
Exploring a New Transport Protocol for Vehicular
Networks

Augustine Ezenwigbo∗, Vishnu Vardhan Paranthaman∗, Ramona Trestian∗, Glenford Mapp∗ and Fragkiskos Sardis†
∗Faculty of Science and Technology

Middlesex University, London SE12 9HY
Email: A.Ezenwigbo, V.Paranthaman, R.Trestian, G.Mapp@mdx.ac.uk
†Centre for Telecommunications Research, Department of Informatics

King’s College London, London, UK
Email: fragkiskos.sardis@kcl.ac.uk

Abstract—The Future Internet will be very different from the
current Internet. In particular, support for new networks such as
vehicular networks, will be a key part of the new environment.
Applications running on these networks will require low latency
and high bandwidth, which must be provided in a highly mobile
environment. The goal of this paper is to look at these issues
as they have been addressed in the design and development of
the Simple Lightweight Transport Protocol (SLTP) to support
vehicular networking. The functions and workings of the protocol
are examined in this paper as well as the ecosystem that is needed
to provide low latency. A detailed set of preliminary results are
presented and compared with a standard TCP implementation.
SLTP was also ported to the Roadside Units of a Vehicle Ad-Hoc
Network and results are presented for moving data to and from
the Roadside Units. This work highlights the need for the Future
Internet to place more resources at the edge of the core network
to provide support for low latency in vehicular environments.

Index Terms—Vehicular Network, Transport Protocol, SLTP

I. INTRODUCTION

The Future Internet will have to support new networks.
This is because the emergence of Connected and Autonomous
Vehicles (CAVs) will make vehicles first class communication
entities. In addition, CAVs will have to provide a heteroge-
neous environment where many networking technologies such
as IEEE 802.11p, 5G, WiFi and Bluetooth Low Power (BLE)
will be supported. However, due to the high mobility in vehicu-
lar networks, the provision of low latency and high bandwidth
communication will be essential for applications running in
this new environment. These requirements are difficult to fulfil
using the current IP framework and so a new approach is
required. This paper looks at the issues involved in building
low latency transport protocols for vehicular environments.

For years we have used the two main transport protocols
designed for communication over the Internet: the Transport
Control Protocol (TCP) and the User Datagram Protocol
(UDP). TCP has been used to provide reliable stream like
communication while UDP is used to provide an unreliable
datagram service. Going forward however, there is a need
to provide reliable service using one protocol which has
both the reliablity of TCP and the low latency of UDP.
In addition, the emergence of Cloud and Edge computing

systems mean that more work is being done in the local area.
Mobile services on Edge clouds will also be used to lower
the latency between clients and servers as users move around
and hence it is necessary to ensure optimal communication in
such environments [1].

In the application space, more applications are aware of
Quality of Service (QoS) issues and how they affect the
Quality of Experience (QoE) as perceived by the user. Thus
for most applications, there is a desire to move away from
kernel based protocols such as standard TCP to user level
transport systems where the transport protocol runs with the
application in user space. This approach is also supported
by the development of Software Defined Network (SDN) and
Cloud Computing systems which allow a much finer control
of network flows and computing facilities.

A new transport protocol called the Simple Lightweight
Transport Protocol (SLTP) has been designed to explore these
issues. This paper examines SLTP structures, functions, and
the overall ecosystem. The results show that this approach
performs well in high capacity environments, and hence,
points to the need for Edge systems to support vehicular
environments. The rest of the paper is structured as follows:
Section 2 looks at emerging technologies for vehcular net-
works and their requirements at the transport level. Section
3 details the new transport protocol (SLTP) while Section
4 shows how the protocol manages connections. Section 5
looks at the Vehicular Ad-Hoc Network (VANET) Testbed
for which the SLTP protocol was developed. Section 6 gives
preliminary results. Section 7 looks at related work and Section
8 concludes the paper.

II. VEHICULAR NETWORKS

The rapid growth in the number of vehicles on the roads has
created a plethora of challenges for road traffic management
authorities such as traffic congestion, increasing number of
accidents, air pollution, etc. Over the last decade, signifi-
cant research efforts from both the automotive industry and
academia have been undertaken to accelerate the deployment
of the Wireless Access in Vehicular Environments (WAVE)
standard based on a Dedicated Short Range Communication



(DSRC) among moving vehicles (Vehicle-to-Vehicle, V2V)
and roadside infrastructure (Vehicle-to-Infrastructure, V2I).
This network is called a VANET (also nown as ETSI-G5)
network and is characterised by high node speed, rapidly
changing topologies, and short connection lifetimes as shown
in Figure 1. VANETs are realised by the deployment of
Roadside Units (RSUs) located along the transport infrastruc-
ture and Onboard Units (OBUs) in the vehicles or worn by
pedestrians or cyclists.

Fig. 1. VANET Communication

A. The challenge of providing seamless connectivity in vehic-
ular environments

Because of the high mobility, support for seamless commu-
nication in vehicular networks face a number of challenges:

• Short connectivity times in individual networks: Be-
cause of the high speed of the vehicle, the actual con-
nection time of the vehicle to the Internet infrastructure
is very short (in the order of tens of seconds for slow
moving vehicles). This means that low latency commu-
nication is required at the transport level so that servers
in the Internet can better communicate with fast moving
vehicles.

• Frequently handovers: Because of the short com-
munication time, there are frequent handovers between
OBUs and RSUs as vehicles move around. Hence at the
transport level, it is necessary to support fast connection
establishment and termintaion times.

• Support for multicast communications: In order to sup-
port quick handovers as well as streaming applicatrions,
using multicast communications where an OBU could be
connected to more than one RSU at the same time will
enable a smoother transition between networks.

• QoS support: As a connection will have a short duration
time, it is necessary to be able to use the entire bandwidth
of connection once it has been established.

• Minimum Transport Signature: In order to ensure that
most of the communication bandwidth is available for
applications, the number of packets sent at the transport
level needs to be kept to a minimum. This means that
only data packets that are missing on a reliable connection
should be retransmitted. In addition, acknowledgements
need to be used in a more directed way in order to
minimize the retransmission of acknowledgements as
well as data.

These requirements have been a challenge when using
standard protocols such as TCP and hence it was decided to
explore a new approach to see if the a new transport protoocol
could be developed to meet such requiremennts.

B. Implementation Issues

This section explores the implementation issues involved in
developing a transport protocol to support vehicular environ-
ments. These include:

• Running Efficiently in User Space: Since low latency is
required in these environments, it is important that there
is minimum crosstalk between applications. This points
to the need to have the protocol run in user space because
running transport protocols in the kernel results in a huge
amount of crosstalk for all applications. This means, for
example, a reliable fast video stream could be affected by
activities from other applications. Traditionally, running
in user space meant that there would be a limited amount
of CPU cycles to run transport protocols and hence,
such systems were inherently slower than kernel-based
protocols such as TCP. However, because of the devel-
opment and proliferation of multiprocessor architectures,
there is now a large amount of idle user space CPU
cyles. Hence, support for user space protocol processing
is being actively pursued by several companies including
TCP Onload [2] and the Data Plane Development Kit
(DPDK) initiatives [3]. However, these efforts use very
sophisticated hardware engines rather than designing the
protocol itself for low-latency.

• Protocol ecosystem: In addition, to run efficiently in
user space, key issues must be addressed in order to de-
velop a highly efficient ecosystem. This includes memory
management, timers, packet and buffer management and
providing up-calls from the protocol to the application or
server. Providing such facilities is important for efficient
implementation of the proposed protocol. However, these
factors are also very dependent on the hardware, software,
and operating system that are being used.

• An Event based interface between the transport pro-
tocol and the application: Most transport systems use
PUSH-PULL mechanisms developed by the traditional
socket layer libraries where senders transmit or PUSH
data towards the client while receivers retrieve or PULL



the data from the underlying socket for the connection.
However, by monitoring changes in the protocol state as
well as packet delivery, it is possible to use an event
based mechanism in which clients and servers simply
response to these events. This new interface can make
overall communications for servers very efficient.

III. SIMPLE LIGHTWEIGHT TRANSPORT PROTOCOL(SLTP)

In this section we look at the core features of the SLTP
protocol. The motivation for designing SLTP came from the
need to support research into services using Cloud based
environments [4] as well as to provide low latency and tunable
support at the transport level in vehicular networks.

A. The SLTP Header

Figure 2 shows the Diagram of the SLTP while Table I
shows the length of the individual fields.

Fig. 2. The Structure of SLTP Header (Total Size is 20 bytes)

TABLE I
THE FIELDS OF SLTP AND THEIR FUNCTIONS

FIELD BITS FUNCTION
DEST ID 16 Connection Id at the remote end
SRC ID 16 Connection Id at the local end

PK TYPE 4 Type of packet
PRI 2 Priority of the packet
CN 2 Congestion Notification Indication

FLAGS 8 Indicates actions needed to process the packet
CHKSUM 16 Uses the TCP Checksum

TOTAL LEN 16 Total length of the packet
PBLOCK 8 Current block or fragment
TBLOCK 8 Total number of blocks in the message

MESS SEQ NO 16 Sequence number of the last message sent
MESS ACC NO 16 Sequence number of the last message received

SYNC NO 12 Random number to prevent replay attacks
WINDOW SIZE 20 The Receive Window Size

B. SLTP Packet Types

SLTP supports a number of packet types as shown in
Table II.

C. SLTP Flags

SLTP FLAGS comprises a field containing 8 bits. Their
functions are detailed in Table III.

TABLE II
PACKET TYPES AND THEIR FUNCTIONS

PACKET TYPE FUNCTION

START First packet transmitted on a connection
REJECT Signals that the connection request has been rejected

DATA Data packet
ACK Acknowledgement (ACK) packet

NACK Used for selective retrnsmission
END Used to close a connection
FIN Final packet sent

ECHO Used to measure RTT
ECHO 1 First back-to-back packet
ECHO 2 Second back-to-back packet
STATUS Used to maintain flow control

IDLE Sent when there is no data to send
CWIN Used to change the window size
JOIN Join a multicast connection

LEAVE Leave a multicast connecion

TABLE III
FLAGS AND THEIR FUNCTIONS

BIT NAME FUNCTION

0 W VAL Window-Size is valid
1 ST CKS Checksum this packet
2 ST RTR Retransmission is permitted
3 ST RET Indicates a retransmitted packet
4 REMOTE RESET Connection reset by the other side
5 REPLY REQ A reply is requested
6 REPLY Reply to a previous request
7 EOM Last message was correctly received

D. Support for new flow control mechanism based on QoS

Because of the need for low latency, SLTP uses a new flow
control mechanism which measures the latency, bandwidth
and burst at the start of the connection. In this approach, two
packets of a given size are sent back-to-back and the round-
trip times of each packet is measured as well as the time-
difference, between the packet replies. In SLTP, ECHO 1 and
ECHO 2 packet types are used to perform this test. A speical
timer is used to ensure that this test is successfully completed.
This test is repeated once NACK packets are received to
ensure that the connection adjusts to changes in the overall
networking conditions.

The latency of the connection is measured by using the
average RTT of ECHO 1 and ECHO 2. We calculate the
bandwidth by dividing the bytes transferred by the time taken
to transfer them. The burst size is measured by taking the
average RTT and dividing by the time difference between the
replies to ECHO 1 and ECHO 2; this is then multiplied by the
size of the ECHO packets. This value represents the amount
of bytes needed to keep the connection pipe full and thus is
the burst size of the connection. Hence, we set the maximum
number of unacknowledged bytes to this value. Sending data
after this value has been reached may result in significant data
loss as the pipe is already full. This approach is similar to
the packet-pair approach which has been used to estimate the
bandwidth of a connection. However, this is being used in
SLTP to allow the full bandwidth of the connection to be



used as soon as the transport connection is established. Hence
there is no need for the slow start and congestion avoidance
algorithms that are employed in TCP.

E. An event-based interface for SLTP

In addition to the traditional socket interface for sending and
receiving data, SLTP has also implemented an event interface
based on the following events:

• A new connection is started
• A new message has been delivered to the application
• The remote side has closed the connection
• The connection is closed at both ends and hence resources

can be reallocated
• There is a security violation detected on the connection
• There has been a network reset
The event interface is shown in Fig.3. In addition, applica-

tions can supply up-calls to functions that should be called
when messaages are received. This minimises the latency
with which servers can deal with new requests. Support for
handovers in SLTP is done using the ability to change the
window size, similar to the zero window size mechanism in
TCP. However, in SLTP this can be done by the application
itself. So when the application is notified about an impending
handover, it closes its window i.e., the window size is set
to zero, and sends a change window packet to the sender
indicating the reason for the new value. If the new value is
zero, the sender is obliged to poll the receiver with STATUS
packets until the window is opened again.

Fig. 3. Traditional vs SLTP Interface

F. Protocol Ecosystem in SLTP

In order to ensure low latency, other functions need to be
supported. One of them is memory management because the
protocol must not be slowed down due to a lack of kernel
memory resources. In SLTP, each application manages its
own memory heap (around 20MBs) on behalf of the protocol.
Hence, buffers which hold incoming packets, connection and
timer structures are all managed internally by SLTP. In addi-
tion, timers are been implemented efficiently using a separate
timer thread.

G. Minimizing packet retransmission in SLTP

In SLTP, missing packets result in NACK packets being
sent back to the sender indicating which packets are missing.
Hence, only these packets are retransmitted. In addition, in

SLTP acknowledgements are controlled by the sender and so
requests for acknowledgements are used to detect problems in
the connection before packets are retransmitted. This ensures
more intelligent retransmission policies.

IV. OPERATION OF SLTP

Fig.4 shows the state diagram for SLTP. Connections are
started by sending a START packet to the receiver with the
REPLY REQUESTED bit set in the flags field of the SLTP
header. The receive, on accepting the connection, replies with
a START packet with the REPLY bit set. Both ends go to the
CONNECTED state. If either end closes the local connection,
it goes to the END LOCAL state. If, however, the other
side closes the connection first, the connection goes to the
END REMOTE state. In the END LOCAL state, once all the
packets have been sent and acknowledged, an END packet
with the REPLY REQUESTED bit set is sent. If the other side
also wishes to close the connection, it sends an END packet
with the REPLY bit set and goes to the TIMED CLOSE
state. Finally, a FIN packet is sent to close the connection
and deallocate resources.

Hence SLTP uses a two-way connection establishment
mechanism which ensures quick connection setup. To end a
connection, two END packets are used but a FIN packet is
added to quickly bring down the connection at both ends. Thus
in SLTP, there is no need to have long delays to completely
end a connection.

Fig. 4. SLTP Connection

V. VANET TESTBED

The Department for Transport (DfT) and Middlesex Uni-
versity have built a Connected Vehicle Testbed using VANET
technology at its Hendon Campus. The testbed has seven
RSUs: four on the university campus buildings and three
along the A41 road behind the university. RSUs and OBUs
were manufactured by Lear Corporation in compliance with
the IEEE 802.11p (WAVE) standard specifications and the
maximum output power used was 200mW or +23dBm. The
operating frequency of the RSUs is 5.9 GHz and the channel
being used to send broadcasts is CH172. Four RSUs have
been deployed on top of the Hatchcroft building, Williams



building, Sheppard library building and Grove building to
cover the roads around the campus and to support the move-
ment of pedestrians within the campus, hence enabling the
development of Vehicle-to-Pedestrian (V2P) applications. The
coverage map of the deployed testbed is as shown in Fig.5
[5].

Fig. 5. Coverage Map.

Fig. 5 displays the trial data for a car driving on the roads
around the Middlesex University campus to map the coverage
which was collected on 17th May 2017. The coverage map

Fig. 6. Network Diagram.

shows the individual coverage achieved by the RSUs located
on each building and the RSUs located along the A41 road
with different colour dots.

Figure 6 shows the network diagram of the MDX VANET
Testbed and the applications running on their respective de-
vices.

VI. PRELIMINARY RESULTS FOR SLTP

Our first set of results will look at SLTP running on a normal
network consisting of two PCs connected together via a one
Gigabit/s Ethernet system. Packets of different sizes were sent
and the time taken to receive them back at the sender was
measured. This gives us a direct measurement of protocol
performance. Since SLTP runs over UDP, the size of a single
SLTP packet can be up to (64KBs - 8 bytes, the size of the
UDP header). However, each SLTP packet had a maximum
data size of 1452 btyes to ensure a fair comparison with TCP.
Though SLTP supports a window size of 1 MB, it was decided
to use a window size of 144 KBs to ensure that receive buffers
were not overrun.

A. Results for traditional networking environment

We performed our benchmarks by using two PCs equipped
with the following hardware:

• Processor: Intel(R) Core(TM) i5-3770 CPU (4 cores).
• RAM: Both PC with 16GB DDR3
• Storage: Both PC with 320GB HDD
• Network: 1 Gigabit Ethernet University Network
• OS Type: Fedora 25 64-bit
These results shown in Fig.7, indicate that SLTP can per-

form better than TCP under the conditions outlined. This is
primarily due to the fact that these systems have a lot of spare
resources including CPU and memory cycles. SLTP running



Fig. 7. PC to PC - Network Time: SLTP vs TCP

in user space can take full advantage of these resources to
outperform TCP at higher buffer sizes.

B. VANET server and RSU

In this subsection, we present the results for RSU to VANET
communications. We performed our benchmarks by using the
following hardware: The specs for the VANET Server are
given below,

• Processor: Intel (R) Xeon (R) CPU E5-2683 v4
• RAM: 32GB
• Storage: 500GB
• Network: 1 Gigabit Ethernet University Network
• OS Type: Debian 3.16.43-2+deb8ul x86 64GNU/Linux

The specs for the RSU are given below. It can be clearly
seen that the resources on the RSU are quite limited compared
with the VANET server or a modern PC.

• Processor: MIPS 24Kc V7.4 (1 core)
• RAM: 64 MB SDRAM (512 Mbits)
• Storage: 16 MB Flash
• Network: 1 Gigabit Ethernet University Network
• OS Type: Linux 2.6.32.27-WAVE LOCOMATE-

200 1.90.0.13 detriot

These results show that in this arrangement, less CPU cycles
as well as memory are available on the RSU and hence, the
performance of SLTP is not much greater than the standard
TCP.

C. RSU to RSU

Finally, the results for RSU to RSU are given in Fig.9.
These results show that with two RSUs, there is very limited
resources at user level and hence, TCP in the kernel slightly
outperforms SLTP as more resources are available in the kernel
when running on smaller systems, comapared to running in
user space.

Fig. 8. RSU to VANET Server - Network Time: SLTP vs TCP

Fig. 9. RSU to RSU - Network Time on Load = 0%: SLTP vs TCP

D. Investigating results for RSUs under different load condi-
tions

Since, SLTP runs in user space, it is important to understand
how its performance is affected by different load characteris-
tics of the system. In order to explore this, a flexible hog
program was used to remove idle CPU cycles at user level
from the system. Hence, we were able to obtain readings with
the system being under various loads, including 25%, 50%,
75% and 100%.

Fig.10 shows the time taken to transfer for different buffer
sizes under different loads and it clearly shows as the load
increases SLTP underperforms TCP as less cycles are available
in user space. However, this effect is only significant at very
high loads.

The bandwidth results under different loads are shown in
Fig.11. There are only significant differences for small packet
sizes. However, after around 2KBs, the available bandwidth
falls to around 2.5MB/s. This is important for applications



Fig. 10. RSU to RSU - Network Time on Load = 25% to 100%: SLTP vs
TCP

needing large packet transfers sizes such as multimedia appli-
cations.

Fig. 11. RSU to RSU - Bandwidth on Load: SLTP

The latency results as measured by SLTP using different
packet sizes under different loads are shown in Fig.12. These
results indicate that the latency increases with increasing load
especially after 50KBs.

Finally, the burst results clearly show that the system is
affected by high loads especially for small packets. After
around 10KBs, the burst size is severely reduced.

VII. RELATED WORK

In terms of data transport, the Internet has been dominated
by the use of TCP and UDP. Other protocols were considered
only when these protocols could not be used. For example,
the use of the Network Filling System (NFS) required a new
protocol running over UDP to reduce the latency [6]. Research
into transport protocols that can be used for different types

Fig. 12. RSU to RSU - Latency on Load: SLTP

Fig. 13. RSU to RSU - Burst on Load: SLTP

of applications began with the development of the Express
Transport Protocols (XTP) [7]. This protocol attempted to
optimize new local area networks such as Gigabit Ethernet
[8]. It also ran in user space which at that time was regarded
as a very limited resource environment. XTP therefore had
to support a full range of functions and prototypes making
the system complicated to run. However, it did introduce new
concepts such as the request and reply bits and sync numbers.

The next big effort in transport protocol design came with
research into new networks such as Asynchronous Transfer
Mode (ATM). Attempts were made to support multimedia
applications running over these networks. The A1 transport
protocol was developed for this environment [9]. It also ran in
user space and attempted to support the idea of streams having
a specified QoS based on a QoS vector which was supplied
by the application. It included features such as maximum
burst and jitter values as well as the priority of the stream.
In addition, attempts were made to develop an efficient TCP



user space implementation. However, these efforts had mixed
results and resulted in the development of TCP offload engines
being pursued instead [10].

Support for QoS in the Internet was explored using the
Intserv [11] and Diffserv QoS [12] [13] models but they
have failed to gain universal acceptance. However, recently
the Y-Comm architecture has proposed a Hybrid model which
is a combination of Intserv in the Peripheral network and
Diffserv in the Core network [14]. More support for QoS at
the transport level was seen with the development of Explicit
Congestion Notification (ECN). This enables the network to
explicitly signal to applications about network congestion
using two bits in the transport header [15].

The emergence of commonly used multimedia applications
has resulted in the need for low latency. For example, the
QUIC protocol is an encrypted, multiplexed, low-latency, user
space transport protocol with UDP being used as a substrate.
It was developed, tested and deployed at Google’s front-
end servers [16]. The use of UDP allowed QUIC packets
to traverse routers and switches. In addition, the user space
development facilitated iterative changes at application update
time scales. The results show that QUIC reduced the latency
of Google Search responses by 8.0% for desktop users and by
3.6% for mobile users, and reduced rebuffer rates of YouTube
playbacks by 18.0% for desktop users and 15.3% for mobile
users. Therefore, this work has shown the need to move away
from traditional TCP systems for specific applications because
of the need for low latency. However, the QUIC protocol was
designed to support multi-stream communication, such as Web
traffic, in which different types of documents are supported
over one communication link. The QUIC protocol is therefore
much more complicated than SLTP.

VIII. CONCLUSIONS

Thie work presented in this paper has examined the de-
velopment of a new transport protocol to support vehicular
envirnoments and is now part of ongoing research in this area
[17]. These results are preliminary and more work is being
done to look at how applications can make use of the protocol
in vehicular environments. In addition, work is being done to
compare this work with other transport protocols.

ACKNOWLEDGMENTS

The authors would like to thank the Department for Trans-
port (DfT) for funding this project through Transport Technol-
ogy Research Innovation Grant (T-TRIG) and Central London
Testbed Project (CLTP) grants. (MDX Project code: 102105).
We would also like to thank Transport for London (TfL) for
their support in building this testbed.

REFERENCES

[1] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge
computing: A survey,” IEEE Internet of Things Journal, vol. 5, no. 1,
pp. 450–465, 2018.

[2] Solarlare, “10 Gbps NIC Cards for Sale.” [Online]. Available:
storage.dpie.com/products/solarflare/

[3] SlideShare, “Understanding DPDK,” February 2015. [Online]. Available:
https://www.slideshare.net/garyachy/dpdk-44585840

[4] G. Mapp, D. Thakker, and D. Silcott, “The Design of a Storage
Architecture for Mobile Heterogeneous Devices,” ICNS2007, vol. 0,
p. 41, 2007.

[5] V. V. Paranthaman, A. Ghosh, G. Mapp, V. Iniovosa, P. Shah, H. X.
Nguyen, O. Gemikonakli, and S. Rahman, “Building a prototype
vanet testbed to explore communication dynamics in highly mobile
environments,” in International Conference on Testbeds and Research
Infrastructures. Springer, 2016, pp. 81–90.

[6] T. Haynes and D. Noveck, “Network file system (nfs) version 4
protocol,” Network, 2015.

[7] W. T. Strayer, B. J. Dempsey, and A. C. Weaver, XTP: The Xpress
transfer protocol. Addison Wesley Longman Publishing Co., Inc., 1992.

[8] V. Jacobson, “A high performance tcp/ip implementation,” in Presenta-
tion at the NRI Gigabit TCP Workshop, 1993.

[9] G. Mapp, S. Pope, and A. Hopper, “The design and implementation of
a high-speed user-space transport protocol,” in Global Telecommunica-
tions Conference, 1997. GLOBECOM’97., IEEE, vol. 3. IEEE, 1997,
pp. 1958–1962.

[10] J. P. Sterbenz, “Protocols for high speed networks: life after atm?” in
Protocols for High Speed Networks IV. Springer, 1995, pp. 3–18.

[11] S. Shenker, “Specification of guaranteed quality of service,” 1997.
[12] K. H. Chan, J. Babiarz, and F. Baker, “Configuration guidelines for

diffserv service classes,” 2006.
[13] P. Jones and D. Black, “Differentiated services (diffserv) and real-time

communication,” 2015.
[14] G. E. Mapp, F. Shaikh, D. Cottingham, J. Crowcroft, and J. Baliosian,

“Y-comm: a global architecture for heterogeneous networking,” in Pro-
ceedings of the 3rd international conference on Wireless internet. ICST
(Institute for Computer Sciences, Social-Informatics and Telecommuni-
cations Engineering), 2007, p. 22.

[15] D. Black, “Relaxing restrictions on explicit congestion notification (ecn)
experimentation,” Tech. Rep., 2018.

[16] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang,
F. Yang, F. Kouranov, I. Swett, J. Iyengar et al., “The quic transport
protocol: Design and internet-scale deployment,” in Proceedings of the
Conference of the ACM Special Interest Group on Data Communication.
ACM, 2017, pp. 183–196.

[17] J. Jeong, Y. C. Sheny, J. P. Jeong, T. T. Ohx, J. Jun, and S. H. Son,
“Toms: Tcp context migration scheme for efficient data services in vehic-
ular networks,” in Advanced Information Networking and Applications
Workshops (WAINA), 2017 31st International Conference on. IEEE,
2017, pp. 360–364.


