
doi: 10.1016/j.procs.2016.07.425

PlaNeural : Spiking Neural Networks that Plan

Ian Mitchell1, Christian Huyck1, and Carl Evans1

Middlesex University, London, UK

i.mitchell,c.huyck, c.evans@mdx.ac.uk

Abstract

PlaNeural is a spike-based neural network that has the ability to plan. The network is a spreading

activation network implemented with Cell Assemblies; this combination has built a dynamic network

of nodes that is able to interact with an environment and respond appropriately. PlaNeural uses Cell

Assemblies to make decisions and plan - there is no pre-determined code managing the decision process

that leads to planning. PlaNeural is the planning component of a virtual robot in a virtual environment.

This paper describes PlaNeural ’s behaviour in two virtual environments, programmed independently of

it; actions are completed in a closed-loop. PlaNeural was programmed in PyNN, executed with Nest and

on a neuromorphic platform, SpiNNaker. PlaNeural has been tested on two environments and results

show a successful performance; in both cases PlaNeural takes appropriate actions to fulfil user selected

goals based on environmental changes.

Keywords: PyNN, Cell Assembly, Spiking Neural Networks, Planning

1 Introduction

Bostrom [1] states that intelligence requires three conditions: learning, logic and planning. Planning is

the ability to take pre-conditions and facts from an environment and satisfactorily deliver a goal. Many

agents are capable of interacting with an environment, so what makes PlaNeural different? PlaNeural is

based on the third generation of neural network models, Spiking Neural Networks (SNN) [12] based on

integrate and fire neurons [2] and Cell Assemblies (CA) [7]. This means all decisions are completed via

spiking neurons.

1.1 Cell Assemblies and Neural Networks.

Cell Assemblies (CAs) [7] are groups of neurons that are interconnected and when neuron firing within

the group exceeds a threshold, the CA fires. CAs can be active but not firing, i.e. neurons firing within

the group are insufficient to exceed the thresholds, when in this state the CA is said to be primed. There

is growing support and evidence that they are used in brains to represent concepts [11]. CAs are a

distributed and decentralised model and when many CAs are networked they can produce dynamical

systems that solve complex problems from classification [10] to parsing language [8]. CAs can be

implemented in SNNs and thus classified as third generation neural networks, CAs can be used to solve

Procedia Computer Science

Volume 88, 2016, Pages 198–204

7th Annual International Conference on Biologically Inspired
Cognitive Architectures, BICA 2016

198 Selection and peer-review under responsibility of the Scientific Programme Committee of BICA 2016
c© The Authors. Published by Elsevier B.V.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.07.425&domain=pdf

FACTS GOALS MODULES ACTIONS

ENVIRONMENT

PlaNeural

Figure 1: PlaNeural Schema: Each node is represented by a CA, in tests, a fully connected (no self-

connections) five neuron cell assembly using Integrate and Fire neurons. Facts are connected to Goals.

Goals in turn excite Modules and finally Modules excite the appropriate Action. To ensure that there

is no prolonged activity, Actions inhibit the appropriate Module and Goal. Actions will change the

Environment, which will give feedback to the Facts and complete the closed loop.

classic AI problems. CAs can be used to implement cognitive and other types of models, e.g. applying

them to FSM [5]. In §2 a Maes network-inspired model is discussed.

1.2 Maes networks

Maes [13] uses a network of competence modules to develop plans, illustrated in figure 1. Each com-

petence module has successor, predecessor and conflicter connections. Activation is spread throughout

the network with constraints drawn from successor, predecessor and conflicter connections. Maes net-

works are distributed and dynamical systems of inhibitor and excitatory connections and hence drawing

inspiration from them. Briefly, Maes networks are: i) not hierarchical; ii) not centralised; and iii) have

no explicit representation of the environment, but rather communicate with the environment and react to

any changes by choosing suitable actions. Transforming Maes-like networks to SNNs seemed a logical

step and is explained in §2.

2 PlaNeural

PlaNeural is a SNN that plans and satisfies goals. Goals are entered by the user and appropriate ac-

tions fire. The consequence of these actions can change the environment and generate new facts. The

environment is separate from PlaNeural , which depends on stimulus from user-input for goals and en-

vironmental facts. When combined these two inputs change the activation in the network and converge

on an overall action. On completion of the action the associated goal and module are inhibited.

2.1 Implementation

Programming was completed using PyNN [3], a simulator independent spiking neuron based program-

ming language. To ensure the results were robust, two simulators were chosen: Nest (2.6) and SpiN-

Naker [6], the latter being neuromorphic hardware 1.

1on loan from APT at the University of Manchester

Mitchell, Huyck and Evans

199

PUS PUSAN PUB PDS PDSAN PDB PBV SBV SPS

PUS PUSAN PUB PDS PDSAN PDB PBV SBV SPS

PUS PUSAN PUB PDS PDSAN PDB PBV SBV SPS

SIH SANIH BIH BA SA SANA BIV EH STOP

F
A

C
T

S
A

C
T

IO
N

S
M

O
D

U
L

E
S

G
O

A
L

S

Figure 2: PlaNeural Structure for Robot. Key is referred to Table 1.

Key Description Key Description Key Description

BA Board Available PDSAN Put Down Sander BIV Board in Vice

SA Spray Available PDS Put Down Spray SANIH Sander in Hand

SANA Sander Available PBV Put Board in Vice BIH Board in Hand

PUS Pick up Spray SBV Sand Board in Vice SIH Spray in Hand

PUSAN Pick up Sander EH Empty Hand SPS Spray Paint Self

PUB Pick up Board STOP Stop PDB Put down Board

Table 1: Commands for Maes Robot

2.2 Experiment 1: The Sander Task

Briefly, the virtual agent is a robot with two hands; some objects that can be grasped by the robot are:

sander, board and spray-paint. The goals can be divided into two groups: single-objective; and multi-

objective. The single objective goals are: pick up object, put down object, where object is a board,

sander or spray-paint. The multi-objective goals are: sand board in vice; put board in vice; sand board

in hand; and spray-paint self. The last objective requires the robot to shut down and wait for paint to

dry, so it cannot achieve any other goals once this has been achieved. The test of this is to sand the board

and spray paint self and thus use all single objectives in a correct sequence. This is the original Maes

task and more details can be found in [13].

Figure 2 details the network as a graph and four distinct groups of CAs, each represented by

a circle and a name. The connections are either inhibitory or excitatory. Both sets of Synap-

tic weights are static. There is a further type of connection not represented in Fig. 2 and that

is internal connections within the CA, these neurons are fully connected (disallowing self connec-

tions) and are also static. Otherwise all connections between populations are fully connected. The

standard set up for each neuron in the network is shown in Table 2. The code can be found at

Mitchell, Huyck and Evans

200

Description Value Description Value

Synaptic Time Constant (excitatory) 2.0ms Resting Potential -65.0mV

Synaptic Time Constant (inhibitory) 5.0ms Refractory time 5.0ms

Threshold -51.0mV Reset potential -70.0mV

offset 0.0 distance 0.1cm

Table 2: Neuron Parameters for PlaNeural

www.cwa.mdx.ac.uk/NEAL/code/bica16plan/code.tar.gz

Figure 3 is a rastergram of the spiking neurons after given goals are injected to the network. The

two goals are described in the list below.

0ms : Facts show that the agent has Empty Hand (EH) (see Table 1 for abbreviations) and the environ-

ment has Spray-paint, Board and Sander available (SA,BA,SANA).
200ms : The goal Sand-Board-in-Vice (SBV) fires. This cascades approx. 10ms later to PUB and

PUSAN sub-goals.
≈275ms : Actions indicate that both the Board and Sander have been picked-up, PUB and PUSAN fire.

Approx. 5-10ms later this is reflected in the facts by SANA, BA and EH are no longer persisting.

This is also reflected in facts SANIH and BIH persisting.
≈300ms : Action PBV fires and as a result ≈ 10ms later BIV fact persists. This is also reflected by

BIH no longer persisting and EH persisting.
≈340ms : Action SBV fires, which matches the original goal, and in turn inhibits PUB, PUSAN and

SBV in Goals
≈ 400-700ms : is a period of rest, no new goal are given to the network. Facts EH, BIV, SA and SANIH

persist during this period.
≈ 700ms : Goal SPS fires.
$approx$ 760ms : Action PUS fires and as a consequence Facts, EH and SA no longer persist, and

SIH persists
≈ 800ms : Action SPS (clipped in figure) fires and as a consequence inhibits the Goals SPS.

2.3 Experiment 2: Simple Cognitive Mapping

The agent navigates through a series of rooms with objects in them. The agent is to approach the object

(further work is to identify and build a spatial map) and then enter the next room. The agent is executed

on a neuromorphic platform, SpiNNaker. More details about the environment can be found in [9].

Table 3 explains the commands - there are essentially 4 actions: forward; right; left; and backward

(not used). There is an issue of going through doors; whilst in the corridor an object could be recognised

in another room, so when in the corridor an inhibit object (IO) is activated that prevents objects being

recognised until the agent gets through the door. The network was developed using the same code as

in the previous experiment and is data-driven, i.e. only the data sets fed into the network changed. All

graphs are created based on the network data fed into the program.

Table 4 plots spiking neurons over a period of 2000ms after given goals are injected to the network

and are described in the list below.

0ms : small test, TR goal is activated followed by approx. 10ms later the action TR. Note that the fact

LEFT and PYR is on, but the goal TR (turn right) takes priority.
≈100-300ms : Goal EXP is activated along with facts LEFT and PYR. Subsequently, GP and TP sub-

goals are activated. The agent turns towards the object and centres the object in the vision field.
≈300-600ms : CENTRE fact is activated and the response of the agent is to move forward towards the

object.

Mitchell, Huyck and Evans

201

Figure 3: Rastergram for goals: i) Sand board in vice goal set at 200ms; and ii) Spray paint self goal

set at 700ms. Neuron number is represented on the vertical access with each CA represented by five

neurons.

Key Description Key Description Key Description

TR Turn Right TL Turn Left FW Forward

BW Backward BUMP Bump FO Object Forward

LO Object Left RO Object Right STAL Object 1

PYR Object 2 DOOR Door RIGHT Object on Right

LEFT Object on Left CENTRE Object in Centre ENDOOR End of Door

STOP Stop agent EXP Explore UO Inhibit Object

IO Identify Object TP Turn to Object 2 TS Turn to object 1

GP Go towards Object 2 GS Go towards Object 1 GD Go towards Door

Table 3: Commands for the mapping experiment.

≈600-800ms : IO is deactivated and GD is activated as a sub-goal. DOOR and RIGHT are activated

facts and the door is centred by turning right.

≈800-1000ms : DOOR and CENTRE are activated and the agent moves towards the DOOR.

≈1000-1500ms :UO goal is active and ENDOOR is the activated fact. The agent keeps moving forward

until it is clear of the door and looks for the next object in the new room.

≈1500-1600ms :UO is deactivate and IO is activated. The object, STAL, is identified and the agent

moves forward.

≈1600-2100ms :The DOOR and RIGHT, followed by CENTRE are activated facts. The actions TR

follow by a series of FW through the next door. Eventually the agent is halted by STOP fact

activated causing inhibition throughout the network and leaving the agent to rest.

Mitchell, Huyck and Evans

202

Figure 4: Results for goals in the mapping experiment. i) turn right at 0ms; and ii) explore at 100ms

3 Conclusion

Creating plans using CAs is the main contribution. Building a Maes-inspired network to cope with

planning has been a success based on the results of the two environments. Artificial Intelligence requires

planning. PlaNeural is a SNN for planning where all decisions are made and based on neurons firing.

The actions from PlaNeural are fed into the environment and changes are made appropriately. These are

represented by changes in facts that feed into PlaNeural and hence a closed-loop.

The two main challenges that have been met:

1. Planning with SNN. The topology describes a network that demonstrates the ability to plan in

two environments under two different implementations, Nest and Spinnaker, using the concept of

Maes-inspired Networks combined with Cell Assemblies.

2. Topology: Systematically building a framework for future agents as seen in Figures 3 and 4. This

systematic approach will improve areas of planning in the development of agents.

In addition to planning Bostrom [1] states two other conditions for artificial intelligence: learning;

and logic. Unlike other spiking networks [4], PlaNeural does not learn, it is a systematic approach

to the development of plans using spiking neural networks. Future work is to add plasticity and the

ability to generate plans, in essence it is the “spikification” of a Maes net. The main contribution

of this paper is the development of plans using spiking neural networks, something which has been

overlooked in AI literature since much is devoted to learning and logic to solve problems. Planning,

combined with learning and logic, aims to build better agents. In summary this paper has focussed on

the development of a planning agent, PlaNeural . The development was completed in PyNN using Nest

and on a neuromorphic chip, SpiNNaker. The authors have provided a systematic way to implement

a method to plan using SNNs with the combination of Maes-inspired networks and cell assemblies.

Mitchell, Huyck and Evans

203

PlaNeural ran successfully in two different environments and could form the basis of any planning in an

agent relying on SNN.

Acknowledgements: This work was supported by the Human Brain Project Grant 604102, Neuro-

morphic Embodied Agents that Learn. The authors also wish to thank the reviewers for their helpful

comments.

References

[1] Nick Bostrom. Superintelligence: Paths, dangers, strategies. OUP Oxford, 2014.

[2] R. Brette and W. Gerstner. Adaptive exponential integrate-and-fire model as an effective description of neu-

ronal activity. J. Neurophysiol., 94:3637–3642, 2005.

[3] A. Davison, D. Brüderle, J. Eppler, E. Muller, D. Pecevski, L. Perrinet, and P. Yqer. PyNN: a common

interface for neuronal network simulators. Frontiers in neuroinformatics, 2, 2008.

[4] C. Eliasmith, T.C. Stewart, X. Choo, T. Bekolay, Y. Tang T. DeWolf, and D. Rasmussen. A large-scale model

of the functioning brain. Science, 338:1202–1205, 2012.

[5] Y. Fan and C. Huyck. Implementation of finite state automata using flif neurons. In IEEE Systems, Man and

Cybernetics Society, pages 74–78, 2008.

[6] S. Furber, D. Lester, L. Plana, J. Garside, E. Painkras, S. Temple, and A. Brown. Overview of the spinnaker

system architecture. IEEE Transactions on Computers, 62(12):2454–2467, 2013.

[7] D. Hebb. The Organization of Behavior. John Wiley and Sons, 1949.

[8] C. Huyck. A psycholinguistic model of natural language parsing implemented in simulated neurons. Cognitive

Neurodynamics, 3(4):316–330, 2009.

[9] C. Huyck, R. Belavkin, F. Jamshed, K. Nadh, P. Passmore, E. Byrne, and D.Diaper. CABot3: A simulated

neural games agent. In 7th Intl Workshop on Neural-Symbolic Learning and Reasoning, NeSYS’11, pages

500–544, 2011.

[10] C. Huyck and I. Mitchell. Post and pre-compensatory Hebbian learning for categorisation. Computational

Neurodynamics, 8:4:299–311, 2014.

[11] C. Huyck and P. Passmore. A review of cell assemblies. Biological Cybernetics, 107:3:263–288, 2013.

[12] Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models. Neural

networks, 10(9):1659–1671, 1997.

[13] P. Maes. How to do the right thing. Connection Science, 1:3:291–323, 1989.

Mitchell, Huyck and Evans

204

