 
500 7.6 12.1 4.5 5.2 7.6 2.4 
1000 7.8 1 12.8 5.0 5.2 8.1 2.9 

Table 8.11. Best estimates of the upper and lower limits of the projected Dc. values calculated 

using logarithmic trendlines based upon the observations made from the data set. Limits are shown 
for the two provinces, Noord- and Zuid-Holland. Note that the projections for the periods 500 and 
1000 years are not realistic and are used only to illustrate the temporal growth of Dc, in the absence 

of middle and lower shoreface activity. 

The deepest values of Dc,, as typically based upon observations using the fixed tail sddc analysis 
(change criterion 0.25 in), are projected to occur in 12.8 in water depth after 1000 years (in Noord- 

Holland). Hence the depth of closure has moved further offshore to the middle/lower shoreface. A 

profile which exhibits such behaviour is classified as shoreward partially-active (see section 6.3). 

It is interesting that, when the values in Table 8.11 are compared with the output from the 

Hallermeier (1977,1978) model, it is only after 20 years that the lower limit of projections for 

Noord-Holland exceed the model output for the same region over the annual period (taken from the 

mean of all profiles in Noord-Holland, as given in Table 8.3). If this is repeated for Zuid-Holland, 
it is only after 1000 years that the Eq. 2.6 output exceeds the projection. This is a significant 
observation as it implies that there is no great advantage to using the Hallermeier (1977,1978) 

model over periods greater than a year in both a morphodynamically inactive (as Zuid-Holland) 

and active (as Noord-Holland) coastal regions. 
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Figure 8.15. The maximum and minimum values of shoreward depth of closure taken from both 

methods and all criteria. The two provinces (Noord- and Zuid-Holland) and the entire data set 
(ALL = krn 16 to 97)are shown. It can be seen that the greatest range of values is seen over the 

short-scales. The range also increases continually from the 10 year to 100 year period. Predicted 

values are smallest in Zuid-Holland and largest in Noord-Holland. 
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8.3.2.2) NUMBER OF PROFILES SHOWING SHOREWARD CLOSURE 
The conclusions which have been made concerning the temporal dependence of Dc, , as discussed 

in Chapter 6, are surnmarised below: 

1. as the temporal period increases the percentage of profiles exhibiting Dc, decreases; and 
2. the relationship is best represented using a exponential trendline. 

Exponential regression and the associated equation were derived using the percentage of profiles 

exhibiting closure for each method (sddc; fdc) and all change criteria (0.25 m; 0.5 in; 0.75 in), as 

shown in Figure 8.16. The equation was used to calculate the percentage of profiles displaying Dc, 

every 10 years, for a maximum temporal period of 100 years. Due to the missing data of 1965 
from km 72 to 97, this was performed for all profiles between krn 16 and 71. All the projections 

are shown in Figure 8.17. 

It is shown that there is a wide range of projected values of those profiles which show Dc. through 

time; unlike that of the Dc., values, the upper limit is given using the observations of the sddc fixed 

tail analysis (change criterion 0.5 in) and the lower limit using the fdc method (change criterion 
0.25 m). The temporal occurrence of Dc, will be of interest to the coastal manager though what is 

perhaps of particular interest is the time period at which the percentage occurrence becomes equal 

to fifty, twenty-five and zero; it is typical that the mean profile within a region is used as an 
indication of its shoreface behaviour although in reality there will be variation within the region. 

The use of these percentages will provide an index of the shoreface evolution within the Holland 

coast. At the latter point no profile along this wave-dominated coastline exhibits a shoreward 

closure i. e. profiles are either shoreward-partially active or fully-active. The critical periods 

calculated here, between km 16 and 71, are given in Table 8.12. 
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Figure 8.16. Exponential trendlines as used in the projection of the observed occurrence of Dc, 

All methods (sddc; fdc) and criteria (0.25 m; 0.5 m; 0.75 m) are shown. 
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Figure 8.17. Predicted values of the occurrence of shoreward closure from 0 to 100 year temporal 

periods based on the extrapolation of observed results, for km 16 to 7 1. There is a wide range of 

temporal periods for when the occurrence will equal zero; 125 (fdc; 0.25 m) to 2670 (sddc; 0.5 m) 

years. It is suggested that the trends projected using the sddc (0.25 m) and fdc (0.5 m) are used as 

the other combinations of method and change criteria prove to be too sensitive (see text). 
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PERCENTAGE OF 
PROFILES WITH Dc. 

fdc 
(0.25m) 

sddc 
(0.25m) 

fdc 
(0.5m) 

fdc 
(0.75m) 

sddc 
(0.5 m) 

RANGE 

50 13 20 36 105 400 387 
25 23 39 70 215 800 777 
0 125 160 300 770 2670 1 2545 

Table 8.12. Critical temporal periods for which the percentage of profiles exhibiting a shoreward 

closure becomes equal to 50%, 25% and 0%. Predictions are made using both methods (sddc; fdc) 

and all change criteria (0.25 m; 0.5 m; 0.75 m). 

The critical periods calculated from observations using the sddc fixed tail method (change criterion 
0.5 m) and fdc method (change criterion 0.75 m) should be ignored; the nature of these methods 
combined with the large criteria allow large margins of change so that the observed occurrence of 
Dc. does not change greatly between 5 and 32 years (Figure 6.6). Similarly, the critical period 
calculated using the observed periods of the fdc method (criterion 0.25 m) should also be ignored. 

This is because the method has proved to be too sensitive when using the smaller change criterion 
of 0.25 m. Hence the two methods which can be used with a degree of confidence to predict the 

critical period at which the shoreward depth of closure does not occur along the Holland coast are; 
i) the sddc fixed tail method (change criterion 0.25 m); and ii) the fdc method (change criterion 
0.5m). Therefore, after a minimum temporal period of 160 years and a maximum of 300 years, no 
profile along the Holland coast is predicted to exhibit a shoreward depth of closure. Note that these 

values do not take into account middle/lower shoreface dynamics (see next section) and so it is 

likely that they are overestimations. 

It is also of interest to project the temporal relationship of Dc, observed within three additional 
regions; i) and ii) Noord- and Zuid-Holland excluding those profiles affected by the Umuiden 
harbour moles; and iii) those profiles affected by the moles. Note that due to missing data of 1965 
from km 72 to 97 the calculation of Zuid-Holland excluded temporal periods 25 and 32 years. The 

projections, using non-linear relationships, are shown in Figure 8.18, whilst the critical temporal 

period for which the percentage of profiles exhibiting closure are equal to zero are given in Table 
8.13. 
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Figure 8.18. Projections of the occurrence of Dc, from 0 to 100 years based upon non-linear 

relationships. The projections are for three regions chosen to identify the effect of' the 1.1inuiden 

harbour moles upon Dcs. The three regions are 1) Noord-Holland (kni 16 to 37); 11) Zu, d-l lolland 

(kni 74 to 97); and iiii) Urnuiden (km 38 to 73). Projections are based LIJ)Oll observations made with 

the sddc fixed tail method (0.25 rn criterion). 

REGION CRITICALTEMPORA PERIOD (yrs) WHEN: 
25% OF PROFILES 0% OF PROFILES 

EXHIBIT Dc, EXHIBIT Dc, 
NOORD-HOLLAND 15 60 

(km 16 - 37) 
IJMUIDEN 21 80 

(km 38 - 74) 
ZUID-HOLLAND 68 260 

(km 75 - 97) 
HOLLAND* 39 160 

I (km 6- 97) 1 1 

Table 8.13. Critical temporal periods for which the percentage of profiles exhibiting a shoreward 

depth of closure is equal to 25% and 0% for four different regions. All results are derived using the 

sddc fixed tail (change criterion 0.25 in). (* = taken from Table S. 12). 

It is clear that Noord-Holland is the most morphodynarnically active region as it is here that the 

percentage of profiles exhibiting closure becomes equal to zero in tile shortest time. ThCSC I'CSUltS 

also support the observation that Zuid-Holland is tile most niorphodynamically inactive region, it 
takes 260 years for no protile to exhibit Dcs. The critical time period Im- tile profiles affected by 

the Umuiden harbour moles is slightly longer than in Noord-Holland, Supporting I)ITVIOUS 1'eSLIltS 
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which state that the harbour moles do i) not influence the shoreward depth of closure; and ii) 
induce activity on the middle/lower shoreface before than the upper shoreface. 

8.3.3) MIDDLE/LOWER SHOREFACE ACTIVITY 

Projections beyond 32 years have been made using the temporal behaviour of the three types of 
shoreface activity previously observed; i) shoreward-partially active; ii) seaward-partially active; 

and iii) fully-active (Chapter 6). Due to the significant influence of the Umuiden harbour moles 
upon shoreface activity (Chapter 7), they have been made both including and excluding profiles 
influenced (km 38 to 74) by the anthropogenic structure. 

8.3.3.1) ANALYSIS USING ALL PROFILES 

The conclusions which have been made from observations of the temporal behaviour of all profiles 
along the Holland coast, as taken from Chapter 6, are summarised below: 

I. as the temporal period increases, the occurrence of partially active profiles (both shoreward and 
seaward) increases until a critical temporal period is reached when the occurrence reaches an 
almost constant value; 

2. the number of fully active profiles are observed to continually increase with increasing 

temporal period. 

The relationship is equally well represented using linear and non-linear trendlines, as shown in 

Figure 8.19, although the latter fit is slightly better, the difference in appropriate r2 values is 

typically of the order of 0.01. For predictive purposes the non-linear trendlines and corresponding 

equations were used as the linear trendlines suggest that the partially-active shorefaces will 
continue to increase and observations (Chapter 6) show that this is not the case. Projected values of 
occurrence were then calculated every 10 years, for a maximum temporal period of 100 years using 
the non-linear equation. 
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Figure 8.19. The temporal dependence of the classifications of shoreface activity taken from 

observations and the corresponding trendline. a) shows non-linear trendlines (order 2). b) shows 
linear trendlines. The R2 values represent the correlation between the two variables according to 
the trendline. 

As can be seen in Figure 8.20, those profiles exhibiting partially active shorefaces ultimately 

becomes zero whilst that of the fully active profiles reaches 100%. Tills agrees with tile 

hypothesis based upon the original observations that : 
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As the temporal period increases, all profiles will evolve from 

exhibiting non-active to partially-active shorefaces. The profiles 

will then ultimately becomejully active. 

temporal periods based on the extrapolation of observed results. (N = non-active; Pa = shoreward 

partial activity; Pb = seaward partial activity; F= fully active; N* = percentage calculated from the 

equation N* = 100-(Pa + Pb + 17)). Profiles affected by the Umuiden harbour moles are included. 

It is seen that the non- and partially-active shorefaces will ultimately reach zero occurrence, whilst 

the fully active profiles continue to increase until all profiles along the Holiand coast exhibit this 

activity (after72 years). 

Observations suggest that the percentage of non-active profiles decreases ultimately reaching zero 
(see Figure 6.6). Projections have been made of this classification using two methods, the first 

using exponential trendlines and the second was based upon the results from projections of the 

other three classifications. It can be seen that the critical periods are similar for both methods, 

giving further confidence in the results. The maximum number of shoreward-partially active 

profiles is projected to be reached after a temporal period of 29 years whilst it is reached after 21 

years by the seaward-partially active profiles. The occurrence of the partially active profiles then 

decreases, becoming equal to zero after 59 and 42 years, respectively. The temporal increase in 

fully active profiles continues until the entire Holland shoreface is active after 72 years. However, 

this increase is not steady; after the number of partial ly-active profiles reaches a maximurn, an 

acceleration in the increase in fully active profiles is observed. The critical periods in the 

evolution of the Holland shoreface are given in Table 8.14. 
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CRITICAL PERIOD (yrs) HEN: 
MAXIMUM 

OCCURRENCE 
ZERO 

OCCURRENCE 
OCCURRENCE 

100% 
N 0 110 0 
Pa 29 59 - 
Pb 21 42 - 
F - 72 
N* 0 80 0 

Table 8.14. Predicted critical periods in the evolution of the shoreface activity (including profiles 
influenced by the Umuiden harbour moles). Key: N= non-active; Pa = shoreward-partially active; 
Pb = seaward-partially active; F= fully active; N* = non-active calculated using the equation N* 

100-(Pa + Pb + F). Results are based upon the sddc fixed tail method (change criterion 0.25 m). 

8.3.3.2) ANALYSIS EXCLUDING THE MAJOR ANTHROPOGENIC INFLUENCE (THE 

IJMUIDEN HARBOUR MOLES) 

Observations of the occurrence of shoreface activity, as calculated from profiles km 16 to 37, and 
km 75 to 97, - clearly show that the Umuiden harbour moles have a strong influence upon the 

evolution of shoreface activity along the Holland coast causing profiles to become fully active at 

rates faster than in an unforced system (Chapter 7). The hypothesis stated in the previous section is 

therefore still valid but it is expected that the critical time periods will be greater. 

As with previous predictions, non-linear and linear trendlines both well represent the observed 
temporal relationship (Figure 8.21). However, it is clear that the former relationship does provide 
the better fit of the two. Projected values of occurrence were calculated every 10 years, for a 

maximum temporal period of 100 years using the non-linear equation. However, the temporal 

period was subsequently extended beyond the 100 years as initial calculations showed that the 

critical periods were greater than this selected upper limit. 

226 



Decadal morphodynamic behaviour of the Holland shoreface 
8) Predictions of the short-, medium- and long-term 

behaviour of the Holland shoreface 

. (N) 
Pa) 
Pb) 
F) 

= 0.85 
= 0.90 
= 0.97 
= 0.63 

100 

75 

50 

25 

o 
05 

x 

x 

10 15 20 
temporal period (yrs) 

b) 

25 

3103,5 

N 
pa 
Pb 

xF 
Linear (N) 
Linear (Pa) 
Linear (Pb) 
Linear (F) 

RI = 0.79 ý 
R2 = 0.32 
R2 =085 

R2=088 

30 35 i 

Figure 8.21. The temporal dependence of the classifications of shoreface activity taken from 

observations and the corresponding trendline. Profiles influenced by the Umuiden harbour moles 

are removed. a) shows non-linear trendlines; b) shows linear trendlines. The R2 values represent 

the correlation between the two variables according to the trendline. It is clear that the non-linear 

trendlines provide the best fit. 

As can be seen in Figure 8.22, the behaviour of the non, partially and fully active shorefaces rnimic 

that observed when profiles km 38 to 74 are included; the non-active profiles decrease to zero, the 

partially active shorefaces increase until a maximum occurrence is reached after which it then 

decreases, ultimately reaching zero whilst the fully active profiles continually increase. However, 

there is one important difference between the two projections; the length of time taken for tile 

classifications to reach their critical periods. These periods for profiles excluding kin 38 to 74 are 

shown in Table 8.15. It also becomes apparent that the Urnuiden harbour moles do not effect the 

shoreward-partially active shorefaces to the same extent that they do the seaward-partially active 
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ones; it is therefore suggested that besides the quicker induction to the fully active shoreface, 

the harbour moles cause profiles to become active on the middle/lower shoreface rather than 

the upper/middle shoreface. This is seen by the longer time period required for the seaward- 

partially active profiles to reach a maximum occurrence and is consistent with the scouring 

effect observed at the seaward end of the harbour moles as previously discussed (section 

7.3). 
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Figure 8.22. Predicted values of the three classifications of shoreface activity from 0 to 100 year 

temporal periods based on the extrapolation of observed results. Profiles krn 38 to 74 are excluded 
i. e. those affected by the Umuiden harbour moles. (N = non-active; Pa = shoreward partial activity; 

Pb = seaward partial activity; F= fully active; N* = percentage calculated from the equation N* = 

100-(Pa + Pb + F)). When compared to the projections made including km 38 to 74, one can see 

that the lengths of time taken to reach the critical points for each classification are typically longer 

(Table 8.14). 

This procedure was also repeated for the separate evolution of three regions as observations 
(Chapter 6; Figure 6.8) show that these provinces have different morphodynamical 

behaviour; the three regions are; i) km 16 to 37 (Noord-Holland); ii) km 38 to 74 (profiles 

affected by the harbour moles); and ni) km 75 to 97 (Zuid-Holland; note that due to missing 

data of 1965 from km 72 to 97 the calculation for this region excluded temporal periods 25 

and 32 years). It is expected that whilst all profiles will ultimately become fully active, 

Noord-Holland will exhibit this behaviour first. 
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CRITICAL PERIOD (yrs) HEN: 
MAXIMUM 

OCCURRENCE 
ZERO 

OCCURRENCE 
OCCURRENCE 

100% 
N 0 27(-83) 0 

Pa 20(-9) 41(-18) - 
Pb 25 (+4) 42 
IF - - 170(+98) 
N* 0 170(+90) 0 

Table 8.15. Predicted critical periods in the evolution of the shoreface activity (excluding profiles 
influenced by the Umuiden harbour moles). Key :N= non-active; Pa = shoreward-partially active; 
Pb = seaward-partially active; F= fully active; N* = non-active calculated using the equation N* = 
100-(Pa + Pb + F). The figures in brackets indicate the difference between this scenario and that 
including the affected profiles. Note that there is a greater difference between the two classes of N 

in this case; 143 years as compared to the difference in Table 8.14 of 30 years. Results derived 

using sddc fixed tail method (change criterion 0.25 m). 

The results (based upon non-linear equations (as shown in Table 8.16 and Figure 8.23)) only 

supports part of this hypothesis. For the example of Noord-Holland, it is projected that after a 

maximum of 63 years no profile between km 16 and 37 will be partial ly-active. The temporal 

behaviour of the fully-active profiles within the 32 years is well represented using linear, 

logarithmic and polynomial equations. However, it is the former that best describes the observed 
behaviour; all profiles will become fully active within a time period similar to that already 

calculated; 100 years. With the polynominal form the occurrence of these profiles ultimately 
becomes zero, whilst with the logarithmic all profiles are fully active after 4500 years. It is 
suggested that this is a consequence of the sampling population limits; spatially it is 17 profiles and 

temporally 32 years. However, when considering Zuid-Holland, there is no temporal trend of the 

shoreface classifications and so the projections for this region are discounted. This indicates that 

the timescale in Zuid-Holland is much slower than in Noord-Holland. The results for km 38 to 74 

show that the Umuiden harbour moles act to induce activity across the entire profile at smaller 
temporal periods that in the 'natural' system; 52 years (km 38 to 74) versus 100 years (kni 16 to 
37). 
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NOORD CRITICAL PERIOD (yrs) HEN: 
MAXIMUM 

OCCURRENCE 
ZERO 

OCCURRENCE 
OCCURRENCE 

100% 
N 0 130 0 
Pa 30 55 - 
Pb 30 55 - 
F - 0 100 
N* 0 100 0 

IJMUIDEN CRITICAL PERIOD (yrs) HEN: 
MAXIMUM 

OCCURRENCE 
ZERO 

OCCURRENCE 
OCCURRENCE 

100% 
N 0 84 (< 10% after 

40 yrs) 
0 

Pa 50 104 - 
Pb 20 37 - 
F - 0 52 

N* 1 01 40 0 

Table 8.16. Predicted critical periods in the evolution of the shoreface activity of i) Noord-Holland 

(excluding profiles influenced by the Umuiden harbour moles); and n) those profiles affected by 

the harbour moles (km 38 to 74). Key :N= non-active; Pa = shoreward-partially active; Pb = 

seaward-partially active; F= fully active; N* = non-active calculated using the equation N* = 100- 

(Pa + Pb + F). Results derived using sddc fixed tail method (change criterion 0.25 m). 

The integration of Table 8.15 and 8.16 show that there is some disagreement between the 

projections. For example 100% of profiles are fully-active after approximately i) 170 years for the 

entire Holland coast; and ii) 100 to 4500 years for Noord-Holland. However, there is also agreement 

as shown in the critical time periods for the non- and partial ly-active shorefaces between Noord- 

Holland and the entire Holland coast. It is suggested that the limited integration results from the 

strong temporal signature observed in Noord-Holland. 
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Figure 8.23. Predicted values of the three classifications of shoreface activity for two regions from 

0 to 100 year temporal periods based on the extrapolation of observed results. The two regions are 

a) Noord-Holland (km 16 to 37); and b) Umuiden (km 38 to 73). (N = non-active; Pa = shoreward 

partial activity; Pb = seaward partial activity; F= fully active; N* = percentage calculated from the 

equation N* = 100-(Pa + Pb + F)). When compared to the projections made including km 38 to 

74, one can see that the lengths of time taken to reach the critical points for each classification are 

typically longer (Table 8.14). 

8.4) SUMMARY 

There are few existing studies which have, as has this one, been able to observe medium- and 

large-scale shoreface behaviour. So for those coastlines that have insufficient data, predictive 

techniques are relied upon to detennine the morphodynamic behaviour. Existing models have 

been tested here to determine not only their accuracy at predicting the behaviour but also their 
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limitations. It is shown that these methods are only useful over a certain temporal period, so in 

order to extend knowledge of the shoreface behaviour without the use of such techniques, 

projections have been made using the observations previously made in this research (Chapter 6). 

The shoreface behaviour which is explored is the shoreward depth of closure and the three 

classifications of shoreface activity. 

The time-dependent analytical Hallermeier (1977,1978) model has proven successful in 

calculating a seaward limit to the shoreward depth of closure over both the medium- and large- 

scales (here the periods 1,5 and 10 years were tested). This result has also been obtained from 

previous short- and medium-scale experiments (e. g. Nicholls et al, 1998a). An interesting 

observation made through the comparison of the observed and calculated closure values is that the 

overpredictive tendency of Eq. 2.6 is greater in the province with the least morphodynamic activity 
(Table 8.2); Zuid-Holland. It also appears that, once the temporal period of hydrodynamic data 

reaches a certain length (approximately 10 years) the increase in the calculated Dc, is minimal 
(Table 8.4), this is a consequence of the data being statistically constant through time i. e. the 12- 
hour exceeded wave height will not change significantly once the population of wave heights 

reaches a certain size. 

The abilities of the process-based UNIBEST-TC model to calculate shoreface behaviour has also 
been tested here. It has proven able to predict cross-shore profile evolution to a high degree of 
accuracy on the short- and medium-scales (Szmytkiewicz et al, 1997). However, the bathymetric' 

output from the model clearly showed that it is unable to correctly calculate the evolution of the 

middle and lower shoreface (Figure 5.7) and so was only used to predict the shoreward depth of 
closure. The results obtained suggest that UNIBEST-TC can be used with confidence to predict 
Dc. over the short- and medium-timescales, for coastlines which have relatively little 

morphodynamic activity. Although it has not been tested for coastlines which are highly 

morphodynamically active, results from existing studies suggest that it also has potential here, for 

example Roelvink and Broker (1993) found that UNIBEST-TC accurately re-created the evolution 

of cross-shore profiles at Terschelling, The Netherlands. This location has a high level of 

morphodynamic activity as highlighted by the morphological nearshore bar cycle of 12 years 
(Ruessink, 1998) (3 years less than the same cycle in Noord-Holland). However, although the 

predicted and observed closure values over the 10 year period agree (Figure 8.8), scepticism does 

exist concerning the overall accuracy of the final bathymetry of the predicted profile; the final 

cross-shore profile does not exhibit bars. Therefore, although UNIBEST-TC does have the ability 
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to mimic the offshore degeneration and nearshore growth of bars on the short- and medium-term, it 

appears that-this ability, especially in the form of the latter characteristic, does not exist on the 

long-term (Figure 8.21). It is concluded that UNIBEST-TC should only be used to predict the 

shoreward depth of closure on the short- and medium-scales; Dc, is a morphodynamic parameter 

shown to be under the control of the nearshore bar morphodynamics and discrepancies in the 

predicted bar behaviour over the long-term can only result in inherent discrepancies in the 

predicted depth of closure. Indeed the programmers of the model have warned against the use of 

this model over the large-scale as it does contain inherent errors which, although insignificant on 

the time-scales 7 for which it was designed, do become larger and more signi f icant over these larger 

scales (per. comm. Walstra, 1998). It is therefore surprising that i) the predicted Dc, over the long- 

term agrees with the corresponding observed Dc,, and ii) the temporal trend of the observed and 

calculated values shows such good agreement, as seen with the correlation coefficients (Figure 

8.9). 

The projections of observed trends of the shoreward depth of closure and partially and fully active 

shorefaces give an informative view of the future development of the Holland coast. Though such 

a method is limited by the assumption that the future behaviour of the coast will not deviate from 

that observed over periods less than 32 years, it is one of the few techniques available for the 
determination of the very-large-scale coastal behaviour. The results from the projections should, 
however only be used as an indication of future shoreface behaviour as it is clear that in some 
instances the time periods for the different classifications do not correlate (e. g. Table 8.15). It is 

important that the fact that 'after time t all profiles will become fully active' is applied to all large- 

scale shoreface studies. The critical time t is shown, through the comparison of results i) with and 

without km 38 to 74, and ii) Noord- and Zuid-Holland, to be a function of the forcings and so 

morphodynamic behaviour of the shoreface. 

Extrapolation beyond the 32 year data limit has confinned the hypotheses made from the 

observations of the JARKUS data set (Chapter 6). Closure values increase slowly with time period 
(Figure 8.13; Table 8.11) such that, after 100 years, the deepest values (10.6 m) in Noord-Holland 

indicate that the profile would have evolved into a shoreward-partially active shoreface, if there 

was no middle/lower shoreface activity. It is also suggested that after a minimum time period of 
160 years and a maximum period of 300 years the entire Holland shoreface will become fully 

active on every profile (Figure 8.15). Although if the evolution of the provinces are 

7 the short- and medium-scales 
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examined the important temporal periods are 60,80 and 260 years (Noord-Holland, Umuiden, and 
Zuid-Holland respectively). These temporal periods agree with the results of modelling studies 
which indicate that the shoreface becomes fully active over 10 to 100 years (Figure 2.11; Nicholls 

et al, 1998c). It is also clear that the harbour moles force the shoreface to become fully active at 
time 

, 
periods less than in an unforced situation; 100 years (km 16 to 37) versus 50 years (krn 38 to 

74). In all examples the shoreward- and seaward-partially active shorefaces never reach 100%, 

instead reaching a maximum occurrence within the range 20 and 50 years (Table 8.14,8.15 and 
8.16). 

In conclusion therefore : 

1. the Hallermeier (1977,1978) model calculates a seaward limit to the shoreward depth of 

closure of a wave-dominated coastline, over the medium- and large-scales; 
2. UNIBEST-TC is only able to correctly predict the evolution of the upper shoreface over the 

short- and mcdium-scales. Values of the shoreward closure can be calculated using this model 

over the said scales; and 
3. the extrapolation technique is a useful tool in determining future coastal behaviour if its 

limitations are taken into consideration. It shows that i) all profiles along the Holland coast 

will evolve from exhibiting a shoreward closure to becoming fully active within the time 

period 160 to 300 years; ii) the Umuiden harbour moles cause the profiles to become fully 

active at significantly smaller time periods than in an unforced situation, approximately 70 

years; and iii) the morphodynamic behaviour of Zuid-Holland occurs at much longer 

timescales than Noord-Holland. 
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9) DISCUSSION 

9-1) INTRODUCTION 

It can be argued that the shoreface is the most important part of the coastal system, for this region 

acts as the buffer zone between the land and sea environments and is a potential sediment source or 

sink (Cowell et al, 2000). Although many of the feedback relationships which act upon the 

shoreface are understoodjover the short- and, sometimes, medium-scales (100 m and storms- 

seasons; I km and years, respectively), there is still "little information available on depth change 

along the profile and its time variation" (Larson and Kraus, 1994). Hence there is a growing need 
f6r knowledge over the large-scale (10 km and decades); this is primarily a result of an increase in 

i) the strategic perspective within coastal zone management of long-term modelling; and ii) the 

requirement for information concerning long-term predictability methods (and so predictability 
limits). It is this knowledge gap that this study, through the adoption of a data-orientated approach, 
has focused upon. 

The main aim of this research was to determine the spatial- and temporal-characteristics of 

shoreface morphodynamic behaviour over all scales, paying particular attention to changes over 

timescales longer than 10 years. It was the availability of the large-scale Dutch data set 
JARKUSSIE which allowed this to be fulfilled. Indeed this study led to the observation of 

numerous shoreface morphodynamic characteristics (as discussed in following sections), the 

majority of which were previously unobserved or poorly described : 

1. the shoreward closure (Dc,, ). ; 
2. the re-opening point (Ro) and associated re-opening zone; and 
3. the middlellowershoreface closure (Dc 

,, 0). 

The identification of the re-oPening zone led to further classification of the shoreface activity : 

1. an inactive shoreface; 
2. a shoreward partially-active shoreface; 
3. a seawardpartially-active shoreface; and 
4. afully-active shoreface. 
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The objective of this chapter is to discuss the results obtained in this study and compare them with 

existing work (which is typically available for similar shoreface characteristics but over the smaller 

scales) and through integration with key debates e. g. the validity of long-term models. 

9.2) OBSERVATIONS OF MEDIUM- AND LARGE-SCALE SHOREFACE 

BEHAVIOUR 

The coastal environment can be divided into regions of distinct morphodynamic characteristics e. g. 
I the tidal inlet and dune system. The morphodynamic region which is studied here, the shoreface, 

extends from the outer limit of the breaker bars to the nearly horizontal continental slope. The 

different coastal regions have been traditionally viewed as separate sections within the coastal 

environment. However, recent work based upon long-term modelling efforts (e. g. Cowell et al, 
2000) has shown that there exists a coupling between these sections which is dependent upon the 

scale of interest. This has been done through the development of the 'coastal tract concept' in 

which boundary conditions and internal dynamics are defined for low-order (long-term) coastal 
behaviour. An example of the coupling is shown through the response to forcing which results in 

the fast (short-scale) exchange of sediment within the beach-surf zone and a slow (large-scale) 

exchange within the surf zone-inner shelf system (Wright et al, 1985). In reality these sections 

must not be considered separately. However, for ease of description and discussion this chapter 

principally treats the two main shoreface zones (the upper shoreface and middle/lower shoreface) 
independently of each other. Latter sections take an integrated view, discussing the forcings and 

responses of the shoreface as a function of scale. 

9.2.1) CHARACTERISTICS OF THE CROSS-SHORE PROFILE 

The Holland coast is composed of different nearshore morphodynamic provinces, as revealed 

through observations of the seaward limit to significant depth change (this study) and the near- 

shore bar system (e. g. Wijnberg and Terwindt, 1995). The main provinces are ten-ned Noord- and 
Zuid-Holland and correspond to the profile range kin 16 to 54 and km 57 to 97, respectively. 
Although the same distinctive cross-shore features (Dc,; Ro) are displayed in both provinces, 
differences in their associated characteristics and temporal-behaviour have resulted in the 
identification of these regions. This section will discuss the cross-shore properties found within a 
typical profile along the Holland coast, as observed within this study. Details concerning the 

236 



Decadal morphodynamic behaviour of the Holland shoreface 
9) Discussion 

differences (both temporally and spatially) observed alongshore are dealt with in the following 

section. 

The sddc: analysis of the large-scale JARKUS data set has revealed the presence of three major 
morphodynamic features of the Holland shoreface, all of which are particular to certain time scales 
(Figure 6.2). The application of these features to other, global, shorefaces is discussed in section 
9.5. 

9.2.1.1) THE SHOREWARD DEPTH OF CLOSURE (Dcj. 

This feature's properties are equivalent to those of the depth of closure (e. g. Nicholls et al, 1996) 

in that it represents a 'cross-shore limit to significant depth change' (according to the change 

criterion chosen). However, in this instance, the data limits are such that it can be seen that the 

shoreward closure is often (typically over the larger-scales) followed in the cross-shore by further 

shoreface activity. It is suggested that the traditionally termed 'depth of closure' (Dc) should be re- 

classified as the 'shoreward depth of closure'(Dcj; data limitations in the cross-shore over the 

medium- and large-scales (e. g. at Duck, N. Carolina) have meant that depth of closure represents a 
definite cross-shore boundary to morphodynamic activity. However, if it were possible to extend 
these data sets it is highly probable that significant morphodynamic activity would be observed 

seaward of Dc; this is presently being investigated at Duck, N. Carolina (cf. Beaver et al, 1999). 

Dc, is strongly spatially- and temporally-dependent over the time-scales investigated here (5 to 32 

years), agreeing with observations made in previous studies which studied the short-scale 
dependence of Dc through time and space. It is these spatial and temporal signatures which have 

lead to the longshore division of the Holland coast into morphodynamically similar provinces, as 

discussed in section 9.2.2. In addition the logarithmic behaviour (Figure 8.17) of the Dc, 

occurrence' is such that projections show that no profile will exhibit Dc, after the 160 years (using 

the sddc fixed tail change criterion 0.25 in) and 300 years (using the fdc change criterion 0.5 in). 

9.2.1.2) THE RE-OPENING POINT (Ro) AND ASSOCIATED RE-OPENING ZONE 

It has historically been assumed that the shoreward closure was the seaward limit to 

morphodynamic activity. However, significant profile changes have been observed in this study 
seaward of Dc, over time periods typically greater, or equal, to 10 years 2. Middle/lower shoreface 
activity has only previously been observed during high-energy events (Vincent et al, 1983; Wright 

I as seen in short-scale studies e. g. Nicholls et al (1996). 
2a few profiles do exhibit this behaviour over smaller temporal periods e. g. km 24 (Figure 6.9). 
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et al, 1986; Snedden et al, 1988; Wright, 1983) although other geological and modelling 

approaches have suggested that these changes take place on the large-scale (Niedoroda et al, 1985; 

Stive et al, 1990; Roelvink and Stive, 1990; Cowell et al, 1995; Stive and De Vriend, 1995). The 

observations made within this thesis show that this activity results from slow, steady cumulative 

processes i. e. regular storms rather than fast, infrequent causes i. e. extreme events. It is suggested 
that the observed bathymetric changes are caused by the wave-induced processes which result from 

regular storms; the most significant process of which has been shown to be wave asymmetry 
(Roelvink and Stive, 1990; Stive et al, 1990). The nature of this change indicates that the 

shoreface is steadily evolving to a new form. The evolution of the shoreface to this 'new form' 
'will be a continuing process as the boundary conditions (e. g. sea-level) and forcings (e. g. 
hydrodynamic climate) are also continually changing (cf. Hoozemans, 1990). 

The cross-shore location where significant profile changes (according to the change criterion 

selected) commence has been termed the re-opening point and the seaward cross-shore region of 

activity the re-opening zone. This activity is typically restricted to the middle and/or lower 

shoreface and has not been observed in past studies due to their spatial and temporal data 

limitations. Observations made within this investigation have led to the development of a 

classification of the shoreface activity, based upon the concept of re-opening (Figure 6.2) as listed 

below: 

1. an inactive shoreface. No morphodynamic activity is observed seaward of Dc, This 

behaviour is typical'of i) time periods less than 10 years; and ii) morphodynamically 
inactive regions e. g. km 89 to 93; 

2. a shoreward partially-active shoreface. The shoreface is active until the middle/lower 

shoreface i. e. there is no closure on the upper shoreface; 
3. a seaward partially-active shoreface. The shoreface exhibits a shoreward closure and 

then re-opens further seaward. The profile may exhibit closure towards its seaward 
limit; and 

4. afully-active shoreface. Morphodynamic activity occurs across the entire shoreface to 

the data limits i. e. the profile does not exhibit a shoreward closure. This activity is 

typical of the longer time periods e. g. 32 years. 

The occurrence of the four different shoreface classifications are both temporally- and spatially- 
dependent, as discussed in subsequent sections. It is suggested that the latter three shoreface types 

are typically found over the longer temporal periods where strong forcings act (both natural and 
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anthropogenic) upon the morphodynamics, an example of an anthropogenic forcing is the Umuiden 

harbour moles which cause the tidal currents to accelerate (Roelvink et al, 1998). 

Additionally, as previously stated, it is the non-active shoreface which is typical of the shorter time 

periods and the fully: active shorefaces of the longer time periods; as the time scale increases then a 
profile will evolve from an inactive to a partially-active and ultimately to a fully-active shoreface. 
This 

. 
is particularly apparent in Noord-Holland, whilst in Zuid-Holland morphodynamic time 

periods mean that it is not as obvious. The hypothesis that ultimately all profiles along the Holland 

coast will be fully active has been used by extrapola tion of observed trends where possible 3 

The extrapolation was carried out for the three types of shoreface activity, both including and 
excluding those profiles which have been estimated (using the van Rijn 'rule of thumb'; Chapter 7) 

to be influenced by the Umuiden harbour moles; km. 38 to 74. (The latter scenario is discussed in 

the following section). It is shown that all profiles on the 'natural' Noord-Holland shoreface are 
predicted to become fully active after a minimum of 100 years (Table 8.16). 

9.2.1.3) THE MIDDLEILO WER SHOREFA CE CLOSURE (Dcm) 

This feature marks the seaward limit to the middle/lower shoreface activity and so will not be 

observed on those profiles which have a fully-active shoreface. Dc,, A is not always observed along 

a seaward partially-active profile; it is suggested that this is due to data limitations and if the cross- 

shore measurements were to be extended further seaward a closure would be observed (according 

to the change criterion selected). (Note that this feature is not discussed further as it is an integral 

part of the shoreward- and seaward-partially active shorefaces). 

9.2.2) CHARACTERISTICS OF THE CROSS-SHORE PROFILE WITHIN THE TWO 

PROVINCES 

The cross-shore features discussed above (Dc,; Ro; Dc .. A) are for a typical profile within km 16 to 
97. If one were to divide the coast into the two main provinces Noord- and Zuid-Holland, then 

variations in the -average profile become apparent, resulting from differences in the temporal 
development of the two provinces. (Note: this has been completed for all profiles excluding those 
influenced by the limuiden harbour moles as the morphodynamic activity of these profiles (km 38 

3 the morphodynarnic inactivity of Zuid-Holland mean that this method will not produce viable results 
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to 74) has been shown to be accelerated by the moles). Characteristic features of profiles within 
the two provinces as a function of time are now discussed : 

9.2.2.1) NOORD-HOLLAND 

This province exhibits a higher degree of morphodynamic activity when compared to that of Zuid- 

Holland (Figure 6.3), this is most apparent on the upper shoreface (see section 9.2.2). The direct 

consequence of this is that, with the exception of 4 profiles, km 16 to 37 exhibits some form of 

activity over the time period investigated. Indeed over the longer temporal periods (32 years), 53% 

of the Noord-Holland profiles are partially-active and 24% are fully active (this has evolved from 

18% (partially-active) and 6% (fully active) over the 5 year period). As a result of the dominant 

features which have been observed throughout the time period of investigation, two profiles should 
be used to represent this province over a period of 32 years. These profiles therefore characterise 

all the information gained from the observations made within this study 

e temporal periods from 5 to 20 years. The typical profile only exhibits a shoreward depth of 

closure; the remainder of the profile is inactive (Figure 9.1 a); and 

temporal periods from 25 to 30 years. The characteristic profile is partially-active (Figure 

9.1b). However, no distinction can be made between the two forms of this activity (shoreward 

and seaward) and so the fact that the middle/lower shoreface is active should be taken as 

repres6ntative. 

Extrapolation of the observed trends suggests that over ternporal periods greater than 100 years, the 

typical profile for Noord-Holland will be fully-active (Figure 9.1 c). 
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Figure 9.1. Characteristic profiles of Noord-Holland demonstrating the cross-shore features 

observed and inferred over different time scales using the sddc change criterion 0.25 m. a) = 
temporal period < 20 years; b) = temporal period > 25 -30 years; c) = temporal period > 100 years. 
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9.2.2.2) ZUID-HOLLAND 

Although shoreface activity has been observed for the profiles km 57 to 73, they are strongly 
influenced by the harbour moles and so they have been discounted in the determination of a 

representative profile. The result is that there is a dominance of morphodynamic inactivity (Figure 

6.9) within this province from 5 to 28 4 years; at the largest temporal period 87% of profiles have 

inactive shorefaces. Therefore one representative profile can be used for this province over the 

entire period: 

9 temporal period 5 to 30 years. The characteristic profile is non-active; it only features a 

shoreward depth of closure, there is no morphodynamic activity seaward of it (Figure 9.2a). 

Observed trends of behaviour within Noord-Holland and along the entire Holland coast suggest 
that ultimately the typical profile will become fully-active. However, due to the less significant 
morphodynamic activity in Zuid-Holland, timescales of activity cannot be extrapolated for this 

province based upon the JARKUS data set. It is suggested however, that- over a 100 year period 
the characteristic profile will be partially-active whilst over larger time periods profiles within 
Zuid-Holland would be best represented using a fully-active profile (Figure 9.2b and 9.2c, 

respectively) i. e. the time scale of Zuid-Holland is much longer than that of Noord-Holland. This 

example can be used to encourage the continued collection of the JARKUS data set; an 

underestimation of future shoreface activity (as a result of data limitations) could lead to errors in 

sediment budgets. 

9.2.3) SHOREFACE BEHAVIOUR ALONG LARGE COASTAL STRETCHES 

Differences in the morphodynamic behaviour along the Holland shoreface have resulted in the 
identification of provinces of similar alongshore characteristics. These coastal sections are 
distinguished using the behaviour of two morphodynamic features; the shoreward depth of closure 
and middle/lower shoreface activity. It should be noted that the boundaries of the regions 
identified using these two different properties may not correlate as the fortner is located on the 

upper shoreface and the latter on the middle and lower. This section aims to discuss the coastal 
stretches identified using the two behavioural traits along with the controls which act upon them. 

4 note that the largest temporal period is 28 years due to missing data for the profiles km 72 to 97 for the year 
1965. 
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Figure 9.2. Characteristic profiles of Zuid-Holland demonstrating the cross-shore features 

observed and inferred over different time scales using the, sddc change criterion 0.25 m. a) = 
temporal period 30 - 100 years; b) = temporal period > 100 years; c) = temporal period > 1000 

years. 
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9.2.3.1) UPPER, SHOREFACE CHARACTERISTICS : THE SHOREWARD DEPTH OF 
CLOSURE WITHIN THE TWO OBSERVED PROVINCES 

The combination of depth values (taken from each of the temporal periods investigated) and I 
variation of these values around the mean has led to the identification of two main provinces of Dc, 

along the Holland coast. These provinces are clearly very different and are discussed below 

Noord-Holland (km 16 to 54). 

This province is characterised by the variable, deeper values of closure; the mean value 5 over a 20 

year period is 7.3 m and the associated standard deviation is 0.83 m. In addition, the shoreward 
closure disappears on many of the profiles due to the presence of morphodynamic activity on the 

upper/middle shoreface; this feature is absent from 47% of profiles over the 20 year period. It is 

possible to further divide Noord-Holland into two sub-provinces. This is done at approximately 
kin 35136 where to the north, although the observed Dc, values do not differ from the profiles to the 

south, there are few occurrences of a shoreward closure. For example over the 10 year period only 
31% of profiles between km 16 and 35/36 exhibit Dc,, whilst, for this same period, between km 

35/36 and 54 a shoreward depth of closure is present on all the profiles. 

As has been observed in previous work over the short- and medium-scales (Larson and Kraus, 
1994; Nicholls et al, 1996; 1998a; 1998b; Nicholls and Birkemeier, 1997), both the value and 
occurrence of Dc, is temporally-dependent. However, although there is an increase in Dc, from the 

5 to 32 years, it is not as large 6, or as significant 7 as the previous work suggests (over this period 
Dc, is observed to increase by a maximum of I in 8 For example, work performed at Terschelling, 

The Netherlands showed that for an un-nourished cross-shore profile, Dc increased by 

approximately 2m over a 20 year period (Marsh et al, 1998). The limited increase in Dc, along the 

Holland coast as compared to that in existing studies does not result from the latter making no 
9 distinction between depth of closure and shoreward depth of closure . This could be used if 

profiles which closed on the middle/lower shoreface were still classified as exhibiting a shoreward 
closure rather than a shoreward partially active shoreface and so closure would significantly 
increase with-time. Nevertheless, the exponential increase of closure through time is strongly 
significant; the r2 value using the sddc change criterion 0.25 in is 0.98(95% signiricance) for this 

using the sddc fixed tail criterion 0.25 in. 6 gradients of the temporal relationship of Dc. values range from Om (fdc change criterion 0.75 m) to -0.04m 
fdc change criterion 0.5 m) 
the range of correlation coefficients for this relationship is 0.1 (fdc change criterion 0.75 m) to 0.96 (sddc 

change criterion 0.5 m). 8 using the fdc change criterion 0.5 m. 9 the former was defined based upon profiles which typically extended no deeper than 8 m. 
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province. This result concurs with previous work; when compared to work on the upper shoreface 

at Duck, N. Carolina, only 3% of profiles exhibit closure after 8 years (Nicholls et al, 1998a). 

Zuid-Holland (krn 57 - 97). 

Constant, shallow values of closure are observed in Zuid-Holland; the mean valuelo of Dc, over a 
20 year period is 4.7 m and the corresponding standard deviation value 0.46 m. However, unlike 
Noord-Holland, there is a distinct absence of morphodynamic activity on the middle and lower 

shoreface and so, as previously stated, Dc, is a characteristics feature of a cross-shore profile for 

the total period of investigation; after 20 years, only 10% of profiles do not exhibit a shoreward 
depth of closure. 

The observed temporal dependence of Dc, values is less significant in Zuid-Holland than in Noord- 

Holland and is in greater contradiction with conclusions made in previous work; for example the 

mean value for this province increases by 0.1 rrJ over the period of investigation. An additional 

point which should be addressed here is that of the change criterion selected. The criteria used 

within this study relative to the sddc fixed tail and fdc method are 0.25 m, 0.5 m and 0.75 m and it 

has been noted that as the criterion increases in magnitude so does the margin of change. A 

consequence of this is that when using the larger change criterion, the zone of activity is typically 

restricted to the seaward boundary of the bar zone and is constant through time i. e. Dc, is relatively 

constant in time, both in value and occurrence along the Holland coast. This observations could 

also be used as the reason why there is such a difference in the results between this and previous 

studies. For example the smallest change criterion used within this -thesis is 0.25 m whilst the 

criterion used in previous studies is typically smaller; 6 cm at Duck, N. Carolina (Nicholls et al, 
1998a) and Lubiatowo, Poland (Rozynski et al (1998). Therefore a greater change in both value 

and occurrence could be expected in the studies at Duck and Lubiatowo. 

The temporal decrease in the percentage of profiles exhibiting a shoreward closure is also both 

exponential and strongly significant; the r2 value using the sddc change criterion 0.25 rn is 0.95(95% 

significance). The main difference in this relationship between the two provinces is not its degree of 

significance but rather the actual percentages of occurrence; Dc, is a more characteristic feature of 
the shoreface in Zuid-Holland over all time periods, occurring on 87% of profiles after 28 years. 

10 using the sdde fixed tail criterion 0.25 in. 
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9.2.3.2) UPPER SHOREFACE CHARACTERISTICS : CONTROLS ACTING UPON THE 

SHOREWARD DEPTH OF CLOSURE , 
The division of the Holland coast into these provinces is surprising if one considers that the major 

coastal forcing", the hydrodynamics, is relatively constant alongshore; deviations in wave height 

from north to south are typically of the order of 0.2 m (Figure 4.7). Indeed, the frequently used 

method of calculating closure, the Hallermeier (1977,1978) model, takes as its basis the 12-hour 

exceeded wave height (per annum) and the associated wave period (Eq. 2.3). This model was 

shown (Chapter 8) to support the conclusions of previous, smaller-scale studies that the 
hydrodynamics do indeed act as a control upon closure. 

So, although the hydrodynamics act as a control upon Dc, (the overprediction by Eq. 2.6 is not large 

enough to reject it) there must be additional factors influencing the morphodynamic response. 
This leads to a question, which although derived for the nearshore bar region of the Holland coast, 
can be adapted for this study : 

"Are the different bar regions the result oftlifferent outcomes of 

an inherently non-deterministic system, or the results ofdifferent 

environmental conditions? " (De Wend, 1998b). 

When adapted for this study, the question posed is : 

"Are the distinct provinces ofthe shoreward closure the result of 

the internal dynamics ofthe system, or the result of external 
forcing? " 

The external forcing is the hydrodynamics, which are constant alongshore, although resulting 
differences in the internal dynamics can give quite different responses. 

Factors which have been suggested in previous studies, and have also been investigated here, are; i) 

bar morphodynamics (e. g. Marsh et al, 1998); and ii) volume change (cf. Capobianco et al, 1997; 

Nicholls and Birkemeier, 1997). An identical division of the Holland coast into two provinces to 
that based upon Dc, is observed using the nearshorc bar morphodynamics (Wijnbcrg, 1995), 

suggesting that the control of the internal dynamics is more likely to take the form of the 

11 if there is no force acting upon a body (in this instance the morphodynamic environment) then there will 
be no change of motion of the body (i. e. the morphodynamics remain constant); Newton's First Law of 
Motion (Pond and Pickard, 1983). 
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nearshore bar system than volume changes. Indeed, correlation's between residual Dc, values 12 

and volume changes over 5 and 10 years are weakly significant and this factor is discarded as an 
important control (Chapter 7). However, it should be taken into consideration that the Holland 

coast is highly erosive (Figure 7.8) (de Ruig, 1989; Knoester, 1990; van Vessern and Stolk, 1990; 

de Ruig and Louisse, 1991; van Rijn, 1995; 1997; Hinton, 1999) and it is possible that volume 

change could influence Dc, along coasts which have a different nature e. g. those that are accretive 

or have variable trends. 

This study confirms the hypothesis that the nearshore bar system along the Holland coast has an 

effect upon the Dc., behaviour. The bars undergo a morphological cycle which is composed of their 

generation, offshore migration and degeneration/disappearance (Chapter 4). This morphodynamic 

cycle repeats at different intervals in the two provinces (15 years in Noord-Holland and 4 years in 

Zuid-Holland) and is such that the degeneration of the outer bar, which in turn controls the 
behaviour of the inner bars (Wijnberg, 1995; Hinton and Aaminkhof, 1998), occurs at a greater 
depth in Noord-Holland than in Zuid-Holland. The suppression of the offshore migration of the 

bar system at Terschelling, The. Netherlands by nourishment (Marsh et al, 1998) lends further 

support to this conclusion; in this region Dc, was located at shallower depths than in the un- 

nourished region. 

The longshore pattern of the outer bar degeneration agrees with the large-scale spatial pattern 

observed with Dc. that the deeper values are located in the northern province. The factors which 

control the degeneration of the outer bar are four-fold, the most important has been shown to be bar 

volume (Wijnberg, 1995); the sediment volume of the bar in Noord-Holland is approximately twice 
that of Zuid-Holland (500 M3nf 1 and 250 in 31d %respectively). The remaining factors are 

suggested to be i) the efficiency/intensity of the degeneration process; ii) the frequency occurrence 
of the degeneration process; and iii) the frequency occurrence/efficiency conditions. The control of 
the nearshore bar system was further confirmed through comparison between Dc, and BSL (the 

seaward limit of the nearshore bar region) for which the correlation coefficients 13 ranged from 
0.89(95% significance) to 0.96(95% significance) (Figure 7.5). However, the importance of this control is seen 
to decrease with increasing temporal period (Table 7.4). This result agrees with previous work 
performed on the Holland coast: 

12 residual Dc, = calculated (using Hallenneier (1977,1978) - observed 
13 excluding outlying values which are identified by significant variation from the m=I line 
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"the behaviour ofthe upper shoreface is often dominated by the 
I ý:,; iI seaward migration ofthe longshore bars" (Van Alphen and 

Damoiseaux, 1989). 

Hence Dc. is under the control of both external forcing (the hydrodynamics) and internal dynamics 

(the nearshore bar system), and this is in agreement with previous short- and medium-scale work: 

"the response to the waveforcing is constrained by the internal 

dynamics ofthe morphological system, in theform of the 

nearshore bar system" (after Nicholls et al, 1998b) 

It is therefore a combination of the fairly uniform i) temporal behaviour of the nearshore bar 

system 14 in the cross-shore; and ii) hydrodynamic climate through time which results in the fairly 
insignificant temporal increase of Dc, values. An additional observation is that B,, remains 
relatively constant through time rarely exceeding, for example, 8 rn in Noord-Holland. It should be 

noted that this could be a result of the method which removes the seasonal change in the 

morphodynamics, for example the effects of high-energy events are not observed. It can therefore 
be concluded that for the medium- and large-scales, as with the short-scale, the shoreward depth of 
closure can be expected to increase with increasing temporal period but the range of the increase is 

a factor of the particular morphodynamic and hydrodynamic conditions of a coast. The strong 
relation between Dc, and BSL also suggests that the latter could be used as a predictive tool to 
determine the position of Dc., particularly over the shorter timescales when it has been shown to 

enforce stronger control. In this instance, bathymetric data would be required but it would also 
mean that there is no necessity for hydrodynamic data (which is used for input to the Hallermeier 
(1977,1978) model) or a great deal of analysis using bathymetric data. 

An additional external forcing which should be considered is that of the anthropogenic Umuiden 
harbour moles which primarily interact with the other previously mentioned external forcing; the 
hydrodynamics (Figure 9.3). This interaction takes the form of the moles interrupting the 'natural' 

northwards longshore currents and diverting the current seaward. This in turn results in the 

acceleration of the tidal currents, inducing significant sediment erosion (per comm. Bakker, 1998; 

per comm. van Rijn, 1998; Roelvink et al, 1998). What is surprising is that this large-scale man- 

made feature does not appear to have any impact upon the temporal occurrence of Dc, The r2 

14 as controlled by the degeneration position of the outer bar 
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values excluding and including those profiles affected by the moles (km 38 to 74) are strongly 

significant; the value based upon observations using the sddc fixed tail analysis (change criterion 
0.25 M) is -0-99(95% significance) for both cases. 

EXTERNAL FORCING: 
e. g. HYDRODYNAMICS 5 

123 

EXTERNAL FORCING: MORPHODYNAMIC 

e. g. IJMUIDEN BEHAVIOUR OF 
HARBOUR MOLES 

< 

THE UPPER 
SHOREFACE 

41 

INTERNAL FORCING: 6 L e. g. BAR SYSTEM 

KEY: 1: regulates behaviour of the outer bar 
2: outee bar regulates how much wave energy is transferred to the inner bars 
3: interrupts northwards littoral drift resulting in the deflection of the current 
seawards 
4 acts as a boundary between the two provinces; why? 
5 energy input available for morphodynamic change 
6 depth of the degeneration of the outer bar regulates the depth limit to significant 
activity 

Figure 9.3. Conceptualism of the forcings which act upon the upper shoreface of the Holland coast. 
The significance of these is dependent upon the time scale. 

9.2.3.3) MIDDLE/LOWER SHOREFACE CHARACTERISTICS: 'RE-OPENING' 

Re-opening is the term used to loosely describe the shoreface activity seaward of Dc, which is 

further divided into non-, partially- and fully-active shorefaces. This activity is shown to result 
from erosive processes which dominate the Holland coast (localised areas of accretion are observed 
such as immediately adjacent to the Umuiden harbour moles) (Figure 

' 
7.8), so agreeing with past 

sediment budget studies (e. g. van Rijn, 1995). Although general identification of this activity led 

to the identification of the same two large-scale coastal provinces as that of Dc,, a more detailed 

examination suggests a further categorisation of the Holland coast, as discussed below. 
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Noord- and Zuid-Holland are identified by the extent of shoreface activity which occurs within 
them, and this can be highlighted by discounting those profiles effected by the Umuiden harbour 

moles (km 38 to 74; Chapter 8). In the former province a greater percentage of profiles are active, 
indeed, as already stated (section 9.2.1) the characteristic profile for this province over all temporal 

scales features shoreface activity whilst the representative profile for Zuid-Holland over the same 

scales has the property of the shoreward depth of closure (Figure 9.1 and 9.2, respectively). The 

evolution of the mean shoreface activity within each region is shown in Figure 9.4. here it can be 

seen that Noord-Holland evolves from a non-active to partially-active shoreface at longer time 

periods that those profiles affected by the Umuiden harbour moles. In addition the profiles in Zuid- 

Holland remain inactive over the 32 years. 

3 
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Figure 9.4. The evolution of the mean profile as observed in three regions of the Holland coast 
from the perspective of the shoreface activity. The three regions are Noord-Holland (km 16 to 37); 

ii) Umuiden (km 38 to 73); iii) Zuid-Holland (km 74 to 97). Stage 1= non-active; 2= partial- 

activity; 3= fully-active. 

The more detailed division of the Holland coast results in four large-scale stretches, within which 

three small-scale regions can also be identified. As shown in Figure 9.5, the stretches are 

composed of profiles which are either primarily active (km. 16 to 29 and krn 40 to 73) or inactive 

(krn 30 to 40 and km. 74 to 97). It is interesting to note that the observation that this coast can be 

divided into two morphodynamic regions (as identified by shoreface behaviour in water depths less 

than 8 in) is not observed here, reinforcing the importance of bathymetric measurements which 

extend to (at a minimum) the lower shoreface The regions of shoreface activity are now taken in 

turn and discussed in terms of their temporal behaviour and the potential controls on them. 
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Figure 9.5. Categorisation of tile Holland coast into large-scale stretches as a function ol'the 

middle/lower shoreface behaviour. 

Km 16 to 29 (within Noord-Holland). 

This region is composed of 30% ofpartially-active profiles after 5 years which evolves to 5()',,. of' 

partial ly-active and 40% of fully-active profiles after tile 3_1 years (Figure 9.0). HIC Observed 

activity primarily manifests itself through the erosion (as 80NO of' the change) of' the shorcfacc; 

ranging from -0.1 to -1.5m for the total period. It is within this region that one can clearly scc dic 

evolution from the non-active to partial ly-active and finally to Fully-active shorcl'aces, although it 
does not show a patterned (or steady) temporal growth in the activity. For example kin 25 (which 

undergoes the three stage evolution within the 32 years) has a temporal Increase In shorel"'Ice 

activity in both the shoreward and seaward directions (Table 9.1 ). 
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Figure 9.6. Spatial distribution of morphodynamic activity along the shoreface of' kin 16 to 29 

(Noord-Holland) for different temporal periods (1965 - 1997). Using the fixed tall sddc method 
(change criterion 0.25m). 

TEMPORAL PERIOD (yr. ) 5 10 15 20 25 28 32 
ADDITIONAL 0.7, 1.2, 1.1 1.7, 1.3, 2.5 1 

SHOREFACE ACTIVITY 0.8, 1.6 2.1, 1.5 
(km) 0.9 2.3, 

I I 1 1 2.4 1 1 1 

Table 9.1. Temporal growth of shoreface activity for km 25, showing the 'randoin' growth ofthe 

behaviour. 

It is suggested, through geographical association, that the observed growth of activity is tile result 

of the combination of the offshore terraces (approximately kni 15), Hondsbossche and Petternier 

seawall (km 20 to 26) and shoreface bathymetry. Although there are no available current 
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measurements for these areas, deductions have been made concerning the nature of the their effects 
based -upon available literature. The offshore terraces and seawall act to increase the shoreface 

i gradient in both the longshore (the offshore terraces) and cross-shore (Hondsbossche and Pettermer 

seawall), indeed these profiles coincide with the observed northern flank of the Noord-Holland 
depression (Figure 7.16). The concentration of shoreface activity upon the depression flanks is to 
be expected; the combination of i) deposition from onshore transport; ii) hydrodynamic forcing; 
iii) non-cohesive sediments; and iv) gravity effects due to slope gradients, will induce sediment 
motion at timescales which are less than if the slopes, and so gravity effects, were not 'as 
significant. A study into the mechanisms responsible for cross-shore transport on the shoreface has 

shown that it is iv) (gravity) that accounts for a significant part of the transport (Wright et al, 
1996). Sediment motion such as this can be expected on the majority of shorefaces and continental 
shelves, an extreme example of such activity is that of turbidity flows. Indeed, the aggregation of 
sediment has been shown to create slope instabilities on the Louisiana Shelf, USA15 (Wright, 
1995). Downslope transport quickly removed the sediment when the slope failed (if translated to 
the Holland coast, which has relatively steep gradients, this would mean that the sediment would 
travel either in the longshore or offshore direction, if in the latter the dominant cross-shore 
transport would initiate net transport in the onshore direction (Roelvink et al, 1990). (Such effects 

are likely on all the depression flanks in both Noord- and Zuid-Holland and will not be mentioned 
further). 

Km 34 to 36 (within Noord-Holland). 

This smaller-scale zone of activity becomes apparent after the 5 year temporal period, however 

throughout the 32 years the activity remains either shoreward-partially active or seaward-partially- 

active. The only coastal feature which exists upon these profiles is the shoreward foot of the 

shoreface connected ridges, however this only extends to, at the most shoreward point, the 

middle/lower shoreface boundary (Figure 7.11) and so can not explain why the majority of profiles 
over all temporal period are shoreward-partially active (100% over 10 years and 67% over 32 

years). However, it could explain why krn 35 is a seaward-partially active profile after the 15 year 

period; the ridges have been shown to interact with the shoreface over the long-term (Van de 

Meene, 1984) via the northwards longshore migration and interruptions to near-bed current flow. 

There does not appear to be any explanation for the remainder of this active zone (i. e. why the 

majority of profiles are partially-active) with the exception of the cumulative effects of the 
hydrodynamic forcing upon the shoreface. 

Is which although a delteric coast highlights the fact that such environmental factors should be considered. 
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Km 40 to 73 (within Noord- and Zuid-Holland). 

This active zone covers that area which has been calculated, using the van Rijn 'rule of thumb' to 
be under the influence of the Umuiden harbour moles; krn 38 to 74. The size and occurrence of the 

shoreface activity within this region is shown to be temporally-dependent (Figure 6.2), indicating 

that it results from cumulative effects (such as regular storms) rather than infrequent, extreme 

events. The harbour moles are shown to induce the shoreface activity at rates faster than in a 

natural system so that 16, it is after 72 years rather than 170 years that theentire Holland shoreface 

will be fully active (Figure 8.20 and 8.23). The cause of this activity is therefore attributed to the 
disturbance that the moles place upon the 'natural' current system. This is seen most clearly 
immediately adjacent to the southern arm where detailed measurements show that a large scour 
hole has developed near the end of this arm. Process-based morphodynamic modelling has been 

used to simulate the growth of the scour hole over a5 year period. It has shown that the tidal 

currents have the dominant effect upon the development of the scour hole, although wave-induced 

processes and two-dimensional turbulence also play a role. The northwards directed longshore 

current is halted and diverted seawards by the southern harbour mole (Roelvink et al, 1999; per 

comm. Bakker, 1998; per comm. Van Rijn, 1998). This results in accelerated transport at the end 

of the mole causing the scour hole (Roelvink et al, 1998). The shoreface activity observed in this 

study, though not located at the seaward extremity of the southern mole, does correlate with the 

shoreward boundary of the scour hole, as measured over the 5 year period investigated by Roelvink 

et al (1998). It is therefore suggested that the temporal development of this particular zone of 

shoreface activity is the result of cumulative effects of the altered tidal currents which act to 

increase the area and depth of erosion through time. 

Km 79 to 81. 
This small region of shoreface activity is surprising in two respects; the first is that it is'located in 

amongst 21 profiles which remain inactive over the 32 years; and the second is that all three 

profiles are observed to become fully active after the 10 year period. This would suggest that the 
bathymetric measurements are incorrect, however, the nature of the analysis techniques (sddc; fdc) 

used (Chapter 5) ensure that errors are removed. In addition the selected change criterion (0.25 m; 
0.5 m; and 0.75 m) relate to a 66%, 95% and 99.5% confidence that a real bathymetric change has 

occurred. These results need to be investigated further as they may have relevance to the upper 

16 taking the assumption that the large-scale coastal behaviour over temporal periods greater than the 32 
years will not deviate from the trends observed over periods less than, or equal to, the 32 years. 
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shoreface experiments which are carried out at this location as a result of the ARGUS camera 
installation (Aaminkhof and van Noort, 1998). 

9.2.4) IMPLICATIONS OF FUTURE CHANGES TO THE HOLLAND COAST 

Uniformity, "the state in which everything is homogeneous", is one of the many key debates within 

coastal research and management. The debate is composed of what is essentially two schools of 
thought, the first is of the opinion that variability within forcings e. g. wave height, is a real 

phenomenon which could influence the long-term behavioural trend of the forcing such that, in the 

extreme, there is no long-term trend (cf. Lamb, 1985). The second school of though takes the 

stance that long-term variability is not significant, merely acting as noise within the long-term 

behaviour (cf. Hoozemans, 1990). It is also one of the reasons why difficulties arise with long- 

term modelling efforts; if boundary conditions/forcings to the coastal system change through time 

how can the system be modelled, particularly if the nature of the change and the effects are poorly 

understood? This problem is especially difficult due to the non-linearity of the coastal system. The 

problem of uniformity takes its guise in many forms e. g. storminess, and these are now discussed in 

relation to their influence upon the observations and predictions made within this study upon the 

Holland shoreface. They will also hold relevance to shorefaces in general for which the 

understanding on the long-term is a matter of key importance. It is suggested that the forms 

discussed below are important to the shoreface behaviour over different timescales; sea-level is 

more important over the long-term whilst storminess has significance over the short- and medium- 

terms. 

9.2.4.1) SEA-LEVEL RISE 
Louisse and Kirk (1990) show that rising sea-levels are a serious threat to the low-lying Dutch 

coastline, especially those areas which are liable to subsidence (e. g. Helmer et al, 1996; Bergh and 
Nijkamp, 1998). For example present data shows that there is a global rise of 0.18 m per century 
(Warrick and Oerlemans, 1992) whilst scenarios for the Holland coast show a i) present rise of 0.20 

m per century; ii) expected rise of 0.66 m per century; and iii) pessimistic rise of 0.85 m per 

century (Louisse and Kirk, 1990). 

Although the work carried out in this thesis does not account for this external forcing 17 
, the 

consequences upon the shoreface and implications to the results are now discussed. Shoreface 

17 for example the projections made based upon long-term observations take the assumption that the large- 
scale coastal behaviour over temporal periods greater than the 32 years will not deviate from the trends 
observed over periods less than, or equal to, the 32 years. 

255 



Decadal morphodynamic behaviour of the Holland shoreface 
9) Discussion 

responses to rising sea-level are shown to take two forms; the first is the landward translation of the 

upper beach which results in accretion in the offshore profile as described by the Bruun Rule 

(Bruun, 1962) whilst the second response is that of Dean (1990) which states that shoreline retreat 

may not occur if the beach profile has excess sand relative to the equilibrium profile. The former 

was confirmed from observations made of 25 profiles over a7 year period at The Great Lakes 
(Hands, 1983), although it was shown that a lag-time in the profile response to the rise in sea-level 

exists, whilst ideas from both have been combined in a conceptual model describing the large-scale 

evolution of the Dutch coast (Stive et al, 1990). Here both landward and seaward profile 
translations are suggested for the central and northern Holland coast respectively; this behaviour 

has been observed within this study. Figure 9.7 illustrates the profile response to rising sea-level 

according to the ideas introduced above. Long-term modelling using the ADM also shows that 

there are different responses to rising sea-level along the cross-shore profile; the shelf profile is 

flattened by decreasing the shoreface slope and increasing the shelf slope, relative to the static sea- 
level profile (Niedoroda et al, 1995). The consequence upon the shoreward depth of closure of an 

empirical profile using the ADM is the deepening of Dc., such that after 10 000 years the entire 

shoreface is active (Nicholls et al, 1998c). The different long-term predictions of the ADM and 
Hallermeier (1977,1978) model 18 is a consequence of the former taking as its basis advection- 
diffusion processes not breaking waves; it has been shown in this study that annual calculations 
from the latter model can be used as a seaward limit to Dc, over the long-terrn (100 years). It is 

suggested that if the rate of sea-level rise were increased beyond that used in the study of Nicholls 

et al (1998c)19 then the Dc. would deepen at a faster rate'and must be accommodated by sediment 
budgets (although it has been shown in this study that Dc, does not move offshore as rapidly as the 

middle/lower shoreface activity moves onshore). 

It is also expected that if the rate of sea-level changes beyond that observed at present for the 
Holland coast then the projections of shoreface activity would become less representative. This is 

because an increase in the rate of sea-level rise would result in increased shoreface activity and so 

shorter critical time periods for those profiles exhibiting i) no activity to reach 0%; ii) partial- 

activity to reach a maximum and ultimately 0; and iii) full-activity to reach 100%. The opposite 

could be expected if the rate slowed i. e. critical time periods would decrease. However, based 

upon present consensus the likelihood of this latter scenario is slim, although the aggregation of a 

number of data sets shows that, due to noise within the data, it cannot be concluded that there is an 
increase in the rate of sea-level rise (Dean, 1990). 

18 the former predicts a more rapid seaward growth of Dc, 
19 0.125 m per century 
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Figure 9.7. Profile response to rising sea-level according to the ideas of Bruun (1962), Stive et al 
(1990) and Dean (1990). The dashed line represents the state of sca-level and bathymetry before 

the sea-level rise. The arrows represent the direct of dominant sediment transport. A= accretion; 

E= erosion. 

9.2.4.2) STORMINESS 

As introduced in Chapter 2, storminess is another forcing which has the potential to vary through 

time, it could also be used as an indication of the variation within the hydrodynamic climate. 

The hydrodynamic climate of the North Sea over the latter half of this century has been shown to 
be increasing in magnitude (Carter and Draper, 1988) as a consequence of increasing wind velocity 
(Hoozemans, 1990). This is supported by data from two wave stations in the north-east 
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Atlantic which show an increase in the median wave height by I I% and 27% over the 10 year 
period of operation (Carter and Draper, 1988). However, the increase over recent years is 

comparable to the hydrodynamic intensity at the beginning of this century (WASA, 1998). Studies 

also show disagreement concerning the variability of the climate between years; "the North Sea .... 
is liable to bigger variation of its climate than have hitherio been appreciated' (Lamb, 1985) 

versus "the distribution is not becoming broader or narrower but is shifting as a whole to smaller 
or larger values" (WASA, 1998). Annual variation has been previously noted e. g. the largest 

change in significant wave height at Seven Stones Light Vessel, Lands End, UK, between 1960 and 
1990 was recorded from 1971/1972 to 1972/1973 where a drop of 17% occurred (Carter and 
Draper, 1988). A large variation could potentially not only 'disguise' the long-term trend but also 
potentially influence coastal morphodynamic behaviour. 

The effect of this, and the increasing long-term trend upon the shoreface, are now discussed. It has 

been shown that some control upon the shoreward depth of closure is enforced by the 12-hour 

extreme wave height. So, taking the long-term trend, an increasing energetic hydrodynamic 

climate will logically result in an increase in Dc, Similarly, an annually varying wave climate will 

result in Dc, changing over this same (annual) scale. However it is unlikely that this variation will 
be apparent in the long-term as Dc, represents the end point of a series of forcings; it is expected 
that variability in the forcing will not leave a signature in the long-term Dc, This is especially true 

if the calculation of the shoreward closure over t years is dealt with as in this study; for example the 

Dc., of a 10 year period represents the mean value of the Dc, calculated for the periods 1965 to 
1975,1970 to 1980,1975 to 1985 and 1980 to 1990. In calculating Dc, in this way any variation is 

reduced. 

Shoreface activity is shown to result from steady cumulative forcing effects i. e. as a consequence 
of regular events rather than infrequent extreme storms with a frequency less than I year. 
Therefore any variability within the hydrodynamic climate could alter the time period over which 
these effects become significant, iniating shoreface activity. Although it is observed that shoreface 
activity is only significant over temporal periods greater than 10 years, variability in the forcing 

could change this to longer temporal periods if there were insufficient regular storms. As with Dc,, 
the calculation of shoreface bathymetric changes over t years can be determined without the 
influence of variation by taking a mean value from x sets of the t years 20 

. 

20 De. loy.. = «Dc. 1963 to Dc. 1975) + (Dc. 1970 to Dc, 1980) + (Dc. 1975 to Dc, 1985) + (Dc. 198o to Dc. 1990»/4 
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9.2.4.3) CHANGES IN COASTAL MANAGEMENT STRATEGIES 

Within the period of investigation, the Holland coast has been continually managed in order to 

prevent losses resulting from erosion and hence maintain the dunes to stop flooding. For although 

the middle and lower shoreface act as a source of sediment (e. g. Walstra et al, 1998), there is still a 
deficit of sand on thý beach, active zone and upper shoreface (e. g. van Rijn, 1995) as a result of 
losses due to the northwards littoral drift and aeolian processes. As public concern increases and 
the economics become more viable, coastal management is increasingly taking the form of beach 

nourishment schemes. Indeed, between 1965 and 1997 there have been 27 such projects along the 
Holland coast. (Note that the hard engineering schemes of the Hondsbossche and Pettemer seawall 

and adjacent groyne fields were installed prior to 1965). Observations made within this study do 

not suggest that the location of the beach nourishment schemes have influenced either the 

characteristics of the shoreward depth of closure or the occurrence/growth of shoreface activity. 
This is in contradiction to the findings of the work of Marsh et al (1998) which shows that the 

depth of closure is shallower in the nourished area than in the un-nourished area of Terschelling, 

The Netherlands. The difference between the two studies could be a consequence of the location of 

the nourishment fill; at Terschelling the fill occurred in the trough between the outer and middle 
bars whilst along the Holland coast nourishment typically occurred on the beach. 

During 1990 the coastal defence strategy of Holland took a different approach; all subsequent 

management efforts were to have the ultimate aim of maintaining the shoreline at its 1990 position 
(De Ruig, 1998). This ambitious strategy is resulting in the intensification of coastal protection 

projects. It is anticipated that the effect of this upon shoreface activity will be to decrease the 

erosive tendencies. However the strategy only enforces the maintenance of the shoreline position. 
If nourishment is increased on the beach, active zone and even upper shoreface it will result in 

shoreface steepening; sea-level rise in the central Holland coast is shown (Stive el al, 1990) to 

result in the seaward translation of the cross-shore profile, so the erosion of the middle and lower 

shoreface coupled with decrease in the erosion of other more shoreward zones will result in 
increased shoreface steepening. Nourishment on the middle and lower shoreface could potentially 
reduce this process as the foreign sediment will be transported onshore in favour of the deeper 

(buried) indigenous material. It is however suggested by this author that the 1990 coastal defence 

strategy will soon have to be reviewed as the quantity of sand required for nourishment schemes 
will become extremely large and expensive; it may be that a large percentage of this money could 
be spent on the research and installation of other schemes e. g. the 'give and take' strategy 
suggested by Helmer el al (1996) in which certain sections of the dunes are removed and lagoons 
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built behind the gap designed for the purpose of flooding. This scheme is currently being tested at 
km 3 1. 

If this strategy continues indefinitely then, as a result of the increased rate of shoreface steepening, 
one could expect the profiles to become partially- and, ultimately, fully-active over shorter time 

periods than projected within this study. This is attributable to the steepening increasing longshore 

and cross-shore gradients, a factor shown to potentially act as a control upon shoreface activity. 

9.3) TIMESCALES OF SHOREFACE RESPONSE 

Regardless of the environmental conditions (cf. Wright et al, 1985) the three shoreface sections 
(upper; middle; lower) are generally assumed to respond to, forcings over different timescales Le. 

shoreface response is temporally dependent. For example a substantial assumption of the Panel 

model (Stive and De Vriend, 1995) is that the upper shoreface responds on a much smaller 
timescale (e. g. the event-scale) than the lower shoreface (e. g. the large-scale). Indeed, analysis of a 
6.5 year time series of hydrodynamic and bathymetric data led to the conclusion that : 

"thefast response .... of beach and surfzone change .... whilst the 

slower responses .... the inner shetf' (Wright et al, 1985) 

In this instance the fast response took the form of sediment exchange between the surf zone and 
beach, and the slower response exchange between the surf zone and inner shelf. 

The results from this thesis also support the assumption stated above. Observations based upon 32 

years worth of bathymetric data show that both the partial- and fully-active shorefaces are 

predominately observed over the long-term i. e. greater than'l Oyears. 

Hence, over the short temporal periods shoreface activity is only observed on the upper shoreface 
i. e. it is only in this cross-shore zone that fast responses to the forcing will be observed. As the 

temporal period increases to the large-scale, the forcing is such that a morphodynamic response can 
now be observed on the middle, and eventually the lower, shoreface i. e. the response times of these 

shoreface zones are slow so that signatures will only be observed over the large-scale. Long-term 

continual bathymetric measurements also enable the nature of these responses to be observed 
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i. e. do the responses result in the sudden or steady change in bathymetry? Along the Holland coast 
it is the latter form which characterises the bathymetric change and so it is concluded that these 

changes result from slow, steady cumulative processes (probably common storms) rather than from 

fast, sudden infrequent causes. This form of response is similar to the observation made during 

modelling efforts that "the response at any one time is dependent on the forcing conditions that 
have occurred over some preceding period of time" (Kriebel and Dean, 1993). These conclusions 
lend further support to the point that the shoreface will not react as one unit to a forcing over a 

particular time period. It has important implications to modellers, researchers and coastal managers 

who may have previously assumed otherwise, for example when modelling the shoreface response 
to severe storms it is necessary only to include the beach and upper shoreface as the remainder of 

the shoreface will not show response over the event-scale (cf. Kriebel and Dean, 1993). However, 

if modelling the response to storms over the large-scale, the middle and lower shoreface will need 

to be included to interact at different periods than that of the beach and upper shoreface. 

This conclusion could have significance for the shoreward depth of closure for an increase in 

temporal period will therefore result in an increase in sediment exchange between the upper and 
lower shoreface (Wright et al, 1985; Stive and De Vriend, 1995). This suggests, as highlighted by 

Nicholls et al (1998a) that closure will be a response to forcing other than the 12-hour exceeded 

wave height (as calculated by Hallermeier (1977)) and the nearshore bar system (which is shown in 

this study to have a greater significance over the smaller time periods). However, as already stated 
it is the cross-shore growth of the middle/lower shoreface activity that results in profiles becoming 

fully active rather than the seaward growth of the shoreward depth of closure so the increase in 

sediment exchange is more likely to effect that critical time period at which the profiles begin to 
become partially- and ultimately, fully active. 

9.4) SCALE RELATIONSHIPS IN THE MORPHODYNAMIC SYSTEM 

This study shows that the morphodynamic behaviour of the shoreface is spatially- and temporally- 
dependent and can therefore be linked to the 'primary-scale relationship' of De Wend (1991) 
(Chapter 2) which states that : 

"a process ofa certain scale will be in dynamic interaction with 

coastal behaviour within a certain scale " 
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Based on this concept and related ideas the 'coastal tract cascade' concept has been developed 
(Cowell et al, 2000) which "discriminates between cause and effect on the basis ofscale" : 

"this conceptformalises conceptsfor separating coastal 

processes and behaviour into a hierarchy on the basis ofscale 

....... providing a systematic basisfor distinguishing, for any 
level.... , those processes that must be included as internal 

variables in modelling coastal change, from those that 

constitute boundary conditions and ..... those regarded as 

unimportant 'noise'.. " 

The coastal tract cascade concept has been applied to the Holland coast by considering the entire 

shoreface (upper to lower) as a whole system, for each of the scales investigated. The 

categorisation of the causes and effects which occur upon the Holland shoreface can be adopted for 

other shorefaces with similar characteristics e. g. wave-dominated, erosive, onshore sediment 
transport. Hence they should prove useful to researchers and managers in solving global coastal 

problems over the medium- and large-scales. As previously stated, the processes and controls 

which act on the medium-scales act as boundary conditions for those on the large-scale and noise 

on the short-scale (De Vriend, 1991), this idea is repeated for the short- (but not in this study) and 

large-scale. 

It has been found that, on the basis of scale, two coastal tracts can be used to describe the observed 
behaviour of the entire Holland shoreface (km 16 to 97). If one divides the Holland coast into the 

two provinces identified on the basis of similar morphodynamic behaviour 21 (Noord- and Zuid- 

Holland), these two tracts are also viable, but for different scales. For example the shoreface of 
Zuid-Holland is observed to be morphodynamically inactive over the scales investigated (medium- 

to large-scale) and so the forcings which are only applicable to the medium-scale behaviour of the 

entire Holland shoreface should be used for the large-scale behaviour of Zuid-Holland. It is 

therefore observed that as the temporal period increases, the processes controlling the shoreface 
behaviour evolve. The composition and development of the two tracts are now discussed. 

Figure 9.8 and 9.9 conceptualises the relationship between the causes and effects by classifying the 

causes into three categories, as investigated within this study; interýal dynamics; external 
dynamics; and anthropogenic forcings (which could also be classified as an external forcing). 

21 excluding those profiles forced by the limuiden harbour moles 
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Figure 9.8 illustrates the processes which are important on the Holland shoreface over the smaller 
time periods (: ý 5 years). Observations made within this study clearly show that it is only the upper 

shoreface which is active over these scales; "the upper shoreface responds to forcings over the 

smaller timescales" (Stive and De Vriend, 1995). Therefore the significant processes are only 

given for this zone and, based upon the results from this thesis, take the form of 

1. internal dynamics; nearshore bar system; and 
2. external forcings; hydrodynamic climate and Umuiden harbour moles. 

The interaction between points I and 2 above are given with the figure. As previously stated the 

division of the Holland coast, when excluding profiles km 38 to 74, results in the two provinces 
Noord- and Zuid-Holland. The processes given in Figure 9.8 are applicable for the smaller time 

periods in Noord-Holland and also the longer time periods (< 30 years) in Zuid-Holland. 

Obviously the external forcing of the Umuiden harbour moles is removed due to the exclusion in 

this instance of those profiles influenced by them. 

Figure 9.9 illustrates the significant processes acting upon the Holland shoreface over the long-term 

(ý: 10 years). It is over these scales that the effects of forcings are observed on the middle and 
lower shoreface in the form of bathymetric changes; the lower shoreface responds on a much larger 

tiffiescale than the upper shoreface (Stive and De Wend, 1995). Therefore processes which 

control the shoreface behaviour over these scales are ones which act upon all shoreface zones 
(upper; middle; lower). However, the same process does not necessarily act upon all the zones, for 

example the control enforced by the nearshore bar system, though less significant than over the 

smaller time scales, only results in upper shoreface behaviour. This is because it is the seaward 
limit of the bar zone which controls shoreface activity and it is typically found in water depths of 8 

in or less i. e. the seaward boundary of the upper shoreface. In addition, although shoreface activity 
increases with increasing time period, this does not result from the seaward growth of shoreface 

activity from the upper shoreface but rather the slow, steady cross-shore growth of the 

middle/lower shoreface activity. Therefore different processes must be acting upon the upper and 

middle/lower shoreface. Of those processes identified, there are some which are more speculative 

than others, particularly on the middle/lower shoreface. This is because, although all the forcings 

have been investigated, it is only those on the upper shoreface which have been investigated based 

upon data rather than literature (see Chapter 7). The significant processes which act over the 
longer time periods are therefore : 
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1. upper shoreface : internal dynamics; nearshore bar system; 
2. upper shoreface : external forcings; hydrodynamic climate and Umuiden harbour moles; 
3. middle/lowershoreface: internal dynamics; e. g. bathymetry; and 
4. middle/lower shoreface : external forcings; e. g. hydrodynamic climate and Umuiden harbour 
.- moles. 

The interaction between the four forcings are given with the figure. If divided into the provinces of 
Noord- and Zuid-Holland, this figure would only be viable for the former province over the same 
time scale. It is suggested that it would become applicable to Zuid-Holland over periods greater 
than and equal to 100 years. Again, the external forcing of the Umuiden harbour moles would be 

removed due to the exclusion in this instance of those profiles influenced by them. 

The results of this investigation are such that they are able to help in the extension of predictability 
limits by answering the majority of the questions posed in Chapter 2: 

1. the interaction between the different forcings is relatively unknown, although it has been 

suggested that the interaction between them varies as a function of scale (cf Hinton and 
Aaminkhof, 1998). The results from this study confirm this for both the medium- and large- 

scales; as highlighted in Figure 9.8 (for example) the internal dynamics of the upper shoreface 

constrain the external forcings to varying degrees; 

2. it also becomes clear that the different forcings have significant impacts over different scales; 
the cumulative effects of the hydrodynamic forcing only become significant after a minimum 

of 10 years; and 
3. the significance of these forcings over the different time periods highlights the problems that 

modellers could have in predicting future behaviour; observations at this study site are only 

possible up to 32 years and, if forcings continue to evolve as suggested within this time period, 
then those relevant over time periods greater than the 32 years could be different yet again. 
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KEY: 1 Umuiden harbour moles act as a longshore boundary to the 
morphodynamic provinces of the nearshore bar system. Though 
conclusions have not been drawn concerning the nature of the impact 
upon the bars (e. g. Wijnberg, 1995), an influence must be enforced; 

2 it has been shown (e. g. Hinton and Aarninkhof, 1998) that the 
hydrodynamics only act upon the outer bar. The behaviour of the Inner 
bars is regulated by that of the outer; 

3: this study shows that both the nearshore bar system and hydrodynamics 
play a role in the upper shoreface behaviour. The role of the former 
appears to be more significant over the shorter time periods; 

4: the moles interrupt the northwards littoral drift, causing sedimentation in 
profiles adjacent to them. These profiles typically do not exhibit closure; 

5: sediment is transported onshore from the middle and lower shoreface. 
However, over the shorter time scales it is insufficient to cause 
significant depth changes on this part of the shoreface; 

6: the acting processes are such that the upper shoreface has a cross-shore 
limit to significant depth change. 

Figure 9.8. Diagram showing the processes which are important on the shoreface over the 

smaller time scales, <5 years. Significant processes (in the form of internal dynamics and 

external forcings) only act upon the upper shoreface and not the middle and lower resulting in 

the observation of a shoreward depth of closure on the upper shoreface. 

265 



Decadat morphodynamic behaviour of the Holland shoreface 
9) Discussion 

EXTERNAL FORCING: 
IJMUIDEN HARBOUR 

4 MOLES 

INTERNAL DYNAMICS: 
NEARSHORE BAR 3 

SYSTEM UPPER 

T2 
SHOREFACE 

EXTERNAL FORCING: 
HYDRODYNAMICS 

91 lo 

MIDDLE/LOWER 
SHOREFACE 

e. g. HYDRODYNAMICS 

............................ 7 
6 

e. g. BATHYMETRY 

.............................. 

5 01 
e. g. lJMUIDEN HARBOUR. - 

MOLES 
............................ 

PROCESSES ACT TO 
CAUSE SIGNIFICANT 
DEPTH CHANGES ON 
THE UPPER, MIDDLE 

AND LOWER 
SHOREFACE 

Figure 9.9. Diagram showing the processes which are important on the shoreface over the 
longer time scales, >10 years. Significant processes (in the from of internal dynamics and 

external forcings) act upon the upper, middle and lower shoreface. For key see the following 

page. 
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KEY: controls are based upon literature rather than data 
I: lJmuiden harbour moles act as a longshore boundary to the morphodynamic 

provinces of the nearshore bar system. Though conclusions have not 
been drawn concerning the nature of the impact upon the bars (e. g. 
Wijnberg, 1995), an influence must be enforced; 

2: it has been shown (e. g. Hinton and Aarninkhof, 1998) that the hydrodynamics 
only act upon the outer bar. The behaviour of the inner bars is regulated 
by that of the outer; 

3: this study shows that both the nearshore bar system and hydrodynamics play 
a role in the upper shoreface behaviour. The role of the former appears 
to be more significant over the shorter time periods; 

4: the moles interrupt the northwards littoral drift, causing sedimentation in 
profiles adjacent to them. These profiles typically do not exhibit closure 

5: the Umuiden harbour moles influence the shoreface bathymetry as they 
cause sedimentation in the adjacent profiles, increasing longshore 
gradients; 

6: the hydrodynamics induces sediment transport when critical bed shear 
stresses are exceeded. The erosion of sediment has been shown to 
result in shoreface steepening (as the sediment is transported onshore); 

7: both external forcings and internal dynamics are shown, within this study, to 
cause significant depth changes on the middle/lower shoreface; 

8: the moles interrupt the northwards littoral drift, causing currents to be 
deflected seawards. This results in their acceleration at the end of the 
moles which in turn causes scour holes to develop (Roelvink et al, 1999); 

9: gravity effects make a significant contribution to the sediment transport. 
Gradients are typically offshore and in the longshore, linking the upper 
with the middle/lower shoreface; 

10 : sediment transport is dominantly in the onshore direction, again linking the 
upper and middle shoreface. 

Figure 9.9 cont.. Diagram showing the processes which are important on the shoreface over the 
longer time scales, 2: 10 years. Significant processes (in the from of internal dynamics and 

external forcings) act upon the upper, middle and lower shoreface. 

9.5) APPLICATION TO GENERIC SHOREFACE MODELS 

9.5.1) INTRODUCTION 

Behavioural trends, both observed and projected, have enabled potential forcings and responses 

upon the shorcfacc to be identified and relative. significance placed upon them. This has been 
discussed in detail in section 9.2 which takes the shorefacc behaviour to be scale dependent, as 
previously described in the 'primary-scalc relationship' (Dc Vricnd, 1991) i. e. certain processes arc 
more significant over different scales. Taking this approach has helped i) in the problem of the 
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limited knowledge of medium- and large-scale shoreface behaviour and ii) identify uncertainties 

and predictability limits, which typically increase with increasing scale (cf. De Vriend, 1993). The 

problem of predictability limits is of concern in modelling exercises, particularly over the large- 

scale. Indeed, international projects exist which investigate this in great detail e. g. the NICOP 

project has focused upon the predictability limits of process-based models. The observations made 

within this study have also been used to investigate the limits of two coastal models, one analytical 

and the other process-based. In addition, projections of the observed behaviour enabled 

comparison between future shoreface trends (as calculated using non-linear growth within this 

study) with those determined by large-scale behavioural models e. g. the Advection-Diffusion 

Model (ADM) of Niedoroda el al (1995). The results derived within this study relating to 

predictability limits, as identified through model validation, are now discussed. 

9.5.2) APPLICABILITY OF SELECTED MODELS TO THE PREDICTION OF THE 

SHOREWARD CLOSURE 

The two models tested through validation with the observations made within this study were both 

originally designed for the shoreface. The first (as discussed earlier in this chapter) is the analytical 
Hallenneier (1977,1978) model, used to calculate closure values (Chapter 2). The second is the 

process-based UNIBEST-TC model which is designed to calculate the evolution of a single cross- 

shore profile (Chapter 5). 

9.5.2.1) THE ANALYTICAL MODEL 
It is shown (Chapter 8) that over the temporal periods 1,5 and 10 years, the time-dependcnt 
Hallenneier (1977,1978) model (Eq. 2.6) over predicts the observed closure in 100% of cases; the 

overprediction by the model was in the range 1.3 rn (Noord-Holland) to 4.9 rn (Zuid-Holland). 

Previous studies (e. g. Nicholls et al, 1998b) also show that Eq. 2.6 calculates a seaward limit to the 
(shoreward) depth of closure. However, what this study also makes apparent is that the 
Hallermeier (1977,1978) model has a greater tendency to overpredict on the morphodynamically 
less active coast e. g. Zuid-Holland. Therefore when applied to a coastline which has a weak 

morphodynamic signature, for example, one which has a smaller nearshore bar system, then one 
would expect the calculated values of Dc, to be significantly deeper than the observed ones. This is 

an important conclusion when applying to coastlines with similar characteristics, especially if 

bathymetric measurements are either limited or non-existent. An additional limitation is that the 
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Hallermeier (1977,1978) model was designed for the wave-dominated coastline and, although the 

majority of the worlds coastlines are wave-dominated, there are also a percentage which are tidally- 

dominated, an example is the United Kingdom. If Eq. 2.6 were to be applied to these coasts there is 

a greater likelihood that the calculated closure values would deviate from the observed value to a 

greater degree than when used on the wave-dominated coasts due to the increased current energy in 

the system. 

The Hallermeier (1977,1978) model calculates a upper limit to the closure values as the computed 

temporal relationship is logarithmic i. e. there will be a temporal period for which an increase in the 

length of hydrodynamic data does not produce a significant increase in the calculated Dc, value. 
However, this does take the assumption that the wave climate for each year within the increasing 

temporal period remains statistically similar e. g. the 12-hour exceeded wave height and associated 

wave period remain relatively constant. Although Eq. 2.6 does predict a'temporal relationship of 

the same form (logarithmic) as the observed values, the range of calculated values from time t to 

time t+n is much larger than the observed. Hence this model overpredicts the deepening of the 

shoreward depth of closure. This is again an important note for those applying this model to 

morphodynamically inactive coasts; as the calculation and temporal relationship will be 

overpredicted. --- 

Therefore the Hallermeier (1977,1978) model has both spatial and temporal predictability limits of 

the form : 

1. observed closure values are overpredicted, especially on morphodynamically inactive coasts; 

2. predictions are made based upon a wave-dominated environment; and 
3. the predicted values over-estimate the increase in closure values with time such that the annual 

value could also be used for the 5 and 10 year values. 

9.5.2.2) THE PROCESS-BASED MODEL 

UNIBEST-TC has been used in a preliminary investigation to calculate the evolution of a single 

cross-shore profile from a morphodynamically inactive coast. Whilst the profile extended from the 

active zone to the lower shoreface, it was shown that this model is only capable of correctly 

predicting the evolution of the most shoreward section i. e. the active zone and upper shoreface. It 

is suggested that if the model settings were significantly altered from the default values then the 

correct evolution of the middle and lower shoreface may be attained. However, in doing this it is 
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likely that the settings would vary from those found in the natural system; one of the drawbacks of 
any model of this nature is that any output can be obtained by altering the input. 

It is'clear that, on this coastline, UNIBEST-TC predicts the evolution of the shoreward depth of 
closure (within I metre of the observations) ý for all temporal periods with the exception of the 2 

year period. This agreement is extremely good, providing encouragement for both the application 
of process-based models in this way and further testing of the model in a morphodynamically more 
active region. Although Dc, values agree to the nearest metre, if examined to one decimal place, it 
is clear that the predicted temporal increase by UNIBEST-TC is five times greater than that 

observed i. e. the logarithmic relationship is more pronounced in the model output. 

Whilst agreement is good over all temporal periods (I to 10 years), the bathymetric output over the 
large-scale is doubtful when compared with observations. This confirms suspicions that process- 
based models have predictability limits on the large-scale. It therefore appears that, in the absence 
of long-term observations, the most viable option for determining long-term coastal behaviour is 

through the use of large-scale models e. g. the Shoreface Translation Model (STM) of Cowell et al 
(1995). 

9.5.3) VALIDATION OF LONG-TERM SHOREFACE MODELS 

It is only recently that models have been designed for the long-term. As introduced in Chapter 2, 

there are currently four models which have potential (cf Buijsman et al, 1998a) for large-scale 

predictive purposes : 

1. the Advection Diffusion Model (ADM) of Niedoroda etal (1995); 
2. the Panel model of Stive and De Wend (1995); 

3. the Aggregated Scale Morphological Interaction between a Tidal inlet system and the Adjacent 

coast model (ASMITA) of Stive et al, 1997); and 
4. the Shoreface Translation Model (STM) of Cowell etal (1995). 

Examples of the model output are: 

1. using the ADM. The cross-shore profile i) straightens in response to increasing rate of sea- 
level rise and hydrodynamic forcing, and ii) exhibits increased curvature with an increase in 

sediment input and grain size (Niedoroda et al, 1995); 
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2. - using the Panel model. Onshore transport, sea-level rise and wind-induced transport are shown 
to induce shoreface activity over a 100 year period. The result is the progradation of the upper 

shoreface, steepening of the middle shoreface and flattening'of the lower shoreface (Stive and 
De Wend, 1995). Indeed observations from the Holland coast (the site to which the model 

was applied ) show that this behaviour does occur over this scale (Stive el al, 1990); and 
3. using the STM. Over a period of a century, the shoreface undergoes rotational deepening and 

steepening when acting as a sediment source (Cowell and Roy, 1998). In addition the entire 

shoreface is shown to undergo shoreward translation in response to rising sea-level (Buijsman 

et al, 1998a). 

When tested at specific sites, comparisons between observations, typically derived from geological 
data (e. g. C 14 dated sediment (Stive and De Wend, 1995)), and the model output show that there 
is good agreement. The work carried out in this study can also be used to validate the results 

obtained from these models. More specifically it is the projections of shoreface activity over the 
long-term which can be used : 

As the temporalperiod increases, allprofiles will evolvefrom 

exhibiting non-active topartially-activeshorefaces. Everyprofile 

will ultimately becomefully active. 

So although this study does not project the nature of the shoreface activity over the large-scale (i. e. 
if it steepens or flattens) in response to the forcings, it does provide confirmation that activity is to 
be expected over these scales. Indeed, the observations and subsequent projected trends made 

within this thesis and compared with the large-scale model output, are the first to be i) taken 
directly from bathymetric measurements; and ii) qualitatively validate these models. 

As discussed in Chapter 2, the ADM has also been used to investigate the evolution of the depth of 

closure (as defined before this study revealed the presence of a re-opening zone) over time scales 
from I to 10 000 years (Nicholls ef A 1998c). It is shown that as the time period increases then i) 

the closure also increases such that ii) after 10 000 years the cross-shore profile is active to the 

shelf. Indeed, after 100 years (the minimum time period for when all profiles within Noord- 
Holland are fully active) the ADM predicts closure to be between 22 approximately 12 and 20 m 

22 depending upon the environmental input used; approximately 12m for sea-level rise and sediment input; 
approximately 20 m for hydrodynamic intensity 
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deep. Although this thesis supports the latter part of the output, i. e. the entire cross-shore profile 

will ultimately become active, it does not support the former. The behaviour of the shoreward 

depth of closure along the Holland coast is such that whilst the values increase with time, the 

increase is not great and is best described as a logarithmic relationship. Rather it is the cross-shore 

growth of the re-opening zone which results in the profiles becoming fully active. So whilst the 

predicted large-scale shoreface behaviour agrees with the observations made here, it is the detailed 

mechanics which differ. This study is therefore particularly useful as it highlights errors in large- 

scale model output as a result of differences with observations made directly from bathymetric 

measurements. Such feedback concerning model output can only prove useful to the modeller as it 

will aid towards an improvement in the model formulation. 

9.6) IMPLICATIONS FOR SHOREFACE STUDIES 

Although this study has concentrated on the Holland shoreface, the concepts obtained, both from 

observations and predictions, can be easily applied to other coastlines of similar characteristics. 
They can also be applied to those coastlines which have different characteristics to those of 
Holland e. g. tidally dominated or highly energetic. The concepts should prove particularly useful 
to those countries which have minimal levels of bathymetric data. 

Perhaps the most fundamental principle which has arisen from this study is that the traditionally 

termed 'depth of closure 23, is not always applicable, particularly over the medium- and large- 

scales. This is because, over these scales, significant activity can also be observed on the middle 

and/or lower shoreface. As a result a new nomenclature has been suggested; the 'shoreward depth 

of closure'. In addition the shoreface activity has also been classified into three main types as a 
function of the cross-shore extent of the activity (non-; partial-; and fully-active) (see section 9.2). 
The temporal behaviour of the shoreward depth of closure has also been identified (as discussed 

earlier) to be different over the long-term to that previously observed; there is little migration 
seawards. Instead it is the shoreface activity which causes the shoreward closure to 'disappear' 

from the profile as the activity typically 'grows' from the middle/lower shoreface in both the 

shoreward and seaward directions. Hence it is the shoreward growth of activity to the upper 
shoreface which results in profiles not exhibiting a shoreward depth of closure not the seaward 
growth of activity from the nearshore bar zone to the middle shoreface. It is therefore advised that 

23 defined as the seaward limit of significant depth change, but not the absolute limit to cross-shore sediment 
transport (Nicholls et a], 1996) 
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this nomenclature and the corresponding concepts be used in future studies which are concerned 
with the shoreface and its activity. 

The cross-shore location of significant shoreface activity has direct implications for calculating 

sediment budgets. Shoreface aCtiVity24 is, as shown in this study, restricted to the upper 

shoreface 25, over the short-, medium- and large-scales. Over longer time periods e. g. greater than 

30 years, one would expect to observe significant depth changes on the middle and lower 

shoreface. Therefore when calculating, for example, sediment budgets for a coast with similar 

characteristics 26 
, over the smaller scales only the upper shoreface need be considered but for the 

very-large-scale activity in all shoreface zones (upper to lower) should be accounted for. 

If the coastline is morphodynamically active, then it should be results from the Noord-Holland 

shoreface that are concentrated upon. That is, over the small scales shoreface activity need only be 

considered on the upper shoreface whilst for the medium it will potentially occur on the middle 

and/or lower shoreface and over the large-scale on the entire cross-shore profile. It is important 

that this large cross-shore extent of activity is accounted for e. g. if designing nourishment schemes 

which take the form of mounds on the middle/lower shoreface (Hands and Allison, 1991) then it 

will act as a bar V (if the dimensions permit) over the short-scale but as a sediment source over the 
larger-scales. 

The preceding discussion makes the assumption that information is available about the 

morphodynamic nature of the coastline. If this is not the case the first step for the manager would 
be to plan and collect bathymetric measurements; valuable information can be gained from cross- 

shore profiles taken over monthly periods. There is also advice in here for those managers who 
have many years worth of data - do ml stop measuring. As this study demonstrates there is a 

wealth of information to be gained from long-term bathymetric data sets, which are few and far 

between. The short-term profiles could be used in a process-based model e. g. UNIBEST-TC, to 

gain further ideas relating to the temporal development of the coast over the short- and medium- 

scales. However it is important to note that the output from such a model in this situation should 
be used as an indication of future behaviour, not as fact. This is because in this example the lack of 
knowledge of the coast will mean that it is unlikely that the model can be validated. If the 

24 as identified by a significant change in the bathymetry using a pre-selected change criterion of 0.25 m to 
0.75 m. 25 i. e. shoreward of 8m water depth 
26 wave-dominated, morphodynamically inactive 
27 e. g. inducing wave breaking 
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financial budget allows, then it would also be useful if current measurements could be taken both 

of direction and velocity. These will enable details of the dominant current direction and sediment 
transport to be gained and so help determine if the shoreface acts as a source (as in the case of 
Holland over the long-term) or sink of sediment, over the various scales. 

Existing data means that the role of the shoreface (as a sediment source or sink) is better 

understood over the short- and medium-scales. It is well known that during high energy 

conditions, sediment is transported offshore where deposition occurs to form a bar, whilst during 

lower energy conditions the sediment is transported onshore (Komar, 1998). Note that this is under 

conditions of minimal longshore transport. This behaviour has been observed within bathymetric 

data over the medium-scales where offshore transport due to storm groups 28 occurred, resulting in 

the erosion of the inshore zone 29 and accretion of the upper shoreface 30 (Lee et al, 1998; 

Birkemeier et al, 1999). Over the same scale, but during fair-weather conditions, onshore feed 

occurs from the upper shoreface to the inshore zone; these results have also been confirmed using 

sonar altimetry (Beaver et al, 1999). The results from this study show that, over the medium- and 
large-scale, the shoreface acts as a sediment source. However, the effects of the northwards 
longshore transport are great, especially in Noord-Holland (Stive et al, 1990), such that the upper 

shoreface, active zone and beach do not experience net accretion. This result holds significance for 

the investigation and understanding of the generic shoreface as it enforces the importance of the 

effects of longshore transport over the direction of cross-shore sediment transport; if longshore 

effects were non-existent along the Holland coast there would probably not be such a great need for 

such intensive coastal protection schemes. It also indicates that whilst the high-energy storms 

create abrupt upper shoreface changes (Lee et al, 1998; Birkemeier et al, 1999), once fair-weather 

conditions return the sediment transport reverts such that the shoreface can be observed to be 

evolving to some new form (e. g. towards equilibrium (see section 9.2)). 

Whilst the results from this study will prove invaluable to managers and researchers of both the 
Holland and more global coasts, there are still some knowledge gaps 6onceming the shoreface 

behaviour, especially over the large-scale. These mainly take the form of process-knowledge; the 
data used within this thesis was bathymetric and were of limited use to the investigation into the 

processes acting upon the middle and lower shoreface over the scales investigated. The 

recommendations for further work which result from this study are given in the following section. 

28 groups of storms whose cumulative wave energy exceeded 4.25 xI OIOJ 
29 70 to 200 rn. from the landward boundary (dune base) 
30 500 to 900 m from the landward boundary (dune base) 
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9.7) FUTURE WORK 

This research, whilst providing a substantial amount of new information regarding shoreface 
behaviour over all scales (particularly the large-scale), also highlights gaps in this, and existing, 
knowledge and consequently the need for further research. This 'need' is now discussed. 

It is only as a result of the large extent, both temporally and spatially, of the JARKUS data set, that 
it has been possible to obtain the results presented here. Therefore the first recommendation is that 
the coastal measuring programme that comprises the JARKUS data set continues, covering the 

entire shoreface (extending to, at a minimum, the base of the shoreface). It is also important that 
the programme continues at set, regular temporal intervals, which as it now stands, is 3 years. Not 

only is this data required to calibrate and verify coastal models over scales relevant to the coastal 

manager, but it is also needed to improve knowledge of shoreface behaviour over ever increasing 

temporal periods; although projections have been made within this study of shoreface behaviour, 
based upon observations, the extrapolations can only be proved with the passage of time. For 

example within this study the projections take two assumptions; i) the large-scale coastal behaviour 

over temporal periods greater than the 32 years will not deviate from the trends observed over 
periods less than, or equal to, the 32 years; and ii) no major anthropogenic influence will occur in 

the future which could cause deviations from the observed trends. The knowledge obtained will 

also prove vital in the formulation of models which are designed for scales equal to, and greater 
than, the large-scale e. g. the geological scale (as defined in this thesis; Tab] e 1.1). 

Additional recommendations for future work which result from this thesis are : 
1. further evaluation of the processes which could potentially induce sboreface activity. Though 

this does not necessarily need to be performed on the Dutch coast, it would be useful to study 
this location as i) the process-knowledge could then be combined with the existing wealth of 
bathymetric data; and ii) there is already a coastal measuring programme running here 
(JARKUS). This point could be achieved using two methods : 

i) measurement techniques e. g. current measurements, especially in locations identified as 

exhibiting activity. For example on the flanks of the natural terrace located seawards of Petten 
(km 15). These measurements should include both flow direction and velocities at all times. 
Although short-scale experiments performed on other shorefaces lead to the conclusion that 

sediment initiation only occurs during high-energy events, (e. g. Snedden et al, 1988) it is 
important that the nature of current flow in regions of morpfiodynamic features are 
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understood. It is recommended that these measurements are made for extended periods of 
time; and 

ii) modelling techniques which incorporate the controlling factors identified within this 

study e. g. localised changes in the slope gradients (Chapter 7); 
2. identification of the processes which result in the two morphodynamic provinces separated by 

the Umuiden harbour moles. As it is clear that the provinces result from the two different 

nearshore bar systems and not the hydrodynamics (which are uniform alongshore), the process 
identification should first be attempted by investigating probable causes upon the bar regions 

-, (cf. Wijnberg, 1995); 

3. . testing of the UNIBEST-TC model in a region which is morphodynamically more active than 

Zuid-Holland i. e. Noord-Holland. This would give more confidence in the use of this model 
for the purpose of calculating shoreface evolution. (The work at present represents a 

preliminary investigation into the potential application of UNIBEST-TC to predict significant 

shoreface activity; 
4. applying very-large scale models (e. g. the ADM; Niedoroda et al, 1985) to the Holland 

shoreface and comparing the results with the projections made using observed trends. This 

would provide confidence in the use of such models; and 
5. this research has been performed on a wave-dominated, uniform, closed coastline. However, 

not all the world's shorefaces share these characteristics. There is therefore a great potential 
here for ftirther work incorporating different shorefaces e. g. the tidally-dominated shoreface of 

the UK. Perhaps the first step would be to test the Hallenneier (1977,1978) model on a 

macro-tidal shoreface; it is likely that its calculation would be an underestimation as it was 

primarily designed for a wave-dominated environment. However, the results will give an 
indication of the processes which do control shoreface activity within this coastal environment. 
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10) CONCLUSIONS 

10.1) INTRODUCTION 

The research undertaken within this thesis has helped towards bridging the current knowledge gap 

within coastal morphodynamics between the medium- and geological-scales. Specifically this 

work has concentrated on the region known as the shoreface (Box 1.1), over all scales (Table 1.1) 

and has succeeded in providing a great deal of information not only for coastal scientists and 

managers of the study area but also for those interested in coasts which have similar 

characteristics , and, at the very basic level, for all coastlines. 

The medium- and large-scale morphodynamic behaviour of the Holland shoreface (to depths of 

approximately 16 m) has been examined (Box 1.2) through the analysis of the bathymetric 
JARKUS data set (Chapter 3). The results derived from the data-orientated approach adopted 
(Figure 1.9) were used to validate predictions of the shoreface morphodynamic behaviour, 

calculated by existing analytical and process-based models. The observed behaviour was also 

projected beyond the 32 year data limit and will improve on current understanding of the 
timescales of shoreface evolution, beyond that already suggested by the short-scale fieldwork of 
Wright et al (1985) and the very-long-term modelling work of Niedoroda et al (1995). 

The morphodynamic behaviour of the shoreface was categorised within this study as either active 
or inactive, depending on the depth change across a single profile over t years. The depth change of 

one cross-shore profile was identified by i) determining the change in depth values of one profile 
from two different years 2; and ii) calculating the standard deviation of depth change between x 

number of the profiles through time 3. Three depth change criteria were then used to identify 

whether the shoreface was significantly active or inactive; these were 0.25 m; 0.5 m; and 0.75m 

which represent 66%, 95% and 99.5% confidence that a real bathymetric change has occurred, 

respectively. The use of two methods and three criteria gave a greater degree of confidence in the 

results than if a smaller range of analysis had been used. The relationship between forcings and 

morphodynamic response was then studied through the correlation of the observed changes and i) 

internal dynamics (e. g. the nearshore bar system); and ii) external forcings (e. g. the 
hydrodynamics). Anthropogenic influences were also evaluated. 

I e. g. wave-dominated, micro-tidal with a nearshore bar system 
2 this method is known as the fixed depth change method (fdc) (Chapter 5) 
3 this method is known as the standard deviation depth change method (Chapter 5) 
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It was expected, based upon the results of existing studies (e. g. Nicholls et al, 1996), that the larger 

spatial (: S 81 krn alongshore;: 5 3 km cross-shore) and temporal (: 5 32 years) extent of the JARKUS 

data set would result in the observation that the seaward limit to significant depth change (or depth 

of closure (Box 1.4); Nicholls et al (1996)) would move offshore from the upper shoreface such 
that over the large-scale shoreface activity could be expected at the shoreface/shelf boundary (cf. 

Nicholls et al, 1998c). This expectation is illustrated in Figure 10.1. However, this research has 

not confirmed these expectations, instead the observed shoreface morphodynamic activity is such 
that : 

1. a distinct cross-shore limit to significant depth change exists on the upper shoreface, 

particularly over the short-tenn (see section 10.2); 

2. significant activity is observed on the middle/lower shoreface over the medium- and large- 

scales (see section 10.3); and 
3. it is the cross-shore 'growth' of the middle/lower shoreface activity it; the shoreward direction 

that ultimately results in no boundary between activity and inactivity on the upper shoreface 
(see section 10.3). 

These observations are illustrated in Figure 10.2. The conclusion reached is that a new set of 

nomenclature is required to fully describe these shoreface morphodynamic features. It is proposed 
that : 

1. the traditionally termed 'depth of closure' (Dc) be re-termed the 'shoreward depth of closure' 
(Dcs); 

2. the middle/lower shoreface activity be termed the 're-opening zone'; and 

3. the seaward limit to significant depth change, observed on the middle/lower shoreface, be 

termed the middle/lower shoreface closure (Dc A). 
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Figure 10.1. Sddc plots showing the expected shoreface evolution of the Holland coast. The top 

plot (a) represents the expectations for the short-scale, evolving to that of the bottom plot (c) on the 

large-scale. The dashed line represents the sddc fixed tail change criterion 0.25 m. 
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Figure 10.2. Sddc plots showing the observed shoreface evolution of the Holland coast. The top 

plot (a) represents the observations made on the short-scale, evolving to that of the bottom plot (d) 

on the large-scale. The dashed line represents the sddc fixed tail change criterion 0.25 m. 
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The identification of the 're-opening zone' has led to the classification of four types of shoreface 
behaviour, as a function of the cross-shore extent of shoreface activity : 

1. an inactive shoreface. No morphodynamic activity is observed seaward of Dc.; 
2. a shoreward partially-active shoreface. The shoreface is active until the middle/lower 

shoreface; 
3. a seaward partially-active shoreface. The shoreface exhibits re-opening i. e. the profile exhibits 

a Dc., on the upper shoreface, becomes active on the middle/lower shoreface and finally may 

exhibit Den, /, towards its seaward limit; and 
4. a fully-active shoreface. Morphodynamic activity occurs along the entire shoreface i. e. the 

profile does not exhibit a shoreward closure. 

All these morphodynamic features have distinct spatial- and temporal- characteristics, as 

surnmarised in the following sections. 

10.2) THE SHOREWARD DEPTH OF CLOSURE 

Although the traditionally termed Dc has been re-named the Dc, it does not mean that the original 

concept becomes invalid. Instead the re-classification is a natural progression resulting from the 

extension of knowledge of shoreface morphodynamic behaviour to the large-scale; a 'depth of 

closure' does exist on the upper shoreface but it is often followed in the cross-shore by significant 
activity on the middle/lower shoreface over the medium- and large-scales. Dc. is therefore a 
function of the upper shoreface, which may or may not be present depending upon the timescales 

of morphodynamic shoreface behaviour and the depth change criterion selected. 

10.2.1) CHARACTERISTIC BEHAVIOUR' 

This study shows that not only are the characteristics (depth values; occurrence) of De, strongly 

spatially- dependent within the Holland coast, but the occurrence of Dc, is also temporally- 
dependent: 

1. two alongshore provinces showing similar Dc, characteristics exist within the Holland coast 

over all scales (Figure 6.5). The first province is Noord-Holland (km 16 to 54) and the second 
Zuid-Holland (krn 57 to 97). The divisionary boundary between these provinces coincides with 
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the location of a major anthropogenic structure; the Umuiden harbour moles. In the first 

province Dc, is deeper and more variable than in the second province (e. g. mean depth values 4 

are 7.3 rn and 4.7 m, respectively; Table 6.1)). The controls which act upon Dc, resulting in 

these distinct provinces are discussed in section 10.2.2; and 
2., observations within Noord-Holland clearly show that as the temporal period increases, then the 

percentage of profiles exhibiting Dc, decreases. This is such that Dc, is more characteristic of 
the shorter temporal scales within this province. Although the occiirrence of Dc, decreases 

temporally in Zuid-Holland, the rate of the decrease is not as great as in Noord-Holland; a 

consequence of the longer morphodynamic timescales in this southern province. Hence Dc, is 

also a characteristic feature over the medium- and large-scales in Zuid-Holland. 

In contrast with existing studies (e. g. Nicholls et al, 1996), the depth value of De, has a weak 
temporal relationship (Table 6.4) e. g. the mean depth values in Noord-Holland increase by 22% 

over the 32 years. 

10.2.2) CONTROLLING FACTORS 

Two major controls upon the Dc., behaviour have been identified based upon : 

1. the observation of two distinct provinces of Dc, (Noord- and Zuid-Holland); 

2. knowledge of the hydrodynamic and morphodynamic characteristics of the Holland coast; and 
3. existing studies on the controls upon the depth of closure over the short- and medium-scales 

(e. g. Nicholls et al, 1998b). 

Extreme wave conditions are the primary control upon Dc, as previously suggested by the 
Hallenneier (1977,1978) model (Figure 7.1) and related validation studies e. g. Nicholls et al 
(1998b). However this cannot act as the only control as the wave and general hydrodynamic 

climate of the Holland coast is relatively uniform alongshores (Figure 4.8) unlike the Dc, behaviour 
(Chapter 6; section 10.2.1). An examination of the morphodynamic characteristics of the Holland 

coast revealed that the nearshore bar behaviour can also be used to divide the coast into two 

alongshore provinces (Wijnberg, 1995). The boundaries of these provinces correlate with those of 
the Dc, provinces (Figure 7.2). Indeed this study shows that the nearshore bar system controls Dc, 

as a function of the degeneration depth of the outer bar (Figure 7.5); this depth is greater in Noord- 

4 over 20 years 5 variation in significant wave height from north to south is of the order of 0.2 m 
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Holland, (7 m versus 5 m) (Figure 7.4; Wijnberg, 1995) explaining why Dc, is deeper in this 

province. 

The potential anthropogenic control of the Umuiden harbour moles upon Dc, was also investigated 

using a morphodynamic rule-of-thumb 6 which describes the longshore extent of morphodynamic 
disturbance by a coastal feature (van Rijn, 1998). Surprisingly this large-scale structure was not 

shown to exert more control upon the behaviour of Dc, than the 'natural' controls within Noord- 

Holland (Table 7.6). It has therefore been concluded from this study that the Umuiden harbour 

moles do not significantly affect the temporal occurrence of Dc, and so upper shoreface behaviour. 

(Note that it does affect the middle/lower shoreface activity, as surnmarised in section 10.3). 

It is therefore concluded that the nearshore bar behaviour constrains the hydrodynamic control 

upon Dc.. 

10.2.3) THE TESTING OF PREDICTIVE MODELS 

The reliability of two existing models; Hallermeier (1977,1978) and UNIBEST-TC (Bosboorn et 

. al, 1997) was tested through the comparison of observed and calculated Dc, values : 

I. the analytical Hallermeier (1977,1978) model is shown to overpredict Dc, in 100% of cases 

over all scales (Figure 8.2). It therefore calculates a seaward limit to the observed closure. 
This results from the fact that this model only incorporates the hydrodynamics of the coastal 

system, and not, for example, the morphodynamics. A consequence of this is that the 

overprediction of Dc, will be greater when applied to morphodynamically less active coasts 
(e. g. Zuid-Holland) than to morphodynamically highly active coasts; and 

2. the process-based UNIBEST-TC model is shown to accurately predict Dc, values (Figure 

8.10). This results from the models incorporation of both the hydrodynamics and 

morphodynamics of the coastal profile. However it is shown that it is only the evolution of the 

upper shoreface which can be calculated confidently (Figure 5.8). This model is also shown to 

have temporal limitations resulting from inherent errors becoming significant over periods 

equal to, and greater than, 10 years. It is therefore concluded that process-based models 
designed for the short-term should not be used for long-term applications. 

6 which is an empirical estimation based upon the idea that flow construction has a maximum 
morphodynamic effect (Van Rijn, 1998) (Chapter 7). 
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10.3) MIDDLE/LOWER SHOREFACE ACTIVITY 

Middle/lower shoreface activity is not typically observed over the short-scale and its occurrence 

over the larger scales is shown to be dependent upon the morphodynamic timescales within Noord- 

and Zuid-Holland. The evolution of this activity in both provinces is such that it 'grows' in the 

cross-shore direction so that ultimately the entire cross-shore profile undergoes significant depth 

changes. The characteristics of the middle/lower shoreface activity and the forcings which act 

upon it are now summarised. 

10.3.1) CHARACTERISTIC BEHAVIOUR 

As with Dc,, middle/lower shoreface activity is both spatially- and temporal ly-dependent (Figure 

6.9): 

Noord-Holland is considerably more active on the middle/lower shoreface than Zuid-Holland, 

particularly if one discounts those profiles adjacent to the Umuiden harbour moles (km 38 to 
72). The inactivity of Zuid-Holland through the temporal periods investigated is such that 

accurate projections of the shoreface activity cannot be made; it is the projections of the Dc. 

behaviour which are more important in this province (section 8.3.3). Two major zones of 

shoreface activity, both partially- and fully-active, exist; km 16 to 29 (Noord-Hol land) and km 

40 to 73 (central Holland); and 
2. as the temporal period increases (and so morphodynamic activity typically increases) the 

shoreface evolves to the partially-active state. Extrapolation of observed trends (Chapter 8) 

show that all profiles within Noord- and central Holland ultimately become fully-active (after 

approximately 100 years in the naturally forced system of Noord-Holland and 50 years in the 

anthropogenically7 forced system) i. e. no profile will exhibit Dc, Complete agreement 
between predictions made for different scenarios (e. g. the length of time for all profiles to 

become fully-active and for no profile to exhibit Dcj should not be expected as the method 

used, though reasonable, is still simplistic and heavily reliant upon the assumption 8 made. 

Therefore calculated temporal periods should be used as an indication of the broad timescale of 
future behaviour. The critical temporal periods identified within this study can be used as 

7 in this instance the anthropogenic forcing is the Hmuiden harbour moles, a large-scale structure extending 
2.5 km offshore and I km alongshore 8 the large-scale coastal behaviour over temporal periods greater than the 32 years will not deviate from the 
trends observed over periods less than, or equal to, the 32 years. For potential violations of this assumption 
see Chapter 5. 
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, ', 
indicators of shoreface evolution at other sites with similar environmental characteristics e. g. 

morphodynamically active. However it is recommended that it is the ballpark value rather than 

the exact temporal period that it is used as i) morphodynamic and hydrodynamic characteristics 

will never be exactly the same; and ii) the extrapolation method is, as already stated, simplistic 

and dependent upon the assumption made. 

10.3.2) CONTROLLING FACTORS 

The observed middle/lower shoreface activity results from erosive processes (Figure 7.6; 7.8), 

which in combination with the net onshore cross-shore transport (e. g. Walstra et al, 1998), means 

that the Holland shoreface acts as a sediment source for the active zone, beach and dune systems. 

It is clear, from the observations made of the temporal growth of the shoreface activity (Figure 

6.2), that the activity results from slow, steady, cumulative processes rather than fast, infrequent 

processes. The 5-year window between bathymetric measurements suggests that the processes are 

regular events occurring every year or so. This agrees with short-scale shorefaces studies which 

show that significant sediment motion does not occur during fair-weather periods (e. g. Snedden et 

al, 1988). Hence it can be suggested that the observed depth changes are caused by those wave- 
induced processes which result from regular, annual storms. The most significant process in this 

category has been shown to be wave asymmetry (Roelvink and Stive, 1990; Stive et al, 1990). 

Although the effects of 'daily' wave asymmetry are reduced in water depths greater than 15 m 

(Niedoroda and Swill, 1981; van Rijn, 1995; 1997), the increased wave heights during storms 

mean that the effects of wave-induced processes can result in sediment motion in the deeper water 
(cf. Snedden et al, 1988). It is the cumulative effects of this process during regular events which 

result in the significant depth changes observed in this study over the medium- and large-scales on 

the middle and lower shoreface. 

Although it has not been possible to positively identify. the controlling processes 9, tentative 

correlations have been made between factors which may accelerate the shoreface activity and effect 
based upon the geographical association of shoreface features and activity 

1. it is therefore suggested that the shoreface activity of krn 16 to 29 is induced by the 

combination of i) localised bathymetric gradients (which are accentuated by the natural 

offshore terraces and the Hondsbossche and Pettermer seawall); ii) gravitational effects; and 
iii) hydrodynamics (e. g. near-bed flow) which induce the shoreface activity; and 

due to a lack of available measurements 
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2. the second main active zone (km 40 to 73) appears to be primarily induced by the Umuiden 

harbour moles, as investigated using the morphodynamical. 'rule-of-thumb' (Van Rijn, 1998). 

The harbour moles significantly effect the shoreface activity by inducing the cross-shore 

profiles to evolve to the fully-active state within shorter temporal periods (50 years) than in the 

natural system (100 years in Noord-Holland). The harbour moles affect the shoreface through 

,', Ahe interruption to the natural northwards, longshore currents, causing them to accelerate 

ý offshore inducing scour holes on the middle/lower shoreface, as is particularly obvious to the 

south of the harbour moles (Figure 6.14). 

10.4) WHAT DOES THIS STUDY MEAN FOR CURRENT ASSUMPTIONS ON 

TIMESCALES OF SHOREFACE EVOLUTION AND THEIR INCORPORATION 

IN VERY-LARGE SCALE MODELS? 

The observations (Chapter 6) and corresponding predictions (Chapter 8) made of the 

morphodynamic behaviour of the entire Holland shoreface (Figure 1.1) support existing work as 
listed below : 

1. This research shows that over the smaller temporal periods the shoreface is only active to the 

morphodynamic feature known as the 'shoreward depth of closure' whilst as the time period 
increases to the medium-scales, significant morphodynamic activity (or significant 

morphodynamic response to forcings) can occur on the middle and lower shoreface ('re- 

opening') (Figure 6.2). This supports 
i) existing assumptions concerning the timescales of shoreface evolution 

i. e. the upper shoreface responds on a smaller timescale than the middle and lower shoreface 
(e. g. Wright et al, 1985); and 

ii)long-term models which incorporate this assumption, for example the 
Panel model (Stive and De Vriend, 1995); and 

2. It is shown, that over the long-term, in Noord-Holland, the shoreface becomes fully-active. 

This leads to a qualitative validation of models which predict this behaviour e. g. the 
Advection-Difflusion Model of Niedoroda et al (1995). However, it also highlights the fact that 

not all profiles do become fully-active over this scales (as in Zuid-Holland), casting warning on 
the application of such models in morphodynamically inactive regions. 
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Besides supporting existing work, this thesis also extends the knowledge of shoreface evolution 
beyond that made in the stated assumption 10 by identifying that the cross-shore growth of 

significant shoreface activity" typically occurs both shoreward and seaward to the re-opening zone 

such that ultimately the shoreface is 'fully-active'. 

In addition, the results from this work show that the timescales of shoreface evolution can vary 

alongshore within a primarily uniform coastline. Observations of the shoreface evolution show 

that Zuid-Holland is evolving at a much slower rate than Noord-Holland (a consequence of this is 

that it has not possible to calculate projections of the evolution of Zuid-Holland). The occurrence 

of more than one province with different timescales of morphodynamic activity within a uniform 

coastline means that the application of models used to formalise knowledge of the morphodynamic 

evolution of a coast and make predictions, may not be as straightforward as one may expect. For 

example two conceptual models were developed from the "coastal tract cascade' concept (Cowell 

et al, 2000) for the i) the short-scale (Figure 9.8) and; ii) the medium- and large-scales (Figure 9.9) 

evolution of the Holland coast. However, the time scale of the morphodynamic activity in Zuid- 

Holland is such that the short-term model can also be applied to the longer time periods (< 30 

years) in this province. 

The conceptual models developed here will be applicable to coastlines of similar environmental 

characteristics e. g. wave-dominated, micro-tidal with a nearshore bar system, highlighting the 

processes which should be considered in the evolution of the shoreface. However, these models 

are difficult to apply qualitatively to other sites unless sufficient knowledge is available regarding 
environmental conditions e. g. of the nearshore bar system. The occurrence of the two provinces 
with different timescales of morphodynamic activity has meant that there is a wider applicability 
than there may have otherwise been. In instances where coastlines exhibit even smaller timescales 

of activity than Noord-Holland, it would be prudent to apply the medium- and large-scale 

conceptual model for this province to the short-scale for this example of coastline. 

10.5) FUTURE WORK 

This investigation provides a substantial amount of new knowledge regarding the morphodynamic 
behaviour of a wave-dominated, micro-tidal shoreface over the medium- and large-scales. 

to cross-shore shoreface activity evolves from the upper shoreface in a seaward direction 
11 for this coastline 
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However there is still a need for further research on this topic, as discussed in Chapter 9, and 
summarised. below: 

1. the continuation of the JARKUS programme not only i) to the base of the shoreface; but also 
ii) at regular, set intervals through time and space; 

2. further investigation of i) the processes which induce the medium- and long-term shoreface 
activity; and ii) the factors which may accelerate the effect of these processes; 

3. further investigation of the causes behind the two very different morphodynamic provinces 
north and south of the Umuiden harbour moles (cf. Wijnberg, 1995); 

4. a more thorough study of the abilities of both process-based and very-long-term models to 

predict the morphodynamic behaviour of the shoreface. Observations and predictions made 

within this study can be used as validation; and 
5. investigation of significant bathymetric changes upon shorefaces of different characteristics 

, -' e. g. tidally-dominated. 

10.6) SUMNURY 

This work provides unique information relating to the evolution of shoreface morphodynamic 
behaviour, as conceptualised in Figure 10.3, over the large-scale for a wave-dominated, 

uninterrupted coastline characterised by a nearshore bar system. It shows that, over the medium- 
and large-scales, significant depth changes occur on the middle and lower shoreface, such that, in 

morphodynamically active regions, over the longer temporal periods, it should be expected that the 

entire shoreface is active. This has significant implications for morphodynamic modelling efforts, 

especially those which incorporate a fixed nearshore zone for sediment budgets. However, future 

work (e. g. verification of the processes inducing significant shoreface activity) is still required, as 
discussed in Chapter 9. Although the details of this work e. g. the length of time over which the 

entire shoreface is calculated to become active, has perhaps more relevance to coastlines of similar 

characteristics to*the study area (the Holland coast), the main 'messages' could be applied globally 

e. g. as the temporal period increases then the cross-shore extent of morphodynamic activity also 
increases such that ultimately the entire shoreface can be expected to exhibit activity. 
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APPENDIX 4.1 

Please see sleeve for the 'Geomorphological map of the Holland coast' (taken from Alphen and 
Damoiseaux, 1989). 

r-, \ 
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Appendix 4.1. 

APPENDIX 4.2 

Please see sleeve for the 'Map of the upper Im of sediment of the Holland coast' (Geological 

Survey of The Netherlands, 1998). 
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APPENDIX 5.1 

FURTHER EVALUATION OF THE METHODS USED 

This study uses two techniques to determine shoreface in/activity; the fixed depth change (fdc) 
(Nicholls et al, 1996) and standard deviation of depth change (sddc) (Kraus and Harikai, 1983) 
(Chapter 5). Although these results qualitatively agree e. g. as the nature and extent of shoreface 
activity in both the cross-shore and long-shore, it is the magnitude of the activity which differs 
e. g. the actual depths of the shoreface activity. For example, as shown in Figure 5.1 a, shoreface 
activity is only observed after the 10 year period using both methods. However, when using the 
fixed depth change method (fdc) the activity re-occurs at 1.85 km offshore whilst with the 
standard deviation method the re-opening zone commences at 1.79 km 

5yr 
0.8 

T 10 
2 

yr 
15yr 
20yr 
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Figure 5.1 a. Comparison between the two methods used for four different temporal periods; the 
calculation of the actual (or fixed) depth change (adc) and that of the standard deviation of the 
depths. Three depth change criteria are applied to the results of the methods to determine the 
location of shoreface in/activity within this thesis; here the recommended criteria are applied 
(Chapter 6); the 0.25 m (sddc) and 0.5 m (fdc). The input data is taken ftom a real profile; km 
66. 

This section aims to investigate the relationship between the two methods' as a function of time 
period. The sddc method, as shown in Table 5.1, calculates the standard deviation of depths at set 
distances offshore using Equation 5.1 a. 

I in which the fdc results are considered as the range of depths between years and so termed adc 
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a= 
ýW' 

Equation 5.1 a 

where a= standard deviation; 
x= value; 
T= mean value; 
n= sample size. 

A consequence of the temporal resolution of the JARKUS data set is that the smaller temporal 
periods will have a smaller value of n than the large : 

e. g. 5 years stdev(l 965: 1970) => n=2; 
28 years stdev(1965: 1970: 1975: 1980: 1985: 1990: 1993) => n=7. 

where stdev = standard deviation. 

However this has been shown not to influence final results through comparison with calculations 
on the short profiles (JARKUSs) which are measured on an annual basis. Here : 

JARKUSS 5 years stdev(1980: 1981: 1982: 1983: 1984: 1985) 

-* .n=6; 
JARKUSE 5 years stdev(1980: 1985) n=2. 

The comparison, based on the identification of Dc,, shows that, of those profiles which exhibit 
closure, 100% of values agree within the depth range 0.1 to 0.7 in (the mean value is 0.31 in) 
(Table 6.9; Section 6.2.4). Further confidence arises from a comparison (Figure 5.1b) between 
the sddc values calculated from the JARKUSs profiles using the two combinations shown below: 

JARKUSS 5 years stdev(1980: 1985) -=: > n=2; 
JARKUSS 5 years stdev(1980: 1981: 1982: 1983: 1984: 1985) 

=> n=6. 

In order to ensure that the sddc results are not influenced by a single outlying value (a problem 
more important over the smaller time scales), sddc values are calculated for each possible 
combination and the mean calculated (Figure 5.1 c) :I 

combinations 
e. g. 5 years stdev(1965: 1970) a 

stdev(1970: 1975) b 

stdev(1985: 1990) e 
stdev(1993: 1997) f 

sddc value used 
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Figure 5.1 b. Comparison between the sddc values calculated from the two combinations of years 
taken from JARKUSs (profile km 87). 
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Figure 5.1c. Sddc calculations for each possible combination over the 5 year period and the 
resultant mean value used in this study. Calculations are made for two cross-shore sections of a 
real profile, km 87. The first (a) is for the highly active bar zone and the second (b) for the less 
active offshore. 

The relationship between sddc and fdc is now explored in more detail by using a series of 
synthetic profiles which accentuate depth change spatially and temporally in order to highlight 
possible irregularities with the methods. The final computation performed here is based upon a 
cross-shore section of a real profile, km 66. 

The first considers the evolution of a section of a cross-shore profile over 32 years for which the 
profiles change at set values through time and space, as shown in Figure 5.1 d. 
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Figure 5.1d. Actual deptlý_change (adc) for a section of a cross-shore profile for seven different 
temporal periods. 

When these bathymetric depths are used in the sddc calculation, as applied in this study, it is clear 
that as the temporal period increases there is an accompanying increase in the standard deviation 
values, Figure 5.1 e. 
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Figure 5.1e. Plot demonstrating the sddc method (hereby termed sddc (1)) when applied to a 
section of profile for which the actual change in depth is equal over all temporal periods (see 
Figure 5.1 d). 

If one applies the sddc method only using the start- and end-profiles of the stated temporal period 
e. g. : 

10 years = standard deviation of 1965: 1975 not the standard deviation of 1965: 1970: 1975 
then the result is the same as the actual depth change (Equation 5.1 b), Figure 5.1 f. 
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Figure 5. If Plot showing the results of standard deviation calculations using the start- and end- 
profiles of the stated temporal period (hereby termed sddc (2)). 

The second synthetic profile changes at set values through time and increases with distance 
offshore (Figure 5.1g). The results 2 (Figure 5.1h) show that over 5 years the three methods 
calculate all locations to be inactive whilst over the 28 years 3 the sddc (I and 2) methods show 
activity to commence at 1.6 kin offshore and the adc method at 1.58 km offshore. Hence the 
representation of the temporal development of the shoreface in/activity is the same using all 
methods. However, as already stated, the identification of in/activity differs slightly between the 
methods. The relationship between the depth range (or adc) and sddc as a function of time for 
this profile remains the same for each cross-shore location; as the temporal period increases the 
increase in depth range is greater that the increase in sddc, Figure 5.1i. It should be noted that 
this relationship is identical to the one derived based upon the sddc and adc values of the first 
representative profile (Figure 5.1 d), Table 5.1 a, and is dependent upon the value of n. 

[-ýerr ýporal period (yrs) 5 10 15 20 25 28 3-2--] 
1 adc/sddc 1.41 2 2.32 2.53 2.67 2.78 2.86] 

Table 5.1 a. Relationship between sddc and adc (or depth range) as a function of time. 

2 using the recommended change criteria of 0.25 m for the sddc methods and 0.5 m for the fdc method. 
3 although the largest temporal period is 32 years, 28 years has been used here as it is reliant upon two different 
combinations of years (1965: 1993; 1970: 1997) rather than one (1965: 1997). Hence taking the mean ofthese two 
combinations removes any potential bias of 'extreme' measurements. 
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Figure 5.1g. Synthetic profiles for progressive years showing an increase in depth with time and 
distance offshore. 
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Figure 5.1 h. Sddc (I and 2) and fdc(adc) calculations for the bathymetric profiles of Figure 5.1 f. 
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Figure 5.1 i. Value of the ration between the sddc and adc (or depth range) values as a function of 
time. 
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These methods have also been applied to a cross-shore section of km 66 which steadily deepens 
through time (Figure 5. lj) over two temporal periods, Figure 5.1 k. 

-7.0 
distance seaw aI rd (km) 

1., 75 

-9.0 
5 1965 

-1970 1975 - 1980 
cc -1986 1990 

1993 

-13.0 -1997 

1 
2 

Figure 5.1j. A cross-shore section of km 66 showing a deepening of the profile from 1965 to 
1997. 
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Figure 5.1 k. Sddc (I and 2) and adc (or depth range) calculations 
5. Ij. 

1.5 

m 
-5 
f3 
CL 
0 

0.5' 

0 

profile shown in Figure 

In this example the positions of the boundaries 4 of shoreface in/activity are as in Table 5.1 b. 

as given by the recommended change criteria 
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sddc (1) sddc (2) adc (or depth 
range) 

temporal period (yrs) 5 28 5 28 5 28 
distance offshore (km) - 1.6 - <1.5 - 1.52 

1 

I depth (m) <8 -18.1 - 18.6 - 
Table 5.1b. Cross-shore locations and depths of the commencement of shoreface activity 
between 1.5 kin and 2 Ian offshore for profile Ian 66 using the sddc (I and 2) and adc (or depth 
range) methods. 

If one examines Figure 5. Ij in more detail it can be concluded that the sddc (2) method 5 

calculates shoreface activity to occur over a greater portion of the profile than the fdc and sddc 
(1) methods. In addition the latter method underestimates the extent of shoreface activity when 
compared to the fdc method. When calculating the adc: sddc ratio as a fimction of temporal 
period (as Figure 5.1i and Table 5.1a) it can be seen that, as in the previous examples, as the 
period increases then the adc (or depth range) increases at a greater rate than the sddc values. 
However, unlike the previous examples, the ratio does not remain constant for each distance 
offshore, typically increasing in this direction within the range 0.31 to 0.81 (28 and 10 year 
periods, respectively) 

The computations 6 performed here indicate that the sddc method can be used with confidence. 
The conclusions that can be drawn from the calculations show that :: 

I. when depth increases with time and distance offshore (Figure 5.1 g) there is an increase in the 
standard deviation value in time and space. This does not result from temporal bias as both 
the sddc and fdc (adc) calculations coincide (Table 5.1 b); 

2. as temporal period increases the fdc(adc): sddc ratio increases; and 
3. the slight difference between the boundaries of shoreface in/activity as calculated with the 

sddc (1) and fdc (adc) methods is to be expected as the sensitivity of the methods differ7; the 
latter is more sensitive to individual depth changes within a cross-shore profile. 

5 incidentally this method has not been used in this study, and is used here to finther comparison between potential 
methods and the possibility of temporal bias. 
6 1) the depth change for each temporal period is the same; 2) the depth increases with increasing temporal period 
and distance offshore 
7 see Chapter 6 
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APPENDIX 5.2 
THE SUB-MODELS OF UNIBEST-TC 

The five sub-models are summarised below. For further details e. g. working equations, the reader 
is referred to Bosboorn et al (1997). 

1) WAVE PROPAGATION MODEL 

This sub-model is composed of three first order differential equations: 
1) time-averaged wave energy balance; 

2) roller balance equation for that energy contained in surface rollers in breaking 

waves. This equation allows for the fact that, after breaking, organised wave 

energy is first converted into turbulent kinetic energy before being dissipated 

through turbulence; and 

3) horizontal momentum balance which takes into consideration the concept of 
breaker delay. Breaker delay allows for the fact that waves need a distance of one 

wave length to actually start/stop breaking. 

Wave refraction is computed using Snell's Law. The three coupled equations are solved through 

numerical integration over the cross-shore profile. The output is then used by local models for the 

vertical velocity profile, concentration profile and bed-load transport. 

2) MEAN CURRENT MODEL 

Taking the case of alongshore uniformity, the depth-integrated cross-shore radiation stress is 

balanced by the wave set-up. The longshore radiation stress is balanced by a time mean bed shear 

stress associated with the longshore current. Secondary currents are driven due to vertical non- 

uniformity. An imbalance exists between the cross-shore wave radiation stress gradient and the 

pressure gradient due to wave set-up. This imbalance drives a circulation current which has a 

shoreward mass flux above the trough level and undertow (seaward return flow) below the trough 

level. In addition, shoreward directed near-bottom streaming exists in the wave boundary layer. 

In order to represent the velocity distribution of the cross-shore circulation current and longshore 

current the horizontal momentum balance is used. The balance takes into account wind shear 
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stress, breaking-induced forcing, surface slope, wave boundary layer and also uses the parabolic 

eddy viscosity distribution. 

3) WAVE ORBITAL VELOCITY MODEL 

This sub-model consists of two parts: 
1) wave asymmetry, where the mean wave energy and peak period are used as 

random wave input; and 
2) bound long waves, and also an empirical relationship for the phase of the bound 

long wave relative to the short wave envelope. 

A time series is produced which has the same characteristics of asymmetry, long waves and 

amplitude modulation as a random wave field. 

4) BED LOAD AND SUSPENDED LOAD MODEL 

The bed load model takes the quasi-steady bed load fortnulation. At small shear stresses, transport 

is represented as individual particles moving over a rippled bed whilst at high shear stresses it is 

represented as sheet flow. 

The suspended load model takes the wave-related suspended sediment transport to be small as 

compered to the current related suspended sediment transport. The former mode is derined as 'the 

transport of sediment particles by the oscillating fluid components'. The latter is defined as 'the 
transport of sediment particles by the time-averaged current velocities (longshore, rip and undertow 

currents). 

Both the bed load and suspended load models include computations of the time-averaged 

concentration profile and bed shear stresses. 

5) BED LEVEL CHANGE MODEL 

Bed level changes are computed from the depth-integrated mass balance after the computation of 

transport rates along the profile. 
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GLOSSARY 

Behaviour: the morphodynamic result ofthe interaction between the existing 

morphology, hydrodynamics and sediment transport of the coastal system 

Compartment: the coastal system is composed ofseveral compartments e. g. the nearshore 

bar system, each ofwhich have a distinct temporal and spatial scale. 

Within each compartment a morphodynamic system exists composed ofthe 

elements ofmorphology, hydrodynamics and sediment transport (Figure 

1.6). 

Depth of closure: 'the seaward limit ofsigniji'cant depth change; not the absolute limit to 

cross-shore transport' (Nicholls et al,. I 996) (Figure 1.7) 

External forcing: energy which acts upon the compartments behaviourfrom outside the 

compartment e. g. the hydrodynamics acting upon the nearshore bar system 

Glossary 

Fully-active morphodynamic behaviour occurs along the entire shoreface i. e. the profile 

shoreface does not exhibit a shoreward closure (Figure 6.3) 

Geological-scale temporal period oftenturies and morphodynamic length scale of 100 kin 

Inactive shoreface no morp-hodynamic behaviour is observed seaward ofthe shoreward depth 

ofclosure (Figure 6.3) 

Internal dynamics: energy which acts upon the compartment hehaviourfrom within the 

compartment i. e. the behaviour ofthe inner bars is regulated by the 

behaviour of the outer bar, not the hydrodynamics (11inton and Aaminkhof, 

1998; Wijnberg, 1995) 

JARKUSE: the extendedprofilesfrom the JARKUS data set (Chapter 3) 

JARKUSS: the short proftlesfrom the A RKUS data set (Chapter 3) 
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Large-scale temporal period ofdecades and morphodynamic length scale of 10 km 

(Stive et al, 1990) 

Medium-scale: temporalperiod ofyears and morphodynamic length scale of I kin (Stive et 

al, 1990) 

Middle/lower : the limit to significant depth change observed towards the seaward limit 

shoreface closure oftheprojile (Figure 6.2) 

Morphodynamic: theform and structure of the coastal system 

Re-opening the significant depth change observed on the middle andlor lower 

shoreface (Figure 6.2) 

Seaward partially- the shoreface exhibits re-opening i. e. the profile mustfist exhibit a 

active shoreface shoreward depth of closure in order to re-open and may exhibit a 

middlel7ower shoreface closure (Figure 6.3) 

Shoreface 'thefixed offshore zone bound on the landward side by the seaward slope 

of the outer breaker bars and bound on the seaward side by the transition 
from a concave profile to nearly horizontal bottom' (flouwman and 
Hoekstra, 1994) (Figure 1.1) 

Shoreward depth the limit of significant depth change located on the upper shoreface. Over 

f of closure scales equal to, and greater than, the medium-scale signi Icant depth 

changes may also be observed on the middlellower shoreface (Figure 6.2) 

Shoreward partially- : the shoreface is active until the middlellower shoreface (Figure 6.3) 

active shoreface 

Short-scale temporal period ofstorms1seasons and morphodynamic length scale of 100 

m (Stive et al, 1990) 
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On the predictability of nearshore bar behaviour 

Stefan Aarninkhof', Claire Hinton' and Kathelijnc Wijnbere 

AbstLact 

77ie analysis offield observations of surf zone dynamics has revealed some 'unexpected' 
behaviour of the coastal system. generally referred to as : /ree behaviour'. which is 
behaviour that is unrelated to similar patterns in the extemalforcing. Present-day 

process-based modeling concepts are not capable to deal with thesefree modes of 
behaviour. In order to assess the validity of model-based predictions of bar dynamics, file 
relative importanceoffree behaviour versusforced response in the surf zone needs to be 
addressed. 7his work aims to contribute to the debate, by investigating the sensitivity of 
breaker bar behaviour to chronology effectsfrom coastal profile modeling at a multiple- 
barred beach, with probabilisticJorcing conditions. The results show chronology effects 
merely affect the predicted height of the bars, rather than their location which is 

remarkably consistent over the various runs. 77je latter observation has raised the 
question up to what extent predicted bar behaviour is controlled by model characteristics 
(concept, parameter settings), rather than system andforcing characteristics. 

Tntroduction 

Over the years, nearshore sand bar behaviour was believed to show a rather consistent 
pattern of delayed response to the wave energy input, featuring a rapid straightening of 
the outer bar during storms, and a gradual development of a crescentic bar pattern via 
some intermediate stages during subsequent periods of low-encrgy exposure (e. g. Wright 
and Short, 1984; Lippmann and Holman, 1990). However, another field observation of 
bar behaviour has been presented by Southgate and M611cr (1998). They applied a fractal 

'Netherlands Centre for Coastal Research. Delft University of Technology, c/o WLIDE-MINDRAUUCS, 
p-o. box 177,2600 Mll Delft, Ile Netherlands 
3 Flood Hazard Research Centre, Middlesex University, Queensway, Enfield, London, EN3 4SF, UK 
'Netherlands Centre for Coastal Research. Institute for Marine and Atmospheric Research, Utrecht 
University. p. o. box 80115,3508 TC Utrecht, The Netherlands 
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Spatial and Temporal Behaviour of Depth of Closure 
along the Holland Coast 

Claire I rjntorý and Robert J. Nicholls7 

Abstract 

Depth of closure has been identified am/ its characteristics investigated over larger 
temporal (a 25years) and spatial (< 100 Wometres) scales than previous research 
In mUdon to the 'normal'shoreward closure produced by breaking waves mid cross- 
shore bar migraftom at longer timescales (->10 years) shoreface morphodynamics, 
also produce significant profile changes Ae shoreward closure is primarily 
controlled by wave brealang with a secondary control of bar morphodplamics, 
Shoreface changes are slow am/ steady and a! r timescale increases. so more profiles 
exhibit re-opening in depths "ically greater than 10 metres. Ais is then usually 
followed by the re-closure of the profile on the middlellower shoreface. Such 

phenomena have not been observed in past studies of this type and result from the 
large temporal and spatial extent of the data set used here. Over longtime scales(-> 
Joyears) such changes have a coastal engineering significance 

Introduction 

The application and scope of coastal engineering schemes i. e. shore protection and 
land reclamation, is increasing. For "ample, the present Dutch coastal policy is to 
maintain its coastline at its 1991 position for the foreseeable future. In order to ensure 
the long-term reliability of such projects it is vital that coastal evolution over the same 
temporal scale is understood. So, with the advent of focused research Within this field, 

many relevant concepts are being developed through both observation and predictive 
techniques. 
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PROFILE RE-OPENING ON THE SHOREFACE OF THE HOLLAND COAST 

Claire Hinton', Robert Nicholls' and Daan Dunsbergen 

Abstract: The shoreface dynamics of the long JARKUS profiles are 
investigated over 32 years, 81 km alongshore and 2: 2.5 km cross-shore. The 
morphodynamic activity on the shoreface is sub-divided into three types; i) 
inactive shoreface (no morphodynamic activity is observed seaward of the 
shoreward depth of closure (at 5 to 8m water depth)); ii) partially active 
shoreface ('re-opening' of the shoreface profile i. e. the profile must first exhibit a 
shoreward closure); and iii) fully active shoreface (the profile does not exhibit a 
shoreward closure and so is morphodynamically active along the total cross- 
shore distance). At Large-Scales (2: 10 years; 2: 10 km alongshore) it is found 
that the percentage occurrence of type ii) increases rapidly with time until 20 
years when an almost constant value is reached. Simultaneously the percentage 
occurrence of type iii) increases linearly with time so that, after 32 years 33% of 
profiles are fully active on the shoreface. It is hypothesised that shoreface 
activity results from slow, cumulative rather than occasional, extreme processes. 
Extrapolation beyond the data limits suggest that after approximately 90 years, 
all profiles along the Holland coast will exhibit morphodynamically active 
shorefaces. This work verifies that the middle/lower shoreface is 
morphodynamically active at decadal scales. These changes are occurring at 

1 Flood Hazard Research Centre, Middlesex University, Queensway, Enfield, Middlesex, 
EN3 4SF. UK. 
2 Rijkswaterstaat, National Institute for Coastal and Marine Management/RIKZ, PO Box 
20907,2500 EX Den Haag, The Netherlands. 



timescales which mean that they must be considered within coastal management. 
Further, these results suggest that the onshore feed of sediment from the 
shoreface will have profound implications for long-term sediment budgets (cf. 
Stive et aL, 1990). 

INTRODUCTION 

In order to successfully implement coastal management schemes it is important 
that we are able to judge the impact of changes in coastal processes. This is especially 
important over the Medium- and Large-Scale (Table 1) for it is over these temporal scales 
that many of today's projects are designed. Hence many significant and fundamental 
concepts are being developed, through both predictive and observative techniques. 

Table 1. The Coastal Scales Defined by Stive et at (1990). 

SCALE 
DESCRIPTION 

MORPHODYNAMIC 
LENGTH SCALE 

TIME 
SCALE 

_ Large-Scale 10 km 

I 

decades 
Medium-Scale 1 km years 
Short-Scale 100 m storms- 

seasons 

One of the many key concepts in beach morphodynamics is depth of closure (Dc). 
Depth of closure plays an important role in coastal kdiment budgets and associated 
applications for example beach nourishments. In the former, closure can be used as , 

'the 
seaward boundary of morphological change in sediment budget models (Kana, 1995) 
whilst in the latter it enables the volume of beach fill material to be calculated (Davision Ct 
A, 1992). 

Closure represents the 'seaward limit of significant depth change' (Nicholls et aL, 
1996); it does not however refer to an absolute depth beyond which there is no cross-shore 
sediment transport. This definition has been derived from investigations into the Short 
and Medium-Scale characteristics of closure within wave-dominated, micro-tidal sandy 
coastal environments (Nicholls et aL, 1996). Such studies have shown Dc to be time- and 
space-dependant (Garcia et aL, 1997; cf. Capiobianco et aL, 1997; R6zynski et aL, 1997; 
Marsh et aL, 1998). It is also shown that closure generally occurs on the upper shoreface 
(typically 6 to 8 metres depth) within these temporal scales. Breaking waves are 
concluded to act as the primary control upon its cross-shore location (Nicholls et aL, 
1996). 

Depth of closure is less investigated and understood on the Large-Scale; the 
controls on closure are likely to vary with scale (Nicholls et al, 1998). The Large Scale 
Coastal Evolution concept (Stive et al., 1990) describes the evolution of the coast at 
decadal scales to vary between mean trend (e. g. geological processes), fluctuating (e. g. 
boundary constraints) and asymptotic (e. g. morphodynamic constraints) behaviour. The 
morphological development of a coastline is temporally- and spatially-dependant and is 
often positively coupled. Ibis is related to the assumption of 'primary-scale relationship'; 
6a process of a certain scale will be in dynamic interaction with coastal behaviour of a 



similar scale' (De Vriend, 1991). The JARKUS data set from the Netherlands has 
allowed closure to be'studied at the Large-Scale; 32 years, 16 metres depth and 100 km 
alongshore. 

Hinton and Nicholls (1998) demonstrated that, over the Large-Scale, more than 
one closure may occur across a single cross-shore profile; in some instances not only does 
the profile close at some distance x from the shore, but the profile re-opens more seaward 
on the shoreface and then usually re-closes towards its seaward limit on the lower/middlc 
shoreface (Figure 1). These phenomena have been termed i) the shoreward closure (Dc, ); 
ii) the re-opening point (Ro) and re-opening zone; and iii) middle/lower shoreface closure 
(Dcno), respectively. 

Ro has only been observed over the longer time scales (2: 10 years) and at 
distances offshore greater than 1.5 km (typically 10 metres water depth), (Hinton and 
Nicholls, 1998). Although unobserved in past studies of this kind, morphodynamic 
activity on the shoreface has been previously recognised (Stive et aL, 1990; Wright et aL, 
1991; Niedoroda, et aL, 1995). This study aims to investigate this shoreface characteristic 
over the large temporal (:: S-32 years) and spatial (<100 km) scales, using the JARKUS data 
set. 
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Figure 1. Standard deviation of depth change plot which clearly shows re-opening and 
subsequent closure for time periods of 15 and 25 years (km 69). (In the present study a 
fixed tail (value 0.25 in) is used to define morphodynamic activity and inactivity) (after 

Hinton and Nicholls, 1998). 



STUDY AREA: THE HOLLAND COAST 

The study area (approximately 100 kin alongshore) is the 11olland coast houlld 
from Den Helder in the north to Hoek van Holland in the south. (Figure 2. ) It is a Nvavc- 
dominated, sandy coastline backed by large duncs and uninterrupted by tidal 111lets or 
barrier islands. The main anthropogenic interventions are the I)cttcii sea wall (kin 20 - 26) 
where the dike replaces the dune system, and the I. Iniuidcn 11.11-I)OUr moles (kin 55/56). 
Some relatively minor beach nourishment schemes arc also present along the sttidy arca. 

Multiple bars are present along the coastline and cxtend to a niaxiintlin dcptlI of' 
approximately 8 metres. The mean tidal range is 1.4 inctres in the north 111cl-casing to 1.7 
metres in the south, peak tidal velocities do not generally exceed I ins' I'lic annual 111can 
wave height is 1.2 m (associated wave period 5 sec), whilst the extreme annual Nvavc 
height is 5.3m (associated wave period 7.7 sec) (Roskam, 1988). 'I'lic hydrodynamic 
climate is relatively uniform alongshore; variations in wave licight I, ron) 1101,111 to S011111 are 
of the order of 0.2 m. 
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Figure 2. Location map showing the closed I lolland coast. (WiJiiherg, 1995). 

Cross-shore bathymetry has been measured by the Rijkswatersuiat since 1963 at 
regular, fixed locations alongshore. These measurements are field within the JARKI IS 
data set (Hamm, 1997). They have a vertical accuracy ol'approximately 0.25 m(Arcs, tile 
value of the constant, non-zero tail within the standard deviation of' depth change 
calculations. This accuracy value has also becii determined by ; in Indelmident study 
which uses both stochastic and systernatic error SOLII-CCS (Nanninga, 1985). 



Two types of cross-shore profile measurements exist. One is the annual (short) 
profiles which extend 0.8 km seaward, equivalent to a depth of approximately 6 metres, 
with alongshore spacing of 0.25 kin. The second is the less frequent (generally) five- 
yearly (long) profiles, these extend to a minimum 2.5 km seaward, equivalent to 
approximately 15 to 16 metres depth, and have an alongshore spacing of I km. (Figure 
3. ). Data is available for 1965,1970,1975,1980,1985,1990,1993 and 1997. 
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Figure 3. Example of the bathymetry and 
shoreface changes on the Holland Coast using 
the 'long' profiles from 1965 and 1997, located 
at km 70 (Zuid-Holland). 

The long profiles are analysed in this 
study as previous investigation 
(Hinton and Nicholls, 1998) has 
shown that the re-opening behaviour 
is typically observed at distances 
offshore greater than 1.5 kin. The 
most northern and southern profiles 
are rejected due to the tidal influence 
of the Marsdiep and the Europort 
inlets, respectively. In addition, 
profiles km 52,53 and 72 to 97 are 
missing for years 1993 and 1997. The 
total study area therefore covers an 
alongshore distance of 81 km (km 16 
to 97; Figure 2). 

ANALYSIS OF AVAILABLE MORPHOLOGICAL DATA: JARKUS (1965 - 1997) 

One method is used to investigate the characteristics of the re-opening zone; the 
standard deviation of depth change (Kraus and Harikai, 1983). This analysis has been 
performed for all available profiles over a range of temporal periods; 5,10,15,20,25,28 
and 32 years within the period 1965 to 1997. 

This is a simple method, effective in both dealing with large data sets, such as the 
JARKUS. data set, and removing bias from outlying values. Variation in the standard 
deviation of elevation is shown as a function of the cross-shore distance for x number of 
profiles from the same alongshore location. In this paper when the standard deviation 
value exceeds thefixed value of 0.25 metres the profile is undergoing significant depth 
changes (Figure 4); changes observed in the nearshore zone mainly relate to bar 
morphodynamics whilst those further offshore equate to shoreface morphodynamics. 

This study defines the shoreface as a fixed zone in which its landward boundary is 
fori-ned by the outer slope of the outer breaker bar and the seaward boundary by tile 
transition from a concave profile to a nearly horizontal bottom (Houwman and Hoekstra, 
1994). The shoreface is then further divided into the upper shoreface' or active zone, 
which extends to 8 metres water depth, the middle shoreface (8 to 12 meires water depth) 
and the lower shoreface (12 to 20 metres water depth) (Stive et aL, 1990). 
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Figure 4. Sddc plot for km 30 which uses a criterion of 0.25 m to determine significant 
depth changes. Closure is exhibited in the range 0.7 to 0.9 km offshore for all time 

periods. (DC5y, %zý 8.5 m depth; DC32yr ýý 9.5m depth). 

In this study the morphodynamic behaviour of the shoreface is divided into three 
types and the latter two examined in more detail (see Figure 1) : 
1. inactive shoreface. No morphodynamic activity is observed seaward of Dc,; 
2. partly active shoreface. The shoreface exhibits re-opening i. e. the profile inust first 

exhibit a Des in order to re-open; and 
3. fully active shoreface. It occurs upon the whole shoreface i. e. the proýile does not 

exhibit a shoreward closure and so is morphodynamically active along the total cross- 
shore distance. 

In addition to considering the coastline as a whole (km 16 to 97), it is also examined from 
km 16 to 71 to remove any bias from the missing data; km 72 to 97 for temporal periods 
25,28 and 32 years. 

OBSERVATIONS AND PREDICTIONS OF RE-OPENING USING THE JARKUS DATA 
SET (1965 - 1997) 

General 

The sddc method allows the observation of the shoreward closure and re-opcning 
zone (or, partial shoreface activity). A fully active shoreface can also be observed. 
(Shoreface activity represents significant depth change, within the depth change criterion 
chosen. ) Shoreface activity (both partial and full) predominately occurs over the longer 
time scales (ý: 10 years) (and so is a Large-Scale process) and also increases in occurrence 
with temporal period (i. e. 21% of profiles have partially active shorefaces after 10 years 
increasing to 31% after 32 years (km 16 - 71)). Additionally the shorefacc activity 
investigated here does not occur at all alongshore locations and is also typically found in 
depths equal to, or greater than, 10 metres. Therefore as previously seen with the 
shoreward closure (Nicholls et aL, 1996), shoreface activity is temporally- and spatially- 
dependant. (Figure 5). This dependence will be described further in the following 
sections. 



Temporal Characteristics 

Partial and fully active morphodynamic behaviour is predominately observed over 
the longer time periods'(ý 10 years). As the temporal period is increased (from 5 to 32 
years) the occurrence of shoreface activity along the Holland coast also increases. (Table 
3). 

Table 3 clearly shows that there is some bias produced by the missing data. 
Therefore, the remainder of this work will concentrate solely on the alongshore area from 
krn 16 to 71. The relationship between the number of profiles showing partial shoreface 
activity and time interval is positively correlated with an r2 value of 0.89(95% 

signif,.,,,, ). A 
similar relationship exists for the number of profiles showing full shoreface activity; the r2 
value is 0.96(95% 

significance). 
Figure 6 shows that the occurrence of partial shoreface activity 

rapidly increases until the 20 year time period when the rate of increase slows. However, 
the occurrence of activity across the whole shoreface increases throughout the whole time 
period at a rate which increases with time. This indicates that, as the temporal period 
increases beyond a critical value (20 years), the percentage of profiles which exhibit 
partial shoreface activity reaches an almost constant value. This is the result of the 
profiles which first close on the upper shoreface (Dc, ) decreasing in occurrence and those 
profiles active along the whole shoreface continuing to increase in occurrence. (Figure 7). 

Table 3. Percentage Occurrence of Shoreface Activity with Increasing Temporal Period. 
(Note: i) an additional boundary has been made at km 71 to remove bias from missing 

data; ii) partial = partially active shoreface (re-opening); iii) full = fully active shoreface). 

TIME 
PERIOD 

(yrs) 

PARTIAL 
(km 16 - 

97) 

PARTIAL 
(km 16 - 

71) 

FULL 
(km 16 - 

97) 

FULL 
(km 16 - 

71) 

TWO TYPES 
COMBINED 
(km 16 -97) 

TWO TYPES 
COMBINED 
(km 16 -71) 

0 0 0 0 0 0 0 
5 7 4 1 2 8 6 
10 21 21 4 6 25 27 
15 27 32 7 11 34 43 
20 33 36 10 15 43_ 51 
25 32 32 28 28 60 60 
28 33 33 27 60 60 
32 31 31 33 33 64_ 64 
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Figure 5. Spatial distribution ofmorpliodynarnic activity along the Dutch shorefilce 1'()I" 
different temporal periods ( 1965 - 1997). 
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Figure 6. Observed and predicted relationship between the percentagc occurrence ofthe 
three types of shoreface activity and temporal period. Partial and both takc an exponential 
fit and full a linear fit. (Note: partial = activity which Occurs after shorcý, ý"Ird Clostirc, 1,1111 

= activity across the whole shoreface; both - combined partial and I'Lill) 
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Figure 7. Shoreface behaviour with increasing temporal period based upon classification 
used here. 

If the observed trends are projected into the future, it is estimated that all the 
profiles will have fully active shorefaces after 95 years. However, this assumes that i) the 
shoreface of the Holland coast is responding similarly to the forcing causing these 
changes; and ii) there is no major anthropogenic disturbance. 

Spatial Characteristics 

Morphodynamic activity upon the shoreface (both as partially and fully) is not an 
alongshore uniform characteristic of the Holland coast (within the data limit). As the 
temporal period increases it becomes apparent that the activity becomes clustered in two 
main areas; km 16 to 29; and km 50 to 73. Additional areas in which this behaviour is 
apparent are; krn 42 to 46; km 79 to 81; and km 95 to 96. It is hypothesised that if the 
temporal period were to be increased further more profiles will exhibit morphodynamic 
activity on the shoreface (see previous sub-section). 

The two main areas are located around the two largest anthropogenic structures 
along the Holland coast; the Petten sea wall (km 20 - 26) and Umuiden harbour moles (km 
55156). A natural submarine terrace (named Pettermer Polder), at depths of the order 10 
metres, is also located at km 15 - 20. Krn 50 - 73 also corresponds with the location of the 
most landward point of the shoreface connected ridges found off the Holland coast (Van 
Meene, 1994). 

The cross-shore extent of the re-opening zone (Partially active shoreface zone) also 
tends to increase with temporal period; the value is 0.69(95% significance)- (Figure 8). Figure 
I also demonstrates this; over a 15 year period the re-opening zone of km 69 covers a 
cross-shore distance of approximately 0.5 km whilst over 25 years it covers approximately 
1.0 km. This is due to the offshore movement of the seaward boundary, whilst the 
landward moves little over the period of observations. This means that the middle/lowcr 
shoreface closure (DcO) is tending to deepen on these profiles. 
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Figure 8. Spatially-averaged details of the re-opening zones cross-shorc width 
through time (krn 16 - 71). (Note: i) re-opening zone relates to the width of the partially 
active shoreface; and ii) the largest width is observed over 25 years, this may result from 

the fact that it could be an outlier - see Figure 6) 

CAUSES AND CONTROLS UPON PROFILE RE-OPENING ALONG THE DUTCH 
SHOREFACE 

The JARKUS data set allows the observation of significant profile changes on the 
middle and lower shoreface (8 to 20 metres depth) of the Dutch coast over the Large Scale 
(>10 km; decades). Other process-based, geological and modelling approaches have 
previously suggested that changes on the shoreface do occur (Niedoroda el al., 1985; Stive 
et aL, 1990; Roelvink and Stive, 1990; Cowell et aL, 1995; Stive and De Vriend, 1995), 
resulting from tidally-dominated sediment transport at the most seaward boundary and 
wave-dominated sediment transport at the most shoreward. Field observations of this 
behaviour, however, remain concentrated at the Short Scale (Wright et aL, 1991; Wright 
et al., 1994; Wright 1993); Wright (1993) measured sediment transport upon the inner 
shelf off the US Mid Atlantic coast (depth < 30 metres) over monthly periods. Lack of 
data over the longer time periods has restricted knowledge of shoreface processes. The 
JARKUS data set used here can but aid towards an improved understanding of such 
processes. 

The shoreface is predominately friction-dominated. The lower shoreface is known 
as the transition zone between the friction- and geostrophic-dominated environments 
(Niedoroda et aL, 1985). Sediment is predominately agitated by waves and advected 
shorewards by bottom currents and wave asymmetry (Wright, 1993). The size and 
occurrence of the re-opening zone of the Dutch shoreface is seen to be time-dependant. 
This suggests that the observed behaviour is the result of slow steady change due to 
cumulative processes (such as regular storms) rather than infrequent, extreme events. 
Morphodynamic activity across the whole shoreface (i. e. no Dcj is increasing with time 
(r2= 0.96(95% significance) again suggesting that cumulative processes are important. Partial 



shoreface activity (i. e. that which occurs after Dc., ) rapidly increases with time until 20 
years when its occurrence reaches an almost constant value. If this behaviour continues to 
increase with time as the data suggests, then the entire Dutch shoreface is expected to be 
active within coastal management time scales (approximately 90 years). However, this 
assumes that the shoreface of the Holland coast is responding in an uniform manner to the 
forcing that is producing these changes. The spatial patterns suggest this assumption 
might not be valid and such a prediction is only indicative. 

In the majority of cases the re-opening can be associated with shoreface erosion 
(1965 to 1997). This agrees with sand budget results (Hinton, 1998; Ruig and Louisse, 
1991; Van Vessem and Stolk, 1990; Van Rijn, 1995) which show that a large amount of 
sand is lost from the shoreface due to onshore transport. Roelvink and Stive (1990) and 
Stive et al. (1990) have also argued that the loss of sediment from the shoreface (which 
ultimately results in shoreface steepening) results in the feeding of the active zone. This 
has profound implications for the sediment budget of the Holland coast, as already noted 
by Stive et al. (1990). 

The shoreface activity is so widespread in occurrence that it must be a natural 
feature of the shoreface evolution on this coast. However, it may be accentuated by 
anthropogenic influences. From the 32 years worth of data, shoreface morphodynamic 
activity is seen to be concentrated in two main areas along the Holland coast; krn 16 - 29; 
and krn 50 - 73. Additional, smaller, areas of shoreface activity exist; krn 42 - 46; km 79 - 
8 1; and; kin 95 - 96. The two main areas are located around the two largest anthropogenic 
influences on the Holland coast; the Petten sea wall (krn 20 - 26) and Umuiden harbour 

moles (kin 55156). In addition krn 16 - 29 is in the vicinity of Pettermer Polder (krn 15 - 
20), a natural submarine terrace at 10 metres depth. All of these can influence shorcface 
behaviour. The Petten sea wall acts as a headland, protruding seaward of the adjacent 
coastline. This could cause profile re-opening as the area of shoreface seaward of the sea 
dike steepens faster than that adjacent to it due to resistance of coastline erosion by the 
dike. The profiles krn 16 to 20 undergo significant depth changes on the shorcface due to 
the natural terrace, which undergoes migration in the direction of the dominant flood tidal 
current (north-easterly) (cf. Walstra et aL, 1998). The Umuiden harbour moles, which arc 
2.5 Ian in length, have influenced tidal excursion and so the accretionary/erosive 
behaviour of the shoreface for distances of tens of krn from the structure (Roclvink el aL, 
1998). 

An increase in the cross-shore extent of the partially active shoreface accompanies 
an increase in temporal period (r2 = 0.69(95% significance)). 

This is to be expected, as with the 
increase in occurrence of shoreface morphodynamic activity with time; a larger temporal 

period allows more time for change to occur. The formation of a re-opening zone is 

attributed to slow, cumulative processes i. e. storms. It has been shown that the long-term 

trend in the wind and wave climate along the Dutch coast is for; i) an increase in wind 
velocity and wave height; and ii) a change in wind direction from south-westerly to 
westerly (Hoozemans, 1990). Though this is for the period 1859 to 1982, projections 
indicate a continuation of these trends. If the wave climate continues to intensify, re- 
opening is likely along greater cross- and along-shore stretches of the Dutch coast. 



CONCLUSION 

Previous studies have observed depth of closure on the upper shoreface of the 
Holland coast (Hinton and Nicholls, 1998). Three types of shoreface activity have been 
defined; i) inactive (no morphodynamic activity is observed seaward of the shoreward 
depth of closure (Dc. ) at 5 to 6 in water depth); ii) partly active (the shoreface re-opens 
i. e. the profile must first exhibit a Dc, in order to re-open); and iii) fully active (this occurs 
across the whole shoreface i. e. the profile does not exhibit a shoreward closure and so is 
morphodynainically active across the total cross-shore distance). This study shows that 
shoreface activity is temporally- and spatially- dependant; 

" as the time period increases the number of profiles which have partially active 
shorefaces also increases up to 20 years when the number of profiles which re-open 
reach a constant value. It is hypothesised that the number will ultimately decrease to 
zero as the entire shoreface of the Holland coast becomes active; 

" as time increases the number of cases of fully active shorefaces also increases; 
" as the time period increases the cross-shore extent of the re-opening zone increases; 
" shoreface activity over 32 years is concentrated within two main areas (km 16 - 29; 

and kin 50 - 73) which are associated with; i) the Petten sea wall and Pettermer Poldcr; 
and ii) IJmuidcn harbour moles. (It is hypothesised that this human influence 
accentuates shoreface dynamics; and 

" significant depth changes on the shoreface can be attributed to the onshore loss of 
sediment from the shoreface. 

Projections of the observed behaviour suggest that all profiles along the Holland 
shoreface will be morphodynamically active within management time scales (ý 90 years). 
It is important that this is considered in coastal schemes which include the middle/lower 
shoreface; significant depth changes do occur seaward of the shoreward depth of closure 
at Large-Scales. 

It is suggested that the controls on shoreface morphodynamics and resulting 
shoreface activity are slow and continual, for example storms, rather than extreme and 
infrequent. In order to further understand shoreface dynamics the controlling processes 
need to be defined and quantified. Unfortunately no observations of shoreface processes 
over the long-term exist. Morphology-based studies such as this combined with process- 
based studies over the short-term (Wright, 1993) and modelling efforts (Roelvink and 
Stive, 1990) can be a means to this end. 
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