
U-Sphere: Strengthening Scalable Flat-name Routing for Decentralized Networks

Jernej Kosa,∗, Mahdi Aiashb, Jonathan Loob, Denis Trčeka

aUniversity of Ljubljana, Faculty of Computer and Information Science, Laboratory for e-media, Ljubljana, Slovenia
bMiddlesex University, Networks and Distributed Systems Laboratory, London, UK

Abstract

Supporting decentralized peer-to-peer communication between users is crucial for maintaining privacy and control over
personal data. State-of-the-art protocols mostly rely on distributed hash tables (DHTs) in order to enable user-to-
user communication. They are thus unable to provide transport address privacy and guaranteed low path stretch while
ensuring sub-linear routing state together with tolerance of insider adversaries. In this paper we present U-Sphere, a
novel location-independent routing protocol that is tolerant to Sybil adversaries and achieves low O(1) path stretch while
maintaining Õ(

√
n) per-node state. Departing from DHT designs, we use a landmark-based construction with node color

groupings to aid flat name resolution while maintaining the stretch and state bounds. We completely remove the need
for landmark-based location directories and build a name-record dissemination overlay that is able to better tolerate
adversarial attacks under the assumption of social trust links established between nodes. We use large-scale emulation
on both synthetic and actual network topologies to show that the protocol successfully achieves the scalability goals in
addition to mitigating the impact of adversarial attacks.

Keywords: compact routing, decentralized networks, security, privacy

1. Introduction

Over the past few years, online social network services
have become ubiquitous and at the same time very much
centralized in the hands of a few large providers. Such
centralization poses severe security and privacy concerns
and researchers argue [1–3] that adopting a decentralised
peer-to-peer communication architecture would help in
mitigating these security threats as control over personal
data would in this case remain in the hands of the
users and message forwarding would happen only between
trusted friends.

So far, several different approaches to decentralized
communication between users have been proposed in the
literature [1–5]. A building block of any such system is a
routing protocol that enables message forwarding between
user nodes. In this regard, achieving all of the following
design goals at the same time represents an important but
elusive step towards practical solutions:

• Scalability and low path stretch. As the protocol
must support an ever increasing number of users,
the amount of per-node state required for routing
must grow sub-linearly, o(n). Otherwise, the routers
will be overwhelmed by the protocol’s memory and
processing requirements. At the same time, path
stretch (ratio between the length of the path taken

∗Corresponding author
Email addresses: jernej.kos@fri.uni-lj.si (Jernej Kos),

denis.trcek@fri.uni-lj.si (Denis Trček)

by a given routing protocol and the shortest path
in the same network topology) must be kept low
since path stretch directly affects data forwarding
performance. Besides performance, low stretch is
also important from an operational standpoint –
solutions having an unbounded stretch lack fate
sharing [6] and a failure (or an adversary) far from
the path can disrupt communication. Ideally, path
stretch should be independent of the network size,
O(1).

• Location independence. In order for the protocol to
be practical, user nodes must be addressable by a
single known flat identifier, which must be indepen-
dent of the node’s attachment point in the network
topology. This enables any higher-layer applications
to rely on a known identifier without having to know
anything about the underlying network topology.

• Tolerance of Sybil attacks. The protocol must be
tolerant of insider adversaries that are able to create
many interconnected nodes inside the network and
use them to disrupt the network’s normal operation
[7–11]. This must be achieved without relying on any
central points of trust and with the assumption that
the adversary is able to influence the node identifier
prefixes of its nodes.

• Privacy. The protocol must protect the privacy of
users’ social contacts. This means that users should
not be able to easily infer the social topology or

Preprint submitted to Elsevier April 14, 2015



transport addresses of distant nodes by examining
the protocol messages. Also, the protocol must not
require nodes to disclose their transport address to
other nodes that are not their direct trusted neigh-
bours, as this would also compromise their privacy.

Existing solutions all fall short in at least one of
the described design goals. Requiring transport address
privacy excludes most of the standard DHT designs as
their structured topology requires arbitrary connections
between nodes that have no direct trust relations. Ad-
ditionally, standard DHT designs lack Sybil-tolerance by
default [12]. Network-layer DHTs like X-Vine [13] can
work over arbitrary topologies and can therefore pre-
serve privacy, but as has been shown in [14, 15] they
cannot provide bounded path stretch. Also, X-Vine fails
to provide Sybil-tolerance when the adversary is allowed
to influence the prefixes of its node identifiers. Of the
practical systems deployed in the wild, we should highlight
two pursuing similar goals. Freenet [16] is a peer-to-
peer platform for decentralized communication. It uses
its own routing protocol, which does not even guarantee
message delivery and has been shown to be vulnerable to
attacks [17]. CJDNS [18] is a newer routing protocol based
on a network-layer DHT design similar to X-Vine with
Sybil-tolerance features removed and as such inherits its
mentioned problems.

As we will show, state-of-the-art solutions that can
achieve both state and stretch guarantees are all vulnera-
ble to Sybil attacks that target name-to-locator resolution.
Our contributions in this paper are therefore as follows:

• We present U-Sphere, a novel location-independent
protocol that maintains the low state and low path
stretch guarantees offered by distributed compact
routing protocols while additionally offering stronger
resilience against Sybil adversaries. The protocol is
scalable due to its compact Õ(

√
n) routing state and

path stretch independent of the network size, O(1).
These goals are achieved via key novel features –
instead of DHT-based designs or landmark-based lo-
cation directories, we embed an unstructured record
dissemination overlay into the existing topology. Our
construction achieves scalable location-independence
and Sybil-tolerance at the same time.

• To evaluate our protocol in a realistic environment,
we design a distributed emulation testbed that con-
tains a full protocol implementation covering all de-
scribed signalling. The testbed is designed to run on
a cluster of machines in order to support emulation
of large networks. For our experiments, we have used
up to 9 of the largest Amazon EC2 instances. Using
the testbed, we have run extensive emulations of our
protocol, using realistic topologies with more than
6000 nodes and more than 16000 links.

The rest of the paper is organized as follows. Sec-
tion 2 first presents the threat model used in our security

Adversary NodeHonest Node Attack Edge

Figure 1: A visualization of adversary attachment in the assumed
threat model. Edges between adversarial and honest nodes are called
attack edges.

analysis, together with all the assumptions and a high-
level overview of the proposed protocol. Section 3 focuses
on base protocol design while Section 4 presents possible
attacks and security mechanisms to mitigate them. The
protocol is evaluated in large-scale emulation and we
analyse the results in Section 5. We survey the related
work and compare our protocol with state of the art in
Section 6. The paper concludes with Section 7.

2. U-Sphere Overview

This section provides a high-level overview of U-Sphere
together with the threat model used in our anaylsis.

2.1. Threat Model and Assumptions

The protocol makes certain assumptions about the
trust encoded into edges between nodes in the network
topology. It is assumed that the established edges are
based on real-life trust relationships, previously estab-
lished out-of-band. As the process of establishing an edge
requires the exchange and verification of either public
key fingerprints or pre-shared keys, the topology should
resemble a social network or a web of trust similar to
PGP [19], Freenet [16] and CJDNS [18].

Because of this assumption it should be hard for an
adversary to establish trust edges to honest participants
as it requires social engineering or compromising existing
honest nodes. We do not assume that the adversary is
clustered in one part of the network (see Figure 1 for a vi-
sualization of the adversarial attachment topology model).
Social engineering or malware attacks that compromise
private key material of honest users present a real threat,
but protecting against them is beyond the scope of this
paper.

The threat model assumes a Byzantine adversary,
which means that the adversary can deviate from the
protocol in an arbitrary manner, including forging route

2



update messages and generating specific node identifiers
for its set of compromised nodes. The adversary has
multiple compromised and colluding nodes available inside
the network and is allowed to perform a Sybil attack, by
introducing additional adversarial nodes and connecting
them with existing adversarial nodes in an arbitrary topol-
ogy. The adversary is only limited in the number of trust
edges that he can establish with honest nodes.

2.1.1. Definition of Sybil-tolerance

The protocol aims to achieve Sybil-tolerance, which we
define in the following manner. An adversary attached to
the network topology according to the threat model must
not be able to misroute or drop traffic in cases where
he is not placed on the shortest path between the source
and destination in the network topology. This means that
he should not be able to redirect traffic or cause name-
to-locator resolution to fail for arbitrary nodes from an
arbitrary position in the network topology.

As we will show in Section 6, in existing scalable
and low-stretch location-independent routing protocols,
an adversary that can influence the choice of its node
identifiers is able to disrupt the protocol from any position
in the network topology simply by choosing appropriate
node identifiers.

2.1.2. Local Knowledge and Secure Size Estimation

We assume that each node has only local knowledge
of the network topology – a node is only directly aware
of its 1-hop neighbours with whom it has established
trusted links. In order to be able to adapt to increasing
topology sizes, we assume the existence of a secure rough
size estimation component running as part of U-Sphere.
The estimation does not need to be exact (an order of
magnitude is sufficient), and it has to be secure in the sense
that an adversary cannot arbitrarily skew the size estimate
or cause a denial-of-service attack with little resources. An
example of a suitable protocol, based on crypto-puzzles, is
presented by Evans et al. [20].

2.1.3. Cryptographic Primitives

As the protocol relies extensively on public key cryp-
tography operations that might be expensive to perform
for each update message, U-Sphere assumes the use of
elliptic curve cryptography based on Curve25519 [21]
presented by Bernstein et al. These primitives have been
shown to be very efficient and secure, with lower overheads
when compared to RSA [22].

2.2. Protocol Overview

We first describe how the protocol performs message
routing with location-independent identifiers, and then
describe how our specific design of the name-to-locator
resolution overlay tolerates possible adversarial attacks.

2.2.1. Location-independent Message Routing

In order to achieve the performance goals we have
specified in the introduction, we base our protocol design
on insights from compact routing theory [15, 23]. At most
Õ(
√
n) nodes are designated as landmarks in a distributed

fashion. By the standard route update process via a path-
vector protocol, non-landmark nodes are assigned location-
dependent addresses in the form of source routes from
nearby landmarks and at the same time learn routes to all
the landmark nodes. These addresses alone already enable
routing, but in practice, routing always via the landmark
nodes will cause the path stretch to become large when
nodes are close. To ensure low stretch, each node, via the
same path-vector protocol, also learns shortest paths to
its closest Õ(

√
n) nodes. To enable location-independent

routing, nodes are placed into groups based on their node
identifier prefixes. A name-to-locator record dissemination
overlay is constructed for each group in order to be able
to resolve node identifiers to current location-dependent
addresses, all while keeping the low stretch and state
bounds.

2.2.2. Security

As described, the above protocol is not secure. The
first attack vector is via the path-vector protocol that
is used to learn paths to various nodes in the network.
Any intermediate node is able to manipulate route update
messages to misroute traffic. In order to prevent this,
U-Sphere employs a chained announce delegation scheme
where route update messages are cryptographically signed
and multi-hop paths are cryptographically protected from
being shortened. The second attack vector is the name-to-
locator resolution process, which is required to make rout-
ing location-independent. Existing location-independent
compact routing protocols [15, 24] make use of landmark-
based location directories that present likely attack targets
as adversary-controlled landmarks (which an adversary
can generate at will) are able to prevent resolution of
arbitrary node identifiers. U-Sphere uses a novel overlay
construction that does not require any location directories
on landmarks and does not rely on DHT protocols. The
overlay is constructed by discovering nearby nodes of the
local group and establishing multi-hop overlay links with
them. As the links are prioritized based on hop distance,
the overlay topology resembles the underlying network
with nodes of the other groups removed. This ensures that
selection of node identifiers does not influence a node’s
position in the overlay and thus greatly improves security.

3. The Proposed Protocol

This section presents the details of U-Sphere, consisting
of two complementary components, which together provide
efficient Sybil-tolerant and location-independent routing.

3



3.1. Location-dependent Routing

We first present the location-dependent routing compo-
nent that routes on addresses, which change together with
the topology. This component is complemented in the next
section, so that the protocol is then able to route directly
on location-independent node identifiers. Here, we first
describe how nodes and links are identified in the protocol,
what state each node must maintain and then show how
the location-dependent routing protocol operates.

3.1.1. Node Identifiers

Each node generates a private/public key pair and uses
the first 160 bits of the public key’s binary representation
hashed using SHA-512 as its self-certifying node identifier.
This identifier is globally unique among nodes, as creating
a duplicate would require either finding a collision for
SHA-512 or generating an existing private key, both of
which are highly unlikely. However, an adversary can
generate an identifier that shares a large common prefix
with some other known identifier by trying a large set of
public keys, hashing them and selecting the ones that share
specific prefixes.

3.1.2. Virtual Port Identifiers (vports)

Each node establishes direct authenticated transport
links with other nodes that it trusts. A locally unique
identifier called the virtual port identifier or vport is
assigned to each such outgoing link. This identifier is a
16-bit unsigned integer and being only locally unique,
the same identifier can easily be used by different nodes
to identify different links. Coming from regular network
routing, this concept of vports is analogous to interfaces.

3.1.3. Landmarks

U-Sphere requires some nodes to be designated as
landmarks. These nodes have no special requirements as
far as their operation is concerned – they behave the
same as any other node, do not store any additional state
and other nodes do not perform any additional queries to
them. The only consequence of a node being a landmark
is that all other nodes will learn shortest paths to it.
Landmark nodes will be used to stitch long-range routing
paths through them. In general, a path from source s to
destination d via landmark `d will be stitched from two
paths s `d and `d  d.

Because the protocol requires that all nodes know
paths to all the landmarks, the number of landmarks must
be limited to Õ(

√
n) in order to preserve the state bound.

This is done in a distributed fashion by having each node
decide locally and independently whether to become a
landmark or not. Each chooses a number x from the range
[0, 1), uniformly at random, and becomes a landmark if
x <

√
(log n)/n where n is the estimated network size.

Following from this, the expected number of landmark
nodes will be n ·

√
(log n)/n =

√
n log n. By using a

Chernoff bound, there will then be O(
√
n log n) = Õ(

√
n)

landmarks with high probability. In the context of this
paper, an event E occurs with high probability if, for any
α ≥ 1, E occurs with probability ≥ 1−O(n−α).

Since nodes can join and leave the network at any time,
the set of landmark nodes will change through time. To
mediate this dynamic, U-Sphere relies on a signal from
the size estimation component. Whenever the size estimate
changes by a constant factor, a node’s state may be flipped
and a node becomes or ceases to be a landmark.

3.1.4. Landmark-relative Addresses

As mentioned, U-Sphere builds paths via landmarks.
To enable construction of such paths, the protocol en-
sures that each node is assigned a landmark-relative
address (L-R address) of length n in the form of
〈`d, [p1, p2, . . . , pn]〉. Here, `d is the node identifier of a
landmark node and p1, p2, . . . , pn is a path of vports
identifying links leading from the landmark node to the
destination node, enabling a form of source routing. Land-
marks themselves have L-R addresses of size zero, as they
are always directly reachable by their node identifier.

Given a L-R address, any node s is able to route
towards the destination d by first routing via path s `d
and then using the source route `d

p1−→ n1
p2−→ n2

p3−→
. . .

pn−→ d to reach the destination. Any node can route
towards `d efficiently, because all nodes know the shortest
paths to landmarks.

Each node chooses at least one L-R address for itself,
based on the closeness (hop count) of landmark nodes
in the topology. It may choose more than one address
for redundancy. These addresses are location-dependent
addresses that change as the topology evolves. We show
later how a node can route using location-independent
node identifiers, but for now let us assume that each node
also knows the destination’s L-R address in addition to its
node identifier.

It is interesting to quickly analyse the growth of L-R
addresses with respect to network size. To see what hap-
pens in the worst case, imagine a ring topology where each
node has degree 2. If there are n total nodes and

√
n log n

landmarks, in the worst case all landmarks are clustered
one after another and the node with the longest L-R
address is located d 12 (n −

√
n log n)e = O(D) hops from

any landmark, where D is the graph’s diameter. However,
we show experimentally that in realistic social network
topologies and with landmark distributions generated by
U-Sphere, L-R addresses are in fact much shorter.

3.1.5. Vicinities

Always routing via landmark nodes can cause high
path stretch when the destination node is topologically
close to the source. To mitigate this while preserving the
per-node state bound, in U-Sphere each node also learns
the routes to O(

√
n log n) topologically closest nodes,

based on hop count distance. This set of close nodes of
node n is designated the vicinity of n and denoted Vn.

4



Using this additional vicinity information, a source node
s can route to a destination d directly via s  d when
d ∈ Vs.

3.1.6. Path-vector Route Update Protocol

To maintain the required routing state described so
far, U-Sphere uses a single proactive path-vector protocol.
Each node periodically (with period τr) announces itself to
its neighbours using a route update message. All updates
encode the following information:

• Node identifier of the originator (the node that
generated this update message).

• Landmark flag, a boolean flag indicating whether the
originator node is currently a landmark node or not.

• Forward path, a path of vports that can be used to
forward messages directly to the originator. When
receiving an update, each node prepends the vport
of the link on which it received the update.

• In case the originator node is a landmark node, the
message also includes the reverse path. This is a path
of vports that can be used to route from the origi-
nator towards the current node. Such reverse paths
can be used as L-R addresses by nodes, preferring
short paths. Before forwarding an update with a
valid reverse path, each node first appends the vport
of the outgoing link.

• A sequence number that is monotonically increasing.

Note that full node identifiers could easily be used
instead of just vports in forward and reverse paths. How-
ever, we chose not to do this because vports can be more
compactly encoded [25] and because their use obscures the
nodes’ social neighbourhood. If node identifiers had been
used instead, the social neighbourhood of the originator
node would be disclosed with each update and this would
go against our privacy goal.

When a properly formatted update message is received
by a node, it is imported into the routing table only under
specific conditions. The conditions are as follows, in order:

i) If the message originated on the node itself, the route
update is immediately discarded.

ii) If the originator node is not a landmark node and
it does not fall into the current node’s vicinity, the
route update is discarded.

iii) If the route update contains a new route for a
destination not previously seen via a link, the update
is accepted.

iv) If the route update contains a better route towards
the destination, the update is accepted and the
active route is replaced.

The quality of routes is evaluated based on hop count.
Any other metric for link quality, latency, “trustedness”
or even a composite metric could easily be used instead.
Whenever an active route is updated, the route update is
also propagated to neighbour nodes. Each node also peri-
odically exports all of its active routes to all neighbours.
Due to the above conditions, the flooding of non-landmark
announces is limited in scope to a node’s vicinity.

On non-landmark nodes, after the route update is
accepted and the originator is a landmark node, the local
node also performs L-R address selection. This process
determines its current set of landmark-relative addresses
that can be used by other far away nodes to reach it
by stitching paths via selected landmarks. The protocol
handles the changing of nodes’ landmark status gracefully.
As the landmark status of the originator is part of regular
route update messages, U-Sphere will deal with landmark
changes simply by re-evaluating the above conditions for
accepting an update based on the changed landmark flag.
Due to the second condition, when a node transitions from
landmark to non-landmark status, its route updates will no
longer be propagated everywhere, but will instead become
scope-limited to the originator node’s vicinity. Routes at
faraway nodes will expire after going 3τr without a new
update. The reverse will happen when a node transitions
from non-landmark to landmark status, as route updates
propagate throughout the network. Non-landmark nodes
will perform the usual L-R address selection and update
their addresses when needed. As landmarks have no other
special roles besides being used in L-R addresses, nothing
else needs to be done explicitly.

3.2. Destination L-R Address Resolution

Until now, we have assumed that when a node wishes
to route a message towards some destination, it somehow
knows its current L-R address and is able to stitch a
proper path. L-R addresses are topology-dependent and
can therefore change as new links are established or exist-
ing links are removed. In order to be location-independent
and route directly on node identifiers, U-Sphere needs to
resolve node identifiers into L-R addresses. Achieving this
without considering security and path stretch is easy –
we could use a DHT overlay to store the mappings. But
as mentioned before, we aim higher: We wish to retain the
constant-bounded stretch even for the first packet of a flow
while not allowing an adversary (capable of choosing node
identifiers and launching Sybil attacks) to disrupt name
resolution.

The core idea is to group the nodes and create an
unstructured overlay embedding for each such group. This
overlay is used to disseminate name records containing
mappings between node identifiers and nodes’ L-R ad-
dresses.

3.2.1. Sloppy Groups

We use the concept of node “color” groupings from [26]
with the adaptation to a more distributed and dynamic

5



0000 0001 0010 0011 0100 0101 0110 0111

0000 0001 0010 0011 0100 0101 0110 0111

p=1

p=2

Figure 2: Size estimate difference by a factor of 2 means a sloppy
group prefix p difference of one bit. Shown above is the difference in
node groupings between p = 1 (gray group) and p = 2 (red and blue
groups).

setting presented in Disco [15]. Nodes are split into groups
based on the value of their node identifiers. Each node
takes the first blog2(

√
n/ log n)c bits of its node identifier

to represent the identifier of its group. Given a uniform
random distribution of node identifiers among honest
nodes, this gives us, with high probability (again by a
Chernoff bound),

√
n/ log n groups, each of size

√
n log n.

Groups are “sloppy” because the group identifier de-
pends on the node’s own estimate of n that might differ
slightly among the nodes. Sloppy grouping is resilient to
small changes in n, as unless the estimate differs by a factor
of 2, the grouping stays the same. And even in cases when
the estimate differs by a factor of 2, this only corresponds
to splitting/merging of a group (see Figure 2). These
properties are important from a performance standpoint,
similarly to the notion of consistent hashing – a small
change in n does not result in a lot of group reorgani-
zations.

3.2.2. Extended Vicinity

When the simple vicinity definition is used, each node
will store

√
n log n routes to topologically nearest nodes.

Taking into account the division into sloppy groups and
assuming perfectly uniform distribution, we can compute
the number of expected nodes of each sloppy group in any
node’s vicinity. Let S be the set of all sloppy groups and
Sc ∈ S the set of nodes in sloppy group with identifier c.
Then, for any node m and any group identifier c, it follows:

E[|Vm ∩ Sc|] = E[|Vm|] · P [m′ ∈ Sc]

=
√
n log n · E[|S|]−1

=
√
n log n · (

√
n/ log n)−1

=

√
n log2 n

n
= log n

This gives us log n expected nodes of each sloppy group
in any node’s vicinity. But in practice, topology is also a
factor when considering a node’s vicinity and it can happen
that some vicinities contain less nodes of a certain sloppy
group – breaking the perfectly uniform distribution. This
is undesirable because U-Sphere assumes that each node
has at least one node of each group in its vicinity for proper
operation – and having more is better both for redundancy

Va

a

Figure 3: Dissemination overlay construction for node a. Dark nodes
belong to the same sloppy group as a and are part of its extended
vicinity, Va. Dashed lines represent overlay links while light lines
represent direct links.

and, as we will see, for raising the probability that the
name record dissemination overlay is connected.

In order to ensure that each node has a properly
balanced vicinity regarding sloppy groups, we introduce
an extended vicinity. In addition to the already mentioned
criteria for including the nearest

√
n log n nodes, U-Sphere

also accepts route updates for nodes that may be outside
the “normal” vicinity (because they are too far away) but
which belong to sloppy groups that are currently under-
represented (have less than log n routes stored). This
additional condition for accepting route updates enables
us to balance the representation of sloppy groups in each
node’s vicinity, thus increasing redundancy. It should be
noted that even with the extended vicinity, the per-node
state bound is not violated. Since the additional state per
sloppy group is less than log n and there are

√
n/ log n

sloppy groups in expectation, the state remains bounded
by Õ(

√
n).

3.2.3. Dissemination Overlay Construction

After assigning a sloppy group to each node and ensur-
ing that each node has members of all sloppy groups in its
extended vicinity, we have to enable that all nodes within a
given group learn each others’ L-R addresses. To do this,
a dissemination overlay topology is constructed for each
sloppy group, connecting all of its members and enabling
them to exchange L-R address updates (see Figure 3).
Overlay construction proceeds in the following steps on
each node a:

i) The node a maintains a list of sloppy group neigh-
bours together with their L-R addresses. These are
the nodes that are in the same sloppy group as a and
are close in hop distance in the social topology.

ii) To discover suitable nodes, node a checks its ex-
tended vicinity set for any nodes whose sloppy group
identifier matches theirs.

iii) Upon discovering new members, it sends them record
update messages.

6



iv) When receiving record update messages from nodes
that a does not have in its extended vicinity but
belong to the same sloppy group (based on compar-
ing group prefixes), it may establish back-links to
them. Each node will establish up to log2 n back-
links, where the available link slots will be prioritized
based on hop distance.

The above algorithm favours establishing links between
nodes that are close and well connected in the network
topology. It is also simple to implement in a dynamic
setting. Neighbours are updated incrementally as part of
extended vicinity maintenance in the location-dependent
routing component. Back-links are established based on
incoming record update messages and expire when no up-
dates have been received through them for some specified
period of time. No landmark-based location directories are
required for maintenance or for bootstrapping.

3.2.4. Name/locator Record Update Protocol

Once the overlay topology has been established, sloppy
group members are able to exchange name record update
messages. The aim of these messages is to disseminate up-
to-date L-R addresses of all sloppy group members. Each
name update message contains the following attributes,
cryptographically signed by the originating node in order
to prevent modification while in transit:

• Node identifier and public key of the node that is
originating the update message and whose current
L-R addresses are included in the update.

• Timestamp in originator-local time, which must be
monotonically increasing.

• Sequence number that is used in case multiple up-
dates are emitted with the same timestamp.

• A list of currently active L-R addresses for the
originator node.

Each node emits name update messages for its own
set of active L-R addresses whenever this set changes
(triggered by route updates from landmark nodes). It also
transmits the updates periodically to its sloppy group
neighbours, with period τs. Name update messages de-
scribing all the currently known mappings are transmitted
whenever a new sloppy group overlay neighbour is detected
(either via the extended vicinity or when a new back-link
is established). Whenever a name update message with a
valid cryptographic signature is received by a node, it is
imported only if it meets all of the following criteria:

i) The node originator belongs to the same sloppy
group as the receiving node, based on the receiving
node’s sloppy group prefix.

ii) Name record for this originator either does not yet
exist or the newly received name record is more
fresh as determined by its timestamp and sequence
number attributes.

7EA

Dst: 1FB
L-R: ⟨7EA, [1,3,1]⟩

1FB

1

3

1

1
2

3

Vs V1FB

s

v

Figure 4: Routing from node s towards node 1FB in three steps via
landmark 7EA when s does not know the destination L-R address:
(1) L-R address resolution via v ∈ Vs that is in the same sloppy
group as 1FB, (2) once the L-R address is known, message is routed
towards the designated landmark, (3) after the landmark receives
the message (and if no shortcutting occurs), source routing is used
to reach the destination.

Stale name records are periodically expired in order
to ensure that only fresh and valid records remain. Since
the timestamp is cryptographically signed, an adversary
cannot propagate stale information.

3.3. Routing Decisions

Now that we have both the location-dependent routing
component and the name to L-R address resolution com-
ponent, we can describe how the routing process looks like
and how it achieves low path stretch. When a source node
s wants to route a message towards some destination d the
following scenarios are possible:

• In case d is a landmark node, s can route directly
based on d’s node identifier as all nodes will know
shortest paths to any landmark node.

• Also, when d is part of the (extended) vicinity of s,
a shortest path is known and can be taken.

• The last case occurs when s does not know d’s
current L-R address. In this case, s computes the
sloppy group identifier of d by taking a properly sized
prefix out of d’s node identifier. Then, it searches its
extended vicinity for the closest node v that is also a
member of d’s sloppy group. Due to the construction
of extended vicinities such a node will exist and
due to exchange of name records via the overlay
it will have knowledge of d’s current L-R address.
Therefore s first routes the message to v that updates
the message with a proper L-R destination address
and routes it towards its designated landmark. The
landmark then uses source routing to reach the
destination d. A visualization of this last scenario
can be seen in Figure 4.

Besides using landmark-based source routing, path
stretch can be further improved by using shortcutting as
in [15, 24]. Whenever a node on path s d is encountered
that has an active route towards d, this route is followed
instead of routing via the source route provided in the
L-R address. As the evaluation will show, this leads to im-
proved path stretch at almost no additional cost, while also

7



A

originator: {A, PubA}
landmark: false 
anchor: SA-PubAB

<Signature: PrivA>

B C

originator: {A, PubA}
landmark: false 
anchor: SA-PubAB

<Signature: PrivA>

Attributes

Delegations

originator: {A, PubA}
landmark: false 
anchor: SA-PubAB

<Signature: PrivA>

SA-PubBC

<Signature: SA-PrivAB>

SA-PubBC

<Signature: SA-PrivAB>

SA-PubCD

<Signature: SA-PrivBC>

announce announce

verify

verify

Figure 5: An explanation of how signed announce delegation chains work. For every neighbour B, the originator A sets the anchor attribute
to a public key that is part of the security association between nodes A and B, and for which node B knows the private key. It then signs the
attributes with its main private key PrivA. Each following node in the chain receiving the route update then delegates the announce privilege
to each neighbour node to which it propagates the update. In this way, a chain of signatures is established and nodes in the middle cannot
change the path as they do not know the private keys of previous links – for example node C cannot remove the links A → B or B → C
without invalidating the route update message.

reducing link congestion. We provide formal proofs of path
stretch and routing state bounds in AppendixA and also
confirm this behaviour in our experimental evaluations.

4. Securing U-Sphere

In this section we analyse the security of U-Sphere
and present additional mechanisms to secure the routing
protocol.

4.1. Signed Route Updates

The path-vector protocol works as described, but is
inherently insecure when dealing with an adversary defined
by the threat model. Without additional protection, any
node is able to forge route updates and specifically target
paths in route update messages so that they appear to be
shorter than they actually are. In this way, adversarial
nodes are able to gain control over traffic that would
not normally pass through them, which goes against our
security goals.

To address this, two modifications to the original
path-vector protocol are introduced. First, the originator’s
public key is added to route update attributes and the
attributes then get signed by the route originator with
its private key. Since a node identifier is self-certifying it
is easy for any node to verify that the route update was
actually signed by the node listed as the originator and
discard any invalid updates. However, this still does not
solve the problem that nodes can shorten paths listed in
route updates. For example, if a node receives an update
with path [n1, n2, n3] where n3 is the originator node,
it can simply truncate the path so that it becomes just
[n3]. In this way, the path now appears shorter and will
therefore be preferred in routing decisions. One cannot
simply sign path attributes as each node that receives and

re-announces the update needs to append itself to the end
of the path.

To combat this, U-Sphere uses signed announce dele-
gation chains. This is a mechanism where each node must
explicitly delegate route update announcement privileges
to a neighbouring node in order for that node to be able
to export the route update on originator’s behalf. Using
node’s main key pairs (denoted PubA/PrivA) for this
operation would disclose social topology information in the
same way as using node identifiers instead of vports would.
This is why U-Sphere establishes security associations
(SAs) between neighbouring nodes, assigning key pairs
to specific links. Nodes on both ends of a link generate
and exchange the public SA-PubAB part of the key. These
keys are then used to delegate announce privileges (see
Figure 5) and discard any updates containing paths that
fail chain verification. In order to make correlation between
SA-derived keys and nodes harder, nodes can use multiple
SAs for the same link and rotate them periodically.

4.2. Name Resolution

The security of name resolution is based on the sloppy
group overlay construction. Each node selects log n neigh-
bours that share its sloppy group prefix from its extended
vicinity to form the overlay. Additionally it also establishes
up to log2 n back-links to nodes that contacted it. As all
the overlay neighbour links are prioritized based on low
hop distance in the network topology, a node is more
likely to choose close trusted nodes as its neighbours.
An adversary is not able to influence this selection by
choosing appropriate node identifiers, because due to the
prioritization, he also needs to be close in the network
topology. And being close requires gaining trust from other
users.

The most effective attack would be for an adversary
to establish trust edges close to a targeted node, but

8



this requires social engineering of very specific edges in
the social vicinity of the target. And even in this case,
assuming that the target is well connected to other honest
nodes, some of the overlay links may also be established
with honest members of the sloppy group. And because
of update record distribution, one honest link is enough
to ensure that the node learns name records for its sloppy
group. Denial of service on specific links is the next logical
step, but the adversary cannot learn transport addresses
of the link endpoints unless he engineers trust from their
users.

Another attack on name resolution is possible when a
node chooses a nearby adversarial node as its relay during
destination location resolution in its extended vicinity
(first step in Figure 4). In this case, the relay might drop
the message and it will never be delivered. To combat this
problem, nodes should keep track of how well the relays are
performing and deprioritize them for future routing. This
is possible as the nodes are free to choose any member of
the destination’s sloppy group in their extended vicinity
as an address resolution relay.

4.3. Landmarks

In contrast to existing scalable low-stretch location-in-
dependent routing schemes, U-Sphere does not rely on any
special state (like location directories) being maintained on
landmark nodes. As an adversary can designate any of its
nodes as landmarks, this would give him another attack
vector for targeting name resolution.

But an adversary can still cause the nodes in the net-
work to have to hold increased routing state by introducing
many landmark nodes into the system. This could be
mitigated by requiring crypto-puzzle solutions attached to
landmark announces. Even so, the only advantage that
an attacker would gain by having more landmarks is that
honest nodes near attack edges would be more likely to
choose adversarial nodes for its L-R addresses. This might
not present an issue because as soon as a message enters
the vicinity of a node, it may use shortcutting to be
delivered directly to its destination without being routed
over the landmark at all. But in any case, nodes are able
to choose any nearby landmarks (and may opt explicitly
for more trusted ones) and multiple L-R addresses, which
together with measurement of how well each of them
performs, can mitigate this problem.

5. Evaluation

The following section examines how the U-Sphere
protocol performs in practice – specifically we test whether
it achieves all the goals outlined in the beginning, namely
low per-node state, low path stretch and tolerance of Sybil
attacks. Before discussing the results, the methodology
used to evaluate the protocol is briefly described.

Sloppy Group
Manager

Router

Transport

NIB

RIB

RPC

C
u

rveC
P

U
N

IX

C
or

e

P
roto

3

P
roto

4

P
roto

n

... ... ... ... ... ... ... ... ...

Figure 6: Components of a U-Sphere node. Core (red) implements
the ASIO event loop, the Transport (green) component handles I/O
operations with remote nodes while the Social (blue) component
handles message routing. NIB and RIB represent the name and
routing information bases, respectively.

5.1. Methodology

The evaluation methodology is based on the principles
of large-scale emulation [27]. We find this approach the
most suitable because it enables us to study a concrete
implementation in greater detail than it would be possible
had we used only simulation. Specifically, we can measure
how message complexity changes through time for both
routing components and observe the effect of churn. To
ease the testing of U-Sphere implementation, a testbed
has been developed, allowing realistic experiments on large
topologies. The testbed is general and it can be used –
besides performing scientific experiments – as an auto-
mated integration test tool during protocol development.
In this section we describe how the testbed environment
is implemented and how it is used to run test scenarios.

5.1.1. Protocol Implementation Overview

U-Sphere implementation is designed as a set of C++
libraries, each library covering one component (see Fig-
ure 6 for an overview of the components and their rela-
tions). All communication between components and all
I/O operations are implemented by using asynchronous
events via the Boost.ASIO library. The implementation is
designed for use in multi-threaded applications.

The Social component contains a full implementation
of U-Sphere as described in Section 3. To exchange mes-
sages between nodes, the Transport component provides
an abstraction layer that exposes inter-node links using a
simple message-based API. It currently supports both the
CurveCP protocol [28] and UNIX sockets for underlying
communication between node processes. Messages are ef-
ficiently serialized using Google Protocol Buffers and then
dispatched via the underlying transport. The Transport
component is modular, so additional transports can be
easily implemented. The protocol implementation includes
security association establishment between peers and chain
verification in route update messages.

9



Table 1
Topology datasets used for experiments

Topology Degree Vertices Edges
min avg max

synthetic-hk 4 6.0-7.98 14-309 16-4096 48-16362
hyperboria 1 3.97 66 687 1365

as-733-a 1 3.67 592 3015 5539
as-733-b 1 4.29 1460 6474 13895

5.1.2. Testbed

The testbed is implemented as an application that uses
the above libraries for running multiple U-Sphere nodes
(implementation instances). Its main role is thus the provi-
sioning of emulated nodes and support for execution of test
scenarios on the emulated network. To enable emulation of
large networks, the testbed is designed to work on a cluster
of machines. For our experiments, we have run the testbed
on up to 9 of the largest (c3.8xlarge) Amazon EC2
instances connected together into one network segment.

Scenarios are able to invoke test cases at specific points
in time. Each test case is designed to be executed in
the distributed testbed environment on selected emulated
nodes. This testbed enables us to evaluate the protocol
performance under a number of different scenarios on large
topologies. The protocol implementation, together with
the testbed environment, is available as an open source
project [29] licensed under GPLv3.

5.2. Results

In this section we present the results of evaluating
U-Sphere under different scenarios and topologies. To
generate the synthetic topologies, we have initially used
the Barabási-Albert preferential attachment model [30]
which can generate scale-free networks. But since the B-A
model generates topologies with a low clustering coeffi-
cient, to obtain more realistic topologies, we have used the
Holme-Kim tunable clustering modification [31] where the
triangle formation probability parameter has been set to
0.2, giving us degree distributions as shown in Table 1.
In order to test the protocol on realistic datasets we have
chosen the following additional topologies extracted from
actually deployed systems:

hyperboria Topology of the largest deployed CJDNS [18]
network (Hyperboria). This topology has been aggre-
gated from multiple observation points around the
network.

as-733 Two topologies extracted from Internet BGP
routers, representing a network of autonomous sys-
tems. We use the dataset from [32]. Topology as-
733-a is from 1997-11-08, while the larger as-733-b
is from 2000-01-02.

The datasets used in our experiments are available
together with the mentioned open source testbed environ-
ment. Statistical information about all the used topology
datasets is shown in Table 1.

5.2.1. Path Stretch

To perform path stretch measurements, two random
destinations are selected for each node and ping RPCs
from source to destination node are made. We record the
length of the path taken by actual messages routed using
U-Sphere and compare it to the shortest path between the
two destinations in the network topology. An important
observation in these measurements is that the average size
of a node’s extended vicinity in 4096-node topologies is
only 184 nodes, with about the same amount of landmarks.
Together, this amounts to around 8% of nodes, which
means that to reach most destinations, direct paths are not
known and name resolution needs to be performed (thus
the messages need to make the full resolution process as
shown in Figure 4).

Results of the measurements can be seen in Figure 7.
We show both, the average path stretch as it changes with
increasing number of nodes in the generated topology and
the distribution of path stretch over all measured paths.
We can see that the path stretch remains low throughout
the tests, with averages ranging from 1.05 to 1.25. The
maximum path stretch obtained over all topologies is
3.0 and in all cases it covers only a small (< 0.05%)
percentage of paths. Stretch distribution is also similar
on the three realistic topologies, with stretch being ≤ 2.5
in the hyperboria topology and ≤ 3.0 in both as-733
topologies.

We have also measured variations in path stretch where
we examined the influence of community structure (1
through 16 sparsely interconnected communities) and node
degrees (average degrees ranging from 2 to 64) on path
stretch. The results show that community structure does
not affect path stretches, while doubling the average node
degree causes a small increase at small degrees but has no
noticeable effect when degrees get larger.

5.2.2. L-R address Lengths

We mentioned earlier that L-R addresses can grow
on the order of graph diameter in the worst case. To
test what happens during protocol operation on realistic
topologies, we have measured the length of primary and
secondary node L-R addresses with increasing topology
sizes (secondary address is an additional address chosen
by a node for redundancy in case the primary landmark
fails). As can be seen on Figure 8, address lengths are
short in practice and only grow with log n on emulated
topologies. Note that the shown average can be lower than
1 as landmarks are considered to have a L-R address length
of zero.

5.2.3. Link Congestion

Since the protocol uses landmarks to stitch together
paths to distant nodes, we expected that some paths would
become more congested than others. We compared the link
congestion of paths selected by U-Sphere to link congestion
encountered when using shortest paths instead. To mea-
sure link congestion in the emulated network realistically,

10



101 102 103 104

Size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Pa
th

 S
tr

et
ch

0.5 1.0 1.5 2.0 2.5 3.0
Path Stretch

0.0

0.2

0.4

0.6

0.8

1.0

C
um

m
ul

at
iv

e 
Pr

ob
ab

ili
ty

synthetic-hk (n=32)
synthetic-hk (n=64)
synthetic-hk (n=128)
synthetic-hk (n=256)
synthetic-hk (n=512)
synthetic-hk (n=1024)
synthetic-hk (n=2048)
synthetic-hk (n=4096)
hyperboria
as-733-a
as-733-b

Figure 7: Path stretch in dependence of varying topologies. Left figure is the average patch stretch plotted using logarithmic scale for topology
synthetic-hk and the right one shows path stretch distribution with varying topologies (for synthetic-hk with increasing topology sizes). Error
bars show standard deviations of path stretch.

101 102 103 104

Size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

L-
R

 A
dd

re
ss

 L
en

gt
h

primary
secondary

Figure 8: Average length of primary and secondary L-R addresses
with increasing topology sizes (note the logarithmic scale). Error
bars show standard deviations of path address length.

the scenario instructed each node to keep track of the
number of RPC ping packets traversing each of its links.
Then we used the same test as when computing path
stretch – each node routed a ping RPC to two randomly
selected nodes and the destination node sent back a reply.
After all measurements were complete we gathered the link
congestion counters from all links and compared the values
to a routing protocol that instead used only shortest paths
between the same source-destination pairs.

As can be seen in Figure 9, U-Sphere does indeed show
increased link congestion for a small (< 0.1%) percent-
age of links when compared to a shortest-path routing
protocol. Values on the x-axis represent the number of
times a link has been traversed and distribution is over all

200 400 600 800 1000 1200
Link Congestion

0.990

0.992

0.994

0.996

0.998

1.000

C
um

m
ul

at
iv

e 
Pr

ob
ab

ili
ty

U-Sphere
Shortest-paths

Figure 9: Comparison of link congestion on topology as-733-a with
3015 nodes. The plot is zoomed into the region where the most
difference between the two can be seen.

links. Some links are highly congested even in the case of
a shortest-paths protocol because the as-733-a topology
contains small amount of bridges between communities
which require repeated use of a few links.

5.2.4. RIB and NIB State

Next, we measured the amount of state held by
U-Sphere nodes in their routing tables and name-to-
locator resolution databases. Figure 10 shows the growth
of average routing state per node in the number of stored
entries. Here we see that name-to-locator mapping state
seems to increase only on every second measurement. This
is due to the way nodes are partitioned into sloppy groups
as the number of sloppy groups only increases after the

11



0 1000 2000 3000 4000 5000 6000 7000
Topology Size [nodes]

0

100

200

300

400

500

600

St
at

e 
at

 a
 N

od
e 

[e
nt

rie
s]

Square root fit
Measurements

0 1000 2000 3000 4000 5000 6000 7000
Topology Size [nodes]

0

50

100

150

200

250

300

St
at

e 
at

 a
 N

od
e 

[e
nt

rie
s]

Square root fit
Measurements

Figure 10: Average routing table size (left) and name-to-locator resolution database size (right) at a node with increasing topology sizes
(topology synthetic-hk). Dashed line represents a fit of a

√
x + c over the measurements. Error bars show standard deviations of routing state

size.

100 200 300 400 500 600 700 800 900
State at a Node [entries]

0.0

0.2

0.4

0.6

0.8

1.0

C
um

m
ul

at
iv

e 
Pr

ob
ab

ili
ty

n = 16
n = 32
n = 64
n = 128
n = 256
n = 512
n = 1024
n = 2048
n = 4096

Figure 11: Combined state distribution over nodes for varying
topology sizes.

size estimate doubles. The growth in state follows Õ(
√
n)

and looking at combined state distribution (see Figure 11)
we can see that state is also evenly distributed among all
the nodes with no apparent long tails that would indicate
higher state on some nodes. The same state distributions
have also been measured for hyperboria and both as-733
topologies.

5.2.5. Message Complexity

An important factor in the evaluation is also the
U-Sphere’s message complexity. We measure the amount
of control messages required to establish and maintain all
routing state through time. Routing announce period τr
and name-to-locator mapping announce period τs greatly
affect the measured message complexities. In all our ex-

0 500 1000 1500 2000
Time [s]

0

20

40

60

80

100

R
ec

or
ds

/s

SG records
RT records
SA updates

Figure 12: Number of records transmitted per second per node
(topology synthetic-hk, n = 2048). Shown are route updates (RT),
name-to-locator mapping updates (SG) and security associations
(SA).

periments we use τr = 30s and τs = 600s.

Figure 12 shows the number of updates (RT for route
updates, SG for sloppy group name-to-locator mapping
updates and SA for security association updates) that are
transmitted per second per node on average. Note that this
is not necessarily the number of messages because multiple
records can be grouped in the same message in order to
improve throughput and reduce the number of transmitted
messages, which is why counting the update records is a
better measure.

The initial rise in transmitted records corresponds to
the node initialization phase where more and more nodes
are started in the emulated network. After the initial

12



0 500 1000 1500 2000 2500 3000 3500 4000 4500
size

0

20

40

60

80

100

120

R
ec

or
ds

/s

RT records
SG records

Figure 13: Average records (route and name-to-locator mapping
update) transmitted per second per node with increasing topology
sizes. Averages are counted only after all the nodes have started.
Error bars show standard deviations of record transmission rates.

101 102 103 104

Size

0

10

20

30

40

50

60

D
eg
re
e

in-degree
degree
out-degree

Figure 14: Node degrees in the sloppy group overlay topology under
varying number of nodes (note the logarithmic scale). Error bars
show standard deviations of node degrees.

phase, the number of records stabilizes as no new nodes are
started and the state converges. Initial overhead in sloppy
group messages corresponds to the establishment of the
sloppy group overlay. After the overlay is established, only
periodic announces are enough for its maintenance, so the
number of updates is reduced. Figure 13 shows how the
message complexity scales with increasing topology sizes.
We have also experimented with varying the node degree
in the social topology. As expected, the average message
complexity for route updates grows linearly with average
node degree – each neighbour has to periodically update
all its links.

Another important factor in the scalability of the
protocol is the degree of nodes in the sloppy group overlay

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Fraction of attack edges

0.0

0.2

0.4

0.6

0.8

1.0

Resolved pairs (Scenario A)
Resolved pairs (Scenario B)
Delivered messages (Scenario C)

Figure 15: Fractions of resolved pairs and delivered messages vs. the
fraction of attack edges under different Sybil scenarios. Error bars
show standard deviations.

topology. It is important because we do not want to create
too many copies of the update messages, but at the same
time we want to increase the probability of successful
delivery. We measured the average in, out and combined
degrees of nodes in the overlay topology. Results, seen on
Figure 14, show that the degrees grow with log n which
ensures that the scheme scales well in practice.

5.2.6. Sybil Attacks

The last scenarios include adversarial Sybil nodes that
attempt to interfere with the normal operation of the rout-
ing protocol. We generate the Sybil topologies according
to the threat model. First we use the already mentioned
Holme-Kim model to generate a base topology. Then we
randomly attach Sybil nodes to honest nodes in order to
establish a predefined percentage of attack edges. Sybil
nodes are also randomly interconnected among themselves.
We generate multiple topologies for each percentage of
attack edges and show the standard deviations. Multiple
scenarios are used to evaluate the limits of Sybil-tolerance:

Scenario A Instructs all Sybil nodes to forward name-to-
locator records only for other Sybil nodes. Records
of honest nodes are simply dropped by a Sybil node.

Scenario B Same as in Scenario A, but additionally all
Sybil nodes designate themselves as landmarks.

Scenario C In this scenario, Sybil nodes also interfere
with data forwarding. All messages that do not
originate from another Sybil node are dropped. We
should note that U-Sphere does not protect data
forwarding by itself.

For scenarios A and B, we measure the percentage of
honest resolved node pairs. A resolved node pair (s, d)
means that node s knows the L-R address of node d, given

13



that both nodes are members of the same sloppy group.
A value of 100% means that all honest nodes are able
to resolve L-R addresses for all the other nodes in their
sloppy group. In scenario C we measure the percentage
of successful ping RPC calls where each node pings two
randomly selected other nodes. We vary the percentage of
attack edges so that up to 7% of all edges in the topology
are attack edges. Figure 15 shows that the protocol suc-
cessfully defends against Sybil attackers interfering with
name resolution even when the fraction of attack edges is
high and even when all Sybil nodes designate themselves
as landmarks. As there are no specific defences for ensuring
deliverability of forwarded data messages, it can be seen
that the protocol does much worse with data forwarding
when percentage of attack edges increases.

6. Related Work

In this section we survey related routing protocols and
approaches from different fields of research and compare
them with U-Sphere based on the protocol design and
evaluation results. Table 2 shows an overview of compared
protocols.

Table 2
Related distributed routing protocols

Protocol Flat Low stretch Low state Sybil-t.

CJDNS [18] X – X –
X-Vine [13] X – X partial†

VRR [33] X – – –
Disco [15] X X X –
U-Sphere X X X X

† Sybil-tolerant under the assumption that the adversarial
nodes’ identifiers are randomly distributed.

6.1. Compact Routing

Compact routing protocol research dates back to the
seminal work of Thorup and Zwick [34] who have first
proposed an algorithm that can guaranteeO(1) (at most 3)
path stretch with Õ(

√
n) per-node state for the location-

dependent case. Abraham et al. [23, 26] have later shown
that very similar guarantees can also be obtained for the
location-independent case. All of these designs, however,
assume a static network topology and centralized routing
table construction for all nodes participating as routers in
the network. This is in contrast to a distributed routing
protocol like U-Sphere, that one could use in practice
where there is no such central point.

Motivated by supporting efficient routing on small
embedded devices with heavily constrained resources (such
as wireless sensors), Mao et al. [24] presented S4, a dis-
tributed compact routing protocol building on the theory
of Thorup and Zwick. The S4 protocol aims to deliver
bounded per-node routing state and bounded path stretch.
It routes on location-dependent names, where the name-

to-locator resolution is provided by a consistent hashing
database (known as the location directory) over the set
of landmark nodes. This resolution step can arbitrarily
increase path stretch for the first packet of a flow and
additionally it has been shown in [15] that S4 can some-
times violate the per-node state bound of Õ(

√
n) by a large

margin.
Addressing some of S4’s deficiencies, Singla et al. [15]

have presented a protocol called Disco, that can route on
location-independent node identifiers and at the same time
guarantee constant path stretch and Õ(

√
n) bounded per-

node routing state for arbitrary topologies. In addition
to a landmark-based location directory a DHT-like ring
overlay was introduced for the dissemination of name-to-
locator mapping records in order to distribute the load
away from landmark nodes. The location directory is still
used to bootstrap and repair the overlay.

A different route is taken by Caesar et al. [33] with
a protocol called VRR (Virtual Ring Routing). Each
node has both physical neighbours (based on network
topology) and virtual neighbours (based on DHT key
identifiers). The routing protocol is a network-layer DHT
where routing is performed greedily by looking up ever
closer location-independent identifiers in key space. This
protocol does not provide any guarantees regarding path
stretch and routing state – evaluations in [14, 15] have
shown that it can experience high stretch in practice and
that some nodes can also exhibit very high state.

In contrast to U-Sphere, all of the above location-
independent protocols are vulnerable to Sybil attacks
where an adversary is allowed to arbitrarily choose node
identifiers and can introduce many adversarial nodes into
the network. In S4 and Disco, the point of attack is the
location directory – adversarial nodes can choose specific
identifiers in such a way that the consistent hashing scheme
will store specific name-to-locator mappings on them and
can then proceed to censor them at will (see Figure 16
for an overview of this attack). In Disco, an additional
attack can be mounted on the DHT-like ring overlay,
which again uses adversary-influenced node identifiers for
its structure. Disco and S4 also do not protect the paths in
route announces and they can thus be shortened, enabling
the adversary to be seemingly placed on shortest paths
and giving him the power to control more traffic. VRR,
being based on a DHT construction, is vulnerable to
routing table poisoning with specifically chosen node iden-
tifiers [12]. The reliance on node identifiers for structure
in all these protocols means that such attacks can be
mounted from any position in the network topology. In
U-Sphere, an adversary is limited in influence to its trusted
neighbourhood.

6.2. Securing Routing in DHTs

Whānau [11] is a general one-hop DHT protocol bun-
dled with a social network based Sybil-detection scheme
and a scheme for preventing identifier clustering attacks.
Routing tables are built by nodes performing

√
e short

14



Location Directory Keyspace
(consistent hashing database)

02D

3A7

6A2
AD8

CFF

Landmark

Regular node

02D

3A7

6A2
AD8

CFF

Adversary-controlled
nodes/landmarks

Sybil attack

Figure 16: Sybil attack on the location directory needed by S4 [24] for name-to-locator resolution and Disco [15] for sloppy group overlay
bootstrapping. Since the adversary is able to control the m-bit prefixes of its nodes by doing O(2m) computation [12], it can get hold of
almost arbitrary positions within the overlay. It can then use this fact to deny the querying nodes access to certain records, causing the
name-to-locator resolution to fail for arbitrary identifiers.

random walks (where e is the number of all edges) and
sampling end nodes to construct routing tables. It uses
layered node identifiers in order to combat clustering
attacks. The downside of the protocol is the requirement
that all routing tables need to be recalculated once the net-
work topology changes, making it unsuitable for dynamic
networks.

R5N [35] is a DHT routing protocol that combines
random walks with greedy recursive routing. Its design
is based on the recursive version of the Kademlia proto-
col [36]. When routing, a message is forwarded randomly
for the first few hops, before it switches to standard greedy
DHT routing. This enables the protocol to de-correlate the
message from the source node’s vicinity and reduce the
chance that the adversary is present on the routing path.
Since it uses random routing for the first few hops, the
protocol only delivers messages with certain probability
and messages must thus be retried multiple times to ensure
delivery. As such, there is no bound on path stretch.

X-Vine [13] is a DHT-based protocol for routing over
social network topologies. Its security properties are based
on limiting the amount of routes that can be established
over a node’s edges. It, however, does not guarantee any
bounds on stretch and as authors specify in their paper,
it also assumes that node identifiers (even those of the
adversary) are randomly distributed in identifier space.
When they are not, similarly to VRR, poisoning attacks
can be mounted against the protocol in order to control
specific paths.

6.3. General Sybil-detection Protocols

There exists a number of protocols that aim to protect
general decentralized systems from Sybil attacks. None of
these schemes are routing protocols by themselves and
therefore cannot be directly compared to U-Sphere or
other routing protocols, but we include them here for
completeness.

SybilGuard [9] and the improved SybilLimit [37] are
among the first protocols to use social networks for Sybil
defense. Each node first performs

√
e (where e is the

number of edges in the social topology) random walks
of length O(log n) and remembers the last edge in the
walk (the tail). Honest nodes then have intersecting tails
with high probability and so any nodes that cannot find
such an intersection are considered adversarial, and are
not accepted into the network.

Gatekeeper [38] aims to improve the guarantees pro-
vided by SybilLimit on graphs that exhibit random ex-
pander properties. It accepts only O(log n) adversarial
nodes per attack edge. The protocol is based on a ticket
distribution scheme that uses multiple randomly selected
nodes as ticket distribution sources in order to validate
nodes. SybilInfer is a centralized protocol by Danezis et al.
[10] which detects Sybil nodes by using Bayesian inference.
It requires complete knowledge of the social topology and
is thus not appropriate as a distributed protocol.

6.4. General Attacks on Routing Protocols

In this paper we have focused our attention on
strengthening scalable location-independent routing pro-
tocols against Sybil attacks which are common in real-
world decentralized systems and social networks [39, 40].
In addition to Sybil attacks, there exist several classes of
routing attacks against decentralized routing schemes. We
explore them in this section and show that most control-
plane attacks are actually mitigated by mechanisms em-
ployed by U-Sphere.

Many of the routing attack studies in the litera-
ture originate from routing in mobile ad-hoc networks
(MANETs) [41]. This is due to the fact that MANETs
are fully decentralized in nature, without any central
points of trust, and this makes them especially difficult to
secure. While MANETs have some unique characteristics

15



like a highly dynamic topology and severely resource-
constrained devices, we can draw parallels between them
and decentralized peer-to-peer communication networks
that we address in this paper. In both, new nodes may
attach themselves at any point in the topology and there is
no central authority that would regulate admission into the
network. Both require scalable protocols that can handle
increasing numbers of nodes without consuming too many
resources. In addition to MANETs, routing attacks are
also important when talking about securing BGP, the
routing protocol used for managing the global Internet
routing table [42].

The following general classes of attacks are the most
commonly analysed in regards to routing protocol security.
For each of them, we describe state-of-the-art mitigations
and compare them to the U-Sphere protocol.

Flooding Attack In a flooding attack, an adversary
attempts to prevent normal network operation by
continuously generating control traffic that must
then be processed by other routers, consuming their
resources. State-of-the-art mitigations generally fo-
cus on identifying and rate limiting flood traffic,
most successfully using statistical analysis [43]. It
is also possible to perform such an attack on the
U-Sphere network, which does not implement any
kind of mitigations. But, as all the control mes-
sages are cryptographically signed and routing paths
in messages are protected by the signed announce
delegation chain mechanism, flooding nodes may
be detected and their links revoked, requiring the
adversary to gain trust of new users that he can
exploit for propagating flood traffic. In order to
detect flood traffic in the first place, the mentioned
existing mitigation methods may easily be added on
top of U-Sphere.

Blackhole Attack In a blackhole attack, an adversary
propagates false routing information and causes
the traffic of legitimate nodes to be redirected to
nodes under his control, where he can drop it.
In a U-Sphere network, an adversary is unable to
generate valid route announcements for non-existent
links or modify existing announcements to make the
paths appear shorter due to the signed announce
delegation chain mechanism. The adversary is still
able to drop control and data traffic that passes
through his nodes and so the blackhole attack cannot
be prevented in cases where the adversary is already
on the shortest path between the source and desti-
nation.

Link Withholding Attack In a link withholding at-
tack, an adversary fails to propagate routing control
traffic. In U-Sphere, this attack is possible, but
in case alternate paths exist, it is not particularly
disruptive as data traffic will be routed around such
link-withholding nodes.

Link Spoofing and Path Truncation Attacks In
a link spoofing attack, an adversary attempts to
advertise fake (non-existent) links with honest
nodes in order to redirect traffic. S-BGP [42] and
SPV [44] present solutions for these attacks in case
of the global Internet routing table with an existing
public-key infrastructure (PKI). In U-Sphere, we
focus on a fully decentralized solution without any
PKI in place. A U-Sphere node cannot spoof a
link or truncate the path without access to the
neighbour’s private key as all the routing announces
are cryptographically signed by the originator and
paths in route updates are protected by signed
announce delegation chains.

Replay Attack In a replay attack, an adversary prop-
agates old but otherwise valid control messages in
order to create routing issues as the information is no
longer correct. This attack is prevented by U-Sphere
through the use of cryptographically signed times-
tamps in the control messages.

Wormhole Attack In a wormhole attack, a pair of col-
luding adversarial nodes use an out-of-band network
to capture valid control messages at one location
in the network and reply them in another location,
basically creating a virtual network link which may
now be the shortest path. Solutions for MANETs
require either tightly synchronized clocks or access to
GPS locations [45], both of which are not feasible in a
network like U-Sphere where various transports may
be used. This is one of the hardest attacks to prevent
as the adversary actually creates a shorter path by
using an out-of-band network. As such, U-Sphere is
also unable to prevent this attack.

As we have shown in this section, some of the mitiga-
tion strategies used for securing MANETs and the global
Internet routing table may also be reused in U-Sphere,
while others are unnecessary due to the protocol’s existing
security features.

6.5. Limitations of U-Sphere

As any practical protocol, the U-Sphere routing proto-
col is not a silver bullet. In its current form, the protocol
requires online presence of user nodes. This is suitable for
use as a network routing protocol, similar to CJDNS or
X-Vine, but it can be an issue when building decentralized
social network services where not all users can be online
all the time. Concepts from delay/disruption tolerant
networks could be used to enable delivery of messages
in such scenarios. Targeted attacks, where the adversary
targets a single user or her friends, cannot be prevented by
U-Sphere. This is due to the fact that the protocol relies
on having trusted friends as one-hop links. Also as shown,
the protocol cannot resist attacks where the adversary is
located on the shortest path between two nodes and then
selectively drops data traffic. Handling such cases requires

16



some sort of fault detection mechanism. Using redundant
paths combined with techniques from reputation manage-
ment and data-plane fault localization could be possible
as U-Sphere supports some path flexibility by routing via
different landmarks.

7. Conclusion

In this paper we have proposed U-Sphere, a novel
location-independent routing protocol that is tolerant of
Sybil adversaries and is scalable to large topologies due to
compact routing state and low, constant bounded, path
stretch. In contrast to other state-of-the-art solutions,
our contributions therefore address all of the goals out-
lined in the introduction, namely a) location-independent
routing is achieved by using a fully distributed overlay
that can bootstrap itself without the need for landmark-
based databases, making it robust against Sybil attacks;
b) scalability in the form of low message overhead, low
per-node state, bounded by Õ(

√
n), is achieved together

with O(1) path stretch; and c) privacy is ensured by not
disclosing transport addresses to any non-trusted nodes
and by using non-unique identifiers and rotating public
keys for identifying links between nodes.

We have performed emulation-based experiments on
different network topologies, including real datasets of
existing networks. All of these experiments confirmed that
the above goals have been successfully met.

Acknowledgement

The authors have been supported by the following
institutions: Jernej Kos by the Slovenian Research Agency
(Grant 1000-11-310153) and the WiNeMo COST Action
(STSM Grant IC0906-160913-035608-35608); and Denis
Trček by the Slovenian Research Agency (research pro-
gram Pervasive computing P2-0359).

References

[1] I. Baumgart, F. Hartmann, Towards Secure User-Centric
Networking: Service-Oriented and Decentralized Social Net-
works, in: Self-Adaptive and Self-Organizing Systems Work-
shops (SASOW), 2011 Fifth IEEE Conference on, 3–8, 2011.

[2] L. Cutillo, R. Molva, T. Strufe, Safebook: A privacy-preserving
online social network leveraging on real-life trust, Communica-
tions Magazine, IEEE 47 (12) (2009) 94–101, ISSN 0163-6804.

[3] C. Grothoff, B. Polot, C. von Loesch, The Internet is Broken:
Idealistic Ideas for Building a GNU Network, in: W3C/IAB
Workshop on Strengthening the Internet Against Pervasive
Monitoring (STRINT), W3C/IAB, W3C/IAB, London, UK,
2014.

[4] B. C. Popescu, B. Crispo, A. S. Tanenbaum, Safe and Private
Data Sharing with Turtle: Friends Team-up and Beat the
System, in: Proceedings of the 12th International Conference on
Security Protocols, SP’04, Springer-Verlag, Berlin, Heidelberg,
ISBN 3-540-40925-4, 978-3-540-40925-0, 213–220, 2006.

[5] B. A. Ford, UIA: a global connectivity architecture for mobile
personal devices, Ph.D. thesis, Massachusetts Institute of Tech-
nology, 2008.

[6] D. Clark, The Design Philosophy of the DARPA Internet
Protocols, in: Symposium Proceedings on Communications Ar-
chitectures and Protocols, SIGCOMM ’88, ACM, New York,
NY, USA, ISBN 0-89791-279-9, 106–114, 1988.

[7] J. R. Douceur, The Sybil Attack, in: P. Druschel, F. Kaashoek,
A. Rowstron (Eds.), Peer-to-Peer Systems, vol. 2429 of Lecture
Notes in Computer Science, Springer Berlin Heidelberg, ISBN
978-3-540-44179-3, 251–260, 2002.

[8] L. Alvisi, A. Clement, A. Epasto, S. Lattanzi, A. Panconesi,
SoK: The Evolution of Sybil Defense via Social Networks, in:
Security and Privacy (SP), 2013 IEEE Symposium on, ISSN
1081-6011, 382–396, 2013.

[9] H. Yu, M. Kaminsky, P. B. Gibbons, A. D. Flaxman, Sybil-
Guard: Defending Against Sybil Attacks via Social Networks,
IEEE/ACM Transactions on Networking 16 (3) (2008) 576–589.

[10] G. Danezis, P. Mittal, SybilInfer: Detecting Sybil Nodes using
Social Networks, in: NDSS, 2009.

[11] C. Lesniewski-Laas, M. F. Kaashoek, Whanau: a sybil-proof
distributed hash table, in: Proceedings of the 7th USENIX
conference on Networked systems design and implementation,
NSDI’10, USENIX Association, Berkeley, CA, USA, 8–8, 2010.

[12] G. Urdaneta, G. Pierre, M. V. Steen, A survey of DHT security
techniques, ACM Comput. Surv. 43 (2) (2011) 8:1–8:49, ISSN
0360-0300.

[13] P. Mittal, M. Caesar, N. Borisov, X-Vine: Secure and Pseudony-
mous Routing Using Social Networks, in: Proceedings of NDSS
2012, 2012.

[14] M. Caesar, T. Condie, J. Kannan, K. Lakshminarayanan,
I. Stoica, ROFL: routing on flat labels, SIGCOMM Comput.
Commun. Rev. 36 (4) (2006) 363–374, ISSN 0146-4833.

[15] A. Singla, P. B. Godfrey, K. Fall, G. Iannaccone, S. Ratnasamy,
Scalable routing on flat names, Association for Computing
Machinery, ISBN 9781450304481, 1, 2010.

[16] I. Clarke, O. Sandberg, B. Wiley, T. Hong, Freenet: A Dis-
tributed Anonymous Information Storage and Retrieval System,
in: H. Federrath (Ed.), Designing Privacy Enhancing Technolo-
gies, vol. 2009 of Lecture Notes in Computer Science, Springer
Berlin Heidelberg, ISBN 978-3-540-41724-8, 46–66, 2001.

[17] N. Evans, C. GauthierDickey, C. Grothoff, Routing in the Dark:
Pitch Black, in: Computer Security Applications Conference,
2007. ACSAC 2007. Twenty-Third Annual, ISSN 1063-9527,
305–314, 2007.

[18] C. J. Delisle, CJDNS, URL https://github.com/cjdelisle/

cjdns, 2014.
[19] P. R. Zimmermann, The Official PGP User’s Guide, MIT Press,

Cambridge, MA, USA, ISBN 0-262-74017-6, 1995.
[20] N. Evans, B. Polot, C. Grothoff, Efficient and Secure Decentral-

ized Network Size Estimation, Springer-Verlag, 2012.
[21] D. Bernstein, Curve25519: New Diffie-Hellman Speed Records,

in: M. Yung, Y. Dodis, A. Kiayias, T. Malkin (Eds.), Public
Key Cryptography - PKC 2006, vol. 3958 of Lecture Notes in
Computer Science, Springer Berlin Heidelberg, ISBN 978-3-540-
33851-2, 207–228, 2006.

[22] D. Bernstein, N. Duif, T. Lange, P. Schwabe, B.-Y. Yang,
High-speed high-security signatures, Journal of Cryptographic
Engineering 2 (2) (2012) 77–89, ISSN 2190-8508.

[23] I. Abraham, C. Gavoille, D. Malkhi, N. Nisan, M. Thorup,
Compact name-independent routing with minimum stretch,
ACM Trans. Algorithms 4 (3) (2008) 37:1–37:12, ISSN 1549-
6325.

[24] Y. Mao, F. Wang, L. Qiu, S. Lam, J. Smith, S4: Small State
and Small Stretch Compact Routing Protocol for Large Static
Wireless Networks, IEEE/ACM Transactions on Networking
18 (3) (2010) 761–774.

[25] P. B. Godfrey, I. Ganichev, S. Shenker, I. Stoica, Pathlet
Routing, SIGCOMM Comput. Commun. Rev. 39 (4) (2009)
111–122, ISSN 0146-4833.

[26] I. Abraham, C. Gavoille, D. Malkhi, Routing with Improved
Communication-Space Trade-Off, in: R. Guerraoui (Ed.), Dis-
tributed Computing, vol. 3274 of Lecture Notes in Computer
Science, Springer Berlin Heidelberg, ISBN 978-3-540-23306-0,

17



305–319, 2004.
[27] N. S. Evans, C. Grothoff, Beyond Simulation: Large-scale Dis-

tributed Emulation of P2P Protocols, in: Proceedings of the
4th Conference on Cyber Security Experimentation and Test,
CSET’11, USENIX Association, Berkeley, CA, USA, 4–4, 2011.

[28] D. J. Bernstein, CurveCP: Usable security for the Internet, URL
http://curvecp.org, 2011.

[29] J. Kos, U-Sphere implementation and testbed, URL https://

github.com/kostko/unisphere, 2014.
[30] A.-L. Barabasi, R. Albert, Emergence of Scaling in Random

Networks, Science 286 (5439) (1999) 509–512.
[31] P. Holme, B. J. Kim, Growing scale-free networks with tunable

clustering, Phys. Rev. E 65 (2002) 026107.
[32] J. Leskovec, J. Kleinberg, C. Faloutsos, Graphs over Time: Den-

sification Laws, Shrinking Diameters and Possible Explanations,
in: Proceedings of the Eleventh ACM SIGKDD International
Conference on Knowledge Discovery in Data Mining, KDD ’05,
ACM, New York, NY, USA, ISBN 1-59593-135-X, 177–187,
2005.

[33] M. Caesar, M. Castro, E. B. Nightingale, G. O’Shea, A. Row-
stron, Virtual ring routing: network routing inspired by DHTs,
SIGCOMM Comput. Commun. Rev. 36 (4) (2006) 351–362,
ISSN 0146-4833.

[34] M. Thorup, U. Zwick, Compact routing schemes, in: Proceed-
ings of the thirteenth annual ACM symposium on Parallel
algorithms and architectures, SPAA ’01, ACM, New York, NY,
USA, ISBN 1-58113-409-6, 1–10, 2001.

[35] N. S. Evans, C. Grothoff, R5N: Randomized recursive routing
for restricted-route networks, Institute of Electrical and Elec-
tronics Engineers, ISBN 978-1-4577-0458-1, 316–321, 2011.

[36] B. Heep, R/Kademlia: Recursive and topology-aware overlay
routing, in: Telecommunication Networks and Applications
Conference (ATNAC), 2010 Australasian, 102–107, 2010.

[37] H. Yu, P. B. Gibbons, M. Kaminsky, F. Xiao, SybilLimit: A
Near-Optimal Social Network Defense Against Sybil Attacks,
IEEE/ACM Transactions on Networking 18 (3) (2010) 885–898.

[38] N. Tran, J. Li, L. Subramanian, S. S. Chow, Optimal Sybil-
resilient node admission control, Institute of Electrical and Elec-
tronics Engineers, ISBN 978-1-4244-9919-9, 3218–3226, 2011.

[39] L. Wang, J. Kangasharju, Real-world sybil attacks in BitTor-
rent mainline DHT, in: Global Communications Conference
(GLOBECOM), 2012 IEEE, ISSN 1930-529X, 826–832, 2012.

[40] Z. Yang, C. Wilson, X. Wang, T. Gao, B. Y. Zhao, Y. Dai,
Uncovering Social Network Sybils in the Wild, ACM Trans.
Knowl. Discov. Data 8 (1) (2014) 2:1–2:29, ISSN 1556-4681.

[41] B. Kannhavong, H. Nakayama, Y. Nemoto, N. Kato, A. Ja-
malipour, A survey of routing attacks in mobile ad hoc net-
works, Wireless Communications, IEEE 14 (5) (2007) 85–91,
ISSN 1536-1284.

[42] S. Kent, C. Lynn, K. Seo, Secure Border Gateway Protocol (S-
BGP), Selected Areas in Communications, IEEE Journal on
18 (4) (2000) 582–592, ISSN 0733-8716.

[43] S. Desilva, R. Boppana, Mitigating malicious control packet
floods in ad hoc networks, in: Wireless Communications and
Networking Conference, 2005 IEEE, vol. 4, ISSN 1525-3511,
2112–2117 Vol. 4, 2005.

[44] Y.-C. Hu, A. Perrig, M. Sirbu, SPV: Secure Path Vector Routing
for Securing BGP, SIGCOMM Comput. Commun. Rev. 34 (4)
(2004) 179–192, ISSN 0146-4833.

[45] Y.-C. Hu, A. Perrig, D. Johnson, Wormhole attacks in wireless
networks, Selected Areas in Communications, IEEE Journal on
24 (2) (2006) 370–380, ISSN 0733-8716.

AppendixA. Proofs of Stretch and State Bounds

In this section we provide proofs for our stated path
stretch and state bounds. Path stretch is the ratio between
the length of paths taken by U-Sphere and the length of
the shortest possible path in the network topology. We

measure state in the number of entries in the routing and
name resolution tables. These proofs do not assume any
adversarial attacks.

Theorem 1 (Path Stretch Bound). After routing
state convergence, U-Sphere routes the first message with
path stretch ≤ 7.

Proof. There are several scenarios that can result in
lower path stretch – if the source s knows a destination d’s
L-R address, if d is a landmark node, if d ∈ Vs or in case of
shortcutting. In these cases it is easy to see that the stretch
will be lower, so we omit these scenarios and focus instead
on the last scenario where name-resolution via a relay
sloppy group member v in the extended vicinity is needed
and therefore d 6∈ Vs and d is not a landmark node. In this
case, the full path required will be s  v  `d  d (see
Figure 4) where v ∈ Sd and by construction of extended
vicinities v ∈ Vs. `d is the landmark closest to d and
each intermediate path segment  is the shortest path
learned via the path-vector protocol. Let d(a, b) represent
the shortest distance metric between nodes a and b in the
network topology. To aid with the proof we first provide
the following lemma.

Lemma 1.1. Shortest distance between `d and d is at
most twice the distance between s and d: d(`d, d) ≤
2d(s, d).

Proof.

d(`d, d) = d(d, `d) (undirected graph)

≤ d(d, `s) (`d is d’s closest landmark)

≤ d(d, s) + d(s, `s) (triangle inequality)

= d(s, d) + d(s, `s) (undirected graph)

≤ d(s, d) + d(s, d) (`s ∈ Vs ∧ d 6∈ Vs)
= 2d(s, d).

2

Now we can derive the upper bound for each segment of
the full path a message must traverse. For the first segment
s v, the following holds true:

d(s, v) ≤ d(s, d) (v ∈ Vs ∧ d 6∈ Vs)

For the second segment v  `d, the following holds
true:

d(v, `d) ≤ d(v, s) + d(s, d) + d(d, `d)
(triangle inequality)

≤ d(s, v) + d(s, d) + d(`d, d) (undirected graph)

≤ d(s, d) + d(s, d) + d(`d, d) (v ∈ Vs ∧ d 6∈ Vs)
≤ d(s, d) + d(s, d) + 2d(s, d) (Lemma 1.1)

= 4d(s, d).

18



For the third segment `d  d, the following statement
holds true by simple application of Lemma 1.1:

d(`d, d) ≤ 2d(s, d).

Now, by combining all three path segments into the
final path, we see that its length is ≤ 7d(s, d). This result
shows an upper bound on path stretch of 7. 2

Theorem 2 (State Bound). After routing state con-
vergence and with high probability, each U-Sphere node
must maintain O(

√
n log n) entries in its routing and name

resolution tables.

Proof. Each node must maintain the following state in
its routing tables via the path-vector protocol: a) route
entries for each of the landmark nodes; and b) route
entries for its extended vicinity. The protocol has each
node become a landmark independently with probability√

(log n)/n (based on a node’s size estimate n). There
are therefore O(

√
n log n) landmark nodes in expectation

and, by a Chernoff bound, with high probability. For the
extended vicinity, each node accepts O(

√
n log n) route

updates from its neighbours.
In addition to routing tables, each node must also

maintain name resolution state that is required for resolv-
ing node identifiers into L-R addresses: a) node identifier
to L-R address mappings for all members of its own sloppy
group; b) links to near members of its own sloppy group;
and c) back-links to members of its own sloppy group.
By construction, each node assigns itself into a sloppy
group by examining the first blog2(

√
n/ log n)c bits of its

node identifier. This results in each sloppy group having
O(
√
n log n) nodes in expectation, and again by a Chernoff

bound, with high probability. Therefore, each node must
maintain mappings for O(

√
n log n) other nodes.

Overlay construction requires each node to maintain
links to O(log n) members of its own sloppy group and
O(log2 n) back-links to members of its own sloppy group.
Forward sloppy group link state is shared with the ex-
tended vicinity route entries stored in the routing table.

Finally, each node with degree δ must also maintain
O(δ) security associations with its peers. Although, in the
worst case, O(δ) could be larger than O(

√
n log n), the

node only needs to store security associations for the peers
that are part of active routes in the routing table – and
there are only O(

√
n log n) active routes at any one time.

Summing up all the different amounts of state needed
by different parts of the protocol, we see that U-Sphere
requires O(

√
n log n) per-node state. 2

19


