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Synopsis 

This research was undertaken to provide an understanding of the nature, origin and 

desorption mechanism of species found on the porous silicon (PS) surface and the 

changes that occur when PS is stored under varying conditions. 

The PS used in this work was produced from p-, high-resistivity FZ c-Si substrates. 

Three types of commonly used HF-based electrolytes were chosen for anodisation, 

under the same process conditions. With the resulting samples, temperature 

programmed desorption (TPD) coupled with mass spectrometry were used to identify 

species liberated at different temperatures. FTIR was also used to investigate the nature 

of surface species on PS and hence to infer how these give rise to the observed volatile 

products. After various modifications, the TPD system with the custom-made heating 

unit and the appropriate methodology were developed to suit the present work. 

Freshly anodised PS in the vacuum chamber at room temperatures gave somewhat 

enhanced peaks due to air components (0+, Nt and/or CO+, ot and cot) and, most 

significantly, an increase in F -containing species (e.g. F+), derived from the electrolyte. 

On heating, the main desorbed species were found be hydrogen, silane, Si-Fx species, 

and Hx-Fx species. TPD spectra for hydrogen showed two peak maxima with a "hump". 

This implies two types of hydrogen environments; these were assigned as Si-H (lower 

temperature peak) and Si-Hz (higher temperature peak) species on the PS surface. The 

temperature difference between the two peaks was similar (~1 OOK) in all three cases. 

This shows that hydrogen desorption occurs similarly from PS prepared using the three 

different electrolytes. It also suggests that hydrogen adsorption during PS formation 

occurs analogously in the three electrolytes. 

Silane was observed to desorb at 575K. It is proposed that this comes from -SiH3 groups 

on the PS surface, possibly after reaction with sorbed water. A mechanism is suggested. 

In contrast, desorption of Si-F x species was found to be sensitive to the nature of the 

electrolyte. The lower temperature peaks from the TPD experiments are assigned to 

H2SiF6 , SiF4 and perhaps H2SiF2 (by-products from anodisation) sorbed on PS. They are 



held relatively weakly by electrostatic and/or van der Waals forces. The higher 

temperature peak assigned to SiF 3 + may be explained in terms of migration of F atoms 

followed by Si-SiF3 bond breakage. The various Hx-Fy products derive from species 

present in the HF electrolytes. 

To investigate changes in PS under typical storage conditions, samples were kept in (i) a 

blue wafer box, (ii) a screw-top white box and (iii) a similar box in a vacuum desiccator. 

The PS was then analysed by FTIR after various time intervals. After one month, only 

PS stored under condition (iii) was unchanged. The other samples showed evidence of 

oxidation, attributed to hydrolysis, fonnation of silanol (SiO-H) species, and back-bond 

oxidation of Si-Hx groups. Further ageing revealed inclusion of C-H species on PS. 

This work is a contribution to understanding ofPS behaviour, and is relevant to its 

applications in electronic devices and sensors . 

.. 
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Chapter 1 Introduction 

Porous silicon (PS) is an important and versatile electronic material in microelectronic 

fabrication technology. It is produced by electrochemical etching of crystalline silicon 

(c-Si) in hydrofluoric acid (HF) based electrolytes. The discovery ofPS dates back to 

1956, when Uhlir (1956) was electrolytically polishing germanium and silicon to 

eliminate the damage produced by mechanical polishing. He found that, under certain 

conditions of electrolysis below the voltage required for electropolishing, there was a 

localised anodic dissolution of the substrate which led to the formation of porous silicon 

and germanium. The research into this material has come a long way since Uhlir's 

discovery and now covers the areas of formation mechanisms, material characterisation 

and the realisation of devices. 

Applications of this material are various. Because of its very thin open microstructure, 

the material can be oxidised throughout the whole pore volume independently of layer 

thickness, allowing the formation of thick silicon dioxide (Si02) layers unlike the case 

of c-Si where the oxide formation is diffusion limited. The low temperature oxidation 

ofPS (Tsao 1987, Benjamin et a11986, Imai et a11984, Unagami 1980, Yon et a11987) 

and the electrochemical conversion ofPS to oxide (Yamana et a11990) has already been 

utilised in Silicon On Insulator (SOl) and Fully Isolated Porous Oxidised Silicon 

(FIPOS) processes, although commercial devices are yet to come. Silicon displacement 

reactions in the PS network have been used to produce buried conductor regions 

(Yam ana et al 1990, Ito 1989). SOl structures can be obtained by oxidising buried 

layers ofPS which can be formed selectively under silicon islands of low doping levels 

because of the strong doping dependence of the anodisation process. Because of its 

extreme reactivity, due to the large surface area of the pores, PS has been used as a 

useful sacrificial material in micromachining processes for the production of sensors 

(Lang et al 1994a, 1994b, 1995) 

Crystalline silicon, which is the basis for the majority of integrated electronic devices, is 

extremely inefficient in emitting light under electrical or optical excitation as it has a 

relatively small (~1.1 eV) and indirect bandgap. In 1990, Canham demonstrated tunable 

strong visible photoluminescence in porous silicon at room temperature. Recent data 

shows that the PL peak can be tuned right from the bulk Si bandgap in the near infrared 
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through the visible range to 400 run in the violet. Since 1990, there has been a rising 

level of research work focussed on the understanding of the origin of 

photoluminescence (PL) in PS, but none so far provides a complete picture of the 

mechanism of light emission. 

This research was funded by Defence Research Agency (DRA) under the contract 

number 224910011 RSRE to provide an understanding of the nature, origin and 

mechanisms of the adsorbed "foreign" species that are found in the pores and hence the 

"ageing" mechanism. 

Freshly prepared PS is in a metastable condition and is very reactive towards the gases 

in the ambient air. This produces slow oxidation of the pore surface (aging process) as 

well as adsorption of gases on to the dangling bonds of the surface silicon atoms. As a 

result, most of the properties ofPS, including luminescence, degrade slowly with time 

(the ageing phenomenon). Furthermore, luminescence peak wavelength shift is 

observed with any change in composition of the anodising electrolyte (Canham 1990). 

These factors point to the importance of the surface chemistry ofPS in the luminescence 

processes. 

1.1 Objectives 
An understanding of the surface chemistry of freshly anodised PS and the ageing 

process ofPS is very important in predicting the behaviour of the devices which are to 

be realised in PS as well as in the understanding of the PL mechanism. The current 

project was undertaken to investigate the gas adsorption processes on the surface of the 

pores ofPS. Time-varient adsorption studies also formed a part of this work. Many, 

mainly surface analytical techniques, have been used in analysing the composition ofPS 

and H,C,O,F have been found to be the main "impurity" elements. 

A review of the compositional analyses ofPS is presented in section 2.4. Most of the 

techniques used sputtering techniques and analysed the sputtered species. These 

analytical results provide mainly elemental information. There is a limited amount of 

information available on the nature of the bonding of the various gaseous species to the 

PS surface using Raman and FTIR techniques. The pore walls of PS adsorb the gaseous 

species from the environment it is placed in and the ions from the electrolyte that is used 
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for its preparation. It was intended to investigate the adsorbate-substrate system using 

Temperature Programmed Desorption Spectroscopy (TPD) and FTIR in a detailed 

manner with the following objectives. 

a) The modification of the anodising procedures and the storage technique for PS 

samples 

b) Temperature Programmed Desorption Spectroscopic analysis of the porous silicon 

sample to provide infonnation on the binding energies and structure of adsorbates 

and adsorption sites. The adsorbates in the case ofPS are the "contaminants" formed 

from various gaseous species; and 

c) Fourier Transfonn Infrared Spectroscopic (FTIR) analysis to be used as a 

complementary technique to support the TPD findings, as well as to investigate the 

bonding characteristics of the gaseous species that are found in PS. 
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Chapter 2 Literature Review 

Research into PS has received considerable attention for the last ten years since the 

discovery that PS structures emit visible photoluminescence (PL) (Canham, 1990). At 

present, most of the solid state light emitters such as LEDs and lasers are made from 

direct bandgap materials such as GaAsl AIGaAs. Direct integration of these materials 

with silicon electronics is extremely difficult because of the incompatibility of material 

characteristics and processing requirements. 

PS is a potential candidate for many applications, since it is found to retain the 

crystalline characteristics of bulk silicon and it is easier to integrate PS with silicon 

electronic devices. However, before PS can be successfully used for commercial 

devices, a better understanding of the material is needed. Numerous papers have been 

published on its preparation, material characterisation and application. 

This chapter reviews the areas of research on PS which are relevant to the present work 

and will cover the following areas: 

a) Formation mechanisms 

b) Material properties 

c) Compositional analysis 

d) Applications 

2.1.Formation mechanism of PS 
PS is prepared by anodic electrochemical etching of single crystal silicon (c-S i) in HF 

based electrolytes. The formation ofPS depends critically on the doping level of c-Si 

and the electrochemical parameters, mainly HF concentration and current density 

applied. By controlling the parameters it is possible to create reproducible structures 

with pore diameters ranging from less than 2nm to greater than 103nm and densities 

from near bulk value of 2.33g cm-3 to less than O.2g.cm-3
. The porous layers fonned 

from 

c-Si exhibit surface areas in the range of 200-250m2 cm-3 for n + and p + substrates and of 

the order of 600m2 cm-3 for p- wafers (Herino 1987). 
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Beale et al (1985) have characterised PS layers obtained from different substrates and 

using a wide range of anodisation conditions. The layers obtained from heavily doped 

silicon « 0.05Q.cm) either p + or n+, have dentritic-like pores with the preferential 

orientation normal to the surface and a pore diameter is in the range of 4-12 nm. For the 

lightly doped Si, the situation is different. The growth of the pores is isotropic whereas 

that in n + or p + are anisotropic. In the case of p- silicon, the porous layer consists of 

random arrays of very small voids (~ 3 nm diameter) and is microporous. 

2.1.1. Silicon Dissolution Chemistry 

There are two separate questions to be answered in the formation of PS layers. The first 

one concerns the anodic dissolution of silicon in an HF solution. The second is to 

explain why this dissolution becomes localised under certain conditions, leading to the 

formation of the porous structure. 

The exact dissolution process of silicon atoms during anodisation is still not clear, 

although it is accepted generally that holes are required in the initial step for both 

electropolishing and pore formation (Memming et al 1966, Searson et al 1990). This 

means that, for n-type silicon, significant dissolution occurs only under illumination, 

high fields or other hole generation conditions. 

During pore formation, only two of the four available electrons of a silicon atom 

participate in the direct charge transfer process. It has been shown that, during pore 

formation, hydrogen gas evolves in a 2 : 1 atomic ratio to silicon (Memming et al 1966, 

Pickering et al 1984). Current efficiencies have been measured at 2 electrons per 

dissolved silicon atom during pore formation (Beale et a11985, Memming et al 1983). 

The overall reaction can be written as , 

Si + 2HF + 2h+ ~ SiF2 + 2H+ (h + - defined as positive hole) 

The subsequent reactions can be written as, 

2H+ + 2e- ~ H2 t 
Memming and Schwandt (1966) suggested a number of subsequent chemical 

disproportionation reactions occur in which the unstable SiF 2 species is transformed into 

tetravalent H2SiF6 and molecular hydrogen. 
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2SiF2 + 2F ~ Si + SiF62
- (Disproportionation reaction) 

This mechanism assumes that the silicon surface is fully fluorinated at the beginning of 

the reaction. However, it has been shown by Ito et al (1988), using an infrared 

technique, that anodised PS is saturated with Si-H bonds. Another mechanism was put 

forward by Lehmann and Gosele (1991), which assumes that the silicon surface 

fluctuates between hydride and fluoride coverage at each pair of electron / hole 

exchanges. There are various models presented in the literature and which was well 

reviewed by Smith and Collins (1992). 

It is clear that the formation of PS is an extremely complicated process involving many 

chemical and electrochemical reactions, which occur simultaneously. More work is 

required to understand the complex nature of the dissolution process. 

2.1.1. Localised pore formation 
It is very important to understand why anodic dissolution should produce localised pore 

formation, leading to the formation of porous structures displaying very different 

morphologies. 

Unigami (1980) proposed that PS results from the formation of insoluble silicates which 

passivate the pore walls. However, such a phenomenon can hardly explain the 

difference in microstructures observed when Si doping is changed. Theunissen (1972) 

proposed that PS formation in n-Si results from the reverse bias breakdown resulting 

from high fields concentrated at the pore tips. Dubin (1992 ) proposed another model 

based on silicon dissolution taking place at active impurity sites which are responsible 

for local electric field enhancement resulting in the breakdown of the depletion charge 

layer and the initiation of pores. 

So far, few models have been proposed to explain the differences in the microstructures 

ofPS from different types of silicon substrate. Three of the most probable models are 

reviewed here. They are, 

(a)the Beale model 

(b )the Diffusion limited model 

(c) the Quantum-based model 
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Presently, the Beale model is the accepted standard for PS fonnation. Several reports, 

however, have noted some inconsistencies in the Beale model (Smith et al 1990, Zhang 

et al 1989, Bomcil et al 1989) 

The Beale model 

This proposes that a semiconductor depletion layer is responsible for controlling the 

electric field density in both n- and p-type material (Beale 1985). There is a large 

number of experimental facts indicating that at equilibrium the silicon surface in contact 

with an HF solution is depleted. Thus a Schottky barrier must exist at the interface. At 

the beginning of the reaction, the surface potential is modulated by ionic absorption at 

the silicon surface and this can cause a large difference in the current flow at the 

interface. The interface can no longer be considered as planar, but more or less 

spherical. In such a case, the surface potential, which is inversely proportional to the 

radius of curvature, would be higher at the depressions. Therefore the current density 

and the dissolution rate will be locally enhanced, leading to the fonnation of pores. 

Diffusion Limited model 

The diffusion limited model, proposed by Smith and co-workers (1988, 1990) explains 

pore fonnation as resulting from the diffusion of an electroactive species (holes or 

electrons) to or from the silicon surface. During pore formation, a hole diffuses to the 

silicon surface and removes an electron from a silicon atom (oxidation). Alternatively, 

the process can be described as an injected electron diffusing away from the silicon. 

The nature of the random walk indicates the pore tips as the most likely contact sites for 

a particle diffusing from the bulk semiconductor (Smith, 1988) and provides a similar 

selective dissolution at the surface irregularities as does the Beale's model (Beale 1985). 

The diffusion-limited model avoids a number of uncomfortable assumptions, such as 

the diode model, associated with Beale's model and provides a simple understanding of 

pore formation in terms of basic semiconductor electrochemistry. The computer 

simulation of PS using the diffusion limited model shows a very good resemblance to 

TEM information (Figure 2-1) for both n- and p-type PS, providing strong verification 

of the model's validity. 
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Quantum Model 

This model was proposed by the Lehmann group (1991) and Foll (1991) to explain pore 

formation in terms of increasing bandgap due to quantum charge confinement within the 

small dimensions of the silicon "wires" formed in PS. The increased bandgap causes a 

decrease in the concentration of the mobile carriers and creates a depletion region 

similar to the depletion layer proposed by the Beale group (1985) 

The average spacing between the pores in p-type silicon is of the order of magnitude 

where quantum effects for electrons are expected, i.e. tens of A. Although quantum 

effects are very likely for p- type silicon, it is unlikely that the same effects regulate pore 

formation in p + - or n-Si where the interpore dimensions can be as high as several 

micrometres. 

It is clear that the formation ofPS is an extremely complicated process involving 

chemical, electrochemical and physical processes. Both Beale's and the diffusion­

limited models predict a fractal pore structure which is a collection of "pores on top of 

pores" within certain upper and lower bounds. The upper bound for the pore dimension 

is determined by the depletion or diffusion length depending on the model used. The 

lower bound for the pore dimensions is of the quantum dimensions as outlined in 

quantum model of pore formation. 

None of the above models deals with the physical aspects of pore formation and no 

account is taken of the specific surface chemistries that give rise to the dissolution 

chemistries. 
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FIGURE 2- 1 Comparison of diffusion-limited models to PS 

(top) high resistive c-Si 

(bottom) low resistive c-Si 

The figures marked (a) are TEM sections from PS samples and those marked (b) are the 
respective simulated models (Smith et al ., 1988) 
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2.2.Material Properties of PS 
This section will review 

a) porous microstructures, 

b) crystalline properties and 

c) the heating effects ofPS. 

2.2.1. Porosity and pore size of PS 

The formation ofPS depends critically on the type and doping level of the Si substrate 

(refer to section 2.1) as well as the electrochemical parameters such as HF concentration 

and current densities (Beale et all985, Bomchill et aI1988). For a given HF-based 

electrolyte, the average porosity increases to a limit with current density and 

electropolishing occurs beyond a certain value of current density (Beale et a11985, 

Bomchil et aI1989). An increase in HF concentration results in a decrease of the 

porosity (Herino 1987). This was found experimentally by comparing gravimetric 

porosity as a function HF concentration. 

Herino et al (1987) used a gas adsorption isotherm technique to establish the surface 

area, pore size and pore distribution of the PS layer. The PS film on heavily doped 

silicon exhibits a specific surface area in the range of 200m2cm-3
, while the PS layer on 

lightly doped p- Si has an area of the order of600m2cm-3
. These results agree with the 

IUP AC convention for mesoporous structures (~2 nm -50 nm) observed in n + and p + Si 

wafers and less with the microporous ( <2 nm) structures observed with p- Si. This is 

due to the fact that this technique requires a minimum pore volume for an adequate 

accuracy and therefore a layer ofPS several microns thick is needed. For this reason, 

this method is not applicable to very small pores of radii below 2 nm. 

The influence of the anodisation time on some structural characteristics such as 

dissolved mass, maximum porous layer thickness, porosity and crystalline size were 

investigated with p-type silicon (Pascualet al. 2002). Equations based on pore 

nucleation and growth processes explain well the evolution of the maximum layer 

thickness with anodisation time. It was shown that chemical dissolution of the porous 

layer during the anodisation must be taken into account in order correct some of the 

experimental data. 
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Transmission electron microscopy (TEM) and high resolution scanning microcopy 

(HRSEM) were used to study the structural properties ofPS layers (Beale et a11985, 

Gonchond et al1991). In p + or n+type Si, the PS films consisted of many large yoids 

running perpendicular to the surface. In addition, there were small "buds" on the sides 

of the pores and occasional branches emerged at wide angles to the main pores. In 

lightly doped p- or n- films, the pore structures were found to consist of random arrays of 

fine holes markedly different from the heavily doped structure. As the electrolyte must 

be able to penetrate the structures for the removal of Si to occur, it is evident that the 

pores must be continuous from the surface. Also, the Beale group (1985) reported that 

the interface between the PS layer and the silicon substrate is well defined and was 

locally planar on the scale of the pore dimensions for films formed on both heavily and 

lightly doped substrates. 

2.2.2. Crystalline Properties of PS 

Crystalline properties of PS have been investigated by means of X-ray diffraction 

techniques (XRD) (Barla et a11984, Sugiyama et a11990, Young et al1985,) and 

Raman spectroscopy (Goodes et al1988, Gregora et a11994, Jardin et al 1995, Zhang 

et al 1994) 

XRD Analysis 
Barla et al (1984) used double crystal diffractometry to measure the lattice parameter of 

c-Si and PS on O.OHlcm p-type Si (100). Their findings are summarised as follows: 

a) The crystalline quality ofPS depends on the porosity. For porosities less than 35%, 

the crystalline quality of the PS is very good and similar to that of silicon substrate. 

When the porosity increases, the crystalline quality decreases. 

b) The lattice parameter increases with the porosity and the mean pore radius. It 

appears that the lattice expansion is a genuine effect and not an artefact resulting 

from stress caused by lattice misfit between the PS layer and the Si. Another 

explanation is that the lattice expansion results from an intrinsic effect of a silicon 

network consisting of small particles. In fact PS could be considered as an assembly 

of small particles (nanocrystallites) diffracting coherently. 
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Young et al (1985) also used a double crystal diffraction method to measure the changes 

in lattice parameter on anodisation. The X -ray diffraction results for the PS layers 

formed on heavily doped and lightly doped Si substrates were found to differ 

significantly. They have reported that the crystal lattice of a porous layer was 

tetragonally distorted and the change in lattice spacing of the PS layer was about ten 

times smaller on the heavily doped wafers than on the lightly doped wafers. The 

samples analysed showed no systematic dependence of doping levels on the lattice 

spacing or on the anodising conditions. It was concluded that the main factor 

responsible for the interplanar spacing is the type ofPS which in turn depends on the 

substrate dopant concentration. 

The role of oxygen in the increase of lattice parameter was considered by Young et al 

1985. Calculations of the order of magnitude of the oxidation induced stress have been 

made and it was found to be sufficient to cause the observed changes in lattice 

parameter. The greater surface area of the lightly doped PS results in greater oxygen 

incorporation and is consistent with the greater observed increase in the lattice 

parameter. 

Sugiyama et al (1989a, 1989b, 1990) studied the microstructure ofPS layers produced 

on p-Si wafers with various resistivities using X-ray multicrystal diffractometry, TEM, 

IR spectroscopy and gas adsorption methods. The summary of their finding is as 

follows. 

a) The crystalline quality of as-prepared PS is inferior to that of c-Si, but is not strongly 

degraded. The lattice spacing ofPS layer was found to be slightly larger than that of 

c-Si. This was due to Si-Si becomes Si-O-Si to some extent during the 

anodisationlstorage processess. 

b) The lattice distortion of as-prepared PS was shown (Sugiyama et al 1990) to be 

related to the difference of pore morphology, which in tum can be related to the 

dopant concentration as shown by the Young group (1985). The degradation of the 

crystalline quality of the PS layer takes place secondarily as a result of oxidation of 

the pore surfaces. This is due to the compressive stress created by the formation of 

the native oxide. 
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c) The crystal lattice of a PS layer is distorted elastically in the direction nonnal to the 

wafer surface without any regard to its crystal orientation. 

Sugiyama and co-workers «(1990) have shown also that lattice contraction takes place as 

a result of desorption of hydrogen during heating as most of the PS surface is covered 

with H atoms. Their samples were heated stepwise in 50°C intervals and the lattice 

spacing was measured. The lattice contraction took place at about 350°C. Above this 

temperature, the wafer bending was found to reverse, indicating that the PS layer was 

under compression before annealing. It was confinned (Sugiyama et aI, 1989) with an 

IR technique that the number of Si-H bonds decreases with annealing and Si-O related 

absorption increased with temperature. Figure 2-2 illustrates the effects of annealing on 

a PS layer. Their conclusion was that the distortion of the PS layer is influenced 

strongly by the chemisorbed H -atoms as well as by pore morphology and that the 

crystalline quality of the layer is degraded as a result of oxidation of the pore walls. 
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b) Lattice expansion above 350°C 

(Sugiyama et aI. , 1989) 
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FIGURE 2- 3 XRD showing the effects of electrolytes on the crystallinity of PS 

P910 - 1:1 HF:C2HsOH and N922 - 9:1 HF:C2HsOH (Qing-Shan Li, 1995) 

The Qing-Shan Li group (1995) have shown using an X-ray diffraction technique, that 

the electrolyte concentration has an effect on the crystalline properties ofPS. Figure 2-3 

shows X-ray diffraction rocking curves for PS at room temperature in HF:ethanol in 1: 1 

ratio (P91 0) and in HF: ethanol in 9: 1 ratio (N922). P910 shows, besides the main peak 

which is due to c-Si , a small peak with a small angle which corresponds to a very small 

lattice expansion. N922 shows a broad angle which originates from the reduction of the 

lattice parameter. 

A high resolution X-ray technique was used to examine the variations in the lattice 

parameter of PS formed on p-type Si, produced by pentane wetting and vapour 

adsorption (Dolino et al 1995). The interactions between PS and liquids playa key role 

during the formation of the PS layer itself. For example PS layers of high porosity 

(90%) often break during drying under the action of capillary forces . A homogeneous 

lattice expansion is observed during wetting, while for vapour adsorption there is first a 

lattice contraction, followed by a lattice expansion. This was explained by the variation 

in surface stress and the existence of van der Waals interactions between the pore walls . 

The presence of a thin adsorbed liquid film increases the attractive forces. 
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Raman spectroscopy 

Raman spectroscopy is one of the most suitable methods for investigating and 

characterising semiconductor microstructures. In c-Si, an optical phonon is observed in 

the centre of the Brillouin zone with an energy of 520 cm-1
. This is a consequence of 

the conservation of quasimomentum in crystals. Phonons in nanocrystallites, however, 

are localised and this induces a shift in the Raman signal to lower energies accompanied 

by a broadening effect. This technique is very useful for investigating crystallinity, and 

the dimensions of micro crystallites in PS. 

Goodes et al (1988) obtained data for PS from degenerate (O.OIQcm) and non­

degenerate (5 and 25Qcm) p-type Si. They associated the observed Raman features 

with an amorphous component in the PS film, although a similar spectrum may be 

obtained from the interface region between the silicon pores and their oxides. 

Shu-Lin Zhang et al (1994) analysed p-type PS samples in the region of50-1050 cm- I
. 

Raman spectra from free standing PS films and PS films on silicon substrate were 

compared. In addition to the first order Raman peak at 51 Ocm-1 associated with optical 

phonons, additional peaks were observed at 147, 632 and 956 cm-I. These were 

identified with the PS layer itself. No substantial amorphous silicon (a-Si) component 

in p-type PS was found confirming the results shown for the first order Raman 

investigation of PS by Goodes et al (1988). 

Jardin et al (1995) estimated the dimensions of the silicon crystallites from the shift and 

the half width of the one-phonon Raman peak detected near 520 cm-1 for Si. Assuming 

columnar morphology for the Si crystallites, an average diameter of 4-5nm was 

estimated from the shift value. The weak bands observed at 150, 310,480 and 630 cm-
I 

were attributed to a-Si. The dimensions of the Si crystallites were found to be reduced 

when the porosity of the layer was increased. The a-Si contribution was not observed 

for PS on n-Si and the crystallites were deduced from the Raman spectra to be larger 

than 10nm. 

Sasaki et. al. (1994) carried out Raman scattering on PS samples anodised in 

electrolytes of various HF concentrations. The size of the Si particle (or column) was 

estimated to be a few nanometers for samples anodised with solutions of HF : H20 in 

Page 16 



the ratio of 1: 1 and it decreased with decrease in the HF concentration. No silicon 

nanostructures were detected from Raman data for the case ofHF : H20: CzHsOH in 

the ratio of 1 : 1 : 8. 

Gregora et al (1994) used p- (1.0 ncm) and p + (~ 0.01 ncm) PS for their measurements. 

A sizeable fraction of a highly disordered a-Si phase in the p-type sample was detected. 

Also, it was found that the frequency shift and the line shape of the Raman peak in PS 

(p +) corresponded to an average crystallite diameter of 4-5 nm. 

Kozlowski et al (1994) have shown that there are two types ofPS layers which can be 

distinguished by the existence of different Raman spectra. The top layer of the PS film 

may consist of oxidised nanopartic1es with constricted wires (type I) as the current paths 

which were assumed to be the origin of electroluminescence(EL). Type II PS consists 

only of silicon nanocrystallites and no oxide and is PL active but with no EL properties. 

The nanocrystals were associated with Raman peak or shoulder at 510 - 513 cm -1 and a 

halfwidth of 10 - 40 cm- I
. It was observed (Kozlowski et a11992) that oxidation 

deactivates the nanocrystal structure. 

This phenomenon was also observed by Miinder and co-workers (1993). It was shown 

that the laser beam which is the source used in Raman spectroscopy should be kept at 

about 1 m W power to avoid local heating. During micro Raman measurements, the 

sample temperature in the laser focused area can rise by a few hundred Kelvin 

depending on the laser power, on the topology and on the porosity of the sample. It was 

observed that at moderate temperatures « 350°C) hydrogen starts to desorb and leads to 

destabilisation of pores and a reduction in the !lumber of nanocrystals with diameters 

below 3 nm. In the temperature range of 450 - 500°C the PS loses its nanocrystalline 

nature and a-Si is formed. Also, it was shown that for the PS prepared from p + Si, the 

diameter of the nanocrystals was found to be 2.5 nm and about 4 nm and for p- Si the 

nanocrystals were found to be smaller than 3 nm. 

Feng et al (1994) used PS membranes for Raman studies. These were prepared from p + 

Si (111) with 0.02-0.04 ncm resistivities, anodised in electrolyte containing HN03. HF 

and CH3COOH in the ratio of 5 : 3 : 3 respectively. Their Raman features are markedly 

distinct from those of crystalline, microcrystalline and a-Si 
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2.3. Thermal effects of PS 
It is very important to know the effects of heating on PS as it is a part of the processing 

steps in the applications ofPS in SOl technology (Zhao 1990), and sensor technologies 

(Steiner 1995). A review of the applications ofPS is presented in the following sections 

SOl islands are produced from PS in two different ways 

1. Devices are made in islands of the original Si wafer and the surrounding areas are 

selectively anodised and oxidised ; 

ii. The second method is to grow an epitaxial layer over PS. The required islands can 

be produced in the epilayer by photolithographic techniques. The PS can be 

selectively oxidised. 

Both oxidation ofPS and epitaxial growth of silicon over PS involve thermal treatment 

ofPS. The heating effects ofPS have been studied by techniques such as X-ray 

diffraction (Labunov et a11986, 1987), scanning electron microscopy (SEM) (Unagami 

et al 1978, 1980, Berino et aL 1984), Raman spectroscopy (Munder et aI, 1993) and 

thermal desorption studies (Gupta et aI, 1988a, 1988b). 

The structure and lattice deformation of PS layers with high temperature treatment in 

hydrogen ambient at 900 - 1200°C were investigated. It was found that heat treatment at 

temperatures between 300 - 900°C induces a slight change in the PS structure (Unagami 

1978). Labunov et al (1986) have shown that heat treatment at 1000 - 1200°C leads to a 

significant decrease in the specific surface area to 10m2 cm-3
. 

2.3.1. X-ray Diffraction Methods 
Double crystal X-ray diffractometry was used (Labunov, 1987) to measure the lattice 

parameter of as-anodised PS of different thickness as well as high temperature treated 

PS samples of different thickness. The observations can be summarised as follows. 

a) When the thickness ofPS increases, the intensity of the PS peak increases but the 

position of the peaks is changed significantly (Figure 2-4). Also, the relative 

deformation Zs, which is ~aJa, where a is the lattice constant and ~a is the change in 

a, increases with thickness of the PS layer. It was observed that there is an additional 
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peak shift towards smaller reflection angles. This is assumed to be connected with 

the decrease in porous volume density in the thickness direction. 

b) After the heat treatment, an additional peak was found at larger reflection angle i.e. 

on the right hand side of the main Si peaks (Figure 2-5). This is evidence of the 

change of sign of the stress as well as a decrease in the lattice parameter with respect 

to unanodised silicon. 

Labunov et al (1987) explained the structural changes during thennal treatment by a 

model based on the sintering process in powdered substances. (Figure 2-6). The. 

spherical shape of the pores is due to "spheroidisation" - flattening of various 

protrusions to produce spherical shapes that provides the smallest surface free energy at 

a given pore volume. The real process ofPS sintering is complicated by the presence of 

gas in the pores which may hinder their contraction. The fonnation of cavities instead 

of channels may be one of the reasons for the slowness of thermal oxidation ofPS at 

high temperature (Unagami, 1978). 

Muller et al. (2000) have shown the changes in the morphology ofPS during thermal 

treatment. A 2-D model was used to simulate the annealing behaviour ofPS. This 

model explained the closing of pores and a formation of a separation layer during 

annealing. Their simulations and measurments reveal the formation of voids that are 

bounded by low-energy facets. 

The Herino group ( 1984) reported that at temperatures above 400°C under moderate 

vacuum (10-7 Torr), coarsening of the porous structures was observed. On heating to 

900°C for one hour, large voids of ~ 1 nm were observed. This was related to the 

instability caused by hydrogen desorption between 200 - 400°C. The stabilisation of 

the pores was successfully carried out by heating the PS sample at 300°C in dry oxygen 

(preoxidation). It was shown by the Herino group (1984) that 12% of silicon atoms in 

the layer had been oxidised in two hours. This corresponds roughly to the growth of 

one monolayer of oxide over the whole surface of the sample. This structure was found 

to be stable for hours when it was heated to 900°C, so long as no reducing ambient was 

present. Densification at temperatures higher than 1000 °C was needed to obtain non­

porous oxide. Figure 2-7 shows the pore size distribution of PS as prepared (1) and after 

the above treatment (preoxidation at 300°C and 8000 e vacuum anneal for one hour). 
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Large differences were observed in the densification times of different porous 

structures. The very fine structures of p - layers were densified an order of magnitude 

quicker than p + layers, although the initial porosity was the same. 

Sabet - Dariani et al (1994) used HRSEM to study the changes in the structure ofPS 

with heating. Structural changes were observed at temperatures of 50, 150, 250, 350 and 

500°C It was found that the heat treatment at 150°C and above showed a gradual 

improvement in the sharpness of images and below 150°C the images were not sharp. It 

was deduced that the fresh PS contains a large fraction of spheroidal silicon particles, 

each of which is surrounded by a coating of some material, of irregular thickness and of 

high resistance. The coating is removed by the annealing treatment above 150°C. 

Munder et al used Raman spectroscopy to study the thermal effects ofPS (1993). The 

Raman spectrum of as-anodised PS shows a typical asymmetric broadening. This is an 

indication of inelastic scattering from nanocrystallites. At temperatures around 350°C, 

drastic changes occur in the morphology which cause a reduction in the amount of 

nanocrystallites with a diameter below 3 nm. In a temperature range of 450 - 500°C, the 

PS layer loses its nanocrystalline nature and amorphous silicon is formed. 
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(a) (b) 

(e) 

FIGURE 2- 6 A model of the pores going through sintering process 

a) as-grown, b) to d) increase in temperature. (Labunov et ai, 1986) 
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2.4. Compositional Analysis 
The large surface area (200 - 600m2 cm-2

) and the metastable nature of the freshly 

anodised PS attracts many "contaminants" from the electrolyte solution as well as from 

the ambient gases. Compositional semi- quantitative analyses ofPS have been carried 

out using surface techniques such as SIMS, RBS, NRA, ERDA, etc. FTIR and EPR 

were used to evaluate the structural and bonding characteristics. The main contaminants 

were found to be H, 0, F and C. The most significant analyses are reviewed in this 

section. 

2.4.1. Effects of HF on c-Si 

Extensive work has been carried out on the effects of HF on c-Si surfaces ( Comello 

1990, Chabal et a11989, Hirose et al 1991, Grundner et a11991, Pietsch et al. 1994). It 

was found that dipping c-Si in HF leaves the wafer surface terminated by about 0.85 

monolayer (ML) of silicon hydrides, about O.1ML of fluoride and about O.05ML of 

oxide or hydroxide with silicon bonding mainly to single fluorine or oxygen atoms 

(Comello 1990). The main conclusion from the Chabal group was that a Si (100) 

surface is microscopically rough after HF treatment with mono-, coupled mono -, di -

and trihydride termination. 

The Hirose group (1991) found that the fluorine coverage on an HF -cleaned silicon 

surface depends upon the HF concentration in the solution as well as the on the water 

rinse time. A two-order variation ofHF concentration causes a little change in the 

fluorine coverage. Exceptionally, high fluorine coverage was observed with 50% HF 

cleaning without a water rinse. This was attributed to the adsorbed HF molecules on the 

surface because it is dramatically reduced by a one second water rinse. 

Grundner et al (1991) used X-ray photoelectron spectroscopy (XPS) and high resolution 

electron energy loss spectroscopy ( HREELS) to analyse the chemical composition of 

HF-treated surfaces. It was found that the fluorine coverage was a function ofHF 

concentration. On a Si(100) surface, the coverage ranged from 3x1013 to 1xlOl4 atoms 

cm-2 with an approximate logarithmic dependence on HF activity. It was found also 

(Grundner 1991) that the surface of silicon is by no means saturated by fluorine as was 

reported previously by Krasinski (1986). HREELS spectra of Si (100) and (111) 
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surfaces after a 1 min. 40% HF dip revealed that the Si (100) surface corresponded 

closely to that of a dihydride-covered Si (1 xl) surface and the Si (Ill) showed mainly 

monohydride covered surface (Watanabe et.al., 1991). 

2.4.2. Si-Hx Species from PS 

The inner surface of the as- prepared PS layer is almost fully covered with chemisorbed 

hydrogen during the anodisation process. Nascent hydrogen is produced during 

anodisation at the Si anode and the dangling bonds of freshly etched silicon 

accommodate these hydrogen atoms( Gupta et al1988, Beckmann 1965). 

FTIR Analyses of Si-Hx Species 

Environments of different species on the surface ofPS have been extensively 

investigated by the FTIR method (Beckmann 1965, Anderson et al 1994, Kato et al 

1988, 1989,Ogata et al1995, Feng et al1994). Unigami (1980) observed IR absorption 

peaks at 2128, 907 and 625cm-1 and assigned them to Si-H, Si-H2 and Si-Si vibration 

modes. Gupta et al (1988) observed a doublet at ~ 2000cm-1 and assigned 211 Ocm-1 and 

2087cm-1 to Si-H and Si-H2 stretching modes of vibration. Also, 910cm-1 to the Si-H2 

scissors mode and 666cm-1 and 625cm-1 to the Si-H and Si-H2 deformation modes were 

assigned. Their assignments rely on the measurement of thermal desorption of hydrogen 

from PS. 

Kato et al (1988) used a self supporting PS film which was separated from c-Si by a 

sudden increase of the current density during the anodisation process. A triplet was 

observed at 2090,2110, 2140cm-1 and was assigned to the stretching modes for Si-H, 

Si-H2 and Si-H3 respectively. The assignment ofFTIR peaks for Si-Hx raised some 

controversy. Gupta et al (1988) assigned 2110 and 2089cm-1 to Si-H and Si-H2 

stretching modes and others (Beckmann 1965, Ogata 1995) have assigned the stretching 

modes in a different way: 2090,2110 and 2140cm-1 to Si-H, Si-H2 and Si-H3 

respectively. The latter assignments are being used in thiswork and the reasons were 

discussed in the Discussion chapter. 

Ogata et al (1995) used an ab in ito molecular simulation method to assign various peaks 

of the FTIR spectrum ofPS. To simulate various states of hydrogen in PS, SiH(SiH3h, 

SiH2(SiH3h and SiH3(SiH3) were employed as cluster models for local structures of 
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SiH, SiH2 and SiH3 respectively. The calculated vibrational frequencies and the 

measured IR spectrum ofPS were compared. The triplet that was observed with PS at 

2142, 2108 and 2087cm-1 was assigned to Si-H3 Si-H2 and Si-H stretching vibrations 

respectively. The close resemblance between the IR spectra of hydrogen on a PS 

surface and hydrogen on Si (100) 2xl surface suggests that the surface ofPS is very 

similar to a Si (100) 2xl surface (ChabaI1985). 

Some work has been done to investigate the effects of the ageing process in PS using 

the PTIR method (Kato et a11988, 1989, Ito et a11993) They observed shifted s~gnals 

in aged samples of PS. These were deconvoluted to give four peaks at 2130, 2165 2200, 

and 2260cm-1
. The Kato group (1989) concluded that during ageing process, oxidation 

proceeds through breaking selectively the backbonds of Si-H bonds without any 

dissociation of the Si-H bonds. Once a Si atom is oxidised, the remaining backbond of 

the Si atom can be easily attacked by other oxidants. 

Dynamic secondary ion mass spectroscopy (Dynamic SIMS) 

In dynamic SIMS, a focused ion beam is used to sputter material from a specific 

location on a solid surface in the form of neutral and ionised atoms and molecules. The 

ions are then accelerated into a mass spectrometer and separated according to their 

mass-to-charge ratios. SIMS provides a measurement of elemental impurity as a 

function of depth with detection limits in the ppm range. Quantification requires the use 

of standards. 

SIMS was used by Canham et al (1991) to analyse the impurities in as-anodised and 

aged PS wafers ofp- (20-50 ncm), p + (0.OI-0.04ncm) and n+ (0.012Qcm) CZ silicon. 

.. . d IH- 12C- 160 - 19p- 30S·- d 28S· 14N- Th I The negatIve IOns momtore were , , , ,Ian 1 e samp es 

were analysed after 15 mins., 5 hrs, 5 days and 10 weeks storage in air. Small changes 

were noticed in hydrogen content up to 10 weeks in air and after 10 weeks, its 

concentration has approximately doubled. The remarkable stability ofH content with 

low temperature annealing in air had been noted already from infrared absorption 

spectra (Kato 1989). The increase in the hydrogen content during lengthy storage ofPS 

was explained by the room temperature oxidation ofPS pores by hydrogen-containing 

species such as water vapour, methane, molecular hydrogen, hydrogen sulphide and 

organic vapours, all of which were found in the ambient air. 
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Elastic Recoil Detection Analysis (ERDA) 

ERDA was used for the deteIDlination of hydrogen in PS prepared from p type Si (100) 

with 10Qcm resistivity. Calibration was carried out on a polyimide film of known 

composition and H concentration (Sabet-Dariani 1993). The analysis of a 4 days old 

film prepared from 50% HF solution yielded a H concentration of 20 ± 2 atomic %. The 

analysis assumed that the concentration was unifoIDl to a depth of at least 103 nm. 

Grosman et al (1992) also used the ERDA technique to analyse PS layers on p + and n + 

Si substrates. A HF and CzHsOH mixture in the ratio of 1 : 1 was used as the anodising 

electrolyte. In this case, the reference sample for the analysis was spin-coated with a 

solution of polystyrene (CgH8)n in toluene. It was found that similar quantities of 

hydrogen were present in different PS layers except in the n + PS layers, in which a 

higher concentration of hydrogen was found. 

Earwaker et al (1985) used ERDA for the analysis ofPS on "low" resistive Si wafers 

and found hydrogen up to 50 atomic %. The preparation details of the PS were not 

given for comparison. 

2.4.3. Fluorine (F) content in PS 

A freshly anodised PS film produced in 50% HF can have a relatively high level of 

fluorine take up. The reaction mechanism studies suggest that the fluorine adsorption is 

at least as important as hydrogen in the fOIDlation ofPS (Lehmann et al 1991). The 

bond energy for Si-F is the highest on all possible PS surfaces, Si-F (129.3 kcal mor l
) > 

Si-O (88.2 kcal mor l
) > Si-H (70.4 kcal mor l

) > Si-Si (42.2 kcal mor l
), indicating that 

the fluorine adsorption should be prevalent on the Si surface since it is the most 

theIDlodynamically stable bond. 

By contrast, it was shown that the Si-H bond energy is enhanced with increase of the 

external current used in the preparation process ofPS. It was shown also that the 

strength of the Si-F bond is weakened (Bi-cai 1993). Bi-cai had shown, by 

computational methods that, with increasing anodising currents, the Si-F bond is 

gradually weakened and the Si-H bond is strengthened. At some threshold current 
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value, the Si-H will be as strong as Si-F and beyond this level Si-F becomes weaker 

than Si-H. It was concluded that there would be more Si-F in the samples produced 

with lower current density than in the PS samples produced with larger current density. 

Canham et al (1991) reported that a freshly anodised microporous film, produced in 

50% HF, had a relatively a high level of fluorine incorporation. The fluorine level by 

the SIMS method of analysis showed a monotonic decrease with time. This was 

attributed to the hydrolysis of Si-Fx by atmospheric moisture to give Si-OH species. 

These findings give only a trend for the distribution of fluorine as the STh1S analysis 

requires internal calibration standards of similar composition and porosity to avoid 

matrix effects. 

There is evidence of fluorine found both on external surface ofPS from Auger (AES) 

and X-ray photoelectron spectroscopy (XPS) analysis (Earwaker et al 1983, Hardennan 

et al 1985) and throughout the layer from nuclear reaction analysis (NRA) at a level of 

1-2 atomic % (Earwaker 1983). Analysis of fluorine was carried out by particle induced 

gamma emission (PIGME) on 14 days old PS and it was found to be 265 ± 6ppm, i.e. -

0.03 atomic % (Sabet-Dariani 1993). 

Detailed infrared adsorption studies are needed to demonstrate conclusively that the 

majority of the fluorine is chemisorbed, rather than some fonn of etch residue trapped in 

the micropores. A number ofIR studies ofPS have not identified the stretch mode 

characteristic of Si-F bonding (Chabal 1989, Kato 1988). This may be due to (a) the 

low oscillator strength of the bond and (b) hydrolysis ofSi-F bonds by water vapour. 

2.4.4. Carbon (C) content in PS 

It is very difficult to have any material with no carbon adsorbed on the surface. The 

principal carbon bearing species in the ambient air are carbon dioxide (C02) carbon 

monoxide (CO) methane (CH4) and various organic vapours. Many vacuum based 

surface analytical systems that are used for compositional analysis use pumps with 

carbon based vacuum oil unless specifically modified. Therefore it is difficult to be 

confident in the values for the carbon content in PS. 
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SIMS analysis of as-anodised wafers shows a carbon concentration lower than the 

fluorine level (Canham 1991). Exposure of PS to the ambient air shows an increasing 

carbon content as expected. After 10 weeks in air, the PS layer was found to have about 

20 times more carbon than a freshly prepared sample. It was found also that the carbon 

content near the surface was constant for all the samples exposed to air for 15mins. to 

10 weeks. 

Grosman et al (1993) reported that the atomic ratio ofC/Si is 10% to 20% in PS 

samples prepared from p + and n + substrates with porosity ranging from 47% to 8.0%. 

The origin of carbon was found not to be ethanol of the ethanol-HF electrolyte system as 

the same level of carbon was found in water-HF anodised PS. They were in agreement 

with the Canham group (1991) that the carbon content increases during ambient storage, 

confirming that the carbon present in PS is from carbon-bearing species in the 

atmosphere. Also it was confirmed that the carbon is not from CO2 and CO adsorption 

since the oxygen content was found to be one order of magnitude lower than the carbon 

content indicating that the origin is probably from the organic vapours in the ambient air 

(Sabet-Dariani 1993). In freshly prepared PS samples, H was found to be the main 

impurity but there is some discrepancies in the levels of C, 0 and F. The Canham group 

(1991) found the impurity levels increased in the order C < 0 < F which is exactly the 

reverse of the findings of the Grosman group. This was explained by (a) the samples 

being different in the two studies and (b) the sputtering yields corresponding to the 

negative ion monitored (C-, 0-, F) might have been different. Earwaker et al (1983, 

1985) found carbon at 3 atomic % which is lower than found by the Grosman group 

(1993). 

Oxygen (0) content in PS 
The principal oxygen-bearing species in ambient air are molecular oxygen, water 

vapour, carbon dioxide and monoxide, nitrous oxide, sulphur dioxide and ozone. 

Canham et al (1991) reported that there was a dramatic increase in the oxygen content 

of a microporous layer during storage in air at room temperature. While it is present as 

a uniformly distributed minor impurity « 1 atomic %) in a freshly anodised layer, after 

a week the oxygen content has risen an order of magnitude throughout the layer and 

there is an enhanced concentration near the external surface. They observed also that 

after 10 weeks in air, the oxygen content throughout the PS layer was 35 times that 
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immediately after anodisation. This was attributed to a gradual oxidation of the PS 

skeletal structure. 

A summary of the compositional analyses ofPS using different techniques is presented 

in Table 2-1. It should be noted that the compositional variations are dependent on the 

preparation method as well as on the type of Silicon used. Sabet-Dariani et al (1993) 

analysed PS for oxygen using the NRA technique with single crystal Si02 (quartz) as 

their standard for oxygen. The analysis was based on knowing the stopping power of 

PS which was calculated using the data from the standards. 

2.5.Porous Silicon Applications 
PS possesses unique optical, chemical and electronic properties that can be used in Si 

device applications. Besides its exciting electro-optical properties, PS shows some 

interesting features for micromechanical applications. For many micromachining 

applications, cantilevers and bridges are needed. In contrast to the surface 

micromachining method, where a thin film of Si02 « 1 Onm) is dissolved, a sacrificial 

layer (up to 104 nm) can be produced with PS technology (Steiner 1995). The 

dissolution of this thick layer results in a large distance between membranes and bridges 

and the bulk Si. This is an important aspect for the sensitivity of thermal transducers. 

Thermal oxidation ofPS is a promising technique for the fabrication of high quality SOl 

and is in contrast to other SOl methods because the silicon islands formed are 

undamaged mono crystalline silicon.(Bondarenko et al 1995) 

The three main areas where PS has found applications are: 

1. SOl Technologies; 

11. Sensor Technologies 

111. Optoelectronics 
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TABLE 2- 1 Comparison of the effects of anodising conditions of PS to compositional variation 

Type of 
Anodising conditions Method Compositiom references 

Silicon 
p-Si (100) 

ION HF !H2O IR 
HI Si l 01.5 Beckmann, 1965 

1 - 2 nem H2 Si l 0 1 

p-Si (100) 
HF : H20: C2HsOH 1 : 1 : 4; lImA em-2 FTIR 

SiOH, Si02, Sh - SiH, Borghesi et aI, 1993 
1-5 nem Si02, 02-SiH 

p-Si (l00) 
HF : H20: C2HsOH 1 : 1: 4; 200mA em-2; 15see. FTIR SiH, SiH2 Gupta et al. 1988 

0.5 nem 

p-Si 
HF : H20; C2HsOH 2 : 2 : I FTIR SiHx (x = 1, 2, 3) Xie et aI, 1992 lOl6em-3 

p, n-Si 
H20: HF :C2HsOH 1 : 1 : 1 FTIR SiHx Rao et aI, 1991 10 Isem'} I 

I 
, 

p-Si (l00) 40 -50 % HF/H20 NRA,ERDA, I 

10nem lOmA cm-2, 3 min. RBS,PIGME Si2.s 0\.2 C1.3 H 1.2 Sabet-Dariyani et al1993 I 

p-Si (100) HF/H20 
RBS, NRA 

0-5 at.% 0, 1 -2 at.% F, 
Earwaker et aI, 1985 

I 
0.01-700 nem 10 -300mA em-2 20 - 50 at.% H and~ 3 at.% C 

! 

p+, 0.01 nem HF : H20 ;C2HsOH 1 : I : 2; I-50mA em-2 NRA,ERDA, Sis.4 Co.s 0 0.1 H36 FO.l - Lum. PS 
Grosman et al1994 i 

RBS Si7.2 Co.s 0 0.1 H2.1 FO.I - Non-Ium PS I 

p., 30 nem 20 - 50 % HF/H20 
SIMS 

H : F : ° : C = 50 : 26 : 3 : 1 - Fresh PS Canham et al 
p+ ,0.01 nem 200/0HF/H2OIC2HsOH H : F : ° : C = 17 : 1 : 15 : 5 - Aged PS 1991 

- - - -- -- -- .- - - -
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2.5.1. SOl Technologies 

The SOl fabrication methods are classified into two main categories: 

a) Buried PS formation. This is done by selective formation of buried PS underneath 

islands, which will eventually contain the devices. It exploits the strong dependence 

of the rate ofPS formation on Si dopant and concentration (Tsao 1987) 

b) Epitaxial deposition on PS. This is carried out by direct epitaxial deposition of Si on 

a previously formed PS layer. This process relies on the fact that the remaining 

porous silicon skeleton is a single crystal. 

Imai et al (1979, 1981) developed a method for isolation ofMOS IC's. This method is 

called IPOS (Insulation by Porous Oxidised Silicon) which was an alternative to the 

LOCOS (Local Oxidation of Silicon) isolation technique. The LOCOS method gives a 

rigid structure which protrudes above the original Si surface and the IPOS method has 

the advantage of having the thick oxide fully recessed by producing PS and oxidising it 

(Figure 2-8). The main problem with the IPOS method was large leakage current. Imai 

found that the leakage current decreased with the HF concentration of the electrolyte. 

Figure 2-9 shows the I-V characteristics of a reverse biased P-N junction made by the 

IPOS method for different HF concentrations and also by the LOCOS method. The next 

advance in device isolation using the FIPOS (Full Isolation by Porous Oxidised Silicon) 

process came about in 1984 (Imai et al). The process is shown in Figure 2-10. The key 

features of this process are proton implantation and the fonnation of thick oxidised 

layers. A FIPOS / CMOS logic array with 1300 gates was successfully fabricated and 

was shown to have a higher speed and lower power dissipation than the equivalent 

fabricated by bulk CMOS technology (Imai, 1984). The main disadvantage ofImai's 

FIPOS method was that a thick oxidised PS layer is needed to isolate even small islands. 

For example, a 7~m thick layer is needed to isolate 8~m wide islands. Wafer warpage 

was found to be the other problem and was due to the oxidation of PS on one side of the 

wafer. Despite these problems, 64K CMOS-SOl SRAM (Static Random Access 

Memory) were produced by Ehara and co-workers (1985) The structures used in the 

above applications have mainly used n / p structures where n islands were implanted in 

a p-Si substrate with PS fonned only in the p regions. 
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The most promising approaches are those based on structures such as pip 4-Ip or nln + In 

(Tsao 1987, Holmtrom 1983) where PS is fonned only in a thin (10-30 11m) heavily 

doped buried layer accessible through the upper layer (Figure 2-11). The processing 

details for the above structures are given in the above references. The disadvantage of 

this technique is the need for a good thin epitaxial layer with a sharp interface. The 

Barla group (1986) fabricated a 3nm CMOS in the SOl islands and their results show 

mobilities of 

transistors with very low leakage currents, <10-13 A 111m width. 

Zorinskyet al 1986), at Texas Instruments, developed a method called ISLANDS 

(Isolation by Self-Limiting Anodisation of an W Epitaxially Defined Sublayer). This 

method uses RIE (reactive ion etching) to fonn trenches of several microns deep, to 

exposing n + anodisable layer. This gives the process the added flexibility to isolate 

layers of any desired thickness while at the same time making it possible to anodise 

either from a top surface or from the side walls (Figure 2-12). The minimum pitch 

achieved to date is roughly 2.811m (111m islands separated by a 1.811m wide trench), but 

a pitch of 211m or less are possible (Zorinsky, 1986). The main advantage of this 

method is the self-limiting nature of the anodisation process, which allows the thickness 

and the unifonnity of the SOl layer to be controlled accurately. Thomas et al (1989) 

used the ISLANDS method to produce fully depleted thin film CMOS-SOl devices and 

circuits in silicon islands 100nm thick with perfonnance comparable to SIM:OX 

(Separation by Implanted Oxygen) processed on the same line. This technology for the 

production of SOl-CMOS offers all the advantages over bulk CMOS of SOl produced 

by oxygen implantation, including simpler processing, reduced short-channel effects and 

reduced parasitic capacitance (Figure 2-13). 

Epitaxial deposition techniques on PS are attractive owing to the uniformity of thickness 

of the PS layer in the isolated island. Epitaxial growth is perfonned at a relatively low 

temperature « 850°C) to avoid PS restructuring. Low-temperature epitaxy techniques 

such as PECVD (Plasma enhanced chemical vapour deposition) of silane (Sifu) at ~ 

7500C (Takai 1983) and MBE (molecular beam epitaxy) at ~ 770°C (Beale 1985, 

DA vitaya 1985) are used. Residual defects such as micro twins and dislocations 

originating from PSL/epitaxial silicon interface are observed with TEM (Beale 1985). 
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Oules et al (1989) found that epitaxial silicon films grown on PS layers on lightly doped 

wafers exhibited a large defect density (1010 cm-2
). It was shown that the defect density 

was reduced by a fraction of 102 to 103 by the use of silicon channelled implantation and 

susequent annealing (Oules et al 1992). Also, it was observed that if the epitaxial layer 

was deposited on PS formed from a p + Si substrate, the epitaxial quality was equivalent 

to the homoepitaxy of Si on c-Si. So far, the crystalline quality of Si overlayers 

fabricated with epitaxial techniques have been inferior to those fabricated by the 

selective buried anodisation method. However, reasonably good device characteristics 

have been obtained using these epitaxial techniques, since the bottom of the epilayer 

which is found to be the most defective region of the island (Oules, 1992), is also 

oxidised during the PS oxidation. An initial low temperature oxidation (~ 450°C) to 

stabilise the pores, followed by higher temperature oxidation has been reported to 

reduce warpage and defects in the epitaxial Si layer (Lin et al 1986) 

2.5.2. Sensor Applications 
PS possesses unique optical, chemical and electronic properties that can be used in 

device applications. Owing to its very large surface area to volume ratio (> 500) and 

small characteristic dimensions, PS can be dissolved quickly by certain etchants which 

attack bulk Si to a negligible degree (Barret 1992) 

The formation of PS is dependent on the type and the level of the silicon doping and the 

material can be formed selectively on particular regions of a wafer which has 

appropriate doping characteristics. The selectivity ofPS formation and its extreme 

reactivity due to the large surface area of its pores can be used in microsensor 

technology. Also, PS can be selectively dissolved in dilute KOH solution and silicon 

micromachining can be achieved by appropriate localisation ofPS formation followed 

by chemical etching. Various micromechanical structures such as holes, trenches and 

membranes can be obtained by these means. 

Some of the interesting properties ofPS are summarised below: 

a) Silicon can be etched to form thick layers ofPS. (Barret, 1992); 

b) An etch stop in silicon can be obtained by selective doping (Steiner 1993); 

c) It can be removed easily with very weak KOH solution(Lang 1994) 

Page 36 



d) Anodisation is a CMOS compatible process and is exploited in SOl (Bondarenko 

1995) and optoelectronic applications (Kozlowski, 1994); 

e) PS has a thermal conductivity of less than 2W mK-1 and is a good material for 

thermal sensors (Drost 1995) 

A few selected examples of the use ofPS in sensor applications are presented. 

Thermal Sensors 

A large number of physical parameters can be measured by thermal sensors. Besides 

temperature, the thermal measurement is relevant to fluid flow, IR and UV radiation, 

high frequency power and gas analysis. A small amount of thermal energy should cause 

a large temperature variation of the thermal structure to realise an efficient thermal 

sensor. This means that the heated body must be small and well isolated from its 

support, which is normally a Si substrate. Two examples are given for the application 

of PS in thermal sensors. 

A thin film bolometer 

A bolometer is a thermal sensor for the measurement of infrared radiation. Figure.2-14 

shows a 3-D sketch of a such a bolometer which consists of free standing membrane 

with a zig-zag resistor (NiCr 15nm and Au 500nm widths) on it (Steiner et al 1995). 

When the self-supporting membrane is heated externally by IR radiation or the 

surrounding medium, the resistivity of the metal resistor changes and this change is 

measured. 

Crystalline silicon is not a suitable membrane because of its high thermal conductivity 

(~ 150W mK-1 ) and silicon nitride (Lang et a11990) or silicon carbide (Klumpp et al. 

1994) were used. These membranes have thermal conductivities of the order of2.25W 

mK-1. The only disadvantage is the vulnerability to breakage. Drost et al (1995) 

showed that the thermal conductivity ofPS is very small (::::: O.025W mK-
1

) and they 

avoided the use of a free standing PS film for bolometer application. Instead, the sensor 

was placed on a thick PS layer (>30J-tm). Convection was prevented by the pore 

structure and it was found to be a good isolation layer. 
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metallic resistor 

I 

membrane 

bulk silicon 

FIGURE 2- 14 A 3-D sketch of a bolometer 

(Steiner et aI., 1995) 

Hot Wire Anemometer 

A sketch of a polysilicon hot wire anemometer showed in Figure 2-15 . A polysilicon 

bridge of cross section 0.5 x 2 )J.m and 600 )J.m long was fabricated over a wide groove 

of 80)J.m width , forming the hot-wire anemometer in a flow channel (S teiner 1993) . The 

gas or liquid medium flowed round a heated bridge. Depending on the veloc ity and the 

density of the medium, the bridge was cooled by heat dissipati on. The change in 

temperature was detected by the change in the resistance of the wire. The fl ow rate was 

thus measured indirectly. 

polysilicon hotwire bondpad 

,........,----.. ____ ~oxide 

FIGURE 2- 15 Hot wire anemometer 

(Steiner et aI., 1993) 
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Humidity Sensors 

PS has a high surface to volume ratio . Therefore a capacitance-based moisture sensor 

can be realised using the change of relative permittivity when moisture is absorbed on 

the oxidised pore walls. A thin gold film is sputtered on to the porous layer, allowing a 

good electrical conductivity (Steiner et al. 1995). 
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FIGURE 2- 16 Performance of a PS-based humidity sensor 

(Burkhardt, 1975) 

The Anderson group (1994) reported a similar device with aluminium metaIIisation . 

Mesa structures of 200 ).lm width were produced . The range of capacitive response 

between a dry ambience and 100% humidity at 25°C for 20min. was assessed. A large 

change in capacitance (440%) from 0-100% relative humidity was observed, much 

larger than the response of previous state-of-the-art humidity sensors. A patent was 

published in 1977, (Burkhardt et al) describing a method using porous silicon moisture 

sensors for a manufacturing process . The devices were subjected to various relative 

humidities for a period of several minutes and the resistances were measured. Figure 2-

16 gives a plot of the relative humidity versus the resistance . 

A review on miniaturised humidity sensors was reported by Rittersma (2002). This 

reviews capacitive- , hygrometric-, gravimetric- , optical- and integrated sen ors . A 

summary of all the reviewed devices was given in a table format. 
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Gas Sensors 

The high surface area ofPS was taken into account in the application of gas sensors. A 

gas sensor for the detection ofN02 was developed by Bartato et al. In 2001. This was 

done by depositing a free standing PS film on alumina substrate, thus removing the Si 

substrate that is inactive in gas detection. This sensor was able to detect very low 

concentration ofN02 (100 ppb) with no interference with ozone, benzene (20 ppm), CO 

(1000ppm) and organic vapours. This was shown to operate at room temperature. 

Another sensor was produced for the detection ofRCI, NH3 and NO at the 10 ppm level 

(Seals et ai. 2002). This was fabricated from mesoporous PS structure through 

electroless gold plating. The response of this device, which operates at a bias voltage of 

I-10m V, was reported to be rapid and reversible. 

Biosensors 

The role of Si structures in medicine has taken a new dimension. In particular porous 

silicon produced with nanometer size holes can be "biocompatible and "biodegradable". 

There are some interesting papers that have been published on this subject (Canham et 

aI., 1997,2001). 

An optical interferometric biosensor was developed by Tinsley-Bown et al. (2000) for 

immunoassays. For this model system, the pores should be > 50nm in diameter to allow 

easy ingress of reagents and the layer must also display Fabry-Perot optical cavity 

modes. The detection antibody was rabbit IgG and the analyte was a-rabbit Ige 

conjugated to horseradish peroxidase (HPR). 

Another biosensor was reported for detecting life threatening micro-organisms such as 

E.Colii using PS (Misra et al. 2001). This sensor was produced by vacuum deposition 

of polyaniline films on macroporous PS structures. The response time was found to be 

5s. The fabrication process, morphological, structural and electrical characterisation of 

this sensor have been described in this paper. 

The characteristics of urea sensor based on platinum deposited PS was described by Jin 

et al.(200l). Platinum deposited PS and polypyrrole (Ppy) films were characterised by 

SEM and energy dispersive X-ray spectroscopy. The sensitivity of this sensor was 

found to be ~800mAJdecade in the range of 10mM-100mM. 

Page 40 



Chan et al. (2001) reported the design and testing of a biosensor for DNA testing. This 

device structure consists of a microcavity resonator made ofPS layers. When a 

luminescent PS layer is inserted between two Bragg reflectors ( also from PS), the broad 

luminescence band is altered and multiple and very small narrow peaks is detected. The 

position of these peaks is very sensitive to a small change in refractive index. It was 

demonstrated that this sensor displayed sensitivity, selectivity and response speed. 

Bengtsson et al. Reported to have produced enzyme microreactors by homogenous PS 

carrier matrix. The production ofPS micro enzyme reactors (muIMER) was described. 

The muIMERs were evaluated by immobilising two types enzymes, glucose oxidase 

(Gox) and trypsin and the resulting catalytic turnover was monitored by a calorimetric 

assay. 

2.6.Applications in Optoelectronics 

It was reported in 1990, that when PS is further etched chemically in HF for several 

hours after anodisation to give fine "quantum wires" of Si; « 5nm diameter), it emits 

bright red light under excitation with blue or shorter wavelength light (Canham 1990). 

It was reported that the quantum efficiency, which is defined as the fraction of electrons 

and holes that emit light during recombination, is as high as 10% i.e., 105 times higher 

than that of c-Si. The luminescence ofPS covers three characteristic regions: (a) the 

red-green region around 1.4 -2.2 eV (b) the blue region of2.3 -2.6 eV and (c) the IR 

region which is around 0.8eV (Pavesi 1996,437-48). Research into the luminescence of 

PS is concentrated in two main areas: (a) understanding of the origin of luminescence; 

and (b) fabrication of electroluminescent (EL) devices. 

Many theories have been put forward to explain the origin of photoluminescence (PL) in 

PS. Excellent reviews are given by Jung et al (1993) and Pavesi (1996). The origin of 

PL was explained by different models and the main models will be discussed briefly 

here. Also, some examples of the applications ofPS in the areas ofEL and 

photovoltaics will be reviewed in this section. 

2.6.1. Origin of Luminescence 

Although, the exact mechanism of emission of light is still unclear and highly 

controversial, the most common proposed mechanism in the literature centres around 
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quantum size effects of the Si "quantun wires" formed in high porosity PS layers 

(Canham 1990, Lehman et al. 1991). The contradictory observations reported in the 

literature may be due to the fundamental differences in the preparation methods adopted 

by various groups in this field. The following four proposed models are briefly 

discussed here. 

(a) quantum confinement model 

(b )disordered silicon surface model 

(c) amorphous silicon model 

(d)siloxene model 

Quantum Confinement model 

This model was put forward by Canham (1990) using the concept of a "quantum wire" . 

He suggested that, as porosity increases, the feature size of the Si skeleton decreases and 

a dramatic quantum size effect should occur if the diameter of the Si wire is 

significantly less than the dimensions of the free exitons (~ Snm). An exciton is a 

bound electron-hole pair. It was shown by Canham that , by changing the anodising 

conditions to obtain finer quantum wires, the PL peaks were shifted to lower 

wavelengths (Figure 2-17). This suggests that the quantum confinement plays a 

significant role in the PL mechanism. Lehman and Gbslele (1991) reported that there 

was an increase in the bandgap with increase in porosity of PS . This observation 

supports the quantum confinement model. 
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400 700 1000 1300 
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FIGURE 2- 17 Observed blue shift with thinning of Si wires 
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(Canham, 1990) 

However, this does not by any means imply that PS is a direct bandgap material. In a 

direct bandgap semiconductor, the luminescent decay time is typically not more than a 

few microseconds. In PS, however, this lifetime can be of several tens of microseconds, 

which suggests that the mechanism is most likely an indirect transition. (Iyer et al 1993). 

Read et al (1992) have calculated the properties of quantum wires and used the results to 

analyse the PL phenomenon. They modelled PS as an assembly of Si wires of 

rectangular cross section with thickness of 1.2-2.3 nm and employed a first-principles 

pseudo-potential technique. Also, they assumed that the surface of the Si wire ofPS is 

saturated with hydrogen atoms. Their calculations suggest that the fundamental 

bandgap of a Si wire structure ofPS is both "direct" and larger than the bandgap in c-Si 

which is "indirect". The difference between the theoretical phonon emission peak (1.8 

e V) and experimental phonon emission peak (1.48 e V) for ~ 3 nm quantum wires 

produced from 800/0 PS was explained by the -binding and localisation energies of the 

luminescence excitons. 

There are a few controversies that do not support this model entirely. It was shown by 

Canham (Canham 1990) that further pore widening or reducing the diameter of the Si 

wires (by chemical etching for longer hours) ofPS leads to blue shift. However, Prokes 

et al (1992) found that there was no blue shift, but only a change in the PL intensity. 

Figures 2-17 and 2-18 illustrate both findings. These results indicate that the blue shift 

of the PL as a function of particle size or pore widening is not a universal phenomenon. 
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FIGURE 2- 18 No blue shift with thinning of Si wires 

(Prokes et aI., 1992) 

Disordered Si Surface Model 

It was proposed by the Koch group 1993) that the carriers were created within quantum 

confined Si nanocrystallites, but that the recombination leading to light emission occurs 

at the surface. The recombination at the surface was assumed to originate from Si band 

tail states created at the surface by strain and disorder. It is accepted by the Koch group 

that the enlarged bandgap ofPS is a quantum size effect but they suggest that the c-Si 

skeleton ofPS has imperfectly passivated surfaces as a result of its irregular shape and 

strained bonds between Si atoms and the surface. They argue that this might lead to 

surface states which are the cause of the PL in PS . 

The surface state mechanism can account for the observed sensitive dependence of the 

emission on photochemical treatment reported by Kux and coworkers (1993). It was 

shown by the Kux group that , by dipping in propanol and HF based electrolytes under 

UV light, the PL changed from green to red, a shift of up to 0.6 eV. There is no logical 

way to account for this in terms of the quantum size effect (Figure 2-1 9) . 
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FIGURE 2- 19 Effects of different electrolytes on PL spectra 

(Kux et aI., 1993) 
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FIGURE 2- 20 PL spectra as a function of oxidation times 

(Fisher, 1979) 

One of the problems with this model is the fact that the red PL in oxidised PS does not 

shift in energy after a prolonged heating at high temperature (Figure 2-20). At high 

temperatures, hydrogen desorbs from the PS surface and the surface states hould be 
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different from those at room temperature, i.e. PS should be temperature sensitive as is 

amorphous Si (Fisher 1979), and thus the PL frequency is expected to shift . Figure 2-21 

shows that it is not the case. 

Amorphous Silicon Model 

There have been reports of the presence of amorphous Si in the PS network (Pickering 

et al 1984, Cullis et al 1991 , 1998, Prokes 1994, Pavesi 1996). In PS samples, the Si 

"wires" was found to consist of nanocrystalline Si particles embedded in amorphous Si 

or oxide (Cullis 1991). J ung et al (1992) have analysed luminescing PS using TEM, 

and have found a structure containing Si nanocrystals and an amorphous phase . 

Figure 2-22 gives a schematic of this proposed structure . 

One of the drawbacks of this model is that there is no PL peak energy shift observed at 

elevated or room temperature . This means that the PL mechanism is not related to c-S i 

or a-Si as they are sensitive to temperatures . It is a well-established fact that the a-Si 

crystallises at temperatures as low as 450°C (Csepregi 1984) so it is very unlikely that 

the a-Si component ofPS can exist after heating and oxidation at 800°C. 
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FIGURE 2- 21 PL spectra of laser annealed PS at 1000K and at 300K 

(Prokes et aI., 1995) 
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FIGURE 2- 22 Schematic of a PS layer showing Si nanocrystals in amorphous matrix 

(Pavesi, 1996) 

Siloxene Model 

This model was suggested by Brandt et al (1992) and it relates the origin of PS to a 

polymeric Si-O-H compound called siloxene (Si60 3H6)n- This consists of linear Si 

chains interconnected by oxygen or Si layers with alternating OH or H terminations . 

The luminescence energy of this material can be tuned over a large spectral range, 

including the visible region, by substituting different ligands such as OH group, 

alhohols or halogens in the place of H. 

During annealing, siloxene goes through a dehydrogenation process to give Si ~O , as the 

temperature approaches 600°C. 

Si 6H3(OH)3 + H20 ~ Si6H3-x(OHh+x + X H2 

Si-OH + HO-Si ~ Si-O-Si + H20 

This is no longer a siloxene structure, and this material is not luminescent. However, 

luminescent PS can survive oxidation at temperatures as high as 950 to 1050°C (Petro­

Koch et al 1992). Heating of the freshly etched PS at these temperatures in oxygen 

would have driven off all the H atoms and replaced them with oxygen. This cast doubt 

on models based on a-Si and siloxene. Also, efficient PL is observed from as-anodised 

structures , where there is negligible oxygen on the surface and there is no chance of 

having siloxene compounds. 

Page 47 



2.6.2. Electroluminescent (EL) Devices 

There have been many reports published on the EL observed from PS and its 

applications to produce LED's. These are very simple structures with a conducting 

material on a PS layer. EL is observed (a) in solution with liquid or wet contacts and (b) 

in structures using a number of different solid state contacts such as gold or indium tin 

oxide (ITO). The LED's produced from PS show very low efficiency (s 10-2 %) 

compared to its high quantum efficiency for PL (;::;10010) (Steiner et aI1995). 

The EL was detected during anodic oxidation in the electrochemical cell containing 

solutions ofKN03 or HCI (Billet al 1992, Halimaoui et a11991). The EL excited in this 

manner is short lived, lasting only a few minutes. This was attributed to the oxidation 

of the c-SiIPS interface which electrolytically isolates the PS layer. However, more 

stablity was reported using an aqueous electrolyte containing persulphate ions (S2082-) 

with the PS layer biased negatively (Beale et al 1993). The EL produced by liquid 

contacts is very efficient but for practical LED's solid state contacts are essential. 

EL devices with solid state contacts have been demonstrated using conductors such as a 

semitransparent layer of gold (Richter et al 1991, Koshida et al 1992, 1992, 1995), 

transparent ITO Indium tin oxide (ITO: 91 % In20 3, 9% Sn02) (Kalkhoran et al1992), 

microcrystalline silicon carbide (J.lc-SiC) (Mimura et a11993) and conducting polymers 

such as electropolymerised polypyrrole (Koshida et al 1995, Cottrell et al 1993), and 

polyaniline, P ANI (Bsiesy et al 1995). 

The first LED made ofPS consisted of an AulPS/c-Si structure similar to a Schottky 

diode (Kalkhoran 1992). Although this device showed EL, its efficiency at room 

temperature was of the order of 10-4_10-5 %. The threshold voltage for observable EL 

was ~ 1 OV. Another version of the diode mentioned above was fabricated on a PS layer 

produced from n-Si and the anodisation was carried out under illumination. A thin 

(12nm) film of gold was sputtered on the PS layer, It was found that the intensity of 

light is linear with the current through the device (Lang et al 1993). This behaviour is 

similar to that observed with LED's in GaAs technology. The quantum efficiency was 

found to be of the order of 10-4 to 10-3 0/0. The onset voltage was found to be less than 

2V. 
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Gold absorbs some of the emitted light and is semitransparent and the the quantum 

efficiency is observed to be low when gold is used for the metal contacts. ITO makes a 

better top contact because it is transparent to all wavelengths of visible light. Even 

though ITO does not form a good junction to PS, the p-njunction that ITO forms injects 

carriers more effectively into the luminescent layer than does a Schottky contact and it is 

possible to improve EL characteristics by the ITO method. Maruska et al (1993) 

fabricated a n-p heterojunction LED based on p-type PS and transparent n-type ITO. It 

was reported (Maruska, 1 993) that, under forward bias, a light emission at -580nm was 

observed with an onset voltage lower than 2V. 

Loni et al (1995) produced an PS based EL device with an external quantum efficiency 

greater than 0.1 % under CW operation. The structure that was used in the study was 

ITOIPS/c-Sil AI. External efficiency was defined as the ratio of the total number of 

photons emitted and the number of electrons flowing through the external circuit. Loni 

et al found that, for an applied bias of9V, the ratio of forward to reverse current was 

104
. The EL was orange in colour. The device was found to show quantum efficiency 

between 0.1 to 0.18 for an applied current density in the range of 0.2 - 7.0 Am-2
. This 

corresponds to an applied bias in the range of 4-6V. It should be noted that this 

efficiency is achieved at biases compatible with the operation of CMOS circuitry. Also, 

it was found that the output efficiency fell by a factor of 4 over a period of 5 hours when 

the device was in a vacuum system under a pressure of 10Pa. However, in ambient air 

at a pressure of 1000Pa, the efficiency fell by a factor of 100 in a few minutes. 

Another type ofheterojunction approach used wide bandgap semiconductors such as 

microcrystalline silicon carbide (/-lc-SiC) to improve carrier injection which was 

believed to be the mechanism for EL in PS. This method was used by the Futagi group 

(1993, 389-93). This device had a ITOI/-lc-SiCIPS/c-Si/metal structure. Red to orange 

EL was observed under an electrical bias of -20V, which is very high for practical 

purposes. 

The colours achieved from PS-based EL devices were reported by Kozlowski et al 

(1994). It was demonstrated that by illuminating n-type PS samples with light of 

different wavelengths during anodisation, the colours of EL from n-PS could be 

modulated. Kozlowski reported that the devices produced from LN-illuminated PS 
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samples produced blue and green EL and the visible illumination ofPS produced orange 

EL. 

The method of using an optical micro-cavity technique to control spontaneous emission 

is well known in 111-V semiconductor optoelectronics. The idea of using both a p-n 

junction for carrier injection and a micro-cavity to control the spontaneous emission was 

shown to produce a very efficient LED based on PS (Pavesi et al 1995). The key 

problems with the PS-based LED's which are still to be solved for optical 

interconnections are their stability and switching speed in the Gbitlsec. range. Thus, for 

interconnects, the best hope seems to be the blue luminescence. For optical display 

applications such as flat panel displays, better efficiencies are required. This means that 

better material is needed for the solid state contacts to increase carrier injection 

efficiency. 

2.6.3. Photovoltaics 

PS is shown to be useful in transforming optical absorption into electricity. The 

applications ofPS to photovoltaics such as solar cells are reviewed here. The potential 

advantages of using PS in solar cells are listed below. 

a) The network morphology ofPS can be used to enhance trapping. 

b) The bandgap of PS may be adjusted for optimum sunlight absorption by controlling 

the Si skeletal size. The maximum solar cell efficiency vs. bandgap curve peaks at 

~ 1.5eV. 

The application ofPS in photovoltaics can be traced back to 1982, when Prasad et al 

(1982) formed a Si02 layer with an oxidised PS layer on the front surface of a solar cell 

to form an antireflection (AR) coating. In experiments by Prasad et aI, p + n diffused 

junction solar cells of relatively low conversion efficiency were used. A PS layer was 

produced on p + Si and it was oxidised at 500 to 600°C. This caused the average 

reflectance of the solar cell surface (in the wavelength range of300 - 800nm) to 

decrease from 370/0 to 8%. Also, the conversion efficiency was found to be improved 

and this was due to a combination of light trapping and passivation of the surface. 

Some of the solar cells were exposed to a normal terrestial environment for several 

months and showed no degradation of the AR coating (Prasad 1982) 
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More recently, photoe1ectrochemically-etched PS was used to reduce surface 

recombination and this was found to improve both the efficiency and the stability of the 

cell (Levy-Clement 1991). Tsuo et al (1993), in their study, found that the PS-covered 

c-Si showed an integrated reflectance of only 1.4% at 500nm compared with about 40% 

for the polished Si surface. They also investigated the efficiency of a PS anti-reflection 

layer (ARL) on polycrystalline Si in HF/methanol electrolyte. It was found to produce a 

much more uniform etch and a much brighter PL than the HF/ethanol system. The 

average reflectance ofPS-etched poly-Si in the range of 500 to 850nm was about 10%. 

Other methods such laser texturing has a loss of 5% and mechanical grooving with a 

6.60/0 loss over a similar wavelength range (Tsuo 1995). Smestad et al (1992) studied 

the photoresponse of aPt probelPS/c-Si structure. They reported that, under simulated 

sunlight, the open circuit voltage was approximately 0.36V and the photo current was 

about 2!J.A. However, the series resistance was found to be high (1 mega-ohm) in all 

cells. With little known presently about the charge carrier transport mechanisms and the 

photocarrier generation, it is difficult to determine the origin of this high resistance and 

to design high-efficiency solar cells that use PS as the light absorbing layer. 

It was reported (Unal et al. 2001) that a sandwiched structure device in which semi­

transparent continuous gold electrodes were deposited on stain-etched PS showed high 

efficiency in photocurrent under visible light exposure. It was shown that metal coated 

PS devices have great potential for application in solar cells and photodetectors. This 

process was is also more cost-effective than current technologies since there is no need 

for antireflection coatings. 

2.6.4. Photodetectors 

There have been reports of photo detectors fabricated using PS. Yu et al (1992) 

fabricated a PS metal-Si-metal (MSM) device using a micromachined Si mask instead 

of photolithography. A responsivity of 0.5 AIW at 628nm and a dark current of 950nA 

at 10V were reported. Zheng et al (1992) fabricated AlIPSI Al photodetectors. The 

spectral response was measured for the wavelength range of 400nm - 1075nm. Near 

unity quantum efficiency for light converted to electrical energy was obtained in the 

wavelength range of 600 - 900nm. The metastable state and the high resistivity of PS 

restrict the utility of as-anodised PS for optoelectronic devices. Tsai et al (1993) applied 

rapid thermal oxidation to PS to fabricate MSM photoconductors and p-n photodiode. 
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The MSM was found to have responsivity greater than 6.4 NW at 81 Onm and to exhibit 

strong responsivity in the UV region. The photodiode was found to exhibit 75% 

efficiency at 740nm 

A porous silicon based UV detector was reported by Min et al. in 2001. This device 

was based on stain-etched PS and pn junction. To increase detection efficiency, the 

peak spectral response wavelengh of the pnjunction diode is matched with the peak 

wavelength ofPL emitted from PS. It was found that the diodes showed no sensitivity 

to UV light on their own but with the PS the detector was very sensitive to UV light. 

The diffemtial sensitivity was calculated as 2.9 mAIm W. 
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Chapter 3 Experimental Methods 

The development of the TPD system, as well as methodologies of characterising the 

adsorbates on PS are discussed in this chapter. The developments of these techniques 

are as important as the results obtained from them for this work since the system was 

developed and built in the Middlesex university Microelectronics Centre and was not a 

commercial system. The following three main areas are considered here. 

a) Development of the TPD vacuum system 

b) Development of the heating unit 

c) Development of a suitable technique for the preparation ofPS samples with a 

minimum exposure to the environment, 

d) Development ofFTIR analytical technique for the characterising adsorbates on PS 

substrates, 

3.1 Development of the TPD system 

The development of the TPD system falls into two categories. One is to choose a 

suitable pumping station that gives minimum contamination and the other is the 

development of a compatible heating method for the PS wafer and the measurement of 

temperature of the PS sample. It is found that PS is a material which has lower thermal 

conductivity than c-Si (Drost et aI., 1995) 

3.1.1 Development of the Vacuum System 

The vacuum chamber for the TPD system was built as "6-way crosses" with three 

rotable flanges. The pumping system comprised of three sorption pumps connected in 

series with an ion pump. This arrangement was selected in order to provide a 

contamination free vacuum system. It was found that this pumping system was 

incapable of handling the upsurge in pressure caused by the gases released during the 

heating of a PS sample. 

The system was modified to a turbomolecular pumping station. This consists of a 

turbomolecular pump (Edwards 250EXT model) backed by a two-stage rotary pump. 

The EXT models are hybrids, have a facility of preventing backstreaming of oil into the 

vacuum system. This means that any carbon contamination from the pumping oil 
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vapour is avoided. It is achieved by having the high pressure end of the pump, which is 

connected to the backing pump, with oil lubricated bearings and the lower pressure end, 

which is connected to the vacuum chamber, with ceramic based oil-free magnetic 

bearings. A molecular sieve based trap was set up between the turbo molecular pump 

and the backing pump as an additional precaution to trap any oil molecules from the 

backing pump .. 

A VG Monitorr 100 quadrupole mass spectrometer (QMS) was connected to the 

chamber with the detector head line of site of the PS sample. The distance between the 

analyser head of the QMS and the sample is approximately 6mm. This arrangement 

avoids the analysis of the target gas being swamped by the background gases which 

could desorb from the vacuum chamber walls. The schematic diagram of the TPD 

system is given in Figure 3-1. 

3.1.2 Development of the heating unit 

Uniform heating of porous silicon is essential in TPD analysis as the desorption of the 

adsorbed species occurs at a narrow range of temperature. It is a well known fact that 

uniform heating of c-Si presents a difficult problem. c-Silicon exhibits negative 

resistance characteristics, that is, the resistance of the sample decreases with increasing 

temperature. Therefore direct heating of porous silicon or c-silicon needs a very high 

output impedance power supply to swamp the negative impedance of the sample and 

prevent thermal runaway. Thermal runaway is caused by higher current passing through 

low resistance spots present on the material and results in higher degree of localised 

heating. In the case of low resistance c-silicon (e.g. 2Q cm), a low voltage is sufficient 

to start the heating current, but with the high resistance c-silicon (e.g. 50Q cm.) a high 

voltage (~ 500 volts) is required. In both cases the current requirement is high when the 

sample reaches higher temperature. Also, the direct resistive heating, would involve 

large "feed throughs" to the vacuum system for the reasons discussed above. 

Such a power supply was built in-house. The temperature of the sample was controlled 

by feedback from a thermocouple. Localised spots on the wafer exhibited slightly lower 

resistance and current flowed preferentially through these spots. 
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This caused current flow through interlinked areas of spots fonning a narrow track 

clearly visible at higher temperatures. This phenomenon is known as "tracking". 

E-beam Heating Method 

In view of the preceding problems, an electron-beam heating system was built which 

consisted of a heating filament held at a negative voltage from the silicon which was 

earthed. The silicon wafer was held on a tungsten mesh, and the voltage of the electron 

beam supply was controlled by a thennocouple which allowed the temperature to be 

slowly increased. 

Due to the limited space available in the vacuum chamber, it proved to be impossible to 

produce an electron beam that was to some extent not focused ,and as a result, unifonn 

heating of the wafer was not obtained. 

A molybdenum (Mo) disc linch in diameter and 118 inch thickness was used to hold the 

porous silicon slice. The lack of close thennal contact between the silicon and 

molybdenum prevented the silicon wafer from heating up except at the minute spots 

where it actually was in contact with the disc. The wafer melted at these spots. 

Molybdenum (Mo) mesh was used in an effort to remedy this problem but did not 

improve the situation. 

Also, a few other problems were encountered with this method. The stray or the 

scattered electrons from the e-beam that are not focused were found to heat the chamber 

walls, thereby increasing the background effects during the measurement of the 

desorbed gases from PS. Also, it was observed that the thennal controller (Neutronic, 

Micr096) used for controlling the heating rate was subjected to random electronic 

failure during e-beam heating. This phenomenon was not explainable, even by the 

manufacturers concerned. However, it was thought to be a function of the stray 

electrons that were not focused on the sample, probably due to the generation of a 

plasma which caused an electrical breakdown. 
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Development of the Present System 

Even though e-beam heating is a very efficient way of heating, it has many side effects 

which are undesirable for this work. The adopted method is to use a 100 Ilm thick 

tantalum foil (Ta) sandwiched between a sapphire plate (lmm x 5mm x Imm) which 

acts as a support and the PS sample (l9mm x5mm). The assembly is clamped at the 

edge with stainless steel plates. The current is passed through the Ta foil as well as the 

PS sample, which is in parallel to the current flow. The very low resistance of the Ta 

foil swamps the local variations of resistance of the silicon wafer, even with the low 

resistance c-silicon, so that the "tracking" observed with the direct heating method, was 

avoided. The PS is heated by the radiant heat emitted by the heated Ta foil as well as 

the direct heating by a small ratio of the current passing through it. The exploded view 

of the arrangement of the heating system used in this work is presented in Figure 3-2 

The transparency of silicon to infrared radiation and its variable emissivities with 

temperature caused difficulties in using an infrared pyrometer for measuring the 

temperature. The other alternative is to use thermocouples and the possibility was 

investigated. The present solution is to use thermocouples of the smallest diameter that 

can be practicable for handling in order to minimise the heat loss through conduction. 

Unsheathed fine gauge K type (nickel-chromiummickel-aluminium) thermocouples of 

diameter 76.2 Ilm with "beaded" junction are used in this work. The output of the 

thermocouple is fed to a thermal controller (Newtronic Micr096) which has a cold 

junction compensating facility. The thermocouple is connected to a short solid nickel 

leadthrough A compensating cable is used to connect the leadthrough to the thermal 

controller Good contact between the thermocouple and the silicon wafer was obtained 

by sandwiching the thermocouple between the sample and a piece of very high purity c­

silicon that was cleaned beforehand by heating repeatedly to 1000°C. 

3.2 Development of FTIR Technique for PS Application 

FTIR is used as the primary source of information about the chemical nature of the 

bonding between the PS and the adsorbed gases in this work. The FTIR Model that was 

used in this work provides a scan range of 4400 to 400 cm-
l 

with a resolution of2 cm-
l
. 

It was observed that the highly doped Si wafers (> 0.006 Qcm) that were used routinely 

for producing PS showed very low transmittance in the infrared region compared with 
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"nonnal" wafers of resistivity in the range of 2-15Qcm. Figure 3-3 and 3-4 show FTIR 

spectra of low and high resistivity wafers respectively. The interference observed in 

lower resistance silicon wafers is due to free carrier absorption. When dopant atoms are 

introduced into intrinsic Si, additional levels are created in the energy band structure, 

usually within the bandgap. When highly doped c-Si is exposed to infrared radiation, a 

range of free carriers in excited states are created, leading to plasma absorption. It has 

been established by J .R.Ferraro et al.in 1990 that, the low transmittance is due to free 

carriers in the highly doped silicon and not due to scattering effects caused by the pores 

of the PS. 

An option of thinning the wafer to reduce the free carrier absorption due to high dopant 

density proved to be difficult. This is because 

a) it is difficult to etch a Si wafer unifonnly even though the overall etch rate can be 

controlled and 

b) wafer handling during the anodisation was difficult because the thinned wafer was 

found to be very fragile. 

An investigation of the possibility of using reflectance mode FTIR did not provide a 

satisfactory solution. It was therefore decided to use p-type high resistive Si back 

implanted wafers for transmission mode FTIR analysis and this method was developed 

successfully. The back implantation is needed to provide uniform anodisation and is 

discussed in section 4.4. 

3.3 Preparation of PS Samples 
PS is fonned during electrochemical dissolution of silicon in HF electrolytes. This 

dissolution takes place when a Si wafer is used as an anode and platinum (Pt) is used as 

a cathode in a simple electrolytic cell. The drawback of this simple cell system is the 

observed non-unifonnity in both the porosity and thickness characteristics of the PS 

layer. 

The anodisation process for this work is carried out by using a specially enclosed double 

cell which was developed and built by the Defence Research Agency (DRA). The cell 

body is made of highly HF acid resistant polymer PTFE (polytetrafluoroethylene). 
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This cell consists of two half cells in which Pt electrodes are placed (Figure 3-5). The 

Si wafer is placed in between the two cells and this arrangement isolates the two half­

cells. A viton "0" ring between the front half cell and wafer provides a good leak-tight 

seal. 
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The HF electrolyte is used in both half-cells and was continuously circulated by two 

peristaltic pumps which are also protected by a PTFE lining. This pumping acti on helps 

to provide fresh electrolyte species to the anodising face of the wafer as we ll as to 

remove gases that are produced during anodisation (mainly hydrogen) . 

The Pt e lectrodes are circular and of similar diameter to the half cell s. This arrangement 

helps to provide a better uniformity. These electrodes are connected to a constant 

current power supply and the CUITent flows from one half cell to the other through the Si 

wafer. The back side of the Si wafer acts as a secondary cathode where proton 

reduction takes place leading to hydrogen evolution. The front side of the wafer acts as 

a secondary anode and PS forms on this side . It should be noted that, for safety reasons 

the HF was drawn rather than forced at pressure through the anodising cell. 

The PS samples used in this work were produced from p- (50-1 00 Q cm) FZ silicol1 

wafers for the reason mentioned above (Section 3.3) . The backs of the wafers wcrc 

implanted with 1 x 1 0 15 boronJcm 2 at 40 KeY. This is to overcome the re\·erse biased 

nature of the back interface, providing ohmic contact and allowing un ifoml anodisation 
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on the front face of the wafer. This was followed by a nitrogen anneal (with 1 % 

oxygen) at 1050°C for 30 minutes. After the anodisation, the sample was removed from 

the cell in an argon atmosphere. It was spin dried without dipping in deionised (DI) 

water to minimise contamination and possible partial oxidation with water. 

The porosity and the thickness of the PS layer can be varied by adjusting the 

electrochemical parameters such as current density, anodisation time, resistivities of the 

Si wafer and the HF concentrations. The adopted method of anodisation for this work is 

to anodise the silicon wafer with 20 mAlcm2 current density in 40% HF electrolyte for 2 

minutes. The porosity and the thickness of the PS layer produced under these 

conditions were 52% and 2xl 03nm respectively. These parameters were calculated 

using a gravimetric method published by Herino et al (1987). The details of the method 

are given in Appendix 1 

3.4 Sample Storage 

Since the freshly anodised PS is in a metastable condition, the storage of the porous 

silicon is very important. The effects of storage in different environments, on porous 

silicon were investigated. An as-anodised porous silicon wafer was divided into four 

quarters for this evaluation. 

a) The first quarter was placed in a wafer rack and kept in a blue wafer box. This 

storage technique is the standard practice used by the process engineers in the 

microelectronics industry. 

b) The second quarter was stored in a white wafer box. This type of box can hold a 

single wafer and has a screw top. This type of box is used for transporting wafers. 

c) Third quarter was placed in a vacuum desiccator. The desiccator was filled with 

inert argon first to displace the air and it was evacuated to around 10-4 torr pressure, 

with a roughing pump attached to a sieve filled filter unit. 

d) The fourth piece was kept in the vacuum desiccator as it was in (c) but the wafer 

was kept in a white wafer box 

FTIR spectra were obtained on all four quarters of porous silicon after 7, 15,40, 

60,70,80,90, 106, 113, and 145 days being kept in the above-described environments. It 

is important to mention here that every time the wafer was removed for the FTIR 

analyses they were exposed to the air for about two minutes. The slow oxidation 
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process (ageing process) will be discussed in Chapter 5 in detail. This investigation 

concentrated on the fonnation of oxide layer on porous silicon walls with respect to 

days and the environments they were kept under. 

Figure 4-23 shows a typical FTIR spectrum of as-anodised porous silicon. It shows a 

triplet at 2140,2115,2089 cm- I a doublet at 668 and 626 cm- I and singlets at 910,816, 

735 and 512 cm- I
. No peak was observed with as anodised porous silicon in the region 

of 1100 cm-1
, where Si-O-Si symmetric vibration occurs, (W.A. Pliskin, 1977). This 

can be interpreted as showing there are no Si-O bonds present in as-anodised porous 

silicon (or that they are not detectable with FTIR technique). 

Figures 3-6, 3-7, 3-8 and 3-9 show FTIR spectra of porous silicon samples kept in a 

blue wafer box, a white screw top wafer box, in a vacuum desiccator and in a white 

wafer box in the vacuum desiccator for 7 days and 145 days respectively. For 

clarification, the FTIR spectra are split into regions 3200 to 2000 cm -1 and 2000 to 

400 cm- I
. 

3.4.1 Blue wafer box 

Figure 3-6 shows a broad peak has developed in the region of 1102 cm- I to 1059 cm- I 

with porous silicon kept in the blue wafer box for 145 days, which is due to Si-O bond 

vibrations. The typical "shoulder" at 1102 cm-I is typically observed with Si02 grown 

on Si with steam as a part of microelectronic processing. Also the triplet observed with 

as-anodised porous silicon has changed to a broad single peak. Also two small peaks 

due to C-H vibrations have appeared at 1515 and 1463 cm- I
. The blue wafer box is not 

air-tight enough to keep the wafers free of hydrocarbon-contaminated air of the 

cleanroom. 
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3.4.2 White wafer box 

Figure 3-7 shows the FTIR spectra of 7 and 145 days-old samples. These are similar to 

those from the blue box environment except that no C-H contamination was observed 

with this environment. 

3.4.3 Vacuum Desiccator 

Figure 3-8 shows the FTIR spectra of7 and 145-days old samples. The Si-O peak at 

~ 1100 cm-1 is now sharper. The slow oxidation process presumably involved less 

moisture, understandable with a vacuum desiccator. Also peak at 1267 cm-1 due to 

C-H bonds started to appear after around 90 days in the vacuum desiccator. The only 

explanation for this observation involves the silica gel used as a drying agent. The 

manufacturers were contacted and they agreed that there was possibility of carbon 

contamination. 

3.4.4 White box kept in vacuum desiccator 

A very small oxide peak was observed with the 145 day-old sample. Up to 16 days, the 

sample resembled an as-anodised porous silicon sample. No C-H peak was observed 

with this method of storage (Figure 3-9). 

As a result of the above experiments, a routine procedure was established for storing the 

PS wafers. The adopted procedure was to spin dry after anodisation without the Dr 

water rinse and to store in a vacuum desiccator. The vacuum desiccator was 

successively filled with argon and then pumped twice to remove most of the ambient 

air. 

3.4.5 Observed "Peeling Effect" 

It was observed that the PS layer developed 'cracks' and peeled off from the underlying 

silicon in narrow strips during the vacuum heating process. Figure 3-11 shows two 

SEM micrographs of different magnifications of the PS layer displaying this effect. 

This effect had found to be dependent upon the details of the thermal cycle which the 

PS sample had undergone and also on the resistivity of the PS. The gas evolution from 

all PS samples is similar in its composition but the peeling effect was noticed only for 

high resistivity silicon. 
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FIGURE 3- 10 Idealised pore wall with some possible chemical species 

High resistive porous silicon gives rise to microporous silicon on anodisation (Beale, 

1985). If an "idealised" pore is magnified, the following possible structures may be 

observed (figure 3-10). The pore walls consists of freshly etched silicon atoms with 

dangling bonds which would be passivated by hydrogen species while oxygen would 

have reacted with the back bonds. The void space of the pores will have fluorin e 

species from electrolytes, HF, H20 and gases produced during electrochemical 

processes in the cell, N2 and other air components etc. The pores have multi layers of 

adsorbed species on the pore walls and molecular gases in the pore cavities. During 

heating, physisorbed gaseous species and the trapped gas molecules that come out of the 

pores at lower temperature cause the cracked appearance of the porous si licon surface. 

Microporous structure of porous silicon also contributes to this cracked surface. 
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FIGURE 3- 11 SEM micrographs of heated PS sample 

(Shows the peeled-off PS strips) 
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This problem was overcome by heating the samples to 50°C and keeping them at this 

temperature for 5 minutes before the temperature ramping was carried out. This 

produced crackfree samples for the TPD analysis. 

3.5 Summary 

1. The TPD system was built with a turbomolecular pump (Edwards 250EXT hybrid 

model), backed with a two-stage rotary pump and a molecular sieve based trap. A 

quadrupole mass spectrometer was used as a detector and placed ~6mm distance 

from the samples. 

2. A heating unit was developed. K-type thermocouples with "beaded" junctions were 

used for measuring temperature. A programmable thermal controller was used for 

ramping the sample temperature. 

3. High-resistive p- FZ wafers were used for producing porous silicon. These samples 

were found to be the best for FTIR work. 

4. A vacuum desiccator flushed with argon was used for storing porous silicon 

samples. 

5. The problem of "cracking" during the heating of porous silicon samples for TPD 

work was solved. The sample is heated to 50°C for 5 mins. before applying the 

linear temperature increase needed for the TPD analysis. 
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Chapter 4 Results 

4.1 Introduction 

The main thrust of the work undertaken is to establish the nature of the porous silicon 

surface using TPD and FTIR techniques. The development of these techniques to suit 

microporous silicon was discussed in Chapter 3. This Chapter is divided into the 

following three main categories: 

a) TPD analysis of the desorbed gaseous species during the linear heating of porous 

silicon samples. 

b) FTIR analysis of the effects of heating porous silicon 

c) Study of gradual modification of the pore walls during the "ageing" process (slow 

oxidation) using FTIR technique. 

4.2 Results from TPD Analysis 

The quadrupole mass spectrometer used as a detector in this work is a VG Monitorr 

100. Two of its facilities were utilised in this work. 

a) MIM (Multiple Ion Monitoring) mode facility. 

This particular system uses software which is capable of monitoring up to 16 

individual masses in a tabulated or graphical form. Background subtraction, relative 

sensitivities can be programmed in this mode. This facility was used for obtaining 

TPD spectra which are graphical representations of partial pressure versus 

temperature. 

b) Analogue mode facility 

This mode provides for the analysis of species with mlz values of 1-100, versus 

intensity. A scan in the analogue mode provides a snapshot of these volatile species 

present in the system at that time, 

The analogue mode of analysis was used to identify the dominant species desorbed from 

porous silicon when it is heated. The sample was heated linearly at a heating rate of 1.5 

Ks-1 in the TPD vacuum chamber at a starting base pressure of < 10-
8 

mbar while the 

desorbed species were scanned. Table 4-1 gives the details of the findings. 
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mJz 
1 

2 

19 

20 

38 

39 

40 

28 

29 

30 

31 

32 

85 

86 

87 

33 

66 

47 

Assumed Species 
H+ 

Ht 
F+ 

HF+ 

Ftl (H3O)F+ 
HF2+ 

H2F2+ 

S'+ N + 1, 2 
SiH+ 

SiHt 
SiH3+ 

SiH4+ 

2sSiF3 + 

29SiF3 +psSiHF3 

30SiF3 +P9SiHF3 + 

2sSiF2 ++ 

2sSiF2 + 

2sSiF+ 

~ H2 based 

HF based 
specIes 

Silyl. based 
specIes 

Fluorosilyl 
based species 

TABLE 4- 1 The main species that were observed with the analogue mode scan 

The TPD results are categorised in the following order: 

a) Background Studies 

b) Analysis of porous silicon samples prepared in three different electrolytes 

i. Aqueous 40% HF electrolyte. (Electrolyte A) 

ii. "20% ethanoic HF". It is a 1: 1 ratio of ethanol and 40% HF mixture. 

(Electrolyte B) 

iii. Aqueous 40% HF electrolyte followed by a 4-hour period of chemical etching­

by standing in the same electrolyte for four hours without applied potential. 

(Electrolyte C). 

4.2.1 Background Studies 

The following background investigations were carried out before the analysis of porous 

silicon 

1. Study of the vacuum chamber 
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11. Analysis of a c-silicon wafer (p-, FZ, 20-50 n cm.) which was placed in an 

electrolyte solution similar to that for producing porous silicon but with no 

current applied to the system. 

iii. The same type of c-silicon, dipped in 2% HF, rinsed with deionised water and 

dried, was used as a blank in the TPD analysis. 

Vacuum System 

Figure 4-1 shows a mass spectrum of the volatiles in the vacuum chamber of the TPD 

system which is normally pumped down to about 10-9 mbar pressure. The TPD 

chamber was scanned through 1-100 amu (atomic mass unit) using the analogue mode 

facility available with the quadrupole mass spectrometer. A similar investigation was 

carried out with the vacuum system containing the porous silicon sample (from 

Electrolyte A) and pumped overnight (Figure 4-2). The observed minimum pressure 

with the porous silicon sample was 5x 10-8 mbar. The observed increase in base 

pressure indicates that gaseous species were given out from the porous silicon sample 

during pumping. The observed species in both systems are given in the Table 4-2 

TABLE 4- 2 Observed species in the vacuum System (with PS and with no PS) 

m\z Assumed Species 
Vac.system with Vac. System with 
no porous silicon porous silicon 

1 H+ Yes Yes 

2 Ht Yes Yes 

16 0+ Yes Yes-larger 

17 OH+ Yes Yes 

18 H2O+ Yes Yes 

19*** p+ No Yes 

28 Nt and/or CO+ Yes Yes-larger 

32 ot Yes Yes-larger 

44 CO2+ Yes Yes-larger 

*** Fluorine species arefound in the vacuum chamber with porous silicon 
sample.Refer to Figure 4-2 
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4.3 TPD analyses of a blank c-Si and a HF exposed c-Si wafer 

The elimination of background effects from the heating of the c-Si and from the heating 

units were investigated. The heating unit with Ta foil and sapphire plate with c-Si piece 

as a blank was heated in the vacuum chamber with a 1.5°C/s heating rate. The 

thermocouple wires were sandwiched between the PS sample and c-Si pieces of 

19mmx5mm dimensions. 

Another analysis was carried out to investigate the effect ofHF on crystalline Si surface 

in the same way. Figures 4-3 and 4-4 show the TPD spectra for the two types of 

samples. Species with mlz values 2, 18, 19, 20, 85, 31 (H/, H20+, F+, HF+, SiF/, 

SiH3 + respectively) were selected for this analyses. 

Analysis of c-Si (Figure 4-3) shows no detectable amounts of the above mentioned 

species. The HF-covered c-Si surface shows small peaks for SiH/(31) and SiF/(85). 

These are the main fragmentation products for SiH4, silane and SiF4, silicon 

tetrafluoride respectively (Figure 4-4). The peak temperature for SiF3+ was found to be 

lower than that observed with porous silicon sample which will be discussed in Chapter 

5. 

It is important to mention here that the TPD analyses with blank specimens suffer from 

the disadvantage that this technique when set up for porous silicon allows the use of 

small sample size (19 x 5 mm) as porous silicon has a very large surface area cm-2 

(~200-600 m cm-2
). Investigation of the blanks was carried out with the same size 

sample as it would be for porous silicon. This is to establish that the nature of desorbed 

species are from porous silicon and not from blank Si. 

4.3.1 TPD Analyses of Porous Silicon 

As discussed in Review Chapter, the type of photoluminescence or other properties of 

porous silicon depends on many processing conditions, including the type of electrolyte 

used for the preparation of the material. Porous silicon samples prepared from three 

different electrolytes were chosen for this work. The wafers used for the anodisation in 

this work are p- type, FZ and of resistivity 20-50 Q cm. The silicon wafers were 

anodised with 20mA/cm2 current density and spin-dried. No rinsing in deionised (DI) 
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water was involved at any stage of preparation. These conditions were adopted 

throughout the work. The porous silicon wafer was then cut to the right size (19 x 5 

nun) using a diamond scriber which was dedicated to this work only. The cut sample 

was fixed to the heating unit and the system was pumped overnight. The sample was 

then linearly heated at a heating rate of 1.5 Ks-1 in the TPD vacuum chamber. 

The TPD analyses were repeated with five samples from porous silicon prepared from 

each of the three different electrolytes. The average values of their peak temperatures 

were given in this work. 

Four types of gaseous species and their fragmentation products were identified when 

porous silicon was heated in the TPD vacuum chamber. They were: 

1. Hydrogen 

11. Silane and its fragmentation products 

111. Si-Fx species 

IV. HxFy species 

Hydrogen Formation 

Figures 4-5, 4-6, 4-7 show the TPD spectra for H2 desorption obtained from Electrolyte 

A, Electrolyte B and Electrolyte C respectively. All of them show two"humps" which 

are due to two types of detectable hydrogen environments. 

The temperature differences between the two peaks of hydrogen TPD spectra are all 

similar. This suggests that there is no difference in the way hydrogen desorption occurs 

in porous silicon prepared from the three electrolytes. 

The fragmentation pattern of hydrogen on the mass analyser head of quadrupole mass 

spectrometer with ionisation voltage of70 eV is given below. 

TABLE 4- 3 Fragmentation pattern of H2 

mJz AssumedSpecies 0/0 Abundance 

2 H/ 100% 

1 H+ 20/0 
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Silane and Sily/ groups 

Figures 4-8, 4-9 and 4-10 show TPD spectra of silyl related fragmentation products from 

all three electrolytes. All three spectra show very similar peak temperatures of 575-

585K. The desorbed species observed at this temperature were 28, 29, 30, 31 and 32 

which are identified as the fragmentation products of silane (st, SiH+, SiH2+, SiH/ and 

SiH/ respectively) (Potzinger et a1.). 

The TPD desorption peaks of samples prepared from electrolytes Band C appeared to 

be broader than those of sample prepared from electrolyte A. Also, a second peak at 

425K ± 5K was seen at mlz 29 (SiH+) with porous silicon from electrolyte A. 

Si-Fx and HxFy species 

Three types of fluorine-based species were observed. They were: 

i. Fluorosilyl species - F (fluorine) atoms bonded to Si atoms 

ii. Fluorohydrides - F atoms bonded to H atoms 

iii. Non-bonded fluorine 

Fluorosilyl Species 

Eight fluorosilyl species, Si-Fx were observed during the desorption process. Four of 

them were identified as SiF3+, SiF/, SiF/+ and SiF+, which correspond to mJz values of 

85,66,33 and 47 respectively. The fragmentation pattern, for SiF4 itself is given in 

Table 5-7. It can be seen from the table that the doubly ionised SiF2++species is four 

times more abundant than the singly ionised SiF2 + species. Also, the SiF3 + species 

distinctively shows considerable amount of its isotopic counterparts e9
SiF / and 30S iF 3 + 

- 5.24% and 3.40/0 respectively) 

The desorption spectrum at mlz 85, SiF3+ shows three distinctive peaks with the porous 

silicon prepared from electrolyte A (Figure 4-11). This suggests that the SiF 3 + species 

originated from three different sites within the porous silicon. The porous silicon 

prepared from alcoholic electrolyte (Electrolyte B) shows a broad single peak and a 

larger well defined peak at higher temperature (figure.4-12). The porous silicon 

prepared from Electrolyte C shows three peaks but the first and second peaks are not 
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well resolved and the second peak is larger than the third high temperature peak (Figure 

4-13). 

Fluorohydrides and F+ species 

The TPD spectra for H-F species are presented (Figures 4-17, 4-18 and 4-19) for porous 

silicon samples anodised in all three electrolytes. Please note that the partial pressures 

of the desorbed species are presented in linear and log scales to illustrate the differences. 
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4.4 The effects of Heating Porous Silicon from FTIR Analysis 

FTIR Spectroscopy is one of the primary sources ofinfonnation about the chemical 

nature of the bonding between the porous silicon and the adsorbed species. 

A range of as-anodised porous silicon samples were heated in the vacuum chamber to 

375K, 425K, 525K, 550K, 575K, 600K, 625K, 650K, 675K, 700 and 875K. FTIR 

analyses were carried out on them. These results were found to support the TPD spectra 

in identifying the desorbed species at different stages of heating 

4.4.1 FTIR Spectrum of As-anodised Porous Silicon 

Figures 4-23 and 4-24 show the FTIR spectra of as-anodised PS from FZ and CZ c-Si at 

300K within 20 minutes of preparation. An additional peak at 1107cm-1 was observed 

with PS sample prepared from CZ silicon. This is due to the interstitial oxygen 

concentrated during the manufacturing process for CZ Si (Oates et. al.). In this work 

FZ silicon is used. 

100 scans were used to obtain FTIR spectra in order to maximise signal to noise ratio. 

For clarification and for the detailed analytical purposes, these spectra were obtained 

with short ranges of wave numbers. Figures 4-25 and 4-26 show the ranges of2300cm-1 

to 2000 cm-I and 1800 cm-1 to 400cm-IThe FTIR spectrum shows clearly a partially 

resolved triplet in the region of 21 00 cm-I
, a doublet at 662 cm-I and 629 cm-1 and 

singlets at 909, 822, 734, 515 and 412 cm-I
. 

The porous silicon FTIRspectrum from 4400 cm-1 to 400 cm-1 also shows well-defined 

interference fringes resulting from the difference in refractive indices at the PS layer lSi 

substrate interface. 
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The detailed analysis of the triplet, Figure 4-25 , shows three distinct peaks at 2141 , 2115 

and 2090 cm I. These were assigned to asymmetric vibrations of Si-H bonds in the 

group SiHx (x=l, 2,or 3). As the mass of the atoms bonded to silicon decreases , the 

vibrational IR frequency increases, i.e. the wave number increases . Therefore, the Si-H 

oscillators attached to hydrogen atoms (eg. H 2Si-H) are observed at hi gher wave 

numbers than Si-H oscillators with bonded silicon atoms (Si 2Si-H). Therefore, the 

triplets at 2141, 2115 and 2090 cm- I are assigned to -H2Si-H, -HSiSi-H and -Si 2Si-H 

groupings respectively. 

The FTIR range of 1800 to 400 cm- I range (Figure 4-26) show single and a double peak. 

The assignments of the singlets in the region of909 to 412 cm- I is quite difficult as Si-H 

bending modes and Si-F both anti symmetric and symmetric vibrations occur in this 

regIOn. 

4.4.2 Effects of heating in the range 2300 cm-] - 2000 cm-] 

The triplets were found to persist up to 525K. At 550K most of the peak assigned to 

- SiH3 disappeared and a shoulder was observed. FTIR spectrum at 575K shows only a 

doublet at 2107 and 2090 em-I with decreased intensities . 
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FIGURE 4- 27 Triple peaks at 425K and 575K (desorption of - SiH 3 at 575K) 
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Figure 4-27 shows an overlaid FTIR spectra of porous silicon samples heated to 525K 

and 575K. As the peak due to -SiH3 (2140cm-l ) disappears at 575K, the peak due to 

- SiH2 at 211 Ocm- J shifts towards lower wave numbers . At 525K, -SiH2 absorption 

appears at 2112cm- J and are shifted to 2104cm- J at 575K when all the SiH3 groups have 

desorbed. This could be related to the environment of the hydrogen in the structure of 

porous silicon. It is necessary to mention here that the peak temperature observed for 

the desorption of silane, SiH4 with TPD analysis was found to be 575K ±5K (Figures 

4-8 to 4-10) . 

When porous silicon samples are heated at higher temperatures (600K, 625K, 650K, and 

700K) there is a gradual decrease in the intensi ty of the peaks at 2107 and 2090 cm -I. It 

should be emphasised that there is a steeper decrease in the intensity of the Si-H peak at 

2090 cm- I compared with that of SiH2. Figure 4-28 shows the FTIR spectra of porous 

silicon samples heated to the temperatures mentioned above. The FTIR spectrum at 

650K shows that most of the Si-H species are desorbed at this temperature . This is 

supported by the TPD desorption spectra for hydrogen(Figure 4-5) . 
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4.4 .3 Doublet at 669 em- l and 629 em- l 

Figure 4-29 shows the doublet at 667 and 627 cm· 1 for as-anodised porous silicon . 
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FIGURE 4- 29 FTIR spectrum showing the double peak from as-anodised PS 

The peak at 667 cm- 1 was found to disappear at 575K, the same temperature as that 

noted for the disappearance of the - SiH3 group (Figure 4-30). A very small sharp peak 

was observed at 667 cm- 1 with the PS sample heated to 575K, This peak is comparable 

to a peak at the same wave number for a FTIR spectrum obtained with c-Si as in Figure 

4-30 
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FIGURE 4- 30 Comparison of FTIR spectra of c-Si and PS heated to 575K 

(700 cm-1 to 500 cm-1 region) 
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When the porous silicon samples are heated to 600K, 625K, 650K, and 700K the 

intensity of the singlet at 629cm-1 is found to decrease. This finding corresponds to a 

loss of Si-H bonds (Figure 4-32). From these evaluations the peak at 669 cm-1 is 

assigned to -SiH3 and the peak at 629 cm-1 to the -SiH vibrations. 

The FTIR spectrum of porous silicon samples heated to 875K resembles the spectrum of 

single crystal Si except that the PS shows the presence of Si-O bonds in the region of 

1100cm-1
. Figures 4-35 and 4-36 illustrate the similarities except for the presence of 

Si-O vibrations. The double peak observed at 669/629 em -1 disappears with heating to 

above 875K and another peak with lower intensity appears at 610 cm-1 
. This 

characteristic peak is observed with FTIR spectrum of c-Si as well and is due to the 

vibration of silicon lattice and is referred to phonon-phonon vibration (Krishnan et.al. 

1990). This band is assigned to a combination of TO (transverse optical phonon) and 

TA (transverse acoustic phonon)and is commonly referred to as the "2 phonon bands". 

This results in a small absorption coefficient of about 10cm-1 (Pajot 1977) compared to 

the coefficient at 628 cm-1 peak observed for PS which is ~2500 cm-1 

4.4.4 Peak in the region of 1100 cm-1 

No visible peak was observed with as anodised-porous silicon and porous silicon 

heated to 575K. A gradual increase in the number of Si-O oscillators in the region of 

1100 cm-1 was observed with further heating. Figures 4-33 and 4-34 show overlaid 

spectra of porous silicon heated to 550K, 575K and 650K, 675K and 700K in the region 

of 1100 cm-1 respectively. The observed peak is broad and has a shoulder. This type of 

peak is characteristic of Si02 grown on a Si wafer in steam ambient. 

This broad peak was assigned to the Si-O-Si asymmetric stretch vibrational mode 

(Pliskin 1977). The broadness of the peak is due to multiple environments of the Si-O 

oscillators. The appearance and the increase in the intensity of this peak is interpreted in 

terms of the oxidation of the Si atoms by the moisture and \ or oxygen found in the pore 

cavities. It may also be possible that the "free" dangling bonds of the Si atoms from the 

pore walls, after the desorption process, are free to bond with available oxygen. 
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(FTIR Spectra a-d are from PS heated to 600, 625, 650 and 700K respectively) 
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4.4.5 Peak at 910 em-1 and at 822 em-I 

It is very difficult to assign these peaks to any specific oscillators as Si-Hx as well as 

Si-Fx vibrate in this region (Borghesi 1993). The peak at 910cm-1 is interpreted as the 

asymmetric bending vibrations of the -SiH2 group and the peak at 810 cm-1 is probably 

due to Si-Fx groups. This is based on the findings from the investigations carried out by 

the author on the ageing process of porous silicon and will be discussed in Chapter 5. 

4.4.6 Comparison of "High" Temperature Porous Silicon and the blank e-Silicon 

Figures 4-35 and 4-36 show FTIR spectra of as anodised PS, heated to 875K and a blank 

c-Si. Figure 4-35 shows that the triple peaks at ~2100 cm-1 and the peak at 909cm-1 

disappear at higher temperatures and a unresolved double peak at 1135cm-1 and 

1054cm-1 develop in the Si-O asymmetric vibrational region. Figure 4-36 shows that 

porous silicon heated to 875K resembles the c-Si except in the 1100cm-1 region. The 

double peak at 667/628 cm-1 (due to Si-Hx) observed in porous silicon was replaced 

with a lower intensity not-so defined double peak at 620/613 cm-1 which is similar to 

C-Si. This is interpretes as Si-Si phonon vibration. 

TABLE 4- 4 Summary of FTIR Observations with Heating 

Wave numbers 
Assignments Effects on Heating (em-I) 

2140 H2Si-H Asymm.stretching Stable up to 575K 

2110 HSiSi-H Asymm.stretching Starts to decrease with Si-H 
and disappears at 700K 

2090 ShSi-H Asymm.stretching Stable up to 625-650K 

1110-1050 Si-O-Si Stretch 
Gradual increase with peak 
intensity 

910 Si-Fx or Si-H bending Controversy in the literature 

818 Si-Fx 
Difficult to evaluate, due to 
Si-O-Si overlap 

667 H2Si-H wagging mode Disappears at 575K 

628 HSiSi-H bending mode Disappears at ~ 700K 

620 \ 613 Si-Si phonon vibration Appears at higher temperature 
very similar to c-Si 
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4.5 Ageing Process with Porous Silicon 

These investigations were carried out with porous silicon samples prepared in the same 

way as for TPD and FTIR analyses and stored in a white box. The spectra were 

obtained every day for 19 days (except for weekends) and random measurements were 

taken up to 240 days (8 months). For clarification, the FTIR spectrum is di vided into 

two regions of 4000cm- I- 2000 em-I and 2000cm- I-400cm- l
. 

4.5.1 1 - 19 Days-old Porous Silicon Samples 

The porous silicon samples kept for 1 to 10 days show no difference in the triplet 

assigned to Si-Hx stretching modes at 2117, 2109 and 2090 em-I. Figure 4-37 shows 

this effect. A 10 days old porous silicon sample is beginning to show an ex tra set of 

small broad peaks at 2202cm- 1 and 2259cm- l
. These peaks were found to increase wi th 

the ageing period. Figure 4-37 shows as-anodised, one day and 10 days old porous 

silicon samples in the region 2300-2000 em-I . 

• 12 F===l=====;::=======:=: 
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FIGURE 4- 37 FTIR of the triple peaks of as-anodised , one day and 10 days-old PS 

(Spectra a, band c represent as-anodised , 1 day and 10 days old samples 
respectively) 

Slow oxidation was observed from day 1. The process is associated with development 

of a broad peak with a shoulder at ~ 11 OOcm- l
, typical of wet oxide grown on silicon 

wafer. Figure 4-38 shows overlaid infrared spectra of as-anodised, 8 and 19 days-old 

samples. It should be noted that the peak at 818cm- 1 decreased in intensity as the 
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moisture increased with time. This is interpreted as hydrolysis of Si-F bonds by 

absorbing moisture. Also a peak at 878cm- l started to appear and is quite prominent 

with the 19 day-old sample. There is no change observed with the doublet at 669 and 

626cm-1
. The triplet in the 2100 cm-1 region shows (Figure 4-39) slow decrease in the 

sharpness of the 2140 cm-1 peak assigned to -SiR3 group in the 19 day-old sample 

compared to as-anodised porous silicon 

4.5.2 19 to 59 day-old Porous Silicon Samples 

These samples developed some interesting features during this period of ageing. It was 

observed that the intensity of the peak at 2255cm-1
, first seen with a 10 day-old sample, 

increased with time. This is interpreted as the vibrational frequency of Si-H bonds with 

back bonded oxygen (0). Also, most of the -SiRx group around 2100 cm-1 disappeared 

and a small shoulder was seen on the triplet at 2140cm-1 (Figure 4-40). In addition to 

these developments, a new set of triplets was observed at 2957, 2924 and 2857cm-1
. 

They are assigned to C-R modes of vibrations and are possibly originated from organic 

vapour contamination. 

Figure 4-41 shows that the peak due to Si-O stretching vibrations is well developed and 

is very broad. It extends from 1208 - 1053cm-l
. The peak at 909 cm-1 is unchanged and 

an increase in peak intensity at 878cm-1 is observed. The doublet at 669cm-l /629cm- l is 

similar to the doublet observed with as-anodised porous silicon. Another well­

developed peak was observed at 463 cm-l which was assigned to the cyclic Si04 group 

(Beckman 1965) 

4.5.3 3 to 8 Months Old Porous Silicon Samples 
It was observed that these samples showed increases in the features noted above for 

19 - 59 days old samples. Furthermore, carbon-based contamination was observed in 

the 1500cm-1 region (Figure 4-42). One peak of the doublet at 668 cm-l has disappeared 

and a small, sharp peak replaces it instead .. This is very similar to the Si-Si phonon 

vibration observed with c-Si (Figure 4-37). The intensity and the broadness of the peak 

assigned to Si-O stretching vibration increased significantly. This peak occurs in the 

range 1208-1053 cm- l
. The intensity of the peak at 878 cm- l was found to increase with 

time. 
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Many more singlets, 967, 935,862,741 and 455cm- 1 appeared possibly as a result of 

back-bonded oxidation of silicon. In the region 4000 - 2000 em-I, a very broad peak 

developed in the region of 3600cm-1 (Figure 4-43). This is assigned to SiO-H stretching 

mode of vibration (Pliskin 1977). Another set of extra peaks at 2365 and 2344cm- 1 

were observed (Fogure 4-44). 

Only a single peak at 2116cm- 1 was observed instead of the Si-Hx triplet at 2100cm- 1 

region (Figure 4-40) 
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FIGURE 4- 38 Overlaid FTIR spectra of as-anodised, 8 and19 days-old PS samples 

(Spectra a, band c represent 0, 8 and 19 days-old PS respectively. Note the changes at 910 cm-1) 
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FIGURE 4- 39 Appearance of extra peaks at 2257 and 2201 cm-
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with 19 days-old PS 
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FIGURE 4- 40 Overlaid FTIR spectra of 19 and 51 days-old PS (3500-2000 cm-1 region) 

(Note the development of a triplet at 2900cm-1) 
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(Note the developments at 875 cm,1and 455 cm,1) 

Page 112 



.1)6 

41 
r.l 

= ~ .1)4 .... 
~ 
!:! 

f-o 668 cm- I 

.1)2 

I) 

-.1)1)5251---------------~----------------~--------------~--~ 
21)1)0 151)0 1000 

Wavenumber (em-I) 

FIGURE 4- 42 FTIR spectra showing C contamination and the removal of 668 cm-1 peak 

.06 ~~\~ 
~\. 

41 .05 

~ j:l 

~ .... 
~ \ !:! .04 

f-o 

.03 

4000 

\\ 

3500 3000 
Wavenumber (em-I) 

},~ 

8 months 

2500 

FIGURE 4- 43 Development of SiO-H groups and 2365 cm-
1
/2344 cm-

1 
doublet 

(126 days and 8 months -old PS) 

2000 

Page 11 3 



.06 

.05 

.04 

126 days and 8 months 

.03 

('0, ah"omtion from atmo"nhere 

2500 2400 2300 2200 2100 2000 
Wavenumber (em-I) 

FIGURE 4- 44 Double peaks at 2365 cm-1/2344 cm-1 due to CO2 absorption 

4.6 Summary 

1. The analyses were carried out with the same PS samples from 0 days (as-anodised 

PS) to 8 months old. 

2. The summary of the observations is presented in Table 5-10 in Chapter 5 with the 

details of the assignments and the ageing process . 
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Chapter 5 Discussion 

Since the early work of Uhlir (1956333-47) and later by Canham (1990) on the 

photoluminescence (PL) properties, the interest in PS has grown exponentially. Before 

1990 there were less than 200 papers published on PS and by year 2001, it is projected 

to be greater than 2000 (Cullis et.al. 1997). PS is generally prepared by the 

electrochemical etching of c-Si in HF -based electrolytes. "Stain-etched" PS films also 

have been produced and studied for over thirty years. The electrolyte in this case 

consists ofHF, HN03 and H20. The preferred method is the first method mentioned as 

it produces reproducible, uniform PS layers with variable thickness and porosities. 

The properties ofPS are viewed on the basis that it is a porous material and that it is 

produced from c-Si wafers for microelectronic purposes. The properties of this material 

can be roughly summarised as: 

i. Porosity - pore size, volume, surface area, pore size distribution etc. 

ii. Structure - crystallinity, pore shapes with respect to doping levels of c-Si etc. 

iii. Mechanical properties such as strain, microhardness 

iv. Thermal properties - thermal conductivity, structural effects during heating 

v. Chemical properties - chemical composition of porous walls 

vi. Stability includes storage and drying of porous layers 

vii.Applications. This covers very many areas such as luminescent and optoelectronic 

properties, sensors, micromachined devices, solar cells and many more. 

It is important to mention here that there are many more areas than mentioned above 

being researched on PS. PS can be produced under many variable conditions and its 

properties are very much dependent on these conditions. The dependency of pore 

distribution, size and porosity on the dopant type and concentration ofPS makes it 

difficult to establish the chemical nature of the pore walls. The details are reviewed in 

Chapter 2 

This research work was based on PS samples that were produced from three types of 

commonly used electrolytes, to investigate the chemical nature of pore walls ofPS. 

They are: 

i. 40% HF (Electrolyte A) 
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ii. 40% HF + C2H50B (Electrolyte B) 

iii. 40% HF + Chemical etching in the same HF medium (Electrolyte C) 

The experimental conditions for the preparation, drying and storing of PS were given in 

detail in Chapter 4. 

5.1 The General Layout of Chapter 5 

The assignment of wavenumbers for the FTIR spectrum of PS is very important in the 

discussion of possible mechanisms for the desorption of various gaseous species. There 

is a lot of controversy in the assignment of these FTIR peaks to PS. This will be 

discussed in section 5.2 

Five kinds of gaseous species and their fragmentation products were identified during 

TPD analyses. They were: 

1. Silane and Si-H species species (Si-Hx) 

2. Hydrogen (H2) 

3. Fluorosilyl species (Si-Fx) 

4. Fluorohydride species (FxHy) 

5. F+ species 

Attempts were made to explain the possible origins of these species and their desorption 

mechanisms from the spectra obtained from TPD and FTIR analyses. The origin and 

the mechanism of desorption of each species is discussed under separate headings. 

5.2 Assignment of FTIR peaks in as-anodised PS 

It is very important to establish the environment of hydrogen in PS as it is the dominant 

adsorbed species on the pore walls. FTIR spectroscopy is capable of analysing the 

bonding nature of the adsorbed species on Si and is used in the investigation of the 

nature of pore walls. A triple peak was observed (Figure 4-25) in the region of2140-

2090cm-1. The assignment of these peaks to -Si-H, -Si-R2 and -SiR3 species still has 

some ambiguities. Gupta et al (1988) made a detailed analysis using a thermal 

desorption technique with an in-situ FTIR arrangement. He observed a double peak and 
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assigned 2110 and 2087 cm-1 to the SiH2 and SiH groups. A small shoulder was also 

observed at 2140 cm-1 in the silicon hydride region. It was suggested that this shoulder 

might be due to the substitiuent effect of oxygen atoms. Some other research groups 

(Ogata et a11995, Kato et al. 1989, Harper et a11996, Borghesi et al. 1993) have 

observed the triplets and have assigned vibrations of the stretching modes 2090, 2110 

and 2140 cm-1 to -SiH, -SiH2 and -SiH3 respectively. A few other groups (Anderson et 

a11993, Tsai et al1991) refer to Gupta group's publications in assigning the silicon 

hydride vibrations. 

One of the underlying problems in the FTIR assignments is the way the PS had been 

anodised. It has been shown (Sasaki et a11994) that the concentration ofHF used in the 

anodisation process affects the vibrational spectra. It was observed that the relative 

amount of -SiH2 to -SiR increased with a decrease ofHF concentration. The 

presentation of results must include reference to the experimental conditions of 

preparation and storage ofPS. It is important to mention here that some of the results 

were obtained from "free standing" films, which are produced from an electropolishing 

process. 

The assignment of the triple peaks were carried out by the authorofthis work on the 

basis of Electronegativities of the attached groups to Si (in this case H atoms). 

Electronegativity is a measure of the relative tendency of an atom to attract a bonding 

pair of electrons. The assigned values to the elements are on an arbitrary scale from 0 to 

4. The electronegativities ofR, Si and F atoms are 2.1, 1.8 and 4.0 respectively (Stark 

et al. 1991). The study of vibrational frequencies ofSi-H groups (SiH, SiH2, and SiH3,) 

in substituted silane molecules (Lucovsky 1979) displayed shifts in frequencies with 

respect to electronegativities. For example, the following frequency shifts were 

observed with fluorine substituted silanes. 

SiHF3 

SiH2F2 

SiH3F 

2314cm-1 

2245 cm-1 

2206 cm-l 
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Since fluorine is considerably more electronegative than silicon or hydrogen, the 

electrons of silicon atoms are strongly attracted to the fluorine atoms resulting in a 

highly polarised molecule. This effect increases the attractive interaction between H 

and Si atoms decreasing their separation and increasing the vibrational frequency. 

Decreasing the number of F atoms from 3 to 2 or 1 reduces this effect and hence results 

in decrease of the Si-H frequency. 

This frequency shift has been observed with a silicon atom substituted with H atoms as 

the H atom is more electronegative (2.1) than Si atom (1.8). In porous silicon the Si-H 

group has 3 neighbouring Si atoms and is represented by (1), the -SiH2 group will have 

two neighbouring Si atoms and the -SiH3 group will have 1 neighbouring atom as 

shown in the diagram below. 

Si ......... 
Si-Si-H 

Si/ 

SbSi-H 
(1) 

Si ........ 
Si-Si-H 

H/ 

SjzHSi-H 
(2) 

Si ........ 
H-Si-H 

H/ 

As the vibrational frequency increases with increase in electronegativity, it is reasonable 

to say that the assignment for the triple peak observed will be as follows: 

r~'R ___ "_'_"'_'_'_' __ "_" _____ '_"' __ " __ " ___ '_' __ --.-.--.----.----.-..•••••..•••• ---•..•• --..• -... .._---_., 

I -SiH 2090 cm- I I , 

2110 cm-I 

; 

I -SiH3 2140 cm- I 
i i L-M __ .. ____ .•• _______ ••• _________________ · _____________ ------------------, 

The Si-H vibrational shifts for F substituted silanes are greater than for H substituted 

molecules. This is due to the very high electronenegativity value for F (Stark et aI., 

1991) 

5.3 Assignment of peaks in the region 1800-400 cm-1 (as-anodised PS) 

It is quite a difficult task to assign peaks in this region for PS samples as Si-H and Si-F 

vibrations overlap below 900 cm- I
. The assignment of the peaks in this region was 

based on the TPD findings. The following table gives the wave numbers assigned to 

FTIR peaks observed with as-anodised PS. Table 4-4 gives the details of the heating 

effects relating to the assignment of the wave numbers 
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Wave Numbers (em-I) 

910 

818 

667 

628 

515 

418 

5.4 Silane Formation 

Assignments 
Si-H scissors 

Si-Fx Symm. stretch 

H2Si-H bending 

Si-H3 wagging 

Si-Si TO phonon vibration (due to 0 and F) 

Si-O-Si rocking 

Thermal desorption techniques were used by many groups to observe the 

gases/adsorbates evolved from PS. Some observed silane evolution but the mechanism 

of it was not explained (Yoshioka. 1969; Williams et al. 1983). As recently as 1994, the 

Zoubir group reported not detecting SiH4 from TDS (thermal desorption spectroscopy) 

experiments. Martin et al. reported to have observed H2 and SiHx when a PS sample 

prepared from Si(111) n type c-Si was heated (2000). TDS measurements were done in 

a quartz tube evacuated by a turbomolecular pump to a base pressure of 10-7 mbar. The 

sample was heated at a constant rate of 10°C min-land the evolution ofH2 and SiHx 

species was monitored with a mass spectrometer. 

Silane formation from silicon surfaces in contact with water was reported by the 

Lampert group in 1986. They observed monosilane formed when a freshly cleaved, 

etched or polished Si surface was exposed to water vapour. Silane was identified from 

its IR spectrum as well as from the darkening effect on a photographic plate. The 

mechanism was not known but it was suggested that adsorbed H20 is able to cleave Si­

Si bonds at the adsorption sites, resulting in Si-OH and SiH groups. Canham et al 

(1994) used chemography technique to show the presence of silane in PS exposed to 

100% relative humidity at room temperature. They have shown that the microporous PS 

sample kept in the air for up to 2 years retained its ability to darken the photographic 

film. Also, it was shown that any trapped aq.HF was not responsible for the darkening 

effect. A plausible mechanism was proposed. It was suggested that silane evolution was 

primarily due to the hydrolysis oftrihydride groups formed on the surface of the pore 

walls. 
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5.4.1 Observation of Silane with TPD and FfIR Analyses 

It was observed that silane was liberated during the heating ofPS samples along with 

other gases. The Table 5-1 below gives the fragmentation pattern of silane produced in 

a Mass Spectrometer with ionisation energy of70eV (Dudly et.al. 1971} 

TABLE 5- 1 Fragmentation pattern for silane 

m/z Ions Relative Abundance 

32 SiH4+ 70/0 

31 SiH/ 78% 

30 SiH2+ 100% 

29 SiH+ 29% 

28 Si+ 27% 

Figures 4-8, 4-9 and 4-10 show TPD desorption spectra of silane and its fragmentation 

products (SiH/, SiH3+, SiHt, SiH+ and st) with mJz values of32, 31, 30, 29 and 28 

respectively. The peak temperature for the silane evolution was found to be 570K 

±10K. It should be noted that mJz 28 does not show a similar desorption pattern to 

other fragmentation products. This is most likely due to CO and/or N2, which share the 

same mlz value of28 for their molecular ions, in the pores of the PS. 

The spectrum of as-anodised PS (Figure 4.25) shows a triple peak at 2140 cm-1
, 

2115 cm-1 and 2091 cm-I. These wave numbers were assigned to -H2Si-H, -HSi-H and­

Si-H respectively (Ogata et al. 1995, Janz et al. 1961). The disappearance of the peak at 

2140cm-1 was observed when the PS sample was heated to 570K ± 10K (Figure 4-27). 

This means that at this temperature Si-Si bonds were broken in =Si-SiH3 groups on the 

pore walls ofPS. The disappearance of the silyl groups (-SiH3) coincides with the 

silane formation observed with the TPD technique (Figure 4-8). Silane evolution was 

observed with PS prepared from all three types of electrolytes. This indicates that the 

alcohol component of the electrolyte did not participate in the silane formation process. 

5.4.2 The Proposed Mechanism for Silane Formation 

The HF based electrolyte forms a junction with the crystalline silicon during the 

anodisation process, and the pores are in touch with the aqueous electrolyte. Thus the 

pore walls are covered with physisorbed moisture as well as the silicon dangling bonds 

are covered with mainly hydrogen and fluorine related species, as indicated from the 
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TPD work. The existance oftrihydride terminated PS wall was shown by STM 

technique (Morita et al. 1991) 

The proposed mechanism is as follows: 

~tren Irthen.~ 

weaken~ / 

~/, ... ,. /H 
H-O Si- H 

--+~ '.. '" ", -' H 

Strengthens ~ >S( ....... ~ 
weaken~ 

1 
H-O 

"-. 
Si, 

/\ 

H H, / 
Si- H 

I 
H 

Transition state 

The mechanism of silane formation is explained by a nucleophilic second order (SN2) 

reaction mechnism (Sommer 1964). The oxygen on the water molecule has a lone pair 

of electrons and it acts as a nucleophilic ("hole-loving") center.. The bond between Si 

and the SiH3 group (Si3Si-SiH3) weakens, as there is some polarisation between the two 

Si atoms. This causes 0 to form a strong bond with SiSiH3 (O-SiSi3). The bond 

between HO-H weakenens and the H atom from the water molecule forms a strong bond 

with SiH3 as shown in the diagram. This type of reaction occurs by a four-centre 

process as shown by a transition state. The bond between Si3Si-SiH3 breaks and the 

products,:=Si-OH ( silanol group) and silane are formed. 

5.5 Hydrogen Evolution 

During the anodisation of silicon, hydrogen is produced. Dissolution of silicon to 

produce porous silicon has attracted lots of research work to understand the mechanism 

of forming PS. There is an excellent review on the subject available (Smith and Collins 

1992). Also, it was reviewed in Chapter 2 of this work. The hydrogen formed during 

anodisation as atoms with one electron. These form hydrogen molecules with other 

hydrogen atoms and are liberated as a gas. 

H- + H- ~ H2 t 
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Atomic hydrogen is a very reactive species and it fonns bonds with the dangling bonds 

of freshly etched silicon. The pore walls of PS are covered mainly with hydrogen to 

give Si-H, Si-H2 and Si-H3 groups and some of the surface Si atoms are attached to 

fluorine based species found in the electrolyte. 

Desorption of hydrogen was investigated by using TPD and in-situ FTIR Spectroscopy 

(Gupta, 1988). An isothennal annealing method was used to desorb H2 from mono- and 

di- hydrides. The double peak at 2102 and 2087 cm-1 were assigned to Si-H and Si-H2 

stretching modes (in reverse order to the present work) respectively. FTIR peaks at 

2110 cm-1 (-SiH) and 910 cm-1 (-SiH2) were used to evaluate desorption kinetics. 

Second order kinetics were predicted for both hydrides. TPD and stress measurements 

were used by Diawara et al. (1994) to compare H2 effusion with the film stress. The 

as-anodised PS films are found to be under compression (Y oung et al. 1985), and so the 

changes in stress and the hydrogen effusion were measured during thennal annealing. 

Second order kinetic processes for both stress and hydrogen effusion were predicted. 

The Zoubir group (1994) applied TDS (Thermal Desorption Spectroscopy) and FTIR. 

They observed effusion curves for H2 desorption at 400°C (673K) and 500°C (763K) 

and assigned them to di- and mono-hydrides. Also, Si-Fx (x=1,2,3) species and Si-Hy 

(y=1 ,2,3) were observed when a quadrupole mass spectrometer was used as a detector. 

No silane (SiH4) was observed. It is important to emphasise that the triple peaks 

observed in the Si-H vibration region at 2090,2110 and 2140 cm-1 were assigned to -

SiH, =SiH2 and -SiH3 groups respectively. This contradicts Gupta's assignments. The 

difficulty of using these references to previous work on thermal desorptions is that, as 

was mentioned earlier, the PS samples were prepared using different methods and 

conditions. The surface chemistry of these PS films depends on the way they are 

produced. The Table 5-2 shows some of the key papers published on the thermal 

desorption from porous silicon. 
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TABLE 5- 2 Summary of the properties of PS prepared using different conditions 
j --

- -

! PS details Electrolyte Anodising Conditions Kinetic Data Heating Rate Other Information Reference 

P type, Si(100) 
1-10 n cm 50% HF:C2HsOH 25 rnA cm-2 2nd order for Stress 4200 e and 525°e 

=/-- --~-~-~ 

=- -= -==- -- --- -

Al on the back of Si 1:1 5 minutes and H2 effusion 200 e Min-I (693K and 798K) Diawara et aI; 1994? 
P+ type, Si(lOO) 
0.005 n cm 50% HF:C2HsOH 25 rnA cm-2 2nd order for Stress 3900 e and 500°C 
Al on the back of Si 1:1 5 minutes and H2 effusion 20°C Min-I (663K and 773K) Diawara et al; 1994? 

2nd order for H2 
desorption (mono & 

P type Si(100), ez di- hydrides) 
0.464 n cm 200 rnA cm-2 Ea 4.7xl0-2 and 8K S-I Only simulated TPD 
Ta on back of Si 33% HF: e 2HsOH 5 seconds 1.7xl02 kcal mor l (480K Min-I) curve; peak area 3: 1 ratio? Gupta et a1., 1988 

3400 e and 4500 e i 
P-type, Sil00) 50% HF:C2HsOH 10-100 rnA cm-2 (413K and 723K), ref- Petrova-Koch et al., 
No resistivity details 1:1 No anodisation time None lK Min-I Gupta for FTIR peaks 1991?? 
p+ type SiC 100) 40% HF:e2HsOH 75 rnA cm-2 DSe technique 
0.015-0.25 n cm 1:1 30 minutes None 200 e Min-I only 375°e (648K) Salonan et al., 1999 

DSe technique 
N+-type Si(100) 40% HF:C2HsOH 75 rnA cm-2 375°e and 490 0 e 
0.35-0.95 n cm 1:1 30 minutes None 200 e Min-I (648K and 763K) Salonan et a 1., 1999 
Si (111), N- & P-type HF/HN03 gaseous 125°e and 3000 e 
0.005-100 n cm (Stain etched) None Ea 16-17 kcal mor l Not given (398K and 573K) Y oshikova, 1969 

3g.NaN03 in 
P-type, SiC 111) 100 cm3 49% HF Ea 46 kcal morland 4000 e and 5000 e 

~ 8_'Z:L11 Q£m (chemical etch) 10 minutes in daylight! 57.8 kcal mor l 15°e Min-I (673K and 700Kl_ Hadj Zoubir, 1994, 1995 
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5.5.1 Proposed Mechanism for H2 formation 

Despite many experimental and theoretical works carried on hydrogen adsorption and 

desorption on c-Si, the mechanism still remains controversial. Several desorption 

models have been proposed but none are conclusive. For semiconductors such as Si the , 

atoms are covalently bonded i.e the valence electrons from neighbouring Si atoms are 

shared. The surface Si atoms find it hard to compensate for the loss of nearest 

neighbours. The dangling bonds created at the surface cannot be easily satisfied except 

through some form of rearrangement or reconstruction (SomOIjai 1994). The 

reconstruction results in a (2x 1) surface when alternative rows of surface atoms move 

towards each other to form "unoccupied" dimers (>Si = Si<). The diagram below 

shows a schematic diagram of lxl and a reconstructed Si (100) surface 

Si(lOO) 
Ixl 2xl 

Sakurai and Hagstrum (1976) reported that atomic hydrogen chemisorption on the 

reconstructed clean Si(100)2xl surface would produce either the monohydride 

SiC 1 00)2x 1 :H structure or the dihydride SiC 1 00) 1 x 1 structure depending on the 

experimental conditions. D'Evelyn et al. (1992) proposed a theoretical model that 

predicted the weak Si-Si n-bond favours the pairing and desorption ofH2 by a 

"concerted" mechanism. This applies to a Si(1 00)-2xl Si surface at low coverage which 

gives a doubly occupied dimer or monohydride. Laser-induced thermal desorption 

(LITD) and TPD experiments by Sinnaiah et.al. (1990) found that H2 desorption from 

monohydride follows first order kinetics with Ea of 45 kcal mor
l 

for the coverage up to 

one monolayer. A concerted mechanism with a hydrogen in a excited state (H*) was 

proposed. A similar method was used by Wise et al. (1991) to study monohydrides on 

Si(111 )7x7 and Si(1 00)2x 1 surfaces. First order kinetics were observed for both with Ea 

values 62 and 58 kcal mor l respectively. He concluded that the kinetic parameters are 

consistent with a desorption mechanism in which hydrogen surface mobility allows two 

H atoms to migrate to adjacent sites. The migrated H atoms recombine and H2 
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molecules can desorb. A recombinative desorption mechanism for monohydride 

desorption from Si (l00) 2x 1 and Si (111) 7x7 surfaces was proposed by Shane et 

al.(l992). They concluded that the desorption from monohydrides for both surfaces 

goes through a dihydride-like intermediate phase. 

For Si(l 00): 

H-Si-Si-H B Si-SiH2 ................... - ....... ~ 1a 

Si-SiH2 ~ Si-Si + H2 .. 1b 

For Si(lll): 

Si-H + Si-H ~ Si +SiH2 .. 2a 

SiH2 ~ Si + H2 .. 2b 

In the above model, desorption from dihydride occurs through the combination of two 

hydrogens from the same Si atom. A different desorption mechanism, in which H atoms 

in adj acent dihydride units (Si(1 00) 1 x 1 :H) recombine, has received more support in the 

literature (Ciaci et al. 1984, Zheng et al. 1992, Cheng et. al. 1991). Many more papers 

are available on the desorption ofH2 from c-Si surfaces, but they are not highly relevant 

to this work as porous silicon exhibits multi crystalline planes. 

Application of these data to PS is not possible as PS does not have defined crystal 

planes like c-Si. The results obtained from PS cannot be analysed in terms of any 

particular crystal plane as the pore surfaces are not unidirectional but are isotropic. The 

microstructure of pores has been extensively studied (Beale et al. 1985, Smith et al. 

1988). The structure of the pores was shown to be dependent on the electochemical 

parameters, dopant type and density and the type of electrolyte (Canham, 1997, Herino, 

1997, Cullis 1997). With p- type (20-50 n cm), the main direction of pore growth is 

found to be in the (110) plane from TEM studies (Young et aI1985). Even though the 

silicon in porous silicon retains some crystallinity, the Si nanocrystals of the pore walls 

are randomly oriented. One thing is certain and that is the pore walls of PS exhibit 

surfaces with "multi-crystalline planes". 

FZ silicon is used in this work and the PS produced from this type of Si produces 

microporous material. The pore structure consists of a random array of fine holes which 

run continuously to the surface and give a "fur-like" appearance. 
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Figures 4-5, 4-6 and 4-7 are the TPD spectra for H2 desorption from PS samples 

prepared from Electrolytes A, B, and C respectively. All of them show two "humps" in 

the region of 600-730K which are believed to have arisen from two types of hydrogen 

environments. A very small "blip" was observed with mJz 29 at a lower temperature 

(~525K), the origin of which is not understood. The averaged peak temperature values 

for H2 desorption were taken from 3 samples and are given in Table 5-3 below. The 

accuracy of the peak tempeature values is ± 5K 

TABLE 5- 3 Peak temperatures observed with H2 desorption spectra 

Electrolyte Peak Temperature 1 «~l ) Peak Temperature 2(B2) 
+5K ±5K 

A 620 720 

B 625 725 

C 610 700 

The lower temperature peak BI and the high temperature peak B2 are generally identified 

as H2 desorbing from dihydride and mono hydride species respectively (Zheng et al. 

1992; Flowers et a1. 1993, Cheng et a1. 1991). But this work found that BI is due to -

SiH and B2 is from -SiH2. In other words hydrogen from -SiH desorbs at lower 

temperature than from -SiH2 species. This was confirmed by correlating TPD spectra 

for H2 desorption and the results from FTIR spectra obtained using heated PS samples 

with 25K intervals. Figure 5-1 shows overlaid FTIR spectra ofPS heated from 325K to 

625K in the 2100 cm-I region. 

The following observations are to be noted: 

1. The -SiH3 peak (2140 cm-I) disappears at ~575K. 

2. The peak for -SiH2 (2110 cm-I) shifts to 2102 cm-
I 

with the disappearence of -SiH3 

speCIes. 

3. There is a gradual decrease in intensities of -SiH2 and -SiH peaks with increase in 

temperature and the peak due to -SiH disappears before -SiH2 

4. The peak due to -SiH (2108 cm-I) disappears around 625-650K 
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5. More desorption occurs till the temperature reaches about 700K. Disappearence of -, 

SiH2 peak.-see Figure 4-28 

To summarise the sequence of the desorbing order for Si-Hx species is as follows : 

-SiH3 > -SiH > -SiH 2 

The TPD spectra for all three electrolytes (Electrolytes A, B, C) are found to be similar 

indicating that the pore surfaces of all three types ofPS are similar with respect to Si-Hx 

species. The two "humps" of the TPD spectra (Figures 4-5 , 4-6 and 4-7) are not 

completely resolved into two peaks. In other wards maximum desorption occurs at the 

peak temperatures but the desorption from SiH2 (~1 peak) starts before the desorption 

from SiH (~2) decreases to a minimum level. This results in a partial overlap between 

the ~ 1 and ~2 peaks .. This can be explained by the FTIR spectra. Figure 5-1 shows 

overlaid FTIR spectra ofPS samples heated to 325K, 500K and 625K in the vacuum. 

The peak at 2140 cm- I due to -SiH3 nearly disappears at 500K (total disappearence 

observed at ~570K) During this time the peak at 2110 cm- I (due to -SiH2) shifts to 

2102 cm- I without any loss of its intensity. Gradual loss of both peaks at 2l02cm- 1 and 

2090 cm -I occurs during further heating. 

2100 2200 

Wave Numbers (cm-l) 

2100 

...­--' 

2000 

FIGURE 5- 1 Overlaid FTIR spectra of triple peaks (Si-Hx) at 325K,500K and 625K 

Ratio of The Area Under tlte H2 Desorption Spectra 

The areas under the peaks were calculated for the H2 desorption spectra obtained from 

PS prepared from all three electrolytes. The Table 5-4 in the next page gives the details . 
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TABLE 5- 4 ~2: ~1 ratio of peak areas of H2 desorption spectra (all three electrolytes) 

Electrolyte PeaklOh)-Area Peak 2 (PI) -Area ***Ratio (P2 : PI) 

A 11.8 14.2 1 : 1.20 

B 7.8 8.45 1 : 1.08 

C 6.2 5.2 1 :0.84 

*** P2: PI ratio represents SiH : SiH2 ratio 

PS anodised in Electrolyte C has gone through a chemical etching in 400/0 HF for 4 

hours. PS samples from Electrolytes A and B show about a 1: 1 ratio for the amount of 

H2 desorbed from SiH2 and SiR species. Table 5-5 shows the peak ratios obtained by 

some other researchers 

TABLE 5- 5 ~2: ~1 ratio of peak areas of H2 desorption spectra -literature values 

Sample type Anodising conditions *Ratio «(32 : (31) References 

P type Si(100), CZ 33% HF: C2HsOH 
0.4640 cm 200 rnA cm-2 1 :3 Gupta et. AI., 1988 

Ta on back of Si 5 seconds 

P-type, Si100) 50% HF:C2HsOH, 1: 1 Petrova-Koch et at, 
No resistivity 10-100 rnA cm-2 1 : 1 
details No anodisation time 

1991 

P-type, Si(1l1) & 3g.NaN03 in 100 cm3 

Si(100) 49% HF (chemical etch) 1 :0.71 Zoubir et al., 1995 

87-1120 cm 10 minutes in daylight! 

n-type, Si(l11) HF:H20, 1:4. 15 rnAcm-2 

1: 66 
Martin et al,personal 

16-240 cm illuminated (30m W cm-2
) communication 1998 

* Pl: PI ratio represents SiHl. : SiB 

Since the pore growth in p-, high resistive (20-50 n cm) wafer is not directional, the 

pore surface can be considered as rough and multi-faceted. These surfaces cannot be 

defined as either Si(ll 0), Si(lOO) or Si(111). The reconstructed Si surfaces that are 

referred in the literature for c-Si, for example, SiC 100) 2x 1 which is monohydride 

covered surface or SiC 1 00) 1 x 1 dihydride covered or Si(100) 3x 1 which is a surface with 

mono- and di- hydride covered in alternating positions, cannot be applied fully to 

interpret the H2 desorption mechanism for PS. Nevertheless, the results obtained for PS 
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reflect the nature of bonding in all pore surface Si atoms with different configurations 

and to a lesser extent to the crystallographic orientations. 

The evidence for the existence of -SiR3, -SiR2 and -SiR groups on the pore surfaces 

comes from the FTIR spectrum with a triple peak in the Si-Rx vibration region. Some 

papers reported a double peak produced by only -SiR and -SiR2 was observed in the Si­

Hx region (Anderson et al.1993, Rory et al. 1995; Sasaki et.al1994; Gupta et al. 1988). 

Others observed a triple peak in the 2100 cm-1 region, corresponding to all three Si-Hx 

species (Ogata et.al 1995, Chabal1985, Zoubir 1995). The reasons for this can be 

different infrared instruments used or perhaps different concentrations ofRF in the 

electrolyte used for the anodisation ofPS (Sasaki and Kitahara 1994). Sasaki and 

Kitahara reported that the ratio SiR2 : SiR increases with the decrease in HF 

concentration. Also, fluorine and oxygen are found on PS anodised for a long period. 

Some of the possible structures for Si-Rx on a pore surface are given on this and the 

next page. 

5.5.2 Possible Si-H Features on Pore Surface 
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5.5.3 Some Possible H2 Desorption Processes 
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H~Ji/H HSi: 

5. I 
I .. Si + H2 

S·/ I ~ Si / 1\ Si 
/1\ Si /\\ 

/1\ 

6. + H2 

7. 

5.6 Possible Desorption Processes 

Schematics of possible structures were given in figures I to IV for Si-H and Si-H2 

groups. The pores are multi-directional (isotropic) and there is no single crystal plane or 

just one type of reconstructed surface such as Si(100) 2x 1. Therefore many types of 

planes with higher numbers for Miller Indices are possible. It is important to mention 

here that more than the seven structures shown may be possible with PS. Various H2 

desorption processes are possible with these structures and seven of them are illustrated 

above. 
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5.7 Fluoro-silyl Species (Si-F x) 

Even though the porous silicon surface is more or less covered with Si-Hx species there 

is much evidence to suggest that Si-Fx species are also present on the surface. There are 

two aspects of adsorption to be considered when the pore surface ofPS is investigated 

1. Effects of dipping c-Si in HF - dissociation products ofHF in water or ethanol are 

found. 

2. The products that are formed during anodic dissolution. 

Extensive studies of the surface ofHF-dipped c-Si have been published as this step is 

used to remove native Si02 before any processing steps to produce devices. Chabal et 

al. (1989) investigated HF-dipped Si surfaces with Attenuated Total Reflection 

spectroscopy (ATR) and reported that the HF treated surface is inhomogeneous and that 

Si-Hx (x=1,2,3) species are present. Grunder et al. (1991) using HREELS and XPS 

found mainly Si-Hx and small amounts of fluorine and oxygen. It was also found that 

the amount ofSi-F is dependent on the concentration ofHF. With a Si(100) surface 

dependence was found to be logarithimic. Also, it was reported that the surface 

coverage of Si-F increased by two fold with longer immersion times in 50% HF and 

then levels off. This was interpreted in terms of an equilibrium between the fluoridating 

reaction and the dissolution of fluorinating species. 

The exact species participating in the anodisation process have been investigated. 

Venkadeswara Rao et. al. (1991) investigated the HF/Si interface using Fourier 

Transform Electromodulated Infrared Spectroscopy (FTEMIRS) in-situ and FTIR 

methods. A broad spectrum was observed in the 2100cm-1 region with the FTEMIRS 

method whereas the FTIR spectrum of PS removed from the electrolyte showed the 

characteristic three peaks for the Si-Hx. An attempt was made to detect the intermediate 

species in the anodic dissolution process and it was concluded that if these species exist 

at all, their life time is shorter than 0.3ms. 

5.8 Desorption of Si-Fx and Hx-Fy species 

Desorption of fluorine related species were investigated by TPD spectroscopy. FTIR 

spectroscopy was not very useful in this study as the intensities of Si-F bonds are found 
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to be much lower than Si-H bonds. Also, in the fingerprint region (1400-400 cm-l), the 

Si-H and Si-F vibrations overlap each other and it is hard to assign those of SiFx. 

The desorption spectrum for mlz 85 (SiF3 +) shows three distinctive peaks with the 

porous silicon prepared from electrolyte A (Figure 4-11). This indicates that SiF 3 + 

species originated from three different sites within the porous silicon. The porous 

silicon prepared from alcoholic electrolyte (Electrolyte B) shows a broad single peak 

and a larger well defined peak at higher temperature (Figure 4-12). The porous silicon 

prepared from Electrolyte C (Figure 4-13) shows three peaks but the first and second 

peaks are not well resolved and the second peak is larger than the third high temperature 

peak. The peak temperatures of the Si-Fx series from all three electrolytes are given in 

Table 5-6 

TABLE 5- 6 Peak Temperatures for SiFx Species 

Electrolyte Peak Tl [K] Peak T2 [K[ Peak T3 [K] 

A 420 590-630 970 

B No Peak 625-650 850 

C 450-500 600 890 

5.8.1 Fragmentation products of SiF4 

The main Si-Fx species observed with TPD are observed together with fragmentation 

products ofSi-F4• Table 5-7 shows the abundance of SiF4 fragments observed with mass 

spectroscopy. 
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TABLE 5- 7 Fragmentation Pattern of SiF4 

mlz Ions Abundance (Gmelin) Abundance(Dudley et.al) 

19 F+ 1.090/0 1.2% 

47 28SiF+ 3.7% 3.20/0 

48 29SiF+ 0.21% -

49 3OSiF+ 0.12%) -

66 28SiF/ 0.77% 1.0% 

33 28SiF2++ 2.83% 2.40/0 

85 28SiF/ 1000/0 100% 

86 29SiF/ 5.24% -

87 3OSiF2+ 3.40% -

104 28SiF/ 2.520/0 1.7% 

The ratios of the fragmentation products of SiF4 from the literature are as follows: 

SiF/ SiF2++ SiF/ 

2 100 3 1 4 1 

The measured partial pressure(PP) of SiF 3 + is about 4 E-9 and the expected corresponding 

PP ofF+ would be about 4E-11
. In fact the measured PP ofF+ is found to be 3.5E-

10
, i.e. 

about 10 times higher than the expected value. Figures 5-3 and 5-4 show a combined 

spectra ofSiF2++, SiF/, SiF+ and F+ species. The appearence temperature and PP ofF+ 

species are definitely different from the Si-Fx species. This means that most of the F+ 

species are not coming from SiF4 but from another source such as HF electrolyte. 

The Table 5-8 below gives the partial pessures of the peaks observed with SiFx species 

and all the fluorine based species observed with the desorption ofPS. From the table it 

can be seen that the PP ofSiF2++ and SiF+ from the literature do not follow what was 

observed with the desorption products from PS. 
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5.8.2 TPD spectra of fluorinated hydrides 

Four distinct hydrofluoride species were observed with the TPD investigation. They 

were: HF+, H2Ft, (H30)F+lFt and HFt at mlz values of 20, 40,38 and 39 respectively. 

Also, F+ at mlz value 19 was found to desorb from PS when it is heated. Tables 5-8 and 

5-9 give the details of their peak temperatures and partial pressures. 

5.8.3 Properties of aqueous HF 

Unlike the other hydrohalic acids (HX), which are extremely strong, HF is very weak in 

aqueous solutions. On dilution it was found that the dissociation constant decreases. In 

water, it ionises to give, 

H20 + HF ~ [H30+P-] ~ H30+ (aq) + P- (aq) 

Ka = 1.1 xlO-3 or pKa = 2.98 (pKa = -logKa) 

This indicates rather small free hydrogen ion concentration as a result of the strongly 

bonded, undissociated ion-pair [H30+P-] being favoured in solution. 

The F ions in the solution form hydrogen bonds with the undissociated HF molecules. 

F- +HF -7 [F-H----Fr 

Hydrogen bonding in this ion is exceptional in that it is stronger than normal and the H 

atom is symmetrically situated between the two fluorines. For this reaction, 

Ka2 = [F-H ----Fr / [F] [HF] 

= 2.6xlO-1 
; or pKa2 = 0.58 

This indicates that an appreciable number of fluoride ions in the solution are 

coordinated by HF to give HF2- rather than by H30+ despite the larger concentration of 

water molecules (Greenwood and Earnshaw 1990). 

To summarise, the aqueous solution ofHF contains [HF2-], HF, [H30+FJ and associated 

HF molecules such as (HFh. 
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The Si-Fx species show some differences. Table 5-9 shows the peak temperatures for 

the SiF 3 + peaks. There were three peaks for SiF 3 + (Figure 4-11) , of which one is at 

higher temperature (970K) with electrolyte A whereas with electrolyte B only two peaks 

with one at higher temperature (850K) appear (Figure 4-12) . In these two cases the 

higher temperature peak is at least 10 times bigger than the lower temperature peaks . 

Electrolyte C which is same as Electrolyte A but undergone chemical etching for 4 

hours. The lower temperature peaks are not well resolved but their partial pressures are 

comparable to the third higher temperature peaks (Figure 4-13). 

5.8.4 Proposed Mechanism For Lower Temperature Si-Fx Peaks 

Two different mechanisms are proposed to account for these observations. The porous 

structures can be compared to zeolite structures . Zeolites have aluminosi licates 

framework, which are characterised by the presence of channels that consist of a 3-D 

maze of interconnecting tunnels . Besides its function as a molecular sieve, it behaves as 

an ion exchanger (Shriver et al. 1999). The lower temperature Si-Fx peaks were 

explained by this mechanism 
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FIGURE 5- 2 Electrostatic attraction between pore walls and electrolyte 
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Microporous material is classified as having pore diameters less than 2 nm by lUP AC 

classification of pore size. The pores can have many little buds branching out 

isotropically in many directions in P- substrates. These little buds can be as small as 

0.4- 0.5 nm. All of these pores will have all the species mentioned earlier. A schematic 

of a pore is illustrated in Figure 5-2. The Si atoms on the surface of the pores are not 

neutral. The dangling bonds are covered with H atoms formed from the electrolysis 

process as well as F species from the electrolyte. Water, the medium for the electrolyte 

is also dissociatively adsorbed as Hand OH on to the Si surface. In other words the 

surface of silicon contains charges as shown in Figure 5-2. There is electrostatic 

attraction between these Si atoms and molecules such as H2SiF6, SiF2 and SiF4. They 

are held by weak electrostatic and/or van der Waals forces. During heating, at lower 

temperatures these species were released and their fragmented products were obtained. 

It is important to mention here that the observed ratio of the fragmented products did not 

follow the literature values. The partial pressures of SiFt+, SiFt and SiF+ were found 

to be higher than the SiF3+ peak which is the base peak for SiF4 fragmentated products 

(Table 5-7). This means that Si-F and Si-F2 must have been present as separate entities. 

5.8.5 Proposed Mechanism For High Temperature Peak 

It should be noted that SiFt+, SiFt and SiF+ were not detected together with the high 

temperature SiF 3+ peak observed with TPD spectra. This suggests that the SiF 3 + species 

observed at high temperature has different origin/environment to that observed at lower 

temperature 

It is proposed that F atoms can bond to Si to give Si-Fy (y=1,2,3) similar to Si-Hx 

species. Migration ofF atoms at high temperatures was studied using SIMS and TPD 

techniques by the Jeng group (1992). They reported that migration of the F atoms 

occurred above 550°C (823K) and indicated that it is a strongly temperature-dependent 

thermallyactivated process. The higher temperature peak can be explained in terms of a 

diffusion mechanism. This means that a Si-Si bond breakage occurs during the release 

of SiF3 +. This is supported by the bond dissociation energies reported in the literature 

(Kato et.al. 1988). Si-F (129.3 kcal mor l
) > Si-Si (42.2 kcal mor\ 
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TABLE 5- 8 Partial pressures of F-based species observed with PS from Electrolytes A, Band C (at their peak temperatures) 

Electrolyte 
SiF3+ HF2+ HF+ H2F/ F+ (H3O)F+IF/ 

Partial pressure(mbar) Partial Partial pressure(mbar) Partial pressure(mbar) Partial pressure(mbar) Partial pressure(mbar) 

pressure(mbar) 

II 
A 4.1 1.0 1. 5 3.2 2.8 6. 0 6.0 6.0 x lO- 6.0 4.0 7.0 1.3 3.0 3.6 in the 10-11 leve l not very 

x 10-10 X 10-10 x 10-9 x IO-IO X 10-10 XIO-11 Xl0-11 II XIO-11 XIO-11 X 10-11 XIO-11 X I 0-11 XIO-il distinctive 

I 

B None 1.0 1.4 4.0 6.0 1.2 1.2 None None 2.0 6. 0 2.8 3.0 1.2 v.low; _ 10-12 leve l 

x IO-IO x 10-9 x 10-9 x10-9 x IO-IO x I 0-10 X 10-10 x lO-IO x 10-10 x IO-IO x iO-11J 

C 6.0 1.2 8.0 5.0 6.2 None 1.0 4.0 1. 2 1.0 None 1.0 1.5x l 1. 2 1.0 x lO- 1.0 x lO-

x 10-10 x I 0-9 X I 0-10 x IO-<) X I 0-9 x IO-IO X I 0-10 X 10-9 X 10-9 
X 10-10 0-10 X I 0-9 

') l) 

**** T he peak temperatures o f flu oros il yl- and flu orohydrid es are given in Table 5-9 . 
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TABLE 5- 9 Peak temperatures observed with F-based species (PS from Electrolytes A, B and C) 

,.---·--·-.. -.- .. ···.···.-··.···.-r.·········· .. ·.····.................................................... . .................................. j 

I Electrolyte I 380-410 (K) 450-500(K) i 530-550 (K) ! 600-640 (K) 

. I (H30)F+ ! ! (H30)F+ I (H30)F+ 
__ . ~~.~~:.~~ ~.~: .. ~. ~::::..... I HF / .:: ..... ..... . " ! ' .. : HF 2 + 

1- . -.............. -_. ".'.' r' ..• ........................ ...... ';1 I SiF 3 + 

I I F j: f i F+ . F+ 

! I i HF+ HF+ 

B 
, 

J 

F+ 

c 

, . , . + + I : H2F2 , H2F2 
r "- 1 • + 
,.......... 1 H30)! 
J H2F2 

; SiF/ 
1 F+ , 
I HF+ 
t + 
I H2F2 

I (HJO)F+ 
HF2+ 

, SiF/ 
t F+ 

HF+ 
H2F2+ 

_ (HJO)F+ 
i HF2+ 

The I11 Iz va lu es for F+,HF+, (H ]O)F+/F/, HF2+ H2F/ are 19,20,38,39 and 39 respective ly. 

Page 139 

1 

i F+ 
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I 650-700 (K) 
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F+ 

790 (K) 850-970 (K) 
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FIGURE 5- 3 Comparison of the TPD spectra of F-based species from PS (Electrolyte A) 
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5.8.6 Mechanism for Fluorine Evolution. 

From the literature (Gmelin Handbook 1993) one of the possible fragmentation products 

of SiF 4 is F+ and the relative abundance of it should be 100 times smaller than the base 

peak SiF3+' Figures 5-3 and 5-4 show that it is not so. It is proposed that origin ofF+ 

observed in the TPD spectra (Figures 5-3 and 5-4) are from different environments as 

the peak temperatures and the respective partial pressures were found to be different. 

The lower temperature appearance ofF+ (380-410 K) could come from the electrolyte 

and the higher temperature peaks, in the range of 650-790K, could possibly be the result 

of Si-F bond breakage. 

It is difficult to propose a mechanism for the desorption of F+. Further work is needed 

to study the origin ofF+ species. One possible way suggested is to produce PS from an 

electrolyte with F isotopically-substituted HF and analyse the F+ ions emitted. It is 

discussed in Chapter 6 under the heading "Proposed Future Work" 

5.9 Ageing Process with porous silicon 
The investigation into the ageing process was carried out with PS prepared from 40% 

HF electrolyte. The changes were observed during the period from day 1 to 8 months. 

Table 5-10 summarises the observations from FTIR spectra, assignments of the peaks 

and the references used for their interpretations. 

5.9.1 Region 4000-2000 cm-1 

The characteristic triple peak for Si-Hx at~2100 cm-1 broadens with storage time and the 

peak at 2140 cm-1 (-SiH3 group) gradually disappears (Figure 4-40). This supports the 

proposed mechanism, involving hydrolysis of -SiH3 species, to produce silane (Canham 

1994, Lampert et al. 1986, William et.aI1983). The appearance of two extra peaks at 

2257 and 2201 cm-1 and the increase in the intensity of peak at 2257 cm-
1 

with time 

(Figures 4-39,4-40) suggests that more than one oxygen atom per one Si atom is back­

bonded to Si-Hx during the oxidation process. When one 0 atom forms a bond with a 

Si-H configuration, the two Si-Si backbonds that remain are considered to be less stable 

than Si-Si bonds in bulk Si. This is due to the difference in bond length between Si-O­

Si and this effect was due to more electronegative 0 atom. The higher electronegativity 

of the oxygen atom modifies the electron density around Si atom. This causes the 

infrared vibrations to be shifted to higher wave numbers (Kato et. al. 1988). 
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Another triple set of peaks at 2957,2920 and 2857 cm-1 was observed to develop with 

time. These are interpreted as carbon based, Si-CH3 species. C-based contamination is 

not avoidable in the laboratory environment where volatile organic reagents are kept. 

The "sponge-like" PS structure with very large surface area is very efficient in absorbing 

these vapours. The development of small peaks at 1463 and 1515 cm -1 are also 

interpreted as Si-CH3 vibrations (Borghesi et al.1993; Lucovski 1979). Two more peaks 

at 2365, 2344 cm-1 were found to develop with time (Figure 4-44) and are interpreted as 

C02 adsorption (Borghesi et. al.1993). Not surprisingly, moisture adsorption was very 

prominent. Gradual development of a broad peak in the region at 3400 cm-1 region was 

observed (Pliskin, 1977). This was interpreted as SiO-H vibrations. The broadness has 

been reported to have arisen from hydrogen bonding between the OH groups. 

5.9.2 The Region 2000-400 cm-1 

It is very difficult to assign peaks in this region as Si-Fx and Si-Hx IR vibrations occur in 

this region. The peak at 910 cm-1 was assigned to a SiH2 vibration in the literature 

(Ogata et al. 1995). It was observed from Figure 4-38 that there is a decrease in the 

intensity up to 8 days old sample and the intensity of this peak stayed constant after that. 

It is thought that this peak comes from a combined vibration of Si-Fx and Si-Hx groups. 

The decrease in intensity was interpreted as loss of Si-Fx oscillators as these species are 

known to hydrolyse with moisture (Kato et al.1988, Grundner 1991). This decrease in 

intensity was found to be similar to the peak at 818 cm-1 (Figure 4-38) which also was 

interpreted as due to Si-Fx vibrations. 

A new peak at 878 cm-1 was observed to develop with time and was found to shift to 

883 cm-1 (Figure 4-41). This was interpreted as the overtones ofSi-O-Si vibrations. 

The shift was interpreted as further bonding of more electronegative oxygen atoms. The 

intensity of the peak at 455 cm-1 was also found to increase quite considerably with 

time. This peak was assigned to cyclic Si04 units (Beckman 1965). 

Remarkable change with the double peak at 668/626 cm-
1 

was observed with time. The 

peak at 668 cm-1 completely disappeared after about 3 months (Figure 4-42). Only a 

single characteristic peak of Si-Si phonon vibrations was observed. It is suggested that 
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this could be due to the disappearance of a -SiH3 peak. This work assigned, from the 

evidence of heating experiments, the peak at 668 cm-1 as arising from the SiH3 group. 
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TABLE 5- 10 FTIR peak assignments for "ageing" PS from electrolyte A 

WaveNum •. Assienments Ageing details References 

3458 SiO-H asymm.stretch 
Starts to show after 29 days as a 

Pliskin W.A.1977 
single peak; by 124 days double 

3299 H-OH-(Moisture) 
peak; a broad single peak at 
-3400cm-1 after this time 

2957 Due to C-H3 asymm. Borghesi, A. et. aI. 1993 

Distinct triplet; siginficant with time 
2920 Due to C-H3 symm. Feng, Z. C. et. aI., 1994 

2857 Due to C-H2 symm. 

2365 CO2 absorption Borghasi.A et.aI. 1993 

2344 CO2 absorption 

2257 02Si-H stretch 
-10days and increase in intensity Ogata, Y.et. al. 1995 
with oxide growth 

2201 OSi-H 
Appears but stays without any Kato, Y. et. al. 1988 
change up to 8 months 

2140 H2Si-H stretch 
This peak gradually getting Ogata, Y.et. al. 1995 
shallower -29days 

2116 HSi-H stretch 
Stable peak but shows decrease in Beckman, K.H. 1965 

intensity by 8 months. The triplet 
region was observed to be wider 
with ageing 

2110 SiSi-H stretch 
Peak gradually getting shallower by 
-54 days (-3 months) 

1463 Si-CH3 ssymm .. stretch Both peaks appear with samples Borghesi, A. et. a!. 1993 

kept for 4 months over. Defmite 

1515 Si-CH2 asymm .. stretch time period cannot be defined Lucovsky, 1979 

1208-1058 Si-O-Si asymm.Stretch 
Peak at 1045cm-1 was observed in Pliskin, WA, 1977 
the beginning, it intensifies with 
time and covers larger region with 
time 

963 Si-O weak vibration 
Very small increase was observed Borghesi, A. et. a!., 1993 
with 8 months old sample 

910 Si-Hx bending orland 
Gradual decrease till 19days Author's interpretation 
constant after that. 

Si-Fx stretch 

878~883 O-Si stretch & H-OSi 
Was not observed in the beginning; Author's interpretation 

bend 
appeared -8days and peak intensity 
increased considerably with time 

818 Si-Fx symmetric Disappeared by 14days; possible Author's interpretation 

vibration hydrolysis by moisture 

802 Si-O bending 
Very weak overtone; seen in 8 Borghesi, A. et a!. 1993 

months old sample 

668 H2Si-H Bending 
Disappeared by 119 days; a sharp Ogata et a1. 1995 
small peak remained. Si-Si Phonon 
vibration lR.Ferraro et a1. 1989 

626 Si-H wagging 
Observed up to 8 months but Ogata et al 1995 
decreases slightly in peak intensity 

455 Si-O Rocking 
Appeared -29days; very intense Beckman, K.H. 1965 
peak grows with ageing; due to 
cyclic Si04 units , 
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Chapter 6 Conclusions 

This work was undertaken to explore the nature of adsorbed chemical species on the 

pore surface during the fonnation of porous silicon and its storage procedures. The 

conclusions of this work would shed some light onto some previously unexplained 

behaviour of applications using porous silicon as the starting material. 

6.1 Summary of This Work 

a) The PS used in this work was produced from p- (50-100 Q cm) FZ silicon wafers. 

These wafers were back implanted with lxl01S boron cm-2 at 40 KeV and were 

annealed under N2 with 1 % O2 at 1050°C for 30 minutes. FZ wafers have less 

oxygen content than CZ wafers and are better for FTIR work. The FTIR spectrum 

of a blank CZ wafer shows a sharp peak at 1107 cm-1
, and is due to Si-O vibrations. 

b) Three most commonly used electrolytes were chosen to prepare porous silicon 

1. Aquous 40% HF (Electrolyte A) 

ii. "20% ethanoic HF" - 1: 1 ratio of C2HsOH and 40% HF (Electrolyte B) 

Ill. Aquous 40% HF followed by 4 hours of chemical etching (Electrolyte C) 

All PS samples were anodised for 2 minutes with current density 2mA cm-2 and spin 

dried with no rinse in deionised water. 

c) The TPD system and the Heating Unit were developed in the Middlesex University 

Microelectronics centre. The development and characterisation of the system are as 

important as the results obtained from them for this work. Even though the vacuum 

system can be purchased it was decided to build on site due to the economic factors. 

The heating unit was designed and built for this work as no commercially available 

system is suited for this purpose. It was discussed in Chapter 3 

d) The storage facilities were investigated with a blue wafer box, a white wafer box 

with a screwtop, a vacuum desiccator (air was displaced by Ar and it was evacuated 

to 10-4 torr pressure) and a white wafer box kept in the vacuum desiccator. All 

were tested upto 240 days (- 8 months). The chosen method was to place the as­

anodised wafer in a white wafer box and keep it in the vacuum desiccattor. 
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e) TPD analyses were carried out by heating the samples linearly at a heating rate 

1.5 Ks-1
• The starting base pressure of the TPD vacuum chamber was - ~ 10-8 mbar 

6.2 Conclusions from the Results 

a) The gaseous species in the vacuum chamber with and without PS were scanned 

through the range 1-100 amu using the analogue mode facility available with the 

quadrupole mass spectrometer. Increase in base pressure with the PS sample 

indicates that gaseous species were given out during the pumping process. Apart 

from the components of air (0+, N/ orland CO+, 0/ and CO/) the most significant 

increase was found to be F species. There was no increase in the H2 +, while the 

possible origin ofF+ may be from HF2- ions found in HF based electrolytes. 

b) The main species and their fragmentation products were identified when the PS was 

heated in the TPD vacuum chamber using the analogue mode facility of the QMS. 

They were hydrogen, silane and its fragmentation products, Si-Fx species and Hx-Fy 

species. The PS samples prepared from Electrolytes A, Band C were compared. 

These results were complemented by FTIR results. These results were obtained 

with PS samples heated to different temperatures with 50K intervals. 

c) Hydrogen evolution from PS 

The TPD spectra ofPS obtained from all three electrolytes show two "humps" which 

have arisen from two types of detectable hydrogen environments. The temperature 

difference between the two peaks were similar (- 100K). This suggests that there is no 

difference in the way hydrogen desorption occurs in the PS prepared from the three 

electrolytes. 

The evidence from the FTIR work compared with the TPD peak temperatures of the H2 

desorption spectra suggest that the lower temperature TPD peak corresponds to 

hydrogen from Si-H. The sequence of the desorbing order for Si-Hx is as follows: 

-SiH3 > -SiH > SiH2 
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It is important to mention here that many theoretical and experimental studies have been 

published on the desorption of hydrogen from c-Si with specific crystal planes and the 

mechanism of the desorption processes from these specific surfaces still remain 

controversial. None of the studies so far is conclusive. It is practically impossible to 

apply these data to PS as the pores have "multi-crystal planes". The pore structures are 

dependent on many experimental factors such as the resistivity of c-Si, anodising 

conditions as well as the nature of the electrolytes. These dependencies were reviewed 

indetail in Chapter 2. P- c-Si used in this work is known to produce isotropic micro­

pores (multidirectional pore growth) 

Schematics of possible Si-H features on the pore surfaces and the suggested desorption 

processes were given in Chapter 5 for Discussions. They are mainly based on Si-H and 

Si-H2 structures. 

d) Silane and its fragmentation products 

Silane and its fragmentation products (SiH/, SiH3+, SiH/,SiH+ and St)were observed 

at 575K. This was complemented by the disappearence of the FTIR peak at 2140 cm-
I 

(570K ±1 OK), due to -H2Si-H group. This peak is a part of a triple peak assigned to 

Si-Hx vibration observed in the FTIR spectrum of as-anodised PS 

The proposed mechanism is as follows: 

H H 
/ / 

H-O Si-H 

~ /"H 
Si, 

/\ 

1 

Transition state 

H 

H"" / Si--- H 

I 
H 

=Si-SiH3 + H20 ~ SiH4 + =Si-OH 

The nucleophilic -OH group of water, H-OH, attaches itself to a Si atom of the pore 

wall surface. The H from the H-OH then attaches itself to Si of the -SiH3 group and 

silane is released. 
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e) Fluorosilyl Species (Si-Fx) 

Desorption of fluorine related species was investigated by TPD method as FTIR 

spectroscopy was not very useful. This is because Si-F bonds produce vibrations of 

lower intensty than those from Si-H bond vibrations. Unlike hydrogen and silane 

desorption, Si-Fx desorption was found to be sensitive to the nature of the electrolyte. 

Three distinct peaks were observed at 420K, 590-630K and 970K with PS produced 

from Electrolyte A. With Electrolyte B only two peaks at 625-650K and 850K were 

observed. A PS sample produced from Electrolyte C was similar to PS produced from 

Electrolyte A except that the high tempeature peak was at a lower temperature of 890K. 

The lower temperature peaks were explained in terms of zeolite structures which are 

characterised by the presence of interconnectiong channels. The mo1cules/ions that are 

present in electrolytes, such as H2SiF6, SiF4 and SiF2 (presence of this species is 

controversial at present), are held by van der Waals forces andlor electrostatic forces 

and are desorbed at lower temperatures. 

The partial pressures of SiF2 ++, SiF2 + and SiF+ were found to be higher than that from 

SiF 3 +. This means that these species are not only produced from SiF4 and they must 

have been present in the HF based electrolytes as separate entities. These species were 

not detected together with the higher temperature SiF 3 + peak. 

The higher temperature TPD peak of SiF 3 + was interpreted as the result of migration of 

F atoms followed by a Si-SiF 3 bond breakage. This is supported by the dissociation 

enegies found in the literature for Si-F and Si-Si which are 129.3 kcal mor
l 

and 

42.2 kcal mor l respectively. 

The measured partial pressures of these species were compared to the partial pressures 

of the fragmentation products of SiF4 from the literature. The ratios of the partial 

pressures of these fragmentation products were similar to those of literature values 

except for the F+ species. It should be 100 times smaller than the base peak SiF 3 -!-but it 

is found to be 10 times higher. This means that F+ must have more than one origin. It is 

suggested that it could come from the electrolyte at lower temperature and from Si-F at 

higher temperature. 
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f) Fluorohydride species (Hx-Fy) 

F our distinct hydro fluoride species were observed with the TPD investigation. They 

were, HF+, H2F/, (H30)F+ IF/ and HF/ at mJz values of 20, 40, 38 and 39 respectiYely. 

Aqueous HF contains [HF2-], HF, [(H30tF] and associated HF molecules such as 

(HF)2 and were interpreted as the origin of the desorbed species 

g) Ageing Process 

This investigation was carried out from day 1 to 8 months period. Table 5-1 ° 
summarises the changes observed with PS sample. -CH3 and -CH2 related vibrations 

were observed with ~4 months old sample. Si-Fx related vibrations at 818 cm- I 

gradually disappeared after 14 days. This was interpreted as the hydrolysis of the Si-F 

group. 

Moisture oxidation was observed from the beginning at 1045 cm- I
; this intensified and 

broadened with time to 1208-1058 cm- I
. Also, a broad peak due to SiO-H (silanol) 

started to develop with a 29 days old sample. The effect of moisture was observed with 

the characteristic triple peak assigned to Si-Hx group. Two extra peaks at 2257 and 

2201 cm- I due to 02Si-H and OSi-H started to develop with a 10 days old sample. 

b) The best way to store PS samples is in screw-top white boxes and store the boxes in 

vacuum desiccator flushed with dry argon gas. This way most of the air components 

are removed and minimum chance to adsorb/absorb any "foreign species". 

6.3 Proposed Future Work 

The future work needs to be concentrated in three main areas 

1) The modification of the TPD system 

2) Measurement of Temperature 

3) The anodisation procedure 

4) using isotopic reagents 
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6.3.1 The Modification of TPD System 

The system in Figure 3-1 has only one vacuum chamber and it is unavoidable that 

breaking the vacuum to the environment occurs every time a sample is placed in the 

chamber. Once the sample is placed into the vacuum chamber, it takes about an hour to 

pump the system to ~ 10-6 mbar pressure. A load-lock system with two chambers 

commonly used to achieve ultra-high vacuum would be ideal for this type of work. This 

means that the second chamber can be used to transfer the sample and transported to the 

high vacuum chamber without breaking the vacuum. Porous silicon has a very high 

surface area and exposure to air must be kept to a minimum. 

The heating experiments with FTIR were carried out by heating the sample to a known 

temperature and then taking it out from the vacuum chamber to do the FTIR scanning. 

This was repeated with a fresh sample from a single PS wafer for each temperature. 

The results obtained by this method of scanning can be interpreted qualitatively. The 

TPD system can be improved by having a FTIR and XPS spectroscopic systems in situ 

so that changes on the surface of the PS during heating can be monitered. This means 

that from a single PS sample all the changes during heating can be investigated. This 

allows desorbing kinetics of various species to be investigated. 

6.3.2 Anodisation Process 

The present investigation was carried out using p- high resistive wafers in HF-based 

electrolytes for 2 minutes. The origin of hydrogen is not well understood. Is it from the 

aqueous media or is HF responsible for the hydrogen liberation. Many papers have been 

published on the mechanism of pore formation. One possiblility is the use of isotopic 

HF where IH19F (nomal HF) can be replaced with 2H19F, which is an isotopic HF. 

There is a difference of 1 amu (atomic mass unit) difference in the atomic weight of 

hydrogen and isotopic hydrogen; these species can be analysed with QMS as the 

detector in the TPD system. This will help to identify HxFy species as well. For 

example, (H30)F+ species can be distinguished from F2 + species where they both 

normally have amu value of 38. If the mechanism proposed in the literature for the 

formation of (H30)F+ is as follows then this species with 2H 19F will give a amu value of 

39. 

H20 + IH19F ~[H30F] [H30F] has amu 38 

1 2 
[ H2 HOF] has amu 39 
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The above is an example to show isotopic experimental technique is very useful in 

understanding mechanistic aspecte of reaction processes. 

This work has shed some light on the processes that go on at the pore surfaces from the 

time of anodisation to the time of device fabrications. Also, this work hopes to increase 

the awareness of the importance of careful interpretation of the material properties of 

porous silicon. 
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Appendix 1 Calculation of Thickness and Porosity of PS 

The adapted method was described by Herino grouup, 1987. The Si wafer was weighed 

before and after anodisation. The PS layer was dissolved in 1M (molar) NaOH solution, 

rinsed in DI water and spin-dried. The wafer was weighed after this process. The 

following method was used for the calculation of the thickness etc. 

The weight of the wafer before anodisation 

The weight of Si after anodisation 

The weight after NaOH strip 

The weight loss after the anodisation 

The weight loss after the NaOH strip 

Total loss of Si 

Total volume of pores in PS layer (cm
3
) 

Thickness of porous layer 

where r is the radius of the anodised area. , 

0/0 porosity 

=m3 g. 

= (ml - m2) g. 

= (m2 - m3) g. 

= (ml - m2) + (m2 - m3) g. 

= (ml - m3) g. 

= total Si loss / density of Si 

= (ml - m3) / 2.33 

= volume of Si / surface area of Si 

2 
= (ml - m3) / 2.33 x 11m 

loss of Si after anodisation 
total wt loss of Si 

x 100 
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Appendix 2 Gas - Solid Interactions 

Introduction 

When two immiscible phases are brought into contact, it is found that the concentration 

of one phase is greater at the interface than in its bulk. This phenomenon for 

accumulation to take place at the interface is called adsorption. The interfaces can exist 

between immiscible liquid- liquid, liquid-gas, solid-gas, solid-liquid and also between 

two immiscible liquids. This section deals only with the gas-solid interface as it is 

relevant to PS. 

Structure of surface 

Inspection of any crystal surface reveals large regions where atoms in parallel planes are 

separated by ledges (,....,104 A high). This is due to a small mismatch of atomic planes 

called dislocation. Dislocation is a one-dimensional defect and exists in parallel planes. 

These parallel planes are called terraces. Most semiconductor materials show 

dislocation densities of the order of 104_106 cm -2 which are much lower than metals or 

ionic crystals which show 106_108cm-2 defects, because of their different bonding 

properties. The average surface concentration of atoms can be taken as of the order of 

1015 cm:2 (Somorjai 1994). Thus each terrace may contain roughly 1015/106 
= 109 atoms 

in a low dislocation density surface for a semiconductor. 

During adsorption of atoms or molecules by substrate atoms (formation of chemical 

bonds), the surface atoms relocate along the surface to optimise the strength of 

adsorbate-substrate bonds. Adsorbate induced restructuring of the surface is found in 

many chemisorption situations. This is called reconstruction and leads to the formation 

of new and unexpected surface structure. The surface is therefore heterogeneous on the 

atomic scale and exhibits restructuring responding to its changing local environment. 

On a macroscopic scale, a surface may be represented diagrammatically as a plane. the 

potential energy of which fluctuates from point to point. If the energy fluctuation is the 

same between any pair of sites and all the sites have the same energy, the surface is said 

to be homogeneous. If the fluctuation is irregular and the sites have different energies, 

the surface is heterogeneous. The nature of the surfaces is vital in understanding the 

mechanism of the processes that occur on the surface. 
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The adsorption - desorption processes 

Adsorption is of practical significance in a wide variety of problems and processes. It is 

the first stage in the formation of an oriented overgrowth - epitaxial growth of thin 

films. The gas molecule or atom that is adsorbed on the solid surface is called an 

adsorbate and the solid surface is called substrate or adsorbent. 

The adsorption process is generally exothermic, that is, it involves the evolution of heat. 

The general thermodynamic requirement for a reaction to proceed is that the free energy 

change (~G) for the reaction must be negative. The ~G for the adsorption reaction can 

be written as : 

~G = ~H - T~S 

where ~H is the enthalpy of adsorption and ~S is the entropy change for the reaction 

The translational freedom 1 of the adsorbate is reduced when it is adsorbed on to a 

substrate surface, ie, it loses one degree of freedom and there will be a decrease in 

entropy(- ~S). Therefore, it can be seen from the above equation that the ~H must be 

negative, ie, it is exothermic. Exceptions may occur if the dissociation of the adsorbate 

molecules produces highly mobile species on the surface of the substrate. The 

adsorption process is roughly divided into two categories: 

1. Physisorption 

2. Chemisorption 

Physisorption 

In physisorption, the adsorbate-adsorbate interactions are usually comparable in strength 

to the adsorbate-substrate interaction, all of which are dominated by van der Waals 

forces. The van der Waals type of bond involves no charge transfer from the substrate 

to the adsorbate or vice versa. This type of interaction can happen through dispersion or 

London force orland dipolar interaction. Since this type of adsorption involves forces of 

physical attraction, it can be compared with those causing the liquefaction of gases. 

This is a long range but weak interaction and the energy released when a particle is 

physisorbed is of the same order of magnitude as the enthalpy of condensation. The 

values are of the order of 4-5kcals mole-I. This is insufficient to break a bond so a 

I There are three types of motion shown by molecules; translational. rotational and vibratIonal 
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physisorbed molecule retains its identity. The process of physisorption is nonspecific 

and any gas will adsorb on any solid under suitable circumstances. 

Once the gas atom is adsorbed, the value of MfadslRT which is the ratio of the average 

bond energy, Mfads, and the average thermal energy, RT, determines the residence time 

"[ of the gas atom on the surface (Redhead 1962,203-11). 

't = 'to. exp(~H adslRT) 

where 'to is related to the period of a single atom vibration and is in the order of 10-13s. 

For a weaklyphysisorbed condition, the residence time is of the order of magnitude of 

"'Co. In view of all the considerations discussed, physisorption is expected to occur only 

at relatively low temperatures. 

Chemisorption 

Chemisorption is the kind of adsorption process where chemical bonds (usually 

covalent) form between the surface atom and the adsorbate molecule. The adsorbate 

molecules tend to favour sites that maximise the co-ordination number with the 

substrate 

Co-ordination number is the number of atoms immediately surrounding any selected 

atom. 

Specificity and enthalpy of adsorption 

In chemisorption, a high specificity is observed when the chemical bonds of adsorbate -

substrate are formed. Gas-substrate interactions vary for different materials and also for 

different crystal planes of the same material. A gas molecule goes through a process of 

dissociation at the surface before it forms a surface bond with the dangling bonds of the 

surface atoms. 

Physisorption is normally fast but it can be slow if adsorption is taking place in a porous 

medium. If the substrate is porous or possesses capillaries of a few angstroms in 

diameter, penetration of adsorbate atoms or molecules to the surface of the pore walls of 

the substrate may be an extremely slow process. This penetration may result in 

chemisorption but it may also be physical adsorption. Therefore, a slow rate of 

adsorption is by no means certain to be chemisorption. 
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It is very difficult to define the types of adsorption process as many factors influence 

these processes . Chemisorption ceases when the adsorbate atoms or molecule can no 

longer make direct contact with the surface atoms and is therefore a single layer process . 

With physical adsorption, no such limitation applies and under suitable conditions of 

temperature and pressure, physically adsorbed layers many molecules thick can be 

obtained. Therefore, if the extent of the adsorption is known to exceed a monolayer, it 

is certain that the second and higher layers at least are physically adsorbed. 

Reconstruction of surfaces 

This phenomenon is observed when a surface assumes an atomic structure that differs 

fundamentally from the observed bulk structure terminated abruptly on the surface. For 

semiconductor surfaces (Si, Ge, GaAs), which are covalently bonded, the surface atoms 

find it difficult to compensate for the loss of nearest neighbours . The dangling bonds 

that exist on the substrate surface cannot easily be satisfied except through 

rearrangement of these atoms. Therefore, most semiconductors reconstruct and major 

rebonding of the surface atoms occurs to relieve the forces of stress on the surface. This 

is called reconstruction . The associated perturbation propagates several atomic layers 

into the surface until the bulk lattice is recovered . Figure 23 is an schematic of a (2x 1) 

Top View: Si(lOO) 

Ideal p(2xl) reconstructed 

reconstructed Si (100) face and the ideal face as obtained by LEED surface technique . 

The outermost plane consists of buckled dimers and relaxation extends to three atomic 

layers in the bulk (Yang et al 1983). 

CI 
. t ' ft . duces rearranaement of the substrate atom around the adsorp ti on 1emlsorp IOn 0 en m b 

. h fi t' f t ona adsorbate-substrate bond which is an exothermic proce SIte. T e orma IOn 0 a s r b 

. f h . t ' provides the required energy for the re tructuring. 
111 the case 0 c emIsorp IOn 
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Restructuring occurs in order to maximise the bonding and stability of the chemisorbed 

complex. 

Sticking probability 

The rate at which a surface is covered by adsorbate depends on the substrate's ability to 

dissipate the energy of an incoming particle as thermal motion when it collides with the 

surface. The proportion of collisions with the surface that successfully lead to 

adsorption is called the sticking probability, S. The sticking probability is defined as the 

ratio of the rate of capture of a molecule in the chemisorbed state to the rate of collision 

of the gaseous molecule with the surface. Sticking probabilities are rarely equal to unity 

and the following factors may be responsible for it: 

Activation energy 

If the chemisorption process goes through an activated process, then only the molecules 

with the necessary activation energy, Ea can be adsorbed. 

The condition for an atom or molecule to chemisorb is that it must lose a certain amount 

of energy exceeding its original thermal energy during collision. This means that 

inelastic collision with sufficient energy transfer lead to chemical bond formation. 

However, this factor is important in a physisorption process as well. The physisorbed 

state is the precursor state through which chemisorption is believed to occur. 

Collision with the occupied site 

The molecule can be adsorbed into a weakly held second layer and migrate over the 

covered surface to the vacant site. It is possible that some such molecules can desorb 

before finding a vacant site, particularly at higher coverages. The process in which all 

molecules find a site will give a value of S independent of coverage. Conversely, weak 

physisorption produces dependency of S on the surface coverage. The S values decrease 

as the coverage increases. 
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Appendix 3 Desorption Spectroscopy 

Introduction 

The desorption of a molecule or atom is always activated as the adsorbed molecule or 

atom has to be raised from its adsorption potential well. The nature of the desorption 

process has fundamental implications in understanding the nature of elementary 

chemical processes on the surfaces and the specification of the bonding mechanism. 

Desorption spectroscopy is based on supplying sufficient energy to the adsorbed species 

to desorb and characterise the desorbed species by some method. The heating of the 

substrate can be achieved by a laser, an electron beam, or by a resistive heater. Common 

desorption spectroscopy methods are: 

a) Electron stimulated desorption(ESD) 

b) Photon stimulated desorption(PSD) 

c) Thermal desorption spectroscopy(TDS) or Temperature programmed desorption 

spectroscopy(TPD) 

In all these methods the adsorbate-substrate system is heated and the desorbed 

molecules are detected in situ by a quadrupole mass spectrometer alone or with other 

surface analytical techniques. These techniques include low energy electron diffraction 

(LEED) and Fourier transform infrared spectroscopy (FTIR) and are used for the study 

of the substrate surface during the desorption processes. Only Temperature 

Programmed Desorption Spectroscopy is dealt in this section as it is relevant to this 

work. 

Temperature Programmed Desorption Spectroscopy(TPD) 

TPD is one of the most frequently used techniques in surface science. When an 

adsorbed layer on a substrate is heated resistively, the surface species desorb. The 

surface residence time ('t) of adsorbate molecules depends exponentially on temperature. 

This can be expressed by an Arrhenius type equation. 

t = to. exp (EIRT) (1) 
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where 'to is residence time for a single atom in the potential well. 

Maximum desorption occurs at a given temperature, T p, characteristic of a particular 

adsorbate - substrate interaction. 

Thermal desorption analysis can be carried out in two ways: 

a) Flash desorption, in which the sample is heated rapidly, typically in seconds 

and all the gases are removed indiscriminately. The increase in partial 

pressure due to the desorption of gas is measured as a function of time with a 

sensitive mass spectrometer. The desorption rate should be higher than the 

pumping rate of the experimental vacuum system. 

b) TPD method in which the heating is gradual and the desorption spectrum is 

more energy resolved. The desorption peak of the particular binding state 

appears as a peak rather than a plateau as in the case of flash desorption 

(Woodruff 1986). 

Treatment of Experimental Desorption Data 

A number of mathematical techniques are available in the literature to analyse and 

extract information from TPD spectra. Reviews are presented in references Park et al 

1985, WoodruffetaI1986,deJongetaI1990,King 1975 and Falconaret al 1983. 

At least ten different procedures have been proposed in the literature for the evaluation 

of desorption parameters from TPD spectra (de Jong et a11990, Falconar et aI1983). 

Most of the analytical techniques make some assumptions and the applications vary 

depending on the particular nature of the adsorbate-substrate system under 

consideration. An adsorption spectrum corresponds to a plot of desorption rate versus 

temperature or time. Most of the techniques use one or two data points from the 

spectrum, usually parameters such as peak temperature, peak height, half width or slope 

at the inflection points (Falconer et. al. 1983). 

Six such methods were reviewed by the Falconer group but only Redhead's method 

(Redhead 1962) will be discussed in detail as it is the most appropriate method for the 

present work related to porous silicon. 

The techniques discussed by Falconer group are : 
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• Heating rate variation 

• Desorption rate isothenns 

• Peak width analysis( CAW method) 

• Skewness parameter analysis 

• Shape index analysis 

• Redhead's method 

Redhead's Method 

The rate of thennal desorption is usually described in tenns of an Arrhenius expression 

which is given below: 

- de/dt = vex exp (- EdIRT) (2) 

where e is the surface coverage, x is the order of the desorption reaction (x = 0, 1 or 2), 

v is the frequency factor and Ed is the energy for the desorption process. v,the 

frequency factor is related to the number of collisions and to the fraction of collisions 

that have the correct geometry. The derivation of applicable relations between 

maximum peak temperature, T p, the frequency factor, v and the desorption energy Ed 

were carried out by Redhead (1962). 

When a substrate - adsorbate is heated linearly from Toto T for time, t, 

T=To+~t 

where ~ is the linear heating rate 

dT/dt = ~ 

de/dt = del dT . dT/dt = ~ de/dT 

substituting in eqn. (3), 

- de/dT = v ex/~ . exp(- EdIRT) 

It was shown (Glasser 1985) that, for the fast pumping where the rate of pumping is 

much greater than the rate of evolution of gas, the amount of gas desorbed is directly 

proportional to the time or temperature. The shape of the peak depends on the order of 

the kinetics. A symmetrical curve about the peak temperature is observed for a second 

order reaction but not for the first order (Woodruff 1986). 

Maximum desorption occurs at the peak position of the TPD curve, when 
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When equation (3) is differentiated with respect to temperature, 

- d28/dT2 = v/~ { x 8 x-I. d8/dT exp( -EdIRT) + 8xEdIRT2 exp (- EdIRT)} = 0 

The temperature at the peak pressure is the peak temperature Tp, and the following 

equation can be derived from the above equation: 

EdIRT2p = vx 8x
-
I I ~ . exp(-EdIRTp) 

For the first order reaction, where x = 1, 

2 
EI/RT p = VI I~. exp(-EIIRTp) 

(3) 

(4) 

It can be seen that Tp is independent of initial coverage for the first order kinetics. This 

means that the series of desorption peaks at increasing coverage has the same T p and the 

same full peak width at half maximum (FWHM). 

When x=2, 

E2IRT2p = 2 V28p I ~. exp(-E2IRTp) (5) 

where 8p is the coverage at T p. There is a shift in peak temperature with coverage seen 

with second order desorption. Generally, a second order desorption curve is 

symmetrical about the peak temperature so that 8p the surface coverage at T p is just 

80 I 2 where 80 is the initial coverage. 

(6) 

So, for increasing coverages a series of desorption peaks whose maxima shift to lower 

peak temperatures is indicative of second order desorption kinetics. 

There are some exceptional cases of first order desorption where the activation energy 

decreases as the coverage increases. When this happens, the peak also shifts to lower 

temperature at higher coverage. Ed values and v values can be extracted from equation 

(4) for first and second order desorptions. 

Evaluation of Ed 

Ifa value ofv is assumed and a value for Tp is obtained experimentally, then Ed can be 

calculated from a single TPD curve using Redhead's method. A value of 10
13 

S-I is 

commonly used for the frequency factor v. The justification for this value arises from 

the assumption that the vibration of the surface bond is a prerequisite for a first order 

desorption process and the vibration frequency for a single bond is about 10
13 

S -\. For 
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most desorption processes, the relationship between Ed and T p is very nearly linear and 

approximated by Redhead (1962) as follows: 

Ed = RTp [ (In v Tpf~) - 3.46] (7) 

Deviations from equation (6) from the analytically correct expressions are within 1.5% 

provided that v/~ falls between 108 and 1013 K-1
. This equation is valid only for the first 

order desorption. 

For a second order desorption, Tp depends on the surface coverage; 80 may be found 

from the area under the TPD curve and a plot ofln80 T/ as a function of lITp will give a 

straight line with a slope EdlR. However, it should be pointed out here that there are 

exceptional first order desorption processes with Ed dependent on coverage which is not 

the case in most first order processes. The second order desorption processes and the 

exceptional first order cases can be distinguished by a plot of ln80 T p 2 vs liT p where the 

second order process with fixed Ed will give a straight line. 

Determination of v 

If Ed is determined by another method, the value of v can be calculated from the 

following equation which is derived from equation (4) 

vx = (Ed~ / RT/80
X

-
1
) exp(EdlRTp) 

where order of reaction, x is 1 or 2. This is applicable to first and second order kinetics. 
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