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A B S T R A C T

With the latest developments in both the automotive and communications industries, especially concerning
the emerging 5G networks, IoV, and the adoption of Vehicle-to-Everything (V2X) connectivity, there has been
a shift towards the establishment of Heterogeneous Vehicular Networks (HetVNets) environments. The rapid
growth of data traffic and the drastic expansion of heterogeneous network infrastructure have resulted in a
significant increase in energy consumption within wireless communication systems. Balancing energy efficiency
and spectral efficiency has become a major challenge in Heterogeneous Vehicular networks, particularly
concerning energy optimization, making the design of network systems considerably more challenging.
Therefore, this paper attempts to optimize the energy utilized for each packet transmission, considering
its stochastic nature and the optimized control parameters of two meta-heuristic algorithms-Particle Swarm
Optimization and Artificial Bee Colony Optimization. The optimization process is executed using the Particle
Bee Colony Swarm algorithm. Subsequently, a comparison is made with other proposed algorithms, namely
LDOD, FO, RO, and MATO, in terms of energy efficiency and spectral efficiency. The performance analysis
reveals that the numerical results outperform existing algorithms, demonstrating a 30.32% increase in spectral
efficiency and 73.25% increase in energy efficiency.
1. Introduction

Recent advances in information technology have revolutionized the
automotive and communications industries, paving the way for next-
generation smart and connected vehicles. Emerging 5G networks, the
Internet of Vehicles (IoV), and the adoption of vehicle-to-everything
(V2X) connectivity have led to the adoption of a heterogeneous ve-
hicular network (HetVNets) environment. The highly dynamic nature
of the vehicular networks, along with the heterogeneity of wireless in-
frastructures for connected cars (e.g., IEEE 802.11p, LTE-A/5G, Cellular
Vehicle to Everything (C-V2X), etc.), as well as the variety of vehicular
applications (e.g., safety, traffic management, infotainment, etc.), make
resource management and low-latency communication requirements a
significant challenge to network power consumption [1]. This, in turn,
has led to a series of critical problems, such as greenhouse gas emissions
due to increased energy consumption. 5G, a significant cellular technol-
ogy, aims to provide high throughput, a large transmission bandwidth
per user, huge capacity in accordance with the number of connected
devices, and low latency. Heterogeneity, which is supported in 5G
Vision and broadcasted by the 5G-PPP group, achieves high network
performance [2]. However, heterogeneity itself is a complicated task
to handle which causes network fragmentation and inefficiency in
resource utilization. Further, the transition from one radio access to
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another and the multi-hop process for network traffic routing leads to
end-to-end delay [3,4]. These investigations state that careful tackling
is needed to optimize spectral and energy efficiency. Particularly in
the case of dense HetVNets, the determination of the optimal path
within the shortest possible time must be addressed through effective
management of network resources and with the assistance of smart
routing algorithms. Effective real-time exchange of information among
the vehicular systems can be delivered by Dedicated Short Range Com-
munication (DSRC) [5]. Despite mobile networks extensively covering
the specifications of vehicular users’ need for services with real-time
safety but are not guaranteed by cellular networks all the time [6].
Although there exist numerous studies on cellular networks and DSRC,
the integrated approach associated with the extraction of reliable out-
comes still remains in its infancy. Resource management and the low
latency communication requirements are significant challenges to net-
work power consumption. This leads to greenhouse gas emissions due
to increased energy consumption. Building this kind of heterogeneous
vehicular network needs an in-depth analysis of heterogeneity and its
challenges. This section of this research deals with the optimization
of energy efficiency and spectral efficiency in a HetVNets environ-
ment with the Particle Bee colony swarm algorithm to achieve certain
objectives like strong flexibility, simplicity, robustness, handling of
vailable online 22 November 2023
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objectives of stochastic nature, and optimized control parameters. This
section has further evaluated and compared the improvised algorithm
with state-of-the-art methods in terms of energy and spectral efficiency.

Spectral efficiency defines the quantity of transmitted data with
fewer transmission errors over a given bandwidth and provided spec-
trum in a specific communication system. It is a measure of how
efficiently a limited frequency spectrum is utilized by the physical
layer protocol and sometimes by the medium or channel access control.
It is also equivalent to the maximum number of bits that could be
transmitted to a particular number of users per second [7]. It has
been stated that for effective usage, large amounts of data have to be
transferred over the spectrum. Spectral efficiency generally signifies
the efficacy of the digital modulation approach and the decrease in
the corresponding signal-to-noise ratio (SNR). The satisfactory values
of spectral and energy efficiency must be effectively maintained in
practical scenarios for efficient energy management and to decrease the
network operation cost.

The main contribution of this paper is to propose a framework
for task offloading schemes in HetVNets with optimization of energy
efficiency and spectral efficiency using the Particle Bee colony swarm
algorithm.

In this paper, we study the efficient task offloading schemes in Het-
VNets. The vehicles perform the communication, computing resource
allocations, and selection of the shortest path to offload the tasks. For
this paper, the spectral efficiency and energy efficiency of the wireless
communication system have been taken into consideration, keeping in
mind the minimum latency of task offloading (T = 0.1 s). To minimize
system energy and computing resources, the Particle Bee colony swarm
algorithm has been used to keep the latency low in task offloading and
also consider the trade-offs between spectral and energy efficiency.

The first section of this paper describes the introduction of the
HetVNets and the importance of energy efficiency and spectral effi-
ciency. Section 2 presents the related works in accordance with the
proposed methodology. Section 3 covers the proposed methodology
and information about the overall architecture of the particle bee
colony swarm algorithm in the optimization of spectral efficiency and
energy efficiency. Section 4 presents the performance analysis of the
improved model, and Section 5 concludes the work with justification.

2. Related works

This section presents information about the methodologies, results,
and challenges faced by the existing studies in accordance with the
proposed methodology. Most of the conventional HetVNets adoption
techniques seem ineffective in real-world scenarios due to their low
energy and spectral efficiency. To rectify this problem, [8] suggested a
game-based approach for the selection of optimal parameters. The ter-
minals trying to switch over with high evaluation have been framed as
a multi-play, non-cooperative system. The characteristics of HetVNets
are thoroughly accounted for in adjusting the game strategy, thereby
adapting a stable vehicular platform with fast convergence. This model
enables the drivers to avoid instability with a probabilistic system
prototype. Similarly, to resolve resource allocation in the high mobile
scenario, this paper [9] attempted to enhance both the reliability and
throughput efficiency of non-orthogonal multiple access (NOMA) based
HetVNets through a cascaded Hungarian channel-based algorithm that
simplifies the parameters used for power allocation. Chance constraints
were transferred to deterministic constraints by the approximation of
a non-central chi-square distribution. A reliable framework for the
vehicular network has been suggested by [10] that comprises collab-
orative radio, real-time cloud computing processes, and centralized
processing. The study stated that low-distortion compression is essential
for improving resource utilization. This research also suggested that
it could simplify operational management and the number of base
stations. Hence, there is decreased power consumption in the support
equipment. In relation to task offloading, a Lyapunov-based dynamic
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task offloading algorithm has been used to minimize the total network
utility under optimal offloading decisions by jointly considering packet
drop rate and energy consumption [11], however, the paper does not
consider spectral efficiency on mm-wave [12].

The paper compared other algorithms of task offloading, such as
the full-offloading (FO) algorithm, the random offloading (RO) algo-
rithm, and the mobility-aware task offloading (MATO) algorithm. In
the full offloading algorithm, all the flexible sub-tasks will be offloaded,
whereas in the random offloading algorithm, vehicles randomly offload
flexible sub-tasks to the server. MATO is proposed in [13] to offload
parts of the tasks with the condition that the offloading delay of the
sub-task is the same as the local execution delay, thereby minimizing
the total delay. Hence, spectral efficiency has not been considered.
The FO algorithm provides the advantage of offloading the whole task
completely, making the calculation process simple, and involving fewer
calculation parameters; however, it suffers from inefficient resource
allocation. The RO algorithm also has the advantage of involving fewer
calculation parameters; however, it suffers from the same inefficient
resource allocation. MATO, on the other hand, is quite effective in
efficient resource allocation by splitting the part or whole task to be
distributed among the resource points. It also helps in effective energy
management [13].

2.1. Energy efficiency in wireless communications

Energy consumption for the accession of the base station is con-
sidered the major energy-consuming aspect of HetVNets. To resolve
the challenge, it is significant, to begin with, to have a prompt device
for decreasing the energy consumption of the base station through
precise and reliable scheduling methods in terms of intensity usage.
Hence, [14] focused on restrictive flooding that is observed to be highly
energy efficient compared to plain flooding under similar reliability
factors. Designs with high energy efficiency have been suggested for al-
locating transmit power and surface-reflecting phase shifts with respect
to distinct budget assurance for mobile users. This results in design
optimization issues. To solve this, two computationally inexpensive
methods—exploiting alternating extensions, Gradient Descent Search
(GDS), and Sequential Fractional Programming (SFP)—have been sug-
gested. Particularly, one algorithm applies reconfigurable intelligent
surface (RIS) phase coefficients and gradient search to attain fractional
programming for the ideal allocation of transmit power. Alternatively,
the subsequent algorithm employs SFP to optimize RIS phase shifts.
An accurate power consumption framework for systems based on RIS
has also been presented. The performance of the suggested techniques
has been examined in a real outdoor environment. Outcomes revealed
that resource allocation techniques based on RIS have the ability to
afford three hundred percent high energy compared to the use of
typical Multi-Antenna Amplify and Forward Relaying (MAAFR) [15].
In Wireless Sensor Networks (WSN), it has been a challenging task to
fulfil the requirements due to end-to-end delay due to the duty cycle
chosen by nodes. This can result in considerable delay as nodes could
only transfer or retrieve information in their respective periods (that
is, leading to sleep delay). To solve this problem, Dynamic Duty Cycle
(DDC) has been recommended to reduce the delay occurring in WSNs.
Initially, the way in which the duty cycle impacts network delay has
been analysed. Subsequently, the DDC method has been devised for
extending the node’s active period in areas with no hot spots. With
more duty cycles, forwarding nodes stay awake with a high probability.
Thus, transmission delay and the node’s sleep delay get minimized. The
node’s remaining energy has been used to improve performance. Hence,
DDC does not destroy the network lifetime. Analytical and experimen-
tal outcomes revealed the outstanding performance of recommended
schemes over traditional schemes. In comparison to the traditional
Fixed duty Cycle (FDC), the lifetime gets extended by 16.7% or more.
On the other hand, the transmission delay of DDC gets minimized at a
rate of 20 to 50% [16].
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2.2. Spectral efficiency in wireless communication

Through fixed and identical length periods, synchronized and inter-
fering constraints (SIC) corresponding to cluster heads (CHs) have been
formed that afford specific conditions for RPC. All SICs of CHs have
been framed as probability constraints due to repeated fluctuations in
the channel. Moreover, utility based on pricing has been recommended
to avert separate optimization amongst SE and EE and the impact
of price on trade-offs amongst them. Due to intractable probability
constraints and non-convex unified utility, Bernstein approximation
(BA) and successive convex approximation (SCA) have been utilized
for transforming the issue into a tractable and convex form. Empir-
ical simulations have also been employed to assess the algorithms’
performance in dynamic systems. Further, the comparison has been
undertaken to validate the clustering technique and RPC scheme, which
confirmed their efficacy [17]. [18] investigated the performance of
a vehicular ad hoc network (VANET) as the Cox process; here, the
dimensional layout of the roads is modelled by the Poisson Line Process
(PLP), and the positions of nodes for each and every line are modelled
as a one-dimensional Poisson Point Process (PPP). For this process,
the success probability and area spectral efficiency (ASE) of the net-
work assumed ALOHA as the channel of access scheme used. In this
study, we examine the trends of success probability parameters and the
optimum transmission probability for the Cox process model, which
differs from the 1- and 2-dimensional PPP models used in vehicular
networks. [19] have deliberated the study on high spectral efficiency
on the dual non-orthogonal scheme with three major issues, which
are multi-user access, private security, and data rate with the Internet
of Things network. It focused on multiple access, spectrum resource
pressure, security issues, and bandwidth efficiency. In this study, the
high-spectral-efficiency secure access (HSESA) scheme based on dual
non-orthogonal is implemented to resolve the issues. The scheme is a
hybrid of non-orthogonal multi-access and non-orthogonal multiplex.
Compared to ML joined with MPA, the result showed that the detection
scheme of ID joined with MPA has a lower level of complexity. The
efficiency of spectral has been enhanced with the proposed HSESA
method, as it gives better bit error rate performance (BERP).

2.3. Optimized algorithm for energy efficiency

[20] developed an algorithm called two-stage energy-efficient re-
source allocation for the vehicular network process. The power-contro
lled algorithm, auction-matching-based joint-relay selection, and spec-
trum allocation have been derived in the first stage. In the second stage,
the nonlinear fractional programming-based power control algorithm
has been developed to maximize the energy efficiency in the base sta-
tion. In this stage, convergence, stability, and complexity are analysed.
Moreover, the proposed algorithm has been evaluated on the basis
of real-world road topology and realistic vehicular traffic. The result
stated that the proposed algorithm has achieved high performance in
terms of network coverage and efficient energy utilization compared to
other existing algorithms. [21] has implemented the Adaptive Weighted
Clustering Protocol (AWCP) to optimize the network parameters and
group the random nodes. The enhanced whale optimization algorithm
(EWOA) has been developed to optimize the efficiency of the network.
The movement has been analysed with the network mobility rout-
ing protocol based on position and speed. The distance between the
trusted vehicle node and RSU has been analysed with the proposed
EWOA-AWCP method. Finally, the result also stated that mobility and
clustering efficiency have been enhanced with the developed model.

In accordance with the literature review, it was observed that
both regular VN and HetVN selection techniques lack consideration
for changing network efficiency, particularly for the varying terminal
number due to network selection [22]. This considerably causes relia-
bility and stability problems in real-time scenarios. Existing network
3

selection methods may cause unexpectedly huge distractions in the
network during performance variations. Additionally, the robustness of
the system and reliability of the link do get impacted by the errors
due to channel estimation occurring in high mobility HetVNet [9].
Generally, the resource allocation issue comprises spectrum resource
blocks and time slot variations. To overcome this, [23] formulated
average energy effectiveness by transforming the issue into a tractable
convex optimization issue with the modifications of different parame-
ters. Because of the constrained computational capability and storage
of the devices, conventional security methods face challenges in the
process of data transmission. A large amount of energy is consumed
with huge data transmission in the insecure network [24]. But it is also
to be noted that packets must be delivered to the sink node at the
specified time to configure delay-specific applications [25]. In order
to overcome these limitations, the proposed study has made use of
a particle-bee colony-based swam algorithm. However, PSO also has
limitations in terms of convergence. PSO generally converges slowly,
especially in high-dimensional spaces or problems where the fitness
landscape is rugged. Slow convergence is a significant drawback for this
research, particularly in real-time or time-sensitive applications. Hence,
PSO’s computational complexity increases with the number of particles
and dimensions, and scalability can become a big problem for large-
scale optimization problems, requiring more computational resources.
However, the convergence of PSO can be improved through hybridiza-
tion (combining PSO with other algorithms) or by using variants of PSO
tailored to these specific challenges.

3. Proposed methodology

The overall flowchart of the proposed methodology has been repre-
sented below. The system model is configured with the heterogeneous
vehicular network with the use of PSO. Heterogeneous vehicular net-
works often involve dynamic and changing environments. Adapting the
PSO algorithm works well in handling dynamic environments, where
the optimum can change over time. Secondly, PSO’s convergence speed
can vary based on the problem and parameter settings. In real-time
applications, the algorithm converges quickly to provide timely solu-
tions if the parameters can be tuned with specific values. For example,
fixing up the velocity parameter or any other specific parameter. This
study addresses the issues of obtaining high spectral efficiency and
energy efficiency by using the Particle Bee Colony Swarm optimization
algorithm. After initialization, the possible selection of paths has been
accomplished. The best agent path prediction by tour construction
includes evaluated fitness values. After the requisition of sending and
receiving messages, the energy estimated was used to evaluate the
fitness values. When the fitness function is easier to optimize, some of
the bad particles are deleted. Consequently, the best path was predicted
through this mechanism followed by updated velocity and position of
agents. If the final iteration is not reached, the cycle has been reversed
to a selection of possible paths to reach iteration. After reaching the
final iteration the performance analysis has been carried out to evaluate
the spectral efficiency and energy efficiency.

The below flowchart is based on the proposed Methodology (see
Fig. 1).

3.1. System model

With salient features of agility, scalability, elasticity,
re-programmability, and flexibility, the illustration of the system model
in HetVNet is represented in Fig. 5. The proposed system model has
been designed as a three-tier as well as a heterogeneous network with a
single BS (base station) in every tier. The information from the vehicles
is transmitted through cellular-based V2V communication to gNodeB
(gNB), cellular-based V2I, and DSRC-based V2V communication to the
core network for improving locational accuracy and reliability. The user
equipment (UE) exploits composite carriers (CC) from all the tiers by
accumulating them; thus, their bandwidth could be efficiently utilized.
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Fig. 1. Flowchart of proposed Methodology.

Further, every BS was presumed to operate in the single frequency
band, and hence the intra-brand contiguous carrier aggregation was
performed by utilizing adjacent carriers in the frequency band. Later,
the spacing between guard band calculations as well as adjacent
carriers was obtained.

Below is the System Model (see Fig. 2).

3.2. System parameters

In this section, system parameters are comprehensively explained
and presented. System parameters have been defined here that cover
the technical specifications for the 5G new radio. The calculation
of diverse parameters needs to perform intra-band contiguous carrier
aggregation’s physical layer simulation [12]. Moreover, the sub-carrier
spacing (SCS) of 𝑎th composite carriers could be computed as the
following Eq. (1),

𝑆𝐶𝑆𝑎 = 2𝜇 ∗ 15 (KHz) (1)

From the above Eq. (1), 𝜇 ranges between 1 and 4. And the sub-
carrier numbers of 𝑎th composite carriers is computed through the
following Eq. (2),

𝑛𝑠𝑐𝑎 = 𝑁𝑅𝐵𝑎 ∗ 12 (2)

From the above Eq. (2), 𝑁𝑅𝐵𝑎 indicates the number of resources
block for 𝑎th composite carrier. Further, the bandwidth (BW) of 𝑎th
composite carrier is computed with Eq. (3) given below,

𝐵𝑊𝑎 = 𝑛𝑠𝑐𝑎 ∗ 𝑆𝐶𝑆𝑎 (3)

The guard band for 𝑎th composite carrier is also computed and illus-
trated as the following equation,

𝐺𝐵 =
𝐵𝑊𝑎 ∗ 1000 (KHz) −𝑁𝑅𝐵𝑎 ∗ 𝑆𝐶𝑆𝑎 ∗ 12

−
𝑆𝐶𝑆𝑎 (4)
4

𝑎 2 2
The spacing between the adjacent composite carriers for intra-band
contiguous carrier aggregation is computed and it is represented as the
following Eq. (5),

𝐶𝐶𝑠𝑝𝑎𝑐𝑖𝑛𝑔 = (𝐵𝑊𝑎 + 𝐵𝑊𝑎+1 − 2|𝐺𝐵𝑎 − 𝐺𝐵𝑎+1|∕0.6) ∗ 0.3 (MHz) (5)

The higher and lower frequency offset 𝐹0𝑎ℎ𝑖𝑔ℎ and 𝐹0𝑎𝑙𝑜𝑤 , which repre-
sented as the following Eq. (6),

𝐹0𝑎𝑙𝑜𝑤 =
(𝑁𝑅𝐵𝑎𝑙𝑜𝑤 ∗ 12 + 1) ∗ 𝑆𝐶𝑆𝑎𝑙𝑜𝑤

2
+ 𝐺𝐵𝑎𝑙𝑜𝑤 (MHz) (6)

𝐹0𝑎ℎ𝑖𝑔ℎ =
(𝑁𝑅𝐵𝑎ℎ𝑖𝑔ℎ ∗ 12 + 1) ∗ 𝑆𝐶𝑆𝑎ℎ𝑖𝑔ℎ

2
+ 𝐺𝐵𝑎ℎ𝑖𝑔ℎ (MHz) (7)

From the above Eqs. (5) and (6), 𝐺𝐵𝑎ℎ𝑖𝑔ℎ , 𝐺𝐵𝑎𝑙𝑜𝑤 , 𝑆𝐶𝑆𝑎ℎ𝑖𝑔ℎ , 𝑆𝐶𝑆𝑎𝑙𝑜𝑤 ,
𝑁𝑅𝐵𝑎ℎ𝑖𝑔ℎ , 𝑁𝑅𝐵𝑎𝑙𝑜𝑤 are said to be the guard band, sub-carrier spacing
as well as the number of resource blocks of the last and first (CC)
component carrier. The higher and lower edge frequencies (EF) were
represented as the following Eqs. (8) and (9),

𝐸𝐹𝑎𝑙𝑜𝑤 = 𝐹𝑐,𝑎𝑙𝑜𝑤 − 𝐹0𝑎𝑙𝑜𝑤 (8)

𝐸𝐹𝑎ℎ𝑖𝑔ℎ = 𝐹𝑐,𝑎ℎ𝑖𝑔ℎ − 𝐹0𝑎ℎ𝑖𝑔ℎ (9)

From the above equations, 𝐹𝐶𝑎 indicates the carrier frequency,
whereas the high and low represent the maximum and minimum values
amid every component carrier. The overall aggregated BW (Bandwidth)
is represented [12] as the following Eq. (10),

𝐵𝑊𝐶𝐴𝑖
= 𝐸𝐹𝑎ℎ𝑖𝑔ℎ + 𝐸𝐹𝑎𝑙𝑜𝑤 (10)

3.3. Channel model

The downlink channel of every component carrier was modelled as
Tapper delay line (TDL) multi-path channel [22]. These tapper delay
line models were utilized for simpler non-MIMO evaluations. Further,
there is a total number of 5 TDL channels such as TDL-A, B, C, D, and
E, in which these models are utilized for evaluating non-line of sight,
whereas TDL E and TDL D could be utilized for evaluating line of sight.
The TDL B and A possess 23 taps, in every TDL C model has 24 taps,
which follows Rayleigh fading distribution. Further, the TDL E and D
models possess 14 and 13 taps, in which the first tap follows the Rician
fading distribution, while others follow Rayleigh fading distribution. In
this study, the TDL A model has been selected, in which the channel
was characterized by 23 taps. The Doppler spectrum of every tap has
a classical Jake’s spectrum shape. The signal-to-noise ratio (SNR) for
every composite carrier is computed as the following equation,

𝛾𝑎 =
(ℎ𝑎 ∗ 𝑃𝐷(𝑎))
(𝑁0𝑎 ∗ 𝐵𝑊𝑎)

(11)

From Eq. (11), ℎ𝑎 is said to be the average power gain of 𝑎th chan-
nel, which was obtained after the received signal channel estimation,
and 𝑃𝐷(𝑎) represents the transmission power of 𝑎th composite carrier
(CC). 𝑁0𝑎 is considered as Additional white Gaussian noise (AWGN)
Power spectral density (PSD).

3.4. Power consumption model

A power consumption model has been exploited in this work, in
which the study considered the effectiveness of power amplifiers and
static and dynamic power consumption. Further, the total amount of
power, required for the transmission of 𝑖th carrier is represented as the
following Eq. (12),

𝑃𝑡𝑜𝑡(𝑎) = 𝛼 ∗ 𝑃𝐷(𝑎) +𝐾 (12)

In Eq. (12), 𝐾 indicates the static power consumption of the base
station, 1∕𝛼 denotes the power amplifier’s drain efficiency and 𝑃𝐷(𝑎)
is considered as the transmission power for 𝑎th composite carrier and
𝛼 ∗ 𝑃 (𝑎) is known as the power amplifier’s power consumption at BS.
𝐷



Computer Networks 238 (2024) 110111A. Alam et al.
Fig. 2. System model.

The significant performance metrics in this study are considered
to be EE (energy efficiency) and SE (spectral efficiency), from which
spectral efficiency indicates the effective utilization of a particular
spectrum. Further, energy efficiency is measured in bits/J/Hz which
indicates the number of bits transmitted by utilizing 1 joule of energy
for a specific BW (Bandwidth). The channel capacity for 𝑎th composite
carrier is represented as the following Eq. (13),

𝐶𝑎 = 𝐵𝑊𝑎 ∗ 𝑙𝑜𝑔2 ∗ (1 + 𝛾𝑎) (13)

Therefore, the overall capacity of 𝐶𝑡𝑜𝑡 of the system could be repre-
sented as the following Eq. (14),

𝐶𝑡𝑜𝑡 =
𝑛𝑐𝑐
∑

𝑎=1
𝐶𝑎 (14)

From the above Eq. (14), 𝑛𝑐𝑐 indicates the number of component
carriers, hence, the SE of the proposed system is defined as the ratio of
sum capacity across every composite carrier. This can be represented
as Eq. (15),

𝑆𝐸 =
𝐶𝑡𝑜𝑡

𝐵𝑊𝐶𝐴
(bits∕s∕Hz) (15)

Moreover, the energy efficiency is represented as the following Eq. (16),

𝐸𝐸 = 𝑆𝐸∕
𝑛𝑐𝑐
∑

𝑎=1
𝑃𝑡𝑜𝑡(𝑎) (bits∕s∕Hz) (16)

3.5. Joint optimization of SE and EE

The multi-objective optimization issue was comprehensively dis-
cussed, in which a new resource allocation approach was proposed by
utilizing a Genetic algorithm for solving the formulated optimization
issues for obtaining optimal EE-SE trade-off.

Problem formulation
The multi-objective optimization (MOO) issue for SE-EE trade-off

optimization for the proposed model could be formulated as the fol-
lowing Eq. (17),

𝑚𝑎𝑥 ∶ (𝑆𝐸,𝐸𝐸) (17)

By utilizing the penalty coefficient method, the above equation has
been reformulated to include constraints, and therefore it could be
5

solved by utilizing the Genetic algorithm [12],

𝐺1 =

{

∑𝑛𝑐𝑐
𝑎=1 𝑃𝐷(𝑎) − 0.2 ∗ 𝑃𝑚𝑎𝑥 ≥ 0

0.2 ∗ 𝑃𝑚𝑎𝑥 −
∑𝑛𝑐𝑐

𝑎=1 𝑃𝐷(𝑎) ≤ 0
(18)

𝐺2 =
𝑛𝑐𝑐
∑

𝑎=1
𝑃𝐷(𝑎) − 𝑃𝑚𝑎𝑥 ≤ 0 (19)

By utilizing the quadratic loss function method, the total penalty could
be modelled as the following Eq. (20),

𝑃 = 𝑟 ∗ (𝑚𝑎𝑥(0, 𝐺1)2) + 𝑟 ∗ (𝑚𝑎𝑥(0, 𝐺2)2) (20)

In the above Eq. (20), r indicates the penalty coefficient

𝑓1 = −(
𝑛𝑐𝑐
∑

𝑎=1
𝐶𝑎 + 𝑃 ) (21)

𝑓2 =
𝑛𝑐𝑐
∑

𝑎=1
𝑝𝑡𝑜𝑡(𝑖) + 𝑃 (22)

From the previous Eqs. (21) and (22), the final optimization is repre-
sented by the following Eq. (23),

𝑚𝑖𝑛 ∶ 𝑓1, 𝑓2 (23)

3.6. Bee foraging learning PSO (BFL PSO) algorithm

The particle swarm optimization algorithm uses a cluster of particles
to search for a better solution. In this algorithm, every particle has its
own velocity and position, and it could also update itself by learning
from the global best as well as the personal best position. On the
other side, the ABC method implements three types of bees, such as
scout, onlooker, and employed, which search for food sources and
are responsible for diverse tasks [26]. From the inspiration of ABC
method, this study proposes a learning model called the BLF PSO (bee
foraging learning) method. Moreover, in this method, the population
initializes 𝑁 particles, in which every particle has its own velocity 𝑣𝑎
and position a, as well as 𝑃𝑏𝑒𝑠𝑡𝑖 personal best position. Later, it enters
into three learning phases, such as scout learning, onlooker learning,
and employed learning.
Employed learning

In this phase, the particles work like employed bees. Particularly,
by learning from 𝑔𝑏𝑒𝑠𝑡𝑖 , 𝑃𝑏𝑒𝑠𝑡𝑖 global and personal best position, every
particle updates its position and velocity. Further, the new positions
can be represented as the following equation,
{

𝑣𝑛𝑒𝑤𝑎 = 𝛿 ∗ (𝑣𝑜𝑙𝑑𝑎 , 𝑥𝑜𝑙𝑑𝑎 , 𝑝𝑏𝑒𝑠𝑡𝑖 , 𝑔𝑏𝑒𝑠𝑡𝑖 )
𝑥𝑛𝑒𝑤𝑎 = 𝑥𝑜𝑙𝑑𝑎 + 𝑣𝑛𝑒𝑤𝑎

(24)

From the above equation 𝑥𝑜𝑙𝑑𝑎 and 𝑣𝑜𝑙𝑑𝑎 are considered as position
and velocity of 𝑎th particle in preceded iterations, whereas 𝑥𝑛𝑒𝑤𝑎 and
𝑣𝑛𝑒𝑤𝑎 indicates position and new velocity of 𝑎th particle in present
iteration, where 𝛿 represents velocity updating approach in PSO. It
was noticed that, if 𝑥𝑛𝑒𝑤𝑎 was better than the personal best position,
then the personal best position was replaced by 𝑥𝑛𝑒𝑤𝑎 . Consequently, for
the particles that fail to update 𝑝𝑏𝑒𝑠𝑡𝑖 , their count will be significantly
increased, whereas for particles that find a better position, their count
will be reset.

Onlooker learning
In this phase, the particles with better fitness values will be selected

for performing a better search. Further, the fitness value for every
particle is computed on the bases of personal best position, as the
following equation,

𝑓𝑖𝑡(𝑥𝑎) =

⎧

⎪

⎨

⎪

⎩

1
1+𝑓 (𝑝𝑏𝑒𝑠𝑡𝑖 )

, 𝑖𝑓𝑓 (𝑝𝑏𝑒𝑠𝑡𝑖 ) >= 0

𝑓𝑖𝑡(𝑥𝑎) = 1 + |𝑓 (𝑝𝑏𝑒𝑠𝑡𝑖 )|, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(25)
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Fig. 3. Mode deployment and its selection using Bee foraging learning.

The probability 𝑝𝑎 for the selection of 𝑖th particle is computed as
the following equation,

𝑃𝑎 = 𝑓𝑖𝑡(𝑥𝑎)∕
𝑛
∑

𝑎=1
𝑓𝑖𝑡(𝑥𝑎) (26)

The particles were selected on the basis of probability pa by utilizing
the roulette method. Further, the particles which have better 𝑝𝑏𝑒𝑠𝑡𝑖 can
possibly be selected. When assuming if 𝑠th particle 𝑥𝑎 was selected,
Eq. (26) will be utilized for generating new position 𝑥𝑛𝑒𝑤𝑠 . If this new
position was better than 𝑝𝑏𝑒𝑠𝑡𝑠, then the 𝑝𝑏𝑒𝑠𝑡𝑠 will be replaced by 𝑥𝑛𝑒𝑤𝑠 .
Subsequently, for particles that fail to update its 𝑝𝑏𝑒𝑠𝑡𝑠 (personal best
position), their counter will be significantly increased, as well as, for
the particles which find a better position, their counter gets reset.

Scout learning
In this phase, the particles that fail to update its 𝑝𝑏𝑒𝑠𝑡𝑖 (personal best

position) in some iterations are considered exhausted. These particles
will be abandoned, further, their velocity, position as well as 𝑝𝑏𝑒𝑠𝑡𝑖 were
randomly initialized in search space.

3.7. BFL PSO algorithm- Description

The study established BFL PSO algorithm on the basis of BFL model,
in which the position updating equations and velocity of BLPSO (Bio-
geography based learning) PSO were adopted in BFL PSO method.
Further, the position updating equations and velocity in BFL PSO
algorithm could be represented as the following equation,
{

𝑣𝑛𝑒𝑤𝑎 = 𝑤.𝑣𝑜𝑙𝑑𝑖 + 𝑐.𝑟𝑎𝑛𝑑.(𝑝𝑏𝑒𝑠𝑡𝜏𝑎 − 𝑥𝑜𝑙𝑑𝑎 )
𝑥𝑛𝑒𝑤𝑎 = 𝑥𝑜𝑙𝑑𝑎 + 𝑣𝑛𝑒𝑤𝑎

(27)

From the above equation, w indicates the inertia weight, rand
indicates the random vector, which is distributed randomly within
[0, 1], whereas c is said to be the learning factor. Further, 𝑝𝑏𝑒𝑠𝑡𝜏𝑎
was constructed by combination of every particles. 𝑝𝑏𝑒𝑠𝑡𝜏𝑎 , and 𝜏𝑎
indicates the index vector for 𝑎th particle that was generated by the
bio-geography-based exemplar approach. Moreover, the pseudocode of
BFL PSO algorithm is presented in the following section. In which
the employed learning phase is represented between lines 5 and 14,
whereas the onlooker learning phase is represented between lines 15
and 27. The scout learning phase is depicted between 29 and 31 lines.
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Pseudocode 1: BFL PSO algorithm
1. Initialize N particles, including velocities 𝑣𝑎,positions 𝑥𝑎 ,and
personal best 𝑝𝑏𝑒𝑠𝑡𝑖 positions;
2. Evaluate the particle f(𝑥𝑎 ), a=1,. . . ..,N;
3. Store the global best position 𝑔𝑏𝑒𝑠𝑡𝑎
4. while the terminal condition is not satisfied do
— Employed learning —
5. for each index a=1→N do
6. Generate the learning exemplar index 𝑇𝑎 by bio-geography-
based exemplar generation
7. Update the velocity 𝑣𝑎 and the position 𝑥𝑎 using Eq. (24)
8. Evaluate the new position f(𝑥𝑛𝑒𝑤𝑎 )
9. If 𝑥𝑛𝑒𝑤𝑎 is better than 𝑝𝑏𝑒𝑠𝑡𝑎 then
10. 𝑝𝑏𝑒𝑠𝑡𝑎 = 𝑥𝑛𝑒𝑤𝑎 ,count(a)=0
11. ELSE
12. count(a)=count(a)+1;
13. endIf
14. endfor
— Onlooker learning —
15. Calculate the fitness values fit (𝑥𝑎) for each particle 𝑥𝑎 using
Eq. (25)
16. Calculate the probability pa for each particle 𝑥𝑎 using Eq. (26);
17. for each 𝑖𝑛𝑑𝑒𝑥𝑎=1→N do
18. Select a particle 𝑥𝑎 using the roulette method based on the
probability 𝑝𝑎
19. Generate the learning exemplar index 𝜏𝑎 by biogeography
based exemplar generation
20. Update the velocity 𝑣𝑎 and the position 𝑥𝑎 using Eq. (24);
21. Evaluate the new position fit(𝑥𝑛𝑒𝑤𝑎 )
22. If 𝑥𝑛𝑒𝑤𝑏 is better than 𝑝𝑏𝑒𝑠𝑡𝑏 then
23. 𝑝𝑏𝑒𝑠𝑡𝑏 = 𝑥𝑛𝑒𝑤𝑏 ,count(b)=0
24. Else
25. count(b)=count(b)+1;
26. end if
27. end for
28. — Scout learning —
29. for each 𝑖𝑛𝑑𝑒𝑥𝑎=1→N do
30. if count(a) ⩾ limit then
31. Reinitialize the particle randomly,including its position 𝑥𝑎
,velocity 𝑣𝑎 ,and personal best position 𝑝𝑏𝑒𝑠𝑡𝑎

4. Results and discussion

In this section, it compares and evaluates the results of the pro-
posed work in detail with other methods like Lyapunov-based dy-
namic offloading decision (LDOD) algorithm [11], Random offloading
(RO), mobile aware task offloading (MATO) and full-offloading (FO)
method [13].

Performance metrics

Energy efficiency is considered the ratio of overall spectral effi-
ciency to overall power consumption. Therefore, the energy efficiency
of the hybrid vehicular network can be represented by the following
equation,

𝑃𝐶𝐾𝑇 = 𝑁𝑡 ∗ 𝑃𝑅𝐹 + 𝑃𝑚 + 𝑃𝐴𝐷𝐶 (28)

From the above equation, where 𝑃𝐶𝐾𝑇 is circuit power consump-
tion, 𝑁𝑡 is considered as the number of antennas, whereas 𝑃𝑅𝐹 indi-
cates the power consumption due to the RF chain. 𝑃𝐴𝐷𝐶 is the power
consumption because of analog to digital conversion (ADC). Spectral
efficiency In a similar way, the spectral efficiency for the microwave
vehicular networks can be represented as the following equation,

𝜂 = 𝜂 ∕𝑃 (29)
(𝐸𝑆,𝜇) (𝑆,𝜇) (𝑇 ,𝜇)
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Table 1
Simulations parameters.

Parameters Values

V 30 km/h
𝑃𝐴𝐷𝐶 𝛼 × Bandwidth, where 𝛼 = 10−7

𝜆𝑜 1
𝜎2
𝑚 , 𝜎

2
𝜇 𝑁𝑜 𝐵𝑚, 𝑁𝑜 𝐵𝜇

Noise power density (𝑁𝑜) −174 dBm/Hz
ho, Hu 1 m, 12 m
Microwave band antenna gain 0 dBi
𝐺𝑀 , 𝐺𝑚 , 𝜙𝑀 18 dBi, −2 dBi, 10
Number of lanes 4
2W, L 14.8 m, 10 km
𝛼𝑚, L; 𝛼𝑚, NL 2,4
𝛼𝜇, L; 𝛼𝜇, NL 2.09. 3.75
𝑃𝑚 , 𝑃𝜇 30 dBm, 46 dBm
𝐹𝜇 , 𝐹𝑚 10 MHz, 100 MHz
𝑓𝑚 26 GHz
𝑓𝜇 2 GHz

The spectral efficiency for the hybrid vehicular network is repre-
sented as the following,

𝜂𝐸𝑆,𝑃𝑆 = (𝜂𝑆,𝑃𝑆,𝑚 + 𝜂𝑆,𝑃𝑆,𝜇)∕(𝑃𝑇 ,𝑚 + 𝑃𝑇 ,𝜇) (30)

4.1. Performance analysis

For this performance analysis, MATLAB software has been used
to carry out the calculation and plotting of the graph. The main pa-
rameters used have been presented below, followed by the simulation
results of the BFL PSO optimization algorithm. Using MATLAB soft-
ware, the performance of the proposed algorithm has been evaluated
in comparison with different algorithms, i.e., the mobility-aware task
offloading (MATO) algorithm, the full-offloading (FO) algorithm, the
random offloading (RO) algorithm, and the Lyapunov-based dynamic
offloading decision (LDOD) algorithm.

Since this research is considering the mobility of the vehicles, hence
V has been considered. Secondly, in this research, optimization of 5G
has also been used, and hence, other parameters like noise, bandwidth,
antenna gain, area of coverage (W, L), and frequency of 5G have been
used (see Table 1).

Fig. 3 represents the node deployment in a heterogeneous vehicular
communication platform. It also depicts the cluster formation at the
100th iteration to determine the path. Fig. 4 illustrates the spectral
efficiency variation versus 𝜆𝑚 for hybrid vehicular as well as mmWave
networks. Further, 𝜆𝑚 was varied and the spectral efficiency curves
were plotted for various system configurations. Also, it is observed that
the spectral efficiency shadows a similar trend for every configuration.
Specifically, this trend seems to be similar to the analysis of spectral
efficiency under static vehicular nodes.

We can see in Fig. 4, that the spectral efficiency significantly in-
creases with 𝜆𝑚, nevertheless, after the density threshold, the spectral
efficiency will decrease. It is observed that the spectral efficiency of the
hybrid vehicular network is higher than that of the mmWave vehicular
network.

Fig. 5 depicts that the spectral efficiency significantly increases for
𝑇𝑠=0.1 s since the probability of vehicular node disconnection from its
serving RSU decreases during its slot. From this figure, it is observed
that the proposed method was compared to other existing methods
such as the Hybrid network and mmWave network in terms of spectral
efficiency as well as 𝜆𝑚. The proposed model has higher spectral
efficiency when compared to other prevailing methods. Through this,
the information rate of the proposed model could be transmitted over
a particular bandwidth in a heterogeneous network.

Fig. 6 depicts the energy efficiency (nats/Hz/Joule) Vs 𝜆𝑚 for
the proposed method and compares it with the Hybrid network and
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mmWave network.
Fig. 4. Spectral efficiency Vs 𝜆𝑚 with Ts = 0.1 s of the proposed and existing method.

Fig. 5. Spectral efficiency Vs 𝜆𝑚 with Ts = 0.1 s of the proposed and existing method.

Fig. 6. Energy efficiency Vs control parameter V of the proposed and existing method.
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Fig. 7. Energy consumption Vs control parameter V of the proposed and existing
method.

It is observed in Fig. 6, that the proposed model has significantly
higher energy efficiency than mmWave and hybrid networks because
the proposed method has higher spectral efficiency as demonstrated in
the previous figure. Since the proposed method is energy efficient, there
is very little power consumption.

Fig. 7 deliberates the comparison of the proposed method with
other prevailing algorithms in accordance with energy consumption
(J). From this figure, it is observed that the energy consumption of the
LDOD method significantly decreases with an increase in the control
parameter; on the other hand, the RO method has obtained the highest
energy consumption. The proposed method has significantly lower
energy consumption, which results in better performance than other
existing methods like LDOD, RO, MATO, and FO.

5. Conclusion

Ensuring successful conciliation between energy efficiency and spec-
tral efficiency has been considered an interesting design criterion.
An improved method with the use of a PBCS optimization algorithm
to perform effective power allocation was investigated in this study.
This improved algorithm outperforms the prevailing limitations of
state-of-the-art existing algorithms, like poor local search capabilities,
pre-mature convergence towards optimal solutions, etc. Evaluation of
the effectiveness of the proposed system with state-of-the-art methods
like LDOD, FO, MATO, and RO showed a 30.32% increase in spectral
efficiency and 73.25% increase in energy efficiency.

Hence, the comparison of different algorithms with respect to the
proposed algorithm, i.e., the PBCS optimization algorithm, is shown
in Fig. 7. Among them, the average energy consumption of the PBCS
algorithm decreases with increasing V. In comparison, we can see that
the proposed algorithm (PBCS algorithm) consumed less energy in
comparison to RO, MATO, and LDOD; however, FO seems to be good
in the start, but after the value of 30 (the control parameter, i.e., V),
the proposed algorithm starts to perform well as we can see that the
overall energy consumption goes down. Based on the simulation results,
in addition, we can say that the energy consumption of the RO and
MATO algorithms is larger than that of the proposed algorithm (i.e., the
PBCS algorithm) with increasing V. In general, the suggested method,
PBCS optimization, demonstrates superior performance compared to
other algorithms, especially when dealing with 1 KB packet sizes.
Recognizing the PSO algorithm’s slow convergence rate and smaller
packet size, our future research will involve implementing another
metaheuristic algorithm like Improved Cooperative Particle Swarm
Optimization (ICPSO) [27] or Nonlinear Convex Decreasing Weights
8

Golden Eagle Optimizer (GEO) [28] to minimize computational re-
source usage while maintaining comparable performance with larger
packet sizes. Additionally, we plan to explore the integration of data
compression techniques to enhance reliability by reducing packet sizes.
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