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Abstract
Background  The mutational status of ovarian cancer cell line IGROV-1 is inconsistent across the literature, suggestive of 
multiple clonal populations of the cell line. IGROV-1 has previously been categorised as an inappropriate model for high-
grade serous ovarian cancer.
Methods  IGROV-1 cells were obtained from the Netherlands Cancer Institute (IGROV-1-NKI) and the MD Anderson 
Cancer Centre (IGROV-1-MDA). Cell lines were STR fingerprinted and had their chromosomal copy number analysed and 
BRCA1/2 genes sequenced. Mutation status of ovarian cancer-related genes were extracted from the literature.
Results  The IGROV-1-NKI cell line has a tetraploid chromosomal profile. In contrast, the IGROV-1-MDA cell line has 
pseudo-normal chromosomes. The IGROV-1-NKI and IGROV-MDA are both STR matches (80.7% and 84.6%) to the original 
IGROV-1 cells isolated in 1985. However, IGROV-1-NKI and IGROV-1-MDA are not an STR match to each other (78.1%) 
indicating genetic drift. The BRCA1 and BRCA2 gene sequences are 100% identical between IGROV-1-MDA and IGROV-
1-NKI, including a BRCA1 heterozygous deleterious mutation. The IGROV-1-MDA cells are more resistant to cisplatin and 
olaparib than IGROV-1-NKI. IGROV-1 has a mutational profile consistent with both Type I (PTEN, PIK3CA and ARID1A) 
and Type II ovarian cancer (BRCA1, TP53) and is likely to be a Type II high-grade serous carcinoma of the SET (Solid, 
pseudo-Endometroid and Transitional cell carcinoma-like morphology) subtype.
Conclusions  Routine testing of chromosomal copy number as well as the mutational status of ovarian cancer related genes 
should become the new standard alongside STR fingerprinting to ensure that ovarian cancer cell lines are appropriate models.
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Abbreviations
NKI	� Netherlands Cancer Institute
MDA	� MD Anderson Cancer Centre
SET	� Solid, pseudo-Endometroid and Transitional cell 

carcinoma-like
STR	� Single Tandem Repeat

Introduction

Worldwide, there were 324,398 new cases of ovarian cancer 
in 2022, accounting for 1.6% of cancer cases [1]. The most 
common histological type of ovarian cancer is epithelial 
representing approximately 90% of all ovarian tumours [2]. 
Epithelial ovarian cancers frequently have a high amount of 
chromosomal instability. Increased total and regional chro-
mosomal instability are associated with increased tumour 
grade by Broder’s classification, but not FIGO stage [3]. 
Within in each FIGO stage as tumour grade increases there 
is a decrease in the 5-year survival rate [2].

Epithelial ovarian cancers have been traditionally divided 
into two categories (Type I and Type II) corresponding to 
two main pathways of tumorigenesis [4]. Type I tumours 
arise in a stepwise manner from borderline tumours and 
include low-grade serous carcinomas, mucinous, endo-
metroid and clear cell carcinomas [5]. Type I tumours are 
characterised by a higher percentage of either KRAS, BRAF, 
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PTEN, PIK3CA and ARID1A mutations and a low prolifera-
tion index [4, 5]. Type II includes high-grade serous carci-
noma, malignant mixed mesodermal tumours and undiffer-
entiated carcinomas. Type II tumours are rarely associated 
with precursor tumours and it has been suggested that they 
develop de novo from surface epithelium or inclusion cysts 
of the ovary as well as within the fallopian tubes. Type 
II tumours are characterised by frequent TP53 mutations 
(50–80%), BRCA1/2 mutation or methylation, a high pro-
liferation index and increased chromosomal instability [4, 
5]. Patients with Type II tumours have a worse disease-free 
survival [6] and disease-specific survival [7] compared to 
Type I.

Classifying ovarian cancer into Type I and Type II 
like any dichotomous classification system is useful but 
is simplistic and requires additional sub-branches. High-
grade serous carcinoma (HGSOC) (Type II) and low-grade 
serous carcinomas (Type I) best fit into a dichotomous 
classification, with different precursors, and distinct 
molecular profiles [8]. Type I tumours are not homogenous, 
even within the histological types, and can have poor clinical 
outcomes [8] For example, ovarian clear cell carcinoma can 
be divided into subtypes through gene-expression clustering 
with differing progression-free survival.

Similarly, gene-expression studies have categorised 
high-grade serous ovarian cancer into subtypes but there is 
a lack of reproducibility between studies [9]. Tothill et al. 
[10] reported four HGSOC subtypes: (i) immunoreactive 
(ii) low stromal response (iii) high stromal response and (iv) 
mesenchymal. The high-stromal response and mesenchymal 
subtypes showed poorer survival compared with other 
subtypes [10]. The Cancer Genome Atlas (TCGA) project 
also identified four subtypes by gene expression (i) 
immunoreactive (ii) proliferative (iii) differentiated and 
(iv) and mesenchymal but found no differences in patient 
survival between these subtypes [11]. A consensus classifier 
for HGSOC has been proposed, with a subset of tumours 
examined unclassifiable based on currently proposed 
subtypes [9].

In 2013, a major study by Domcke et al. ranked ovarian 
cancer cell lines by their appropriateness to model HGSOC 
[12]. An analysis of Pubmed in 2021 showed that seven cell 
lines collectively constituted almost 90% of ovarian cancer 
cell line usage (ranked by highest usage: SKOV-3, A2780, 
OVCAR-3, IGROV-1, CAOV-3, 59M and OVCAR-8) [13] 
Of these, SKOV3, A2780, IGROV-1 and OVCAR8 were 
categorised by Domcke et al. as inappropriate to model 
HGSOC.

Long-term culture of cell lines may result in genetic drift 
where the cell lines no longer reflect the original tumours 
that they are supposed to model. The scientific community 
is in general neglectful of routine monitoring of cell lines 
with genetic characterisation [14]. As many ovarian cancer 

cell lines have been in use for decades ahead of the Domcke 
et al. study, SKOV-3 (1975) IGROV-1 (1985), the question 
is raised: What if genetic drift occurred before the landmark 
2013 study? And are there clonal populations of cell models 
dismissed by Domcke that could model HGSOC?

In this study we examine the mutational profile, original 
histology and chromosomal copy number of a panel of 
ovarian cancer cell lines, compare our results to the findings 
of Domcke et al. and suggest which may be appropriate 
models of various subtypes of ovarian cancer.

Methods

Cell culture

Cell lines HOC1, HOC7 were grown in DMEM (Invitrogen, 
Grand Island, NY, USA # 11995) 10% FBS (Hyclone, 
Logan, Utah, USA #sv30014.03); IOSE80 were grown in 
M199:MCDB105 (Invitrogen #11150, Sigma #M6395) 5% 
FBS. DOV13 were grown in MEM (Invitrogen #11095) 
10% FBS with NEAA. EFO27 were grown in RPMI (ATCC 
#41458) 20% FBS with the addition of l-glutamine, NEAA 
and Na Pyruvate. The remainder of cells (SKOV3, IGROV-
1-MDA, IGROV-1-NKI, PA-1), were grown in RPMI-1640 
10% FBS (Biosciences, Dublin, Ireland, 10270-106-Lot 
41Q2130K), the following cell lines had additives 2 mM 
l-glutamine (A2780). No antibiotics were used in the culture 
of cell lines. The IGROV-1-NKI cell line was obtained from 
the Netherlands Cancer Institute [15] in 2008 all other cell 
lines were obtained from the MD Anderson Cancer Centre 
in 2010.

DNA extraction

DNA extractions were performed using the Qiagen QIAamp 
DNA mini kit “Appendix B: Protocol for Cultured cells” 
spin column protocol adding 0.4 mg RNaseA to each sample 
prior to the AL buffer step.

Affymetrix 500K single‑nucleotide polymorphism 
arrays

250 ng of genomic DNA was processed using GeneChip 
Mapping NspI or StyI Assay Kit (Affymetrix, Santa Clara, 
CA) as per the manufacturer’s protocol and hybridized to 
Affymetrix Mapping 500K NspI or StyI microarrays. After 
hybridization, array wash, stain, and scan procedures were 
performed per manufacturer’s protocol. Chromosomal copy 
number analysis was performed using a software package 
previously described [16].
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DNA fingerprinting

Cell lines were either authenticated by Source BioScience 
LifeSciences (UK) using the AmpFISTR® SGM Plus® 
PCR amplification kit or authenticated in the MD Anderson 
CCSG supported cell line characterisation core to establish 
identity.

Cytotoxicity‑proliferation assays

To determine the resistance to chemotherapy drugs, cells 
were plated into flat-bottomed, 96-well plates at the cell 
density of 1 × 103 cells/well and allowed to attach overnight. 
Olaparib (AZD2281) and veliparib (ABT888) were 
purchased from Selleck Chemicals (Boston, MA, USA) and 
made up in DMSO. Cisplatin was obtained from St. James’ 
Hospital Pharmacy, Dublin. Wells were treated in triplicate 
with serial dilutions of drug in a final volume of 200 µL. 
Drug-free controls were included in each assay. DMSO 
controls were also performed for each cell line. Plates were 
incubated for a further 5 days at 37 °C in a humidified 
atmosphere with 5% CO2 and cell viability was determined 
using an acid phosphatase assay [17].

Results

Ovarian cell lines with few chromosomal 
abnormalities are likely to be type I ovarian cancer

In a previous study we profiled a large panel of 41 ovarian 
cancer cell lines for their BRCA1/2 mutation and BRCA1 
methylation status [18]. A chromosomal copy number analy-
sis was also performed which revealed that seven of the ovar-
ian cancer cell lines had very few chromosomal abnormali-
ties, their chromosomal profile is pseudo-diploid (A2780, 
DOV13, EFO27, HOC-1, HOC-7, IGROV-1, PA-1). Fig-
ure 1 presents a representative chromosomal copy number 
profile from (A) a normal cell line ISOE80, (B) EFO-27 
with a pseudo-diploid profile and (C) SKOV3 with an aber-
rant tetraploid profile. The majority of models were shown 
to have a pseudo-diploid profile when they were originally 
established (Table 1), and most have a histological subtype 
consistent with Type I ovarian cancer. Most of the cell lines 
have one of the mutations associated with Type I ovarian 
cancer (Table 1). IGROV-1 cells have a mutational profile 
consistent with both Type I and Type II ovarian cancer.

The literature disagrees about the mutational profile for 
several of the cell lines suggesting that there are multiple 
versions in use in different laboratories. A2780 has been 
reported to have or not have BRAF, PTEN and PI3CA muta-
tions [12, 19–21]. IGROV-1 has been reported to have or 

not have PIK3CA and BRCA2 mutations [12, 18, 22–24] 
(Table 1).

IGROV‑1 cells from different laboratories have 
a different chromosome profile

The IGROV-1-NKI were obtained from the Netherlands 
Cancer Institute in 2008 and are an 80.7% STR match to the 
NCI-60 IGROV-1 fingerprint (Table 2) [37]. The IGROV-1 
cells were originally isolated in 1985 at the Gustave Rousey 
Institute (IGROV-1-GR), there is no STR fingerprint 
published earlier than the NCI-60 one in 2009 [30]. The 
IGROV-1-MDA cells were obtained from the MD Anderson 
Cancer Centre in 2010 and are an 84.6% match to the NCI 
Fingerprint (Table 2). As a guide, STR matches above 80% 
are considered a match, allowing a difference of one STR 
at one locus [37]. The IGROV-1-MDA and IGROV-1-NKI 
cells are a 78.1% match to each other (Table 2), which is 
below the threshold of an official STR match.

The BRCA1 and BRCA2 gene sequences are 100% iden-
tical between IGROV-1-MDA [18] and IGROV-1-NKI, 
including the BRCA1 heterozygous deleterious mutation; 
indicating the same genetic origin (Table S1). The IGROV-
1-NKI cell line has a hypo-tetraploid chromosomal profile 
(Fig. 2). In contrast, the IGROV-1-MDA cell line has a 
pseudo-normal chromosomal profile.

The IGROV-1-NK1 and IGROV-1-MDA cell lines have a 
different response to chemotherapeutic drugs. The IGROV-
1-MDA cells are more resistant to cisplatin and olaparib 
than IGROV-1-NKI (Cisplatin 0.14 ± 0.03 vs 0.31 ± 0.14 µM 
respectively 2.19-fold p = 0.02; Olaparib 1.24 ± 0.59 vs 
6.04 ± 2.83 µM respectively 4.86-fold p = 0.0007) (Fig. 3A, 
B). The response to veliparib and doubling time is simi-
lar between IGROV-1-MDA and IGROV-1-NKI (Fig. 3C, 
D). (Veliparib 54.36 ± 9.47 vs 58.13 ± 21.59 µM respec-
tively 1.07-fold p = 0.675; Doubling time 1.40 ± 0.1 vs 
1.40 ± 0.44 days respectively 1.0-fold p = 1.0.).

Discussion

IGROV‑1 cells have a mutational profile consistent 
with both Type I and Type II ovarian cancer

The original IGROV-1 study reported a mixture of cells 
with pseudo-diploid chromosomes and hypo-tetraploid 
chromosomes [30]. The hypo-tetraploid population increased 
with increasing passage number which would explain 
what we observe in the IGROV-1-NKI cells. Similarly, 
the original cytogenetic profiles for EFO-27 reported a 
mixture of cells some with a pseudo-diploid and some with 
an aberrant chromosome profile [26]. At high passage the 
pseudo-diploid population was replaced with cells with a 
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Fig. 1   Representative chromo-
somal copy number profiles 
A IOSE80 with a normal 
diploid profile, B EFO27 with 
a pseudo-diploid profile and 
C SKOV3 with an aberrant 
tetraploid profile. The red line 
represents the copy number 
and the black line the minor 
allele. Minor Allele: the number 
of copies of the least frequent 
allele; Copy Number: the sum 
of the major and minor allele 
counts
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near tetraploid number of chromosomes. What is unusual is 
the pseudo-diploid population being maintained in IGROV-
1-MDA with the selective pressure of years of cell culture. 
The IGROV-1-NKI and IGROV-1-MDA cell lines have a 
modest difference in resistance to cisplatin and olaparib 
which may be related to their differing chromosomal profile.

Both the IGROV-1-NKI and IGROV-1-MDA cell lines 
are heterozygous for the deleterious 2080delA BRCA1 
mutation. This means that they have one functional copy 
of the BRCA1 gene. We previously observed a high rate 

of heterozygous BRCA1/2 mutations in ovarian cancer 
cell lines [18] suggesting evidence of selective pressure 
against cells with defects in DNA repair [38, 39]. What 
is interesting is that this heterozygous mutation is present 
in both IGROV-1-NKI and IGROV-1-MDA; suggesting 
that the selective pressure for the heterozygous mutation 
happened during the original development of the cell line 
and not during years of cell culture. Unfortunately, the 
BRCA1/2 mutation status of the patient IGROV-1 was 

Table 1   Evidence for type I vs Type II—histology and molecular markers

Cell Line

Evidence for 
Type I Original 

Histology

Evidence 
for Type II 

Original 
Histology

Modal 
Chromosome 

Number Original 
Cytogene�cs

Copy Number 
in Muta�on 
Study

Type I Type II 

BR
AF

KR
AS

PT
EN

PI
K3

CA

AR
ID
1A

CT
NN

B1

TP
53

BR
CA

1

BR
CA

2

A2780 Unknown 46[25] Pseudo-diploid �[12] X[12] �[12] �[12] �[12] X[12] X[12] X[26] X[26]

Not Determined X[19, 
20]

X[19–
21]

�[20]
X[21]

X[20, 21] �[20] X[20, 
21]

X[20, 
21]

DOV13 Unknown Pseudo-diploid X[26] X[26]
EFO27 Mucinous 

from solid 
metastasis[27]

46-50, then hypo-
tetraploid with 

increasing 
passage 80 [27]

Pseudo-diploid X[12] X[12] �[12] �[12] �[12] X[12] �[12] X[26] X[26]

HOC-1 Serous 
from 

Ascites[28]

49[28] Pseudo-diploid X[26] X[26]
Not Determined X[29]

HOC-7 50[28] Pseudo-diploid X[26] X[26]
Not Determined �[30]

IGROV-1 Endometrioid 
and Clear 
Cell[31]

46, then hypo-
tetraploid with 

increasing 
passage
92[31]

Pseudo-diploid X[12] X[12] �[12] �[12] �[12] X[12] �[12] �[12, 
26]

�[12]
X[26]

Hypo-Tetraploid �[26] X

Not 
Determined

X[32, 
33]

X[22, 
24, 
32]

�[23, 24, 
32]

�[22, 23, 
32]

X[24]

X[32] X[32]

PA-1 Germ Cell 
Tumour from 

Ascites[34]

44[34] Pseudo-diploid �[35]* X[26] X[26]
Not 

Determined[3
6, 37]

X[37] X[36]

� - Presence of Muta�on; X – Absence of Muta�on; * Muta�on occurred a�er increasing passage number; Numbers indicate references

✓Presence of Mutation; X Absence of Mutation
*Mutation occurred after increasing passage number; Numbers indicate references

Table 2   IGROV-1-NKI and 
IGROV-1-MDA compared to 
NCI-60 Reference Fingerprint

IGROV-1 

AM
EL

 

CS
F1

PO
 

D1
3S

31
7 

D1
6S

53
9 

D1
8S

51
 

D2
1S

11
 

D3
S1

35
8 

D5
S8

18
 

D8
S1

17
9 

FG
A 

TH
01

 

TP
O

X 

vW
A 

NCI-60 Allele 1 X 11 8 11 15 26 13 12 14 21 7 8 17 
NCI-60 Allele 2 X 13 10 12 16 30.2 15 13 16 26 9.3 11 21 

NKI Allele 1 X 11 8 11 14 26 12 12 13 21 7 8 15 
NKI Allele 2 X 15 10 12 15 30.2 13 13 14 22 9.3 10 17 

IGROV-1-NKI =21/26 = 80.7% Match to IGROV-1 NCI-60 Fingerprint 
MDA Allele 1 X 11 8 11 14 26 14 12 13 21 7 8 17 
MDA Allele 2 Y 12 10 12 15 27 15 13 15 24 9.3 11 18 

IGROV-1-MDA = 22/26 = 84.6% Match to IGROV-1 NCI-60 Fingerprint 
IGROV-1-MDA = 25/32 = 78.1% Match to IGROV-1-NKI 

Grey—IGROV-1-NCI-60 Reference Fingerprint [37]
Dark Green—Match, Light Green ± 1 Match, Red—No Match
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derived from is unknown. However, it is possible that the 
BRCA1 mutation was present in the patient.

The IGROV-1 cell line was obtained from a 47-year-
old woman who had stage III ovarian cancer [30]. The 
histological profile was described as with multiple 
differentiations, primarily endometrioid with some serous 
clear cells and undifferentiated foci [30]. This histological 
profile would normally be suggestive of Type I ovarian 
cancer and the reported mutations of PTEN, PIK3CA and 
ARID1A genes are consistent with this [4]. However, the 
BRCA1 and TP53 mutations suggests that it’s a Type II 
high-grade serous carcinoma. One explanation for these 
observations is that IGROV-1 is HGSOC SET (Solid, 
pseudo-Endometrioid and Transitional cell carcinoma-like 
morphology) subtype [40]. SET is common among BRCA1-
associated ovarian cancer [40]

However, PTEN (3%), PIK3CA (3%) and ARIDA (3%) 
mutations have all been reported in Type II serous ovarian 

carcinomas, they are just more frequent in Type I ovarian 
cancers [41]. PTEN loss has been found in 30% of BRCA1 
germline or somatic mutated ovarian tumours [42], similar 
to what is observed in the IGROV-1 cell line. Mutations 
in ARID1A have been reported in BRCA1 mutated ovarian 
cancer [43]. In the COSMIC database PTEN (11%), PIK3CA 
(11%) and ARID1A (4%) mutations all occur in BRCA1 
mutated ovarian cancer [41]. IGROV-1 shares features of 
both Type I and Type II ovarian cancer and is modelling 
an unusual but previously documented group of ovarian 
tumours.

Clonal populations in long‑term cell culture

Scientists routinely deliberately create clonal populations 
of cells to study phenotypes of interest, such as 
chemoresistance [39, 44, 45]. However, clonal populations 

Fig. 2   A tale of two IGROV-1s Summary – IGROV-1-NKI is an 
80.7% STR match to the original IGROV-1-GR cells and has hypo-
tetraploid chromosomes. IGROV-1-MDA is an 84.6% STR match to 
IGROV-1-GR and has pseudo-diploid chromosomes. IGROV-1-NKI 
and IGROV-1-MDA have a 100% match in the sequence of BRCA1 

and BRCA2, but are only a 78.1% STR match. The red line represents 
the copy number and the black line the minor allele. Minor Allele: 
the number of copies of the least frequent allele; Copy Number: the 
sum of the major and minor allele counts
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of cells can develop unintentionally during routine cell 
culture particularly if cell lines are grown for a long time.

Growing cell lines in culture is ‘survival of the fittest’ or 
survival of the fastest proliferating cells within the culture. 
Cells are subcultured because of the limited space in the 
culture flask. Heterogeneous tumour cell populations are 
diluted uniformly. As the slower growing cells are eliminated 
by repeated subculture, the population is selected for rapidly 
growing cells [46].

A study in glioblastoma found multiple clonal variants of 
the cell line U-251, some differing in cell surface markers. 
Longer-term culture of U-251 variants was associated 
with increased clonogenicity and tumorgenicity [14]. 
Comparative Genomic Hybridisation (CGH) is typically 
performed between a tumour cell line and a normal cell line 
to identify the genomic differences within the tumour. A 
study on MCF-7 breast cancer cells passaged in different 
laboratories showed substantial genetic drift between 
the two karyotypes by CGH [47]. MCF-7-ATCC was in 
culture longer than MCF-7-RIDC, and had a more complex 
karyotype with a higher number of chromosomes per cell 
(64–83 and 43–83 respectively) [47].

Trypsin

Trypsin is routinely used to detach attached cancer cell lines 
from culture flasks [48]. Cell culture protocols remind users 
to check for complete detachment of the cells from the flask 

before proceeding with sub culture [48]. There have been 
several reports of trypsin-resistant cell lines, which separate 
cells into clonal populations based on the ease at which they 
detach from the flask. In rat colon cancer cells, trypsin-
sensitive cells that were easily detached formed tumours 
in syngeneic rats but were rejected within 3–4 weeks [49]. 
If cells are not completely detached and the same flask is 
used for continued culture trypsin-resistant populations may 
emerge. Differences in trypsinisation technique between 
laboratories therefore has the potential to unintentionally 
develop new clonal populations in long-term culture.

In this study we used a 5-min incubation with Lonza 
Trypsin–EDTA Mixture prepared in PBS at a working 
concertation of 0.25%. The original IGROV-1 study used a 
similar trypsin mixture but a longer exposure time of 10 min. 
It is unclear if this was routine practice or if the cells were 
hard to detach from the flask in 1985 [30]. Trypsinisation 
technique is not routinely reported in cell culture methods. 
Therefore we don’t know if there was any difference in the 
technique used for IGROV-1-NKI and IGROV-1-MDA [15, 
18].

Antibiotics

With correct cell culture technique antibiotics should not 
be needed for the routine maintenance of cell lines [48]. 
A study by Elliot and Jiang found that culture of breast 
cancer cell lines in the antibiotic gentamicin induced gene 

Fig. 3   Cytotoxicity and Dou-
bling Time in IGROV-1-NKI 
and IGROV-1 MDA—A Cis-
platin, B Olaparib, C Veliparib 
and D Doubling Time. IGROV-
1-NKI in pink and IGROV-1-
MDA in blue. The cytotoxicity 
graphs are a representative rep-
licate. The doubling time graph 
shows an average and standard 
deviation of a minimum of n = 3 
replicates
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expression of hypoxia inducer factor 1alpha, glycolytic 
enzymes and glucose transporters [50]. There was also an 
increase in reactive oxygen species causing DNA damage 
[50]. Human adipose-derived stem cells were also found to 
show different markers of differentiation and higher levels 
of reactive oxygen species in response to antibiotics. Long-
term antibiotics use therefore has the potential to develop 
new subclones of a cell line.

In this study we did not use antibodies while culturing 
the ovarian cancer cell lines. The IGROV-1 cell line was 
established in primary culture using antibiotics but then 
maintained in antibiotic-free media [30]. The IGROV-1-
NKI cells were grown in media containing antibiotics at the 
Netherlands Cancer Institute [15]. The IGROV-1-MDA cell 
line from the MD Anderson were not grown in antibiotics 
[18]. However, it could have been grown in antibiotics prior 
to our study.

Clonal populations in in vivo models

Clonal population of cells have also been shown when 
cells are implanted in  vivo models. Early passages of 
ovarian cell line EFO-27 (p12-16) consisted largely of near 
diploid cells with 46–50 chromosomes [26]. At p180 50% 
of cells had greater than 80 chromosomes, suggesting a 
selective pressure towards polyploidy [26]. EFO-27 cells 
are tumorigenic in nude mice, and cells recovered from a 
solid EFO-27 tumour and then cultured for 69 passages were 
exclusively near tetraploid [26]. This suggests that the EFO-
27 cells with pseudo-diploid chromosomes are either less 
tumorigenic than cells with aberrant chromosomes or not 
tumorigenic at all.

Relevance of the IGROV‑1 model to ovarian cancer 
research

In 2013, a major study by Domcke et al. ranked ovarian 
cancer cell lines by their appropriateness to model high-
grade serous ovarian cancer. IGROV-1 was ranked as a 
poor model and was also found to have a hyper-mutated 
genotype [12]. EFO27 and OC316 were also ranked as poor 
models with the same hyper-mutated genotype. However, 
the IGROV-1 cells in the Domcke et al. study were pseudo-
diploid and are likely to be similar to the IGROV-1-MDA 
cells we have profiled. IGROV-1-NKI with its tetraploid 
chromosomes is likely to represent high-grade serous 
ovarian cancer of the SET subtype.

Many cell lines are likely to suffer from this variation 
across the literature. The Domcke et  al. study refers to 
SKOV3 as having a flat pseudo-normal chromosomal profile, 
whereas we found an aberrant tetraploid profile (Fig. 1C). 
Our SKOV-3 cells were verified to have a 100% STR match 
to the published ATCC fingerprint [51]. The data on the 

SKOV3 cells in the Domcke et al. study, was derived from 
the Cancer Cell Line Encyclopaedia [52]. This was a large 
study on 947 cancer cell lines where identity was confirmed 
using SNP genotyping and matching to the Sanger CGP 
cell line project [53]. Suggesting that both cell lines were 
SKOV3, but different clonal populations.

Conclusion

IGROV-1-NKI with its tetraploid chromosomes is likely to 
model high-grade serous ovarian cancer. Routine testing of 
chromosomal copy number as well as the presence of key 
mutations is recommended alongside STR fingerprinting to 
ensure that ovarian cancer cell lines are authenticated and 
model a specific clinical subtype.
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