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Abstract. In this paper, we present a methodology for constructing
explanations for AI classification algorithms. The methodology consists
of constructing a model of the context of the application in the Isabelle
Infrastructure framework (IIIf) and an algorithm that allows to extract a
precise logical rule that specifies the behaviour of the black box algorithm
thus allowing to explain it. The explanation is given within the rich
logical model of the IIIf. It is thus suitable for human audiences. We
illustrate this and validate the methodology on the application example
of credit card scoring with special relation to the right of explanation as
given by the GDPR.

1 Introduction

Artificial intelligence (AI) uses various methods of machine learning to solve
problems automatically. Some of the used methods, for example linear regression
or decision trees are amenable to human understanding. However, other very
successful ones, for example deep learning methods and convolutional neural
networks (CNN), are black boxes for humans: it is not clear from the outside how
the machine intelligence arrives at decisions. In critical applications, however, it
is absolutely necessary that humans can understand what is going on and why.

We provide a method for explanation using the expressive Higher Order logic
of the interactive theorem prover Isabelle. The Isabelle Infrastructure framework
(IIIf) provides rich contexts for actors, infrastructures and policies to enable
explanations of black box machine learning decisions to humans. This can be
particularly relevant for privacy critical application. Black box algorithms are
trained on data sets whose classification may have human biases but those are
hidden in the opaqueness of the learning algorithm. Explanation is necessary to
shed light into this. We propose a process of precondition refinement to arrive
at logical rules for explanation using counterfactuals for iterating the refinement
process. We illustrate and validate the proposed methodology by an example
of credit scoring. There private information is used in the automated decision
process of credit scoring guided by a black box AI algorithm. The GDPR grants
a right of explanation. We show how our approach using attack trees and an
expressive logical rule for explanation serves the main purposes of GDPR expla-
nation. All Isabelle sources are available [14].



2 Background and Related Work

2.1 Explanation

Bau et al’s article “Explaining Explanation [. . . ]” [5] gives a good overview of
the techniques used for explainable AI (XAI). The more recent work [1] pro-
vides a critical analysis of current literature on the field of XAI providing some
challenges primarily featuring the post-hoc explanation of black box machine
learning like CNN and Deep Learning and providing human comprehensible ex-
planations. Belle and Papantonis [2] also give a very comprehensive survey of
current explanation approaches including very accessible illustrations of their
use on human centric examples.

Pieters distinguishes the main incentives of explanation as transparency (for
the user) and justification [23]. Explanation trees may be used to visualize the
relation of explanation goals and their subgoals according to Pieters providing
“a tree in which the goals and subgoals of an explanation are ordered systemat-
ically” [23]. This work is a very strong motivation to our approach to explain-
ability because explanation trees have much in common with attack trees. An
attack tree makes an attack more transparent by a step by step process that
can be characterized as “attack tree refinement” [7]. Ultimately, the attack tree
refinement leads to a fully expanded explanation that can be automatically ver-
ified on the model as is shown in the Isabelle Insider framework [8,10]. Thus
similar to an explanation tree, a sub-tree of an attack tree “explains” the attack
expressed by the parent node.

2.2 GDPR, Explanation and IIIf

The GDPR explicitly mentions a right of explanation. Wachter et al [25] investi-
gate the use of counterfactuals for the explanation of automated decisions. They
argue that counterfactuals are in themselves sufficient to provide explanations.
We challenge their approach (see Section 5.1). Nevertheless, we also adopt the
use of counterfactuals but only as a means to construct a general explanation as
a logical rule. However, Wachter et al also give a very detailed analysis of where
explanation is mentioned in the GDPR [25]. They clearly identify the purposes of
an individual who would want to claim an explanation against a data controller
based on the GDPR. Explanations serve three main purposes [25, Section 5].

– Understand decisions: provide transparency of the scope of automated deci-
sions and reasons.

– Contest decisions: provide the means to challenge a decision.
– Alter future decisions: provide help to adapt future behaviour to receive the

preferred outcome.

We will show that the logical method of explanation we provide serves all three
purposes (see Section 4.3).

In terms of logical modeling and analysis, it is worth mentioning that the IIIf
has been used for GDPR relevant applications. In fact, [9] evaluates IoT scenarios
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with respect to GDPR related privacy. This work shows that the IIIf can be
applied to provide privacy by design – one of the major principles stipulated by
the GDPR. However, this early application of IIIf in the context of the GDPR
can be seen as a formal experiment inspired by the concepts propagated by
the GDPR and to advocate the use of formal verification to support GDPR
compliance checking of IoT architectures. What the current work achieves is
much closer to actual applications of the GDPR in law practice. It is thus more
relevant to the application of the GDPR as a law to privacy related societal
issues. This is illustrated as well by the case study we present in this paper
where the explanation that our logical method IIIf provides can serve as a basis
for challenging a decision made by a data controller using an AI based black box
decision algorithm.

2.3 Isabelle Infrastructure framework (IIIf)

Attack trees are fully embedded as “first-class citizens” into the logic in the
Isabelle Insider and Infrastructure framework (IIIf). It is thus possible to provide
a formal semantics for valid attacks based on Kripke structures and the temporal
logic CTL as well as to derive an efficient decision procedure. Code is generated
in the programming languages Scala for deciding the validity of attack trees.

The Isabelle Infrastructure framework (IIIf) is implemented as an instance
of Higher Order Logic in the interactive generic theorem prover Isabelle/HOL
[22]. The framework enables formalizing and proving of systems with physical
and logical components, actors and policies. It has been designed for the analysis
of insider threats. However, the implemented theory of the temporal logic CTL
combined with Kripke structures and its generic notion of state transitions are a
perfect match to be combined with attack trees into a process for formal security
engineering [4] including an accompanying framework [11]. In the current paper,
we show that the IIIf can also be used for explaining AI decisions made by black
box algorithms. We provide here a very brief overview of the main features of
the IIIf.

Kripke structures, CTL and Attack Trees A number of case studies have
contributed to shape the Isabelle framework into a general framework for the
state-based security analysis of infrastructures with policies and actors. Tem-
poral logic and Kripke structures are deeply embedded into Isabelle’s Higher
Order logic thereby enabling meta-theoretical proofs about the foundations: for
example, equivalence between attack trees and CTL statements have been estab-
lished [8] providing sound foundations for applications. This foundation provides
a generic notion of state transition on which attack trees and temporal logic can
be used to express properties for applications. The logical concepts and related
notions thus provided for sound application modeling are:

– Kripke structures and state transitions:
A generic state transition relation is→; Kripke structures over a set of states
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t reachable by→ from an initial state set I can be constructed by the Kripke
constructor as

Kripke {t. ∃ i ∈ I. i →∗ t} I

– CTL statements:
We can use the Computation Tree Logic (CTL) to specify dependability
properties as

K ` EF s

This formula states that in Kripke structure K there is a path (E) on which
the property s (given as the set of states in which the property is true) will
eventually (F) hold.

– Attack trees:
attack trees are defined as a recursive datatype in Isabelle having three con-
structors: ⊕∨ creates or-trees and ⊕∧ creates and-trees. And-attack trees
l⊕s
∧ and or-attack trees l⊕s

∨ consist of a list of sub-attacks which are them-
selves recursively given as attack trees. The third constructor takes as input
a pair of state sets constructing a base attack step between two state sets.
For example, for the sets I and s this is written as N(I,s). As a further ex-
ample, a two step and-attack leading from state set I via si to s is expressed
as

` [N(I,si),N(si,s)]⊕(I,s)
∧

– Attack tree refinement, validity and adequacy:
Attack trees can be constructed also by a refinement process but this differs
from the system refinement presented in the paper [12]. An abstract attack
tree may be refined by spelling out the attack steps until a valid attack is
reached:

`A :: (σ:: state) attree).

The validity is defined constructively so that code can be generated from it.
Adequacy with respect to a formal semantics in CTL is proved and can be
used to facilitate actual application verification.

The IIIf has a wide range of applications ranging from Insider threats in
auction protocols [17] and airplane policies [16], security and privacy of IoT
healthcare systems, for example, [9,11], the Quantum Key Distribution protocol
[10], Inter-blockchain protocols [19], the Corona-Warn App [18,12], and aware-
ness in social networks and unintentional insiders [15] .

The potentials of using the IIIf for explanation (for AI and security) has
already been presented in an earlier paper but at the level of position paper only
[13] while the current paper provides a feasible methodology, an implementation
of explanation within the IIIf illustrating it on an application to a relevant case
study in the context of GDPR related privacy. Online sources are available [14].
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3 Case Study of Credit Scoring

In this section, we give a brief introduction to credit scoring and its relevant
factors to motivate the case study that is used to illustrate how IIIf is applied
to it to provide a basis for explanation.

3.1 Credit scoring

Credit scores are ranks assigned to people to allow quantifying their “financial
fitness” [3]. These scores are used by banks as well as credit institutes to decide
whether a client may receive a credit card or more importantly whether a poten-
tial lender may receive a mortgage. It also influences the interest rate you may
receive which can lead to disadvantaging poorer people. According to Internet
publications [3,6] the research supporting the actual credit scoring “has come
from ClearScore.com”[3]. An interactive map provided by this company allows
to easily check credit scores as is illustrated in Figure 1. An open question is

Fig. 1. Interactive map illustrates how credit scores differ in London districts [6].

how such credit scores are created as they rely on private data. As Bull writes
[3]: “A higher income does not automatically lead to a higher credit score. For
example, residents in Kensington and Chelsea are among the capital’s highest
average earners at £131,000 a year but they rank in the middle of the credit
score table.” Nevertheless, it is quite obvious that such scores are used by credit
institutes. It seems rather likely that also AI based decision making procedures
are applied within financial institutions. In order to clarify such opaque relations
logical modeling can help as it remodels the actual context of the original data
collection and thus may show up any biases used. In the next section, we present
a simple example to illustrate how the credit scoring scenario can be represented
as an infrastructure model in IIIf.
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3.2 Model in IIIf

The Isabelle Infrastructure framework supports the representation of infrastruc-
tures as graphs with actors and policies attached to nodes. These infrastructures
are the states of a Kripke structure describing the credit scoring scenario. The
behaviour is defined by a transition relation on states. This transition between
states is triggered by non-parameterized actions put, eval, move, and get ex-
ecuted by actors. Actors are given by an abstract type actor and a function
Actor that creates elements of that type from identities (of type string written
’’s’’ in Isabelle). Actors reside at locations of an infrastructure graph of type
igraph constructed by its constructor Lgraph.

datatype igraph =

Lgraph (location × location)set

location ⇒ identity set

identity ⇒ (dlm × data) set

data ⇒ bool

(identity × bool option)set

For the current application to the credit scoring scenario, this graph contains
the actual location graph of type (location × location)set given by a set of
location pairs, and a function of type location ⇒ identity set that assigns
the actors to their current location. The third component of the datatype igraph
is of type identity ⇒(dlm ×data) set. It assigns security labeled data to
actors. The label type is called dlm as a reference to the decentralized label
model by Myers and Liskov who inspired it [21]. It is a pair of type actor

×actor set defining the owner and the readers of a data item. The type data

contains the private data of users. For our example, we use the location, the
salary, their date of birth and ethnicity. 1

data = location × nat × dob × ethnicity

The fourth component of type data ⇒ bool is the black box function: effec-
tively a table that contains the credit approval decision for given data inputs.
The final component of type (identity ×bool option)set records that a user
has requested a credit approval by uploading their identity together with a
boolean field that contains the future decision of the credit approval to the
set of requests. The second boolean component containing the answer is lifted
by the option type constructor that enables an undefined value None to flag that
there has not been any response yet.

Each of the components of the type constructor is equipped with a corre-
sponding projection function that allows to access this component in an instance
of this type constructor (an element of this type). These projection functions are
named gra for the set of pairs of location representing the infrastructure graph,
agra for the assignment of actors to locations, dgra for the data at that location,
bb for the black box, and requests for the pairs of request and approval decision
of actors of requesting credits.

1 The latter two type definitions are omitted for brevity.
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We omit some standard constructions for infrastructure assembly and the
policy definition from local policies (see for example [12]). A generic state tran-
sition relation over Kripke structures is defined together with logic and decision
procedures for IIIf. This is then instantiated to concrete applications of the IIIf
– like in the current credit scoring example – by defining the rules for the state
transition relation over a defined infrastructure type – as given by the above
igraph. This state transition relation then implements the behaviour for credit
scoring systems by explaining how actions executed by actors change the infras-
tructure state. The execution of actions is conditional on enabledness as defined
by the local policies and other conditions of the context. For credit scoring
systems, we consider here the actions put representing that a client requests a
credit approval and eval where an entitled client (presumably a credit institute)
executes a requested credit application.

In the precondition of the rule for a put action, the actor a residing at
location l in the infrastructure graph G (given by the predicate Actor a @G l)
who is enabled to put a request, uploads their data to the requests G field into
the infrastructure graph G. A potential credit institute Actor c can see a new
request since now there is a new pair (a, None) in the requests set where the
second component of this pair is flagged by the None constructor of the option
type as “unprocessed” while the first element is the requesting actor’s identity
a.

put: G = graphI I =⇒ Actor a @G l =⇒ Actor c ∈ actors G =⇒
enables I l (Actor a) put =⇒
I’ = Infrastructure

(Lgraph (gra G)(agra G)(dgra G)(bb G)

(insert (a, None)(requests G)))

(delta I)

=⇒ I → I’

The action eval allows evaluation of a request filed by actor a by a (presumable)
credit institute c given that c is is contained in the readers set of the dlm label lb
that is given as the second element of the first element of the data item dgra G

a. Also c needs to be enabled to evaluate requests by the local policy. Given these
prerequisites, the actual evaluation is done by applying the black box function
to the data item d and recording the outcome in the second component of the
corresponding pair for a in the requests set.

eval: G = graphI I =⇒ Actor a @G l =⇒ l ∈ nodes G =⇒
Actor c ∈ actors G =⇒ (a, None) ∈ requests G =⇒
(lb,d) = dgra G a =⇒ Actor c ∈ snd lb =⇒
enables I l (Actor c) eval =⇒

I’ = Infrastructure

(Lgraph (gra G)(agra G)(dgra G)(bb G)

(insert (a, Some((bb G) d))(requests G - {(a, None)}))

(delta I)

=⇒ I → I’
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We omit the state transition rules for the actions get and move. They will be
illustrated in the evaluation of the example below. For details of their definitions
see the online sources [14].

The above infrastructure Kripke model for credit scoring formalises credit
scoring scenarios enabling reasoning in general about all instances. To simulate
concrete example scenarios, we can use the generic nature of the IIIf with its
polymorphic Kripke structure and state transition. Defining a locale [20] named
CreditScoring allows fixing some concrete values for the actors, locations, and
local policies and inherits all general definitions and properties of infrastructures
from the framework. For simplicity we consider just two actors Alice and Bob
and a credit institute CI.

locale CreditScoring =

defines CreditScoring actors = {’’Alice’’, ’’Bob’’, ’’CI’’}

The locale allows to initialize a concrete igraph with these and other values.
Moreover it serves to illustrate the explanation process that we are going to
present next.

4 Precondition Refinement Process (PCR Cycle)

In this section, we define a Precondition Refinement process (PCR cycle) which
is a cyclic method to derive a general logical characterization of what the black
box mechanism decides within any given state of the world. A possible world is
described in the IIIf as a Kripke state comprising actors, policies and infrastruc-
tures including any features necessary to specify the context of a human centric
scenario. After defining the process, we continue by illustrating its use on the
previously introduced credit scoring system.

4.1 Definition of PCR cycle

In contrast to the RR-cycle [12], we do not refine a system specification instead
we refine the precondition of an explanation rule using the dynamic behaviour of
an infrastructure system. But similar to the RR-cycle, we use attack trees to find
“failure states”, that is, states in which a desirable outcome is not given. These
failure states allow us to find counterfactuals, which are local rules for specific
instances for which the desirable outcome is achieved. The preconditions of these
local rules guide the refinement of a general precondition. The refinement of the
precondition is repeated until it yields a general rule for explanation. The start-
ing point for this cyclic process of precondition refinement is an attack tree, i.e.
a proof of a temporal property of the form M ` EF ¬DO showing that ”failure”
states in the model M can be reached that do not fulfill the desirable outcome
(DO). This DO is comparable to what the “global policy” is in the RR-cycle[12].
The failure state can be used to define a counterfactual, essentially given as an
additional precondition that would have provided an alternative path to a state
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fulfilling the DO property. Besides helping to guide the refinement by counterfac-
tuals, the DO also provides the termination condition of the cyclic precondition
refinement process. Since the DO property is the positive classification of the
AI algorithm given as a black box, the process yields a general explanation rule
that gives a precise logical description how the DO property can be achieved.

This is in a nutshell the working of the PCR cycle. In what follows we provide
its high level yet detailed algorithmic description including the formal definitions
of the core concepts used. However, before we come to that we need to introduce
how we formalise counterfactuals.

Counterfactuals A counterfactual is best explained by example. We give one
that fits into the context of our case study: “if the client would have a monthly
salary of 40K, he would have got the loan approval”. Intuitively, counterfactuals
try to illustrate facts in the current state of the world by showing alternative
hypothetical developments of the world that feature the opposite case of the
fact. It is not a coincidence that our explicit world model of Kripke structures
and state transitions lends itself so naturally to modeling counterfactuals.

However, apart from modeling the different possible worlds and their evolu-
tion, we also need a metric on them. As Wachter observes “the concept of the
”closest possible world” or the smallest change to the world that can be made
to obtain a desirable outcome, is key throughout the discussion of counterfac-
tuals” [25]. We use the step-relation between possible states (worlds) to define
a unique notion of “closest” between three states. Intuitively, it formalises the
closest predecessor s of two possible states s’ and s’’ by stipulating that any
other state s0 that is also a predecessor (with respect to →∗) to states s’ and
s’’ must already be a predecessor to s.

Definition 1 (Closest State).

closest s s’ s’’ ≡ s →∗ s’ ∧ s →∗ s’’ ∧
∀ s0. s0 →∗ s’ ∧ s0 →∗ s’ ⇒ s0 →∗ s

This definition is used for defining counterfactuals with respect to a desirable
outcome DO by simply stating that for a state s with ¬DO s there must be an
alternative trace leading to another possible world s’’ with DO s’’ such that
they are connected by a closest state s’. Using the definition of closest we can
define this simply as the set of states for which such a closest predecessor exists.

Definition 2 (Counterfactuals). Counterfactuals for a state s wrt a desir-
able property DO are the set of states s’’ with a closest predecessor s’.

counterfactuals s DO ≡ {s’’. DO s’’ ∧
(∃ s’. (s’ →∗ s’’) ∧ closest s s’ s’’)}

We will see the application of these concepts in the following algorithm.
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PCR cycle algorithm

1. Using attack tree analysis in the CTL logic of the IIIf we find the initial
starting condition of the PCR. The variable B is an element of a datatype
for which we seek explanation (in the example it is actors).

M ` EF { s ∈ states M. ¬ DO(B, s) }.

This formula states that there exists a path (E) on which eventually (F) a
state s will be reached in which the desirable outcome is not true for B.
The path corresponds to an attack tree (by adequacy [8]) designating failure
states s.

2. Find the (initial or refined) precondition using a counterfactual.
That is, for a state s in the set of failure states identified in the previous
step
(a) Find states s’ and s’’ such that closest s s’ s’’, that is, s’ →∗ s

and s’ →∗ s’’. In addition, DO(B,s’’) must hold.
(b) Identify the precondition pci leading to the state s’’ where DO holds,

that is, find an additional predicate ∆i with ∆i(B, s’) and use it to
extend the previous predicate pci to pci+1:= pci∧∆i.

3. Generalisation.
Use again attack tree analysis in the CTL logic of the IIIf to check whether
the following formula is true on the entire datatype of B: it is globally true
(AG) that if the precondition pci holds, there is a path on which eventually
(EF) the desirable outcome DO holds.2

∀ A. M ` AG {s ∈ states M. pci (A, s) −→ EF {s. DO(A, s)}}

(a) If the check is negative, we get an attack tree, that is, IIIf provides an
explanation tree for
M ` EF { s ∈ states M. pci(A,s) ∧ ¬ DO(A, s) }

and a set of failure states s with pci(A,s) and the desirable outcome is
not true: ¬DO(A,s).
In this case, go to step 2. and repeat with the new set of failure states in
order to find new counterfactuals and refine the predicate.

(b) If the check is positive, we have reached the termination condition yield-
ing a precondition pcn such that for all A:

M ` AG { s ∈ states M. pcn (A, s) −→ EF {s. DO(A, s)} }

Note, that the analysis in Step 3 might potentially reveal a new variable as part
of ∆i over another datatype (locations in the example). This is not a problem
as it will eventually lead to tease out the entire set of parameters that the black
box decision procedure uses. We did not attempt to formalise it explicitly into
the above algorithm description to keep the exposition easier understandable.

2 Note, that the interleaving of the CTL-operators AG and EF with logical operators,
like implication −→ is only possible since we use a Higher Order logic embedding of
CTL.
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4.2 Applying the PCR cycle to credit scoring case study

We now demonstrate the PCR algorithm on our case study introduced in Section
3. We consider the scenario, where Bob gets an evaluation by the credit institute
CI and it is not approved. Bob wants to understand why this is the case and
requests an explanation. The experts in the credit institute cannot give this
explanation as they have used a black box machine learning system bb. Now,
the IIIf and the PCR algorithm can be used by modeling the scenario and using
the bb system as a black box, that is, requesting only its classification output
(verdict) for any given inputs.3 The desirable outcome DO in an infrastructure
state s is given by the pair that a filed having a True as second component
(lifted by Some).

DO(a,s) ≡ (a, Some(True)) ∈ requests s

We show the run of the algorithm by going through its steps 1..3 for the appli-
cation additionally ornating the numbers with α, β, . . . to indicate the round of
the algorithm.

α.1 For actor Bob, we use CTL modelchecking in the IIIf to verify the formula

Credit Kripke `
EF { s ∈ states Credit Kripke. ¬ DO(’’Bob’’, s) }.

From this proof, the IIIf allows applying Completeness and Correctness re-
sults of CTL [8] to derive the following attack tree.

` [N(I,C),N(C,CC)]⊕(I,CC)
∧

The attack tree corresponds to a path leading from the initial state I to the
failure state CC where Bob’s approval field in requests CC gets evaluated
by the credit company I as negative “False”. The evaluation steps are:

I → C : Bob puts in a credit request; this is represented by a put action. So,
the state C has (’’Bob’’, None) ∈ requests C.

C → CC : the credit institute CI evaluates the request represented as an eval

action with the result of the evaluation left in requests CC. So, the
state CC has (’’Bob’’, Some(False)) ∈ requests CC.

To derive the final failure state CC, the credit institute has applied the bb

function as Some((bb C) d) which evaluates Bob’s request as Some(False)
(see rule eval in Section 3.2).

α.2 Next, the PCR algorithm finds an initial precondition that yields the de-
sirable outcome in a closest state using counterfactuals. The closest state
is given as Ca which differs from C in that Bob has a higher salary of 40K
as opposed to 35K as in C. The state Ca is reachable: Bob first applies for
a promotion via the action get. From the state Ca, Bob puts in the credit

3 It is important to note that we request really only input output pairs and not
a mathematical description of the black box. This is in contrast to the stronger
assumptions made in the literature, for example [25] (see also the discussion in
Section 5.1)
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application leading to CCa, before the credit institute CI evaluates leading
to CCCa. We see that now with the increased salary of 40K, Bob receives a
credit approval.

α.3 The next step of the PCR algorithm is generalisation. We want to investigate
whether the salary of 40K is a sufficient precondition in general (for all
actors) to explain why the bb algorithm approves the credit. When we try
to prove according to Step 3 that this is the case, the attack tree analysis
proves the opposite.

M ` EF { s ∈ states M. pci(’’Alice’’,s) ∧ ¬ DO(’’Alice’’, s) }

It turns out that Alice who already has a salary of 40K doesn’t get the credit
approval. She lives, however, in London’s district SE1 unlike Bob who lives
in N3. Following thus Step 3.(a) we need to go to another iteration and go
back to Step 2. to refine the precondition by counterfactuals.

β.2 In this β-run, we now have the state s where Alice doesn’t get the approval.
According to Step 2.(a), we find a counterfactual state as the one in which
Alice first moves to N3. The new precondition now is created by adding the
additional ∆0 as A @s N3.

pci+1 (A, s) := salary A s >= 40K ∧ A @s N3

β.3 Going to Step 3 again in this β-run, now the proof of the generalisation
succeeds.

∀ A. M ` AG {s ∈ states M. pci+1 (A, s) −→ EF {s. DO(A, s)}}

4.3 Discussion

With respect to the explanation, the algorithm finishes with the precondition

pci+1 (A, s) := salary A s >= 40K ∧ A @s N3

for any A of type actor. Although we terminated the algorithm there, we could
have entered another cycle by extending the list of parameters of the precondition
adding the location. The generalisation in Step 3 would have triggered the new
cycle with providing a precise precondition ∆ to specify which locations are
sufficient for a desirable outcome. For the sake of conciseness of the exposition,
we omit this additional round. But we nevertheless want to discuss it here as it
sheds an interesting light onto the evaluation in particular with respect to the
GDPR relevance.

It turns out that often there is a bias in the data that has been used to
train the black box algorithm. For our case study, we deliberately used such
an example to show its potential use for the logical explanation we provide.
Since we give a general rule that formally describes and explains the decision
process based on actual features of the context of the world. Here, the full run
of the PCR algorithm would reveal that for postcodes of London areas in which
predominantly black population lives, the salary has to be higher to gain credit
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approval. While our example is synthesized, biases like this are known to be
implicit in data sets because of the data workers who provided the training data
classifications. A very important contribution of our explicit logical model is
thus to reveal such biases that are implicit in black box AI algorithms for data
evaluation.

How now is this relevant for the GDPR discussion of rights of explanation?
The three purposes of explanation that have been identified by Wachter et al
[25] (see Section 2.2) with respect to the GDPR are all met by our explanation
algorithm.

– Understand decisions: the explicit model of context in IIIf contains the rules
of the state transition providing the details of each step. The attack trees that
produce the traces leading to failure states thus give detailed explanations
how the decisions have been arrived at. The algorithm finally produces a
general logical rule containing the precondition that explains precisely within
the detailed application context what are the relevant facts for decisions.

– Contest decisions: the attack trees are explanation trees showing how the
decision has been made. The general rule with the precondition provides a
means for contesting a decision as it allows to check the decision criteria and
reveal potential biases.

– Alter Future Decisions: the general rule and its precise precondition allow to
read out what are the criteria that can be used as a guideline to alter future
decisions. Moreover, the IIIf Kripke model can be explicitly used to simulate
the outcome of behaviour by simulating actions of the state transition rules
to arrive at favorable states.

5 Related Work and Conclusions

5.1 Related Work

Vigano and Magazzeni [24] argue that explainability is not only needed for AI
but as well for security. They use the notion of XSec or Explainable Security and
provide a research agenda for explainability in security centered around the “Six
Ws” of XSec: Who? What? Where? When? Why? And hoW? Our point of view
is quite similar to Vigano’s and Magazzeni’s but we emphasize the technical side
of explanation using interactive theorem proving and the Isabelle Infrastructure
framework, while they focus on differentiating the notion of explanation from
different aspects, for example, stake holders, system view, and abstraction levels.
Their paper is a position paper that produces a range of research questions illus-
trating them on examples and showing up potential avenues for future research
while we address a very specific way of providing a solution for explanation using
automated reasoning with IIIf.

Relevant for the application of the IIIf to the task of explanation is (a) that
attack trees resemble explanation trees and (b) that developing a system using
attack trees using the RR-cycle resembles the process of generalizing local rules
by precondition refinement. Belle and Papantonis [2] already describe how to
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infer local explanations from counterfactuals using quantitative information. A
local explanation corresponds to a rule. “Robustness” of the rule means that sim-
ilar instances will get the same outcome – a starting point for developing more
general rules. Their approach strongly inspired our development of the PCR
cycle because – in analogy to using attack trees as a trigger for the RR-cycle
– counterfactuals are now used to guide the development of general “robust”
rules. Nevertheless our work provides a precise process of precondition refine-
ment within Isabelle as well as a framework that extends the IIIf to support
explanation within rich human centric models.

Wachter et al [25] is a paper that strongly inspired our work. We used their
analysis of explanation and the GDPR as requirements for our analysis and val-
idation of the PCR cycle. However, there are a number of differences. Wachter
advocates strongly the use of counterfactuals as fully sufficient for the explana-
tion of black box decision procedures. Nevertheless, they use a function fw [25,
p. 854] as explicit input to their optimiser that allows the computation of coun-
terfactuals at any given data points. Thus it is not really a black box algorithm
they assume. Consequently, in their demonstration example [25, Appendix A],
they easily outperform a very simple explanation method like LIME that uses
linear regression. Another difference to our work is that they only consider quan-
titative functions, like salary. Context features, like location, ethnicity, etc, that
are central to our logical method of building a complete rule explanation are not
represented.

5.2 Conclusions

In this paper, we have shown how the RR-cycle of the IIIf can be adapted to
provide a method for iteratively extracting an explanation by interleaving attack
tree analysis with precondition refinement. This precondition refinement (PCR)
cycle finally yields a general rule that describes the decision taken by a black
box algorithm produced by AI. Since it is a logical rule within a rich context
of an infrastructure model of the application scenario, it provides transparency,
We argue that the three purposes of the right of explanation of the GDPR of
understanding, contesting and altering a decision given by an automated AI
decision procedure are supported by the PCR cycle.

The PCR cycle only needs to slightly adapt the RR-cycle by implementing
an algorithm to define a methodology for interleaving attack tree analysis with a
step by step refinement of a precondition using counterfactuals. Responsible for
the ease of this adaptation is the first class representation of attack trees in the
IIIf. That is, the existing Correctness and Completeness result of attack trees
with respect to the CTL logic defined over Kripke structures allows changing
between attack trees and CTL EF formulas. Thus attack trees can be reused as
explanation trees because they explain how failure states are reached. This in
turn allows the construction of counterfactuals that guide the refinement of the
precondition. This paper has validated the algorithm of the PCR cycle by a case
study of credit scoring. Further work should address to what extent finding the
counterfactuals and thereby the refined precondition can be automated.
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24. L. Viganó and D. Magazzeni. Explainable security. In IEEE European Symposium
on Security and Privacy Workshops, EuroS&PW. IEEE, 2020.

25. S. Wachter, B. Mittelstadt, and C. Russell. Counterfactual explanantions without
opening the black box: Automated decisions and the gdpr. Harvard Journal of
Law & Technology, 31(2), 2018.

16


