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ABSTRACT
In this study, we aim to identify the machine learning model that can overcome the limitations of traditional statistical modelling 
techniques in forecasting Bitcoin prices. Also, we outline the necessary conditions that make the model suitable. We draw on a 
multivariate large data set of Bitcoin prices and its market microstructure variables and apply three machine learning models, 
namely double deep Q-learning, XGBoost and ARFIMA-GARCH. The findings show that the double deep Q-learning model 
outperforms the others in terms of returns and Sortino ratio and is capable of one-step-ahead sign forecast of the returns even on 
synthetic data. These critical insights in forecasting literature will support practitioners and regulators to identify an economi-
cally viable cryptocurrency forecasting return model.

1   |   Introduction

In recent years, there has been growing interest in Bitcoin 
investment as the cryptocurrency gains global popularity 
and acceptance in some countries (Xie, Chen, and Hu  2020; 
Rehman, Asghar, and Kang 2020). There are more than 81 
million crypto wallets user across the world as of November 
2022 (Statista 2021). The rapid evolution of Bitcoin trading over 
the past years has often raised concerns among investors in 
terms of overvaluation, overreaction, and irrational behaviour 
of the cryptocurrency prices (Amini et al. 2013; Borgards and 
Czudaj 2020; Corbet and Katsiampa 2020; Mattke et al. 2021). 
Investors, market practitioners, and regulators have shown vig-
orous interest in understanding and explaining the movements 
of cryptocurrency prices in detail (Raimundo Junior et al. 2020; 
Signature Bank failure, March 2023). Nevertheless, understand-
ing the drivers of changes in cryptocurrency prices remains an 
open question as the application of econometric and statistical 
modelling has largely failed to adequately provide actionable 

insights in forecasting Bitcoin prices (Chen et al. 2021; Wang, 
Andreeva, and Martin-Barragan 2023).

Given that Bitcoin transactions generate large data sets that can 
provide critical insights, it is therefore important to explore if 
big data analytical tools such as machine learning could be use-
ful solution to overcome the limitation in forecasting Bitcoin 
prices (Tofangchi et al. 2021). In addition, cryptocurrencies like 
Bitcoin are less efficient when compared to the traditional finan-
cial assets (Al-Yahyaee, Mensi, and Yoon 2018), in the context of 
volatility. Even though, we observe a decrease in this volatility 
over the time, but the historical volatility of Bitcoin remains al-
most 10 times higher than gold and several conventional curren-
cies (Bianchetti, Ricci, and Scaringi 2018).

Moreover, Bitcoin, possess a combination of properties of other 
traditional financial and speculative asset and has a low cor-
relation with other financial instruments traded in the finan-
cial market (Klein, Thu, and Walther  2018). Thus, following 
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the literature, we use the highly liquid cryptocurrency, Bitcoin 
in this study (Amiram, Jørgensen, and Rabetti 2022). We sum-
marise the main socio-economic impact of Bitcoin. Over the 
years, we mainly observe that researchers either focus on one 
type of value creation mechanism (Kitchens et al. 2018) or adopt 
the additive approach (Grover et al. 2018). Such approaches are 
difficult to apply in a complex set-up, such as explaining com-
plex financial relationships (Gradojevic et al. 2021; Newell and 
Marabelli 2015). However, in recent years, there have been sev-
eral recommendations on the importance of applying big data 
analytics to generate valuable insights about business operations 
(Grover et al. 2018). As suggested by Hendershott et al. (2021), 
the adoption of machine learning models can be a game changer 
in the context of investment in cryptocurrency trading (Müller 
et al. 2016). However, the application of the machine learning 
model invites the challenge of identifying the algorithm that 
possesses the capability to forecast the cryptocurrency return 
with real time data. Thus, in this research we ask the follow-
ing question: Does double deep Q-learning model outperforms 
the other popular models (XGBoost and ARFIMA-GARCH) in 
forecasting cryptocurrency return? Because of wider discussion 
about prediction efficiency of XGBoost and ARFIMA-GARCH 
model in forecasting, we decided to compare their performance 
with the double deep Q-learning model.

Extant literature documents the challenges in smoothing and 
forecasting Bitcoin prices (Miller et al. 2019; Jana, Ghosh, and 
Das 2021; Kraaijeveld and De Smedt 2020), especially due to its 
high volatility (Li et al. 2021; Yaya et al. 2021; Gradojevic and 
Tsiakas  2021). Moreover, while advanced machine learning 
algorithms are capable to deliver exceptional in-sample perfor-
mances, the ability to generalise out-of-sample remains inherent 
to a more limited reach (Keilbar and Zhang 2021; Anyfantaki, 
Arvanitis, and Topaloglou  2021). Out-of-sample performance 
is the most important performance indicator to find whether 
a financial model will deliver the expected performance in the 
real world (Catania and Grassi 2022; Liang et al. 2020). The lack 
of logical understanding of outputs generated by complex algo-
rithms is often regarded as black boxes and because of such com-
plication, the application of machine learning models remains 
limited. So far, prior literature has largely focused on complex 
models such as reinforcement learning (Tofangchi et al. 2021). 
Nevertheless, practitioners such as regulators, and some indi-
vidual investors are unlikely to favour the implementation of 
complex, black box-deemed algorithms over simpler ones where 
the relation between cryptocurrency returns and explanatory 
variables can be easily explained and interpreted. Thus, to con-
tribute to the ongoing discussion on forecasting cryptocurrency 
returns, we examine the research question by applying machine 
learning algorithms and displaying various levels of their com-
plexity. In addition, to provide critical insights about the model 
interpretability, we conduct out-of-sample performance test.

The sample time-series data set consists of daily, open, spot 
prices of Bitcoin for the period February 2012–December 2023 
sourced from Quandl (3290 daily observations). We randomly 
select the above period to set up a synthetic data set for the sim-
ulation purpose. In the simulation process, we aim to invest 
according to the algorithms and calculate the investment per-
formance. We selected Bitcoin in this study because of its popu-
larity, maturity, market position as the leading cryptocurrency 

(Gradojevic et al. 2021) and for its long-term social impact.1 Our 
unique finding shows that the double deep Q-learning model 
outperforms the others in terms of returns and Sortino ratio and 
is capable of one-step-ahead sign forecast of the returns even on 
synthetic data. According to these results, the success of ma-
chine learning models in the prediction of cryptocurrency re-
turns is re-established and double deep Q-learning model adds 
an extra layer of confidence about its predictability in the fore-
casting literature.

Our contributions are threefold—first, previous research has 
conflicting views on the suitability of these models. To our best 
knowledge, this is the first study to resolve debates with empiri-
cal evidence on the effectiveness of machine learning models in 
predicting cryptocurrency returns. Second, the study uses the 
Sortino ratio instead of the Sharpe ratio, focusing on downside 
volatility to provide a more accurate risk assessment. Thus, it 
highlights the difference in risk considerations between pro-
prietary traders and investment funds/banks, emphasising the 
latter's focus on controlled risk scenarios. Finally, to address the 
unreliability of historical data (Pintelas et al. 2020) we propose 
using a Variational Autoencoder to create synthetic data sets for 
out-of-sample performance evaluation.

The rest of the paper is organised as follows. Section 2 further of-
fers a general overview of the relevant literature and an in-depth 
discussion of reinforcement learning models. Section 3 outlines 
the research methodology by discussing the data and the train-
ing architectures. Section 4 introduces the out-of-sample back-
testing methodology based on synthetic data extracted from the 
Variational Autoencoder model. Section 5 compares the out-of-
sample performances in terms of investment strategies and clas-
sification statistics. Section 6 concludes and addresses potential 
future work.

2   |   Literature Review

Introduced by Sutton and Barto  (1998), the literature on rein-
forcement learning relishes several extensions that enrich its 
original scope and application opportunities to various indus-
tries (Van Moffaert, and Now'e 2014). The application of rein-
forcement learning includes self-driving cars, mastering board 
games such as the AlphaZero chess engine (Silver et al. 2017), 
and so on. Among the extensions of reinforcement learning, 
the basic Q-learning algorithm (Watkins 1989) was revised as 
double Q-learning and can address an overestimation bias of the 
basic Q-learning model (Van Hasselt, Guez, and Silver  2016). 
Moreover, recent reinforcement learning literature focuses on 
prioritised experience replay to improve data efficiency (Schaul 
et al. 2015), the duelling network architecture (Wang et al. 2016) 
and noisy double Q-learning (Fortunato et al. 2017) for stochas-
tic network layers to improve exploration. These several contri-
butions are blended into a rainbow model showing that most of 
the extensions are complementary and capable of producing out-
performing performances (Hessel et al. 2018).

On the other hand, financial literature has adopted reinforce-
ment learning models in the recent years. In our survey of 
literature, we find an excellent application of reinforcement 
learning in financial markets (Fischer 2018). Lee et al. (2007) 
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apply multiple Q-learning agents to a stock-trading framework 
focused on Korean stock market. Jiang, Xu, and Liang (2017) 
use a 30-min cryptocurrency trading strategy and apply an 
ensemble of identical independent reinforcement learning 
evaluators based on a convolutional neural network, a recur-
rent neural network, and a long-short term memory model. 
Sadighian (2020) applies deep reinforcement learning to cre-
ate an intelligent market-making strategy testing seven reward 
functions, extending the previous reinforcement learning 
market-making models based on time-based event environ-
ments. Xiong et  al.  (2018) show how a Deep Deterministic 
Policy Gradient can build an optimal portfolio that outper-
forms the traditional mean-variance asset allocation and a 
buy-and-hold strategy on the Dow Jones Industrial Average. 
Wu et al. (2020) apply the Gated Recurrent Unit model to ex-
tract informative financial features that are eventually used 
to extract intrinsic characteristics of the US stock market. 
Besides reinforcement learning, several neural network appli-
cations have been deployed to the problems of financial fore-
casting, portfolio optimization, investment strategies and risk 
management. In the work of Chen, Leung, and Daouk (2003), 
we observe one of the first applications of neural networks 
in finance, where they predicted the return direction of the 
Taiwanese Stock Exchange index by means of a probabilistic 
neural network and showing its capability to outperform non-
neural network-based strategies. In the field of time series 
forecasting, recurrent neural networks have proven to be par-
ticularly useful, thanks to their stateful architecture which al-
lows modelling of serial autocorrelation. Edet (2017), predicts 
the movements of the S&P 500 index using a recurrent neural 
network and its variations, namely the long-short-term mem-
ory and the gated recurrent unit. They applied the networks to 
14 economic variables and 4 levels of hidden layers.

Following Baillie, Chung, and Tieslau  (1996) and Gianfreda 
and Grossi  (2012) we use the ARFIMA-GARCH regression 
model and Chen and Guestrin (2016) for the XGBoost model. 
After critically examining the relevant literature, we cannot 
find any evidence of studies focusing on the out-of-sample per-
formance via synthetic data sets produced with a Variational 
Autoencoder of a Bitcoin investment strategy based on rein-
forcement learning, XGBoost and the ARFIMA-GARCH re-
gression model.

In the extant literature, some reinforcement learning ap-
proaches, frameworks and models have been proposed, see 
Table  A1 in Appendix  A. Despite the contributions of these 
studies, some limitations exist. First, we observe that models 
in existing studies (see Wu et al. 2020) have largely relied on 
an out-of-sample performance evaluation on a single set of 
historical data, making it difficult to generalise the results. 
In literature, we mainly observe out-of-sample performance 
evaluation on historical data, with limited focus on synthetic 
data (Catania and Grassi  2022). When the training data are 
highly imbalanced (especially relevant for cryptocurrencies 
given the highly volatile and leptokurtic distributions), then 
models using synthetic data could generate more accurate re-
sults when applied on real data. One of the most efficient ways 
to generate a synthetic data set is by means of a Variational 
Autoencoder (VAE). In this technique, the encoder com-
presses the original data set into a more compact structure, 

which is, in turn, transmitted to the decoder to generate an 
output which represents the original data set with some noise. 
The lack of attention by scholars on synthetic data sets moti-
vates us to focus on the out-of-sample performance. Second, 
we observe that models in existing studies (see Li, Zheng, and 
Zheng  2019) target the maximisation of total returns or cu-
mulated profits and do not use explanatory variables, rather 
only focus on time-series dependencies. Algorithms targeting 
total returns or cumulated profits result in extreme portfolios, 
with large exposures in a single asset that widely vary over 
time. On the other hand, targeting a risk-adjusted measure—
such as the Sortino ratio—results in more stable, less extreme 
investment strategies. However, cryptocurrencies are charac-
terised by complex distributions that cannot be explained by 
their respective univariate time series, rather the usage of ex-
planatory variables is deemed necessary.

3   |   Methodology

3.1   |   Reinforcement Learning—Model 
Specification

Reinforcement learning is a reward-driven process where 
an agent learns to interact with a complex environment via 
trial-and-error to achieve rewarding outcomes (Sutton and 
Barto 1998). The agent learns to maximise the reward by choos-
ing the best action in each state of the environment. At the heart 
of reinforcement learning lies the explore-exploit dilemma. In 
practice, the agent faces the dilemma of either exploiting what 
has been learned thus far or exploring to gain additional knowl-
edge at the risk of recording lower payoffs.

Consider an agent within the environment Ω in discrete time 
with single step t = 1, 2, … ,n coupled with the triplet action, 
state, and reward (at , st , rt). At each time t , the agent is in state 
st and selects an action at. The interaction with the environment 
Ω returns the next reward rt + 1 and the next state st + 1. The 
entire set of states and environment rules for transitioning from 
one state to another may be represented as a Markov decision 
process. In fact, the current state st encompasses all the infor-
mation needed by the environment for processing state transi-
tions and assigning rewards. Therefore, an agent tries to choose 
an action rt ∈ A that maximises the expected conditional future 
reward. This approach is named Q-learning (Watkins 1989), a 
form of temporal difference learning (Sutton and Barto 1998).

Deep reinforcement learning involves the usage of deep neu-
ral network architectures to serve as function approxima-
tors. A deep-Q-network is a multi-layered neural network 
f (x):ℝn

→ ℝ
m that outputs Q

(

at , st
)

, where at ∈ A, st ∈ S and 
rt ∈ R. As a result, the objective of the reinforcement learning 
becomes learning the optimal set of neural network weights 
wt ∈W  that minimises a loss function. The latter, however, is 
an unobservable process which depends on the future combina-
tions of (at , st). As such, one needs to solve a dynamic program-
ming algorithm in the form of a Bellman equation.

This optimization mechanism, however, would lead to quickly 
forgetting rare outcomes as well as it is prone to strongly cor-
related updates that violate the i.i.d. assumption of stochastic 
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gradient descent algorithms. Experience replay (Lin  1992) ad-
dresses these issues as experience is stored in a replay memory 
from where the network can draw input values, thus potentially 
including long-term learning and rare outcomes. At the same 
time, this allows mixing more with less recent experiences for 
the updates, leading to an update distribution closer to being 
i.i.d. (Mnih et al. 2015) introduce experience replay to the deep-
Q-network architecture. Moreover, it would be more efficient to 
sample more frequently replay batches where there is more to 
learn. To do so, (Schaul et al. 2015) introduced prioritised expe-
rience replay.

We define the following reinforcement learning environment 
composed of:

•	 State S =
[

p, h
]

: a set including the univariate time-series of 
prices p ∈ ℝ+ and the number of contracts held h ∈ ℝ+;

•	 Action S = [1, − 1]: a set of actions where 1 represents a buy-
ing order and − 1 a selling one. The action leads to changes 
in the holding balance h ∈ ℝ+;

•	 Reward r
(

st , at , st+1
)

: the change of the cumulated return 
of the investment strategy when action at is taken in state 
st and eventually leading to the new state st+1 and where 
rt = ln

(

pt
pt−1

)

;

•	 No contract accumulation is possible; hence a single con-
tract can be traded each time.

The goal is to design an investment strategy that maximises the 
Sortino ratio SRt for the investors in the Bitcoin exchange:

where �t,semi is the semi-standard deviation of the returns gener-
ated by the investment strategy, and rft is the risk-free rate which 
we set equal to the 3 months LIBOR/SOFR rate. We choose to 
target the Sortino ratio to limit the downside volatility on the 
strategy since the Bitcoin market is characterised by frequent 
and pronounced volatility spikes.

3.2   |   XGBoost—Model Specification

XGBoost is an implementation of gradient-boosting machines 
belonging to the broader collection of tools under the um-
brella of the Distributed Machine Learning Community. Its 
widespread adoption followed winning the Higgs Machine 
Learning Challenge. The XGBoost library provides two wrap-
per classes that allow the random forest implementation 
provided by the library to be used with the scikit-learn ma-
chine learning library. One of the most important differences 
between XGBoost and Random Forest is that the XGBoost 
always gives more importance to functional space when re-
ducing the cost of a model while Random Forest tries to give 
more preferences to hyperparameters to optimise the model. 
As such, while the XGBoost model often achieves higher accu-
racy than decision trees, it sacrifices the interpretability of the 
explanatory variables. Unlike gradient boosting that works 
as gradient descent in function space, a second order Taylor 

approximation is used in the loss function to make the con-
nection to the Newton-Raphson method. For an overview of 
XGBoost models, see Chen and Guestrin (2016).

3.3   |   GARCH Model—Model Specification

Generalised Autoregressive Conditional Heteroskedasticity 
(GARCH) is a statistical model used for analysing time-series 
data where the variance error is serially autocorrelated. GARCH 
models assume that the variance of the error term follows an au-
toregressive moving average process. GARCH models are com-
monly employed in modelling financial time series that exhibit 
time-varying volatility and volatility clustering. For an overview 
of GARCH models, see Bollerslev (1987).

4   |   Data

The data set used is a time-series of daily, open, spot prices of 
Bitcoin futures (BTC) for the period February 2012–December 
2023 sourced from Quandl (3290 daily observations). The choice 
of the data set has been driven by data completeness and the 
availability of many explanatory variables. Due to the persistent 
correlation and Granger causality between Bitcoin prices and 
other cryptocurrencies (Ghorbel and Jeribi 2021), investigation 
of the former allows for establishing a gauge over the entire 
market. In Table 1, we define every explanatory variable used 
in this study.

We fractionally differentiate each time series to achieve station-
arity. To estimate the fractional parameter, we used the algo-
rithm of Geweke and Porter-Hudak (2008), whose estimator is 
based on the regression equation using the periodogram func-
tion as an estimate of the spectral density.

We trained each model on a training sample composed of 60% 
of the observations and cross-validated the in-sample estima-
tions by means of k-fold cross-validation, with k = 5. Since a 
Portmanteau test rejected the null hypothesis of identically and 
independently distributed data at any confidence interval, the 
cross-validation was purged to take into consideration the se-
rial correlation of the data. As such, in Figure 1 we formed the 

(1)SRt =
rt − rft
�t,semi

TABLE 1    |    The variables composing the data set used in this study.

Name Description

BTC Bitcoin price in USD

AVBLS Average block size

HRATE Hash rate (diff.)

ETRAV Estimated transaction volume (diff.)

NTRBL Transactions per block (diff.)

NADDU Transactions excluding 
popular addresses (diff.)

NTREP Number of transactions (diff.)—1.6

Note: In this table we define the variables used in this study. The abbreviations 
are defined in the second column and in other tables and in the text we used the 
abbreviations.
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validation folds with adjacent observations, rather than with 
randomly picked ones.

The model specifications are fine-tuned via grid search. For 
the multilinear perceptron within the reinforcement learning 
model, we use two hidden layers with leaky RELU activation 
function, the Glorot kernel initializer, a Ridge regularizer of 
0.01 and a Lasso regularizer of 0.01. The training is done via 
Stochastic Gradient Descent with a Nesterov momentum of 0.6. 
The loss function is binary cross-entropy. We chose the multilin-
ear perceptron model as more complex models, such as convolu-
tional neural networks or recurrent neural networks, improved 
the in-sample fitting but worsened the model's capability to gen-
eralise out-of-sample. In other words, the reduced bias due to 
enhanced model complexity is more than offset by the increased 
variance. For the XGBoost, we use a Ridge regularizer of 0.05 
and a Lasso regularizer of 0.02, a maximum tree depth of 5 and 
accuracy as the evaluation metric. In both cases, a validation 
sample of 20% of the training observation was used to apply the 
purged fivefold cross-validation algorithm. For the univariate 
ARFIMA-GARCH model, we use an eGARCH(1,1) specifica-
tion with skewed t-student distribution and an ARIMA(2,0,2) 
for the mean model.

5   |   Out-of-Sample Validation Methodology

To address the research question, we follow the literature and 
apply the double deep Q-learning, as it avoids the overesti-
mation problem associated with Q-learning. Application of 
machine learning is challenging in the case of stock market 
forecasting because of the noisy nature of the historical data. 
Competitive machine learning approaches mostly act in a su-
pervised manner, ignoring several macro factors affecting the 

financial market, which leads to over-fitting. As reinforcement 
learning approaches can learn the process to maximise a re-
turn function during the training stage, we can minimise the 
overfitting problem. Thus, we use a Q-learning agent, which 
can be trained several times using the same training data 
and can be important in the real-world stock markets (Carta 
et  al.  2021). However, double deep Q-learning might under-
estimate the action values at times. Since neural networks 
and machine learning models are prone to overfitting in the 
training sample, the focus should be on the capability to gen-
eralise out-of-sample. For this reason, we evaluate the models 
on a strict out-of-sample framework based on 10 synthetic data 
sets generated by means of a variational autoencoder (VAE), 
which was introduced by Kingma and Welling  (2013). The 
VAE reduces the reconstruction error between the input and 
output of the network when applied on real data. Thus, VAE 
improves the generated data quality by minimising the distri-
bution distances between the real posterior and the estimated 
one (Tables C1 and C2) in Appendix C.

The next of this paragraph introduces the VAE model used to 
produce the synthetic data sets.

Consider a data set X =
{

X (i)
}N

i=1
 composed of N i.i.d. samples 

coming from a random variable x. Let's assume that the data is 
generated by a random process involving an unobserved contin-
uous random variable z. The process consists of first generating 
a value z from some prior distribution p

�
(z) to then generating a 

value xi from the conditional distribution p
�
(x| z). Let's assume 

that the PDFs of p
�
(z) and p

�
(x| z) are differentiable almost ev-

erywhere with respect to z, �. However, the true parameters � 
and the values of the latent variable z are unknown. The objec-
tive is to find an efficient neural network approximation for the 
latent variable z as this would allow to mimic the hidden random 

FIGURE 1    |    Scatter plots and densities for each pair of variables as well as univariate distributions. [Colour figure can be viewed at 
wileyonlinelibrary.com]
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process and generate a synthetic data set that resembles the real 
data. To do so, we employ a Variational Auto-Encoder. Assume 
the prior over the latent variables to be a centred isotropic multi-
variate Gaussian p

�
(z) = N(z, 0, I). Let p

�
(x| z) be a multivariate 

Gaussian with � estimated via a fully connected neural network 
with a single hidden layer. The true posterior is intractable but 
assuming that is approximated by a Gaussian distribution with 
an approximately diagonal covariance, then the variational ap-
proximate posterior is a multivariate Gaussian with a diagonal 
covariance structure:

where q
�

(

z| xi
)

 is based on an alternative technique for sampling 
z such as Monte Carlo and 

(

�
i, �i

)

 are the mean and standard de-
viation of the approximate posterior which are outputted by the 
neural network as nonlinear functions of xi and the variational 
parameters �.

Afterwards, one simply need to sample from the posterior 
zi,l ∼ q

�

(

z| xi
)

 with zi,l = g
�

(

xi, �l
)

= �
i + �

i
�
l, where �l ∼ N(0, I). 

It can be proven that the Kullback–Leibler divergence can be com-
puted without estimation and the resulting estimator for the 
data point xi is given by:

where logp
�

(

xi| zi,l
)

 is a Gaussian fully connected neural net-
work decoding term.

The robustness of the VAE used in our study is coherent with other 
studies (Camuto et al. 2021). Given this framework, we produce 
10 multivariate synthetic data sets composed of 1316 observations 
(40% of out-of-sample observations). Once again, focusing on out-
of-sample performance is essential in financial applications to 
avoid in-sample overfitting. On the other hand, the models have 
been trained and validated on the 60% of in-sample observations. 
The model specification is fine-tuned via grid search. For the 
VAE, we use two hidden layers with five hidden units activated 
by means of the leaky RELU function, initialised with the Glorot 
kernel initialiser, with a Ridge regularizer of 0.02 and a Lasso 
regularizer of 0.01. The training is done via Stochastic Gradient 
Descent with a Nesterov momentum of 0.6. The loss function tar-
gets the representation error via the mean squared error.

Figures B1–B7 in Appendix B compare each variable's density 
plot in the original data with those in the 10 synthetic data sets. 
The grey-shaded area is the distribution of the synthetic variable 
in each data set, while the red-shaded one is the distribution 
of the same variable in the original data set. As is visible, the 
synthetic distributions closely match the original data set with 
few discrepancies, which are mostly limited to higher standard 
deviation around the mean and rare differences in the tails.

6   |   Results

In this section, we discuss our findings. We follow the extant 
literature (e.g., Ding, Cui, and Zhang 2022; Wang, Andreeva, 

and Martin-Barragan  2023; Kumar et  al.  2024) to evaluate 
the performance of our double deep Q-learning model and 
compare its performance with two existing models, namely 
XGBoost and ARFIMA-GARCH. In line with our aim of of-
fering an approach to forecast Bitcoin prices, we focused our 
evaluation on 10 synthetic data sets in terms of an invest-
ment strategy based on their one-step-ahead sign forecasts 
and in terms of their performances as classifiers. According 
to Huang  (2021) the significance of model-predicted signs is 
crucial for investment strategies and indicates while ordinary 
least squares (OLS) estimators generally yield better Sharpe 
ratios, sign regression can outperform for certain assets. 
Similarly using sign prediction, Sebastião and Godinho (2021) 
examine the predictability of digital currency using linear 
models, random forests, and support vector machines. They 
show how the combination of multiple models can achieve an-
nualised Sharpe ratios of 80.17% for Ethereum and 91.35% for 
Litecoin (despite changes in trading costs and market volatil-
ity). So, we first illustrate how the sign predictions are trans-
lated into investment strategies. Starting from the double deep 
Q-learning model, the output of the learning process is the 
triplet state, action, and reward (at, st, rt). As such, given a state 
st, the chosen actions at ∈ [1, − 1] are directly translated into 
rewards rt. Hence, the profit and loss of the investment strat-
egy are the direct output of the learning algorithm.

The XGBoost model, instead, forecasts the one step-ahead 
probability pt of the next fractional return rt+1 being positive 
(Chen et  al.  2021). Hence, we convert the probability into a 
trading action by using a static threshold of 0.5 with a buying 
mechanism triggered when pt > 0.5, and vice versa. This is a 
direct yield of having a binary classification as the evaluation 
objective. Finally, the ARFIMA-GARCH is a univariate re-
gression model that forecasts the one-step-ahead fractional re-
turn. Hence, the strategy is to ‘buy’ when the one-step-ahead 
predicted return, rt+1, is positive and vice versa. The fractional 
differentiation algorithm does not alter the sign of the price 
change. As such, increase in price reflects positive fractional 
returns, and vice versa. This property is important since both 
the XGBoost and the ARFIMA-GARCH models use fractional 
returns of Bitcoin prices as these are not stationary (Almaafi, 
Bajaba, and Alnori 2023).

Following Dos Santos and Aguilar (2024), at the next stage, we 
compare the investment performance achieved by the three 
models on the 10 synthetic data sets (also see Arian, Norouzi, 
and Seco 2024). To showcase the applicability of these models, 
we add to the comparison a naive buy-and-hold strategy on the 
BTC. Tables  C3 and C4 in Appendix  C report the descriptive 
statistics of the returns as well as the Sharpe and Sortino ratios 
achieved by each strategy in each of the 10 out-of-sample syn-
thetic data sets. To improve comparability, we also include the 
average across the 10 data sets. Double deep Q-learning achieves 
the highest average annualised mean return of 15.8%. This sug-
gests that the model is capable of generating substantial returns 
over time. However, high returns often come with higher risk. 
Investors should evaluate their risk tolerance and ensure they 
are comfortable with the potential volatility associated with this 
strategy. While XGBoost outperforms in terms of average an-
nual median return (10.5%) which indicates a more consistent 
and stable return profile. This could be appealing to investors 

(2)logq
�

(

z| xi
)

)logN
(

z,�i, �iI
)
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who prioritise stability and predictability in their investments. 
In addition, XGBoost may be less prone to extreme outcomes, 
making it a potentially safer choice for risk-averse investors. 
Both double deep Q-learning and XGBoost outperform the buy-
and-hold strategy (7.9% annual mean and 4.8% annual median), 
ARFIMA-GARCH is the worst performer in terms of both met-
rics. At the same time, ARFIMA-GARCH strategies achieve 
unstable performances across the 10 data sets compared to the 
double deep Q-learning and XGBoost whose statistics are stable 
across the synthetic data sets.

Nevertheless, the double deep Q-learning records the highest 
annualised standard deviation across the 10 data sets, averag-
ing 33.2% compared to 26.9% of XGBoost and 24% of ARFIMA-
GARCH. Investors might use double deep Q-learning as part 
of a diversified portfolio to balance risk and reward, leveraging 
its potential for high returns while mitigating overall portfolio 
risk. All the models have a larger standard deviation compared 
to the buy-and-hold strategy whose annualised standard devia-
tion is 20.7% (also see Gort et al. 2022). At the same time, double 
deep Q-learning records a large average kurtosis of 9.7x, while 
XGBoost and ARFIMA-GARCH achieve a kurtosis below three, 
improving on the 6.7x of the buy-and-hold strategy. However, 
the larger standard deviation and kurtosis of double deep Q-
learning are offset by the largest, positive average skewness of 
2.4 and the lowest downside volatility of 3.1%. In fact, the ob-
jective function of double deep Q-learning is to maximise the 
Sortino ratio, which embeds minimising the downside volatility 
while maximising the returns. This implies that its higher aver-
age standard deviation is the result of higher upside volatility. 
Figure  2 plots the average standard deviations while Figure 3 
plots the average downside volatilities both calculated on a roll-
ing window of 100 days. ARFIMA-GARCH returns, instead, are 
mostly symmetrical (positive and negative returns are roughly 
equal in magnitude and frequency) while the downside volatil-
ity is the highest across all the synthetic data sets. This means 

that while the returns are symmetrical, the negative returns 
(losses) can be quite large and frequent, leading to higher risk 
during downturns. So, the model's performance could be more 
erratic during the financial crisis, requiring investors to be vig-
ilant and possibly adjust their strategies accordingly. Investors 
may need to implement robust risk management strategies to 
mitigate this downside risk. From these figures, it is evident that 
both double deep Q-learning and XGBoost can effectively cur-
tail the standard deviations and the downside volatility of the in-
vestment strategies. From this follows an expectation of superior 
risk-adjusted performances, such as Sharpe and Sortino ratios, 
wherein an improved performance is linked to lower volatility, 
all else equal.

In terms of Sharpe ratio, double deep Q-learning and XGBoost 
achieve a similar performance of 0.63x, while ARFIMA-GARCH 
underperforms due to lower returns not sufficiently offset by 
lower standard deviation. The findings are consistent with the 
existing studies (Wang et al. 2020). For the ARFIMA-GARCH 
strategy, the same applies in terms of the Sortino ratio. Double 
deep Q-learning, instead, is the best-performing model in terms 
of Sortino ratio (best risk-adjusted returns by focusing on down-
side risk) on the back of lower downside volatility (meaning it 
is less likely to experience significant losses, which is crucial 
for risk-averse investors) and higher returns, followed by the 
XGBoost strategy which also outperforms the buy-and-hold 
strategy. This makes the machine learning model an attractive 
option for investors seeking high returns with controlled risk.

Moving to the performance of the classification models, Table 2 
reports statistics of the confusion matrices generated by each 
classifier. All the confusion matrices are based on the model's 
ability to correctly classify the sign of the one-step-ahead re-
alised return on the average of the 10 out-of-sample synthetic 
data sets. The sign is extracted in the same way as presented 
in the previous section. The realised classes in the average 

FIGURE 2    |    Rolling standard deviations obtained by each strategy. [Colour figure can be viewed at wileyonlinelibrary.com]
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out-of-sample data sets are well balanced, with 50.3% of the 
observations belonging to the buying class and the rest to the 
selling one. Double deep Q-learning and XGBoost outperform 
ARFIMA-GARCH in terms of all the metrics proposed. The lat-
ter, in fact, can barely improve on the performance of a random 
classifier as it records a 51.9% accuracy and a 95% confidence 
interval lower bound below the 50% threshold. Double deep Q-
learning and XGBoost, instead, achieve fairly similar results. 
The latter records the highest out-of-sample classification ac-
curacy of 76.35%. Moreover, both double deep Q-learning and 
XGBoost have larger specificity compared with sensitivity. In 
other words, both models are better suited to identifying days 
when selling is the best strategy compared to buying (Filos 2019). 
ARFIMA-GARCH, on the other hand, records higher sensitiv-
ity compared to specificity, yet not far enough from the perfor-
mance of a random classifier.

7   |   Conclusions

In this study, we investigate whether a machine learning-
inspired model can successfully forecast cryptocurrency 

returns. We need machine learning models to find easy ex-
planation for investors and policy makers and also to address 
the limitations of statistical models explained in the existing 
recent studies (Chen et al. 2021; Wang, Andreeva, and Martin-
Barragan  2023). To address the above question, we evalu-
ated the performance of three models, namely double deep 
Q-learning, XGBoost and ARFIMA-GARCH in forecasting 
Bitcoin prices as well as to a buy-and-hold strategy. Our results 
show that the double deep Q-learning model outperforms the 
other models in terms of returns and Sortino ratio while the 
ARFIMA-GARCH model represented the worst-performing 
model across all tests. In layman's terms, by using the above 
models we identified one of the best models that can consider 
the risk factor appropriately in forecasting and can be suitable 
for any investors with any level of risk-taking behaviour. The 
findings suggest that in practice, an investment strategy will 
only be penalised for volatility in a down-moving market, 
which is a great assurance for investors. It is also important 
for policymakers to know that our findings suggest less dam-
age to economic value of the market during a time of extreme 
volatility. Based on these results, the study offers three main 
contributions.

FIGURE 3    |    Rolling downside volatilities obtained by each strategy. [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 2    |    Statistics of confusion matrices.

Double deep Q-learning XGBoost ARFIMA-GARCH

Accuracy (%) 75.27 76.35 51.93

95% CI lower (%) 77.6 78.34 54.68

95% CI upper (%) 72.8 73.94 49.17

Sensitivity (%) 74.11 74.57 52.4

Specificity (%) 76.42 78.1 51.45

Balanced accuracy (%) 75.26 76.34 51.93

Note: The statistics of the confusion matrices generated by each classifier. The classifiers are double deep Q-learning; XGBoost and ARFIMA-GARCH. The statistics 
are reported in percentages.
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First, our study contributes to the literature on cryptocurrency 
returns by settling the debates on the suitability of machine 
learning models in forecasting cryptocurrency returns. In prior 
finance literature, there are debates about the suitability of ma-
chine learning models in forecasting (Sun Yin et al. 2019). While 
some studies (Chen et al. 2021; Gradojevic et al. 2021) argue that 
machine learning models can forecast cryptocurrency returns, 
others (Christodoulou et  al.  2019) disagree, leading to incon-
clusive debates. Moreover, existing research (Xie, Chen, and 
Hu 2020) tends to use regression approaches or primarily focus 
on out-of-sample performance evaluation on a single subset of 
historical data opening the results to more criticisms as to the 
suitability of machine learning models. However, in this study, 
we move beyond the existing research by evaluating the suitabil-
ity of three machine learning models as well as used the entire 
historical data of Bitcoin to overcome the single historical snap-
shot criticism. By doing so, the study offers critical insights that 
address the criticism of existing research as well as attempts to 
settle the ongoing debate in the literature.

Second, whereas existing research mainly uses the total cumu-
lated profit as target function, only focusing on the time series 
of returns and out-of-sample backtesting on historical data, 
our study contributes new insights by targeting a risk-adjusted 
measure such as the Sortino ratio, which penalises an invest-
ment strategy only for volatility in a down-moving market, as 
opposed to Sharpe ratio which penalises for volatility in any 
market movement. For instance, prior studies (Li, Zheng, and 
Zheng 2019) use cumulated profit, which is criticised for not ac-
curately reflecting risk considerations. However, our approach 
of risk adjusting using the Sortino ratio offers a more holistic 
representation of risk targeting cumulated profit results in an in-
vestment strategy with extreme allocations, without considering 
the riskiness of the position. The difference becomes particularly 
relevant when different types of investors are considered. While, 
on one hand, proprietary traders are focused on maximising the 
profit and loss function of their investment strategies, invest-
ment funds and banks are focused on delivering higher returns 
amid controlled risk scenarios. For these reasons, these institu-
tions are mostly evaluated against risk-adjusted measures, such 
as the Sortino ratio. A widespread adoption of cryptocurrencies 
to foster broad societal consequences also passes through the in-
clusion of these instruments among the traded instruments of 
such large institutions.

Lastly, our study enriches the literature on financial asset 
forecasting by offering an alternative perspective in fore-
casting Bitcoin returns. By conducting this study on Bitcoin 
price forecasting, we enrich the investment literature (Mattke 
et al. 2021; Mai and Hranac 2013; Gefen 2002). The extant lit-
erature (Ibrahim, Kashef, and Corrigan 2021) predominantly 
uses time-series data on cryptocurrency prices, which often 
do not take other critical peculiarities—such as market micro-
structure—into consideration. By relying solely on time series 
data of cryptocurrency price, the results of these studies are 
sometimes criticised for robustness. Our study overcame this 
challenge by using a set of explanatory variables (average block 
size, has rate, transaction volume, transaction per block, trans-
actions excluding popular addresses and number of transac-
tions), in addition to time-series data of cryptocurrency prices. 
Thus, this approach allows us to take into consideration the 

peculiar market microstructure of cryptocurrencies. By using 
explanatory variables to augment limitations in solely rely-
ing on time-series data, this study contributes a novel process 
that advances cryptocurrency returns forecasting research. In 
addition, Bitcoin time-series exhibit high volatility and lepto-
kurtosis, which, coupled with the short trading history, makes 
out-of-sample evaluations based on historical data highly un-
reliable (Pintelas et al. 2020). For this reason, we contribute to 
the finance literature by proposing the usage of a Variational 
Autoencoder to simulate the original distribution of the un-
derlying data in 10 synthetic data sets and evaluate the out-of-
sample performances on these.

Practically, the study also offers some critical insights. First, 
the results demonstrate that it is possible to use machine learn-
ing models to successfully predict cryptocurrency returns. This 
means practitioners using and those thinking of using machine 
learning models can be more confident in applying machine 
models. It is difficult for the practitioners to use the findings of 
the prior studies because most of them cannot accurately reflect 
risk consideration by using cumulated profit (Li, Zheng, and 
Zheng 2019). However, we use a more holistic approach where 
the Sortino ratio is relevant for different types of investors. 
Second, the results of this study offer practitioners a benchmark 
and reference point for their application of machine learning 
models since existing research has only provided anecdotal ev-
idence. Lastly, the study offers some strategies to cope with the 
cryptocurrency volatility. For instance, we define an environ-
ment where an agent learns to choose the best suited between 
two actions, buy or sell a BTC future contract, during each trad-
ing day to maximise the Sortino ratio of the investment strat-
egy. We choose to target the Sortino ratio to limit the downside 
volatility on the strategy since the Bitcoin market is character-
ised by frequent and pronounced volatility spikes. Creating a 
consistently profit-making investment algorithm based on on-
line learning would attract more long-term investors and po-
tentially win the regulatory consensus (Sun Yin et al. 2019) for 
creating regulated spot trading venues. Therefore, this would 
result in improved long-term market liquidity and lower mar-
ket volatility. The virtuous cycle would complete with the more 
widespread adoption of digital coins, fuelling positive societal 
impact hidden beneath the merely speculative aims. As such, 
the scope of this manuscript is to propose an online machine 
learning model, the double deep Q-learning, and analyze its 
performance both in terms of investment strategy and as a clas-
sifier. Like all research, this study has some limitations, which 
presents an avenue for future studies. First, this research only 
focused on Bitcoin, therefore future studies can use other cryp-
tocurrencies such as Ethereum, Litecoin, Doge coin and so on; 
validate our findings towards wide generalisation. Second, our 
study used three popular machine learning models, namely 
double deep Q-learning, XGBoost and ARFIMA-GARCH in 
forecasting Bitcoin prices. Second, future studies can explore 
further development and refinement of cross-validation meth-
ods tailored to financial data, particularly focusing on miti-
gating overfitting and improving model robustness. It is also 
important to examine the application of the combinatorial 
purged cross-validation (CPCV) method to real-world financial 
markets to validate its effectiveness and practicality. Finally, 
financial institutions can explore the validation techniques for 
regulatory compliance.
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Endnotes

	1	Socio-economic impact of Bitcoin is summarised.
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Appendix A

TABLE A1    |    Comparative table for existing literature.

Articles
Reinforcement 
learning model Application domain Limitations

Wu et al. (2020) Gated deep Q-learning Equity single stock Out-of-sample performance evaluated on a single set of 
historical data.

Borrageiro, Firoozye, 
and Barucca (2022)

Recurrent 
reinforcement learning

Bitcoin versus US Dollars; 
trading perpetual swap 

derivatives contract

Monte Carlo simulation of 250 trials, obtained reasonable 
variability of returns.

No out-of-sample data analysis.

Zhang and 
Maringer (2016)

Genetic algorithm-
recurrent 

reinforcement learning 
(GA-RRL)

Daily prices, trading volume, 
price-earning, price-cash flow, 
debt-market value of S&P 500 

US firms

GA-RRL trading system did not outperform the buy-and-
hold strategy by producing a greater number of positive 

Sharpe ratio.

Li, Zheng, and 
Zheng (2019)

Deep reinforcement 
learning

Equity single stock Out-of-sample performance evaluated on a single set 
of historical data. Low volatility time series removed. 

Maximises cumulated profit. Cumulates large positions 
(n contracts). No explanatory variables

(Time-dependency)

Zhang, Zohren, and 
Roberts (2020)

Deep Q reinforcement 
learning

Multi assets future contracts Out-of-sample performance evaluated on a single set of 
historical data. Maximises cumulated profit. Cumulates 

large positions (n contracts). No explanatory variables
(Time-dependency)

Deng et al. (2016) Fuzzy deep direct 
reinforcement

Equity indexes and commodity 
futures

Out-of-sample performance evaluated on a single set of 
historical data. Maximises cumulated profit. Cumulates 

large positions (n contracts). No explanatory variables
(Time-dependency)

Moody et al. (1998) Recurrent 
reinforcement learning

Equity index Out-of-sample performance evaluated on a single set of 
historical data.

Yang et al. (2020) Deep Q-reinforcement 
learning

Equity Index Out-of-sample performance evaluated on a single set of 
historical data. Maximises cumulated profit.

Lee et al. (2007) Inverse reinforcement 
learning

Bitcoin Out-of-sample performance evaluated ed. on multiple 
sets of historical data. Maximises cumulated profit.

Adhami and 
Guegan (2020)

DCC, ADCC Multi assets, cryptocurrencies 
(bitcoin, tokens)

The evolution of the economic impact of ICOs on the real 
economy and financial stability is still to be tested. No 

use of machine learning.

Schnaubelt (2022) Backward-induction Q-
learning, deep double 

Q-networks

Multiple assets Used out-of-sample performance of reinforcement 
learning algorithms and benchmark strategies. No 

implementation of feature representations from the data 
using CNN and routing orders to multiple exchanges

Alonso-Monsalve 
et al. (2020)

Compares the 
performance of four 

different network 
architectures

Multiple cryptocurrency 
forecasting

For dash and ripple because of noise and temporal 
behaviour. The data generation parameters are not 
sufficient. Short-term trend prediction has its own 

limitations with network architecture.

Dempster and 
Leemans (2006)

Adaptive reinforcement 
learning. The 

parameters are 
dynamically optimised 
to maximise a trader's 

utility. Adaptive 
reinforce-utility

Historical data on foreign 
exchange markets

Risk management layer can be extended to control 
several automated FX trading systems that trade 

different currencies. Out-of-sample cumulative profit 
measured.

Note: Summary of the most relevant literature related to our study.
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Appendix B
Synthetic distributions (obtained via VAE) versus original ones (Figures B1–B7).

FIGURE B1    |    BTC—Bitcoin price. [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE B2    |    AVBLS—Average block size. [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE B4    |    ETRAV—Estimated transaction volume. [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE B3    |    HRATE—Hash rate. [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE B5    |    NTRBL—Transaction per block. [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE B6    |    NADDU—Transactions excluding popular addresses. [Colour figure can be viewed at wileyonlinelibrary.com]
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Appendix C
Annualised descriptive statistics for investment strategies.

FIGURE B7    |    NTREP number of transactions. [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE C1    |    Annualised descriptive statistics for double deep Q-learning investment strategy.

Sample Mean Median SD Skewness Kurtosis
Volatility 

skew
Downside 
volatility

Sharpe 
ratio

Sortino 
ratio

V1 15.629% 8.214% 33.005% 1.990 6.023 60.054 3.011% 0.592 4.190

V2 15.385% 7.950% 33.718% 2.194 6.150 61.466 3.258% 0.589 4.333

V3 15.811% 7.746% 31.953% 1.844 5.455 64.304 2.735% 0.649 4.258

V4 14.885% 7.646% 32.691% 2.493 6.517 68.208 3.085% 0.655 4.412

V5 15.762% 6.941% 34.191% 2.310 5.753 71.336 3.213% 0.636 4.422

V6 15.666% 8.247% 33.215% 1.931 5.866 66.233 2.698% 0.627 4.097

V7 15.915% 8.146% 33.869% 2.583 6.273 66.259 3.104% 0.603 4.386

V8 15.865% 7.123% 33.040% 2.321 6.483 67.120 2.948% 0.611 4.380

V9 15.756% 7.016% 33.817% 1.762 5.636 71.153 2.739% 0.618 4.180

V10 15.396% 7.246% 33.684% 2.358 6.912 69.235 3.232% 0.598 4.137

Average 15.607% 7.627% 33.318% 2.179 6.107 66.537 3.002% 0.618 4.279

Note: In this table, we report the annualised descriptive statistics for double deep Q-learning investment strategy in each of the 10 out-of-sample synthetic data sets. 
V1–V10 denote each of the out-of-sample synthetic data sets. In the last row of the table, we included the average of the 10 data sets.
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TABLE C2    |    Annualised descriptive statistics for XGBoost investment strategy.

Sample Mean Median SD Skewness Kurtosis
Volatility 

skew
Downside 
volatility

Sharpe 
ratio

Sortino 
ratio

V1 16.169% 7.398% 35.145% 2.167 6.239 72.821 2.938% 0.598 4.657

V2 16.086% 7.523% 32.517% 1.761 5.691 64.059 3.240% 0.591 4.475

V3 16.419% 6.651% 33.157% 2.129 6.938 67.732 2.740% 0.675 4.630

V4 16.439% 7.066% 32.237% 2.275 7.721 69.766 3.341% 0.621 4.436

V5 15.751% 7.879% 34.236% 2.055 5.461 64.796 3.121% 0.604 4.301

V6 15.750% 7.197% 34.442% 2.738 6.406 71.401 3.196% 0.620 4.606

V7 15.946% 6.335% 33.251% 2.448 5.630 65.679 2.771% 0.618 4.355

V8 15.624% 7.871% 31.230% 2.180 5.977 69.754 3.199% 0.645 5.277

V9 15.551% 6.578% 31.988% 2.286 6.716 56.727 3.325% 0.660 4.693

V10 16.288% 7.903% 31.758% 2.391 7.046 68.861 2.790% 0.651 4.507

Average 16.002% 7.240% 32.996% 2.243 6.382 67.160 3.066% 0.628 4.594

Note: In this table, we report the annualised descriptive statistics for XGBoost investment strategy in each of the 10 out-of-sample synthetic data sets. V1–V10 denote 
each of the out-of-sample synthetic data sets. In the last row of the table, we included the average of the 10 data sets.

TABLE C3    |    Annualised descriptive statistics for ARFIMA-GARCH investment strategy.

Mean Median SD Skewness Kurtosis
Volatility 

skew
Downside 
volatility

Sharpe 
ratio

Sortino 
ratio

V1 3.49% 1.85% 17.38% 0.27 3.08 1.16 7.44% 0.03 0.04

V2 5.59% 4.02% 26.34% −0.04 2.13 1.07 11.54% 0.03 0.04

V3 4.92% 3.07% 23.21% −0.08 1.93 1.09 10.12% 0.03 0.04

V4 6.27% 11.28% 24.31% −0.18 1.79 1.03 10.74% 0.03 0.05

V5 4.83% 0.21% 21.49% 0.22 1.81 1.21 9.11% 0.03 0.04

V6 15.06% 14.01% 30.66% −0.02 1.32 1.22 13% 0.06 0.1

V7 2.82% 6.75% 25.13% −0.13 1.89 0.98 11.23% 0.01 0.02

V8 1.79% 3.59% 19.89% −0.14 2.08 0.98 8.89% 0.01 0.02

V9 5.56% 1.86% 29.51% 0.05 1.11 1.12 12.77% 0.02 0.04

V10 4.83% 9.29% 22.60% −0.22 3.92 0.98 10.11% 0.03 0.04

Average 5.52% 5.59% 24.05% −0.03 2.11 1.08 10.50% 0.03 0.04

Note: The descriptive statistics of the returns as well as the Sharpe and Sortino ratios achieved by ARFIMA-GARCH investment strategy in each of the 10 out-of-
sample synthetic data sets. To improve comparability, we also include the average across the 10 data sets. V1–V10 denotes the out-of-sample synthetic data sets.

TABLE C4    |    Annualised descriptive statistics for Bitcoin buy-and-hold investment strategy.

Mean Median SD Skewness Kurtosis
Volatility 

skew
Downside 
volatility

Sharpe 
ratio

Sortino 
ratio

BTC 7.96% 4.79% 20.70% 1.21 6.73 8.71 4.69% 20.2 1.41

Note: The descriptive statistics of the returns as well as the Sharpe and Sortino ratios achieved by Bitcoin buy and hold investment strategy.
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