
Quantum Computing Engineeringuantum
Transactions onIEEE

Received 22 December 2022; revised 16 June 2023; accepted 16 June 2023; date of publication 20 June 2023;
date of current version 15 September 2023.

Digital Object Identifier 10.1109/TQE.2023.3287736

The Quantum Path Kernel: A Generalized
Neural Tangent Kernel for Deep
Quantum Machine Learning
MASSIMILIANO INCUDINI1 , MICHELE GROSSI2 ,
ANTONIO MANDARINO3 , SOFIA VALLECORSA2 ,
ALESSANDRA DI PIERRO1 , AND DAVID WINDRIDGE4
1Department of Computer Science, University of Verona, 37134 Verona, Italy
2European Organization for Nuclear Research (CERN), 1211 Geneva, Switzerland
3International Centre for Theory of Quantum Technologies (ICTQT), University of Gdansk, 80-309 Gdańsk, Poland
4Department of Computer Science, Middlesex University, The Burroughs, NW44BT London, U.K.

Corresponding author: Massimiliano Incudini (e-mail: massimiliano.incudini@univr.it).

The work of A. Mandarino was supported in part by the Foundation for Polish Science (FNP), IRAP project ICTQT, contract
2018/MAB/5, and in part by EU Smart Growth Operational Programme and the University of Verona throughout Mobility under Grant
PIA2022_CATB_DIPIERRO.

ABSTRACT Building a quantum analog of classical deep neural networks represents a fundamental chal-
lenge in quantum computing. A key issue is how to address the inherent nonlinearity of classical deep learn-
ing, a problem in the quantum domain due to the fact that the composition of an arbitrary number of quantum
gates, consisting of a series of sequential unitary transformations, is intrinsically linear. This problem has
been variously approached in literature, principally via the introduction of measurements between layers
of unitary transformations. In this article, we introduce the quantum path kernel (QPK), a formulation of
quantummachine learning capable of replicating those aspects of deep machine learning typically associated
with superior generalization performance in the classical domain, specifically, hierarchical feature learning.
Our approach generalizes the notion of quantum neural tangent kernel, which has been used to study the
dynamics of classical and quantum machine learning models. The QPK exploits the parameter trajectory,
i.e., the curve delineated by model parameters as they evolve during training, enabling the representation of
differential layerwise convergence behaviors, or the formation of hierarchical parametric dependencies, in
terms of their manifestation in the gradient space of the predictor function. We evaluate our approach with
respect to variants of the classification of Gaussian xor mixtures: an artificial but emblematic problem that
intrinsically requires multilevel learning in order to achieve optimal class separation.

INDEX TERMS Machine learning, neural tangent kernel (NTK), quantum kernel, quantum machine learn-
ing, quantum neural networks (QNNs), support vector machine (SVM).

I. INTRODUCTION
Bridging classical deep neural networks and quantum com-
puting represents a key research challenge in the field of
quantum machine learning [1], [2]. The potential for im-
provement offered by quantum computing in the machine
learning domain may be characterized in terms of its im-
pact on algorithmic efficiency, generalization error, or else its
capacity for treating quantum data [3].

A notable recent result in the field has been the introduc-
tion of the concept of variational quantum algorithms and
the related neural network analog referred to as the quantum
neural network (QNN) [4]. This, in essence, consists of a

feature map encoding data into a quantumHilbert space upon
which certain parameterized unitary rotations are applied
prior to final measurement in order to obtain a classification
or regression output. The system as a whole is then optimized
by classical methods. Suchmodels provably lead to a compu-
tational advantage over classical models on certain artificial
tasks [5], and in respect to the analysis of specific physical
systems [6]. It has been quantitatively shown that QNNs can
be trained faster than their classical analogues [4]. However,
QNNs remain problematic in various respects. One limita-
tion arises from the so-called barren plateau problem [7],
in which the variance of the gradient vanishes exponentially

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/
VOLUME 4, 2023 3101616

https://orcid.org/0000-0002-9389-5370
https://orcid.org/0000-0003-1718-1314
https://orcid.org/0000-0003-3745-5204
https://orcid.org/0000-0002-7003-5765
https://orcid.org/0000-0003-4173-7941
https://orcid.org/0000-0001-5507-8516
mailto:massimiliano.incudini@univr.it

Engineeringuantum
Transactions onIEEE

Incudini et al.: QUANTUM PK: A GENERALIZED NTK FOR DEEP QUANTUM MACHINE LEARNING

with the system size as the parameterized transformation be-
comes increasingly expressive [8]. A number of approaches,
including layerwise training of QNNs [9], have been pro-
posed to mitigate the issue.
A second problematic aspect of QNNs, and the one that

constitutes our principal focus here, is the linearity of the dy-
namics of quantum systems. Concatenations of linear unitary
transformations remain unitary, and thus, “stacked” quantum
transformations, in effect, collapse to a single linear transfor-
mation, appearing to rule out de facto the hierarchical feature
learning of classical deep neural networks, which relies on
nonlinearities to separate feature layers. This property makes
the QNN essentially a kernel machine [10]. In terms of the
predictor function, however, the QNN is composed of mul-
tiplications of rotation operators parameterized by both the
feature and model weights. The nonlinearity of projections
of rotation operators can be exploited to replicate a very
constrained form of nonlinearity for feature learning [11],
[12]. Another strategy is to introduce nonlinearity via the
measurement operation, i.e., a dissipative QNN [13]. Both
approaches involve the projection of the quantum state into
a subspace of the original Hilbert space.
Much of the recent study of the dynamics of deep neural

networks in the classical realm has focused on the neural
tangent kernel (NTK) [14] which represents the network in
terms of the corresponding training gradients in the model
parameter space. The NTK hence approximates the behavior
of predictors via a linear model. It is often therefore applied
to study neural networks in their asymptotic, infinite-width,
limit. In this regime, the network exhibits lazy training [15],
i.e., parameter gradients remain at their initial values during
the entirety of the training. The NTK thus accurately charac-
terizes the dynamics of such infinite-width neural networks,
but is otherwise only an approximation [16]. The difference
in test error between the predictor and its linearized version
depends on the problem structure [17], with hierarchical fea-
ture learning capability being crucial to obtaining superior
performance [18]. However, the kernel nature of the NTK
means that it shares with quantum computing a ready inter-
pretation within a Hilbert space, and is thus of considerable
interest within quantum machine learning. The first explicit
application of NTK to QNNs, the quantum neural tangent
kernel (QNTK) was given in [19].
In this article, we propose a method for overcoming the

de facto lack of hierarchical feature learning capability in
QNNs. We propose the application of path kernels [20] to
QNNs, which we call the quantum path kernel (QPK). Such
an approach generalizes the QNTK so that the resulting ker-
nel is representative of the ensemble of NTKs calculated
over the full parameter path trajectory, i.e., the function de-
scribing the evolution of model parameters over time, in-
cluding implicitly any parametric evolutions corresponding
to hierarchical feature learning. We show experimentally
an increased expressivity of the resulting model relative to
linearized equivalents, evaluating our method on the Gaus-
sian xor mixture classification problem. For this problem,

finite-width neural networks have both theoretically and
empirically shown to be close-to-optimal performance,
whereas linear NTK models fail [21], suggesting that it
cannot be effectively resolved without implicating multi-
level learning behavior. Furthermore, we discuss possible
improvements for the proposed approach, which can be ob-
tained by considering only the contribution of the param-
eter gradient path that gives rise to the most decorrelated
feature representation. These specifically corresponds to the
contributions associated with the maximally nonlinear point
of the parameter path, corresponding to the largest (positive
or negative) eigenvalues of the Hessian of the predictor func-
tion [22]. We further enhance the decorrelation between fea-
ture representations via a stochastic, noisy, or nongradient-
descent-based training algorithm in which the averaging op-
eration between decorrelated representations allows us to
interpret the model as an ensemble technique.
The rest of this article is organized as follows. In Sec-

tion II, we briefly review the necessary conceptual back-
ground. In Section III, we present the QPK and discuss the
hierarchical feature learning of the induced model. In Sec-
tion IV, we demonstrate how this leads to superior perfor-
mance in solving the Gaussian xor mixture classification
problem. Finally, Section V concludes this article.

A. CONTRIBUTIONS
1) We propose the QPK as a mechanism for building hy-

brid classical/quantummachine learningmodels which
are able to emulate the hierarchical feature learning
structure of deep neural networks without violating
the underlying linearity of the quantum dynamics. We
conjecture such a kernel can lead to improved perfor-
mance of the kernel machine on tasks involving feature
learning.

2) We provide numerical evidence of the superior per-
formance of the QPK compared to the QNTK on
the Gaussian xor mixture problem, which is Bayes
optimally soluble only through implicating layerwise
nonlinear separability.

3) We consider the importance of the extraction of non-
correlated feature representations corresponding to
maximally varying portions of the parameter gradient
path.

B. RELATED WORKS
The introduction of the NTK by [14] has marked a significant
step in the theory of machine learning, shedding new light
on discussions regarding the relative performance of linear
and nonlinear models. For example, Ghorbani et al. [17] sug-
gested that tasks in which kernel methods (including NTK)
perform worse than neural networks are those in which the
kernel suffers from the curse of dimensionality, whereas
neural networks, in learning some useful lower dimensional
representation, do not. One example of such a problem is
the Gaussian xor mixture classification task [21]. Further-
more, linearized models have been shown to perform slightly

3101616 VOLUME 4, 2023

Incudini et al.: QUANTUM PK: A GENERALIZED NTK FOR DEEP QUANTUM MACHINE LEARNING Engineeringuantum
Transactions onIEEE

worse than wide (i.e., large, but noninfinite) neural networks
on a CIFAR-10 benchmark [23], with the gap between the
approaches increasing for finite width networks [24].
In relation to quantum computation, researchers have

spent substantial effort on the limitations imposed by the
linear dynamics of quantum systems. Authors in [25] review
early approaches to the formulation of nonlinear quantum
machine learning models: some have focused on developing
a quantum perceptron equivalent or quantum neuron, i.e., a
candidate building block for the quantum analog of neural
networks; Schuld et al. [26] used phase estimation to imple-
ment the functioning of a step function; the auhtors in [27]
and [28] proposed to exploit the repeat until success (RUS)
policy to mimic the behavior of tangent and sigmoid activa-
tion functions, while Gili et al. [29] used RUS to construct a
Born machine; Tacchino et al. [30] emulated the nonlinearity
of perceptrons using measurements. In relation to QNNs,
Sharma et al. [13] proposed dissipative QNNs in which the
nonlinearity is obtained via intertwining measurements be-
tween unitary gates; the authors in [31] and [32] proposed
the use of a larger Hilbert space to implement the nonlinear
transformation, while Daksin [33] exploited the exponential
form of unitary gate to achieve periodic activation functions.
Finally, nonlinear models of quantum mechanics have been
conjectured by [34], although these violate some computa-
tional complexity assumptions [35].
Regarding QNTK literature, authors in [36] have quanti-

fied the benefic effect of introducing handcrafted symmetries
in the QNN using tools derived from the QNTK. Authors
in [37] and [38] investigated lazy training in the quantum
machine learning context.

II. BACKGROUND
This section briefly introduces the key concepts and notations
in relation to deep learning and quantum machine learning
through which we develop our results. We denote by D =
{(xi, yi)}ni=1 ⊆ X × Y a labeled dataset of pairs that are i.i.d.
sampled from an unknown probability distribution. We indi-
cate the data vector space with X = R

d , and the target space
with eitherY = R orY ⊆ Z, |Y| < ∞ for regression or clas-
sification tasks, respectively. We indicate uniform sampling
from a uniform discrete distribution with ∼ {vi}ni=1 and sam-
pling from a normal distribution of mean μ and variance σ 2

with ∼ N (μ, σ).

A. PRIMER ON QUANTUM MACHINE LEARNING MODELS
Here, we fix the notation for our quantum machine learn-
ing models. The state of a quantum system of m-qubits is
described by a density matrix ρ ∈ H ≡ C

2m×2m . The initial
state of a quantum computation is denoted by ρ0 = |0〉〈0|,
and the (possibly parametric) unitary transformations by
U,V, andW . Any parametric unitary can be written as

U (θ) = exp

{
−i

m∑
k=1

f j(θ)σ
(q1,...,qk)
α1,...,αk

}
(1)

where αi ∈ {x,y,z, 0} for i = 1, . . . , k, and σα1,...,αk is a
tensor product of one or more corresponding Pauli matrixes
applied to qubits q1, . . . , qk. The same transformation may
be interpreted as a rotation and be equivalently denoted by
R(i1,...,ik)
α1,...,αk (θ), where θ ∈ R

P are rotational angles. A QNN is
a function of the form1

f (x; θ) = Tr[ρx,θO] = Tr[V †(θ)U†
φ (x)ρ0Uφ (x)V (θ)O] (2)

where O indicates any measurement operator. Both the ma-
trixes U and V are decomposed in single and two-qubits
parametric rotations interspersed with nonparametric gates
(e.g., cnot).

B. KERNEL METHODS AND KERNEL MACHINES
A kernel on X is a binary, symmetric, and positive definite
function κ : X × X → R. The kernel function generalizes
the notion of an inner product bymapping elements ofX into
a Hilbert space H, which typically has a richer, more task-
specific, structure compared to the original space equipped
with linear inner products [40]. The mapping is achieved via
an implicit feature map φ : X → H. This formalism enables
the exploitation of potentially infinite-dimensional Hilbert
spaces (such as those implied by the Gaussian feature map or
radial basis function, in which x is mapped to a multivariate
Gaussian of mean x and fixed covariance), residing in the
space of square-integrable multivariate functions.
From the perspective of feature transformation, the kernel

function κ can be expressed as follows:

κ (x, x′) = 〈φ(x),φ(x′)〉H. (3)

In the majority of tasks, it is not necessary to have knowledge
of or utilize the explicit form of the feature map φ; it is
sufficient that function κ obeys the Mercer’s condition.

A kernel machine is a function that can be expressed as
a linear combination of kernel evaluations over the training
objects {(xi, yi)}ni=1

f (·) =
n∑
i=1

αiκ (xi, ·) =
n∑
i=1

αiφi(·) (4)

where αi ∈ R (the first equality being a statement of the
celebrated representer theorem). Different kernels capture
different aspects of the data, resulting in the corresponding
kernel machines having differing characteristics (and ulti-
mately differing performances in the context of a classifica-
tion problem).
The associated learning problem is then one of finding the

kernel machine f = argminR[f] that minimizes the empir-
ical risk function

R[f] =
n∑
i=1

�(f (xi), yi) + λ‖ f‖2 (5)

1The most general form of QNN proposed is the data reuploadingQNN,
which allows the interspersing of data encoding and trainable transforma-
tions. Such a form, however, does not add any computational power to the
standard QNN approach [39].

VOLUME 4, 2023 3101616

Engineeringuantum
Transactions onIEEE

Incudini et al.: QUANTUM PK: A GENERALIZED NTK FOR DEEP QUANTUM MACHINE LEARNING

with � being a convex loss function, and λ ≥ 0 regularization
term. The learning problem is thus a convex, n-dimensional
optimization problem independent of the dimensionality of
the original space in which the xi were embedded prior to
feature transformation.

C. NOTIONS OF NONLINEARITY IN CLASSICAL AND
QUANTUM LEARNING MODELS
With respect to both kernel machines and layerwise deep
learning, the concepts of linear model, nonlinear model, and
feature learning that we utilize here are as formalized in [41].
A linear model is thus a function of the form

f (x; θ) =
p∑
j=1

θ jφ j(x) (6)

where {φ j : X → R}pj=0 are the feature functions, whose
values correspond with the model features. We might con-
sider an additional feature φ0 ≡ 1 that incorporates the bias.
The formula in (6) is linear with respect to the space of the
parameters Rp; in fact, we can interpret the function as an
inner product in that space, i.e.,

f (x; θ) = 〈θ,φ(x)〉Rp (7)

with θ = (θ1, . . . , θp) and φ(x) = (φ1(x), . . . , φp(x)), while
it behaves nonlinearly with respect to the original feature
space X , due to the feature functions. In this sense, kernel
machines are linear models.
A nonlinear model is a function of the form

f (x; θ) =
p∑
j=1

θ jφ j(x) + ε

2

p∑
j,k=1

θ jθkψ j,k(x)

+ ε

3!

p∑
j,k,�=1

θ jθkθ�ψ j,k,�(x) + · · · (8)

The higher order terms of the expansion are characterized by
their own set of features, e.g., {ψ j,k : X → R}pj,k=1 for the
second-order term. The elements of such sets are unique up to
a permutation of their variables, thus the terms 1/2!, 1/3!, . . .
compensate the multiple counting of such elements in (8).
The term ε 1 adjusts the contribution of the nonlinear
terms. If the model is truncated to the second term it is
denoted a quadratic model [41], [42]. In such a case, the
loss function is quartic, and thus, we cannot analytically de-
termine the optimal parameters as for linear regression. The
parameter dynamics of such a model is given by

f (x, θ + dθ) = f (x, θ)

+
p∑
j=1

dθ j

[
φ j(x)+ε

p∑
k=1

θ jψ j,k(x)

]
(9)

+ ε

2!

p∑
j,k=1

dθ jdθkψ j,k(x) (10)

= f (x, θ) +
p∑
j=1

dθ jφ
E
j (x; θ)

+ ε

2

p∑
j,k=1

dθ jdθkψ j,k(x) (11)

where φE are effective feature functions, i.e., features that
depend on, and evolve with, the model parameters, which
are learnt during the optimization phase. This behavior can
be generalized to consider terms of even higher orders: the
presence of order n terms make the feature functions of order
n− 1, effective, which may further influence the lower order
terms.Models having effective feature functions have feature
learning capabilities. A deep learning model is both capa-
ble of feature learning and composed of several nonlinear
modules arranged in a hierarchical fashion [43]; such that
differing layers can follow differing (albeit hierarchically
conditioned) gradient paths.
Turning to QNNs, the quantum model

f (x; θ) = Tr[ρx,θO] (12)

with ρx,θ = V †(θ)U†
φ (x)|0〉〈0|Uφ (x)V (θ) and O a Hermitian

observable, is a linear model in the space of density matrixes
of the quantum system H: the trace operation Tr[A†B] is an
inner product for the space of matrixesCk×k. Such a property
implies that the construction of a layerwise architecture for
v, i.e., v(θ) = ∏

i Vi(θ) effectively collapses to a single op-
eration: this may add more degrees of freedom to the linear
transformation2 but cannot make the model nonlinear in H
in the manner of a classical deep learning model.
However, in terms of the predictor function f (x; θ), the

quantum model does not necessarily fit the form set out (6)
since the parameters of the QNN model, in particular the
angle of rotation operation (in the form of imaginary expo-
nential function), are subject to the trace operation. Thus, for
example, consider a single-qubit quantum model acting on
a single input x ∈ R

1, depending on a single parameter θ ∈
R
1, with feature mapUφ (x) = exp(−ixσx), variational form

V (θ) = exp(−iθσx) and measurement operator i O = σz, in
which case f (x; θ) has the form

f (x; θ) = Tr[(
cos2(θ + x) −i sin(θ + x) cos(θ + x)

1
2 i sin(2(θ + x)) sin2(θ + x)

)(
1 0

0 −1

)]

= cos(2(θ + x)) (13)

which is nonlinear in its weights. Clearly, if we were to con-
sider a model other than a QNN then the predictor function
would change, for example, as in [30]; however, it does not
alter our argument here.
To recap, a QNN is a linear model in the Hilbert space of

the density matrixes due to the linearity of the evolution of

2Depending on the generators involved and up to a maximum of 4n − 1
(where n is the number of qubits).

3101616 VOLUME 4, 2023

Incudini et al.: QUANTUM PK: A GENERALIZED NTK FOR DEEP QUANTUM MACHINE LEARNING Engineeringuantum
Transactions onIEEE

closed quantum systems. However, its predictor is nonlinear
in the parameter vector θ since its structure results in a com-
position of trigonometric functions. This potentially allows
a limited degree of representational learning capability if
aggregated layerwise (limited in the sense of applying only
to a highly constrained set of activation functions). However,
due to the Lie algebraic equivalence of any given sequence
of quantum transformations to some single unitary operation
in the absence of the trace operation, we are still not able to
characterize truly deep models in the quantum domain.

D. CHARACTERIZATION OF MODEL DYNAMICS THROUGH
THE NEURAL TANGENT KERNEL
The output f (x; θ) of a machine learning model trained
via (possibly stochastic) gradient descent can be approxi-
mated as a first-order Taylor expansion f (x; θ) ≈ f (x; θ0) +
∇θ f (x; θ0)(θ − θ0). Such an approximation allows the rep-
resentation of machine learners as linear (kernel) models via
the NTK ([14])

κntk(x, x′; θ) = ∇θ f (x; θ) · ∇θ f (x
′; θ). (14)

This is widely used to characterize the dynamics of infinite-
width neural networks [15], in which the NTK is independent
of the random initialization and constant in time. On a coarse
level of detail, we can assert that model training that takes
place in the lazy-training regime, i.e., when the evolution of
θ(t) during the training of the model f (x, θ) closely follows
the tangent path, can be decently approximated by the NTK.
A more detailed analysis in [16] has revealed that the NTK is
constant if and only if the model is linear (in its parameters).
Such a result allows us to quantify the nonlinearity of a
model through its Hessian norm of the predictor function:
if ‖Hf ‖ ‖∇w f‖ then the model is nearly linear. This has
been used in [11] to analyze the behavior of the QNNs in the
lazy training regime.

III. QUANTUM PATH KERNEL FRAMEWORK
Extant quantummethods hence do not fully capture the devi-
ations from gradient path linearity exhibited by empirically
optimal finite-width learners in the classical domain during
hierarchical feature learning (where, of necessity, lower level
features reach learning convergence prior to the higher level
features that utilize them). Thus, in order to encompass this
learning behavior within the (implicitly kernel-based) quan-
tummachine learning regime, we introduce into the quantum
domain a key idea of Domingo [20], namely, path kerneliza-
tion

κpk(x, x′; γ) =
∫
γ

∇θ f (x; θ) · ∇θ f (x′; θ) dθ (15)

where kpk is the path kernel, i.e., the line integral of κntk
over the multidimensional curve representing the evolution
of the parameters θ = γ (t), t ∈ [0, 1] during training, with
θ̄ = γ̄ (1). Appendix A1 gives a proof the that path kernel
is effectively Mercer, and sets out the pseudocode for its
construction.

In general, chain rule dependencies arising from the
specifics of the architecture of the classical deep networks
will imply that hierarchical dependencies develop among
the parameters during learning. The result holds even for
stochastic gradient descent optimization, in which case (15)
is a stochastic integral. It is thus key to our argument to
consider the parameter path γ and its morphological evolu-
tion. For linear models, assuming a vanilla gradient descent
training over a convex loss function L, the parameter path
is described by a linear vector {(1 − t)θ0 + tθ f | t ∈ [0, 1]},
where θ0 ∈ R

p are the parameters at their initialization, and
θ f ∈ R

p are the parameters at their convergence on the (ide-
ally global) minima of L. In this case, it is immediately
possible to check that the derivative of the linear model ∇θ f
is independent of θ , and thus, that the NTK is constant. For
nonlinear models, the loss function L may become noncon-
vex and γ is not constrained to have a linear trajectory. In
this latter case, both the ∇θ f and the NTK will vary over
time during learning.
The path kernel was originally introduced in [20] in terms

of a direct functional equivalence between nonlinear models
trained with gradient descent and path kernel machines (cf
Appendix A2). We do not, however, here, focus on the po-
tential of path kernels in approximating nonlinear models.
Instead, we seek to exploit the intrinsic potential of path
kernels to capture implicit feature hierarchy formation in a
manner capable of implementation on a hybrid deep machine
learning model within a QNN setting. We thus seek to es-
tablish whether incorporation of a quantum version of path
construction into kernel machines, such as the support vector
machine (SVM), can yield performance enhancements in a
feature learning setting: Section IV will seek to quantify this
directly.
We depict the construction of the path kernel in Fig. 1.

The parameter trajectory for a nonlinear model is described
by a complex, nonstraight curve. Each point of the parameter
path θt = γ (t) may be used to define a new kernel represen-
tation for the training data, namely, κntk(x, x′; θt). We can
then define a sequence of kernels stacked in a hierarchical
way (whose structure, in passing, resembles the layers of a
deep neural network, though this observation is peripheral to
the argument being made here). Thus, each new “layer” is
a source of representation learning: the new representation
(i.e., kernel matrix) is the result of an optimization process
that further adapts the previous representation to the given
data discrimination problem (which resembles, though is
again not equivalent to, classifier boosting).
It thus becomes possible, via explicit substitution for the

correspondingQNTKpreviously defined, to construct a QPK
as follows:

κqpk(x, x′; γ) =
∫
γ

∇θ〈0|V †(x)U†(θ)OU (θ)V (x)|0〉T

· ∇θ〈0|V †(x′)U†(θ)OU (θ)V (x′)|0〉 dθ
(16)

VOLUME 4, 2023 3101616

Engineeringuantum
Transactions onIEEE

Incudini et al.: QUANTUM PK: A GENERALIZED NTK FOR DEEP QUANTUM MACHINE LEARNING

FIGURE 1. Computation of the path kernel. (Bottom left) A typical parameter trajectory γ is depicted, representing parametric evolution during the
training phase. (Top left) As θ evolves, it gives rise to differing NTK matrixes, corresponding to distinct representations of the data. Such a sequence of
matrixes thus give rise to a hierarchical stack of representations in the feature learning regime. (Middle) As the training approaches convergence,
subsequent matrixes become similar to each other, and thus their corresponding representations are correlated. (Right) The path kernel constitutes the
average over these representations.

≈ 1

T

T−1∑
i=0

∇θ〈0|V †(x)U†(θt)OU (θt)V (x)|0〉T

· ∇θ〈0|V †(x′)U†(θt)OU (θt)V (x′)|0〉
(17)

where T is the number of points sampled from the curve
γ , and t = i/T ∈ [0, 1]. Equation (16) defines the QNTK as
its classical analog. Equation (17) is the discretized version
of the preceding equations, corresponding to actual imple-
mentation in a gradient descent-trained model. The equation
representing the corresponding kernel machine is given by

f (·) =
n∑
i=1

αiκqpk(xi, ·) (18)

where the coefficients αi are determined during the training
process (such as is the case for SVMs and kernel ridge regres-
sors), and xi are the elements of the training set. Importantly,
these coefficients do not depend on the value of x.

The resulting QPK is consequently both a quantized ver-
sion of Domingo’s path kernel as well as a generalization
of the QNTK, one that is implicitly capable of embodying
the complex parametric interactions (such as transient para-
metric coevolutions) that occur during learning in order to
arrive at the final trained model, including those implicated
in hierarchal feature learning.

A. QUANTUM PATH KERNEL AS A GENERALIZATION OF
QUANTUM NEURAL TANGENT KERNEL
The primary motivation for introducing the QPK is to en-
hance the performance of kernel machines in the quantum
domain. As such, it represents a departure from the typical
focus of the QNTK theory, which primarily aims to predict
specific properties of the underlying quantum model. Never-
theless, it is possible to interpret the QPK as a generalization
of the QNTK with corresponding insights into the dynamics
of the training process. In particular, it may be seen that the

QNTK is constant only when it is fully independent of θ, in
which case

κqpk(x, x′; γ) =
∫
γ

κqntk(x, x′; θ) dθ

= κqntk(x, x′; 0)
∫
γ

dθ = κqntk(x, x′; 0).
(19)

That is, the QPK becomes identical to the QNTK. However,
as set out in Section II-C, the particular structure of QNNs
will, of itself, give rise to a nonlinear predictor. Thus, in
principle, the QNTK would not be expected to be constant
in output terms in the finite width regime [11]. However,
a close-to-constant behavior can be expected for quantum
machine learning models whose training is lazy (i.e., lazy
training induced via overparameterization of the QNN, such
that a large number of parameters result in a simplified loss
landscape [44], [45], leading to rapid convergence to a global
minima).

B. DECORRELATION IN FEATURE REPRESENTATION
The QPK clearly exhibits dependency on the training initial-
ization: different initial parameter values, optimization algo-
rithms, or learning rates may lead to differing QPK kernel
matrixes. In particular, the utilization of “vanilla” gradient-
descent optimization algorithms, with a fixed number of
training epochs, may introduce subtle biases in the QPK.
For example, if training were to converge rapidly, any con-
tribution between the instance of convergence and the end
of the training will be effectively identical and oversampled:
this contribution will hence outweigh the others, biasing the
“stack” of aggregated kernel matrixes toward its final layer,
as per Fig. 1.

To avoid this, more sophisticated optimization algorithms
can be considered. For example, the ADAM optimizer adap-
tively increases the learning rate in locally convex portions

3101616 VOLUME 4, 2023

Incudini et al.: QUANTUM PK: A GENERALIZED NTK FOR DEEP QUANTUM MACHINE LEARNING Engineeringuantum
Transactions onIEEE

FIGURE 2. Gaussian XOR Mixture classification experiment workflow. (a) Generate dataset. (b) Train QNN. (c) Compare NTK and PK.

of the loss landscape, leading to fewer similar contributions
within the path kernel. Furthermore, it is possible to per-
turb parameter paths via stochastic, noisy, or nongradient-
descent-based optimization techniques in order to decorre-
late subsequent contributions to the QPK. Having different,
highly decorrelated contributions would allow us to interpret
the QPK as an ensemble technique analogous to bootstrap
aggregation (bagging) often used for tuning the bias/variance
trade off in classical machine learning. (Multiple Kernel
Learning [46] might also be used to optimally weigh indi-
vidual contributions over the kernel at the expense of inter-
pretability in path terms.)
Appendix A3 discusses implementation details for the

QPK and its tested variants. We, therefore, now turn to an
examination of the test regime.

IV. EXPERIMENTAL EVALUATION OF THE QUANTUM
PATH KERNEL IN CLASSIFYING GAUSSIAN XOR
MIXTURES
Machine-learning nonlinearities, such as those underpinning
feature learning in empirical DNNs can thus be feasibly
implemented in a quantum setting via the QPK. It remains
to demonstrate that this can yield superior generalization
performance on plausible quantum devices. Our evaluation,
therefore, considers the reference case of the Gaussian xor
mixture classification problem [47], [48], [49].
In particular, the Gaussian xor mixture classification

problem is an important benchmark for highlighting layer-
wise learning capabilities of a model (or the lack of them),
in that it intrinsically requires a two-layer solution in order
to achieve Bayes optimal class separation. Theoretical ev-
idence has shown that kernel methods, in particular, those
with random features, struggle to accurately classify xor
data vector mixtures [21]. In Appendix B, we further analyze
the problem, reproducing the results of [21], and proposing
an interpretation of the success of feature learning models in
tackling the Gaussian xor mixture problem.
Our experimental workflow is pictured in Fig. 2. First,

we generate the dataset for the above described problem.
Second, we train several QNNs to best fit the generated
data. Third, we use the training information to create the
QNTK and QPK matrixes; the latter are used to train

a kernel machine (specifically the SVM) to obtain final
classifications. Then, our analysis begins with convergence
study of the QNNs with an increasing number of layers, to
highlight the effect of architectural parametrization in QNNs.
Finally, we compare the performances of the QNTK and
QPK approaches in terms of testing and training accuracy.
The simulation details are shown in Appendix C.

A. EXPERIMENTAL SETUP
The ground truth Gaussian xor mixture dataset is specified
by d the dimensionality of the features, d′ ≤ d the number
of nonzero features representing the multidimensional Gaus-
sian xor mixture, ε̄ the variance of the Gaussian noise, and
n the number of data points; it is composed as follows:

Dd,d′,ε̄,n =
{
([x1 + ε1, . . . , xd′ + εd′ , 0, . . . , 0]T , yi)

∈ R
d × {±1}

}n
j=1
(20)

where xi ∼ {±1}, εi ∼ N (0, ε̄) for i = 1, . . . , d′, and
yi = ∏d′

i=1 xi. Such a dataset is optimally classified via the
oracle function

foracle(x) =
d′∏
i=1

xi. (21)

We generate multiple datasets Dd,d′,ε,n having feature di-
mensionality ranging in d = 2, 3, . . . , 10, noise ranging in
ε = 0.1, 0.2, . . . , 1.0, number of nonzero features fixed to
d′ = 2, and number of elements fixed at n = 32. Then, each
dataset has been randomly partitioned into a training set
Dtrain and a testing set Dtest.
Each dataset is processed by a distinct QNN, each sharing

the same structure described by

f (x; θ) = Tr[ρx,θO]

= Tr[V †(θ)U†
φ (x)ρ0Uφ (x)V (θ)O] (22)

with data encoding

Uφ (x) =
d∏
j=1

exp
{
−i x jσ (i)

y

}
(23)

VOLUME 4, 2023 3101616

Engineeringuantum
Transactions onIEEE

Incudini et al.: QUANTUM PK: A GENERALIZED NTK FOR DEEP QUANTUM MACHINE LEARNING

FIGURE 3. Quantum circuit schematic of the classification model used for d = 3 qubits and L = 2 layers.

such that the trainable ansatz is described as

V (θ) =
L∏
j=1

exp
{
−i θ2i+1σ

(j)
x

}

× exp
{
−i θ2iσ (j)

z ⊗ σ (j+1 mod d)
z

}
(24)

with the L hyperparameter representing the number of layers
of the model. Finally, the observable is O = σ

(0)
z .

This data encoding is chosen for its simplicity: the encod-
ing of one feature for each qubit results in a constant-depth
circuit. The choice of the trainable ansatz, though, is particu-
larly important: the underlying functional transformation has
the potential to be affected by barren plateau issues if it is
too expressive [8], for example when the parametric trans-
formation is able to approximate any arbitrary unitarymatrix.
The expressibility of a quantum transformation can be exam-
ined using Lie-algebraic tools, as shown in [50]. Among the
class of unitaries that are nonmaximally expressive, we have
selected a specific form that has empirically demonstrated
favorable trainability, as detailed in [45, Fig. 7a]. The choice
of the observable is also guided by the necessity of avoiding
the barren plateau issue. According to [51], global observ-
ables are likely to exhibit vanishing gradients; we thus apply
the simplest possible classifier observable acting on a single
qubit. The circuit is pictured in Fig. 3. In our experiment, the
observed qubit is the uppermost; although any other qubit
choice would result in a similar predictor due to the symmet-
ric structure of the circuit.
Each dataset is processed with the above described QNN

employing a number of layers ranging from L = 1 to 20.
According to [52], the QNNs should be initialized at θ = 0
to avoid further trainability issues. However, we do not need
to consider such initialization strategy for the variational
unitary since the previous expedients were sufficient to al-
low successful training. Thus, the parameters θ j are sampled
from a standard normal distribution. Each QNN is trained
using the stochastic gradient-descent algorithm ADAM for
1000 epochs using an initial (adaptive) learning rate η = 0.1.
The loss function is either binary cross entropy or mse and,
for the sake of simplification, the batch size is equal to the
total cardinality of the training set. These loss functions are
commonly used for classification and regression tasks, which
differs from the loss functions used in the works related to the
QNTK theory.

In the experimental setup described above, we study, both
epochwise and depthwise, the effect induced by different
initialization parameters on the convergence of the loss
function during training.

B. RESULTS
We evaluate the depthwise convergence characteristics of the
respective f (x; θ) models in terms of the corresponding accu-
racies of the QPK and QNTK under SVMfinal classification.
Of particular interest is evaluating the closeness of models to
the lazy training regime, indicative of themodel being near to
linear. Lazy training, in classical machine learning, typically
occurs for verywide neural networkswith the loss decreasing
to zero exponentially rapidly, while network parameters stay
close to their initialization values throughout training. In the
current context, this would correspond to the QPK collapsing
to the QNTK, and we would anticipate convergent classifica-
tion performances for the two approaches.
We, therefore, evaluate training loss for each of the QNN

models over the respective training epochs with an increasing
number of QNN layers L = 1, . . . , 20. This will be used to
determine proximity to the lazy training regime (i.e., identi-
fying if the QNN converges exponentially fast to zero loss).
We additionally plot the norm difference between the param-
eters during training compared to their initialization values.
These will be used to determine the extend to which pa-
rameters vary from their initialization, indicating the training
richness of models in the nonlazy training regime.
We are also interested in determining the robustness of

the classifiers to stochastic noise influences during training
and their corresponding resilience to overfitting (or the extent
to which benign overparameterization [44] effects exists),
measured in terms of generalization performance. Therefore,
the above evaluations are repeated for datasets additively
noise-perturbed in an increasing signal-to-noise ratio.
Finally, we are interested in comparing the generalization

performances of our approach to that of the QNTK. For this,
we evaluate test accuracy score for the QPK and QNTK,
against the oracle. Superior performance of the QPK, in
solving the Gaussian xor mixture problem, will be taken
to be indicative of superior ability to replicate the layerwise
feature-learning capability of classical multilayer networks.

1) DEPTHWISE CONVERGENCE CHARACTERISTICS
Fig. 4 indicates the respective convergence behavior of the
evaluated quantum machine learning models with respect to

3101616 VOLUME 4, 2023

Incudini et al.: QUANTUM PK: A GENERALIZED NTK FOR DEEP QUANTUM MACHINE LEARNING Engineeringuantum
Transactions onIEEE

FIGURE 4. Behavior of the quantum machine learning models f (x; θ) over the training phase. (a) Training dataset for the parameter selection
d = 4, ε = 0.1. (b) Evolving loss for each of the 20 evaluated depthwise models (L = 1, . . . , 20) during training. (c) Deviation of the parameter vector
from its initialization. (d)–(f) Corresponding information when d = 4, ε = 0.4. (g)–(i) for d = 4, ε = 1.0.

the increasing number of layers. Column 1 has illustrative
samples from the training distribution with rowwise decre-
ments in the signal-to-noise ratio, column 2 gives the corre-
sponding loss curves during training, and column 3 indicates
the corresponding change in the magnitude of the parameter
vector offset from initialization

‖θ(n) − θ(0)‖
‖θ(0)‖ (25)

where θ(0) is the value of the parameters at their initializa-
tion, and θ(n) is their value at the nth epoch.

It is evident that none of the models reach the interpolation
threshold [53], i.e., the point at which the training data are
fitted perfectly with zero training error. To fit the training
dataset we would need at least 32 parameters (two nonzero
coordinates per point per 16 points). However, we are not
able to reach the interpolation threshold even in the deepest
configuration with a total of 40 parameters. This behavior is
expected by the choice of a parametrically constrained U in
effect acting as a form of regularization. As in the case of

classical DNN, an increasing number of parameters results
in a decrease in the loss [Fig. 4(b), (e), and (h)], and in an
increase in the proximity between the parameter vectors and
their initialization [Fig. 4(c), (f), and (i)].
We can conclude that none of the QNN models exhibit

evidence of lazy training. In particular, while models having
a higher number of parameters do indeed converge more
rapidly, parameters are nonetheless varying substantially
from their initialization. This behavior is even more notice-
able in the smaller models, with a norm difference oscillat-
ing substantially prior to the convergence. Such nontrivial
training is suggestive of the QPK differing largely from the
QNTK in its training characteristics.

2) TEST AND TRAIN ACCURACY OF THE QUANTUM PATH
KERNEL VERSES THE QUANTUM NTK
Fig. 5 indicates the corresponding test accuracies, measuring
how well the respective models generalize to unseen data.
While the QPK and QNTKmodels both perform similarly at
low signal-to-noise ratios, it is particularly striking to observe

VOLUME 4, 2023 3101616

Engineeringuantum
Transactions onIEEE

Incudini et al.: QUANTUM PK: A GENERALIZED NTK FOR DEEP QUANTUM MACHINE LEARNING

FIGURE 5. Respective test accuracy scores for the quantum path kernel model, the Quantum NTK, and the oracle. Error bars represent the standard
deviation over three (otherwise identical) experiments having parametric specifications (a) d = 4, ε = 0.1. (b) d = 4, ε = 0.4. (c) d = 4, ε = 1.0.

FIGURE 6. Respective training accuracies of the quantum path kernel model, the Quantum NTK, and the oracle. Error bars represent the standard
deviation over three (otherwise identical) experiments having specifications (a) d = 4, ε = 0.1. (b) d = 4, ε = 0.4. (c) d = 4, ε = 1.0.

the outperformance of the QPK over the quantum NTK with
increasing hierarchical depth at the highest signal-to-noise
setting.
Fig. 6 indicates the training accuracy with depth at the

point of convergence. It may be observed that the QPK
exhibits lower loss than the quantum NTK across the full
signal-to-noise range, with the effect becoming more marked
at higher noise levels (ultimately overfitting relative to the
noise-free oracle in panel c), consistent with the expectation
that QPK has a lower bias than the quantum NTK.
In sum, results confirm the anticipated improvement in

performance for the QPK over the QNTK in the Gaussian
xor mixture setting.

V. CONCLUSION
In this article, we have introduced the QPK as a mechanism
for incorporating key complex classical multilayer network
learning behaviors, in particular hierarchical feature learn-
ing, within QNNs via an appropriately expressive kerneliza-
tion of the training process. We evaluate our approach on the

Gaussian xor mixture classification problem, a straightfor-
ward benchmark of multilayer learning capacity that requires
a minimum two-layer solution in order to approach Bayes
optimally. The experimental results indicate superior gener-
alization performance relative to the QNTK, an advantage
which is especially pronounced in high-depth, low signal-to-
noise settings.
We have shown theoretically that the QPK converges to the

QNTKonly in the lazy training regime, i.e., when the training
loss decreases to zero exponentially fast whilst model param-
eters stay close to their initializations across training. Such
behavior is classically seen in infinite-wide neural networks,
whose behavior is then close to that of a linear model. Our
experiments, by contrast, indicate that QNNs do not operate
in the linear regime.
We have discussed, though do not evaluate in the current

article, the potential for using stochastic, noisy, or nongra-
dient descent-based optimization techniques to artificially
perturb parameter paths within the QPK in order to impli-
cate more decorrelated feature representations. We further-
more, propose in future to extend the QPK approach via

3101616 VOLUME 4, 2023

Incudini et al.: QUANTUM PK: A GENERALIZED NTK FOR DEEP QUANTUM MACHINE LEARNING Engineeringuantum
Transactions onIEEE

weighting of individual kernel representations in a more
heuristic way, for example via multiple kernel learning. We
have also referred in passing to the interpretation of the QPK
as an ensemble method due to the averaging operation over
its kernel matrixes. This will be explored more fully in future
investigations.

APPENDIX A
THEORETICAL AND IMPLEMENTATIONAL DETAILS OF
THE PATH KERNEL IN THE CLASSICAL MACHINE
LEARNING DOMAIN
The path kernel was introduced in [20] as a means of
replicating arbitrary gradient descent-based machine learn-
ing models in the form of kernel machines, under some weak
assumptions. The path kernel is consequently of inherent
interest in the theory of classical machine learning in that it
grants a further layer of interpretability to models, including
those, such as the neural networks, that often lacks this [54].
In contrast, kernel machines permit a clear interpretation
of prediction functions in terms of linear combinations of
data in the training set as a consequence of the Representer
Theorem. In particular, [20, Theorem 1] indicates that the
machine learning model h(x;w) : RD × R

P → R (with D
the dimensionality of the data and P the number of model
parameters) can be rewritten equivalently as a function f
utilizing the path kernel:

h(x; w̄) = f (x, γ̄) =
m∑
i=1

αi(x) κpk(x, xi; γ̄) + α0(x) (26)

where

κpk : R
D × R

D × ([0,T] → R
P) → R (27)

κpk(x, xi; γ) =
∫ T

0
κntk(x, xi; γ (t)) dt (28)

is the path kernel, a parametric kernel function (this param-
eterization has been rendered explicit in current formula-
tion). In this case, γ̄ : [0, 1] → R

P is the parameter path,
as detailed in Section III, with a terminal parameter value
γ̄ (1) = w̄ and for particular values of αi defined in
Appendix A2. The NTK can also be expressed as a paramet-
ric kernel

κntk : R
D × R

D × R
P → R (29)

κntk(x, xi;w) = ∇wh(x;w) · ∇wh(xi;w). (30)

Equation (26) holds under the proviso that h is differentiable
in w, and trained via dradient descent (GD) for the given
training dataset {(xi, y∗i)}mi=1 ⊆ R

D × R using the convex dif-

ferentiable loss function L(w) = ∑M
i=1 �(h(xi,w), y∗i).

Equation (26) differs from a linear model due to the ex-
plicit dependency of the data x in the weights αi, and it
remains a matter of discussion as to whether the path ker-
nel in fact represents a more generalized model class than
that of kernel machines (although it is clearly equivalent for
infinitely small learning rates [55]). This debate need not

concern us for the present purposes, where the intent is to
obtain a class of models capable of representing the network
gradient trajectory in a manner expressible on current quan-
tum computers.
As the path kernel is not widely deployed in practical

machine learning, we detail here some of its properties. In
Appendix A1 we prove the path kernel is a Mercer kernel. In
Appendix A2 we briefly comment on the proof of [20, Th. 1].
In Appendix A3we demonstrate a numerical implementation
of the path kernel.

A. PATH KERNEL IS A MERCER KERNEL
Given any γ̄ , the function κ̄pk(x, x′) = κpk(x, x′; γ̄) is a pos-
itive definite or Mercer kernel on R

D. A Mercer kernel
satisfies

n∑
i=1

n∑
j=1

cic jκ (xi, x j) ≥ 0 (31)

for all sequence of elements x1, . . . , xn ∈ R
D and constants

c1, . . . , cn ∈ R.
It is straightforward to demonstrate that such a condition

is valid of the path kernel. First, κ̄ntk(x, xi) = κntk(x, xi;w)
is a positive definite function for anyw in consequence of the
positive definiteness of the Gram matrix of inner products in
the Hilbert space of the kernel. Second, since both the posi-
tive combination and the infinitesimal limit of combinations
of positive definite kernels still satisfy the Mercer condition,
then the preceding is immediately valid for the path kernel in
both its discrete and continuous formulations.

B. COMMENT ON THEOREM 1 IN DOMINGO’S WORK
In this section, we comment on [20, Th. 1] in order to high-
light some of its limitations. The dynamics of any predictor
under training via gradient descent may be described by a
first-order nonhomogeneous differential equation

dh(x;w)

dt
= −

P∑
j=1

∂h

∂w j
· ∂L
∂w j

(32)

where h(x;w) : RD × R
P and L is the convex differentiable

loss function. We can describe these predictor dynamics over
training in terms of the tangent kernel

dh(x;w(t))
dt

=
d∑
j=1

∂h(x;w)

∂w j
· dw j

dt
(33)

=
d∑
j=1

∂h(x;w)

∂w j
·
(

−∂L(w(t))

∂w j

)
(34)

=
d∑
j=1

∂h(x;w)

∂w j
·
(

−
m∑
i=1

∂�(y∗i , h(xi;w))

∂w j

)

(35)

VOLUME 4, 2023 3101616

Engineeringuantum
Transactions onIEEE

Incudini et al.: QUANTUM PK: A GENERALIZED NTK FOR DEEP QUANTUM MACHINE LEARNING

=
d∑
j=1

∂h(x;w)

∂w j
·
(

−
m∑
i=1

∂�(y∗i , yi)
∂yi

∂h(xi;w)

∂w j

)

(36)

= −
m∑
i=1

∂�

∂yi

d∑
j=1

∂h(x;w)

∂w j

∂h(xi;w)

∂w j
(37)

= −
m∑
i=1

∂�

∂yi
∇wh(x;w) · ∇wh(xi;w) (38)

= −
m∑
i=1

∂�

∂yi
κntk(x, xi;w). (39)

In the limit ε → 0 we obtain

h(x) = h(x; γ (1))

= h(x; γ (0)) −
∫ 1

0

m∑
i=1

∂�

∂yi
κntk(x, xi; γ (t)) dt. (40)

Such a function cannot be straightforwardly represented as
a linear model. However, by multiplying and dividing by the
path kernel itself we obtain the following equation, at the cost
of introducing a dependency of x in the model parameters:

h(x; γ (1)) = h(x; γ (0))

+
m∑
i=1

⎛
⎝−

∫ 1
0
∂�
∂yi
κntk(x, xi; γ (t))dt
κpk(x, xi; γ)

⎞
⎠κpk(x, xi; γ)

= h(x; γ (0)) +
m∑
i=1

αi(x) κpk(x, xi; γ). (41)

Various works have suggested that imposing stronger as-
sumptions on training can remove the dependency of x in the
model parameters. For example, the authors in [55] achieved
this by imposing a requirement that the loss derivative is of
constant sign during training.

C. NUMERICAL CALCULATION OF THE PATH KERNEL
We can calculate the value of the path kernel by approximat-
ing the integral with a direct sum

κpk(x, xi, γ) =
∫ 1

0
κntk(x, xi, γ (t)) dt

≈ 1

T

T−1∑
i=0

κntk(x, xi, γ (t)) (42)

where t = i/T .
The implementation details are reported in the following

pseudocode listings. In Fig. 7, we indicate how to calculate
the NTK of the predictor f once the parameter value w is
fixed. In particular, the gradient can be calculated with the
finite difference method or, if the predictor is implemented
with a QNN, with the parameter-shift rule.

FIGURE 7. Pseudocode for the neural tangent kernel formulation.

FIGURE 8. Pseudocode for the path kernel formulation.

The procedure for calculating the path kernel is shown in
Fig. 8 and uses the NTK to calculate the individual contri-
bution of each training epoch and thereafter calculates the
average kernel matrix pointwise.
In Section III-B, we have discussed the potential signifi-

cance of decorrelated features; here, we propose a numerical
implementation of the effective path kernel. In contrast to the
original path kernel, the effective path kernel seeks to avoid
biasing due to multiple similar kernel contributions. This is
especially important if the training has converged signifi-
cantly earlier than the last training epoch: any contribution
after convergence has the same NTK and will increase its
relative weight as the number of epochs after convergence
increases. Its formulation is given in Fig. 9. Both the path
kernel and effective path kernel can be straightforwardly im-
plemented in parallel over multiple CPUs (or multiple QPUs)
for the evaluation of f .

APPENDIX B
NUMERICAL EVIDENCE FOR THE INABILITY OF
RANDOM FEATURE KERNEL TECHNIQUES IN SOLVING
THE GAUSSIAN XOR MIXTURE CLASSIFICATION
In [21], the authors demonstrate that a two-layer-depth neural
network with only a small number of neurons can easily
outperform kernel methods on the Gaussian mixture classi-
fication problem, under the assumption that the number of
training data points n → ∞ is linearly proportional to the
dimensionality of the data d → ∞.

We modify Refinetti’s experiment for the current purpose
to show the same result in a more straightforward way.
We define the two-layer neural network as the function

fnn(x;W1,W2,W3, b1, b2, b3)

=W3 · relu(W2 · relu(W1 · x + b1) + b2) + b3 (43)

3101616 VOLUME 4, 2023

Incudini et al.: QUANTUM PK: A GENERALIZED NTK FOR DEEP QUANTUM MACHINE LEARNING Engineeringuantum
Transactions onIEEE

FIGURE 9. Pseudocode for the effective path kernel formulation.

parameterized by W1 ∈ R
h×d,W2 ∈ R

h×h,W3 ∈ R
1×h, b1,

b2 ∈ R
h×1, b3 ∈ R, where h is the number of hidden neurons

per layer (the number of hidden neurons here is fixed to
h = �√d�). In our setting, we randomly initialize theweights
W1,W2, andW3 by sampling the matrix element i.i.d. from
a Gaussian of zero mean and unitary variance. The model
is then trained using the gradient-descent-based algorithm
ADAM for a maximum 1000 epochs with learning rate 0.001
(the model is implemented in Python3 library scikit-learn,
with the default configuration).
We define a random feature kernel machine as

κrf(x, x′) = 〈φ(x), φ(x′)〉, φ(x) = relu(W · x) (44)

with the activation weights parameterized by W ∈ R
f×d,

wi, j ∼ N (0, 1), where f has been chosen such that the num-
ber of parameters of the random feature kernel is greater that
or equal to the number of parameters in the neural network,
thus

f = (dh+ hh+ h) + (h+ h+ 1)

d
. (45)

For h = �√d� we can tightly upper bound f with f <
�√d� + 5. This kernel function is then fed to a SVM for
classification (as implemented in scikit-learn).
We randomly generate the dataset Dd,d′,ε̄,n, as detailed in

Section IV-A. The experiment described below consists in
comparing the performance of the neural network classifier
with variations of the random feature kernel on the dataset
Dd,3,ε,16 d for data point dimensionality d = 4, 8, 12, 16, 20
and noise ε = 0, 0.1, 0.2, . . . , 1.9, 2.0. We keep the num-
ber of nonzero features d′ = 3, meaning we are effectively
classifying 3-D Gaussian xor mixtures, with the number of

training vectors of the dataset fixed to be 16 d. The dataset is
then randomly split 75% in the training dataset and 25% in
the test set. For each dataset, we compare the performances
of the oracle with the performances of the best of ten ran-
domly initialized neural networks and the best of ten random
feature kernels. For each dataset specification, we repeat this
procedure ten times.
In Fig. 10, we set out the results of the above described

experiments. It may be observed that neural networks outper-
form the kernel approach in each case, with the differential in
accuracy increasing with the number of zero-valued features.
Refinetti et al. [21] suggested that this difference in perfor-
mance is accounted for by the fact that random feature ker-
nels in high dimension behave as linear transformations [56].
Here, we have suggested a complementary interpretation

of the results of such experiments. We have shown that the
difference of performance between the two models is not
uniquely determined by the failure of kernel methods per
se. In fact, it is determined also by the feature learning
capabilities of neural networks; inspecting the evolution of
the W1 parameters during the training of a neural network
reveals that elements in W1 related to the zero-features do
indeed go to zero (Fig. 11). This results in having all of
the hidden neurons (whose number is proportional to

√
d,

and thus, increasing with the number of features) working
adaptively to classify the three discriminatively informative
components or features, thereby improving overall perfor-
mance in contrast to the random feature kernel approach, for
which adding feature (and parameters) drastically decreases
performance (which is to say the path model outperforms
the random feature kernel in this problem by being able to
discharge junk features candidates, thus performing feature
learning).

APPENDIX C
DATA, CODE, AND SIMULATION DETAILS
Both the code to reproduce the indicated experiments and
also the relevant data are freely available at https://github.
com/incud/QuantumPathKernel. The code is released open-
source.
The indicated experiments have been simulated on two

devices as follows.

1) one Dell Latitude 5510 having: Intel Core i7-10610 U
CPU with 4 physical cores, 16 GB RAM, without
CUDA-enabled GPUs;

2) one cluster node having: Intel Xeon Silver 4216 CPU
with 64 physical cores, 180 GB RAM, with 4 ×
CUDA-enabled GPUs NVidia Tesla V100S 32 GB
VRAM.

The software runs on Ubuntu 20.04 LTS and uses Python
v3.9.11, PiP packet-manager v22.0.4 along with the other
libraries listed in requirements.txt file in the root of
the attached repository. Installation and simulation instruc-
tions are documented in the README.md file in the root

VOLUME 4, 2023 3101616

https://github.penalty -@M com/incud/QuantumPathKernel
https://github.penalty -@M com/incud/QuantumPathKernel

Engineeringuantum
Transactions onIEEE

Incudini et al.: QUANTUM PK: A GENERALIZED NTK FOR DEEP QUANTUM MACHINE LEARNING

FIGURE 10. Comparison of the performance of random feature kernel and (two layer) neural networks over the 3-D Gaussian XOR mixture problem with
an increasing number of features set to zero. (a)–(f) have, respectively, 4, 8, 12, 16, 20, and 24 features per point, the first three being the only nonzero
ones.

FIGURE 11. Values of the W1 matrix for individual neural networks of the form of (43) during training on the Gaussian XOR mixture datasets D24,3,0.8,384:
(a)–(c) Coefficients at initialization, after 250 training epochs and after 750 training epochs of training with ADAM at a learning rate 0.001.

of the repository. Our code is based upon freely available,
open-source frameworks only.
The framework used to define and simulate the quantum

circuit is PennyLane [57]. The simulations have been ac-
celerated using the JAX library [58]. (JAX might require
installation from source code if used on operating systems
different from Ubuntu). Alternatively, the source code can be
set such that PennyLane does not require this library. (How-
ever, in this case, the circuit simulationmight be substantially
slower and would not benefit the full potential of multicore
CPUs and GPUs.) These experiments have not been run on
quantum hardware.
The input and output of each experiment are contained in

different subfolders within the root directory. They contain
the specifications needed to generate the training and testing

datasets, the datasets themselves, the trace of the parame-
ters during the training for any model, and the QNTK and
QPK gram matrixes for each model (which may be used
to create a pretrained model), and also the resulting plots.
The README.md explains in detail the commands needed
to reproduce our results.
The simulations for all experiments have taken approxi-

mately 600 h across both machines used.

REFERENCES
[1] P. Wittek, Quantum Machine Learning: What Quantum Computing

Means to Data Mining. Cambridge, MA, USA: Academic, 2014, doi:
10.1016/C2013-0-19170-2.

[2] M. Schuld, I. Sinayskiy, and F. Petruccione, “An introduction to quan-
tum machine learning,” Contemporary Phys., vol. 56, no. 2, pp. 172–185,
2015, doi: 10.1080/00107514.2014.964942.

3101616 VOLUME 4, 2023

https://dx.doi.org/10.1016/C2013-0-19170-2
https://dx.doi.org/10.1080/00107514.2014.964942

Incudini et al.: QUANTUM PK: A GENERALIZED NTK FOR DEEP QUANTUM MACHINE LEARNING Engineeringuantum
Transactions onIEEE

[3] H.-Y. Huang et al., “Power of data in quantum machine learning,”
Nature Commun., vol. 12, no. 1, 2021, Art. no. 2631, doi: 10.1038/
s41467-021-22539-9.

[4] A. Abbas, D. Sutter, C. Zoufal, A. Lucchi, A. Figalli, and S. Woerner,
“The power of quantum neural networks,” Nature Comput. Sci., vol. 1,
no. 6, pp. 403–409, 2021, doi: 10.1038/s43588-021-00084-1.

[5] Y. Liu, S. Arunachalam, and K. Temme, “A rigorous and robust quantum
speed-up in supervised machine learning,” Nature Phys., vol. 17, no. 9,
pp. 1013–1017, 2021, doi: 10.1038/s41567-021-01287-z.

[6] H.-Y. Huang et al., “Quantum advantage in learning from experiments,”
Science, vol. 376, no. 6598, pp. 1182–1186, 2022, doi: 10.1126/sci-
ence.abn7293.

[7] J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and H.
Neven, “Barren plateaus in quantum neural network training land-
scapes,” Nature Commun., vol. 9, no. 1, 2018, Art. no. 4812,
doi: 10.1038/s41467-018-07090-4.

[8] Z. Holmes, K. Sharma, M. Cerezo, and P. J. Coles, “Connecting
ansatz expressibility to gradient magnitudes and barren plateaus,”
PRX Quantum, vol. 3, no. 1, 2022, Art. no. 10313, doi: 10.1103/
PRXQuantum.3.010313.

[9] A. Skolik, J. R. McClean, M. Mohseni, P. van der Smagt, and M.
Leib, “Layerwise learning for quantum neural networks,” Quantum
Mach. Intell., vol. 3, no. 1, Jan. 2021, Art. no. 5, doi: 10.1007/
2Fs42484-020-00036-4.

[10] M. Schuld, “Supervised quantum machine learning models are kernel
methods,” 2021, arXiv:2101.11020, doi: 10.48550/arXiv.2101.11020.

[11] J. Liu, F. Tacchino, J. R. Glick, L. Jiang, and A. Mezzacapo, “Representa-
tion learning via quantum neural tangent kernels,” PRX Quantum, vol. 3,
no. 3, 2022, Art. no. 030323, doi: 10.1103/PRXQuantum.3.030323.

[12] J. Liu, K. Najafi, K. Sharma, F. Tacchino, L. Jiang, and A. Mezza-
capo, “Analytic theory for the dynamics of wide quantum neural net-
works,” Phys. Rev. Lett., vol. 130, no. 15, 2023, Art. no. 150601,
doi: 10.1103/PhysRevLett.130.150601.

[13] K. Sharma, M. Cerezo, L. Cincio, and P. J. Coles, “Trainability
of dissipative perceptron-based quantum neural networks,” Phys. Rev.
Lett., vol. 128, no. 18, 2022, Art. no. 180505, doi: 10.1103/Phys-
RevLett.128.180505.

[14] A. Jacot, F. Gabriel, and C. Hongler, “Neural tangent kernel: Convergence
and generalization in neural networks,” Adv. Neural Inf. Process. Syst.,
vol. 31, pp. 8580–8589, 2018, doi: 10.1145/3406325.3465355.

[15] L. Chizat, E. Oyallon, and F. Bach, “On lazy training in differentiable pro-
gramming,” Adv. Neural Inf. Process. Syst., vol. 32, 2019, pp. 2937–2947,
doi: 10.48550/arXiv.1812.07956.

[16] C. Liu, L. Zhu, and M. Belkin, “On the linearity of large non-
linear models: When and why the tangent kernel is constant,”
Adv. Neural Inf. Process. Syst., vol. 33, pp. 15954–15964, 2020,
doi: 10.48550/arXiv.2010.01092.

[17] B. Ghorbani, S. Mei, T. Misiakiewicz, and A.Montanari, “When do neural
networks outperform kernel methods?,” J. Statist. Mech.: Theory Exp.,
vol. 2021, no. 12, 2021, Art. no. 124009, doi: 10.1088/1742-5468/ac3a81.

[18] M. Chen et al., “Towards understanding hierarchical learning: Bene-
fits of neural representations,” Adv. Neural Inf. Process. Syst., vol. 33,
pp. 22134–22145, 2020, doi: 10.48550/arXiv.2006.13436.

[19] N. Shirai, K. Kubo, K. Mitarai, and K. Fujii, “Quantum tangent kernel,”
2021, arXiv:2111.02951, doi: 10.48550/arXiv.2111.02951.

[20] P. Domingos, “Every model learned by gradient descent is approxi-
mately a kernel machine,” 2020, arXiv:2012.00152, doi: 10.48550/arXiv.
2012.00152.

[21] M. Refinetti, S. Goldt, F. Krzakala, and L. Zdeborová, “Classifying high-
dimensional Gaussian mixtures: Where kernel methods fail and neu-
ral networks succeed,” in Proc. 38th Int. Conf. Mach. Learn., 2021,
pp. 8936–8947, doi: 10.48550/arXiv.2102.11742.

[22] B. Ghorbani, S. Krishnan, and Y. Xiao, “An investigation into neural
net optimization via Hessian eigenvalue density,” in Proc. 36th Int. Conf.
Mach. Learn., 2019, pp. 2232–2241, doi: 10.48550/arXiv.1901.10159.

[23] S. Arora, S. S. Du, W. Hu, Z. Li, R. R. Salakhutdinov, and
R. Wang, “On exact computation with an infinitely wide neural
net,” Adv. Neural Inf. Process. Syst., vol. 32, pp. 8141–8150, 2019,
doi: 10.48550/arXiv.1904.11955.

[24] Y. Bai, B. Krause, H.Wang, C. Xiong, and R. Socher, “Taylorized training:
Towards better approximation of neural network training at finite width,”
2020, arXiv:2002.04010, doi: 10.48550/arXiv.2002.04010.

[25] M. Schuld, I. Sinayskiy, and F. Petruccione, “The quest for a quantum
neural network,” Quantum Inf. Process., vol. 13, no. 11, pp. 2567–2586,
2014, doi: 10.1007/s11128-014-0809-8.

[26] M. Schuld, I. Sinayskiy, and F. Petruccione, “Simulating a perceptron on a
quantum computer,”Phys. Lett. A, vol. 379, no. 7, pp. 660–663,Mar. 2015,
doi: 10.1016/j.physleta.2014.11.061.

[27] Y. Cao, G. G. Guerreschi, and A. Aspuru-Guzik, “Quantum neuron: An
elementary building block for machine learning on quantum computers,”
2017, arXiv:1711.11240, doi: 10.48550/arXiv.1711.11240.

[28] W. Hu, “Towards a real quantum neuron,” Natural Sci., vol. 10, no. 3,
pp. 99–109, 2018, doi: 10.4236/ns.2018.103011.

[29] K. Gili, M. Sveistrys, and C. Ballance, “Introducing non-linearity into
quantum generative models,” 2022, arXiv:2205.14506, doi: 10.1103/
PhysRevA.107.012406.

[30] F. Tacchino, C. Macchiavello, D. Gerace, and D. Bajoni, “An artificial
neuron implemented on an actual quantum processor,” NPJ Quantum Inf.,
vol. 5, no. 1, 2019, Art. no. 26, doi: 10.1038/s41534-019-0140-4.

[31] N. Guo, K. Mitarai, and K. Fujii, “Nonlinear transformation of com-
plex amplitudes via quantum singular value transformation,” 2021,
arXiv:2107.10764, doi: 10.48550/arXiv.2107.10764.

[32] Z. Holmes, N. Coble, A. T. Sornborger, and Y. Subaşł, “On nonlin-
ear transformations in quantum computation,” 2021, arXiv:2112.12307,
doi: 10.48550/arXiv.2112.12307.

[33] A. Daskin, “A simple quantum neural net with a periodic activa-
tion function,” in Proc. IEEE Int. Conf. Systems, Man, Cybern., 2018,
pp. 2887–2891, doi: 10.48550/arXiv.1804.07633.

[34] S. Weinberg, “Precision tests of quantum mechanics,” Phys. Rev. Lett.,
vol. 62, pp. 485–488, Jan. 1989, doi: 10.1103/PhysRevLett.62.485.

[35] D. S. Abrams and S. Lloyd, “Nonlinear quantum mechanics implies
polynomial-time solution for NP-complete and # P problems,” Phys.
Rev. Lett., vol. 81, pp. 3992–3995, Nov. 1998, doi: 10.1103/Phys-
RevLett.81.3992.

[36] X. Wang, J. Liu, T. Liu, Y. Luo, Y. Du, and D. Tao, “Symmet-
ric pruning in quantum neural networks,” 2022, arXiv:2208.14057,
doi: 10.48550/arXiv.2208.14057.

[37] J. Liu, Z. Lin, and L. Jiang, “Laziness, barren plateau, and noise inmachine
learning,” 2022, arXiv:2206.09313, doi: 10.48550/arXiv.2206.09313.

[38] E. Abedi, S. Beigi, and L. Taghavi, “Quantum lazy training,” Quantum,
vol. 7, 2023, Art. no. 989, doi: 10.22331/q-2023-04-27-989.

[39] S. Jerbi, L. J. Fiderer, H. P. Nautrup, J. M. Kübler, H. J. Briegel, and
V. Dunjko, “Quantum machine learning beyond kernel methods,” 2021,
arXiv:2110.13162, doi: 10.1038/s41467-023-36159-y.

[40] H. Q. Minh, P. Niyogi, and Y. Yao, “Mercer’s theorem, feature maps,
and smoothing,” in Proc. Learn. Theory: 19th Annu. Conf. Learn. Theory,
2006, pp. 154–168, doi: 10.1007/11776420_14.

[41] D. A. Roberts, S. Yaida, and B. Hanin, The Principles of Deep
Learning Theory. Cambridge, U.K.: Cambridge Univ. Press, 2022,
doi: 10.1007/11776420_14.

[42] D. Meltzer and J. Liu, “Catapult dynamics and phase transitions
in quadratic nets,” 2023, arXiv:2301.07737, doi: 10.48550/arXiv.
2301.07737.

[43] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015, doi: 10.1038/nature14539.

[44] E. Peters and M. Schuld, “Generalization despite overfitting in
quantum machine learning models,” 2022, arXiv:2209.05523, doi:
10.48550/arXiv.2209.05523.

[45] M. Larocca, N. Ju, D. García-Martín, P. J. Coles, and M. Cerezo,
“Theory of overparametrization in quantum neural networks,” 2021,
arXiv:2109.11676, doi: 10.1038/s43588-023-00467-6.

[46] M. Gönen and E. Alpaydłn, “Multiple kernel learning algorithms,”
J. Mach. Learn. Res., vol. 12, pp. 2211–2268, 2011, doi: 10.5555/
1953048.2021071.

[47] Z. Deng, A. Kammoun, and C. Thrampoulidis, “A model of dou-
ble descent for high-dimensional binary linear classification,” 2019,
arXiv:1911.05822, doi: 10.48550/arXiv.1911.05822.

[48] X. Mai and Z. Liao, “High dimensional classification via regularized and
unregularized empirical riskminimization: Precise error and optimal loss,”
2019, arXiv:1905.13742, doi: 10.48550/arXiv.1905.13742.

[49] M. Lelarge and L. Miolane, “Asymptotic Bayes risk for Gaussian
mixture in a semi-supervised setting,” in Proc. IEEE 8th Int. Work-
shop Comput. Adv. Multi-Sensor Adaptive Process., 2019, pp. 639–643,
doi: 10.48550/arXiv.1907.03792.

VOLUME 4, 2023 3101616

https://dx.doi.org/10.1038/s41467-021-22539-9
https://dx.doi.org/10.1038/s41467-021-22539-9
https://dx.doi.org/10.1038/s43588-021-00084-1
https://dx.doi.org/10.1038/s41567-021-01287-z
https://dx.doi.org/10.1126/science.abn7293
https://dx.doi.org/10.1126/science.abn7293
https://dx.doi.org/10.1038/s41467-018-07090-4
https://dx.doi.org/10.1103/PRXQuantum.3.010313
https://dx.doi.org/10.1103/PRXQuantum.3.010313
https://dx.doi.org/10.1007/2Fs42484-020-00036-4
https://dx.doi.org/10.1007/2Fs42484-020-00036-4
https://dx.doi.org/10.48550/arXiv.2101.11020
https://dx.doi.org/10.1103/PRXQuantum.3.030323
https://dx.doi.org/10.1103/PhysRevLett.130.150601
https://dx.doi.org/10.1103/PhysRevLett.128.180505
https://dx.doi.org/10.1103/PhysRevLett.128.180505
https://dx.doi.org/10.1145/3406325.3465355
https://dx.doi.org/10.48550/arXiv.1812.07956
https://dx.doi.org/10.48550/arXiv.2010.01092
https://dx.doi.org/10.1088/1742-5468/ac3a81
https://dx.doi.org/10.48550/arXiv.2006.13436
https://dx.doi.org/10.48550/arXiv.2111.02951
https://dx.doi.org/10.48550/arXiv.2012.00152
https://dx.doi.org/10.48550/arXiv.2012.00152
https://dx.doi.org/10.48550/arXiv.2102.11742
https://dx.doi.org/10.48550/arXiv.1901.10159
https://dx.doi.org/10.48550/arXiv.1904.11955
https://dx.doi.org/10.48550/arXiv.2002.04010
https://dx.doi.org/10.1007/s11128-014-0809-8
https://dx.doi.org/10.1016/j.physleta.2014.11.061
https://dx.doi.org/10.48550/arXiv.1711.11240
https://dx.doi.org/10.4236/ns.2018.103011
https://dx.doi.org/10.1103/PhysRevA.107.012406
https://dx.doi.org/10.1103/PhysRevA.107.012406
https://dx.doi.org/10.1038/s41534-019-0140-4
https://dx.doi.org/10.48550/arXiv.2107.10764
https://dx.doi.org/10.48550/arXiv.2112.12307
https://dx.doi.org/10.48550/arXiv.1804.07633
https://dx.doi.org/10.1103/PhysRevLett.62.485
https://dx.doi.org/10.1103/PhysRevLett.81.3992
https://dx.doi.org/10.1103/PhysRevLett.81.3992
https://dx.doi.org/10.48550/arXiv.2208.14057
https://dx.doi.org/10.48550/arXiv.2206.09313
https://dx.doi.org/10.22331/q-2023-04-27-989
https://dx.doi.org/10.1038/s41467-023-36159-y
https://dx.doi.org/10.1007/11776420_14
https://dx.doi.org/10.1007/11776420_14
https://dx.doi.org/10.48550/arXiv.2301.07737
https://dx.doi.org/10.48550/arXiv.2301.07737
https://dx.doi.org/10.1038/nature14539
https://dx.doi.org/10.48550/arXiv.2209.05523
https://dx.doi.org/10.1038/s43588-023-00467-6
https://dx.doi.org/10.5555/1953048.2021071
https://dx.doi.org/10.5555/1953048.2021071
https://dx.doi.org/10.48550/arXiv.1911.05822
https://dx.doi.org/10.48550/arXiv.1905.13742
https://dx.doi.org/10.48550/arXiv.1907.03792

Engineeringuantum
Transactions onIEEE

Incudini et al.: QUANTUM PK: A GENERALIZED NTK FOR DEEP QUANTUM MACHINE LEARNING

[50] M. Larocca, P. Czarnik, K. Sharma, G. Muraleedharan, P. J. Coles,
and M. Cerezo, “Diagnosing barren plateaus with tools from quantum
optimal control,” Quantum, vol. 6, 2022, Art. no. 824, doi: 10.22331/
q-2022-09-29-824.

[51] M. Cerezo, A. Sone, T. Volkoff, L. Cincio, and P. J. Coles, “Cost
function dependent barren plateaus in shallow parametrized quan-
tum circuits,” Nature Commun., vol. 12, no. 1, 2021, Art. no. 1791,
doi: 10.1038/s41467-021-21728-w.

[52] E. Grant, L. Wossnig, M. Ostaszewski, and M. Benedetti, “An initial-
ization strategy for addressing barren plateaus in parametrized quan-
tum circuits,” Quantum, vol. 3, 2019, Art. no. 214, doi: 10.22331/
q-2019-12-09-214.

[53] M. Belkin, D. Hsu, S. Ma, and S. Mandal, “Reconciling modern
machine-learning practice and the classical bias–variance trade-off,”
Proc. Nat. Acad. Sci., vol. 116, no. 32, pp. 15849–15854, 2019,
doi: 10.1073/pnas.1903070116.

[54] A. Ghorbani, A. Abid, and J. Zou, “Interpretation of neural networks
is fragile,” in Proc. AAAI Conf. Artif. Intell., vol. 33, 2019, no. 1,
pp. 3681–3688, doi: 10.48550/arXiv.1710.10547.

[55] Y. Chen, W. Huang, L. Nguyen, and T.-W. Weng, “On the equiva-
lence between neural network and support vector machine,” Adv. Neu-
ral Inf. Process. Syst., vol. 34, pp. 23478–23490, 2021, doi: 10.48550/
arXiv.2111.06063.

[56] N. El Karoui, “The spectrum of kernel random matrices,” Ann. Statist.,
vol. 38, no. 1, pp. 1–50, 2010, doi: 10.48550/arXiv.1001.0492.

[57] V. Bergholm et al., “Pennylane: Automatic differentiation of
hybrid quantum-classical computations,” 2018, arXiv:1811.04968,
doi: 10.48550/arXiv.1811.04968.

[58] J. Bradbury et al., “JAX: Composable transformations of Python NumPy
programs,” 2018. [Online]. Available: http://github.com/google/jax

Open Access funding provided by ‘Università degli Studi di Verona’ within the CRUI CARE Agreement

3101616 VOLUME 4, 2023

https://dx.doi.org/10.22331/q-2022-09-29-824
https://dx.doi.org/10.22331/q-2022-09-29-824
https://dx.doi.org/10.1038/s41467-021-21728-w
https://dx.doi.org/10.22331/q-2019-12-09-214
https://dx.doi.org/10.22331/q-2019-12-09-214
https://dx.doi.org/10.1073/pnas.1903070116
https://dx.doi.org/10.48550/arXiv.1710.10547
https://dx.doi.org/10.48550/arXiv.2111.06063
https://dx.doi.org/10.48550/arXiv.2111.06063
https://dx.doi.org/10.48550/arXiv.1001.0492
https://dx.doi.org/10.48550/arXiv.1811.04968
http://github.com/google/jax

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

