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Abstract— A background model describes a scene without any 

foreground objects and has a number of applications, ranging 

from video surveillance to computational photography. Recent 

studies have introduced the method of Dynamic Mode 

Decomposition (DMD) for robustly separating video frames into 

a background model and foreground components. While the 

method introduced operates by converting color images to 

grayscale, we in this study propose a technique to obtain the 

background model in the color domain. The effectiveness of our 

technique is demonstrated using a publicly available Scene 

Background Initialisation (SBI) dataset. Our results both 

qualitatively and quantitatively show that DMD can successfully 

obtain a colored background model. 

Keywords- DMD, Background model initialisation, Color, 

RGB, SBI. 

I.  INTRODUCTION 

The objective of Scene Background Initialisation (SBI) is 
to obtain a background model from a sequence of images 
where the background is occluded with a number of 
foreground objects. It has a number of applications, including 
video surveillance, video segmentation, video compression, 
video inpainting, privacy protection for videos, and 
computational photography [1]. 

A recent study by Maddalena et al. [2], [3] reviewed and 
benchmarked five different methods that are suitable for 
obtaining a background model from a given image sequence, 
namely, temporal median (baseline) method, Spatially 
Coherent Self-Organizing Background Subtraction (SC-
SOBS) [4], WS2006 [5], RSL2011 [6] and Photomontage [7]. 
In the temporal median method the background model is 
obtained as the median of pixel values at the same location 
throughout the image sequence. SC-SOBS estimates the 
background model by detecting moving foreground objects 
using a self-organizing neural background model. WS2006 
initialises the background model in a two-step process. First, 
for each pixel, the longest stable sequence of values that have 
similar intensities in the image sequence is considered as a 
candidate background. Second, using a RANSAC method the 
stable sequences which are likely to arise from the background 
are selected. The temporal mean of the selected subsequence 
provides the estimated background model. For RSL2011 the 
background estimation is carried out at the image block level 
using Markov random fields. A combined frequency is 
calculated on an image block and its corresponding 
neighbourhood. The background model is then estimated from 
the blocks that provide the smoothest frequency from the 
image sequence. Finally, the Photomontage method initialises 

the background model through a framework that selects the 
image blocks that require minimum cost in editing images in 
the sequence. 

In this paper, we will benchmark the recently introduced 
Dynamic Mode Decomposition (DMD) method, which 
robustly separates video frames into a background model and 
foreground objects [8], against the aforementioned list of 
methods. The DMD method decomposes a given image 
sequence into several images, called dynamic modes, which 
are associated with Fourier frequencies. The frequencies near 
the origin are interpreted as background modes of a given 
image sequence. In particular, DMD considers the parts in an 
image sequence that do not change in time as the background 
model. One of the key advantages of DMD is its data-driven 
nature which does not rely on any prior assumption about the 
form of objects in the image sequence except its inherent 
image dynamics which are captured in terms of ‘DMD’ 
modes. Although DMD was originally introduced in the area 
of computational fluid dynamics (CFD) [9], its capability for 
extracting relevant modes from complex fluid flows [10], [9], 
[11], [12], has gained significant applications in various fields 
[13], [14], [15], including for detecting spoof samples from 
facial authentication video datasets [16] and spoofed finger-
vein images [17]. 

 

 
 
Fig. 1. Flow chart showing the steps involved in the methodological 

framework. A color image sequence consisting of N images in R, G and B 
channels are vertically concatenated forming a data matrix PRGB as shown in 

the Equation 1. DMD is applied to this matrix to obtain N −1 dynamic mode 
images. Fourier frequencies are calculated on the dynamic eigenvalues. The 

mode with the Fourier frequency ≈ 0 is then selected as the background 

initialised image. The three channels are then normalised and combined to 
obtain color background initialised image. Finally, the color is transferred 

from the original images to the obtained background image. 

A. Contribution 

The DMD method that is introduced for obtaining the 
background model essentially requires the conversion of color 
images into grayscale images. However, it is sometimes 
necessary to have the scene background in the color domain, 
particularly for applications that include computational 



photography and video inpaintings. Therefore, our novel 
contribution in this paper is in modifying the DMD algorithm 
to obtain a color background model, thereby avoiding the 
conversion of color images to grayscale. 

In this paper we answer the following questions: 
1. Can DMD capture background models in the color 

domain? 
2. How effective is the proposed DMD technique 

compared to existing benchmarked methods? 
The remainder of the paper is as follows: In section II, we 

describe the SBI dataset, our methodological framework as 
well as implementation details. Results are discussed in 
section III. Finally, in section IV, we draw conclusions. 

II. DATA, METHODOLOGY & IMPLEMENTATION  

In this section, we present the SBI dataset, our 
methodological framework as well as the implementation 
details. 

A. SBI dataset 

The SBI 1  dataset includes seven image/bootstrap 
sequences along with their corresponding groundtruths (GT) 
as shown in Figure 2 (a & b). These sequences are challenging 
in their own way as described in [1]. 

B. Methodology: DMD for color image sequences 

Our methodological framework (Figure 1) consists of: (i) 

DMD applied to R, G and B channels of the color image 

sequence. (ii) Selection of the DMD mode representing the 

background model. (iii) Normalising and combining three 

channels of the selected DMD mode to obtain the colored 

background image. (iv) Transferring color from the original 

images to the obtained background image.  

     In a dynamic sequence of N color images PRGB, let pr be 

the rth image whose size is m×n×3 i.e., with a height of m 

pixels and width of n pixels across the three color channels. 

This image pr is then separated for R, G and B channels. Later, 

these channels are vectorised to obtain a column vector of size 

mn×1 for each channel. These column vectors are then 

vertically concatenated to produce a vector of size (3×mn)×1 

resulting in the construction of a data matrix PRGB of size 

(3 × mn) × N for N images in the sequence. 
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     The images in the video sequence are collected over 

regularly spaced time intervals and hence each pair of 
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consecutive images are linearly correlated. It can be justified 

that a linear mapping A exists between them forming a span 

of Krylov subspace [18], [19], [20]: P = [p1, Ap1, A2p1, A3p1,··· 

, AN−1p1]. The Krylov subspace can then be represented using 

two matrices P2 and P1 where P2 ≡ [p2, p3,, ···, pN] and P1 ≡ 

[p1, p2, ··· , pN−1]. 

 P2 = AP1. (2) 

The mapping matrix A is responsible for capturing the 

dynamics within the image sequence. The sizes of the 

matrices P2 and P1 are both (3 × mn) × N − 1 each. Therefore, 

the size of the unknown matrix A would be (3×mn)×(3×mn). 

Unfortunately, solving for A is computationally very 

expensive due to its size. For instance, if an image has a size 

of 240 × 320 × 3 (Here 3 is denotes values from R, G and B 

channels) i.e., m = 240 and n = 320, the size of A is then 

230400 × 230400. 

Since solving A is computationally expensive for 

large image dimensions, we need an alternative solution. Our 

assumption that the images form a Krylov span, would allow 

us to introduce H.  

   AP1 ≈ P1H.                                 (3) 

Here, H is a companion matrix also known as a shifting 

matrix that simply shifts images 1 through N − 1 and 

approximates the last frame N by linearly combining the 

previous N − 1 images, i.e., PN = c0p1 + ... + cNpN−1 = [p1, p2, 

p3, ··· , pN−1]c. H requires the storage of N−1×N−1 data matrix 

which is significantly smaller than A in dimensions. 
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Thus, for the last frame N, where N is substantially lower 

dimensional than of A, one can write P2 as a linear 

combination of the previous vectors. Consistent with 

Equations 2 and 3, we then have: 

 P2 ≈ P1H. (5) 

From Equations 3 and 5, we have AP1 ≈ P2 ≈ P1H.     

    In [9], the author describes a more robust solution, which 

is achieved by applying a singular value decomposition 

(SVD) on P1. From Equation 2, the SVD decomposition on 

P1 subspace is calculated to obtain U, Σ and V ∗ matrices that 

are left singular vectors, singular values and right singular 

vectors respectively. The inversions of these matrices are 

then multiplied with P2 subspace to obtain the full-rank 

matrix 𝐻 , determined on the subspace spanned by the 

orthogonal basis vectors U of P1, described by: 

 

                       𝐻 = 𝑈∗𝑃2𝑉Σ
−1. (6) 

 



Here, 𝑈∗ ∈ ℂ𝑁×M  and 𝑉 ∈ ℂ𝑁×𝑁  are the conjugate 

transpose of 𝑈  and 𝑉∗ , respectively; and Σ−1 ∈ ℂ𝑁×𝑁 

denotes the inverse of the singular values Σ. After obtaining 

the 𝐻̃ matrix, the eigenvalue analysis is performed to obtain 

𝜔  eigenvectors and 𝜎  a diagonal matrix containing the 

corresponding eigenvalues. 

 

                         𝐻𝜔 = 𝜎𝜔 (7) 

 

It is known that the eigenvalues of 𝐻 approximate 

some of the eigenvalues of the full system 𝐴. The associated 

eigenvectors of 𝐻  provide the coefficients for the linear 

combination that is necessary to express the dynamics within 

the image sequence basis. 

The dynamic modes Ψ  are thus calculated as 

follows:  

                        Ψ = 𝑃2𝑉Σ
−1𝜔 (8) 

The complex eigenvalues σ contain growth/decay rates and 

frequencies of the corresponding DMD modes [9], [10].  

According to the authors in [8], DMD modes with Fourier 

frequencies µj is given by . Here, 𝛿𝑡 is the time 

difference between the images and considered to be 1 in this 

study. The real part of 𝜇𝑗 regulates the growth or decay of the 

DMD modes, while the imaginary part of 𝜇𝑗  drives 

oscillations in the DMD modes. The frequencies near the 

origin (zero-modes) are interpreted as background (low-rank) 

portions of the given image sequence, and the Fourier 

frequencies bounded away from the origin are their sparse 

counterparts. Specifically, the parts in an image sequence that 

do not change in time, have an associated Fourier frequency 

at the origin of the complex plane with ∥ 𝜇𝑗 ∥≈ 0 , which 

corresponds to the background model.  

The methodology, as summarised above, allows us to 

obtain the DMD mode that reveals the background. Although 

this DMD mode has a dimension of (3 × mn) × 1 which can 

be translated back to the original image space of size m×n×3, 

it is nonetheless not a properly normalised image. As a result, 

the DMD mode needs to be calibrated in order to produce a 

proper image. To this end, we normalise the DMD mode to 

the range of [0 1] and then apply a color transfer from the 

statistically calculated mode image using the method 

proposed by Reinhard et al. [21]. In our preliminary 

experiments, we notice that the background models obtained 

from the statistically calculated mode and WS2006 [5] have 

equal CQM values and qualitatively look similar. 

C. Implementation 

Recall our methodological pipeline from Figure 1. For 

each of the color image sequences in the dataset consisting of 

N images, R, G and B channels are separated and converted 

to column vectors. These vectors are then vertically 
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concatenated to form a data matrix as shown in Section II 

(Equation 1). DMD is then applied on the data matrix to 

obtain N − 1 dynamic modes for N images in the sequence. 

Fourier frequencies are calculated on the dynamic 

eigenvalues and the mode with the Fourier frequency ≈ 0 is 

selected as the background mode. The three channels of that 

particular mode are first normalised and then combined to 

produce a color background initialised image for a given 

input image sequence. In order to retain the colormap from 

the original sequence, Reinhard et al.’s [21] method of color 

transfer is used. We refer the background produced from 

DMD as ‘DMD’ and background produced after color 

transfer as ‘DMD_CT’. 

D. Evaluation metric 

Let GT be the groundtruth image and CB be the DMD 

computed background. We have adopted the image Color 

Quality Measure (CQM) from [1] as a metric for evaluating 

the performance of our technique: CQM is a recently 

proposed metric which is based on reversible luminance and 

chrominance (YUV) color transformation and peak signal-to-

noise ratio (PSNR) measure [22]. The units of CQM are 

denoted in decibels db. The higher the CQM value, the better 

is the background model.   

The evaluation is performed through the Matlab codes 

provided via the SBI dataset website2. 

III. RESULTS & DISCUSSIONS 

DMD background mode considers only those parts in an 

image sequence that does not change in time as a background 

model. When this condition holds, DMD performs better than 

Median, WS2006 and Photomontage methods. For example, 

in the case of Snellen sequence, the foreground leaves 

continuously move throughout the sequence and occupy most 

of the scene. Therefore, DMD is able to consider only those 

parts in the sequence that has not changed in time as its 

background model, while the aforementioned methods failed 

to remove the leaves from their background models as shown 

in Figure 2 (c, e & g). This is also confirmed by the 

quantitative results as DMD (36.17) and DMD_CT (36.85) 

outperformed the Median (36.07), WS2006 (24.99) and 

Photomontage (26.92) methods. Another example where the 

condition for DMD holds is the sequences of Highways, 

which generally reveal more than 50% of the background and 

most importantly the vehicles, do not remain stationary 

anywhere in the scene throughout the sequence. Therefore, 

DMD on these sequences could obtain a perfect background 

model by eliminating the foreground moving vehicles. 

Although, the aforementioned methods have been successful 

in obtaining a perfect background model, quantitatively DMD 

outperformed these methods as shown in Table I. Similarly, 

on the People&Foliage sequence DMD produced better 



results when compared to Median, SC-SOBS and WS2006. 

On the Foliage, DMD both quantitatively and qualitatively 

outperformed Median by eliminating the greenish halos 

produced due to the moving leaves in the foreground.  

      On the contrary, when the condition is violated, block 

based algorithms such as RS2011 may work better. For 

example, on the CaVignal sequence, DMD_CT and DMD 

qualitatively could not outperform the benchmark methods. 

This is due to the fact that, the man standing in the left of the 

sequence covers the scene for the first 60% of the sequence 

before he starts walking and again stands on the right for the 

last 10% of the sequence. Therefore, holding to the condition, 

DMD successfully eliminated the images when the person 

walks but not when he remains standing. The only effective 

solution to this problem is to track the object across the video 

sequence. However, since DMD does not rely on such a prior 

knowledge, its failure in this case is not unexpected. 

Nevertheless, quantitatively, DMD_CT (44.87) outperformed 

the rest of the methods except for RS2011 (52.59). Similarly 

for the Hall&Monitor sequence, a walking man in the corridor 

occupied the same scene region for more than 65% of the 

image sequence. Therefore, DMD included a ghost artefact of 

the man in its background model. Although methods such as 

WS2006, Photomontage and RS2011 were able to obtain a 

perfect background model, interestingly they have not 

performed well quantitatively comparing with DMD. 

Prior to comparing the overall average CQM value across 

the seven sequences with the methods presented in [1], we 

first compare the results produced from DMD (Figure 2 (h)) 

and DMD_CT (Figure 2 (i)). After transferring the colormap 

from the original image sequence to the ‘DMD’ background 

initialised image, we see that the intensity values in 

‘DMD_CT’ are adjusted to the original sequence’s color 

format. For instance, on the HighwayI and HighwayII 

sequence, the background model produced from DMD had a 

different color intensity compared to the groundtruth, but 

when the colormap is transferred, the background model 

produced by DMD_CT acquired the original sequence’s 

color format. Quantitative results show the background 

models produced from DMD_CT have better CQM values 

compared to the background models produced from DMD 

(except for the Hall&Monitor sequence, but the difference is 

marginal), as shown in Table I. On average, across all seven 

sequences DMD_CT (42.82) performed better than the 

Median (39.00), WS2006 (39.87) and Photomontage (42.82) 

methods and stands at rank 3 as shown in Table I. 

IV. CONCLUSIONS 

In this paper, we have introduced a technique using DMD 
to obtain the background model in the color domain. The 
significance of our technique is demonstrated on a publicly 
available SBI dataset. When DMD condition holds, i.e., 
“DMD background mode considers only those parts in an 
image sequence that does not change in time as a background 

model”, it performs better than Median, WS2006 and 
Photomontage. Contrarily, when the condition is violated, 
block-based algorithm such as RS2011 may work better. 
Since DMD_CT (with color calibration) produces visibly 
higher quality image than DMD, we recommend that 
DMD_CT be used when the condition is true. Our results in 
this paper show that DMD can successfully obtain a colored 
background model.  
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 Sequence GT Median SC-SOBS WS2006 RS2011 Photomontage DMD DMD_CT 

 

 (a) (b) (c) (d) (e) (f) (g) (h) (i) 

Fig. 2. (a) Exemplar frames corresponding to {295, 0, 0, 0, 261, 10, and 0} from seven different sequences of the SBI dataset. (b) Corresponding GT’s for the 
sequences. (c-g) Background models generated by benchmarked methods: (c) Median, (d) SC-SOBS, (e) WS2006, (f) RS2011, (g) Photomontage. (h) DMD and 
(i) DMD_CT. Both DMD and DMD_CT are the proposed methods in this paper. The images {a-g} are taken from [1]. 

TABLE I. QUANTITATIVE COMPARISON OF CQM VALUES FOR DMD & DMD CT WITH THE BENCHMARK METHODS [1]. 

 CaVignal Foliage Hall&Monitor HighwayI HighwayII People&F

oliage 

Snellen Avg(CQM) Rank 

SC-SOBS [4] 42.27 39.11 43.19 65.58 54.38 35.37 44.75 46.38 1 

RSL2011 [6] 52.59 43.10 35.08 38.00 51.98 37.06 50.26 44.01 2 

DMD_CT 44.87 34.65 42.39 55.77 46.95 31.97 36.85 41.92 3 

Photomontage [7] 32.06 45.61 41.73 59.03 35.08 47.15 26.92 41.08 4 

DMD 40.17 34.39 42.53 52.36 45.07 28.43 36.17 39.87 5 

Median 33.14 28.73 62.57 42.67 42.32 27.50 36.07 39.00 6 

WS2006 [5] 37.06 34.98 40.09 56.91 40.51 31.38 24.99 37.99 7 
 


