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Abstract

Given a closed, convex and pointed cone K in Rn, we present a result which
infers K-irreducibility of sets of K-quasipositive matrices from strong connect-
edness of certain bipartite digraphs. The matrix-sets are defined via products,
and the main result is relevant to applications in biology and chemistry. Several
examples are presented.
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1. Introduction

A digraph G is strongly connected, or irreducible, if given any vertices u
and v, there exists a (directed) path from u to v in G. It is well known that a
digraph is strongly connected if and only if its adjacency matrix is irreducible [1].
Here, given a cone K, we present a result which infers K-irreducibility of sets
of K-quasipositive matrices from strong connectedness of associated bipartite
digraphs. Graph-theoretic approaches to K-irreducibility of sets of K-positive
matrices have been described in earlier work [2, 3, 4]. These approaches are
somewhat different in structure and philosophy to that described here. We will
comment further on this in the concluding section.

We will be interested in closed, convex cones in Rn which are additionally
pointed (i.e., if y ∈ K and y 6= 0, then −y 6∈ K). Closed, convex and pointed
cones will be abbreviated as CCP cones. We do not assume the cones are solid
(i.e., have nonempty interior in Rn) – however if a CCP cone is, additionally,
solid, then it will be termed a proper cone. For basic definitions and results
on cones in Rn the reader is referred to [1, 5]. Given a CCP cone K, a face

F ⊆ K will mean a closed face, namely F is again a CCP cone, and moreover
x ∈ F , y ∈ K, x− y ∈ K together imply that y ∈ F . Faces other than {0} and
K will be termed nontrivial.
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Let K ⊆ Rn be a CCP cone. Consider a real n × n matrix M . Recall that
M is K-positive if MK ⊆ K. Defining Rn

≥0 to be the (closed) nonnegative
orthant in Rn, a nonnegative matrix is then Rn

≥0-positive. We will refer to M
as K-quasipositive if there exists an α ∈ R such that M + αI is K-positive.
Rn

≥0-quasipositive matrices – generally referred to simply as quasipositive, or
Metzler – are just those with nonnegative off-diagonal entries. We define M
to be K-reducible if there exists a nontrivial face F of K such that M leaves
spanF invariant. This is a slight generalisation of the original definition of K-
reducibility for K-positive matrices [6] in order to allow us to apply the term
to matrices which are not necessarily K-positive. A matrix which is not K-
reducible is K-irreducible. Note that an irreducible matrix could be termed
Rn

≥0-irreducible in this terminology. Alternatively any other orthant in Rn could
be chosen as K.

Remark 1. Given a CCP cone K ⊆ Rn, an n×n matrix M is K-irreducible if
and only if M +αI is K-irreducible for each α ∈ R. In one direction we choose
α = 0. The other direction follows because given any face F of K, spanF is a
vector subspace of Rn.

Motivation from dynamical systems. Motivation for examining K-
irreducibility of a set of K-quasipositive matrices comes from the theory of
monotone dynamical systems [7, 8]. Convex, pointed cones define partial orders
in a natural way. Given a proper cone K and a C1 vector field f : Rn → Rn, if
the Jacobian matrixDf(x) isK-quasipositive andK-irreducible at each x ∈ Rn,
then the associated local flow is strongly monotone with respect to the partial
order defined by K. This result and a variety of technical modifications provide
useful conditions which can be used to deduce the asymptotic behaviour of
dynamical systems.

Remark 2. Although the main results on monotone dynamical systems require
the order cone to be solid, a CCP cone K which fails to be solid is as useful as
a proper one when the local flow or semiflow leaves cosets of spanK invariant.
Trivially, K has nonempty relative interior in spanK, and attention can be
restricted to cosets of spanK. This situation arises frequently in applications to
biology and chemistry.

2. Some background material

Sets of matrices. It is convenient to use some notions from qualitative
matrix theory. Let M be a real matrix.

1. Q(M), the qualitative class of M [9] is the set of all matrices with the
same dimensions and sign pattern as M , namely if N ∈ Q(M), then
Mij > 0 ⇒ Nij > 0, Mij < 0 ⇒ Nij < 0 and Mij = 0 ⇒ Nij = 0.

2. Q0(M) will stand for the closure of Q(M), namely if N ∈ Q0(M), then
Mij > 0 ⇒ Nij ≥ 0, Mij < 0 ⇒ Nij ≤ 0 and Mij = 0 ⇒ Nij = 0.
Note that Q(M) and Q0(M) are convex sets of matrices and Q(M) =
relintQ0(M), the relative interior of Q0(M).
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3. Q1(M) will be the set of all matrices N with the same dimensions as M
and satisfying MijNij ≥ 0.

Clearly, Q(M) ⊆ Q0(M) ⊆ Q1(M).

Remark 3. Suppose K is an orthant in Rn and M is an n×n K-quasipositive
matrix. It can easily be shown that each matrix in Q0(M) is K-quasipositive.
Since in this case K-irreducibility is simply irreducibility, if M is K-irreducible
then each matrix in Q(M) is K-irreducible. However, the same is not true for
Q0(M) which, after all, contains the zero matrix.

Notation for matrices. Given any matrix M , we refer to the kth column
of M as Mk and the kth row of M as Mk. We define the new matrix M (k) by

M
(k)
ij = Mij if i = k and M

(k)
ij = 0 otherwise: i.e., M (k) is derived from M by

replacing all entries not in the kth row with zeros. Similarly M(k) is derived
from M by replacing all entries not in the kth column with zeros. A set of
matrices M will be termed row-complete if M ∈ M ⇒ M (k) ∈ M for each
k, column-complete if M ∈ M ⇒ M(k) ∈ M for each k, and complete if

M ∈ M ⇒ M (k),M(k) ∈ M for each k. Clearly, given any matrix M , Q0(M)
is complete; but smaller sets can be complete. For example, given some matrix
N ,

M = {D1ND2 : D1, D2 are nonnegative diagonal matrices}

is complete.

Remark 4. Given a CCP cone K, a complete set of K-quasipositive matrices
M and any M ∈ M, Q0(M) must consist of K-quasipositive matrices. This

follows because (i) by completeness each matrix M
(i)
(j) belongs to M and hence is

K-quasipositive, and (ii) any finite nonnegative combination of K-quasipositive
matrices is K-quasipositive.

Digraphs associated with square matrices. Given an n×n matrix M ,
let GM be the associated digraph on n vertices u1, . . . , un defined in the usual
way: the arc uiuj exists in GM iff Mij 6= 0.

Remark 5. Following on from Remark 3, if K is an orthant in Rn, then K-
irreducibility of an n × n matrix M is equivalent to strong connectedness of
GM .

Bipartite digraphs associated with matrix-pairs. Given an n × m
matrix A and an m × n matrix B, define a bipartite digraph GA,B on n + m
vertices as follows: associate a set of n vertices u1, . . . , un with the rows of A (we
will refer to these as the “row vertices” of GA,B); associate another m vertices
v1, . . . , vm with the columns of A (we will refer to these as the “column vertices”
of GA,B); add the arc uivj iff Aij 6= 0; add the arc vjui iff Bji 6= 0.

Remark 6. This is a specialisation of the general construction of block-circulant
digraphs from sets of appropriately dimensioned matrices in [10]. If A and B
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are (0, 1) matrices (with AB a square matrix), then the adjacency matrix of
GA,B is simply

(

0 A
B 0

)

.

The bipartite digraph here is also closely related to the so-called DSR graph,
presented in [11] and used to make claims about dynamical systems arising in
biology and chemistry.

The context of the main result. Fundamental early results on con-
vergence in monotone dynamical systems [12] apply to systems with Jaco-
bian matrices which are quasipositive and irreducible (in our terminology Rn

≥0-
quasipositive and Rn

≥0-irreducible). Generalising from Rn
≥0 to all orthants is

straightforward: where K is an orthant, there is a simple graph-theoretic test
[7] to decide K-quasipositivity of a given n×n matrix M . By Remarks 3 and 5,
K-quasipositivity extends to all of Q0(M), and K-irreducibility of some M ′ ∈
Q0(M) is equivalent to strong connectedness of GM ′ .

We are interested in how this situation generalises when K is not necessarily
an orthant, not necessarily simplicial, and in fact not necessarily finitely gen-
erated. In general, given a K-quasipositive matrix M , we can rarely expect all
matrices in Q0(M) to be K-quasipositive. However the following situation is
not uncommon: there are matrices A and B̃ such that AB is K-quasipositive
for each B ∈ Q0(B̃). The practical relevance is to applications in biology and
chemistry where Jacobian matrices often have a constant initial factor, but a
second factor with variable entries whose signs are, however, known. A number
of particular examples were presented in [13].

Given a set of K-quasipositive matrices of the form {AB : B ∈ B}, we
would hope that there is a natural graph-theoretic test to decide which members
of this set are also K-irreducible. Theorem 1 below provides precisely such
a condition: provided B is complete and the initial factor A satisfies a mild
genericity condition, K-irreducibility of AB follows from strong connectedness
of the bipartite digraph GA,B. In the special case where K is the nonnegative
orthant, A is the identity matrix, and B is the set of nonnegative matrices, the
results reduce to well known ones.

Remark 7. Our motivation for considering complete sets of matrices will be
as follows. Consider a set of K-quasipositive matrices M = {AB : B ∈ B},
where A is n×m, B consists of m× n matrices, and B is complete. Clearly

AB = A
∑

k

B(k) =
∑

k

AB(k) =
∑

k

AkB
k.

So, by row-completeness, any matrix in M can be written as a sum of rank 1
K-quasipositive matrices in M. On the other hand, suppose, for some v ∈ Rn,
some i ∈ {1, . . . ,m}, and all B ∈ B, that (Bv)i ≥ 0 (resp. (Bv)i ≤ 0). Then, by
column-completeness, for each B and each k ∈ {1, . . . , n}, (B(k)v)i = Bikvk ≥ 0
(resp. Bikvk ≤ 0), i.e., Bi ∈ Q1(v

T) (resp. Bi ∈ Q1(−vT)).
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3. The main result

From now on K ⊆ Rn will be a CCP cone in Rn, A an n×m matrix and B

a complete set of m× n matrices. For any B ∈ B, AB is an n× n matrix. The
main result of this paper is:

Theorem 1. Assume that ImA 6⊆ spanF for any nontrivial face F of K. Sup-
pose that for each B ∈ B, AB is K-quasipositive. Then whenever GA,B is
strongly connected, AB is also K-irreducible.

An immediate corollary is:

Corollary 2. Assume that ImA 6⊆ spanF for any nontrivial face F of K.
Suppose that for each B ∈ B, AB is K-positive. Then whenever GA,B is strongly
connected, AB is also K-irreducible.

Proof. K-positivity of AB implies K-quasipositivity of AB. The result now
follows from Theorem 1. �

Remark 8. Note that if ImA ⊆ spanF for some nontrivial face F of K, then
trivially AB is K-reducible. To see that the assumption that ImA 6⊆ spanF is
in general necessary in Theorem 1, consider the matrices

Λ =

(

1 2
2 1

)

, A =

(

1 1
2 2

)

, B =

(

a b
c d

)

where a, b, c, d ≥ 0. Let K = {Λz : z ∈ R2
≥0}. Then

ABΛ1 = (a+ c+ 2(b+ d))Λ1, ABΛ2 = (2(a+ c) + b+ d)Λ1

which are both clearly in K for any a, b, c, d ≥ 0. So AB is K-positive. On
the other hand F = {rΛ1 : r ≥ 0} satisfies (AB)F ⊆ F for all B, so AB is
K-reducible for all a, b, c, d ≥ 0. However, for a, b, c, d > 0, GA,B is a complete
bipartite digraph which is obviously strongly connected.

4. Proofs

We need some preliminary lemmas in order to prove Theorem 1. The fol-
lowing is proved as Lemma 4.4 in [13]:

Lemma 3. Let F be a face of K, v1, v2 ∈ F , and w ∈ Rn. If there exist
α, β > 0 such that v1 + αw ∈ K and v2 − βw ∈ K, then w ∈ span(F ).

Proof. Define y1 ≡ v1 + αw and y2 ≡ v2 − βw. Then y3 ≡ y1 + (α/β)y2 =
v1 + (α/β)v2 ∈ F . Since y3 ∈ F , y3 − y1 = (α/β)y2 ∈ K, and y1 ∈ K, by the
definition of a face, y1 ∈ F . So w = (y1 − v1)/α ∈ span(F ). �

Extremals. A one dimensional face of K will be termed an extremal ray or
an extremal for short, and any nonzero vector in an extremal ray will be an
extremal vector of K.
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Lemma 4. Suppose that for each B ∈ B, AB is K-quasipositive. Let v be an
extremal vector of K. Then for each j either Aj = rv for some real number r
or Bj ∈ Q1(v

T) for all B ∈ B, or Bj ∈ Q1(−vT) for all B ∈ B.

Proof. Suppose there exist j and P,Q ∈ B such that P j 6∈ Q1(−vT) and
Qj 6∈ Q1(v

T), i.e., there exist k, l such that Pjkvk ≡ t1 > 0, −Qjlvl ≡ t2 > 0.
(P = Q is possible.) Defining B = P(k), B = Q(l), note that since B is column-

complete, B,B ∈ B. By construction, B
j
v = t1 > 0 and −Bjv = t2 > 0. Since

B is row-complete, B
(j)

, B(j) ∈ B and so AB
(j)

, AB(j) areK-quasipositive. Let

α1 and α2 be such that AB
(j)

v + α1v ∈ K and AB(j)v + α2v ∈ K respectively.
We can assume (w.l.o.g.) that α1, α2 > 0. Then:

AB
(j)

v + α1v = AjB
j
v + α1v = α1v + t1Aj ∈ K

and
AB(j)v + α2v = AjB

jv + α2v = α2v − t2Aj ∈ K.

By Lemma 3, these two equations imply that Aj = rv for some r. �

Lemma 5. Let F be a nontrivial face of K, {J(k)} be a finite set of n × n
K-quasipositive matrices and J =

∑

J(k). If there exists x ∈ F such that
Jx ∈ spanF , then J(k)x ∈ spanF for each k.

Proof. By K-quasipositivity of each J(k) we can write

J(k)x = pk + qk

where pk ∈ (K\F ) ∪ {0} and qk ∈ spanF . Summing, we get

Jx = p+ q

where q =
∑

k qk ∈ spanF and p =
∑

k pk ∈ (K\F ) ∪ {0}. Now if Jx ∈ spanF
then p = 0. Since pk ∈ K and K is pointed, this implies that pk = 0 for each k.
So J(k)x = qk ∈ spanF for each k, proving the lemma. �

Lemma 6. Let AB be K-quasipositive for each B ∈ B and let F be a nontrivial
face of K spanned by (pairwise independent) extremal vectors {Λi}i∈I. Choose
and fix some B ∈ B. Then given any nonempty set R ⊆ {1, . . . ,m}, either (i)
Ak ∈ spanF for some k ∈ R or (ii) BkΛi = 0 for each k ∈ R, i ∈ I, or (iii)
there exists Λi ∈ F such that

∑

k∈R AkB
kΛi 6∈ spanF .

Proof. For each k, recall that B(k) ∈ B, so AB(k) = AkB
k is K-quasipositive.

Suppose (iii) does not hold, i.e.,
∑

k∈R AkB
kΛi ∈ spanF for each Λi ∈ F .

Applying Lemma 5 with J(k) = AkB
k, we get for each k ∈ R and each Λi ∈ F

that AkB
kΛi ∈ spanF . So for each fixed k ∈ R, either Ak ∈ spanF or BkΛi = 0

for all i ∈ I. �
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Proof of Theorem 1. We show that if AB is K-reducible for some B ∈
B, then GA,B cannot be strongly connected. Let {Λi} be a set of pairwise
independent extremal vectors generating K. Let F be a nontrivial face of K
such that spanF is left invariant by AB, and define I via i ∈ I ⇔ Λi ∈ F .
Let R ( {1, . . . ,m} be defined by k ∈ R ⇔ Ak ∈ spanF . R may be empty,
but by assumption cannot be all of {1, . . . ,m} since ImA 6⊆ spanF . So Rc, the
complement of R, is nonempty.

Choose any x ∈ F . We have

ABx =
∑

k

AkB
kx =

∑

k∈R

AkB
kx+

∑

k∈Rc

AkB
kx . (1)

Clearly
∑

k∈R AkB
kx ∈ spanF . By assumption, ABx ∈ spanF , and so

∑

k∈Rc AkB
kx ∈ spanF . Now since x ∈ F was arbitrary and Ak 6∈ spanF

for any k ∈ Rc, by Lemma 6 we must have BkΛi = 0 for each k ∈ Rc, i ∈ I.
But from Lemma 4 we know that either (i) Ak = rΛi for some scalar r or (ii)
Bk ∈ Q1(Λ

T
i ) or B

k ∈ Q1(−ΛT
i ). Since Ak 6∈ spanF the first possibility is ruled

out, and (ii) must hold. Consequently BkΛi = 0 implies BklΛli = 0 for each l.
The above is true for each i ∈ I, k ∈ Rc. Now there are two possibilities:

1. Suppose that R is empty. Then, for each i ∈ I, and all k, l, BklΛli = 0.
Fix some i ∈ I and some l such that Λli 6= 0; then Bkl = 0 for all k (the
lth column of B is zero). By the definition of GA,B, this means that there
are no arcs incident into the row vertex ul. Thus GA,B is not strongly
connected.

2. Suppose that R is nonempty. Given k′ ∈ R we can write Ak′ =
∑

i∈I qiΛi

for some constants qi, so for any k ∈ Rc,

BkAk′ =
∑

i∈I

qiB
kΛi = 0.

Moreover, since for each i ∈ I and each l, BklΛli = 0, we get BklAlk′ = 0.
In terms ofGA,B, this means that there is no directed path of length 2 from
any column vertex vk with k ∈ Rc to a column vertex vk′ with k′ ∈ R.
Thus there is no directed path (of any length) of the form vk · · · vk′ with
k ∈ Rc, k′ ∈ R, and GA,B is not strongly connected.

�

5. Examples

The examples below illustrate application of Theorem 1 and Corollary 2.

Example 1. Consider the special case where Corollary 2 is applied with
A = I, B the nonnegative matrices and K = Rn

≥0. Since Im I = Rn, clearly
Im I 6⊆ spanF for any nontrivial face F of Rn

≥0. It is also immediate that B

is complete and for each B ∈ B, the n × n matrix IB is K-positive. Now we
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show that GI,B is strongly connected if and only if GB is strongly connected.
(i) Suppose GB is strongly connected. An arc from vertex i to vertex j in GB

implies that Bij 6= 0. But Bij = IiiBij , and since Iii = 1 this implies that there
exists a path uiviuj in GI,B. Thus a path from vertex i to vertex j in GB implies
a path from vertex ui to vertex uj in GI,B. Thus strong connectedness of GB

implies a path between any two row vertices ui and uj of GI,B. On the other
hand since all arcs uivi exist in GI,B, the path ui · · ·uj implies the existence of
paths ui · · · vj , vi · · ·uj and vi · · · vj . (ii) Suppose GI,B is strongly connected.
The path vi · · · vj in GI,B immediately implies a path from vertex i to vertex j
in GB. Thus we recover from Corollary 2 the fact that for a nonnegative matrix
B, strong connectedness of GB implies irreducibility of B.

Example 2. Let

A = Λ =





1 0 −1
1 −2 0

−1 1 0



 and B̃ =





−1 0 1
0 1 0
1 0 0





Let B = Q0(B̃) (so B is complete) and define

K = {Λz : z ∈ R3
≥0}.

K is a CCP cone in R3. (It is easy to show that any nonsingular n× n matrix
defines a proper simplicial cone in Rn in this way.) Since A = Λ it is immediate
that ImA does not lie in the span of any nontrivial face of K. Consider any
B ∈ B, i.e., any matrix of the form

B =





−a 0 b
0 c 0
d 0 0





where a, b, c, d ≥ 0. Since A = Λ,

ABΛ + (a+ b+ 2c+ d)Λ = Λ(BΛ + (a+ b+ 2c+ d)I)

and it can be checked that BΛ + (a+ b + 2c+ d)I is nonnegative. Thus AB is
K-quasipositive for all B ∈ B. On the other hand GA,B is illustrated in Figure 1

for any B ∈ relintB (i.e. B ∈ Q(B̃)) and can be seen to be strongly connected.
So AB is K-irreducible for any B ∈ relintB.

Example 3. The following is an example with a cone which is not solid. Let

A =





−1 −1 0
−1 0 −1
2 1 1



 , Λ =





1 0
0 −1

−1 1



 and B̃ =





1 1 −1
1 0 −1
0 1 −1





Let B = Q0(B̃) and define

K = {Λz : z ∈ R2
≥0}.
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u1 v1 u2

v3 u3 v2

Figure 1: GA,B for the system in Example 2 with B ∈ relintB. By inspection the digraph is
strongly connected.

K is a CCP cone of dimension 2 in R3. Clearly ImA does not lie in the span of
any nontrivial face (i.e., any extremal) of K. Defining

T =

(

−1 −1 0
1 0 1

)

,

note that A = ΛT . Consider any B ∈ B, i.e., any matrix of the form

B =





a b −c
d 0 −e
0 f −g





where a, b, c, d, e, f, g ≥ 0. Then

ABΛ + (a+ b+ c+ d+ e+ f + g)Λ = Λ(TBΛ+ (a+ b + c+ d+ e+ f + g)I)

where I is the 2 × 2 identity matrix. It can be checked that TBΛ + (a + b +
c+ d + e + f + g)I is nonnegative. Thus AB is K-quasipositive for all B ∈ B.
GA,B is illustrated in Figure 2 for any B ∈ relintB (i.e., B ∈ Q(B̃)) and can be
seen to be strongly connected. So AB is K-irreducible for any B ∈ relintB.

v2 u3 v3

u1 v1 u2

Figure 2: GA,B for the system in Example 3 with B ∈ relintB. By inspection the digraph is
strongly connected.

Example 4. As a final, nontrivial, example, let

A =









−1 0 0
1 −1 0
0 1 −1
1 0 1









, Λ =









0 0 0 0 1 1 1 1
0 0 1 1 −1 −1 0 0
1 0 0 −1 1 0 0 −1
0 1 0 1 −1 0 −1 0









,

(2)
and B = Q0(−AT). Define

K = {Λz : z ∈ R8
≥0}.

Various facts can be confirmed either theoretically or via computation:
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1. K is a proper cone in R4.

2. ImA 6⊆ spanF for any nontrivial face F of K.

3. For each B ∈ B, AB is K-quasipositive.

Some insight into the structure of K and the proof of these facts is provided in
the Appendix. It now follows from Theorem 1 that whenever GA,B is strongly
connected, AB (and hence AB + αI for each α ∈ R) is also K-irreducible. For
example, it can easily be checked that for B ∈ relintB (namely B ∈ Q(−AT)),
GA,B is strongly connected and so AB is K-irreducible. The condition that
B ∈ relintB can be relaxed while maintaining K-irreducibility. The digraphs
GA,B for two choices of B ∈ B are illustrated in Figure 3.

u4

u2

u3

v1 v2

v3

u1

u4

u2

u3

v1 v2

v3

u1

Figure 3: Left. The digraph GA,B where A is as shown in (2) and B is any matrix in Q(−AT).
ui is the row vertex corresponding to row i in A, while vi corresponds to column i. Right.

Setting B22 = B33 = B14 = 0 removes the arcs v2u2, v3u3, v1u4 from GA,B, but still gives a
strongly connected digraph.

Confirming K-irreducibility for choices of B without the aid of Theorem 1
is possible but tedious, requiring computation of the action of AB on each of
the 26 nontrivial faces of K.

6. Concluding remarks

Rather different graph-theoretic approaches to questions of irreducibility of
matrices are taken in [2, 3, 4]. In [4], for example, polyhedral cones with nK

extremals were considered, and digraphs on nK vertices constructed. Results
were presented deriving K-irreducibility of matrices from K-quasipositivity of
these matrices and strong connectedness of the digraphs. The construction
relies, however on knowledge of the matrix action on each extremal of K.

In our approach described here, K is not necessarily polyhedral and no
knowledge of the facial structure or particular action of matrices on extremals
of K is required. In compensation, however, we assume that a set of matri-
ces with a particular structure (completeness) are all K-quasipositive, and K-
quasipositivity of this entire set is essential for the proofs. This stronger assump-
tion about K-quasipositivity allows weaker assumptions about the structure of
K and the action of the matrices on faces of K. Thus both the construction of
the digraph here and the assumptions are somewhat different from earlier work
in this area.
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Appendix A. Some details connected with Example 4

K is a proper cone. That K is closed and convex is immediate from the
definition. Note that ΛP = I where P is the nonnegative matrix

P =

























0 0 1 0
1 0 0 1
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0

























.

Consequently K contains R4
≥0 and K is solid. Defining p = (2, 1, 1, 1)T, ΛTp

is strictly positive, so pTΛz > 0 for any nonnegative and nonzero z. Thus
p ∈ intK∗, where K∗ is the dual cone to K. Since K∗ has nonempty inte-
rior this implies that K is pointed (if K contains a nonzero y ∈ R4 such that
y,−y ∈ K, we get the contradiction pTy > 0 and pT(−y) > 0). Putting together
these observations, K is a proper cone in R4.

The facial structure of K. It can be checked that each Λi spans a different
extremal of K, namely, no Λi can be constructed as a nonnegative combination
of others. Further, the two dimensional faces of K are spanned by pairs of Λi

for i belonging to:

{1, 2}, {1, 3}, {2, 4}, {3, 4}, {1, 5}, {2, 6}, {3, 7}, {4, 8}, {5, 6}, {5, 7}, {6, 8}, {7, 8}.

while the three dimensional faces of K are spanned by sets of four Λi for i
belonging to:

{1, 2, 3, 4}, {1, 2, 5, 6}, {3, 4, 7, 8}, {1, 3, 5, 7}, {2, 4, 6, 8} and {5, 6, 7, 8}.

This facial structure of K can be computed directly, or is deduced as follows.
Let

Γ =









0 0 1
0 1 −1

−1 −1 0
1 0 −1









and C =





0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1



 .

Note that the columns of C are the vertices of a cube C ⊆ R3 and the index sets
above define the one and two dimensional faces of C. Define q = (0, 0, 1, 0)T and
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the affine mapping T : R3 → R4 by T (v) = Γv + q. Observe that Λi = T (Ci),
that Γ has trivial kernel, and that q 6∈ ImΓ. As noted above, Λi are pairwise
independent extremal vectors generating K. It is easy to confirm that as a
consequence each x ∈ K\{0} can be written x = rT (y), where r and y are
uniquely defined. Given any nonempty I ⊆ {1, . . . , 8}, define FI ⊆ C as the
convex hull of {Ci}i∈I , and F ′

I ⊆ K as the set of nonnegative combinations of
{Λi}i∈I . Note that FI fails to be a face of C if and only if there exist I ′ ⊆ I,
I ′′ 6⊆ I, αi > 0 with

∑

i∈I′ αi = 1, and βi > 0 with
∑

i∈I′′ βi = 1 such that

y ≡
∑

i∈I′

αiCi =
∑

i∈I′′

βiCi . (A.1)

On the other hand F ′
I fails to be a face of K if and only if there exist I ′ ⊆ I,

I ′′ 6⊆ I, α′
i > 0, and β′

i > 0 such that

x ≡
∑

i∈I′

α′
iΛi =

∑

i∈I′′

β′
iΛi . (A.2)

If (A.1) holds, then T (y) =
∑

i∈I′ αiΛi =
∑

i∈I′′ βiΛi and so, setting x = T (y),
α′
i = αi and β′

i = βi, (A.2) holds and F ′
I fails to be a face of K. Conversely,

suppose (A.2) holds. Since q 6∈ ImΓ, there exists some p ∈ ker(ΓT) such that
pTq 6= 0 (choose p = (2, 1, 1, 1)T as above for example). Writing x = rT (y) and
multiplying (A.2) from the left by pT gives

r =
∑

i∈I′

α′
i =

∑

i∈I′′

β′
i . (A.3)

Noting that r 6= 0 and ker Γ = {0}, (A.3) and (A.2) together imply:

y =
1

(
∑

i∈I′ α′
i

)

∑

i∈I′

α′
iCi =

1
(
∑

i∈I′′ β′
i

)

∑

i∈I′′

β′
iCi .

Defining αi = α′
i/(

∑

i∈I′ α′
i), βi = β′

i/(
∑

i∈I′′ β′
i), we see that (A.1) holds and

FI fails to be a face of C. More general applications of this argument, and
examples of the use of such cones in the study of dynamical systems, can be
found in [14].

The nondegeneracy condition is fulfilled. That ImA does not lie in
spanF for any nontrivial face F can be confirmed theoretically, or checked
by demonstrating for each three dimensional face F some vector z such that
Az 6∈ spanF . This is left to the reader.

AB is K-quasipositive. Finally, that AB is K-quasipositive for all B ∈
Q0(−AT) can easily be checked. Each B ∈ Q0(−AT) has the form

B =





a −b 0 −c
0 d −e 0
0 0 f −g
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where a, b, c, d, e, f, g ≥ 0. Defining the nonnegative matrix

Q =





























a+b+c
+d+g

g d 0 a+b+c 0 0 0

f
a+b+d
+e+f

0 e+d 0 a+b 0 0

e 0
a+c+e
+f+g

f+g 0 0 a+c 0

0 0 0 a 0 0 0 a

0 0 0 0 0 0 0 0

0 c 0 0 f+g
c+e

+f+g
0 e

0 0 b 0 d+e 0
b+d
+e+f

f

0 0 0 b+c 0 d g
b+c

+d+g





























we can confirm that

ABΛ + (a+ b+ c+ d+ e+ f + g)Λ = ΛQ.

In other words AB is K-quasipositive.
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