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Abstract In this paper, we present a case study of

the design and development of a Web Service manage-

ment system for bioinformatics research. The described

system is a prototype that provides a complete solu-

tion to manage the entire life cycle of Web services in

bioinformatics domain, which include semantic service

description, service discovery, service selection, service

composition, service execution, and service result pre-

sentation. A challenging issue we encountered is to pro-

vide the system capability to assist users to select the

“right” service based on not only functionality but also

properties such as reliability, performance, and analy-

sis quality. As a solution, we used both bioinformatics

and service ontology to provide these two types of ser-

vice descriptions. A service selection algorithm based

on skyline query algorithm is proposed to provide users

with a short list of candidates of the “best” service.

The evaluation results demonstrate the efficiency and

scalability of the service selection algorithm. Finally,

the important lessons we learned are summarized and

remaining challenging issues are discussed as possible

future research directions.
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1 Introduction

The recent advancements of molecular biology experi-

mental instruments, such as microarray technology [32],

have led to rapid increase in the size and variety of avail-

able genomic data. Analysis of these data using compu-

tational methods—the so called in silico experiments—

is becoming an integral part of modern biological stud-

ies. According to a recent survey, there are 1078 biolog-

ical databases [17] and over 1200 bioinformatics tools

[12] publicly available online.

Many of these online resources provide Web Ser-

vice interface, which allows easy access and integra-

tion of a number of services. Significant progress has

been made towards building integration platforms that

utilize these resources to support bioinformatics anal-

yses. A common feature of these platforms is provid-

ing searching facilities to help users identify required

data and analysis services, and then compose them into

workflows to perform complex analysis. Taverna [26]

is such a platfrom widely used in the bioinformatics

community, whereas Kepler [2] and Triana [24] are two

popular platforms in the wider scientific community.

Recently there is a trend to extend such platforms

to support semantic Web Services, as more semanti-

cally linked data repositories become available (with the

Linked Data [8] being a prominent example). Semantic

annotation provides richer information than Web Ser-

vice description alone and can be used for automatic

reasoning when they conform to certain ontology. The

semantic support can be added through plug-in (such as

the Feta plug-in [23] for Taverna) or expanding the ex-

isting system (such as the semantic “Tagging” function

in Kepler [1]). Considerable work has also been done

to develop bioinformatics-related ontology, which pro-

vides a language of describing bioinformatics services.
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Examples include the ontology from myGrid [43] and

BioMoby [42]. Finally, there are Web Service registries

for listing available bioinformatics services. Such reg-

istries usually provide semantic description and thus

more powerful searching functionality. Registries like

Moby Central [42] and the more recent BioCatalogue

[7] also monitor service availability and automatically

remove unresponsive ones.

A biological research group within our organization

is working on the genetic causes of colorectal cancer,

and they conduct complex analysis procedures as de-

scribed before on a daily basis. Currently, such analysis

is done manually, which is time consuming and error

prone. The existing systems for bioinformatics research

are mainly designed for computer literate users. Our

collaborators find it overwhelming given the complex-

ity of the user interface and large number of resources

listed. We propose to adopt a different development

strategy as the existing systems. Instead of building

a large and complex system that can accommodate a

wide range of bioinformatics research requirements, our

system is designed specifically for colorectal cancer re-

search at this stage. The flexibility of our system archi-

tecture allows it to easily adapt to other disease studies

later on if required. While there are some efforts in the

existing systems to help users to find the “right” ser-

vices (such as adding semantic annotation), they are

still in very early stage and can not meet the require-

ments of our users. Also, we believe it is essential to

support semantic Web Service at a system level to fully

realize its potential. In other words, all the core system

components should provide native support for semantic

Web Service, which is not how the existing systems are

designed.

This paper focuses on the design and development

of a service management system prototype using bioin-

formatics as a target application. In this respect, we

used experiments used in gene identification of colorec-

tal cancer as a specific application. The goal of this

work is not to provide ready-to-use tool but rather

a proof-of-concept for the approach we are proposing.

The proposed Bioinformatics Service Management Sys-

tem (BSMS) provides a complete system solution to

manage the entire life cycle of Web services in bioinfor-

matics domain, which include semantic service descrip-

tion, service discovery, service selection, service com-

position, service execution, and service result presen-

tation. Therefore, the objective of this work is not just

to present yet another bioinformatics platform. Instead,

we aim to use BSMS as a proof of concept to demon-

strate how the life cycle of bioinformatics Web services

can be managed in a systematic manner. Several key

design rationales of BSMS are summarized as follows:

– BSMS has an all-service architecture, i.e., all system

components are services. This allows easy change

of individual components and addition of new ones

to adapt to other disease studies if required. Al-

though the current system only has the components

required for colorectal cancer research, it can be eas-

ily extended.

– The whole system is based on a Semantic Web Ser-

vice framework (WSMO [30]). As a result, all system

components provide native semantic support. Both

bioinformatics and service ontology are included to

provide functionality based service discovery.

– Considering the potentially large number of services,

there may be functionality overlaps between dif-

ferent service providers. We believe that the non-

functional properties of services, especially those re-

lated to Quality of Service (QoS), such as reliability,

performance, and analysis quality should be consid-

ered when several services providing similar func-

tion or information. A service selection algorithm

based on skyline query is proposed to help users

identify the “best” service. Evaluation confirms the

efficiency and scalability of our algorithm.

– An interactive workflow environment is incorporated

to provide better usability for biologists. Only es-

sential services are visible and automatically service

filtering and selection are done wherever possible

to avoid overwhelming users with large number of

choices.

What reported here is our attempt to address these

challenging issues (especially the third one), and by no

means we have solved them. It is our hope that by shar-

ing the experience others can learn from our lessons and

become aware of the research problems that require fur-

ther attention.

2 Related Work

2.1 Bioinformatics Web Services

There are a large number of Web Service-based work-

flow environments have been built to support scien-

tific research [31,40]. Among them, BioMoby and my-

Grid are two of the most widely used bioinformatics

platforms. BioMoby provides a registry of bioinformat-

ics services and searching functionality. It started with

what now is known as Moby-Services [42] project that

realizes a subset of the functions specified in the Web

Service standards. A later branched project called Se-

mantic Moby [33] adopts the REST architectural style

[16] and makes extensive use of Semantic Web tech-

nologies. BioMoby defines three ontologies: Namespace
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Ontology, Object Ontology, and Analysis Ontology. The

Namespace Ontology provides a list of abbreviations for

the different types of identifiers that are used in bioin-

formatics. The Object Ontology defines bioinformat-

ics data formats and the relationships between them.

The Analysis Ontology provides a description of vari-

ous bioinformatics analyses. The BioMoby service reg-

istry is called MOBY Central. All the registered ser-

vices are described using Namespace and Object On-

tology in Moby-Services, and additionally Analysis On-

tology in Semantic-Moby. The annotations are used in

service query to match services with the data users

have (Moby-Services) and identify the service based

on required functionality (Semantic-Moby). The focus

of the Moby-services is to facility data exchange using

the name convention and data format mapping defined

in the Namespace and Object Ontology respectively.

The Semantic-Moby adds the Analysis Ontology to de-

scribe the service functions. However, neither of these

addresses the non-functional properties such as reliabil-

ity, performance, and analysis quality.

The myGrid project is part of the UK government’s

e-Science programme [37]. Among a wide range of sub-

projects, the one of particular relevance is Taverna [26],

which is a workflow construction environment and ex-

ecution engine designed to support in silico biologi-

cal study. It provides access to a large collection of

data sources and analysis tools, many of which are ac-

cessed through Web Service interface. myGrid has its

own ontology [43], which contains both Domain Ontol-

ogy and Service Ontology. The Domain Ontology acts

as an annotation vocabulary including descriptions of

core bioinformatics data types and their relationships

to one another, and the service ontology describes the

physical and operational features of web services, such

as, inputs and outputs. The aim of the myGrid ontol-

ogy is to support service discovery. Users can perform

semantic query in Taverna using the Feta plug-in [23]

when searching for a service. Taverna is designed as a

do-it-all environment, which can be overwhelming for

biologists with limited computing background. While

Taverna has a plug-in architecture that allows addi-

tion of new functions, any changes to the core system

components are not trivial. Finally, semantic support is

provided through plug-ins, not at the system level.

Another system worth mentioning is Kepler [2], which

is designed for generic scientific workflows. Similar to

myGrid, Kepler is a comprehensive environment that

provides all the system layers from the back end com-

puting infrastructure to the front end workflow com-

pose bench. Kepler also provides certain semantic func-

tionality, such as checking of semantic compatibility of

two connected services and searching for semantically

compatible services [6]. Other interesting features in-

clude automatic data structure transformation using

semantic annotation between semantically compatible

services in certain cases [10,11]. Kepler shares some of

the issues of myGrid such usability, complexity, and se-

mantic support.

2.2 Service Selection and Optimization

There is considerable work available on service selec-

tion and optimization [41,44]. In [36], an optimization

algorithm is proposed to efficiently access Web Services.

The optimization algorithm takes as input the classical

database SPJ like queries over Web Services. It uses a

cost model to arrange Web Services in a query and com-

putes a pipelined execution plan with minimum total

running time of the query. Quality-aware service op-

timization techniques have been studied in [45,47,48,

15,27]. These approaches rely on the computation of a

predefined objective function and the users need to as-

sign numeric weight to specify their preferences if mul-

tiple quality parameters are involved. This is a rather

demanding task and an imprecise specification of the

weights could miss user desired services. We propose

a skyline computation approach to tackle the service

selection issue. The skyline approach goes beyond the

existing service optimization approaches by automati-

cally selecting a set of best services. Skyline or similar

concepts have been applied in the area of service com-

puting. A service discovery framework was developed

in [34] that integrates the similarity matching scores

of multiple service operation parameters obtained from

various matchmaking algorithms. The framework relies
on the service dominance relationships to determine the

relevance between services and users’ requests. Instead

of using a weighting mechanism, the dominance rela-

tionship adopts a skyline-like strategy that simultane-

ously considers the matching scores of all the parame-

ters for ranking the relevant services. A concept, called

p-dominant skyline, was proposed in [46] that integrates

the inherent uncertainty of QoWS in the service se-

lection process. A p-R-tree indexing structure and a

dual-pruning scheme were also developed to efficiently

compute the p-dominant skyline.

3 Scenario

Our system is designed to support the study of genetic

cause of colorectal cancer, i.e., identify the genetic vari-

ation in human DNA that makes people susceptible

to colorectal cancer. Identifying the related genes and

studying their functions can lead to early detection and
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new treatment. The study is currently at mouse trial

stage, i.e., using mouse as a disease model to study the

cancer, as mice share more than 90% DNA with hu-

man. Once the related genes are identified and their

functions are better understood, the study will move

onto the human trial stage.

At the current stage, one of the critical tasks is to

identify the genes related to the cancer. This is usu-

ally achieved by comparing the DNA of health mice

(control group) with that of mice with cancer (cancer

group) with microarray [32], which can measure the

expression level—how active a gene is—of tens of thou-

sands of genes in mouse DNA. By contrasting the re-

sults from the control and cancer groups, biologists can

identify candidate genes through statistical analysis. In

many cases, large portion of the candidate genes are

not the ones that cause the cancer; they can be experi-

ment noise, the artefact of the statistical method, or the

product of the cancer. Further analyses are commonly

performed to carefully examine each candidate gene to

identify the cancer causing ones. Such analyses include

searching for the functions known to these genes and

the metabolic pathways these genes are involved in.

As discussed earlier, there are mainly two types of

analyses involved in our study: statistical analysis and

function analysis. There are a wide range of statistical

analyses involved in our study, and we use the following

ones as examples to illustrate our system:

– Quality Control, which is designed to identify signif-

icant errors in the experiment, such as those caused

by contaminated tissue samples. If any anomaly is

detected, the results are discarded and no further
analyses are performed.

– Normalization. Microarray results from different mice

need to be normalized before comparisons can be

made. There are many normalization methods avail-

able, and they require parameter tuning to achieve

the best results.

– Differential Expression is used to identify candidate

genes by contrasting the results from control and

cancer group. Again, there are a number of statisti-

cal methods available for this analysis.

There are vast amount of online databases and tools

available for function Analysis. We include the following

to illustrate our system:

– Searching for known gene functions and locations in

the Gene Ontology (GO) [4] database.

– Identify the group of genes act in concert (being

active or inactive together) using Gene-Set Enrich-

ment analysis [38].

Fig. 1 Example: workflow of genetic study of colorectal cancer.

– Searching for the biochemical pathways that genes

are involved in from the Kyoto Encyclopedia of Genes

and Genomes (KEGG) [20] database.

– Services that aggregate analysis results from several

other sources, such as the dbFetch [22] that searches

several online databases for related information.

While there are common routines in statistical analysis,

function analysis is often more of exploratory nature:

biologists will try different analyses they have access to,

and decide what step to take next based on the results.

Quite often, they go back a few steps in the analysis

chain and change the settings there to see how it affects

the following analyses. Fig. 1 shows an actual workflow

to be used as an example for discussion. It consists of
two stages: the statistical analysis (from “Microarray

data” to “Differential expression”) and the functional

analysis (the bottom layer).

4 Requirements

Based on consultation with the biologists, we summa-

rize the requirements of the system as follows:

R1. The system should provide easy access to database

and analysis services required for colorectal cancer

research. Users find it difficult to identify the right

service when the interface shows all available ser-

vices (can be thousands when including irrelevant

ones), even when they are organized into categories.

R2. When there exist multiple services providing simi-

lar information or function, the system should pro-

vide assistance to identify the “best” service based

on user-defined criteria such as reliability, perfor-

mance, analysis quality, or combination of them.
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R3. The execution of database query and analysis should

be done through the Graphical User Interface (GUI),

and the results are captured and displayed automat-

ically without user intervention.

R4. For complex analyses requires multiple services,

users prefer specifying them as workflows through

GUI.

R5. The analyses required for colorectal cancer study

should complete within acceptable time.

R6. The GUI should provide easy access to all system

functionalities to two types of users: biologists with

basic computing knowledge and bioinformaticians

who are experts in statistical analysis.

R7. The system should allow easy change of existing

services and addition of new ones.

R8. While the study currently focuses on colorectal

cancer, it is likely that this may change in the fu-

ture. The system should be flexible enough to allow

easy adaption to new disease studies.

Many of these requirements are similar to those of ex-

isting bioinformatics workflow environment, but with

specifics to our use case. For instance, the system needs

to orient towards biologists with limited computing knowl-

edge. Among the requirements, we found R2 particu-

larly challenging, because it requires the capability to

select service based on non-functional properties, which

is still not a well studied research problem. The users

also expressed interested in provenance related func-

tions such as storing all the information required to

reproduce the instance of a workflow execution. How-

ever, after discussion we decided not to include such

functions in this development iteration because it is

currently not critical to the colorectal cancer study and

many provenance related research issues are still un-

solved.

5 System Design and Architecture

Based on the user requirements, we made the following

system design decisions:

1. Service Oriented Architecture (SOA). With

large number of data repositories and online tools

providing Web Service interface and more being added

every day, it seems a natural choice to adopt a service-

oriented architecture, which avoids the complexity

in ad hoc integration and provides a uniform way to

access various resources: database or tools, online or

local. This also provides the capability to automate

database query and analysis execution (R3) and fa-

cilitates the addition and change of resources (R7).

2. System components as services. Given the project

scope, we are only required to develop a system that

can support the colorectal cancer study (R1). There-

fore it is not our aim to develop a comprehensive

system such as Taverna. However, the requirement

to adapt to other disease study in the future (R8)

requires a flexible system architecture. As a result,

we decided to implement all system components as

Web Services as well, so they can be easily updated

or replaced for other disease studies.

3. Semantic description of non-functional ser-

vice properties. The requirement to assist users

selecting services based on non-functional properties

(R2) entails the collection and storage of such infor-

mation. We chose to store it as semantic description.

This allows reasoning with such information, which

is not possible otherwise and is important to service

selection and optimization.

4. Bioinformatics and service ontology. The need

to provide semantic description of non-function prop-

erties requires a formal service ontology. We also

decided to provide semantic description of service

function, which needs a bioinformatics ontology to

describe them. An example ontology is given in Fig-

ure 2. Many concepts are not shown to keep the to-

tal number at a manageable level. The ontology cap-

tures a set of important concepts that are used to de-

scribe both the functional and non-functional prop-

erties of services. The functional concepts include

precondition, postcondition, and input/output pa-

rameter of a service. The non-functional concepts in-

clude reliability, performance, and analysis quality.

The ontology can be easily extended to include other

important concepts. This is important for help-

ing users to find required services through function

search (R1), and it also helps compose the services

together into a workflow (R4). As a result, all the

services—including system components—have both

descriptions.

5. Native semantic support. This decision is based

on the fact our system heavily relies on the semantic

description provided by the bioinformatics and ser-

vice ontology. Besides, all the system components

are semantic services, too. Therefore, we decided

to base the system upon a semantic service frame-

work (provides native support), rather than realiz-

ing through plug-in.

6. Interface usability. One of the main complaints

we got about the existing systems is that users find

them generally difficult to use. Part of the reason is

that they are not designed for biologists. Therefore,

we decided to give interface usability a very high

priority, even it means reduction in functionality in

some cases. For instance, we decided to only show

services that we know are relevant (R1), which may
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Fig. 2 An Example Ontology

exclude some potentially useful services. As part of

the usability efforts, the system has an interactive

workflow construction environment (R4) and all sys-

tem functions can be easily accessed through GUI

(R6).

The system architecture is based on these design de-

cisions and has the following four layers (Fig. 3). From

bottom up:

– Web Services. This layer contains all the data

sources and analysis tools, which are all exposed

as Web Services. The data sources include both lo-

cal ones (such as the microarray experiment results

described in Section 3) and remote ones (such as

the Gene Ontology and KEGG pathway database).

The analysis tools include various statistical meth-

ods that can be performed locally or remotely. Note

that this is not a exhaustive list of all the databases,

and the same apply to the analysis tools.

– Ontologies. In this layer, semantic description is

added to the Web Services. The domain ontology

provides a biological description of the services, while

the service ontology provides the property informa-

tion among others. The details of both ontologies

are discussed in the next section.

– Service Manager. This layer consists of the core

components for service management. The service

selection is achieved through two system modules:

“Service Discovery” and ”Service Optimizer”. The

former retrieves available services according to their

biological function (using domain ontology descrip-

Fig. 3 System architecture

tion) or service properties (using service ontology

description). The latter optimizes the workflow ex-

ecution by selecting the “best” for a given crite-

rion (such as reliability) and balancing among mul-

tiple criteria according to user preference. The “Ser-
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vice Composer” combines services with simple func-

tions to perform complex tasks, and the optimized

workflow is invoked by the “Execution Engine” be-

fore the results are returned to user. The “Prove-

nance” component is currently mainly served as a

place holder. While we are aware its importance and

planed for further research, its full functionality is

not included in the current version.

– User Interface. This layer is where users interact

with the system. It is responsible for input gather-

ing and result presentation. The interface provides

graphical access to all the available services and sys-

tem functions including an interactive environment

for workflow construction. The details of the inter-

face are covered in Section 6.4.

6 Implementation

In this section, we discuss, layer by layer, the methods

and their implementation details in our system, again

in a bottom-up order.

6.1 Web Service Layer

In this layer, the colorectal cancer microarray data are

stored in a PostgresSQL database. There are a few ex-

periments, each produces multiple microarray data files.

All the information relates to one experiment (both the

microarray data files and experiment metadata) is ex-

posed as one service. Currently we are in the process of

converting them to the microarray data standard MI-

AME [13], which represents a quite complex format.
External databases, such as Gene Ontology and KEGG,

are accessed through their Web Service interface. The

statistical analyses are realized using the R language [29]

and the BioConductor [18] packages. The statistical

methods are invoked in Java using Rserve, which com-

municates between Java and R. Axis2 is used to provide

a Web Service interface for the Java code.

6.2 Ontology Layer and Service Property Modelling

Regarding domain ontology, we compared BioMoby on-

tology [42,33], myGrid ontology [43], and the collection

of ontologies included in the Open Biomedical Ontolo-

gies (OBO) Foundry [35]. We found that the ontologies

in OBO have a strong focus on the sub-fields within

biological and medical research, which is different from

the bioinformatics focus of our system. BioMoby and

myGrid ontology are more bioinformatics oriented, but

both are still evolving and neither is adopted as the

standard or widely used within the research commu-

nity. We see the myGrid ontology as the most promis-

ing one, but it can be too big and complex for our

purpose. Therefore, we decided to use myGrid ontol-

ogy as a reference and build our own domain ontol-

ogy only covering the data and analysis required. Our

bioinformatics ontology is essentially a small subset of

the myGrid ontology, which should allow easy migra-

tion to the full myGrid ontology if we decide to do

so. Every service available in our system is registered

with the bioinformatics ontology term(s) that describe

its function. Searching for service with specific function

becomes identifying that function term in the ontology

and returning all the services registered with it and its

descendant terms.

For service ontology, we considered both OWL-S

[25] and WSMO [30]. While both are capable of describ-

ing the service properties our system requires, we chose

WSMO because its model of describing non-functional

properties matches better with our requirements. Ad-

ditionally, the availability of an integrated development

environment WSMX [19] facilitates system implemen-

tation. As a result, the ontology is written in the WSML

language [14], conforming to the WSMO model.

While there are many non-functional properties can

be used for service description, we decided to focus on

reliability, performance, and analysis quality after con-

sultation with the users:

– The reliability measures the availability and stabil-

ity of Web Services. In the bioinformatics context,

this can be quantified as the percentage of the up

time of the data or analysis services.

– The performance measures the time a Web Service
takes to complete a specific task. Many of the bioin-

formatics analyses are computationally expensive,

such as BLASTing against a large data collection

and multiple sequence alignment. Slow response is

a common experience (sometime up to hours) when

a service is requested by a large number of users. Av-

erage performance over a long period can be used

as an indicator of the service capability.

– The analysis quality is of particular importance in

bioinformatics research. It includes both the quality

of the source data and the accuracy of the analy-

sis methods. Some of the bioinformatics data are of

prohibitive size and being updated frequently. For

instance, the GenBank currently has over 85 bil-

lion bases [5]) and its exponential growth in the

past decades means new data are being added all

the time. Querying and analysis against such data

repositories are often done on a replication to reduce

the load on the main server or improve processing

time when the copy is located much closer in terms
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of network distance. In such cases, the users need

to be aware that they might not be using the latest

data.

In terms of analysis methods, there are two common

cases where accuracy is traded for performance. Us-

ing sequence matching as an example, sometimes it

makes sense to not searching against the entire Gen-

Bank if user has a mammal sequence. However, it is

important that the user is aware of this. As a second

case, approximation algorithms are commonly used

instead of exact counterparts, due to the compu-

tationally expensive nature of many bioinformatics

analyses. The arguably most popular bioinformatics

algorithm BLAST [3] is not an exact sequence align-

ment algorithms. Also, there can be many varia-

tions of the initial algorithm. For instance, there are

blastn, blastp, PSI-blast, etc. The users need to be

aware of the approximation nature of these analysis

algorithms and the error bounds the results have.

All these properties are functions of a complex sys-

tem that includes service providers, network environ-

ments, and local hardware/software setup. It is impor-

tant to provide a quantified measurement of these prop-

erties, so the service optimizer can utilize the informa-

tion during service selection. While the service reliabil-

ity can be measured using the percentage of up time,

performance and analysis quality are less straightfor-

ward to quantify.

– Comparability. Both properties are function de-

pendent, i.e, only the performance and analysis qual-

ity of the services with same functions are compa-

rable. The comparability can be derived from the

bioinformatics ontology annotation the service has.

For instance, two services are comparable if they

have the same function annotation.

– Relativity. For performance and analysis quality, it

is the relative order among the comparable services

that is important for service selection. A numeri-

cal value on its own does not convey much useful

information.

While completion time can be used as a indicator of

performance, it also depends on the input data and ex-

ecution parameters. It is possible to test all compara-

ble services with the same input and parameter setting,

but each test only represents one sample point in a very

large high-dimension space of all possible combinations.

In the end, we decided to record the execution time to-

gether with input data description (not the actual data)

and parameter setting, which are used in the manual

ordering of the performance of comparable services.

The quantification of analysis quality has similar is-

sue. To make matter worse, there is no direct indication

of the analysis quality (i.e., no counterpart of “com-

pletion time” for analysis quality) and the information

such as the error bound of the approximation algorithm

is not usually obtainable through service interface. As

a result, we decided to manually assign the ordering of

service analysis quality.

Formally, for a service s, its reliability, performance,

and analysis quality to a client c are:

– Reliability: fr(s, n)→ [0, 1],

– Performance: fp(s, n, c, u)→ [0, 1],

– Analysis quality: fq(s, u)→ [0, 1].

The reliability fr is affected by that of the service s

and network environment n between the two. For per-

formance fp, the hardware and software configuration

of the client c also has an impact and service compa-

rability depends on its function. The analysis quality

fq is mainly a function of the service s (the quality of

the source data and nature of the deployed algorithm)

and again comparability is decided by function. As dis-

cussed earlier, fr is measured as the percentage of total

up time:

fr =
Tup
Ttotal

∗ 100%

where Ttotal is total number of attempts trying to use

the service and Tup is the number of times the service

can be successfully invoked. The value of fp is assigned

semi-automatically: the system keeps a record of the

completion time and input settings of every service ex-

ecution, and user can use this information to assign the

order among the comparable services. The value of fq
is assigned manually. For fp and fq, it is the relative

value of that is important and we limited both within

the 0 to 1 range for implementation convenience.

6.3 Service Manager Layer and Service Selection

The “Service Manager” layer uses a customized version

of WSMX, which handles conversion and grounding to

the SOAP/WSDL services and the actual invocation.

Service selection through function description is achieved

using the “Service Discovery” component, which searches

the domain ontology for user query terms and then find

any service registered with that term. In our system,

this can be done implicitly: when user selects a data

service, the system automatically searches for services

that can be performed on that type of data. Service

selection with non-functional properties and execution

optimization are achieved with the “Service Optimizer”

component. Each service is described by a quality vector

f(f1, ..., fk) (some representative quality properties are

given in Section 6.2), which the “Service Optimizer”

uses to optimize workflow execution. In most cases,
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there does not exist one service that has the best value

in all service properties.

We propose to use a skyline computation approach

to tackle the service selection problem. Computing a

skyline guarantees to include the best user desired ser-

vices without any user intervention. Skyline compu-

tation has recently received considerable attention in

database community [9,39,21,28]. For a d-dimensional

data set, the skyline consists of a set of points which are

not dominated by any other points. A point p (p1, ..., pd)

dominates another point r (r1, ..., rd) if ∀ i ∈ [1, d], pi �
ri and ∃ j ∈ [1, d], pj � rj . We use � to generally rep-

resent better than or equal to and � to represent better

than. In the context of Web Services, a service skyline

can be regarded as a set of service providers or their

compositions that are not dominated by others in terms

of all user interested quality properties.

The skyline approach goes beyond the current ser-

vice selection approaches, which require users to trans-

form personal preferences into numeric weights [15,27,

47,48]. The objective function assigns a scalar value

to each service based on the quality values and the

weights given by the service user. The service gaining

the highest value from the objective function will be

selected and returned to the user. However, users may

not know enough to make tradeoffs between different

quality aspects using numbers. Furthermore, most ex-

isting approaches work like a “black box”, where users

submit their weights over quality parameters and the

system selected provider is returned. Users thus lose

the flexibility to select their desired services by them-

selves. Computing skylines brings two key benefits for

service selection that can overcome these issues:

– The skylines are computed automatically based on

the inherent quality properties of service providers.

Thus, it completely frees service users from the chal-

lenging weight assignment task.

– Computing skylines won’t lose any merit of using

the objective function. This is due to a major prop-

erty of the skyline. For a set S and any monotone

objective function S → R, if r ∈ S maximizes the

objective function, then r is in the skyline [9]. Thus,

no matter how the weights are assigned, the skyline

guarantees that the user desired service providers

are included so that users can make flexible selec-

tion from them. In addition, the users can always

choose to use any monotone objective function they

prefer after the skyline is computed. The optimal

solution will always be the same as computed from

the original service space but with a much efficient

manner because of the much smaller skyline size.

We adopt an approach which is similar to the BBS

(Branch and Bound Skyline [28]) approach to compute

the skyline from services. All the services with the same

function are indexed by using a R-tree. The leaf nodes

of the R-tree correspond to the actual services. An in-

termediate node represents a minimum bounding rect-

angle (MBR) of each node at its lower level. The al-

gorithm also leverages a priority queue (or a heap) to

make sure the services are enumerated in an ascending

of their mindist. The heap is constructed to efficiently

output the node (intermediate or leaf node) that has

the least mindist. The mindist of a leaf node is the

summation of all its coordinate values (i.e., all qual-

ity properties) whereas the mindist of an intermediate

node is the mindist of its lower-left corner point.

The detailed algorithm is given in Algorithm 1. It

initially inserts all the entries in the root of the R-tree

into the heap H. It then iteratively expands these en-

tries based on their mindist. The expanded entry will

be removed from the heap whereas its child entries will

be inserted. When the first leaf node is returned, it will

be inserted into the resultant skyline list L. A service

R-tree, referred to as, RS , will then be initialized using

the first skyline service. After RS is constructed, the

entries output from the heap will be checked against it

for dominance. Specifically, if a top entry in the heap

is dominated by some service in RS , it can be directly

pruned. Otherwise, we have two situations:

1. If the entry is an intermediate node, it will be ex-

panded into its child entries and these child entries

will also be checked for dominance against RS be-

fore inserting into the heap. The dominated entries

can also be directly pruned.

2. If the entry is a leaf node, it will be inserted into

both L and RS .

6.4 User Interface Layer

The user interface is a lightweight client written in Java,

which allows deployment using Java Web Start without

any pre-installation. It uses the wsmo4j implementation

of the WSMO API to represent both available Web Ser-

vices and domain concepts. The client communicates

with the Service Manager layer using its SOAP entry

points exposed by WSMX for service query and passing

data.

A screen shot of the interface is shown in Fig. 4. The

interface consists of three panels: on the left are the lists

of available data sources and analysis methods, in the

middle is the panel for workflow construction, and on

the right is the panel that provides the description of

the selected data source or analysis method. Workflows
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H

Fig. 4 User Interface.

Algorithm 1 Service Skyline Computation
Require: A R-tree RT
Ensure: A list of the SEP skyline points L

1: L = φ, RS = φ;

2: H is initialized by the root entries of RT ;
3: while H 6= φ do

4: e = H.extractmin();

5: if RS 6= φ then
6: check e against RS for dominance;

7: if e is dominated then

8: prune e;
9: else

10: if e is an intermediate node then

11: for each child entry e.ci of e do
12: if e.ci is not dominated by RS then

13: H.insert(e.ci);

14: end if
15: end for

16: else
17: L.insert(e);

18: RS .insert(e);

19: end if
20: end if

21: else
22: if e is an intermediate node then
23: for each child entry e.ci of e do

24: H.insert(e.ci);

25: end for
26: else

27: L.insert(e);
28: initialize RS using e;
29: end if

30: end if
31: end while

can be constructed interactively. User can add service

to the workflow by draging it from the left panel and

drop it in the middle workspace. Service can be con-

nected by linking the input of one service to the out-

put of another using mouse. User can also right click

on the output of a service and then choose from the

list of available services that can be connected. This is

achieved by performing a semantic query retrieving all

services that can use the results from current service as

input.

7 Performance Evaluation

7.1 Service Selection Algorithm

We conducted a set of experiments to assess the ef-

fectiveness of the skyline computation algorithm. Since

there is not any sizable Web Service test case that is

in the public domain and that can be used for exper-

imentation purposes, we focus on evaluating the pro-

posed skyline algorithm using synthetic quality proper-

ties. The quality properties are generated in three dif-

ferent ways. The quality properties of syntactic services

are generated in three different ways following the ap-

proach described in [9]: 1) Independent quality where

all the quality attributes of a service are uniformly dis-

tributed, 2) Anti-correlated quality where a service is

good at one of the quality attributes but bad in one

or all of the other quality attributes, and 3) Corre-
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lated quality where a service which is good at one of

the quality attributes is also good at the other quality

attributes.

We setup a set of experiment parameters to evalu-

ate and compare the performance the algorithm. These

include the number of quality attributes in the range of

4 to 10 and the total number of services in the range of

10000 to 50000. By performance, we report both the to-

tal number of nodes accessed by the algorithm (which

reflects the I/O cost and is independent of hardware

settings) and the actual running time. Finally, we also

present the sizes of the obtained skylines.

Figure 5 shows how the number of node accessed by

the algorithm and the actual running time vary with

the number of quality attributes on all three different

quality distributions. The R-tree plus the priority queue

strategy offers the optimal I/O performance [28], which

has been demonstrated by the small number of nodes

accessed by the skyline algorithm. Since I/O processing

is the dominating factor in the overall performance of

the algorithm, the skyline can be computed in a very

efficient manner (as can be seen from the right-hand-

side chart of Figure 5).

We show the effect of the number of services on the

performance of the algorithm in Figure 6. We keep the

number of quality attributes as 6 and vary the number

of services from 10000 to 50000. The results are consis-

tent with Figure 5 and further justify the efficiency the

skyline algorithm.

In Figure 7, we investigate how the sizes of skylines

change with number of quality attributes and the num-

ber of services. First of all, the skylines generated from

anti-correlated quality have larger sizes than those gen-
erated from independent and correlated quality, which

is just as expected. This explains why computing a sky-

line from anti-correlated quality is much slower than

other quality distributions. The reason is that due to

the large skyline size, a large amount of time will be

spent on dominance checking, which slows down the

overall performance. Second, the sizes of skylines clearly

increase with the number of quality attributes. How-

ever, it is noteworthy that in most practical usage sce-

narios where the number of quality attributes is less

than three, the sizes of the skylines are still within a

practical range for user selection.

7.2 System Performance

One of the system requirements is acceptable running

time for colorectal cancer experiment analysis (R5). In

this section, we present a simple model of system per-

formance and the results from empirical study.

The running time of an analysis service consists of

three parts: service processing time, network transmis-

sion time, and local process time. This can be expressed

as:

T (α) = Ts(α) + Tn(α) + Tc(α)

where T (α) is the total running time of an analysis

service α, Ts(α) is the service processing time, Tn(α) is

the network transmission time, and Tc(α) is the local

processing time.

There are mainly two types of services in our sys-

tem, database query and statistical analysis. The eval-

uation focuses on the latter because it is usually more

data and computation intensive than the former. We

tested two statistical analyses: Normalization and Dif-

ferential Expression, as described in Section 3.

The data used were the microarray experiment data

described in Section 3. It contains 20 microarray sam-

ples. Each sample is about 7 MB in size and the total

size is 135MB. We recorded different running time (Ts,

Tn, and Tc) with increasing sample number to evaluate

system scalability. Our testing setup consists of four

computers:

– Computer 1 (C1) hosts our user interface. This is

where the statistical analysis requests are issued.

– Computer 2 (C2) hosts our system except the

user interface.

– Computer 3 (C3) hosts the R statistical service.

– Computer 4 (C4) hosts the microarray database.

All computers are connected through a 100Mb/s Eth-

ernet. The tests start with a statistical analysis request

from C1 to C2, which then identifies that the data is

available at C4 and statistical service is available at

C3. Our system then requests C4 to send the data to

C3, which returns the results to C1 once the analysis

is finished. Ts includes all the processing time spent at

C2, C3, and C4. Tn is the sum of the network trans-

mission time between any pair of computers. Tc is the

processing time at C1.

Figure 8 and 9 shows the time of Normalization and

Differential Expression analysis respectively. The x axis

is the input size, measured in number of samples. The

differential expression analysis requires even number of

CEL files and minimal 4 of them, so only these sample

size are shown here. The y axis is the running time,

measured in seconds.

The trends in the running time of the two analyses

are similar: both Ts and Tn increase almost linearly

and Tc is neglectable, as a result the total time T is

close to a linear curve. While Tn increase linearly with

the data size is expected, the change of Ts depends on

the nature of the analysis algorithm. Both statistical

methods tested happen to have a linear behavior. A
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Fig. 7 Skyline Size Vs. Number of Quality Attributes and Number of Services

more computationally intensive algorithm could have a

much steeper curve and quickly become the dominating

factor in the T . In both tests Tn accounts for a large

portion of the total time, which indicates network speed

can a system bottleneck when the data size increases.

This is especially the case in the Normalization analysis,

because it returns the normalized dataset (the same size

as the input dataset), whereas Differential Expression

analysis only returns a list of gene names (small text

string).
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Fig. 8 Time of Normalization Analysis.

Fig. 9 Time of Differential Expression Analysis.

8 Lessons

In this section, we discuss the issues we encountered

during the design and implementation of our system

and how we try to address them.

– Ontological annotation. A difficulty we encoun-

tered is adding domain annotation to data and anal-

ysis services, which we had to rely on biologists for

this. The lack of a commonly accepted bioinformat-

ics ontology makes this process even more difficult.

While it is unlikely that this process can be fully au-

tomated, a commonly accepted bioinformatics do-

main ontology that can be easily understood by biol-

ogists would certainly help. In our case, we designed

a small domain ontology with the terms similar to

our users, which appeared to alleviate the problem.

– Non-functional property modelling and col-

lection. While we are aware that this is a research

problem that has not been fully addressed, our ex-

periences show that the difficulty varies among the

properties. Reliability is the easiest to model and

collect, and our model is well received by the users.

Performance is less straightforward to model but

there is still information available from the system

that indicates the service performance. Analysis Qual-

ity is the hardest one and it requires a deep un-

derstanding of the service, such as the algorithm

it deploys, and makes it time consuming process. A

possibility is to use external information such as the

feedback from other users to assist the assessment

of analysis quality.

– Service listing. Currently there are many similar

systems that list all the data and analyses services

available. Our experiences show more is not always

better in this case. In our system, only a small collec-

tion of services that are relevant to users are visible,

and users actually prefer such interface to ones with

large number of services. A better usability design

is necessary if a system does need to present a great

number of services.

– Service execution optimization. One of the im-

portant lessons we learned is that the current Web

Service technologies are not fully ready to process

the large amount of data involved in the bioinfor-

matics research yet. We found that WSMX does not

handle data transmission efficiently. We had to mod-

ify WSMX so data reference is passed between the

services instead of the data themselves. As the eval-

uation results indicate, network transmission still

requires considerable time even with the previously

mentioned improvement and moderate data size in-

volved in our project. With current technology, it is

unlikely that performing similar analysis over inter-

net can have acceptable response performance.

– Global optimization. The current service selec-

tion and execution optimization are limited at the

service level, and do not guarantee the best perfor-

mance at the workflow level. We don’t see this as

a pressing issue though, because similar issue exists

in many other domains and has been relatively well

studied.

9 Conclusions and Future Work

In this paper we presented a case study of the design

and development of a semantic Web Service based sys-

tem that aims to facilitate the colorectal cancer study.

The system is designed to be small and agile. It in-

cludes limited services that are important to the col-
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orectal cancer study and all system components are

implemented as services to allow easy adaption to new

requirements in future disease study. With biologists

as the targeted user, usability is given high priority in

the system. This results in a simplified user interface,

easy access to all system functions through GUI, and

an interactive workflow construction space. The system

is built upon WSMO and thus provides native seman-

tic support. A bioinformatics ontology is created to de-

scribe service function and a service ontology for non-

functional properties. One of the challenges we faced

is service selection based on non-functional properties.

This requires modelling of properties such as reliabil-

ity, performance, and analysis quality. Collecting ser-

vice property information is of varying difficulty with

manual intervention still required for Performance and

Data Analysis. An skyline algorithm is proposed to se-

lect a list of “best” services that satisfy different com-

binations of non-functional property criteria. The eval-

uation results demonstrated that the service selection

algorithm scales well with number of properties. Em-

pirical study also shows the system performance be-

havior with increasing input data size. The issues we

encountered and lessons we learned are discussed and

summarized.

This is our first iteration of the system design and

implementation, and there are a few features that we

would like to develop further. Provenance data collec-

tion and management will be our focus in the next

stage. This will enable the reproduction of an analysis

instance if needed and the sharing of workflows among

users. The availability of provenance data will also pro-

vide new information that can be used in non-functional

property modelling and allow better property value es-

timation. We are also interested in the possibility of us-

ing user feedbacks to assist estimating service analysis

quality, which currently requires a deep understanding

of the service implementation.
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