
Privacy Enforcement and Analysis for
Functional Active Objects

Florian Kammüller

Middlesex University London and TU Berlin

Data Privacy Management
Athens, 23. September 2010

Motivation and goals

• Language analysis with interactive theorem provers (HOL)
“Killer-Application” (Java, C)

• We develop new language ASPfun in Isabelle/HOL:
calculus of functional, active objects, distributed, plus
typing

=⇒ Explore language based security for distributed active
objects;

=⇒ Enforce and analyse privacy by flexible parameterization
(currying)

=⇒ Long-term goal: Language based assembly kit for
distributed security (LB-MAKS)

2

Overview

1 ASPfun

2 Example for ASPfun: Service Triangle

3 Privacy Enforcement and Analysis

3

ASPfun – Asynchronous Sequential Processes –
functional

• ProActive (Inria/ActiveEON): Java API for active objects

• New calculus ASPfun for ProActive
• Asynchronous communication with Futures

• Futures are promises to results of method calls
• Futures enable asynchronous communication

⇒ ASPfun avoids deadlocks when accessing futures

4

ASPfun

ASPfun: at a glance

5

ASPfun

ASPfun: at a glance

5

ASPfun

ASPfun: at a glance

5

Informal semantics of ASPfun

Local (ς-calculus) and parallel (configuration) semantics
• LOCAL: reduction→ς of ς-calculus.
• ACTIVE: Active(t) creates a new activity α[∅, t] for new

name α, empty request queue, and with t as active object.
• REQUEST: method call β.l creates new future fk in

future-list of activity β.
• REPLY: returns result, i.e. replaces future fk by referenced

result term s (possibly not fully evaluated).
• UPDATE-AO: activity update creates a copy of activity and

updates active object of copy – original remains the same
(immutable).

6

Language development in Isabelle/HOL

• Isabelle/HOL: interactive
theorem prover for HOL

• Generic theorem prover
• Formalization of arbitrary

object logics
• Interactive proof, tactic support
• Notation close to paper style

• We completely formalized syntax, semantics, and type
system of ASPfun, and proved language properties.

• Proof of type safety for ASPfun: preservation and progress
(deadlock freedom)

7

Example: service broker

Customer reserves a hotel using a broker

8

Example: service broker
Customer reserves a hotel using a broker

[find = ς(x,date)
hotel.room(date)]

[room = ς(x,date)
bookingref]

broker.find(date)

t

...

customer

broker

hotel

8

Example: service broker
Customer reserves a hotel using a broker

[find = ς(x,date)
hotel.room(date)]

[room = ς(x,date)
bookingref]

f1

t

...

customer

broker

hotel

hotel.room(date)

8

Example: service broker
Customer reserves a hotel using a broker

[find = ς(x,date)
hotel.room(date)]

[room = ς(x,date)
bookingref]

f1

t

...

customer

broker

hotel

f2

bookingref

8

Example: service broker
Customer reserves a hotel using a broker

[find = ς(x,date)
hotel.room(date)]

[room = ς(x,date)
bookingref]

f2

t

...

customer

broker

hotel

f2

bookingref

8

Example: service broker
Customer reserves a hotel using a broker

[find = ς(x,date)
hotel.room(date)]

[room = ς(x,date)
bookingref]

bookingref

t

...

customer

broker

hotel

f2

bookingref

8

Observations

• Service broker has a private domain of hotel addresses,
negotiates and only replies selected hotel or bookingref to
customer.

• Client receives bookingref using f2 without viewing details
of the hotel nor others from broker’s domain.

• It would be nice if the reply bookingref would also be
private to customer, but . . .

9

Example: service broker
. . . broker has also f2 and can thus get customer’s bookingref.

[find = ς(x,date)
hotel.room(date)]

[room = ς(x,date)
bookingref]

bookingref

t

...

customer

broker

hotel

f2

bookingref

10

Example: service broker
. . . broker has also f2 and can thus get customer’s bookingref.

[find = ς(x,date)
hotel.room(date)]

[room = ς(x,date)
bookingref]

bookingref

t

...

customer

broker

hotel

bookingref

bookingref

10

Function Replies for Privacy

• Idea: avoid communication of private data
=⇒ Use the reply of functions in ASPfun

• Example broker with private parameter date
• Client requests booking without disclosing parameter date
• Hotel returns function y → bookingref to client
• Client calculates his individual bookingref by supplying

parameter date afterwards

11

Private Hotel Reservation

[find = ς(x)hotel.room]

[room = ς(x)
 y → bookingref]

broker.find(date)

t

...

customer

broker

hotel

12

Private Hotel Reservation

[find = ς(x)hotel.room]

[room = ς(x)
 y → bookingref]

f1(date)

t

...

customer

broker

hotel
hotel.room

12

Private Hotel Reservation

[find = ς(x)hotel.room]

[room = ς(x)
 y → bookingref]

f1(date)

t

...

customer

broker

hotel
f2

y → bookingref

12

Private Hotel Reservation

[find = ς(x)hotel.room]

[room = ς(x)
 y → bookingref]

f2(date)

t

...

customer

broker

hotel
f2

y → bookingref

12

Stock Taking

• Two versions of broker example:
1. broker preserves his privacy (futures)
2. customer can keep his data private as well (currying)

• Private booking 2. uses currying, so is data secure?
=⇒ Implementation of ASPfun in Erlang supports currying
• Can we provide analysis support for privacy?

=⇒ (Language Based) Information Flow Control for ASPfun

13

Contribution

• Formal definitions for ASPfun of:
• Hiding of object labels ∆ in object o: o \∆
• Noninterference (formal definition of information flow

security) based on hiding

=⇒ Currying is a means for privacy enforcement
=⇒ Prove formally “No information flow to public” in curried

broker example using formal definitions
but Tedious analysis of all possible program evaluations

=⇒ Define type systems for efficient security verification

14

Conclusions

• ASPENDFG: Security analysis of distributed active objects
• Co-development of a new language ASPfun in Isabelle/HOL
• Isabelle/HOL: type safe and deadlock free
• Erlang interpreter prototype of ASPfun

• Broker example illustrates privacy enforcement
• Information flow control to analyse security: expensive

analysis (type systems)
• Outlook: LB-MAKS for ASPfun: compositionality of security

properties

15

Current papers
[1] L. Henrio, F. Kammüller. A Mechanized Model of the Theory of Objects.

Formal Methods for Open Object-Based Distributed Systems,
FMOODS’07. LNCS 4468, 2007.

[2] F. Kammüller. Formalizing Noninterference for Bytecode in Coq. Formal
Aspects of Computing: 20(3):259–275. Springer, 2008.

[3] L. Henrio and F. Kammüller. Functional Active Objects: Typing and
Formalisation. Foundations of Coordination Languages and System
Architectures, FOCLASA’09. Satellite to ICALP’09. ENTCS, 2009. Also
invited to Science of Computer Programming.

[4] F. Kammüller and R. Kammüller. Enhancing Privacy Implementations of
Database Enquiries. The Fourth International Conference on Internet
Monitoring and Protection. IEEE, 2009. Also Int. Journal on Advances
in Security 2(2 + 3), 2009.

[5] F. Kammüller. Using Functional Active Objects to Enforce Privacy. 5th
Conf. on Network Architectures and Information Systems Security.
Menton, 2010.

[6] A. Fleck and F. Kammüller. Implementing Privacy with Erlang Active
Objects Int. Conference on Internet Monitoring and Protection. 2010.

[7] F. Kammüller. Privacy Enforcement and Analysis for Functional Active
Objects. 5th International Workshop on Data Privacy Management,
DPM2010, co-located with ESORICS 2010.16

	ASPfun
	Example for ASPfun: Service Triangle
	Privacy Enforcement and Analysis

