

Security in Web Applications: A Comparative

Analysis of Key SQL Injection Detection

Techniques

Karel Ronan Veerabudren

School of Digital Technologies

Middlesex University Mauritius

Uniciti, Flic-en-Flac, Mauritius

KV230@live.mdx.ac.uk

Girish Bekaroo

School of Digital Technologies

Middlesex University Mauritius

Uniciti, Flic-en-Flac, Mauritius

g.bekaroo@mdx.ac.mu

Abstract—Over the years, technological advances have

driven massive proliferation of web systems and businesses have

harbored a seemingly insatiable need for Internet systems and

services. Whilst data is considered as a key asset to businesses

and that their security is of extreme importance, there has been

growing cybersecurity threats faced by web systems. One of the

key attacks that web applications are vulnerable to is SQL

injection (SQLi) attacks and successful attacks can reveal

sensitive information to attackers or even deface web systems.

As part of SQLi defence strategy, effective detection of SQLi

attacks is important. Even though different techniques have

been devised over the years to detect SQLi attacks, limited work

has been undertaken to review and compare the effectiveness of

these detection techniques. As such, in order to address this gap

in literature, this paper performs a review and comparative

analysis of the different SQLi detection techniques, with the aim

to detect SQLi attacks in an effective manner and enhance the

security of web applications. As part of the investigation, seven

SQLi detection techniques including machine learning based

detection are reviewed and their effectiveness against different

types of SQLi attacks are compared. Results identified positive

tainting and adoption of machine learning among the most

effective techniques and stored procedures based SQLi as the

most challenging attack to detect.

Keywords—SQL injection attacks, detection techniques,

comparative analysis, SQLi, SQLia, web applications,

cybersecurity.

I. INTRODUCTION

During the past two decades, there has been massive
digital transformation across various sectors and today, web
applications are considered as essential tools that help
businesses of different sizes to stand out in the highly
competitive market. Due to their importance, the global
progressive web application market size is expected to reach
USD 10.44 Billion by 2027 (CAGR of 31.9%) from USD 1.13
billion in 2019 [1], thus highlighting a significant growth as
more enterprises are establishing their online presence. Such
online systems produce and manipulate significant amounts of
sensitive data, which are stored in databases, that are hosted
within the organisation’s servers or somewhere on the cloud.
Protecting such data is extremely important to businesses
since any breach in security can potentially have major
adverse impacts ranging from violation of privacy of
customers to reputational and financial damages for the
organisation. As such, data is considered as a key asset to
businesses and their security is of extreme importance.

Nevertheless, web applications are subject to different
kinds of attacks, where malicious users try to gain
unauthorised access to the database and the sensitive data
stored within. One of the key attacks that web applications are
vulnerable to is SQL injection (SQLi) attacks, which involve

inserting SQL statements through a web application's input
fields or hidden parameters to gain access to resources or
make changes to data [2]. SQL injection attacks are popular in
web applications because databases usually contain sensitive
information, like credit card details and passwords and
successful attacks would result in obtaining all these
information. Since such successful attacks can reveal valuable
information to attackers or even deface websites, SQLi attacks
also feature in the top positions in the Open Web Application
Security Project (OWASP) Top 10 web application security
risks [3] and Common Weakness Enumeration (CWE) Top 25
Most Dangerous Software Weaknesses [4].

A key strategy used to mitigate SQLi attacks involves use
of defensive coding practices such as utilization of prepared
statements or parameterised queries, input validation at
different levels or even escaping user supplied inputs, among
others. Nevertheless, defensive coding alone is not sufficient
for complete SQLi mitigation. This is because developers tend
to leave bugs during software development and in various
instances, these bugs progress to the live phase of web systems
and consequently, SQLi attacks can still happen [5].
Therefore, as part of SQLi defence strategy, effective
detection of SQLi attacks is important. For detecting SQLi
attacks, researchers and developers have developed different
techniques over the years. However, limited published papers
comprehensively review and compare the effectiveness of
these techniques. In order to address this gap, this paper
performs a review and comparative analysis of the different
SQL injection detection techniques, with the aim to enhance
security of web applications. Findings revealed in this paper
are expected to be insightful to the web development as well
as the research and development communities, who can utilize
findings and recommendations in this paper in their endeavour
to enhance security of their web applications.

This paper is structured as follows: Section II provides a
background on SQL injection attack and its different forms.
Then, in Section III, works related to comparative analysis of
detection of SQLi attacks are provided, before discussing the
methodology used to review to achieve the purpose of this
paper and compare the SQLi attack detection techniques in
Section IV. Section V describes the selected SQLi detection
techniques, which are compared in Section VI. The paper is
concluded in Section VII.

II. THEORETICAL BACKGROUND: SQL INJECTION

ATTACKS

SQL injection attack (SQLi) is a type of security exploit in
which the attacker adds SQL statements through a web
application's input fields or hidden parameters to gain access

to resources or make changes to data. SQLi enable attackers
to access information in an unauthorized manner, modify
existing data within databases, destroy data or make it
unavailable or even become administrators of database
servers. There are different types of SQL injection attacks, and
these are discussed in the next sections:

A. Tautologies

The common objective of this attack is to bypass the
authentication mechanism in place and is achieved by
injecting code into condition statement(s) so they always
evaluate to true. As an example, consider a simple login page
in which the user should type in a username and password.
Normally, the username and password should both be valid
for a successful login and the underlying SQL statement to
process the authentication can be thought of as in Fig. 1.

Fig. 1. The underlying SQL statement for a login page

To perform SQLi, the attacker would enter a valid
username and a crafted query in the password field as shown
in Fig. 2. As a result, the underlying SQL statement for the
login page would be rendered as shown in Fig. 3. The inverted
comma closes the password field and the rest of the input
password becomes part of the SQL query. In the same
resulting statement, “1=1” is always true, making the OR
statement true. Thus, the whole query becomes true, and
authentication is bypassed.

Fig. 2. Values for username and password fields

Fig. 3. Resulting authentication SQL statement

B. Illegal Queries

The aim of this attack involves gathering information
related to the database of the web application [5]. It is carried
out by injecting codes in the link of the webpage or in the input
fields, where the attacker attempts to cause a run-time error,
while hoping to learn information from error responses. Key
information retrieved by the attacker includes database
version, table name or even column name and the attacker can
eventually use such information to make more personalized
injection [6]. An example is shown in Fig. 4 that depicts
information returned by a database when illegal queries are
injected. In this example, the column name and its type are
returned to the error page.

Fig. 4. Example of an error message returned by illegal queries

C. Piggy Backed Queries

In Piggy Backed Queries, extra queries are appended to
the original one but are separated using the delimiter such as

“;”. In the process, all the queries are sent to and are processed
by the database, including the original and the appended ones.
The key objectives of this SQL attack are to gather
information and to perform denial of service [7]. An example
of such a query is illustrated in Fig. 5, where the “DELETE
FROM” clause is appended and separated by “;”. In this
example, the customer_info column will be returned for the
user who is logged in. Once this query is executed, the second
one is processed, where The DELETE clause will be executed
and the account of Albert will be deleted.

Fig. 5. Example of a Piggy Backed Query

D. Stored Procedures

Stored procedures are SQL codes that are saved in the
database as subroutines. The codes can be reused dynamically
based on the user inputs. Even though the SQL codes are
hidden, injection codes can be crafted to avoid authentication
using stored procedures. Attackers can also use piggy back
techniques to insert codes that can even shut down the whole
database server.

E. Union Query

The intent of this attack is data extraction, where the
UNION statement is used to add another query to the original
one. It can also be used with the illegal queries attack. Once
information about the database is obtained, the malicious
query is crafted to extract the information wanted. The result
is appended with the original query, forcing the database to
return the wanted information [8]. An example of a Union
query attack is illustrated in Fig. 6, where the Union query
requests credit card information for a particular account
number. When the database processes the whole query, the
web application will return the credit card information instead
of authenticating the user.

Fig. 6. Union query attack

F. Alternate Encodings

The aim of this attack is to remain undetected from
intrusion detection systems (IDS) that monitor a user’s input
in order to determine if the text contains SQL injection code.
In case such IDS detect injections, the text is dropped before
reaching the database. Therefore, to bypass those systems,
encoding of SQL keywords are changed into alternative ones,
like hexadecimal, Unicode or ASCII [8]. For example, instead
of writing “SHUTDOWN” in the injection string,
“char(0x73687574646f776e)” is written [9]. This value can
escape from the IDS, and when the database processes it, it
will yield the same action as “SHUTDOWN”.

G. Inference

This SQL attack aims to determine the database schema in
web applications where there is no information produced by
illegal queries [8]. The inference attack can be categorised into
two types:

• Blind injection:
SQL injections codes statements that ask true or false
questions to the database and if the query results are true, the
application will continue to operate normally. However, if the
query resolves to false, the application may operate
differently, although there are no clear error messages. In the
latter case, the web application is vulnerable to SQL injection,
and further queries can be applied to determine the nature of
the database [10].

• Timing Attacks:
Information is obtained based on the delay involved in
responding to the query by the database server. The injected
query contains codes that make the database wait for a specific
amount of time based on a particular condition. If the
condition is true, the application is paused, and the response is
delayed [10]. Based on the time taken, the attacker can
determine the structure and obtain information about the
database.

III. RELATED WORKS

Various works have been carried out around SQLi attacks
to discuss techniques employed to detect SQL injection.
Nevertheless, limited studies performed a comparative
analysis on the SQL injection detection methods. Within
published literature, a previous study [11] identified the
different SQL injection attacks and discussed the detection
mechanisms for those attacks. Within the same study,
techniques were classified into two categories, notably,
detection and prevention. The paper ended with comparing the
requirements needed to deploy such techniques and it was
found that improvements in the abilities of current techniques
are needed in order to more effectively stop SQL injection
attacks. As key limitation, the attacks that each technique can
efficiently detect and prevent were not discussed within the
paper. Another study [12] surveyed SQL injection attacks and
described the goal and purpose of each one of them. The study
also compared machine-learning detection techniques
proposed by previous researchers in terms of performance and
precision. Following the comparative analysis, it was found
that existing techniques are not completely successful and that
some of them are impractical since they do not address all
types of SQL attacks. In another research [13], the dangers of
SQL injection attacks were discussed, in addition to the most
common types of SQL attacks. The comparison performed
focused on analysing the SQL injection detection and
prevention techniques with respect to attack types. Moreover,
another previous study [14] presented a taxonomy of SQL
injection attacks where the different attacks were described
and categorised. Nevertheless, limited comparison between
the attacks and detection techniques were performed, as these
were not the core focus of the study. As such, from existing
literature, limited work has been done to comparatively
analyse and determine the most effective SQL injection
detection technique. Therefore, it becomes relevant to
undertake this study.

IV. METHODOLOGY

In order to achieve the purpose of this paper and to perform
a comparative analysis of the different SQL injection
detection techniques, existing research databases were
explored. These include IEEE Xplore Digital Library, ACM
Digital Library, Google Scholar and ScienceDirect and these
were scanned to obtain relevant results related to SQL
injection detection techniques. Recent papers were favoured
to have a state of the art attacks and detection methods
available. The key terms used in the search process include
“SQL injection”, “detection”, “SQLi attack”, “SQLia” and
“SQLi”, among others, while also combining terms.
Following an initial pool of results, filtering was conducted to
assess relevance of the detection techniques and seven such
detection techniques were selected for review and analysis.

These SQLi detection techniques were then thoroughly
examined by referring to the published resources from the
pool of selected papers, whereby also considering any further
publications related to each SQLi detection technique. As part
of the analysis, key points pertaining to their effectiveness in
detecting different forms of SQLi attacks were noted. These
results were eventually compiled into a table to compare SQLi
detection techniques against SQLi attacks, to further analyse
contents and their effectiveness. In the next sections, findings
following the research are presented, to start with a review of
the techniques available to detect SQLi attacks.

V. DETECTION OF SQL INJECTION

As part of SQLi defence strategy, effective detection of
SQLi attacks is important. Using the methodology described
in the previous section, seven SQLi detection techniques were
retrieved from published literature. These techniques provide
further assurance against SQLi defence whereby attempt to
detect such attacks in a timely manner in order to prevent
SQLi attacks and minimise damages. These SQLi detection
techniques are discussed below:

A. AMNESIA

A previous study proposed a technique and tool where the
core logic involves differentiating between legitimate and
malicious queries through a policy [10]. In the process of
verification, both static and dynamic analysis are used. Within
the static phase, an existing string analysis is performed with
the aim to extract from the web-application’s code a model of
all the query strings that could be generated by the application.
On the other hand, the dynamic phase actively monitors
whether dynamically created queries adhere against the
statically built model. In case a query is not compliant with the
model, it is marked as an SQL injection. The query is
eventually blocked by the tool and administrators are alerted
with relevant information. Although the technique and tool
showed to be able to detect various instances of SQLi,
AMNESIA cannot prevent stored procedure attacks because
the subroutines are in-built in the database and are not
generated in the models by the static phase [15].

B. CANDID

The Candidate Evaluation for Discovering Intent
Dynamically (CANDID) operates by dynamically
constructing the structure of programmer intended-queries
and then comparing whether queries under analysis match the

structures of the programmer-intended query or not [15]. In
case there is no match, the query is considered as an SQLi.
Nevertheless, like AMNESIA, the CANDID technique was
found to be ineffective against some injection attacks, such as
stored procedures.

C. SQL Domain Object Model (SQL DOM)

There are several ways to send SQL statements to a DBMS
and one of the ways is through a call-level interface (CLI).
This method involves building dynamic SQL statements via
string concatenation and string replacement but is prone to
errors and is vulnerable to SQL injection attacks. To defend
against such attacks, a previous study presented SQL DOM,
which consists of two parts, notably an abstract object model
and an executable named sqldomgen. [16]. The key goal of
the Abstract Object Model is to construct an object model that
could be utilized to build every possible valid SQL statement
that would be executed during runtime. This was implemented
through a constructor that takes all values as parameters such
that the compiler would then need to ensure that all required
values were supplied to a statement. On the other hand, the
sqldomgen performs three key steps. The first step involves
acquisition of the database schema, before iterating through
the tables and columns present in the schema to then output
numerous files that contain a strongly-typed instance of the
abstract object model. Finally, the source files are compiled
into a dynamic link library (DLL) that has the ability to detect
errors in code that accesses database during compile-time,
thus potentially also detecting injections.

D. SQLrand

The key idea behind the SQLrand technique involves
changing SQL keywords into random keywords such that it is
possible to detect and abort queries that include injected code
[17]. In other words, SQL injection attacks would not be
executed because the standard SQL keywords would not be
sent to the database and the execution will be terminated. In
terms of operation of SQLrand, the standard SQL keywords
are appended by a randomly generated integer that is not
easily guessable by an attacker. In case any attacker tries an
SQLi, the statement would result in an invalid expression as
the SQL keywords appended with the correct random integer
are expected to be missing from the injected statement. The
implementation of this technique consists of a proxy between
the client’s browser and the database. It is the role of proxy to
convert the randomised keywords into the standard keywords
understood by the database. When the proxy detects that the
receiving query does not contain the random integer, it rejects
it. However, as a recent study [18] showed, the security level
of SQLrand is as strong as the randomly generated key. If the
key is compromised, then the web application is susceptible to
injection attacks.

E. Positive Tainting

This technique is based on the dynamic tainting approach,
which is a popular one for addressing security issues
pertaining to input validation [18]. The traditional dynamic
tainting approaches work by marking certain untrusted data
such as user input as tainted to then monitor the flow of tainted
data during runtime. In case of issues, the tainted data is then
prevented from being used in potentially harmful ways, thus

preventing compromising the security of the system. The
positive tainting approach makes various conceptual and
practical enhancements over traditional dynamic-tainting
approaches by taking advantage of the key features of SQL
injection attacks. As compared to traditional tainting, the
positive tainting approach operates by identifying, marking,
and monitoring trusted data instead of untrusted data. In other
words, this technique works by detecting reliable and
trustworthy data, to then apply dynamic tainting to monitor the
data during runtime while ensuring only trusted data are
allowed to form the SQL statement. Finally, syntax-aware
evaluation is carried out before the database executes the
query.

F. Fault Injection and Behaviour Monitoring

The fault injection approach to SQL injection detection
involves a dynamic analysis process utilized for software
verification and software security assessment. In the process,
specially crafted malicious input patterns are utilized as input
data on purpose thereby enabling developers to observe the
behaviour of software under attack. This approach has been
used in a previous study to detect vulnerabilities in web
applications by observing the outputs following injection of
specially crafted SQL statements [19]. In the same study, a
tool called Web Application Vulnerability and Error Scanner
(WAVES) was proposed, that implements this approach. In
this tool, the interface is in the form of a crawler that enables
black box dynamic analysis of Web applications. Through the
use of a complete crawling technique, all data entry points of
a web application are identified, after a reverse engineering
process. Eventually, using a self-learning injection knowledge
base, fault injection techniques are applied in order to detect
SQL injection vulnerabilities.

G. Machine Learning-Based Detection

Recently, Machine Learning (ML) has been employed by
different studies in order to detect SQLi attacks [20]. ML is a
sub-branch of AI where machines process data and learn on
their own, without constant human supervision. Among the
studies involving the application of ML to detect SQLi
attacks, previous research [21] presented a Hybrid architecture
(HIPS) that aims to detect web application attacks including
SQLi attack. In this study, a method was utilized to dissect
HTTP request in order to detect anomalies and involved the
integration of an ML classifier and a firewall inspection
engine based on attack signature. In addition, within SQL-
IDS, neural networks have been used to detect SQLi whereby
involving application of techniques such as Back Propagation
Neural Network in order to detect 7 types of SQLi, notably,
tautology, illegal/logically incorrect queries, piggy-backed
query, Union query, stored procedures, inference and alternate
encoding [22, 23]. Evaluation conducted in the same studies
achieved an overall accuracy of 96.8% and 95% respectively
for detecting such attacks. Furthermore, another study
proposed an ML algorithm to create new rules for a network
firewall, with the intent to differentiate between malicious and
normal traffic, during which SQLi attacks can be detected
[24].

VI. COMPARATIVE ANALYSIS

 In order to compare and analyse the effectiveness of the
different detection techniques, published literature was
thoroughly reviewed and analysed. This includes different
related works on SQLi attack detection [11, 12, 25, 26] and
articles referenced in the previous sections in this study. As
discussed in the methodology section, this helped to compile
Table I, which summarises the effectiveness of SQLi
detection techniques against SQLi attacks. In the same table,
effectiveness of a technique was classified into three
categories, notably, fully effective, partially effective and not
effective (none).

 Findings revealed that Machine Learning Based Detection
and Positive tainting were the only techniques that have
showed the capability to fully detect the SQLi attacks
investigated in this study. Both techniques employ a similar
dynamic approach, using trusted data as a reference to avoid
SQL injection. Interestingly, fault injection and behaviour
monitoring can only partially detect the different SQLi attacks
[11, 12]. The reason is that the technique uses a web crawler
to identify all entry points of a web application and therefore,
the effectiveness of this technique depends mainly on the web
crawler. If the crawler could detect all pages containing input
forms, the forms would be tested for SQLi vulnerabilities.
However, the web crawler cannot discover all pages and all
forms even if configured to have the same behaviour as web
browsers since they cannot bypass all warnings or popups the
web application has [19].

 In terms of attacks, it could be noted that the SQLi attack
through stored procedures is the most challenging one to
detect as these are built within the database. As such, it is
difficult for a detection technique to distinguish if a malicious
SQL query could be interpreted as an injection by stored
procedures. Given that there are various DBMS, which also
have multiple versions, each of them may have different
vulnerabilities in relation to stored procedures, which may be
difficult to accurately detect. This attack in particular could
not be detected by techniques including AMNESIA,
CANDID, SQL DOM and SQLrand, but can be detected
through positive tainting and machine learning.

 The summary of the effectiveness of the techniques
investigated is depicted in Table II. From the same table, it
could be deduced that the most effective techniques for
detecting SQL injection attacks involve the application of
machine learning techniques as well as positive tainting,

followed by AMNESIA and SQL DOM. On the other hand,
CANDID and fault injection seem to be the least effective
ones due to their limitations in fully detecting various types of
SQLi attacks. As such, similar to a previous work [12], it can
be seen that some detection techniques do not address all types
of SQL attacks and, are therefore impractical to use.
Nevertheless, as OWASP suggests, defensive coding along
with those complementary detection and prevention
techniques are expected to significantly increase security
against SQLi attacks [3].

TABLE II. SUMMARY OF TECHNIQUES’ EFFECTIVENESS

SQLi Detection Techniques Fully Partially None

AMNESIA 6 0 1

CANDID 1 5 1

SQLDOM 6 0 1

SQLrand 4 0 3

Fault Injection 0 7 0

Machine Learning Based Detection 7 0 0

Positive tainting 7 0 0

 Even though this study derived some key insights related
to detection of SQLi attacks, it is also limited in different
ways. Firstly, findings were derived following analysis of
published literature and a better approach would be to
practically apply the techniques individually to investigate
their effectiveness and accuracy by also using some metrics.
In addition, the application of machine learning could be
better investigated since accuracy and effectiveness are
expected to vary depending on different factors such as
algorithm being used, involved dataset, and trained model,
among others.

VII. CONCLUSION

This paper conducted a review and comparative analysis
of the different SQL injection detection techniques, with the
aim to detect SQLi attacks in an effective manner and enhance
security of web applications. As part of this paper, seven SQLi
detection techniques were reviewed and these include
AMNESIA, CANDID, SQL DOM, SQLrand, Positive
tainting, fault injection and behaviour monitoring, as well as
machine learning based detection. These detection techniques
were analysed to understand their effectiveness against

TABLE I. EFFECTIVENESS OF SQLI DETECTION TECHNIQUES AGAINST SQLI ATTACKS

SQLi Attack

SQLi Detection Technique

AMNESIA CANDID
SQL

DOM
SQLrand

Positive

Tainting

Fault Injection &

Behavior

Monitoring

Machine Learning

Based Detection

Tautologies Fully Fully Fully Fully Fully Partially Fully

Illegal Queries Fully Partially Fully None Fully Partially Fully

Piggy Backed Queries Fully Partially Fully Fully Fully Partially Fully

Stored Procedures None None None None Fully Partially Fully

Union Query Fully Partially Fully Fully Fully Partially Fully

Alternate Encodings Fully Partially Fully None Fully Partially Fully

Inference Fully Partially Fully Fully Fully Partially Fully

different forms of SQLi attacks, notably, tautologies, illegal
queries, piggy-backed queries, stored procedures, union
query, alternate encodings and inference. Results showed that
positive tainting and machine learning based techniques are
the most effective ones with the ability to detect the different
forms of SQLi attacks investigated in this paper. Among the
different kinds of SQLi attacks, stored procedures were found
to be the most challenging to detect as these are built within
the database. It was also found that most detection techniques
do not address all types of SQL attacks and a combination of
techniques can potentially yield more effective results. As
future works, the limitations identified in this paper could be
addressed. For instance, an approach involving practical
application of each SQLi detection technique could be
adopted to investigate their effectiveness against different
forms of SQLi attacks.

REFERENCES

[1] Emergen Research, “Progressive Web Application Market,” 2020.
[Online]. Available: https://www.emergenresearch.com/industry-

report/progressive-web-application-market. [Accessed 22 Apr 2022].

[2] M. Nasereddin, A. ALKhamaiseh, M. Qasaimeh and R. Al-Qassas, “A
systematic review of detection and prevention techniques of SQL

injection attacks,” Information Security Journal: A Global

Perspective, pp. 1-14, 2021.

[3] OWASP, “OWASP Top Ten,” 2021. [Online]. Available:

https://owasp.org/www-project-top-ten/. [Accessed 10 Jan 2022].

[4] CWE, “2021 CWE Top 25 Most Dangerous Software Weaknesses,”
2021. [Online]. Available:

https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html.

[Accessed 10 Jan 2022].

[5] M. Borade and N. Deshpande, “Extensive Review of SQLIA‘s

Detection and Prevention Techniques,” International Journal of

Emerging Technology and Advanced Engineering, vol. 3, no. 10, pp.
614-626, 2013.

[6] S. Choudhary, A. Jain and A. Kumar, “A Detail Survey on Various

Aspects of SQLIA,” International Journal of Computer Applications,
vol. 161, no. 12, 2017.

[7] J. Singh, “Analysis of SQL Injection Detection Techniques,”

Theoretical and Applied Informatics, vol. 28, no. 1 & 2, pp. 37-55,
2017.

[8] M. Medhane, “Efficient solution for SQL injection attack detection

and prevention,” International Journal of Soft Computing and
Engineering (IJSCE), vol. 3, pp. 396-398, 2013.

[9] G. Yiğit and M. Arnavutoğlu, “SQL Injection Attacks Detection &

Prevention Techniques,” International Journal of Computer Theory
and Engineering, vol. 9, no. 5, pp. 351-356, 2017.

[10] W. Halfond and A. Orso, “AMNESIA: analysis and monitoring for

neutralizing SQL-injection attacks,” in Proceedings of the 20th
IEEE/ACM international Conference on Automated software

engineering, 2005.

[11] A. Tajpour, M. Massrum and M. Heydari, “Comparison of SQL

injection detection and prevention techniques,” in 2010 2nd

International Conference on Education Technology and Computer ,

2010.

[12] B. Nagpal, N. Chauhan and N. Singh, “A survey on the detection of

SQL injection attacks and their countermeasures,” Journal of
Information Processing Systems, vol. 13, no. 4, pp. 689-702, 2017.

[13] W. Halfond, J. Viegas and A. Orso, “A classification of SQL-injection

attacks and countermeasures,” in Proceedings of the IEEE
international symposium on secure software engineering (Vol. 1, pp.

13-15), 2006.

[14] A. Sadeghian, M. Zamani and S. Abdullah, “A taxonomy of SQL
injection attacks,” in 2013 International Conference on Informatics

and Creative Multimedia, 2013.

[15] P. Bisht, P. Madhusudan and V. Venkatakrishnan, “CANDID:
Dynamic candidate evaluations for automatic prevention of SQL

injection attacks,” ACM Transactions on Information and System

Security (TISSEC), vol. 13, no. 2, pp. 1-39, 2010.

[16] R. McClure and I. Kruger, “SQL DOM: compile time checking of

dynamic SQL statements,” in Proceedings of the 27th International

Conference on Software Engineering, 2005.

[17] S. Boyd and A. Keromytis, “SQLrand: Preventing SQL injection

attacks,” in International conference on applied cryptography and

network security, Berlin, Heidelberg, 2004.

[18] W. Halfond, A. Orso and Manolios, “Using positive tainting and

syntax-aware evaluation to counter SQL injection attacks,” in

Proceedings of the 14th ACM SIGSOFT international symposium on
Foundations of software engineering, 2006.

[19] Y. Huang, S. Huang, T. Lin and C. Tsai, “Web application security

assessment by fault injection and behavior monitoring,” in
Proceedings of the 12th international conference on World Wide Web

, 2003.

[20] I. Jemal, O. Cheikhrouhou, H. Hamam and A. Mahfoudhi, “Sql
injection attack detection and prevention techniques using machine

learning,” International Journal of Applied Engineering Research,

vol. 15, no. 6, pp. 569-580, 2020.

[21] A. Makiou, Y. Begriche and A. Serhrouchni, “Improving Web

Application Firewalls to detect advanced SQL injection attacks,” in

2014 10th International Conference on Information Assurance and
Security, 2014.

[22] N. Sheykhkanloo, “SQL-IDS: evaluation of SQLi attack detection and

classification based on machine learning techniques,” in Proceedings
of the 8th International Conference on Security of Information and

Networks, 2015.

[23] N. Sheykhkanloo, “A learning-based neural network model for the
detection and classification of SQL injection attacks,” International

Journal of Cyber Warfare and Terrorism (IJCWT), vol. 7, no. 2, pp.

16-41, 2017.

[24] R. Verbruggen and T. Heskes, “Creating firewall rules with machine

learning techniques,” Nijmegen Netherlands: Kerckhoffs institute

Nijmegen, 2014.

[25] D. Loughran, M. Salih and V. Subburaj, “August. All About SQL

Injection Attacks,” Journal of The Colloquium for Information

Systems Security Education, vol. 6, no. 1, pp. 24-24, 2018.

[26] D. Kindy and A. Pathan, “A Detailed Survey on Various Aspects of

SQL Injection in Web Applications: Vulnerabilities, Innovative
Attacks, and Remedies,” International Journal of Communication

Networks and Information Security, vol. 5, no. 2, p. 80, 2013.

