
AI-based Malware Threat Prediction through
CNN-SVM Ensemble

Mufaro Shoniwa∗, Karel Veerabudren†, Mrinal Sharma‡
School of Science and Technology

Middlesex University Mauritius
Uniciti, Flic en Flac, Mauritius

Email: ∗ms3232@live.mdx.ac.uk, †k.veerabudren@mdx.ac.mu, ‡m.sharma@mdx.ac.mu

Abstract—The dynamic terrain of malware attacks presents
noteworthy obstacles to cyber security, necessitating for proactive
and resilient detection techniques. Conventional signature-based
methods struggle to keep pace with the new malware strains
and obfuscation strategies. A systematic literature review was
conducted to investigate existing methods for malware threat pre-
diction and detection using machine learning and deep learning
techniques. The review identified several promising approaches:
convolutional neural networks, graph neural networks, and
visual malware characterization achieving 95-99% accuracy on
malware classification and detection tasks. However, major gaps
were identified in the models’ generalizability across diverse
malware types, robustness against evasion attempts, lack of
interpretability due to the black-box nature of deep learning
models, and limited evaluation on real-world emerging threats
as opposed to controlled datasets. This project aimed to develop
an AI-based threat predictive algorithm that leverages the power
of deep learning and machine learning for effective malware de-
tection and prediction. The suggested method utilises an ensemble
approach that combines a convolutional neural network (CNN)
for pattern recognition in malware code structures with a support
vector machine (SVM) for robust decision boundaries in the
feature space, thereby enhancing generalization, interpretability
and adversarial resilience. By evaluating the model on the
MalImg dataset, the system achieved 92.37% accuracy. Although
the developed system exhibits optimal outcomes, several areas
could use more improvement. This project contributes to the
ongoing efforts in combating malware threats and highlights the
potential of combining deep learning and traditional machine
learning techniques for effective threat prediction and detection.

Index Terms—Malware, Machine Learning, Artificial Intelli-
gence, Malware Detection, Algorithm Development

I. INTRODUCTION

Malware, comprising worms, trojans, spyware, viruses,
backdoors, and other malicious software, represents one of
the most prevalent cyber threats facing governments, orga-
nizations, and individuals [1]. Research shows that in 2021,
15.45% of users worldwide experienced at least one malware
attack [2]. Malware developers use this software to compro-
mise the confidentiality, integrity, and availability of data and
systems [1]. The dynamic evolution of malware has driven the
development of anti-malware tools, with artificial intelligence
(AI) emerging as a powerful approach [3].

Conventional signature-based malware detection techniques
frequently struggle to keep pace with the speed at which
new malware variants and obfuscation strategies appear [4].

Existing threat prediction models like the Common Vulnerabil-
ity Scoring System use regression to quantify vulnerabilities,
but lack technical assessment of human factors and provide
static scores that fail to adapt as threats evolve [5]. Nearly
80% of current threat detection algorithms use individual
behavior models that examine system activities, or mixed
systems combining multiple approaches [6]. However, these
are susceptible to being exploited as attackers adapt to the
historical data and patterns they rely on.

Machine learning (ML) explores algorithms that can learn
from data for prediction [7], but its reliance on manual
feature extraction limits accuracy for malware recognition.
Conversely, deep learning (DL) employs artificial neural net-
works with multiple hidden layers [7], enabling training on raw
data without manual feature engineering. While deep learning
has made strides in preventing cyber threats, existing ML
and DL techniques still exhibit high false positive and false
negative rates, necessitating hybrid approaches [4].

To address these limitations, robust algorithms use malware
datasets containing real-world samples and behavioral data are
needed [8]. This paper proposes an AI-based threat predic-
tive algorithm that combines convolutional neural networks
(CNNs) and support vector machines (SVMs) in an ensemble
model to leverage the advantages of both DL and traditional
ML for malware detection [7]. By evaluating the ensemble on
the MalImg malware image dataset [8], the system aims to
achieve robust malware threat prediction and detection while
reducing false positives. This work contributes to continual
efforts against evolving malware threats by exploring the
synergistic integration of deep learning and ML algorithms.

The paper’s structure is: Section II provides a background
on the landscape of threat predictive algorithms and the
involvement of ML and AI. Then, in Section III, works related
to comparative analysis of malware detection and prediction
systems are provided, before discussing the methodology used
to achieve the purpose of this paper and compare the tech-
niques used in Section IV. Section V presents the evaluation
and results for the proposed solution and compared to the
existing approaches. The paper is concluded in Section VI.

II. BACKGROUND

Computer security has become a critical issue due to the
evolution and increasing magnitude of malware activity. The



journey began in 1971 with the Creeper program, which
infected ARPANET by displaying the message ”I’m the
creeper, catch me if you can!” [1] . Malware evolution can be
divided into five phases: the early phases with basic worms
and viruses, followed by the proliferation of Windows and
Mail Worms, and the rise of network worms driven by the
development of the Internet. From 2005 to 2016, rootkits
and ransomware emerged, significantly increasing malware
complexity and impact.

Currently, we are in a phase where specially crafted and
weaponized malware pose severe global threats. Stuxnet ex-
emplifies this new era, designed to sabotage Iran’s nuclear
program by exploiting up to four zero-day vulnerabilities in
the Windows OS [9]. This evolution underscores the escalat-
ing challenges in computer security, necessitating advanced
defense mechanisms to combat these sophisticated threats
through predictive algorithms and AI.

A. Machine Learning and Artificial Intelligence

Artifical Intelligence aims to mimic human intelligence
through techniques like Machine Learning, Natural Language
Processing, computer vision and others. Machine Learning
focuses on training algorithms on data to recognize patterns
and make predictions. By using key steps such as data pre-
processing, model training on test/train splits, evaluation of
results and performance optimization, predictions on malware
can be made [10].

Machine Learning encompasses supervised techniques like
classification and regression, unsupervised approaches for
clustering and association modelling, semi-supervised and re-
inforcement learning techniques. Common algorithms applied
include decision trees, random forests, naive Bayes, K-nearest
neighbors, support vector machines and neural networks. Ad-
ditionally, deep learning models based on neural network ar-
chitectures such as deep feedforward networks, convolutional
neural networks and recurrent neural networks show potential
for dynamic threat prediction [11].

While existing research has made advances in applying AI
and ML for malware threat prediction, challenges are faced
and gaps remain. Most techniques heavily rely on past attacks,
making generalization to new, emerging threats difficult [12].
There is a need for predictive models that can dynamically
adapt to unknown future threats. No single technique has
proved perfect, suggesting an ensemble-based approach inte-
grating multiple models may be required to holistically address
the issues [12]. This motivates further research into novel
architectures for accurate malware threat prediction.

B. Threat Predictive Algorithms

The landscape of malware threats has evolved significantly,
progressing through various phases from basic viruses to
sophisticated, weaponized malware causing major damage
[13]. Notorious examples such as Stuxnet, ILOVEYOU, Code
Red, Slammer, CryptoLocker and Emotet, which employed
advanced techniques like AI for automating the generation of
polymorphic code and machine learning for evading detection

by continuously mutating their behavior patterns, have high-
lighted the intense and destructive nature of modern malware.
This has underscored the critical need for prevention, detection
and mitigation approaches that can support similar AI and ML
capabilities to dynamically analyze and counter these rapidly
evolving malware threats.

Traditionally, cybersecurity efforts have focused more on
detecting attacks after damage has been done. However, there
is an increasing realization that a shift towards predictive
capabilities is necessary to forecast and mitigate threats be-
fore they can occur [14]. While subjective expert analysis
has been employed, the rapid evolution of threats demands
more dynamic, data-driven predictive models. Techniques like
rule mining, fuzzy algorithms, decision trees, support vector
machines and data mining classifiers have shown promise for
malware prediction [12]. The field of Artificial Intelligence has
provided powerful recognition capabilities for threat prediction
with the use of ML.

III. RELATED WORK

Studies have investigated applying machine learning and
deep learning techniques for malware prediction and detection.
From the systematic literature review, papers were selected
based on the criteria of proposing models that achieved a min-
imum accuracy of 90% for malware detection and prediction.

A. Research Overview

Hemalatha et al. [15] proposed a DenseNet-based deep
learning model that achieved an accuracy of 97.55% and an
F1-score of 97.46% on the MalImg dataset. The approach
utilized the DenseNet architecture, which supported dense
connections between layers to improve feature propagation
and reuse features more efficiently. DenseNets concatenate
the feature maps from previous layers as inputs to subsequent
layers, allowing for better flow of gradients during training and
enabling the reuse of features across the network. This dense
connectivity pattern helped mitigate the vanishing gradient
problem and encouraged feature reuse. This made DenseNets
efficient for learning discriminative representations from mal-
ware images.

Yi-Wei et al. [16] developed an intelligent multi-layered
framework that classifies and analyzes malware based on
the concept of modeling malware ”families”. The framework
consists of a data preprocessing layer using autoencoders,
a training layer combining machine learning algorithms (K-
nearest neighbors, support vector machines, decision trees,
random forests, extreme gradient boosting) with deep learning
via the backpropagation algorithm, and a testing layer with
activation functions to detect unknown malware.

Optimization techniques like stochastic gradient descent
were also employed. This approach achieved impressive
99.98% accuracy with XGBoost and 98.88% with backprop-
agation on detecting unknown malware. However, the work
was limited to evaluating only two datasets with no analysis
of false positives or negatives. Additionally, the extensive
computational requirements and lack of testing against evasion



attacks are limitations noted in other research [17].

Li et al. [18] introduced an approach utilizing graph con-
volutional networks (GCNs) for malware detection based on
application programming interface (API) call sequences. The
motivation stemmed from the diversity of malware making
feature extraction challenging. By extracting the API call se-
quence, generating a directed cycle graph based on the Markov
Chain, and designing a GCN classifier, they could effectively
capture malware characteristics achieving 98.32% accuracy.
A key strength was combining known malware features with
test data features to improve representation. However, studies
show graph-based methods can lack scalability and latency on
larger datasets [19].

Cridin1 [20] presented a comprehensive implementation
of a malware classification and detection system using con-
volutional neural networks (CNNs). This system converts
malware binaries into grayscale images, allowing the CNNs
to effectively learn and identify distinctive patterns associated
with various types of malware. The architecture of the CNNs
used includes multiple convolutional layers, pooling layers,
and fully connected layers, optimized through techniques such
as dropout and batch normalization to enhance generalization
and reduce overfitting. The implementation achieved notable
accuracy (94.67%) in distinguishing between malware and
benign samples, showcasing the potential of deep learning
in the cybersecurity domain. However, the evaluation of this
system was primarily based on the MalImg dataset, with
limited exploration of other datasets or real-world scenarios.
Additionally, it does not extensively address issues such as
model interpretability or robustness against adversarial attacks,
which are critical for practical deployment.

Mallik et al. [21] , ”Conrec: Malware Classification Using
Convolutional Recurrence,” presents a novel malware clas-
sification method combining convolutional neural networks
(CNNs) and recurrent neural networks (RNNs). This hybrid
approach utilizes CNNs to extract spatial features from mal-
ware images and RNNs to capture temporal dependencies,
achieving a notable classification accuracy of 93.9% across
various malware families. Despite its impressive performance,
the study’s evaluation was limited to specific datasets and did
not fully address computational efficiency. Nonetheless, Con-
rec significantly advances malware detection by integrating
spatial and sequential analysis, offering a robust framework
for identifying complex malware patterns.

Han et al. [22] proposed MalInsight, a multi-perspective
profiling framework extracting features across basic structures,
low-level behaviors (APIs, DLLs), and high-level behaviors
(file, registry, network operations). This systematic profiling
enabled capturing a comprehensive feature space. Applying
machine learning algorithms like decision trees and XGBoost,
MalInsight achieved 99.76% detection accuracy and 94.2%
family classification accuracy. The quantitative analysis pro-
vided insights into the importance of different profile views.
A limitation is the framework’s potential vulnerability to mal-

ware obfuscating monitoring logs used for behavior profiling.

B. Summary

The body of research demonstrates impressive malware de-
tection accuracy using advanced AI/ML techniques, common
limitations persist. These include the reliance on simulated
datasets rather than real-world dynamic malware [23], vulner-
ability to adversarial evasion attacks [24], lack of interpretabil-
ity in deep learning models [25], and unclear feasibility for
practical deployment against evolving threats [26]. An ensem-
ble system integrating the strengths of multiple approaches
may help bridge these gaps in generalization, robustness, and
transparency. By incorporating a broader spectrum of data
inputs and scenarios, an ensemble model can improve gen-
eralization. The ensemble approach can strengthen defenses
against adversarial attacks by creating multiple detection lay-
ers, thereby complicating evasion attempts. To tackle the
interpretability, the system combines straightforward models
with more sophisticated ones, striking a balance between com-
plexity and explainability. Recent studies suggest enhancing
adversarial robustness by adopting adversarial training [27]
and employing defensive distillation techniques [28] , which
have shown promise in improving model resilience against
sophisticated evasion tactics.

IV. PROPOSED SOLUTION

To address the widespread threat of malware attacks, an
ensemble model that combines convolutional neural networks
(CNNs) and support vector machines (SVMs) for malware
prediction and detection is proposed. This approach leverages
the pattern recognition abilities of CNNs and the feature
engineering capabilities of SVMs. The model utilizes the
MalImg: Malware Image Dataset [29], containing a diverse
range of malware samples in grayscale image format. This
dataset undergoes thorough pre-processing steps such as data
augmentation, resizing to 28x28 pixels, converting to tensors,
and normalization. The quality of the dataset is evaluated both
before and after pre-processing to confirm its appropriateness.
This dataset is favorable for building an image classification
model for effective malware detection, as demonstrated by
prior studies [30].

The CNN component of the ensemble analyzes the raw
visual patterns in the malware images, leveraging the proven
effectiveness of CNNs in recognizing discriminative textures
and gradients for classification tasks [31]. The SVM com-
ponent classifies malware based on feature vectors extracted
from the images, utilizing the ability of SVMs to find optimal
decision boundaries suitable for large malware domains [32].
Systematic testing is performed on different configurations of
both individual models and their ensemble. Hyperparameters
for the CNN (dropout rates, optimizers, learning rates) and
SVM (kernels, class weights, regularization) are fine-tuned.
The ensemble is evaluated with combination strategies and
weight distributions. Performance is measured using accuracy,
precision, recall, and F1-score metrics, offering a thorough
evaluation.



Fig. 1. Ensemble model architecture.

A. Implementation Components

1) Data Preprocessing: This module loads the malware
image dataset, applies data augmentation techniques (random
horizontal/vertical flips and rotations), resizes images to a
consistent 28x28 pixel resolution, converts them to tensors,
and normalizes the data. It splits the dataset into training and
testing sets.

2) CNN Model: Using PyTorch, this module includes con-
volutional layers with 16 and 32 filters of 3x3 size, ReLU
activations, max-pooling operations, and fully connected lay-
ers. The CNN is trained to learn visual patterns from the raw
malware image data.

3) SVM Model: Utilizing the scikit-learn library, this mod-
ule implements a Support Vector Classification model with a
linear kernel and balanced class weights to mitigate class im-
balance [33]. The SVM is trained on feature vectors extracted
from the malware images.

4) Evaluation and Visualization: Ensemble and Evaluation:
This module integrates the predictions from the CNN and
SVM models, using a combination of logical operations to
determine the final prediction based on the agreement or
disagreement between the two models. It calculates accuracy,
precision, recall, and F1-score at the family level. This module
generates a bar graph to visualize the distribution of predic-
tions across the malware families.

5) Main Model: The main script orchestrates the entire
process, loading data, training the models, making predictions,
and evaluating the performance.

V. EVALUATION AND RESULTS

The malware prediction system was evaluated using an
experimental approach on the MalImg malware image dataset.
The dataset was divided into stratified training (80%) and test
(20%) sets to maintain even distribution of different malware
families and types found in the overall data. This stratification
ensured the training set represented the family/type propor-
tions in the complete dataset, while the test set mirrored these
distributions to enable unbiased evaluation of generalization
capabilities across the diverse malware landscape. The models’
effectiveness was assessed using accuracy, precision, recall,

Algorithm 1 Data Loading and Processing

1: Function load data(data dir):
2: Define image transformations; Create dataset and get

malware families
3: Split data into training and testing sets; Create data

loaders
4: return train loader, test loader, malware families
5: Function find image files(directory):
6: Find image files recursively; return list of image file

paths
7: Function get malware families(data dir):
8: Get list of malware families from directory; return list

of family names =0

Algorithm 2 CNN Model

1: Class CNNModel:
2: Method init(num classes):
3: Initialize layers
4: Method forward(x): Perform forward pass
5: Method train(X train, y train, X val, y val, criterion,

optimizer, epochs=10):
6: Train the model
7: Method predict(X test): Make predictions =0

Algorithm 3 SVM Model

1: Class SVMModel:
2: Method init(): Initialize SVM classifier
3: Method train(Xtrain, ytrain): Train the SVM model
4: Method predict(Xtest): Predict labels for test data
5: Method evaluate(Xval, yval): Evaluate the SVM model

on validation data =0

Algorithm 4 Malware Threat Predictor

1: Import necessary libraries
2: Define main function
3: Load data from directory
4: Split training data into training and validation sets
5: Initialize models (CNN and SVM)
6: Train the CNN model
7: Preprocess and predict using CNN and SVM models
8: Evaluate predictions
9: Print evaluation results; Plot predictions

10: end =0

and F1-score metrics. Family-level evaluation examined how
well the system categorized samples into their respective mal-
ware families. Different configurations of the CNN and SVM
models were systematically evaluated through the following
experiments:

• CNN Experiments: Varying dropout rates, optimization
algorithms, and learning rates

• SVM Experiments: Testing different kernel functions,
class weight techniques for imbalanced data, and regu-
larization parameters

• Ensemble Experiments: Varying the ensemble strategy
(majority voting or weighted averaging) and weight con-
tributions of the CNN and SVM models

A. Results and Analysis



TABLE I
CNN MODEL RESULTS

Exp.
Conv. Kernel Dropout Optimizer Val. Acc. Test Acc.

Layers Size Rate (LR) (%) (%)
Baseline Conv1 (3, 16), Conv2 (16, 32) 3x3 0.25 Adam (0.001) 90.83 86.68
Exp. 1 Conv1 (3, 16), Conv2 (16, 32) 3x3 0.25 Adam (0.0005) 89.60 73.38
Exp. 2 Conv1 (3, 16), Conv2 (16, 32) 3x3 0.3 Adam (0.001) 92.00 79.46
Exp. 3 Conv1 (3, 16), Conv2 (16, 32) 3x3 0.4 Adam (0.001) 91.77 76.73
Exp. 4 Conv1 (3, 16), Conv2 (16, 32) 3x3 0.4 Adam (0.001) 91.77 76.73
Exp. 5 Conv1 (3, 16), Conv2 (16, 32) 3x3 0.2 SGD (0.01) 60.79 71.39
Exp. 6 Conv1 (3, 16), Conv2 (16, 32) 3x3 0.3 SGD (0.01) 60.54 67.71
Exp. 7 Conv1 (3, 16), Conv2 (16, 32) 3x3 0.4 SGD (0.005) 48.64 52.70
Exp. 8 Conv1 (3, 16), Conv2 (16, 32) 3x3 0.2 RMSProp (0.001) 92.10 78.99
Exp. 9 Conv1 (3, 16), Conv2 (16, 32) 3x3 0.3 RMSprop (0.0005) 81.40 72.25
Exp. 10 Conv1 (3, 16), Conv2 (16, 32) 3x3 0.4 RMSprop (0.001) 91.99 78.71

1) CNN Experiments: The baseline CNN configuration
with Conv1(3,16), Conv2(16,32) filters, 3x3 kernel, stride
1, 0.25 dropout, and Adam optimizer (LR=0.001) achieved
90.83% validation and 86.68% test accuracy (Table I). In-
creasing the dropout rate to 0.3 or using RMSprop slightly
improved validation accuracy but not test accuracy.

TABLE II
SVM EXPERIMENT RESULTS

Exp. Kernel Class Weight C (Reg.) Val. Acc. Test Acc.
Baseline linear balanced (Default) 90.10 81.42
Exp. 1 rbf balanced (Default) 82.81 73.35
Exp. 2 poly balanced (Default) 73.44 61.89
Exp. 3 linear None (Default) 93.24 85.81
Exp. 4 linear balanced 0.1 87.63 76.25
Exp. 5 linear balanced 1.0 90.97 83.16
Exp. 6 linear balanced 10.0 90.90 88.37
Exp. 7 rbf None (Default) 90.10 69.40
Exp. 8 rbf balanced 0.1 43.55 40.00
Exp. 9 rbf balanced 1.0 83.14 61.94
Exp. 10 rbf balanced 10.0 90.57 67.57
Exp. 11 poly None (Default) 82.81 59.11
Exp. 12 poly balanced 0.1 69.77 51.65
Exp. 13 poly balanced 1.0 56.45 23.14
Exp. 14 poly balanced 10.0 87.49 68.25

2) SVM Model Results: The linear kernel with balanced
class weights and C=10.0 achieved the highest 88.37% test ac-
curacy (Table II). The RBF and polynomial kernels performed
worse than the linear kernel on this dataset.

TABLE III
ENSEMBLE EXPERIMENT RESULTS

Exp. Ensemble CNN SVM Acc. Precision Recall F1-Score
Strategy Weight Weight

Baseline Majority Voting 0.5 0.5 88.56 86.49 77.63 77.25
Exp. 1 Weighted Avg. 0.6 0.4 81.96 75.03 77.13 73.82
Exp. 2 Weighted Avg. 0.7 0.3 88.08 75.38 76.51 74.00
Exp. 3 Majority Voting 0.6 0.4 77.45 82.76 72.06 71.57
Exp. 4 Weighted Avg. 0.8 0.2 89.26 81.30 79.27 77.09
Exp. 5 Weighted Avg. 0.9 0.1 92.37 86.42 84.83 84.59
Exp. 6 Majority Voting 0.7 0.3 88.18 86.69 80.78 80.22
Exp. 7 Weighted Avg. 0.4 0.6 79.69 72.41 71.96 69.14
Exp. 8 Majority Voting 0.8 0.2 86.30 86.86 78.57 79.01
Exp. 9 Weighted Avg. 0.3 0.7 79.54 75.88 72.56 72.00
Exp. 10 Majority Voting 0.9 0.1 80.75 81.33 74.90 73.92

3) Ensemble Model Results: The weighted average ensem-
ble with 0.9 weight for CNN and 0.1 for SVM achieved the
best 92.37% accuracy and balanced 84.83% F1-score (Table
III). Majority voting with equal weights had high but slightly
lower metrics.

TABLE IV
COMPARISON OF APPROACHES

Approach Accuracy Precision Recall F1-Score
DenseNet-Based DL Model [15] 97.55% 97.43% 97.50% 97.46%

XGBoost ML Algorithm [16] 99.98% 99.94% 99.94% -%
GCN Algorithm [18] 94.67% 94.94% 93.21% 95.05%
CNN Algorithm [20] 94.67% 94.94% 93.21% 95.05%

Conv. Recurrence Algorithm [21] 93.92% 98.90% 76.02% 85.98%
Developed CNN-SVM Ensemble 92.37% 84.42% 84.69% 84.83%

4) Comparison to prior work: As summarized in Table
IV, the developed CNN-SVM ensemble achieved competitive
92.37% accuracy and 84.83% F1-score on the MalImg dataset
compared to methods. The discrepancies in the performance
metrics can be attributed to the characteristics of the datasets
used compared to the MalImg dataset, the model architec-
ture differences and the evaluation methods. The ensemble
method’s class imbalance handling has resulted in balanced
precision and recall scores despite the overall percentage
appearing lower. Such factors show the complexity of malware
detection model comparison across each of the studies. The
CNN-SVM ensemble shows promising results by combining
deep representation learning and robust decision boundaries.

B. Findings

Key challenges faced during development included selecting
a representative and manageable dataset and working with
malware images that caused preprocessing issues. The MalImg
dataset has limitations in quantity and lacks coverage of the
latest malware strains compared to datasets used in production
environments [33]. Working with the image representations
of malware binaries presented challenges in ensuring com-
patibility with the model architectures. The model’s image-
based, therefore requires malware format conversions. The
model lacks real-time monitoring capabilities as there is no
network connection due to the chosen dataset and limited
resources [34]. The model may not adapt well to novel
malware types and contains black-box elements that hinder
decision exploration.

Based on these limitations and challenges, future work could
expand the approach to incorporate multiple modalities such as
static features and visual patterns for a comprehensive model
[35]. Developing strategies for continuous learning and adap-
tation to emerging malware trends could enable the system
to stay ahead of the evolving threat landscape. Investigating
the applicability of the CNN-SVM ensemble approach to
other cybersecurity domains like network intrusion detection
or offline analysis could broaden its impacT. Creating a file-
to-image converter component could enable range expansion
of analyzable file types.

VI. CONCLUSION AND FUTURE WORK

This study aimed to create a reliable and accurate malware
prediction system by using an ensemble technique combining
convolutional neural networks (CNNs) and support vector ma-
chines (SVMs). The CNN-SVM ensemble model was imple-
mented and evaluated on the MalImg malware image dataset,
achieving competitive performance with 92.37% accuracy,
84.42% precision, 84.69% recall, and 84.59% F1-score.



The model demonstrated strong resilience to class imbal-
ances; a major challenge in malware classification tasks, by
utilizing the robust decision boundary construction of SVMs
and the visual pattern recognition capabilities of CNNs. This
emphasizes how deep learning for discriminative representa-
tion learning and classical machine learning techniques for
robust decision surfaces can be combined to enhance malware
detection [31]. Although the study shows a proof-of-concept,
the theoretical nature of the approach is evident in its lack
of real-world applicability. This conceptual groundwork illus-
trates a further gap for real-word testing and evaluation of
current threats to bridge the gap between such models and
deployable solutions.

By addressing limitations, challenges and pursuing sug-
gested future research directions, the developed malware pre-
diction system could potentially be further improved, opti-
mized, and deployed as a useful tool in the ongoing fight
against constantly changing malware threats. This would better
meet the goals of offering a reliable, accurate, and flexible
solution for malware detection and prediction.

REFERENCES

[1] T. Rains, ”Cybersecurity Threats, Malware Trends, and Strategies: Learn
to mitigate exploits, malware, phishing, and other social engineering
attacks,” Packt Publishing Ltd., 2020.

[2] D. Farhat and M.S. Awan, ”A brief survey on ransomware with the
perspective of internet security threat reports,” in 2021 9th International
Symposium on Digital Forensics and Security (ISDFS), June 2021, pp.
1-6.

[3] C. Zhang and Y. Lu, ”Study on artificial intelligence: The state of the
art and future prospects,” Journal of Industrial Information Integration,
vol. 23, p. 100224, 2021.

[4] N. Idika and A.P. Mathur, ”A survey of malware detection techniques,”
Purdue University, vol. 48, no. 2, pp. 32-46, 2007.

[5] V. Jaganathan, P. Cherurveettil, and P.M. Sivashanmugam, ”Using a
prediction model to manage cyber security threats,” The Scientific World
Journal, 2015.

[6] I.A. Gheyas and A.E. Abdallah, ”Detection and prediction of insider
threats to cyber security: a systematic literature review and meta-
analysis,” Big Data Analytics, vol. 1, no. 1, p. 6, 2016.

[7] P. Ongsulee, ”Artificial intelligence, machine learning and deep learn-
ing,” in 2017 15th International Conference on ICT and Knowledge
Engineering (ICT&KE), Nov. 2017, pp. 1-6. IEEE.

[8] D. Gavriluţ, M. Cimpoeşu, D. Anton, and L. Ciortuz, ”Malware detection
using machine learning,” in 2009 International Multiconference on
Computer Science and Information Technology, Oct. 2009, pp. 735-741.
IEEE.

[9] A. Thabet, ”Stuxnet malware analysis paper,” in Code Project, 2011.
[10] R.Y. Choi, A.S. Coyner, J. Kalpathy-Cramer, M.F. Chiang, and J.P.

Campbell, ”Introduction to machine learning, neural networks, and deep
learning,” Translational Vision Science & Technology, vol. 9, no. 2, pp.
14-14, 2020.

[11] S. Yuan and X. Wu, ”Deep learning for insider threat detection: Review,
challenges and opportunities,” Computers & Security, vol. 104, p.
102221, 2021.

[12] M.N.R. Mahrin, S. Chuprat, A. Subbarao, A.F.M. Ariffin, M.Z.A. Talib,
M.Z.A. Darus, and F.A.A. Aziz, ”Malware prediction algorithm: System-
atic review,” Journal of Theoretical & Applied Information Technology,
vol. 96, no. 14, 2018.

[13] M.N. Alenezi, H. Alabdulrazzaq, A.A. Alshaher, and M.M. Alkharang,
”Evolution of malware threats and techniques: A review,” International
Journal of Communication Networks and Information Security, vol. 12,
no. 3, pp. 326-337, 2020.

[14] M. Husák, J. Komárková, E. Bou-Harb, and P. Čeleda, ”Survey of
attack projection, prediction, and forecasting in cyber security,” IEEE
Communications Surveys & Tutorials, vol. 21, no. 1, pp. 640-660, 2018.

[15] J. Hemalatha, S. A. Roseline, S. Geetha, S. Kadry, and R. Damaševičius,
”An efficient densenet-based deep learning model for malware detec-
tion,” Entropy, vol. 23, no. 3, p. 344, 2021.

[16] Y.W. Ma, J.L. Chen, W.H. Kuo, and Y.C. Chen, ”AI@nti-Malware: An
intelligent framework for defending against malware attacks,” Journal
of Information Security and Applications, vol. 65, p. 103092, 2022.

[17] D. Gibert, C. Mateu, and J. Planes, ”The rise of machine learning for
detection and classification of malware: Research developments, trends
and challenges,” Journal of Network and Computer Applications, vol.
153, p. 102526, 2020.

[18] S. Li, Q. Zhou, R. Zhou, and Q. Lv, ”Intelligent malware detection based
on graph convolutional network,” The Journal of Supercomputing, vol.
78, no. 3, pp. 4182-4198, 2022.

[19] B. Kolosnjaji, A. Zarras, G. Webster, and C. Eckert, ”Deep learning for
classification of malware system call sequences,” in AI 2016: Advances
in Artificial Intelligence: 29th Australasian Joint Conference, Hobart,
TAS, Australia, December 5-8, 2016, Proceedings, vol. 29, pp. 137-149,
Springer International Publishing, 2016.

[20] cridin1, ”Cridin1/malware-classification-CNN: This github repository
contains an implementation of a malware classification/detection system
using convolutional neural networks (cnns),” GitHub.

[21] A. Mallik, A. Khetarpal, and S. Kumar, ”ConRec: malware classification
using convolutional recurrence,” Journal of Computer Virology and
Hacking Techniques, vol. 18, no. 4, pp. 297-313, 2022.

[22] W. Han, J. Xue, Y. Wang, Z. Liu, and Z. Kong, ”MalInsight: A
systematic profiling based malware detection framework,” Journal of
Network and Computer Applications, vol. 125, pp. 236-250, 2019.

[23] K. Allix et al., ”A Forensic Analysis of Android Malware–How is
Malware Written and How it Could Be Detected?,” in Proc. 2014
IEEE 38th Annual Computer Software and Applications Conference,
Jul. 2014, pp. 384-393.

[24] M. Shahpasand, L. Hamey, D. Vatsalan, and M. Xue, ”Adversarial at-
tacks on mobile malware detection,” in Proc. 2019 IEEE 1st International
Workshop on Artificial Intelligence for Mobile (AI4Mobile), Feb. 2019,
pp. 17-20.

[25] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, and
S. Venkatraman, ”Robust intelligent malware detection using deep
learning,” IEEE Access, vol. 7, pp. 46717-46738, 2019.

[26] B. Biggio and F. Roli, ”Wild patterns: Ten years after the rise of
adversarial machine learning,” in Proc. 2018 ACM SIGSAC Conference
on Computer and Communications Security, Oct. 2018, pp. 2154-2156.

[27] A. Lamb, V. Verma, J. Kannala, and Y. Bengio, ”Interpolated Adversarial
Training: Achieving Robust Neural Networks Without Sacrificing Too
Much Accuracy,” in Proceedings of the 12th ACM Workshop on
Artificial Intelligence and Security, 2019, pp. 95-103.

[28] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, ”Distillation as
a Defense to Adversarial Perturbations Against Deep Neural Networks,”
in 2016 IEEE Symposium on Security and Privacy (SP), IEEE, 2016,
pp. 582-597.

[29] J. Moon, S. Kim, J. Song, and K. Kim, ”Study on Machine Learning
Techniques for Malware Classification and Detection,” KSII Transac-
tions on Internet & Information Systems, vol. 15, no. 12, 2021.

[30] G. P. Zhang, ”Neural networks for classification: a survey,” IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), vol. 30, no. 4, pp. 451-462, 2000.

[31] N. Stakhanova, S. Basu, and J. Wong, ”A taxonomy of intrusion response
systems,” International Journal of Information and Computer Security,
vol. 1, no. 1-2, pp. 169-184, 2007.

[32] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
”SMOTE: synthetic minority over-sampling technique,” Journal of Ar-
tificial Intelligence Research, vol. 16, pp. 321-357, 2002.

[33] R. Ali, A. Ali, F. Iqbal, M. Hussain, and F. Ullah, ”Deep learning
methods for malware and intrusion detection: A systematic literature
review,” Security and Communication Networks, 2022.

[34] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, ”Are your training
datasets yet relevant? an investigation into the importance of timeline in
machine learning-based malware detection,” in International Symposium
on Engineering Secure Software and Systems, Mar. 2015, pp. 51-67,
Cham: Springer International Publishing.

[35] N. Udayakumar, V. J. Saglani, A. V. Cupta, and T. Subbulakshmi,
”Malware classification using machine learning algorithms,” in 2018
2nd International Conference on Trends in Electronics and Informatics
(ICOEI), May 2018, pp. 1-9. IEEE.


