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Trust and trustworthiness form the basis for continued social and economic interactions, and they are also
fundamental for cooperation, fairness, honesty, and indeed for many other forms of prosocial and moral behav-
ior. However, trust entails risks, and building a trustworthy reputation requires effort. So how did trust and
trustworthiness evolve, and under which conditions do they thrive? To find answers, we operationalize trust and
trustworthiness using the trust game with the trustor’s investment and the trustee’s return of the investment as
the two key parameters. We study this game on different networks, including the complete network, random and
scale-free networks, and in the well-mixed limit. We show that in all but one case the network structure has little
effect on the evolution of trust and trustworthiness. Specifically, for well-mixed populations, lattices, random
and scale-free networks, we find that trust never evolves, while trustworthiness evolves with some probability
depending on the game parameters and the updating dynamics. Only for the scale-free network with degree non-
normalized dynamics, we find parameter values for which trust evolves but trustworthiness does not, as well as
values for which both trust and trustworthiness evolve. We conclude with a discussion about mechanisms that
could lead to the evolution of trust and outline directions for future work.

I. INTRODUCTION

While we live in a time where the average individual is
much healthier and safer than ever before [1, 2], we are also
daunted by several political conflicts, health threats, and ex-
treme poverty in many parts of the world. New innovations
and technological breakthroughs often seem to promise a bet-
ter tomorrow, but the privileges remain restricted to only a tiny
fraction of the population. While the issues of equality and
egalitarianism are certainly multi-faceted, it is clear that so-
lutions would require us to act prosocially, giving up parts of
our personal benefits to help others. But the caveat is that be-
having prosocially is costly and not optimal for the individual,
and thus will not present itself unless additional mechanisms
are at play. No wonder, thus, that understanding the mecha-
nisms that favor the evolution of prosocial behavior has been
declared one of the greatest challenges of the 21st century, and
that scholars from disciplines as diverse as sociology, psychol-
ogy, anthropology, economics, biology, and physics have tried
to solve the puzzle [3–12].

An exciting development during the past two decades has
been the coming of age of network science [13–16], which
combined with other methods of statistical physics [17–19],
has reached a level of maturity that allows us to tackle some
of the greatest challenges of our time. The study of social
dynamics [20], traffic [21], crime [22], epidemic processes
[23], climate inaction [24], and vaccination [25] are all ex-
amples of this exciting development, which can be put under
the umbrella of social physics [26]. Prosocial behavior is no
exception either and, in particular, the Monte Carlo method
for the simulation of evolutionary games and related models
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on networks has been used prolifically to shed light on the
mechanism that may promote it. Most previous works have
focussed on three kinds of prosocial behavior, namely coop-
eration [27–36], strategic fairness [37–44], and altruistic pun-
ishment [45–47].

However, recent empirical research in experimental eco-
nomics and psychology suggests that two of these behaviors –
cooperation and altruistic punishment – can be seen as a spe-
cial form of a more general class of behavior, namely moral
behavior [48–53]. This observation opens up the possibility of
using the same methods that have been used to study the evo-
lution of cooperation and altruistic punishment to effectively
study also the evolution of other types of moral behavior [54].
Following this idea, recent work has explored the evolution
of lying and found a number of intriguing conditions for the
evolution of truth-telling [55, 56]. Therefore, motivated by
the success of this new line of work, we here apply the same
methods to study the evolution of trust and trustworthiness.

While the precise definition of trust and trustworthiness de-
pends upon the specific context in which it is being used, a
general feature that it exhibits is the willingness of an agent –
the trustor – to act in such a way that she is placed in a vul-
nerable situation with respect to another agent – the trustee,
especially when the trustor has no direct ability to monitor
the trustee’s actions. Thus, trust invariably involves putting
oneself in a vulnerable situation in the hope of high returns.
High returns that, in the absence of any mechanism to enforce
the reciprocation of the trust, might never come, because the
trustee can maximize his gain by simply walking away with
the profit obtained by betraying the trustor. Knowing this,
the trustor should not trust in the first place. Therefore, both
trust and trustworthiness go against the assumptions of narrow
self-interest. They in fact correlate with several measures of
morality, including cooperation and altruism [57]. Moreover,
trustworthiness, in the form of ‘returning favors’, has been re-
cently found to be a universal moral rule across 60 societies
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around the world [58]. Yet, despite the fact that both trust
and trustworthiness go against the assumption of narrow self-
interest, we see them in action everyday – from travelers pre-
ferring to look for accommodation through Airbnb rather than
spending money on booking a hotel room, to computers in a
network deciding to receive information from a source outside
of their network. Trust and trustworthiness are ubiquitous in
our society, which suggests that, in reality, some mechanisms
that favor the evolution of trust and trustworthiness must be at
play. The question is which are these mechanisms?

Real interactions do not happen in a vacuum, nor are they
random. They are inherently limited to a subset of the popu-
lation. Some interactions are more frequent than others, and
some individuals have many more contacts than others. We
are far more likely to interact with friends, family members,
and co-workers, than we are with random people. The very
fact that interactions are structured has been shown to promote
cooperation, along the logic of network reciprocity: coopera-
tors can form clusters to protect themselves from the invasion
of defectors [8]. Similarly, it has been shown that spatial struc-
ture favors the evolution of fairness and altruistic punishment
[38, 45], as well as the evolution of truth-telling, at least in
some cases [56]. In this paper, we take inspiration from this
line of research and we ask whether network reciprocity pro-
motes also the evolution of trust and trustworthiness.

The plan of the paper is as follows: in Section II A, we
will describe the trust game and give a brief overview of the
research attention that it has attracted since its introduction.
In Section II B, we will provide a description of the Monte
Carlo method used to numerically evaluate the stationary state
frequencies of different strategies in the trust game, played
in well-mixed as well as in networked populations. We will
present our results in Section III, and we will end with a sum-
mary and outlook for future research in Section IV.

II. METHODS

A. The trust game

Berg, Dickhaut and McCabe [59] proposed the trust game
in 1995 as an elegant way to measure trust and trustworthiness
between two agents. Player A (the trustor) is initially given
some amount of money, normalized to 1. In the first step of the
game, player A can choose to trust player B (the trustee) and
transfer a proportion x ∈ [0, 1] of her endowment to player
B. A transfer of x = 0 corresponds to player A choosing to
not trust B and to walk away with her money; in this case,
the game ends. Instead, if A transfers some amount x > 0
to B, the amount of money transferred to player B is tripled
(i.e. B gets 3x units of money while A is left with 1 − x)
and the game continues. In the second step, player B chooses
a fraction r ∈ [0, 1] of the money he possesses to return to
player A. This marks the end of the game. Therefore, the final
payoffs of player A and player B are, respectively, 1−x+3xr
and 3x(1− r) units of money.

In a one-shot anonymous trust game, it is clear that a self-
interested player B has no incentive to return any amount of

money to player A. This backward induction argument sug-
gests that the best strategy for player A would be to not trust
player B. However, experimental research has repeatedly re-
ported that a significant proportion of people choose to trans-
fer a non-zero amount of money to their co-player and a sub-
stantial amount of money is also returned [59–65]. Impor-
tantly, this behaviour cannot be explained by lack of compre-
hension [66] or risk aversion [67–70]. Specifically, one ob-
serves trust and trustworthiness also among experimental par-
ticipants who have a clear understanding of what their payoff-
maximising strategy is. And trust does not seem to be driven
by risk seeking: many individuals who choose to trust in the
trust game are averse to taking the risk in an equivalent lottery.
In summary, the empirical literature on the trust game pro-
vides a clear indication that, while trust and trustworthiness
go against monetary payoff maximisation, they often emerge.
In order to better comprehend the origin and evolution of trust
and trustworthiness, experimental studies need to be comple-
mented with extensive numerical simulations which can help
us shed light on when and how trust can be selected in a pop-
ulation and what role does the structure of the population has
on its evolution.

At this stage, one might wonder whether trust and trustwor-
thiness are fundamentally different from other forms of social
behaviour that have been studied with methods of statistical
physics. The answer is positive. This is easy to see in the
case of the ultimatum game (used to measure strategic fair-
ness and altruistic punishment) and the sender-receiver game
or other deception games (used to measure lying), because
they, compared to the trust game, have a completely different
payoff structure and set of Nash equilibria. If anything, the
trust game looks similar to the prisoner’s dilemma, the sym-
metric game in which both players have to decide whether to
cooperate or defect: cooperation means paying a cost to give
a greater benefit to the other player; defecting means doing
nothing. Although the trust game and the prisoner’s dilemma
might superficially look similar, they are actually fundamen-
tally different. Not only the trust game differs from the pris-
oner’s dilemma on the technical fact that the latter is symmet-
ric, while the former is not, but, more crucially, it fundamen-
tally differs in the evolutionary patterns that it generates, as
we will now show.

B. The Monte Carlo method

In the trust game, the amount x that player A transfers
to player B is considered as an individual measure of trust,
whereas the fraction r that player B returns to player A is
taken as a measure of trustworthiness. While in theory any
amount of trust x ∈ [0, 1] and any amount of trustworthiness
r ∈ [0, 1] can be possible, in practice, people in the position of
player A often have a binary decision to make, whether to trust
or not to trust people in the position of Player B; similarly,
people in the position of player B often have a binary deci-
sion to make, whether to return a previously agreed amount of
money or not [71, 72]. We follow this line of work and we also
consider a binary version of the trust game, in which player A



3

can either choose to trust (T) or not trust (N), whereas player
B can either reciprocate (R) player A’s trust or betray (B).
This yields a payoff bimatrix:

T N
R 1 + (3r − 1)x, 3(1− r)x 1, 0

B 1− x, 3x 1, 0

A particularly interesting case is when x = 1 and r = 0.5,
corresponding to the case in which the trustor invests all her
money which is normalized to 1 and the amount that the
trustee can return corresponds to an equal split between them.

We carried out simulations of the trust game for well mixed
populations as well as several network structures (hexagonal,
square, and triangular lattices, as well as random networks and
scale-free networks) using the Monte Carlo (MC) method. For
a well-mixed population with N players, the following are the
elementary steps: The simulation starts by randomly distribut-
ing the four strategies (T,R), (T,B), (N,R) and (N,B) among N
agents. Two players P1 and P2 are then randomly picked and
they play the trust game with four randomly chosen neighbors.
We note that since these players are picked randomly without
restricting the selection to nearest neighbors or linked players
in a network, the procedure thus yields well-mixed conditions.
In each of the eight games, the roles of players are assigned
randomly. P1 and P2 collect payoffs ΠP1

and ΠP2
, respec-

tively. Then Player P2 copies the strategy of player P1 with
probability

w = 1/(1 + exp(ΠP2
−ΠP1

)/K) (1)

where we choose K = 0.1. This step is repeated N times,
which by definition completes one full MC step [73]. During
the repetition of many full MC steps, every player will thus
(since N is also the population size) have a chance once, on
average, to change its strategy for each full Monte Carlo step
that is made. Indeed, in our simulations, we have performed
the MC method for up to 10000 full MC steps. This com-
pletes one realization. We conducted 5000 realizations, using
randomized initial conditions and the evolution described in
the Results section is obtained by averaging over these real-
izations.

For structured populations, we introduce the constraint in
the above mentioned elementary steps that P1 and P2 must
necessarily be neighbours, or directly linked players in a net-
work. In the case of heterogeneous networks, we use two dif-
ferent imitation rules – the normalized and the unnormalized
replicator dynamics. In the unnormalized dynamics, the prob-
ability with which P2 replicates the strategy of P1 is as before:

w = 1/(1 + exp(ΠP2 −ΠP1)/K). (2)

The normalized replication probability differs from the unnor-
malized one in that payoffs are scaled down by the degree of
the players, that is,

w = 1/(1 + exp(Π′P2
−Π′P1

)/K), (3)

where Π′Pi
=

ΠPi

ki
and ki is the degree of player i. In prac-

tice, this means that, in the normalized replicator dynamics,
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FIG. 1: The stationary density of the four strategies plotted on a
20× 20 grid of (x, r) values with both x and r ranging from 0 to 1.
Well-mixed population.

players take into account their degree and the degree of other
players; whereas, this does not happen in the unnormalized
dynamics. Both dynamics are useful in their domain of ap-
plicability. The normalized replicator dynamics is useful in
situations in which the degrees are visible, and the individu-
als make a fair comparison with their neighbours – this often
happens online, as social media allows people to visualize the
connections of an agent with other agents. The unnormal-
ized dynamics is useful in situations in which the imitation of
strategies happens on the basis of how well the other player is
doing, without taking into account the number of connections
they have – for example, people trying to mimic the habits
of successful people without accounting for the number of re-
sources that they have at their disposal compared to the person
they are copying.

III. RESULTS

A. Well-mixed populations

We first report the final densities of the four strategies (T,R),
(T,B), (N,R) and (N,B), as a function of the parameters x and
r, in a well-mixed population consisting of 500 agents. Figure
1 highlights that, in this case, trust does not evolve, as both the
strategies (T,R) and (T,B) appear with density 0 at the steady
state, irrespective of the parameters x and r. By contrast, the
final density of trustworthiness highly depends on the parame-
ter r, while being insensitive to the parameter x. Specifically,
for each x, the prevalence of trustworthiness is about 50% for
very small values of r, and then monotonically decreases as r
increases.

In order to gain a better understanding of the evolution of
trust and trustworthiness, we also conducted several simula-
tions to study the time evolution of the frequencies. We do
not report the outputs in the figures, as they are all very sim-
ilar and certainly not surprising. For example, for x = 1 and
r = 0.5, consistent with Figure 1, we found that the frequen-
cies of the strategies (T,R) and (T,B) go to zero after about 40
MC steps. On the other hand, the strategy (N,B) survives with
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FIG. 2: The stationary density of the four strategies plotted on a
20× 20 grid of (x, r) values with both x and r ranging from 0 to 1.
Square lattice.

very high frequency, around 85%. The remaining frequency,
about 15%, is taken by the remaining strategy, (N,R).

B. Lattices

To understand the role of the spatial structure on the evolu-
tion of trust and trustworthiness, we simulate the trust game
on different lattices. Figure 2 reports the stationary densities
of the four strategies as a function of x and r on the square
lattice. It is immediately evident that the trends in the evolu-
tion of different strategies remain the same, compared to the
well-mixed populations (Figure 1). We obtain very similar
trends in the case of the triangular and the hexagonal lattices
(figures reported in the supplementary information) with the
results differing only by a small numerical value.

In order to provide further evidence that the lattice struc-
ture has very little effect on the evolution of trust and trust-
worthiness, we also conducted several simulations to study
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FIG. 3: Snapshots of the evolution of strategies in the trust game
played on a 40× 40 square lattice. In most realizations of the game,
the entire system enters an absorbing state. However, in a few real-
izations, (N,B) and (N,R) both survive for long time. We have picked
one such realization for representation purposes.
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20× 20 grid of (x, r) values with both x and r ranging from 0 to 1.
Scale free network (unnormalized replicator dynamics).

the time evolution of the four strategies in the three lattices
(figures not reported in the paper). Consistent with the results
mentioned above, we found that the time evolution in the lat-
tice is very similar to the well-mixed case. For example, for
x = 1 and r = 0.5, we found that the frequencies of (T,R) and
(T,B) quickly go to zero, whereas the final density of (N,R) is
slightly larger that it was in well-mixed populations, but the
numerical difference is very small (around 5%); consequently,
the final density of (N,B) is slightly smaller in the lattices than
it was in well-mixed populations.

To better understand the spatial evolution of the strategies,
Figure 3 presents snapshots of the game on a square lattice
at late times. In most realizations of the game, the whole
population adopts a single strategy and the system enters an
absorbing state. However, in a few realizations, (N,B) and
(N,R) both survive for long time. We have picked one such
realization for representation purposes. It is clearly seen that
the two surviving strategies tend to cluster together, forming
metastable clusters. It is also noticed that, apart from clusters,
there are patches where the two surviving strategies appear
alternatively.

C. Random and scale-free networks

To investigate the role of the spatial structure on the evo-
lution of trust and trustworthiness further, we simulate the
trust game on a scale-free network generated by the Barabási-
Albert algorithm and an Erdős-Rényi random network, with
500 agents each (both with an average degree close to 10).
Since these networks are not regular, we consider both the
normalized and the unnormalized replicator dynamics.

In the case of random networks, we obtain results very sim-
ilar to the well-mixed populations and the three lattices. This
holds using both the normalized and unnormalized dynamics
(see supplementary information) and it provides further evi-
dence that spatial correlations alone do not lead to the evolu-
tion of trust.

To study the effects of heterogeneity in the network of con-
tacts, we study the trust game on scale-free networks. In this
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case, evolution turns out to be more nuanced and interesting,
as it appears to depend on the choice of replicator dynam-
ics. When agents imitate other agents using the normalized
replicator dynamics, trust does not evolve and the results are
virtually the same as in the previous cases. However, when
agents imitate other agents using the unnormalized replicator
dynamics, we observe rich behaviour in terms of the evolu-
tion of different strategies. Figure 4 is a heatmap of the steady
state density of the four strategies, and it shows clear differ-
ences with Figure 1. The strategy (T,R), which in the other
cases never evolved, this time evolves for small values of x.
Similarly, the strategy (T,B), which generally vanished in the
other cases, now evolves for x < 0.5. The difference is par-
ticularly evident for x small and r large, where there appears
to be an island in which (T,B) actually evolves with frequency
close to 50%.

To have a better understanding of these differences, we next
explore the time evolution of the four strategies in three proto-
typical cases, one in which we expect virtually no differences
compared to the well-mixed case (x = 1 and r = 0.5) and two
in which we expect large differences (x = 0.1, r = 0.8 and
x = 0.1, r = 0.3). Note indeed that Figure 4 suggests that,
for x = 1 and r = 0.5, the final densities according to the
unnormalized replicator dynamics should be very similar to
those according to the normalized replicator dynamics, which
are in turn very similar to those in well-mixed populations. By
contrast, we chose the values x = 0.1 and r = 0.8 to illus-
trate the evolution in correspondence to the island described
above where we expect trust but not trustworthiness to evolve.
And we chose the values x = 0.1 and r = 0.3 to illustrate a
situation in which we expect both trust and trustworthiness to
evolve.

Figure 5 reports the time evolution of the four strategies
for x = 1 and r = 0.5 using the unnormalized dynamics
(top panel) and the normalized dynamics (bottom panel). As
expected, the bottom panel is virtually identical to the well-
mixed population (not reported in the figures, but discussed
earlier in the text). The top panel differs from the bottom panel
only in a very small detail: the strategy (T,B) evolves with a
very small frequency.

Figure 6 (top panel) reports the evolution of the four strate-
gies for x = 0.1 and r = 0.8, only for the unnormalized
replicator dynamics. As expected, this time we see very large
differences compared to the normalized replicator dynamics,
which we do not report in the paper, being virtually identical
to Figure 5. In particular, the biggest difference can be ob-
served in the evolution of the strategy (T,B). In the previous
case (x = 1, r = 0.5), this strategy almost vanished when
agents imitate other agents using the unnormalized replica-
tor dynamics, and completely vanished when they used the
normalized replicator dynamics. In stark contrast, the strat-
egy (T,B) now evolves with frequency close to 50%. Another
difference can be noticed in the case of the strategy (T,R).
This strategy vanished in all the earlier cases. By contrast, it
now survives, although with a very small probability around
2%. Finally, Figure 6 (bottom panel) reports the evolution of
the four strategies for x = 0.1 and r = 0.3, again only for
the unnormalized replicator dynamics. As expected, this time
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FIG. 5: Time evolution of the four strategies in a scale free network
for values x = 1 and r = 0.5, for the unnormalized (top) and nor-
malized (bottom) replicator dynamics.

the strategy (T,R) evolves with a non-negligible frequency
around 15%. The strategy (N,R) evolves with an even higher
frequency around 25%, compared to the 5% for x = 0.1
and r = 0.8. These increases in frequency come mainly
at the expenses of the strategy (T,B), which, for x = 0.1
and r = 0.8 evolved with very high frequency (about 45%),
whereas it now evolves only with frequency around 20%; and
to a lesser extent at the expenses of the strategy (N,B), which,
for x = 0.1 and r = 0.8 evolved with frequency around 45%,
whereas it now evolves with frequency below 40%.

IV. DISCUSSION

We have used the Monte Carlo method to study the evo-
lution of trust and trustworthiness in well-mixed populations,
three different types of lattices, random networks and scale-
free networks. Since the latter two networks are not regu-
lar, in these cases we have studied the evolution of trust and
trustworthiness both when agents imitate other agents by tak-
ing into account their degree (normalized replicator dynamics)
and when they do not (unnormalized replicator dynamics). As
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FIG. 6: Time evolution of the four strategies in a scale-free network
(unnormalized replicator dynamics) for values x = 0.1 and r = 0.8
(top) and for x = 0.1 and r = 0.3 (bottom).

a measure of trust and trustworthiness, we have used a binary
version of the trust game [59]. The choice made by player 1
(the trustor) was taken as a measure of trust; the choice made
by player 2 (the trustee) was taken as a measure of trustwor-
thiness. We parameterized the game through two parameters:
x ∈ [0, 1] describes the amount of money that the trustor can
send to the trustee; r ∈ [0, 1] represents the proportion of the
amount received by the trustee that the he can return to the
trustor.

Our exploration provided evidence of several results. First,
in well-mixed populations, trust never evolves, whereas the
evolution of trustworthiness depends monotonically decreas-
ingly on r (and shows very little dependence on x). Second,
to understand the effects of spatial correlations on the evo-
lution of different strategies, we simulated the trust game on
homogenous and heterogenous networks. On lattices, random
networks (using both the imitation dynamics), and scale-free
networks with normalized replicator dynamics, we observe
that that trust does not evolve, and in these cases, the final
densities of the four strategies are very similar to the corre-
sponding final densities in well-mixed populations. This con-
clusively points to the fact that solely spatial structure does
not lead to the evolution of trust. Third, scale-free networks

with unnormalized replicator dynamics give rise to the most
nuanced evolution: for small values of r and x, both trust and
trustworthiness evolve, although with a relatively small fre-
quency around 15%; for small values of x and large values
of r, trust evolves with a relatively large frequency around
50%, but this time trustworthiness does not evolve. These re-
sults can readily be compared to the evolutionary prisoner’s
dilemma on scale-free networks [74] with normalized and un-
normalized replicator dynamics where the evolution of coop-
eration is possible in both cases. The heterogeneous scale-free
network provides a mechanism for the survival of cooperators
up to larger values of temptation to defect, when compared
to well-mixed populations. However, it is interesting to note
that when the payoffs of an individual are normalized by their
degrees, the fraction of surviving cooperators is significantly
lesser. Our results hint that while heterogeneity also provides
a route for the evolution of trust, it only does so when the
payoff of the players is accumulated over all its interactions
with its neighbours, and not averaged over them, like in the
normalized dynamics.

In sum, we have operationalized trust and trustworthiness
using the trust game with the trustor’s investment and the
trustee’s return of the investment as the two key parameters
and we have studied their evolution in a number of networks
and our results have shown that trust and trustworthiness very
rarely evolve in these networks, and even more rarely do they
do it together: when trustworthiness evolves, then trust does
not; when trust evolves, trustworthiness does not. Only in a
relatively small region (both r and x small) and only in the
case of scale-free networks and unnormalized replicator dy-
namics, the strategy (T,R) evolved with a non-negligible, al-
though still relatively small (around 15%) probability.

This is the first systematic study on the evolution of trust
and trustworthiness on networks. Most previous work applied
the Monte Carlo method to study the evolution of cooperation
in the prisoner’s dilemma [27–36], the evolution of strategic
fairness and altruistic punishment in the ultimatum game [37–
44], and the evolution of truth-telling in the sender-receiver
game [55, 56] or in other deception games [75–79]. These
games are fundamentally different from the trust game used
in the current analysis. The trust game is obviously different
from the sender-receiver game and the ultimatum game, be-
cause they have completely different strategic structure and,
consequently, sets of equilibria. But it is also different from
the prisoner’s dilemma: while this game is symmetric, the
trust game is not. This is probably the reason that leads to
the fact that, in general, the spatial structure favors the evo-
lution of cooperation in the prisoner’s dilemma, while having
very little effect on the evolution of trust and trustworthiness.
A handful of papers have studied the evolution of trust and
trustworthiness using the trust game or some variants thereof.
However, most of these works focused on well-mixed popu-
lations [80–84]. These works typically show that, with no ad-
ditional mechanisms, such as choice visibility, trust and trust-
worthiness do not evolve in well-mixed populations. Our find-
ings are thus in line with this preceding research. A variant of
the trust game has also been studied on networks, however the
analysis was mainly focused more on group effects, and on
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FIG. 7: (Top panel) The evolution of the four strategies as a function
of time in the case of a well mixed population after adding a ‘good
samaritan’ agent that always chooses the strategy (T,R). We look at
the evolution of the 499 agents in the population (excluding the good
samaritan) for the values x = 1 and r = 0.5. (Bottom panel) Time
evolution of the four strategies (without any good samaritan) for x =
1, r = 0.5, and varying levels of noise (K = 1, 10, 100).

one specific network – the email network of a university in
Tarragona [85].

The fact that the spatial structure, apart from one special
case, does not promote the evolution of trust and trustworthi-
ness together with the observation that, in reality, we do see a
lot of trust and trustworthiness, generates the following ques-
tion: What mechanisms promote the evolution of trust and
trustworthiness? In Figure 7, the top panel is a plot of the
evolution of the strategies of 499 agents for values x = 1 and
r = 0.5 in a well-mixed population of 500 agents where the
excluded individual is a ‘good samaritan’ who always chooses
the strategy (T,R). We emphasize that the plot only considers
the evolution of the strategies of the 499 agents which does
not include the good samaritan. It can be seen that a finite,
albeit small fraction of trustors, survive in the stationary state
upon the inclusion of a single good samaritan agent at a value
of x and r where previously trust did not evolve. It is well
known that zealots can drive the evolution of cooperation in
the prisoner’s dilemma game [86] and a detailed study of the

effects of good samaritans on the evolution of trust and other
moral behaviours provides an interesting avenue for future re-
search. The bottom panel of Figure 7 explores the influence
of noisy imitation on the dynamics. Noise can be interpreted
as the lack of perfect information about the payoffs of other
people, or as sub-optimal decision making. We show a com-
parison of the evolution of increased noise in the imitation
process for x = 1, r = 0.5, and K = 1, 10 and 100). It is
expected in the limit of K → ∞ that each strategy survives
with equal probability as the dynamics is random. However,
even at K = 10, we can see that trust evolves to steady state
density of around 10% and the strategy (T,R) which accounts
for trusting, and trustworthy individuals also evolve to a final
density of around 1%. Studying further the effects of noisy
imitation as a function of the parameters of the game could
lead us to novel insights.

Several other mechanisms could be responsible for the evo-
lution of trust [87]. Possible candidates could be reward and
punishment as well as apology, forgiveness, and emotions
such as guilt. We know that these mechanisms promote the
evolution of cooperation [88–97]. Along similar lines, it is
possible that they also promote the evolution of trust and trust-
worthiness. In fact, in reality, we know that, for example,
online transactions, which are fundamentally based on a rela-
tionship of trust, are supported by rating systems that provide
a measure of the trustworthiness of the agents. Therefore, it is
likely that the presence of a reputation mechanism promotes
the evolution of trust. Following recent works of Fudenberg
and Imhof [98] and Veller and Hayward [99], it would also be
interesting to study the problem where not only do the agents
evolve using imitation, but also can spontaneously mutate and
adopt different strategies. Additionally, we notice that our re-
sults were obtained on particular networks and imitation rules;
it is possible that other networks and/or other imitation rules
lead to the evolution of trust and trustworthiness. Finally, in-
dividual differences for example in gender, age, dominance
status, number of neighbours, kinship, which are well-known
to affect cooperative and altruistic behaviour [36, 100–104],
can also affect the evolution of trust and trustworthiness. Fu-
ture work should explore these possibilities.
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